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一個路徑狀態偵測之傳輸控制協定- RSA TCP 

 

學生:何文慶                           指導教授：陳耀宗 博士 

 

國 立 交 通 大 學   資 訊 學 院   資 訊 學 程 碩 士 班 
 

摘 要       

當今許多通訊產品對於多媒體資料的需求越來越高，也同時擁有多種

網路介面方便使用者隨時隨地存取網路上的影音資料。本論文研製一套通

訊協定，可方便擁有多個網路傳輸介面之產品使用。上層的應用程式以及

底層的實體層都不需要做出修改，本通訊協定可以主動偵測資料傳輸路徑

的狀態，來決定該如何動態轉移資料傳遞路徑，提升資料傳輸的可靠度與

流通量。 

    在這篇論文中，RSA TCP 著重在路徑選擇的控制。因為TCP本身擁有流

量控制的功能，所以路徑上如果發生錯誤或者壅塞，將會嚴重的影響TCP傳

輸的效能。RSA TCP的目標就是判斷出現有的路徑是否出現錯誤情況，並且

自動將原有的TCP資料流導引到另外的路徑上。 

    RSA TCP 能夠讓錯誤路徑上的資料封包轉移到其他正常的路徑上，如

果要求上層的應用程式來達成這樣的效果，那麼每一個有使用網路功能或

者跟網路有關連的應用程式都得修改，加上產品的平台種類繁多，作業系

統除了種類多、版本也多，如果要應用程式達成這樣效果，將會是一筆非

常可觀的花費。如果要求底層的網路層來做到路徑偵測，網路層本身只有

IP相關的資訊，除了IP以外，網路層沒有其他任何的資訊可以判讀路徑的
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狀態，所以網路層是不可能達成這樣的效果。 

    RSA TCP 本身跟上層的應用程式是互相獨立的，跟底層的網路層或者

實體層也互不干涉，也就是說，使用RSA TCP 來達成路徑偵測並轉移，是

最方便也是最符合經濟效益的一種方法。我們也在NS2的模擬器上跟原有的

方法比較效能。實驗顯示，與傳統TCP相比，RSA TCP可以達到大於26%的流

通量。    
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Abstract 

There are more and more communication devices or portable devices equipped with 

multiple interfaces for users to request much higher multimedia data than before. Users could 

access multimedia data anywhere and anytime. The protocol studied in this thesis can be 

adapted by the devices with multiple interfaces to access the internet without requiring the 

modifications of the applications in the upper layer. There is also no need for lower physical 

layer to do any modifications. The protocol can detect the state of the routing path 

automatically to determine how to transmit data through the new path dynamically so as to 

improve the reliability and throughput. 

RSA TCP emphasizes on the path switching control for TCP packets. TCP protocols 

feature flow control, its performance may be affected by the congestion or error along the 

path. RSA TCP focuses on how to determine whether the paths encounter a problem or not. 

After the decision made is to switch routing path, the routing information will be updated to 

re-direct the data stream to the new next hop. 

TCP packets can escape from the congestion path automatically. If users request 

applications to do the same job, every network associated applications need to be modified. 

And there are various platforms and operation systems. The modification requested on 

application will cost a lot. It is infeasible for users to request the change in network layer, 

because network layer only contains IP information and is no routing information maintained 

in this layer, therefore it is unable know what happened and what to do. RSA TCP is 

independent of upper application layer and network layer, and it helps system keep the best 

performance for data communications with low cost. 
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We perform the experiment for our method on NS-2 simulator and compare the 

performance with the original designed method. It shows that, comparing with traditional 

TCP, more than 26% throughput improvement can be achieved with RSA TCP.  

 

Keywords: Route, Multipath, TCP, congestion 
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1. Introduction 

In recent years, there is an explosive growth of the multimedia related applications 

running on various devices, especially smart phones, mobile phones and tablet PCs. The 

applications may acquire different kinds of information and multimedia data from the Internet. 

People can use the portable devices to watch to the network news, such as ABC or NBC news. 

They also can browse the movies or clips from a video on demand (VoD) system. The 

applications existed on everything you can think. Popular community websites have text 

articles, text message, audio files and video clips embedded. How to maintain a host that 

provide multi-paths to deliver data with enough bandwidth for data rate and high reliabilities 

becomes more and more important nowadays. 

 

Figure 1 Sample network architecture in real environment 

 

As shown in Figure 1, the source often has multiple interfaces or paths to access network. 
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There are different kinds of network interfaces for devices to access the Internet, these include 

Ethernet, 3G, wireless 802.11 WiFi, blue tooth, and 802.16 WiMAX, etc. Multiple paths may 

be coexisting for data transport at the same time. But a device is usually configured with only 

one of them as default routing path, which might be the best path for the user. The default 

path selected by the user may have the best performance, or the largest bandwidth, or the 

widest coverage depending on the user’s preference. The remaining interfaces are prepared to 

backup the default connection. No matter what interface is in active, the other interfaces may 

not be able to transmit the data at the same time so as to increase the outgoing bandwidth. 

Also, the backup paths might not be activated to replace the current path that might have lost 

the connection to the destination or been congested. Usually the devices are not aware of the 

problem occurred on the running path even though the other backup paths are ready or idle. 

The backup mechanism does not activate automatically to recover the failure of the current 

path.  

There is a way to detect the path failure. In some implementation, the path switching 

might be determined by the applications located in the higher layer. Some applications have 

timeout mechanism to inform users that current path has errors. After users receive the 

information, they can switch to the alternative path manually. For this case, users may need to 

spend a lot of time in manual operation and waiting. On the other hand, if there is no timeout 

mechanism, users may have to wait for a very long time until they decide to drop the current 

connection and switch the interface. Both above situation are wasting time and inconvenient 

to users. No matter what kinds of applications are embedded in user’s device, the user will 

feel unsatisfactory for the idle period of the multimedia data when the current connection gets 

down or congested. 

As the applications need to recover the path problem, they have to deal with the selection 

of path and request network layer or transport layer to report the status of the running path. 
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This kind of process may take too much system resources including both CPU time and 

memories. Generally, the mobile device is not as powerful as desktops. The above kind of 

path recover operation might slow down other applications which are also running on the 

device. In case of path failure, from the moment a condition occurred on the connection to the 

time the condition been fixed is quiet long, it usually takes seconds.  

Transport layer is much closer to the network status than application layer. If the 

transport layer can detect the status of the network and determine the best timing to change 

the route path and where to go, this might make the path switching be independent of all 

upper layers. It is not necessary for the upper layer to spend time on polling the status of the 

network, so that the CPU time can be saved to speed up other processes. And the network 

status information is also not necessary to be preserved in the memory of the end device. 

TCP and UDP are the most popular protocols to carry the standard-based multimedia 

data over the Internet. UDP will be chosen first instead of TCP for real-time multimedia data 

because it can deliver the data with desired data rate. In an ideal environment without 

congestion, UDP sender can send data to receiver with the data rate in the receiver side being 

close to that in the sending rate. If the data rate is too high for buffer to handle, the data 

packets will be dropped. If the data rate is too slow, the quality of multimedia playback will 

be poor or it may causes the video clip to be stuck. But UDP still has some disadvantages. It 

is not a congestion aware protocol. Even the network is congested with heavy traffic, UDP 

does not reduce its data rate. Therefore, UDP potentially results in a congestion collapse and it 

is unable to construct a fair network. 

Now more and more applications use TCP to send data even TCP has two obvious 

disadvantages, congestion control and fluctuation data rate [13]. With TCP protocols, the path 

errors will eventually lead TCP host side to back off the size of congestion windows (cwnd). 

This slows down the data sending rate in the host. When an abnormality occurs, the TCP 
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protocol will use its original mechanisms, fast retransmission or fast recovery to eliminate the 

abnormality. If the mechanisms are not working well, TCP has to handle the possible 

situation – packet loss or timeout. Both phenomena force TCP to enter congestion handling 

phase and the data rate decreases. So we need an active transport protocol to handle this 

situation. Not only passively stop the packets from being sent to the congested path, but also 

switch the entire path to an alternative one to retain the original sending rate. As Figure 2 

illustrated, the requests and responses are handled by the transport layer, which can easily 

assign the outgoing packets with different interface. To the application layer, the changes in 

the lower layer will be transparent. Our proposed method - RSA TCP is able to detect the 

abnormality and send the data packets to another existed interface without having to inform 

the upper application layer.  

 

Application Layer

Transport Layer

Physical Layer

IF0 IFn……

Next hop = Node 0 Next hop = Node n

First node on 
Interface n

First node on 
Interface 0

 

Figure 2 Application independent packet flow 
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First, RSA TCP will not enter the back off process immediately as the abnormality 

occurs along the path. Instead, RSA TCP will search a backup path to replace the abnormal 

path and try to maintain the performance same as that in original stable state. Second, packets 

are transmitted to another path. If the new path is healthy, it will become the new backup 

outgoing routing path during the waiting period for the elimination of abnormality occurred 

on the default path. Third, the main default route is usually the most efficient path for the 

sending source. Even the RSA TCP is switching the data to the new path, it still tries to switch 

the ongoing data transmission back to the original path if the problem in the original path is 

cleared. 

If the abnormality happened on the link directly attached to the host, the host will drop 

out the physical link and the routing information will also be updated. Host will not transfer 

the packets to the abnormal link any more. If the abnormality happened on the link behind the 

physical link between host and gateway, so called last mile, host will not update the routing 

table, because the physical link is still alive and the physical layer will not trigger any lost link 

events to inform upper layer. This is a kind of starvation of data. RSA TCP can detect the 

status of the path and make the decision regarding path switching. If it decides to switch path, 

RSA TCP will select a path among the available outgoing paths.  

In homogeneous network, there will be some interesting conditions. Is it possible that the 

alternative path is even worse than the original one? Yes. The reason forced RSA TCP to drop 

out current routing path is packet timeout. This means the current path is not healthy enough 

to carry the desired data rate. The path switching is necessary. If the new path is still 

congested or heavy loaded, the path switching will be performed again. If there is no more 

path to switch to, RSA TCP will stay on the last selected path and still periodically listen to 

the status of initial path. What is improved by RSA TCP in this situation? Not at all. There is 

no any good path to go. RSA TCP’s objective is dropping out the poor one and switching to 
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another one, but RSA TCP cannot guarantee the quality of the new path. The information of 

the path can only be obtained after the data packets are transferred to the destination. RSA 

TCP will use the RTT of packets to detect the status of the new path over again. 

The description mentioned above is mostly talking about the homogeneous network, in 

which most nodes along the path are traversed commonly. Even the source router is changed 

by RSA TCP, the rest of the path to the destination might be the same and it is quite possible 

that the abnormality still stay on the path. RSA TCP would be more suitable to run on the host 

which connects to two or even more heterogeneous networks.  

For heterogeneous networks, taking 3G network for example, the node has a base station 

to help the node to register to the 3G ISP and transfer the data to the destination. After base 

station receives the data sent by the source node, the data packet will be delivered through the 

ISP private network. The data packet transferred in telecommunication network is relatively 

stable. Eventually the data packets will enter the backbone network through the ISP private 

main trunk. Before entering the backbone, there is no way for the data packets going through 

the nodes same as that in homogeneous network. There will be very few common nodes 

traversed in heterogeneous network from source to the destination. That means, it is very 

likely that the data packets transferred on the new path can escape from the congested paths 

and reach the destination. 

The rest of the thesis is organized as follows. In Chapter 2, the background of TCP is 

presented. In Chapter 3, the purpose, architecture and mechanism of proposed protocol is 

discussed. In Chapter 4, experiments are performed and results are illustrated and compared. 

Future work and conclusion are both addressed in Chapter 5. 

 



 

7 

 

2. Background 

More and more applications use TCP protocol to guarantee the completeness of 

transferring multimedia files, such as video clips. The files need not only the integrity but also 

the short delivery time. People might use various kinds of devices, such as smart phone, plate 

computer, mobile phone, and GPS, to browse the resource on the Internet. In the past, UDP 

was considered first in transferring the files or media data on the Internet to meet the real time 

requirement. Considering the completeness of the transferred files, TCP protocol becomes 

more and more popular as the protocol for carrying the end to end data transport. 

 

Figure 3 Progressive flow of TCP editions 

2.1 Review of TCP 

The basic TCP standard [1] described in RFC 793 defined the window-based flow 

control and a timeout timer. The congestion avoidance scheme was first added in TCP 

Tahoe[2]. In TCP Reno [4][5] the fast retransmission and fast recovery scheme was 

developed to enhance the congestion control mechanism. TCP Reno is a very popular version 

that is included in the operating system of most hosts and devices. 
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    TCP New Reno modified the fast retransmission and added fast recovery mechanism. 

This causes TCP sending rate not to decrease too much. TCP SACK focused on the problem 

of retransmission for multiple consecutive packet losses. TCP Vegas uses RTT to detect the 

status of the network. TCP Vegas defines two variables, α and β, to be the lower bound and 

upper bound of rate variation, respectively. What expected is the difference between actual 

rate and the expected rate being between α and β. If the variation is smaller than α, the 

network traffic is light and source will increase the rate. Otherwise, if the variation is larger 

than β, the traffic on the network is too heavy, and TCP Vegas should decrease the data rate. 

The transmission rate of TCP is depending on the cwnd (congestion window) in TCP 

sender side. Cwnd is the maximum size of unacknowledged packets that the sender can send 

to the network. When TCP receiver receives a packet, it should respond an Acknowledgment 

packet back to the sender with an SN (sequence number) to inform the sender that the packets 

with sequence number smaller than SN is already received by the receiver. After the sender 

receives an ACK, it increases the cwnd size and slides the cwnd toward the packets with 

unacknowledged serial number. The sending rate of TCP is as follows: 

 

2.1.1 TCP Tahoe 

TCP Tahoe is an early version at the starting period of TCP. TCP Tahoe has the basic 

structure of TCP, including Slow-start, congestion avoidance and recovery of the lost packets. 

TCP Tahoe also adds the Fast retransmission mechanism. Fast retransmission uses duplicate 

ACK as the stands. As long as there are three duplicate ACKs received, the sender retransmits 

the lost packet without waiting for the packet timeout. Triple duplicate ACKs are treated as 

timeout. TCP Tahoe will then reduce congestion window size to 1 and reset to slow-start 

(1) 
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phase (refer to Section 2.2.1). 

2.1.2 TCP Reno 

Currently TCP Reno is the most popular and widely used TCP version. TCP Reno modified 

the algorithm in TCP Tahoe and added a Fast Recovery mechanism. TCP Reno enters fast 

recovery phase (refer to Section 2.2.2) instead of entering slow-start phase after retransmitting 

the lost packet.  

2.1.3 TCP New Reno 

TCP New Reno is derived from TCP Reno. TCP New Reno mainly modified the 

algorithm of fast recovery in TCP Reno. As TCP New Reno gets partial ACKs, TCP New 

Reno will not terminate the fast recovery phase. New Reno sender will keep retransmitting the 

packets with sequence number bigger than that in duplicate ACK until all lost packets are 

re-sent and acknowledged. After all lost packets were sent and acknowledged, TCP New 

Reno terminated the fast recovery phase. This helps TCP New Reno do not need to wait for 

timeout to retransmit the lost data as a large number of data packets got lost. TCP New Reno 

will retransmit a recovery packet every RTT at the fast recovery phase. If allowed, TCP 

sender can keep sending out the packets to increase the utilization of the link. 

2.1.4 TCP SACK (TCP with Selective Acknowledgements) 

The main purpose for TCP SACK[8] is to improve the TCP multiple packet loss problem. 

Traditionally, the TCP can only recover a packet loss within a RTT period. TCP SACK 

allows TCP sender to recover multiple packets within a RTT period. SACK receiver side can 

tell the sender which packets were received by using TCP option field to carry some extra 

information. There will be a block to record the consecutive segments that had been received 
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by the receiver side. The sender will retransmit the lost packet according to the information in 

the block. In [7], if there are multiple consecutive acknowledgment packets lost in the 

network, there is no way to inform the sender which packets are received by the receiver. 

What sender can do is only waiting for the packets to be timeout. 

2.1.5 TCP Vegas 

L. S. Brakmo and Peterson proposed a new congestion control scheme, TCP Vegas [9, 

10, 11] in 1995. They think RTT can reflect the real situation that the network faces. So TCP 

takes the RTT into evaluation to know the traffic loading of the network being congested or 

light. According to the RTT value, TCP Vegas determines how to control the size of cwnd 

size. TCP Vegas can detect the variation of RTT to know the utilization of the network to 

avoid facing the periodical packet loss like TCP Reno [2][3]. The cwnd value for TCP Vegas 

is changing according to the network utilization or bandwidth, not periodical cycle. So TCP 

Vegas can run at a more stable rate. Comparing with other editions of TCP, TCP Vegas is 

more stable and fairer. If TCP Vegas finds the RTT diff is larger than β, TCP Vegas believes 

that the network is congested and decrease the cwnd size to reduce the traffic injected to the 

network. If the RTT diff is smaller than α in TCP Vegas, the remaining bandwidth on the 

network is still less than the expected bandwidth, and the cwnd size can be increased again. If 

the variance is kept in the range between α and β, the cwnd size will be kept without change. 

TCP Vegas detects the network bandwidth with the variation of RTT, not packet loss. 

Therefore, TCP Vegas can decrease the data rate before timeout taking place. If TCP can 

avoid entering timeout phase, the total performance can be increased up to 19%[11]. This 

helps TCP Vegas to run at a specific data rate that is closest to the best performance. 
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TCP Vegas cannot be adopted widely because TCP Vegas is relatively weak to compete 

with other transport protocols for the network bandwidth, especially compete with high 

aggressive protocols such as TCP New Reno. This will cause the network resource 

distribution to be unfair and the performance poor. 

TCP Vegas also modified the mechanism of slow-start. It tries to use the bandwidth 

efficiently and avoid sending the packets too fast and cause the packet loss. TCP Vegas slows 

down the speed that cwnd increases at slow-start. At slow-start phase, cwnd takes 2 RTTs to 

double cwnd size. TCP Vegas also adjusts the value for ssthresh according to the difference 

between expected transmitting rate and actual transmitting rate. When TCP Vegas detects that 

there are waiting queues, it leaves the slow-start phase and enters the congestion avoidance 

phase. 

2.2 Congestion Control Mechanism of TCP 

Generally speaking, there are five ways for TCP to perform congestion control. They are 

Slow-Start, Congestion-Avoidance, Fast Retransmission, Fast Recovery, and Timeout 

Retransmission. TCP uses acknowledgement (ACK) to detect the status of the network and 

provides the reliable transport service. To tune the rate in the sender side, there is a variable, 

(2) 

(3) 
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ssthresh (Slow-start threshold) to separate the two states, Slow-start and 

Congestion-avoidance. 

 

2.2.1 Slow Start 

Slow-start is the first state that TCP operation begins. The cwnd size is initialized to 1. 

This means in the beginning TCP can only send out one packet to the destination. When the 

sender gets an Acknowledgment packet from receiver, the cwnd size will be updated by 

comparing with ssthresh and configuring cwnd size according to Equation (4).  

At slow-start phase, the cwnd size is increasing exponentially by 2 times. So slow-start is 

also called exponential growth phase. Slow-start phase ends at the point that the predefined 

threshold is reached. Then TCP will enter the Congestion Avoidance phase at next RTT. 

Slow-start is named with a “slow”, but the growth of slow-start is very aggressive to go 

up to the threshold within a short time. 

(4) 
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Figure 4 The phases of Slow‐Start and Congestion Avoidance. 

2.2.2 Congestion avoidance 

When the cwnd value is larger than ssthresh, the TCP enters the congestion avoidance 

phase. During this phase, when the sender gets an Acknowledgment packet from the receiver, 

the cwnd size will be increased by 1 [4]. This can slow down the speed that cwnd increases. 

As the cwnd is kept increasing, it will eventually reach the limit of the available network 

bandwidth in the long run, and packet loss will take place as the cwnd exceed a value that 

causes the sending rate larger than the available bandwidth. 

2.2.3 Fast Retransmission 

Packets traveling on the Internet might get lost due to congestion and connection down. 

The sequence number received might be out of order due to different paths existing on the 

network at the same time. These conditions may cause the receiver to send the 

acknowledgment packet with duplicate sequence number. After TCP receives three duplicate 



 

14 

 

acknowledgment packets, TCP will send the packets with sequence number larger than the 

sequence number carried in the duplicate acknowledgment packets. TCP keeps sending out 

the packet until timeout. And then TCP will reduce ssthresh to half of cwnd and reset cwnd to 

one.  
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Figure 5 Phases of Fast Retransmission 

2.2.4 Fast Recovery 

After TCP fast retransmission, the cwnd is reset to a half of cwnd. After that, receiving 

every acknowledgment packet means the receiver got one more packet, even the 

acknowledgment packet is a duplicate ACK. The cwnd can be increased by 1 whenever 

receiving an ACK. 
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Figure 6 The phase of Fast Retransmission and Fast Recovery 

2.2.5 Timeout 

How to optimize the retransmission time out (RTO) value is very important. A small 

RTO value leads to unnecessary packet retransmission. On the other hand, a large RTO value 

results in the high latency of packet loss detection. In general, the RTO values should consider 

the current network Round Trip Time (RTT), which is the time required for a data bit traveled 

from the source to destination and come back to the source. Due to network traffic changes 

over time, RTT of one packet may be different from that of another. In TCP protocol, we have 

smoothed (i.e. average) RTT ( ) and RTT variance ( ) to compute the RTO value. 

Instantaneous smoothed RTT, RTT variance, and RTO are computed as the following 

equations. Let t(k) be the Kth RTT value collected upon receiving acknowledgement packet. 

And, let , , and RTO (k) be the values of , , and RTO respectively, when Kth 

RTT is determined.   
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Where ub and lb are fixed upper bound value and lower bound value of RTO value.  

The range of constant α is, 0 < α < 1. And the range of β is 0 < β < 1. In general, α is set 

to 7/8 and β is set to 3/4. The variable γ is a binary exponential backoff (BEB) factor. It is 

initialized to 1, and doubled for every timeout event. And the value is set to 1 when a new 

ACK packet arrives. 

2.3 Problems on TCP 

The well-known advantage of TCP protocol is that TCP can guarantee the integrity of 

the transmitted files. Anything might take place on every network path. TCP concerns about 

the status of the connection. Delivering packets on paths with abnormality makes the 

performance to degrade.  

The event that TCP most concerned is packet loss. When packets got lost, TCP assumes 

that there might be congestion in the network. It then tries to prevent the network traffic from 

becoming worse so it slows down the data sending rate with various kinds of mechanisms. In 

general, packet loss affects TCP performance a lot. 

TCP detects the network abnormality status on the connection in advance. The long 

propagation delay might mislead TCP protocols to assume that the packet was lost. The 

propagation delay is a part of RTT which is also a reference of timeout. The long propagation 

delay affects the value of timeout. 

On the Internet, there are may be multiple routing paths for a connection and the routing 

information is always changing. A file may be divided into pieces and carried by TCP packets. 

(5) 

(6) 

(7) 
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The packets might be traveling with different path depending on the changing routing 

information that is kept in intermediate-routers. Packets traversing different paths may arrive 

at the destination out of orders. The order of incoming packets on the receiver and the order of 

incoming acknowledgements might be out of order. TCP takes the packet with missing serial 

number as being lost and then starts to retransmit the lost packets to the destination. This kind 

of retransmission will hold the size of cwnd or decrease the cwnd and consume the bandwidth.  

2.3.1 Packet Loss 

All packets injected to the router race the limited bandwidth to be transmitted to the link. 

No matter what kind of queuing policy adopted, there are always packets dropped in the 

router node. The reasons might be that the node is not powerful enough to process numerous 

packets, the incoming or outgoing link might have bad signaling or interference, or the 

outgoing bandwidth is not sufficient. Also, this might be caused by link failure.  

When TCP protocol encounters the packet loss, it has to decrease the cwnd size to slow 

down the traffic injecting to the network. Every TCP protocol has its own algorithm to 

determine what to do. Fast retransmission and fast recovery will be applied to retrieve the few 

lost packets. Fast retransmission determines how much to eliminate and fast recovery 

determines how to retrieve the state as it is. Anyway, the data rate of TCP decreases. Even 

TCP SACK can recover multiple packets loss but the cwnd is temporarily frozen. The 

recovery period costs some packets to be re-sent. From total throughput concern, it is still 

lower than expected. 

If the packet is timeout, TCP protocol has to enter slow start phase to reduce cwnd size to 

as small as possible. To release the loading from the path, TCP protocols did its best to 

re-start the transmission from one packet and allow the path become healthy later. For 

heterogeneous environment, the paths are coexisting independently.  



 

18 

 

2.3.2 Long Queuing delay 

The TCP throughput is affected by RTT [1] a lot. If the end-to-end path to deliver the 

TCP packets features long queuing delay, TCP performance will be poor. Theoretically, the 

intermediate-nodes will have the best routing information for specific destination. But this 

kind of routing is not fair. All traffic will go through the selected path and there may be no 

traffic on the other paths which has smaller bandwidth. If the traffic is too concentrated, the 

queuing delay of the node would be long. Unfortunately, current routing policy does not 

implement the load balance mechanism among the connected paths. Traffic crowded in 

certain specific routing path is very common. The RTT of TCP packets is generally long in 

the real Internet and the performance is degraded due to the long RTT. 

2.3.3 Different Routes   

On the Internet, the intermediate-routers are linking to each other to construct a physical 

network. There are numerous paths linking a source and a destination. There are also various 

kinds of static routing configuration and dynamic routing protocol, such as OSPF, RIP, 

running among the routers to exchange the routing information. That means the route from 

source to destination for this packet might be different with other packets. Some nodes may 

be visit commonly by most packets in a connection, but some nodes may be only visited by 

few packets in the same connection. Among different paths, propagation delays are also 

different. The status of the paths is also concerned. A path might be congested and the packets 

going through the path is likely to be dropped. Another path might be selected temporarily 

due to its narrow bandwidth that enlarges the round trip time. There might also be a path that 

has poor linking signals due to miscellaneous reasons, such as a path whose outgoing path is 

disconnected or down.  
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All situations lead the TCP packets to a result – sequence numbers are not consecutive. 

No matter the sequence order received by receiver or the order of acknowledgment packets 

received by the sender, the transmission goes abnormal.  

As we mentioned above, sequence numbers being not consecutive will make the sender 

to guess what happened to the path. And the TCP sender would take the corresponding 

actions to face the problems. The TCP cannot select another path to go even the TCP is 

looping in the recovery phases. There are multiple routes ready to transport, but this is not 

helpful for TCP to recover the congestion condition. 

3. Proposed Method 

In Chapter 3, we list the problems that TCP often meets in the real network. We explain 

the problems in details. The performance of TCP protocols is affected by the problems very 

much. We propose our method, Route State Aware Transport Control Protocol to tackle the 

problems. 

3.1 Base TCP Edition of Proposed Scheme 

According to the description in Chapter 2, re-ordering and timeout are the events caused 

by packet loss. We proposed a scheme which is able to apply to all kinds of TCP editions. 

Duplicate ACKs and timeout are the events that could be detected by our scheme. Our 

proposed scheme, RSA TCP, detects the connection abnormality with the timeout event, 

which is the most critical situation that TCP could encounter. Timeout is the only event that 

RSA TCP handles.  

The key advantages of RSA TCP are as follows. First, RSA TCP can select another 

existing path to replace the current abnormal connection automatically. Second, RSA TCP 
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can go back to original default route automatically. RSA TCP could not detect other specific 

events. If so, RSA TCP won’t be able to work in some TCP editions. The more common 

events are used, the less a base TCP should be modified. RSA TCP tries to modify the current 

TCP versions as less as possible. In this thesis, timeout event is available for all TCP editions 

and is the only event that triggers RSA TCP operation. 

TCP Vegas is fair TCP protocol and the congestion window control is not window-based. 

It is a time-based scheme. RTT is considered in TCP Vegas and RTT can reflect the real 

status on the network. Besides, TCP Vegas can also provide a constant data rate. For video 

application, the constant data rate is very important. Constant data rate is less likely to occupy 

excessive queue memories in the intermediate-nodes to cause unnecessary packet dropping. 

TCP Vegas is also well-known for its good flexibilities on the performance. So the TCP 

version we adopted is TCP Vegas based. Why does TCP Vegas be chosen instead of others? 

TCP Vegas detects the status on the network via RTT, not like other TCP versions, which are 

via packet loss. TCP Vegas tunes the data rate within a stable range. That’s the main 

difference between Vegas and others. Other TCP versions have a window mechanism but the 

window may lead to sending rate exceeding the bandwidth. Constrained data rate and RTT 

based congestion control are the reasons why RSA TCP is running on TCP Vegas.  

TCP Vegas can utilize the bandwidth efficiently. The traffic injected from source is very 

close to the available capacity of the current connection and processing abilities of the 

receiving side. The buffer size requested in the intermediate-node along the path with stable 

and process-able data rate is much less than unstable data rate. If the data rate is too high for 

bandwidth to bear, more space in the queuing buffer is required. If the data rate is too high for 

receiver to process, the buffer in the receiving side is requested to be larger to contain the 

exceeding data packets. In the long run, both in network nodes or receiving side, the excessive 

data packets will explode the buffer in. The packets will be dropped. Dropping packets will 
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cause the duplicate ACKs, longer RTT, expiration (timeout) ... etc. TCP state machine will 

depart from normal transmission state and enter the error handling state. The bandwidth is 

wasting on delivering invalid packets. The bandwidth on all nodes and connections were 

occupied by the packets but the packets were useless finally. 

In fact, RSA TCP can be implemented on all kinds of TCP versions. We decide to use 

TCP Vegas as the basis to implement RSA TCP. 

3.2 Purpose of Proposed Scheme 

We want a protocol in transport layer which can detect the abnormal status on the current 

connection. After the abnormal status is detected or confirmed, the current path may not be 

suitable to stay. If the traffic stays longer, the TCP error recovery mechanism will pull down 

the data rate to reduce the network loading. And, no matter how much loading that TCP 

reduces, unless it is zero, TCP still injects traffic to the path with abnormality. 

So, when the protocol detects that abnormality was happening, the protocol can help the 

traffic escape from the path with problem, and re-direct the traffic to a new path and this 

really reduces the traffic loading in the original one. The protocol can select a new path to 

replace the current path automatically, without having to inform the users or applications that 

the path was changed, the applications can keep communicating with the lower layer to 

deliver or process data.  

There is another reason that the protocol is not necessary to inform the users or 

applications. Since the original routing path is primary, we just send the data through another 

path temporarily. The protocol waits some time for original path to recover from abnormality 

status. As the time goes by, the original path will be selected as the delivering path again no 

matter the status in the backup paths is better or worse. 

The protocol should be smart enough to precisely know that the abnormality is taking 
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place. If the data path switching happens unnecessarily, the effort spent in switching will be 

wasted. The definition of abnormality happening must be also precise enough to cover the 

situation. As the protocol is aware of the abnormality, the protocol should select next 

available path and transfer everything to the new path. Simply speaking, it duplicates the 

status and configurations from original path to the new one. The protocol will try its best to 

get away from abnormal status and keep the same throughput as it had originally. 

3.3 Proposed Scheme 

3.3.1 RSA Trigger Criteria 

TCP protocol has its own state machine to control the traffic. There are two elements to 

be considered in review of TCP traffic control mechanism, Duplicate ACK and Timeout. 

Duplicate ACKs is a sign ahead of packet loss. And the packet loss is also a sign of 

connection having troubles. TCP performance will be much worse with packet loss. That 

means well processing the packet loss case can efficiently raise the utilization of TCP 

connection. If the packet response time is longer than the pre-defined timeout value, we say 

that the packet is expired. Timeout is a sign that the connection has big trouble now and might 

be not recovered. 

The most common reason for packet loss is that the connection is down or the 

connection is congested. If the connection is down, the issue happened in the physical layer. 

This is a problem that the upper layer won’t be able to solve. As the connection is congested, 

the congestion might stay in a short time or keep in a long term. For above two reasons, 

dropping the current selected path and switch to a new healthy one may be a good solution. 
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Figure 7 RSA TCP Work Flow 

Duplicate ACK   

The packets transferred on the link might be dropped at any intermediate node due to 

congestion, bad signaling, collision, lost link … etc. The path selection on the real network 

also changes the ordering for the packets. As shown in Figure 8, when the TCP sender 

receives the duplicate ACKs, TCP sender will try to send out one packet which might be lost 

on the link. Some TCP versions can re-send the lost packets as many as cwnd size allowed. If 

the duplicate ACK is caused by slightly dropped packets, the fast retransmission can cover 

this issue in one RTT. For packet re-ordering, TCP even has nothing to do with the issue, and 

the expected acknowledgement will arrive to the sender later. And, as long as the TCP sender 

can receive the duplicate ACK, this means the link should not be blocked or broken. If the 

link is really going down, the duplicate ACK packets will not be sent. After three duplicate 

ACKs received, TCP will trigger the fast retransmission to retrieve the condition as packet 
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lost. As explained above, the significance behind duplicate ACK is not necessary to give up 

the current connection. We need a more serious criterion to trigger our proposed method, 

which will not be activated at this condition to prevent too many unnecessary path switching. 

 

Figure 8 Diagram for Duplicate ACKs 

 

Timeout 

As TCP finds that there are packets elapsing time larger than the timeout period, it is 

called packet timeout or packet expired. When packets are expired, that means the fast 

recovery and fast retransmission can not recover this phenomenon. There is a condition 

occurred on the network connection and can not be recovered by fast recovery mechanism. 
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This phenomenon might last for a while, and the most important thing of all is that TCP will 

enter slow-start, which decreases the TCP throughput. Now TCP is going to run at a very low 

data rate, so our proposed method might take over this time. As the TCP enters slow-start 

phase, the data rate is only 1 packet per second within this RTT. The data rate may be much 

far away from the range expected by users. So this is a very good time to execute our 

proposed method – Route State Aware Transport Control Protocol.  

RSA TCP will give up the connection with trouble and try to transplant the whole 

configuration, status from current path to another path. In the worst case, the all new paths 

selected may also be congested. For users, data rate is equal to one packet per RTT after 

performing some new paths switching. The data rate is almost the same as the data rate starts 

from one packet per RTT without switching. So, RSA TCP starts to switch data packets to the 

backup path entirely and try to keep the performance unaffected by the congested link or 

blocked link. If there is no backup path to switch to or the new route is also congested, the last 

route will follow the TCP’s standard implementation to enter the original mechanism – 

slow-start.  

3.3.2 How Polling Period Determined 

As shown in Figure 9, the timeout can be detected within a RTT. When the duplicate 

ACKs come back to TCP Sender, RSA TCP will look into the elapsed time that the packets 

have traveled. Assuming the timeout event is detected at any moment of the time that Figure 9 

shows, the TCP will start to handle the duplicate ACKs event immediately. So RSA TCP has 

to handle the condition before next RTT ends.  

  
As shown in Figure 11, we can use formula (8) to compute the real transmission delay 

(8) 
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in the topology. The transmission delay between Node 0 and ISP1-AP1 (same as ISP2-AP1) 

is illustrated in formula (9). The transmission delay is the same value between ISP1-AP1 and 

ISP1-AP2, so do ISP2-AP1 and ISP2-AP2. 

 

 

The transmission delay between ISP1-AP2 and Node 1 is illustrated in formula (10) and 

the transmission delay between ISP2-AP2 and Node 1 is also having the same value in 

formula (10). 

  

From formula (9) and (10), we can compute the total transmission delay from sender to 

destination side is formula (11). 

Total One Way Transmission Delay = (9) * 2 + (10) 

 

After computing the transmission delay, we can have the round trip time in the 

following formulas. 

  

As table 4.1 illustrated, the Queue delay is 1ms for each node. 

(9) 

(10) 

(11) 

(12) 
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In summary, when there is timeout event occurred, RSA TCP has to update its routing 

information for the coming transport in 169.2ms. The polling period selection has to be 

smaller than 169.2 ms.  

The polling period should not be longer than RTT. The detection might be not performed 

within one RTT. If the timeout occurs at this time, our proposed scheme can not activate to 

prevent TCP from entering the timeout recovery. Data rate is decreased after timeout recovery 

is active.  

And, too short polling period brings heavy loading for system to poll the information. 

Summarily, the range between 100ms and 10ms is reasonable. We set polling period to 10ms 

in this proposed scheme. 

(13) 
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Figure 9 Timeout Detection Timing 

3.3.3 How RSA TCP works 

RSA TCP only works on the host that has multiple interfaces. The interfaces should be 

enabled and connecting to network successfully. Each interface has its own IP and the related 

IP information of next hop. RSA TCP is located in transport layer which is higher than IP 

layer. So RSA TCP should require all IP information of active interfaces[20]. 

RSA TCP has to take one interface as default main trunk. After selecting the interface, 

the interface should be enabled and create a connection to the network service provider. 
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Confirm the connection which can deliver data successfully to the receiver side. Also, run a 

simple application to communicate with network service provider periodically to keep the 

connection alive, such as ping. And then select the next backup interface. Enable the interface 

and create a connection to the far end. Repeat the activities that performed on main trunk until 

all backup interfaces create their own connections successfully. The simple applications can 

help network service provider to keep the connection between host side and far end. Besides, 

the simple applications also help maintain the IP information including next hop information 

for RSA TCP to reference. 

When RSA TCP gets packets timeout, RSA TCP will set a flag internally instead of 

entering slow start phase. NS2 simulator is also polling the flag every 0.01 second. As the flag 

is set, NS2 simulator will start to collect the next available path and transfer the data packets 

to the new path with replacing the next hop information only. There are 4 elements in socket 

pair, source IP/Port and destination IP/Port. To keep the flow to prevent doing 3-way 

handshaking again, RSA TCP only fills the new next hop IP inside the new packet. For 

receiver, all information to identify is kept. The receiver can parse the packets successfully 

even though the packets are coming from new source interface.  
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Figure 10 RSA TCP State Machine 

 

Also, network layer needs a little modification. After RSA TCP is being triggered and 

starting to collect IP information of network layer, RSA TCP should store the next hop 

address of the selected interface and set an internal flag for network to reference. Before 

network layer filling the IP information into the packet, network layer should refer to the RSA 

TCP pre-set flag to determine which address should be filled. If the flag is not set, network 

layer should determine the next hop address according to the routing table and routing 

algorithm. If the flag is set to change next hop address, the stored address will be filled into 

the IP header before leaving. 

After that, reset the flag. As long as the data path is changed, there is another mechanism 

to go back to default path. If there is no error occurred in the new path, NS2 simulator will 

transfer the data back to default path after 0.5 second. All relative parameters and flag are 
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clean. And the data is retrieved as the condition before error occurring. 

Are the packets which are delivered on the new selected path recognized by the receiver? 

Referring to Figure 11, the format of TCP header, the changes of source IP will not appear in 

the header. When RSA TCP performs path roaming, the data packets on the new path will 

have the same TCP header as original path. Every field in TCP header was cloned for receiver 

to identify, such as source port, destination port, sequence number, acknowledgement 

number…etc. After the TCP header is parsing by the receiver, the data packets will be 

acceptable as same as delivered on the original path. 

Two situations might be met after going back to the default path. First, the default path 

might still have troubles. So the data packets which are transferred back will be expired again. 

The expiration will inform RSA TCP to transfer the data from this path. This throughput is 

eliminated by this kind of transferring back to a path with errors. 

Second, as shown in Figure 10, that is transferring data to a new path which might also 

have troubles before going back. The expiration triggers RSA TCP to find another path to 

backup transmission. If there is a new path to go, the RSA TCP will pick the new path up 

with higher priority. If there is no new path to select, the only one choice for RSA TCP to 

escape from this path is the default path. At this condition, RSA TCP has to stay at the path 

for a configurable period. The main purpose for RSA TCP to wait is to avoid too many 

unnecessary path switching and reduce the loading for original connection to be recovered. In 

this thesis, 0.5 second is selected. 
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Figure 11 Flow diagram of connection failure but no more new paths 

 

Figure 12 Format of TCP Header 
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4. Simulation Results 

In order to demonstrate the performance of our proposed scheme, we use NS-2 (version 

2.28) tool [16] with TCP module [17]. This module is implemented by National Institute 

Standards and Technology (NIST) to provide a platform for manipulation of network process. 

Many real-time applications, such as data, video and audio, have been available for 

experimental and practical uses. Not like traditional usage, TCP is also used as transport 

protocol to transmit real-time data packets. 

For our proposed method, we need to generate the congestion on the network. As the 

congestion is getting worse enough, the proposed method will be active to function. That’s the 

reason why we inject traffic from a high bandwidth (100MB) to a low bandwidth (0.1M). And 

we need an independent path from source to the destination as the backup transport path. In 

normal condition, there might be a router in front of destination node, but the router will not 

affect the result. The two independent paths are connected directly from source to destination 

to reduce the redundant elements in the experimenting environment. 

We had some scenarios to measure our proposed method. We list three configurations to 

be compared with. First is the ideal situation. TCP Vegas works at the full speed mode 

without any other injecting traffic to race the bandwidth. Second is the most popular situation. 

There is no backup route in the specific path. If any inter-node on the path is down, the path 

will be broken off and the packets cannot travel to the destination. The last, we do the 

experiment that implements our proposed method – RSA TCP. The best result of RSA TCP is 

equivalent to the result of first experiment.  

In the experiment, the defined default route will be cut off in the middle way but the 

source node is not informed. The above three methods have their own mechanisms to deal 
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with the path failure. After a moment (10 seconds in this experiment), the connection is 

recovered and working again. 

The result of first experiment is our goal to catch up. And the result of second 

experiment is the main target that the proposed RSA TCP has to achieve. 

4.1 Scenario I 

4.1.1 Network topology 

We would like to evaluate the performance with linking down and linking up to 

simulate that the last mile of Telecom or ISP is crashed and recovered. We create a 

network topology which has one host as TCP source. RSA TCP is performed on the 

TCP source which has multiple interfaces. Source side should decide that which 

interface or media is used as private main trunk. And then enable the physical link to 

the Internet service provider and also create a connection to assure the transmission. 

After that, select the backup interface and enable the other interfaces in the same way. 

So we also create two independent interfaces on the source node to connect to different 

networks. ISP1-AP1 – ISP1-AP2 construct an independent path to present an ISP link. 

So does the path ISP2-AP1 – ISP2-AP2. The framework is shown in Figure 13. In host 

side, we have to run some applications to communicate with Internet service provider to 

keep the connections alive. Do the same thing on the other backup interfaces before 

starting our experiment. 

In Figure 13 each wired link has 100Mb bandwidth expecting the links to Node2, 

the links are ISP1-AP2 to Node1 and ISP2-AP2 to Node1. The bandwidths of these two 

paths are set to 0.1Mb to generate the congestion condition naturally. The packet 

propagation delay time is 1ms and all nodes use drop tail queue policy. TCP Vegas is 
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used to generate TCP data packets with 1000 bytes payload. The ISP1-AP1 and 

ISP2-AP1 play the role as the access point (next hop) for different media interfaces.  

 

 

Figure 13 Network topology of simulation I 

 

The simulation time is 60 seconds, and we use TCP/FTP traffic between source 

(Node1) and destination (Node2). The link between ISP1-AP1 and ISP1-AP2 will be 

down at time 20.0 second. The link between ISP1-AP1 and ISP1-AP2 will be up 

(re-connected) at time 30.0 second. The TCP/FTP traffic will be stopped at time 60.0 

second. 

 

Table 4.1 Parameters of simulation for Scenario I 

Parameter Value 

Bandwidth Configuration 

Node1  ISP1-AP1 100M 
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Node1  ISP2-AP1 100M 

ISP1-AP1  ISP1-AP2 100M 

ISP2-AP1  ISP2-AP2 100M 

ISP1-AP2  Node1 0.1M 

ISP2-AP2  Node1 0.1M 

Configuration 

Buffer Size 2 

Protocol TCP Vegas 

Application Type FTP 

Packet size 1000 bytes 

Delay 1ms 

TCP Vegas α 1 

TCP Vegas β 3 

TCP Vegas γ 1 

ISP1-AP1 Cost 1 

ISP1-AP2 Cost 1 

ISP2-AP1 Cost 1 

ISP2-AP2 Cost 1 

4.1.2 Simulation Steps 

Time 0: Host starts TCP streaming to Destination.  

The streaming starts from Node1 and goes through ISP1-AP1 and 

ISP1-AP2 to destination node. 

Time 20: Link down the connection between ISP1-AP1 and ISP1-AP2. 

       Simulate the condition that the path selected was blocked in the middle 
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way but the physical link to host is still alive. 

Time 30: Link up the connection between ISP1-AP1 and ISP1-AP2. 

       Simulate the condition that the error on original selected route is recovered. 

The TCP traffic should be roaming back to this original default route. 

Time 60: Terminate the TCP traffic. 

At Time 20.0 second, comparing RSA TCP with Full Speed, RSA TCP detects the 

link might be blocked. RSA TCP is updating the routing information immediately and 

starting roaming the data to the next routing path. At this time, there are already some 

packets traveling across the blocked connection. The packets are queued and processed 

in the nodes which are located on the default routing path. RSA TCP roams the data to 

the new routing path and the queues are empty. That means at this moment, RSA TCP 

packets can be queued by almost 2 paths. That’s the reason why the RSA TCP 

performance is a little bit better than no roaming. 

At time 30.0 second, RSA TCP finds the best routing path is alive and starts to roam 

the following packets back to the previous routing path.  

4.1.3 Simulation results – Scenario I + Full Speed TCP Vegas 

In Fig. 14, the result shows the performance of the path which is not affected. We 

made the traffic run along the path from Node1, through ISP2-AP1, ISP2-AP2 and 

Node2. So the connection linking down of Router 3 and Router 4 at time 20.0 second 

and linking up at time 30.0 second does not matter to the selected path.  

Before Time 10.0 second, the throughput is not a straight line. Referring to the 

cwnd shown in Figure 15, it is very obvious to know that the TCP Vegas takes around 

10 seconds to find out the best cwnd value, 2, on this connection. After time 10.0 

second, the cwnd is no more changing. The throughput printed is a perfect straight line. 
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The total throughput of 60 seconds simulation is 714K bytes. 
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Figure 14 Scenario I: The simulation result of throughput in Full Speed mode 
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Figure 15 Scenario I: The cwnd in Full Speed mode 
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4.1.4 Simulation results – Scenario I + Blocked TCP Vegas 

In Fig. 16, the result shows the performance of the path which was ever blocked 

for 10 seconds. The traffic would like to run along the path from Node1, through 

ISP1-AP1, ISP1-AP2, to Node2 permanently. At the moment linking down at time 20.0 

second, there traffic will exactly be stopped. At the moment linking up at time30.0 

second, TCP will start from slow start. TCP needs time to reach the data rate before 

linking down. The total throughput of 60 seconds simulation is 553K bytes. 

Before time 10.0, the TCP needs some time to look for the best cwnd value for this 

connection. Figure 17 shows how the cwnd value changes. After the link is 

re-connected at time 30.0 second, TCP endures a very long period without any 

acknowledgements.  After reconnecting, TCP needs to restart and takes some time to 

compute the best data rate again. It takes around 2.6 seconds for TCP to reconstruct the 

data streams. The transition points to the throughput are very easy to map to the 

changes of cwnd in Figure 17. 
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Figure 16 Scenario I: The simulation result of throughput in Blocked TCP 
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Figure 17 Scenario I: The cwnd in Blocked TCP 

 

4.1.5 Simulation results – Scenario I + RSA TCP 

In Fig. 18, the result shows the performance of the path which is applied with our 

proposed scheme – RSA TCP. In the beginning, the traffic runs on default routing path 

- Node1, ISP1-AP1, ISP1-AP2, Node2 path. At the moment linking down at time 20.0 

second, the RSA TCP is aware of the errors on the path and determining the backup 

path as new routing path with original configurations. After transferring to the backup 

path, the TCP needs to re-calculate the cwnd. But the long RTT period is not long 

enough to change the cwnd, the path is switching to the new one. And the speed is as 

fast as the original one. This reason makes cwnd no change while path switching. At the 

moment linking up at time 30.0 second, RSA TCP is triggered again due to finding out 

the pre-defined default route is alive. RSA TCP needs to transfer all packets with 

current configuration back to pre-defined default route. At roaming to the other path, 
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RSA TCP takes some time to determine the next path. So the TCP sender is silent at 

this period. Although RSA TCP is switching the traffic to the new one which has the 

same bandwidth as the original one, the throughput is still a little lower than ideal 

values. 

In Figure 19, it is very obvious to see that unstable period for cwnd is longer than 

the formers. In the first 15 seconds, RSA TCP is trying to find out the best rate of the 

path. The RTT has huge variance in the initial phase and huge variance makes RSA 

TCP active. RSA TCP will roam the packets to the other path. At this time, some 

packets are delivered to the destination along with the previous path and some packets 

are delivered along with the new path. For data packets, the queues on both paths are 

filled with. That’s a temporary multipath phase. 

Before time 10.0 second, RSA TCP has many opportunities to have short-term 

double buffers. Referring to Figure 18, the cwnd is configured to bigger than endurance 

of the connection. This makes packets timeout several times. RSA TCP is aware of this 

condition of timeout and starting to transfer the traffic to new path. In out experiment, 

there is no other traffic coexisting to race the queue buffer. After switching to a new 

path, the buffer will be fully used by RSA TCP. Double buffer benefits the performance 

in a short time. Why does the RSA TCP have worse throughput in a long run? 

Comparing to the RTT on previous path, the variance is much larger than former two 

experiments. The great variance makes the computation take more time to be stable. 

Referring to the result of cwnd, Figure 19, the cwnd after time 10.0 seconds is very 

close to best value but the cwnd is still larger than best value. This will not make the 

RSA TCP active due to the RTT being not large enough. The packets will be dropped 

and recovered very quickly by fast retransmission. There is no timeout event to trigger 

RSA TCP. RSA TCP spends lots of time retransmitting the dropped packets. That is the 
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reason why RSA TCP has better performance than Full Speed mode in the initial phase 

but becomes worse after all. 
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Figure 18 Scenario I: The simulation result of throughput in our proposed method – 

RSA TCP   
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Figure 19 Scenario I: The cwnd in our proposed method – RSA TCP mode 

Table 4.2 The result of three approaches with beta = 3 

      Method 

Item 

Ideal 

(No congestion) 

Static 

(Static) 

RSA TCP 

(Dynamic) 

Total Throughput 714K 553K 700K 
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Figure 20 Scenario I: The throughput comparison of the three approaches   

 

4.2 Scenario II 

4.2.1 Network topology 

In Section 4.1, the queue length adopted is very close to the range of TCP Vegas α 
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and β. We would like to grow up the range to try to enlarge the range of data rate. The 

data rate control mechanism is a very important advantage of TCP Vegas. Let’s 

experiment the condition that the data range is much higher than real bandwidth. The 

same topology is used in scenario II. The configuration is also the same expecting the 

TCP Vegas data rate control parameters, α and β. The value of α is no changed and β is 

increased from 3 to 30.  

 

Table 4.3 Parameters of simulation for Scenario II 

Parameter Value 

Bandwidth Configuration 

Node1  ISP1-AP1 100M 

Node1  ISP2-AP1 100M 

ISP1-AP1  ISP1-AP2 100M 

ISP2-AP1  ISP2-AP2 100M 

ISP1-AP2  Node1 0.1M 

ISP2-AP2  Node1 0.1M 

Configuration 

Buffer Size 2 

Protocol TCP Vegas 

Application Type FTP 

Packet size 1000 bytes 

Delay 1ms 

TCP Vegas α 1 

TCP Vegas β 30 
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TCP Vegas γ 1 

ISP1-AP1 Cost 1 

ISP1-AP2 Cost 1 

ISP2-AP1 Cost 1 

ISP2-AP2 Cost 1 

4.2.2 Simulation Steps 

Time 0: Host starts TCP streaming to Destination.  

The streaming starts from Node1 and goes through ISP1-AP1 and 

ISP1-AP2 to destination node. 

Time 20: Link down the connection between ISP1-AP1 and ISP1-AP2. 

       Simulate the condition that the path selected was blocked in the middle 

way but the physical link to host is still alive. 

Time 30: Link up the connection between ISP1-AP1 and ISP1-AP2. 

       Simulate the condition that the error on original selected route is recovered. 

The TCP traffic should be roaming back to this original default route. 

Time 60: Terminate the TCP traffic. 

At Time 20.0 second, comparing RSA TCP with Full Speed, RSA TCP detects that 

the link might be blocked. RSA TCP updates the routing information immediately and 

starts roaming the data to the next routing path. At this time, there are already some 

packets traveling across the blocked connection. The packets are queued and processed 

in the nodes which are located on the default routing path. RSA TCP roams the data to 

the new routing path and the queues are empty. That means at this moment, RSA TCP 

packets can be queued by almost 2 paths. That’s the reason why the RSA TCP 

performance is a little bit better than no roaming. 
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At Time 30.0 second, RSA TCP finds the best routing path is alive and starts to 

roam the following packets back to the previous routing path.  

4.2.3 Simulation results – Scenario II + Full Speed TCP Vegas 

Figure 21 shows the simulation result of the throughput and Figure 22 shows the 

cwnd status in Full Speed TCP mode. Similar to Section 4.1.3, cwnd value is converged 

at time 10.0 second. After cwnd being converged, the data rate is stable to the end of 

streaming. The range being enlarged seems no affective to the total throughput. TCP 

Vegas indeed can use the RTT to detect the status of the network. 
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Figure 21 Scenario II: The Simulation result of throughput in Full Speed mode 
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Figure 22 Scenario II: The cwnd in Full Speed mode 

4.2.4 Simulation results – Scenario II + Blocked TCP Vegas 

As Section 4.1.4 illustrated, after reconnecting, TCP takes around 2.6 seconds to 

reconstruct the data stream compute the cwnd again.  
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Figure 23 Scenario II: The simulation result of throughput in Blocked TCP mode 
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Figure 24 Scenario II: The cwnd simulation result in Blocked TCP mode 

4.2.5 Simulation results – Scenario II + RSA TCP 

 We have explained how RSA TCP is working and the values, the experiment in 

Section 4.2.5 is exactly the same as Section 4.1.5. 
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Figure 25 Scenario II: The simulation result of throughput in RSA TCP mode 
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Figure 26 Scenario II: The cwnd in out proposed method ‐ RSA TCP mode 
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Figure 27 Scenario II: The throughput comparison of the three approaches 
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Table 4.4 The result of three approaches with beta = 30 

      Method 

Item 

Ideal 

(Ideal) 

Static 

(Static) 

RSA TCP 

(Dynamic) 

Total Throughput 714K 553K 700K 

 

4.3    Scenario III 

4.3.1 Network topology 

RSA TCP has efficient improvement at connection down case. We would like to 

know what RSA TCP will do at another condition – congestion. We create a new 

topology to help us simulate the congestion condition. Attach a UDP transmitter at 

Router 3 and also configure Node2 as both TCP and UDP stream receiver. The data rate 

of UDP is 100MB and that is also the capacity of the link between Router 3 and Router 

4. When the UDP stream starts, the bandwidth between Router 3 and Route 4 can not 

contain UDP and TCP stream at the same time. So, congestion occurs. In Scenario III, 

the purpose is to know the RSA TCP improvement ratio at the condition that the 

connection is not impacted very much. Excepting the UDP stream, the topology is 

exactly as same as Scenario I. 
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Figure 28 Network topology of Scenario III & Scenario IV 

 

The simulation time is 60 seconds, and we use TCP/FTP traffic between source 

(Node1) and destination (Node2). We also have UDP/CBR traffic between source 

(Node3) and destination (Node2). The UDP stream plays the role that compete 

bandwidth with TCP to produce the congestion condition. The UDP stream will be 

injected at time 5.0 second and stopped at 6.0 second. The TCP/FTP traffic will be 

stopped at time 60.0 second. 

 

Table 4.5 Parameters of simulation for Scenario III 

Parameter Value 

Bandwidth Configuration 

Node1  ISP1-AP1 100M 

Node1  ISP2-AP1 100M 



 

52 

 

Node3  Router 3 100M 

ISP1-AP1  ISP1-AP2 100M 

ISP2-AP1  ISP2-AP2 100M 

ISP1-AP2  Node1 0.1M 

ISP2-AP2  Node1 0.1M 

Configuration 

Buffer Size 2 

Protocol TCP Vegas/UDP 

UDP Packet Size 1000Bytes 

UDP Data Rate 100Mb/s 

Application Type FTP 

Packet size 1000 bytes 

Delay 1ms 

TCP Vegas α 1 

TCP Vegas β 3 

TCP Vegas γ 1 

ISP1-AP1 Cost 1 

ISP1-AP2 Cost 1 

ISP2-AP1 Cost 1 

ISP2-AP2 Cost 1 

4.3.2 Simulation Steps 

Time 0.0: Host starts TCP streaming to Destination.  

The streaming starts from Node1 and goes through ISP1-AP1 and 

ISP1-AP2 to destination node. 
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Time 5.0: Start the UDP stream from Node 3 to Node2.  

Time 6.0: Stop the UDP stream. 

Time 60.0: Stop the TCP traffic. 

At Time 5.0 second, the UDP stream is starting to inject to the connection. The 

UDP stream is also too heavy to carry for this connection. Congestion can be generated 

at this time.  

4.3.3 Simulation results – Scenario III + Full Speed TCP Vegas 

In Fig. 29, the result shows the performance of the path which is not affected. We 

made the congestion occurred along the path from Node3, through ISP1-AP1, 

ISP1-AP2 and Node2. And we made the TCP stream go through Node1, ISP2-AP1, 

ISP2-AP2, Node2. The path is exactly not affected by the congestion. 
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Figure 29 Scenario III: The simulation result of throughput in Full Speed mode 
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4.3.4 Simulation results – Scenario III + Static TCP Vegas 

In Fig. 30, the result shows the throughput which was interfered at time 5.0 second 

~ 6.0 second. The UDP stream is injecting to generate the congestion condition and 

there is no new routing method adopted. So the traffic will stay along the path with 

congestion condition.  

It is very clear to see that when the congestion occurred, the TCP stream will enter 

the recovery phase and reduce the loading on the network. From time 5.0 second to 6.0 

second, the throughput of TCP is close to 0. After congestion disappears, TCP takes 

time to retrieve the data rate. 
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Figure 30 Scenario III: The simulation result of throughput in Congested TCP 

4.3.5 Simulation results – Scenario III + RSA TCP 

In Fig. 31, the result shows the throughput of the path which is applied with our 

proposed scheme – RSA TCP. At time 5.0 second, the congestion occurs, RSA TCP 

starts to work to switch the TCP stream from original path to the backup path. This 
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saved lots of lost packets. The throughput keeps growing while being congested. 
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Figure 31 Scenario III: The simulation result of throughput in our proposed 

method – RSA TCP   

 

Table 4.6 Throughput List of Scenario III 

      Method 

Item 

Ideal 

(No congestion) 

Static 

(Congested) 

RSA TCP 

(Dynamic) 

Total Throughput 714K 640K 660K 

 

4.4    Scenario IV 

4.4.1 Network topology 

RSA TCP does not improve throughput efficiently at Scenario III which has only 
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slightly congestion impact on network. We would like to compare the result with 

slightly impacted and heavily impacted. We use the same topology with Scenario III as 

illustrated in Fig. 28. Attach a UDP transmitter at Router 3 and also configure Node2 as 

both TCP and UDP stream receiver. The data rate of UDP is 100MB and that is also the 

capacity of the link between Router 3 and Router 4. When the UDP stream starts, the 

bandwidth between Router 3 and Route 4 cannot contain UDP and TCP stream at the 

same time. So, congestion occurs. In Scenario III, the purpose is to know the RSA TCP 

improvement ratio at the condition that the connection is not impacted very much. 

Excepting the UDP stream, the topology is exactly as same as Scenario III. 

The simulation time is 60 seconds, and we use TCP/FTP traffic between source 

(Node1) and destination (Node2). We also have UDP/CBR traffic between source 

(Node3) and destination (Node2). The UDP stream plays the role which compete 

bandwidth with TCP to produce the congestion condition. The UDP stream will be 

injected at time 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0 and 40.0. The UDP stream lasts 

for 1 second. The TCP/FTP traffic will be stopped at time 60.0 second. 

4.4.2 Simulation Steps 

Time 0.0: Host starts TCP streaming to Destination.  

The streaming starts from Node1 and goes through ISP1-AP1 and 

ISP1-AP2 to destination node. 

Time 5.0: Start the UDP stream from Node 3 to Node2.  

Time 6.0: Stop the UDP stream. 

Time 10.0: Start the UDP stream from Node 3 to Node2.  

Time 11.0: Stop the UDP stream. 

Time 15.0: Start the UDP stream from Node 3 to Node2.  
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Time 16.0: Stop the UDP stream. 

Time 20.0: Start the UDP stream from Node 3 to Node2.  

Time 21.0: Stop the UDP stream. 

Time 25.0: Start the UDP stream from Node 3 to Node2.  

Time 26.0: Stop the UDP stream. 

Time 30.0: Start the UDP stream from Node 3 to Node2.  

Time 31.0: Stop the UDP stream. 

Time 35.0: Start the UDP stream from Node 3 to Node2.  

Time 36.0: Stop the UDP stream. 

Time 40.0: Start the UDP stream from Node 3 to Node2.  

Time 41.0: Stop the UDP stream. 

Time 60.0: Stop the TCP traffic. 

As the UDP stream is starting to inject to the connection. The UDP stream is also 

too heavy to carry for this connection. Congestion can be generated at this time.  

4.4.3 Simulation results – Scenario IV + Full Speed TCP Vegas 

In Fig. 32, the result shows the performance of the path which is not affected. We 

made the congestion occurred along the path from Node3, through ISP1-AP1, 

ISP1-AP2 and Node2. And we made the TCP stream go through Node1, ISP2-AP1, 

ISP2-AP2, Node2. The path is exactly not affected by the congestion. 
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Figure 32 Scenario IV: The simulation result of throughput in Full Speed mode 

 

4.4.4 Simulation results – Scenario IV + Static TCP Vegas 

In Fig. 33, the result shows the throughput which was interfered at time 5.0, 10.0, 

15.0, 20.0, 25.0, 30.0, 35.0 and 40.0 second. The UDP stream is injecting to generate 

the congestion condition and there is no new routing method adopted. So the traffic will 

stay along the path with congestion condition.  

It is very clear to see that when the congestion occurred, the TCP stream will enter 

the recovery phase and reduce the loading on the network. While the congestion occurs, 

the throughput of TCP is close to 0. After congestion disappears, TCP takes time to 

retrieve the data rate. 
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Figure 33 Scenario IV: The simulation result of throughput in Congested TCP 

4.4.5 Simulation results – Scenario IV + RSA TCP 

In Fig. 34, the result shows the throughput of the path which is applied with our 

proposed scheme – RSA TCP. At period 5.0 second~40 second, congestion occurs 

every 5.0 seconds and last for 1 second. RSA TCP starts to work to switch the TCP 

stream from original path to the backup path. This saved lots of lost packets. The 

throughput is mostly recovered while being congested. 
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Figure 34 Scenario IV: The simulation result of throughput in our proposed 

method – RSA TCP   

 

Table 4.7 Throughput List of Scenario IV 

      Method 

Item 

Ideal 

(No congestion) 

Static 

(Congested) 

RSA TCP 

(Dynamic) 

Total Throughput 714K 466K 648K 

 

4.5 Mathematic analysis 

4.5.1 Staying Period 

    Staying period is a configurable parameter in RSA TCP. This parameter determines 

how long the new path should stay. Generally speaking, if the new path is healthy, users 

would like to stay on the new path to retain the data traffic. Some users have cost issue 
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and do not like to stay on the backup path too long. The staying period is a configurable 

parameter for users to tune to meet its requirement. 

In visual effect, a stream with 30 frames per second is smooth to human eyes. 

Surely, the higher frame rate, the higher video quality is. Experimentally speaking, 15 

FPS is the minimum frame rate that is acceptable for human eyes to consider as a “video 

stream”. If video streams under 15 FPS, people think it is just a sequence of image flow 

not a video stream. 

    Assuming the video streams delivered at 30 frames per second for users to have a 

smooth browsing. The minimum acceptable frame rate is 15 frames per second and 15 

frames need 0.5 second to deliver. 

    So in our RSA TCP method, we select the value 0.5 second for data stream to stay 

in the new path. If the new selection works well, there are 15 frames transferred. Even 

transferring back to original default path failed, users might have 30 frames per second x 

0.5 second = 15 frames in this second. The quality for video streams is kept in the low 

bound.  

    If the staying period is shorter, there might be no enough time for original path to 

eliminate the errors. 

    If the staying period is longer, the frame rate will be too low at the situation that the 

new path also has conditions but the original path is retrieved. There are failures 

occurring on the new path but there is no more new path to be selected. RSA TCP has to 

wait for the end of the staying period to roam back to the default path. The staying period 

takes more than half second and the remaining time is not long enough to deliver 15 

frames at the latter half second. The users might feel uncomfortable. If 0.5 second is 

configured in this case, the latter half second can still deliver around 15 frames for users. 
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4.5.2 Performance Improvement 

    The throughput in Scenario I for each method is exactly as same as the throughput 

in Scenario II respectively. This improves a thing that RSA TCP can dynamic adjust the 

data rate even though the range of α and β is not well configured. We enlarge β from 3 to 

30 for 10 times. The results of experiments are not affected. 

Considering the improvement of our proposed method, RSA TCP has 700K bytes 

throughput in 60 seconds. Comparing to the Blocked TCP, the performance is increased 

by 26.58% (13). The improved ratio is not a fixed value. As the time of path failure 

increases, the improved ratio increases. 

And the result of RSA TCP is also very close to the ideal situation. The RSA TCP is 

only 1.96% less than the ideal condition. The proposed method is extending the time to 

determine the best data rate. Congestion window size takes more time to be stable. Some 

data packets are used in retransmission because of exceeding congestion window. This 

makes RSA TCP packet loss while switching among the paths. 

 

4.5.3 Roaming Effect 

    With staying period is set to 0.5 second and polling period is set to 10ms, the new 

path takes 0.072 second to successfully backup after original path is down. For a video 

streaming with 30 FPS, the loss of frame is 2.16 frames. The remaining frame rate is 

larger than 25 FPS. For human eyes, the quality of the video clip is still very excellent. 

(13) 
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= 2.16 frames 

5. Conclusion and Future Works 

RSA TCP can improve the performance which is usually encumbered by the congestion 

or connection down on the link of an access host side. If the TCP server contains multiple 

solid interfaces to access the network in the same time, the reliability can be strengthened by 

RSA TCP. If RSA TCP detects the condition happened on the path, RSA TCP switches the 

transmission to a next path. The effort on switching is not much. RSA TCP provides a smooth 

switching among the paths. Effects to the users might be too small to know. For TCP servers, 

especially Video on Demand systems, RSA TCP is very helpful to raise the reliabilities, 

bandwidth utilization and seamless switching 

For a homogeneous network, the inter-nodes between source and destination will be past 

through in a few hops. Only if the congestion occurs at the near end of the TCP sender, the 

path switching is still useful. In generic cases, congestion occurs at many nodes. If there are 

packets lost, the packets might be dropped in many nodes because of the traffic loading or 

destination being unreachable. So, RSA TCP might help users to switch to a solution in 

homogeneous network. It might be not, either. 

  The modifications to the packets which are switched to a new path by RSA TCP are only 

the next hop address. Due to the change of the header, the checksum needs to re-calculate, too. 

For advanced identification, it is possible for RSA TCP to new add a field or option to carry 

the switching information, including the specific identification number and the IP information 

of original main trunk. After receiver got the packets, receiver can subtract the IP information 

(14) 
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from the option field. The identification to the packet is more comprehensive. 

For heterogeneous network, there are very few inter-nodes for common. Maybe only the 

routers located in front of the destination. The TCP sender has two or more interfaces to 

connect to different media of network. For example, when TCP sender detects that the 

Ethernet is congested, TCP sender can deliver the packets to another interface, such as 3G 

network. The 3G network is private and maintained by the Telephone Communication 

companies. The network has very high bandwidth and the network is also very stable. If the 

sender gives up the congestion path and transfers to a stable one, the performance will be 

improved very much. Conclusively speaking, RSA TCP can help to get out of the congested 

path. If there is a clean path backup, RSA TCP is able to automatically eliminate the failure 

situation and maintain the good throughput. If there is no paths backup or all other paths are 

busy too, RSA TCP can help nothing. No matter what path RSA TCP selected, any one of 

them is heavy loaded. At this time, the selection is meaningless. 

RSA TCP picks up the available path as new path not picks up good path as new path. In 

the future, RSA TCP should clone some packets to deliver to different networks, including the 

congested one and next one. RSA TCP has to try detecting the status of the new path. 

Switching data path to a congested one is meaningless. If RSA TCP can always pick up a 

clean path to be a backup of congested paths, the TCP performance will be improved entirely. 

So RSA TCP needs a mechanism to find out the traffic loading among paths. Furthermore, the 

routing information in the network might be changing all the time. RSA TCP also needs 

source routing abilities. Source routing can direct the data packets to travel on the nodes with 

loose traffic. Surely, the source routing with intelligence also helps to do the loading balance. 

RSA TCP prepares some space to store the results of the status in the network. The value 

should be referred before collecting the paths. The periodical polling collects the information 

of status in the network and maintains the status table. As the data path switching is required 

(13) 
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to go, the table can provide the most precise information to reference. If this can be done, the 

RSA TCP can improve the performance both in heterogeneous network and in homogeneous 

network, especially the Internet. 
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