AR G e B 2 KB g v 2 RITALR d

Neural Networks and Genetic Algorithms for Well
Logging Invetsion

e A

R RR R

R O R



A G e A TR 2N F RIT AR
Neural Networks and Genetic Algorithms for Well
Logging Inversion

SR Student : Sheng-Tung Yu
R AR B L Advisor : Dr. Kou-Yuan Huang
B o2~ F
FRER Fuga
L, ~
A Thesis

Submitted to College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of

Master of Science
in

Computer Science

July 2008

Hsinchu, Taiwan

PERRA LS ES

il


http://dpeecs.nctu.edu.tw/professor/p4.html

FA SRR EAFFmE Y RITHRF A

g2 A% hERE IR £L

B = 2 i < # FRE R FooF o om Lot

B RIFOR R R > FRIE S THAFREEIRFLF LA L A
Moepk SR o A A SRR QLA RTIEGRTY 0 Sd DIYGEAR R D g
im’u@ﬁ%»%ﬂ“ B crph B 0 0 TRt AR AR SRR G AH D
BRI P SRR T T R DR 4R
ﬁ*#?uwﬁﬁﬁw% LenBR R TR 0 G BT R ) Eai B
Flgb o AP S A TR E 2 ke L RRF Y oS o Vo FRT 2 et

b

PR ER o FIH R X R RMER VS o 50 desi e ab R
4 AR D B E A SRy HBEM IR Y 2 \Zhﬁ;:i\igéc » FH e

FFFIE o b BT R VISR A e MR BT o APRIET A pf,%]
MRS AR R T SRR RT T £ 1 KERE
Bt 37 RERR chie R SO TRk o BN R 3 g 1 KRR iR
L PR R 3L v e pl e X TR R - 0 #7200 ghendy ~ S22
EFH e FARMPR DT RN ERH LN B FOTEHEFL KPR e

B erisiiy 0 11 Leave-one—out 77 3% 31 =t iEsk > B A FE& Y 30 EF R o
PR R e F T e ] B FOR RGRIRE 0 S5iE 31 sk 0 BAE TIaE R
=R B

w0 REEB %&ﬁﬁﬂw‘yﬁjmw,nmub¢mﬁ+fgﬁ»%&
=8 %?"éﬁiéﬁb&f‘ DB e R ﬂ%fﬁs 30-36-10 (# % bias) s @& * £ #EHR 2 5
R R PRV (B~ B O RITR 0 PURIR R DE g % o R R
AR E - m%h%&mwg SRR 0 R4 ReDp AT RIT R E R
PUEEA G R Y E RIT R R ALY > AP RERET - B
%%#ﬁ

% 3%

3m

:]_
A -
2

4
EF

4

MaEs A SRR AFREE > FRITHEE



Neural Networks and Genetic Algorithms for Well Logging Inversion

Student : Sheng-Tung Yu Advisor : Dr. Kou-Yuan Huang

Degree Program of Computer Science

National Chiao Tung University

ABSTRACT

In well logging inversion problem, a non-linear mapping exists between the
synthetic logging measurements and the true formation conductivity. Without
complexity of theoretic computation, neural network is able to approximate the
input-output mapping through training with the iterative adjustment of connection
weights. In our study, we develop the higher-order feature neural nets on the basis of
neural network, and then apply on well logging inversion.

The usually used training algorithm for neural network is gradient descent, which
is easy to get trapped at local minimum, so we adopt a method that combine with
genetic algorithm to improve the training efficiency. In addition, the convergence of
gradient descent is slow, so we adopt|the .comnjugate gradient to speed up the
convergence. In order to make-network meore non-linear, we proposed higher-order
feature neural nets that use functions to expand the input feature to higher degree. In
order to use more training patterns and-inerease the convergence efficiency, we test
various network architectures that use”different number of input nodes. Besides, the
experimental results show that the convergence efficiency of the network with 1 hidden
layer is better than that without hidden layer, so we adopt the network with 1 hidden
layer. We use 31 synthetic logging datasets. Each has 200 input features and
corresponding outputs. The performance of network is evaluated by comparing the
mean absolute error between the actual outputs and desired outputs. Leave-one-out
validation method is used in experiments. Each time 30 datasets are used in training, the
trained network is then tested with the left 1 dataset. After 31 trials, the network
performance is computed by averaging these testing results.

To validate the effectiveness of higher-order feature neural nets, the network size is
30-36-10 (not include bias), we train the network using conjugate gradient with
synthetic logging datasets, and the trained network is then tested with real field logs.
Results obtained from our experiments have shown that the proposed higher-order
feature neural nets can be used effectively to process the well logging inversion. Our
study shows an effective architecture of neural network to apply on well logging data
inversion.

Keywords: Neural network, genetic algorithm, well logging inversion.

il



EHIFIRAEL  —F 5Nk RAGE LI FI 8 RF27 4
FEPERFI g {NEF TGRS PR E R o (&
FA2FafF A1 FTRFREY Lo L ALF LS .

EHFIEBRE T EERE - UEREC KRR v FPF LI 2 8

ERNE RS P TR

-

RAFHZ AR E P hit- KPR AT Ak §es o Bt gt

FA PP AR A B A s BRI PR A - Ak o

il



Fe

Abstract

Contents
LlSt OfTableS T
LlSt OfFigureS S e e oo e s e s e es ess ees ase seesenses s es essess te s aratss0sssss s seesesses

1
2

2.1
2.2
23

3.1

3.2

4.1
4.2
43
4.4
4.5
4.6

4.7

4.8

5.1
5.2
53

3.1.1
3.1.2
3.1.3

3.2.1
322

5.3.1
532
5.33
534

Contents

INtroducCtion  ceecereerereceetecnntiiitiietetecntcecccnnes
Training Neural Network with Gradient Descent
Multilayer Perceptron ................................................
Gradient Descent Method :cccceerrerreecrerteeiiiiiiiiiiieciennnns
Momentum Term ceccececcreceeceececeeceeceettecceccaccecceccaccascans
Training Neural Network with Conjugate Gradient

Conjugate Gradient MethOd ....................................
Conjugate DIreCtiONS e ceceeeecereececeesetentieteciccececscscaccsanes
Quadratic Termination of Conjugate Gradient Method --«--«------
Construction of Conjugate DITECtIONS ccvcevrerrerercertercercaccacnns
Back-Propagation.with Conjugate Gradient Method --«+--+--e-----
Golden Section Search: =ssss--stesseeeeeieemiiereteriereiieeeneennnn.
Training Process Using Conjugate Gradient Method «+-«--+veeeee-

Experiments on- Well Logging Inversion «««-eeeeeeeeee
Data Pre-processing ...................................................
Determination of the Stopping BIror ccceeecececerenccicnenecaneannn,
Determination of the Number of Input Nodes -««+-eeeeeeeeeeeeens
Determination of the MLP Network Parameters «««-eceeeeeveeeee-
Higher-Order Feature Multi-Layer Neural Net (HOML) ---------
Higher-Order Feature Multi-Layer Neural Net with Conjugate
Gradient ( HOCG ) ...................................................

Experiments on Reversing Input and Output of Well Logging
Data .....................................................................

SUIMIMATY v+ +ee e eeserrmnsmensinetiiit ettt
Genetic Algorithm (GA) on Well Logging Inversion---
INtrOdUCTION svcveesreeeeeeeeeeneetiireeeieteeeientctecntesesnsacenncnnns
Real-Coded Genetic Algorithm (RCGA) «+reeeeeerrerenreneaneenens
Experiments on Well Logging Data Inversion ««-«s-eseeeeeeeeeeees
Representation of Weights of Neural Network ««--eeeeeeeeeeeeeeene
Combination of Neural Network and GA -:-eeeeeerereereneanenens
Evaluation of Hybrid Neural Network and GA ««--eeeeeeeeeeeeenene

Experiments on Reversing the Input and Output of Well Logging
D ata .....................................................................

iv

i
iii
v

V1

NN A~ B

N

11

25
27
35
40

41
41
42
45
50

56

59
62
64
60
67
68
68
69
70

72



535
6
7

References

Summary eescsseccesses s
Experiments on Real Field Logs «--«seeeeeeeeeeeeneenns
Conclusions TR R R R NI

74
76

80
82



Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5

Table 4-6

Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13

Table 4-14

Table 4-15
Table 4-16
Table 4-17

Table 4-18

Table 5-1
Table 5-2
Table 5-3

Table 5-4

List of Tables

Result of conjugate gradient for 2 iterations ««--«--eeseeeeeeeeeeeeenees
Result of gradient descent for 6 iterations ««-««--eseeeeeeeeneeenenannn.
Computation process of interval location ««-«--eeeeeeeeemeeeeenaenn.
Computation process of Golden Section Search ««++-+++=scesveeeeneeens
The network performance using different stopping errors «-«--««-----
Experimental result of each kind of MLP network ««-«+eeeeeeeeeeeees
MLP network performance with different learning rate «-«+-«+x+----
Number of hidden nodes by USA algorithm «-«--eeeeeeeeeeeeeneananns
Comparison of MLP network performance between full network and
the network that pruned by USA algorithm -«--coeeeereererencenceeene
Comparison of MLP network performance with one and two hidden
JAYETS #rvrrerrssesessersnnentt ettt ettt
Five different HOML types .............................................
Five different HOSL fypes «++e+eeeeeeerrrnrmnmumnennennenneerieiinin,
Testing results of HOSL and HOML «:eeeeeeensrensennseninnennenn
Testing result of each type Of HOML ccccececerencciciaieneccnnnnnns
Five different HOCG tprS .............................................
Comparison of each types of HOCG ««s++eessrenseenssmensrnneiinnennn.
Comparison of average of mean absolute error between HOML and
15(0]0]C HETTRTTRTRUUN. " uUUue. ‘NN
Average of mean-absolute error with 10, 20, 40, and 50 input nodes
in HOML-1 ---=5- Wi B ...............cooovnninninnnnnns
Average of mean abselute error of HOML and HOCG -«--«--------
Training time of HOME ‘and HOCG in seconds ««--«--eeeeereeeeeees
Comparison of HOML and HOCG in average of mean absolute error
and average training TITNE cevevrvrecrececnesacscsnccnccncncnnnnnnns
Comparison of experimental results of reversing the input and output
Of Well 10gging data ««««-reeeeeeeeereeeeeeneemmmnnniii
Testing results of HOML with GA «cccecerereetaiiiiiiiiiiiiiaanne..
Average performance of three hybrid methods ««-«seeeeeereeeeeeeeene.
Comparison of HOML and HOCG in average of mean absolute error
and average training TIINE cevvevrevrersereecsncentenceecsecaccnccnsanns
Comparison of experimental results of reversing the input and output
of well logging data ««««++srrrrrrerrerreemremmiieiiiiiii,

vi

21
22
29
35
42
44
45
49

49

50
51

52
53
55
57
57

57
60

61
61

63
63

71
73

75

75



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

1-1
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18

4-1
42
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

4-15

4-16
4-17

List of Figures

Experiments flowchart sceeeececereeeeceeiiiiiiiiiiiiiiiiiiiiiieieneeaenns
MLP network with one hidden layer .......................................
The iterative computation ...................................................
Graph of a quadratic form ««««++ssseeerrrmmmmmmmrimi
Conjugate gradient method finds minimum in 2 iterations ««--+-+-+--
Conjugate gradient method converges in 7 iterations «-«+=s-eseeeeeeees
Gram-Schmidt Conjugate PIrOCESS srrrererevesenene e aanianns
Conjugate gradient method with exact step «+ereereeeeeerecrereeenenen.
Gradient descent method with exact step ««+eserererrerereneeeeeenceene.
The curve in (a) gradient descent and (b) conjugate gradient when
step S1ZE 1S (). ] vevveeveeceneeneneeeeritrteetettetietttetseteotsesnccnsnnconns
The curve in (a) gradient descent and (b) conjugate gradient when

step SIZE 1S (0.4 +vveeevererenentitiiiuiuiuiieieieetenetitetcncntatatencncacecnnns
MLP NEEWOTLK +eevvveeeeeraaasanttteeteetiiiitteeeeeeiisiueeeeeeeseiissaseeens
Interval 10CAtion «ceceverererceceeeeereeieitititintteteteninceccccecacacecenes
Result of interval 10Cation ««««-rs+-rserrerrersseraemsreeerueeesseeaeesaeens
Minimum occurs in intval [iifrxe] «eorrrrererremrrreneriaee,
Minimum occurs in intervalyfag, Xaf, -----eeessreessrersserraeerniaeeenns
Two initial internal points .............................................
Interval TedUCtion: »«-essssessssnsesscersmneeereeeeeeeeeneenseesseenseeneens
Flowchart of Golden SeCtiOn.-Search «sss«--s+rreerrrerseraeereereeaeeraeens

Flowchart of conjugate gradient back-propagation algorithm to train
MLP network ..................................................................

Three samples of well logging datasets «««+=+=++sssseereeerererrmmmmnn
Testing result of MLP network with 200 input nodes «+-«++eceeeeeeeees
MLP network with smaller number of input nodes «--«+-eseeeeereeeeees
Average performance with different number of input nodes «---+---+
Mean absolute error in MLP networks with different learning rate ---
The MLP Network ccceceeceeceeeeceeeiatiititietitietetetetcsccsccsccncanns
Flowchart of USA algorithm ................................................
HOML-2 with original and expanded features «--««esoeeeeveenneeannenns
HOSL-2 with original and expanded features «--«+eeoeeeeveeeeeeannenns
Comparison of MSE curve between HOML-5 and HOSL-5---------
Average of mean absolute error in different HOML networks «----
Testing result of HOML-5 on dataset number 23 «:+oeeeeeveeeneeenees
Training time for each dataset in 5 HOML networks «--«ceeeeeeee-e
Testing case of HOCG-5 on dataset number 10 that does not achieve
the training goal ...............................................................

Testing case of HOCG-5 on dataset number 10 that achieves the
tralnlng goal ..................................................................

Testing case of HOCG-2 on dataset number 12 «+-eeeeeeeeeveeaneeenne.
TWO Well logglng datasets ...................................................

vii

— O o0 L W

15
21
22

23

24

25
27

29
30
30
31
32
34

39
41

43
44

45
46
47
49
51
53
54
55
55
56

58

58
59

60



Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

4-18
5-1
5-2

5-3
5-4
5-5
5-6
5-7
5-8

6-2
6-3
6-4
6-5

Comparison of network performance in HOML and HOCG ------
Binary format of an individual with 3 genes --«--eeeeeeeeeeeereeanaananns

Single point crossover from two individuals, each element of
individual is @ gene «+eereeeeeseermrmnreruiiinniiiiii
Flowchart of genetic algorithm .............................................
ATIthMELIC CIOSSOVEL roetoeseesrsessesssssacsasstsotsacsacsacsassassssassacns
A MLP network represented by an individual «-«eeeeeeeeeveeeeaeenenns
Flowchart of the hybrid method on well logging inversion ««+-«+«--+
Testing results in HOML-2 with GA and HOML-3 with GA ------
Testing results of HOML with GA cececeeeerereriiiiiiiiiiiiiiiiiianans
Two samples of MSE curve while in training «-«-cseeeeeeeeeeeeeeeees
The inverted true formation resistivity between 5,577.5 to 5,827 feet
The inverted true formation resistivity between 5,827.5 to 6,077 feet
The inverted true formation resistivity between 6,077.5 to 6,327 feet
The inverted true formation resistivity between 6,327.5 to 6,682 feet
The field logs and the inverted true formation resistivity ««--««+-----

viii

62
64

65
65

67
68
70
72
74
76

717
77
717
78

79



1. Introduction

Multilayer perceptron (MLP) network consists of one or more hidden layers
between the input layer and the output layer. Since the back-propagation (BP)
learning algorithm that was developed by Rumelhart, Hinton, and Williams in 1986,
MLP network has been successfully used on a wide range of applications [1]. The
BP learning algorithm uses gradient descent method that calculates the negative
gradient of the error with respect to the weights for a given input. The gradient
descent method has some drawbacks [2]. For example, it takes long time in training.
To speed up the training process, some optimization algorithms, such as conjugate
gradient method, are employed to train MLP network. Martin et al. [3] developed a
method that utilizes neural network to process the well logging data. Their results
showed that the network trained by conjugate gradient was more effective in the
well logging inversion than the otherqexisting,methods. Their new approach first
train the network with conjugate gradient-method, and later switch to the LM
algorithm, to refine the network parameters. In-this paper, we use conjugate gradient
to train the network, also we expand the features-to higher degree.

Another drawback of gradient descent is gasy to get trapped at the local
minimum. On the other hand, genetic algorithm is a global search algorithm that is
inspired by evolution. An implementation of genetic algorithm starts from an initial
population that consists of chromosomes. A chromosome is called an individual that
is a candidate solution to the target problem. Fitness value of individual is computed
through fitness function during evolution. The individual with higher fitness value
has more chance to survive and generates offspring in next generation and finally
converges to a global minimum. However, since genetic algorithm is usually slow,
some researches and applications that combined genetic algorithms and other
algorithms were studied. Tan [4] combined genetic algorithm and evolutionary
programming which always applies the mutation operator on bias and weights in
iteration to train a neural network, and applied on the cancer classification problem.
Kinnebrock [5] designed a hybrid method that combines genetic algorithm and
neural network. The author demonstrated that the iterative number in training neural
network could be reduced, if after iteration the weights are changed by a mutation

operation as it is done in genetic algorithm. In our study, we adopt a hybrid method



[6] that combines genetic algorithm and neural network to apply on the well logging
data inversion problem. The idea is to refine the connection weight using BP
learning with gradient descent after every generation.

The remaining of this paper is as follows. Chapter 2 gives an overview of MLP
network, the BP learning algorithm with gradient descent. Chapter 3 describes the
conjugate gradient method and the BP learning algorithm with conjugate gradient
method. Chapter 4 describes the experiments on well logging data inversion. For the
network architecture, we test the different learning rate, the number of hidden nodes,
and the number of hidden layers. We design 5 higher-order feature neural nets,
which expand the input features to higher degree, to apply on the experiments of
well logging data inversion. Comparison of these nets that trained by gradient
descent and conjugate gradient will be made. Chapter 5 describes the genetic
algorithm, the real-coded genetic algorithm, and the used hybrid method that
combines the neural network and genetic algorithm on the experiments of well
logging data inversion. Chapter 6 and Chapter, 7 give the experiments on real field

logs and conclusions. Figure 1-1 is.the flowchart of the experiments in our study.



1. Use multilayer perceptron with gradient descent method on well logging
data inversion to:

(a) test the different number of input nodes

(b) test the different number of hidden nodes

(c) test the different number of hidden layers.

h J

2. Use five higher order feature neural networks with gradient descent
method to:

(a) do experiments of well logging data inversion.

(b) do experiments on reversing input and output of well logging data.

/

3. Use five higher order feature neural networks with conjugate gradient
method to :

(a) do experiments of well logging data inversion.

(b) do experiments on reversing inputsand output of well logging data.

Y

4. Use hybrid system of higher order featureneural networks with gradient
descent method and real-coded genetic algorithm to:*

(a) do experiments of well logging data inversion.

(b) do experiments on reversing input and output of well logging data.

h J

5. Use higher order feature neural network with conjugate gradient method
to do real field logs data inversion.

Fig 1-1. Experiments flowchart.




2. Training Neural Network with Gradient
Descent Method

2.1 Multilayer Perceptron

A MLP network consists of a set of nodes that are fully connected and are
organized into multiple layers. Typically MLP network has three or more layers of
nodes: an input layer that accepts input data, one or more hidden layers, and an
output layer. There are bias parameters in input layer and hidden layer that act as
extra nodes with a constant output value of 1. For arbitrary node j, the weighted sum

of inputs is:
d
net; = le XiWii ¥ Wicau) (2-1)

where d is the number of input data to the node, x; is an input, wj; is the connection
weight between node i and j, and wjz+1) 1s the eonnection weight corresponding to
the bias parameter. The output of node j is finet;) where f'is the activation function.
MLP network usually use differentiable sigmoidal activation function for hidden

and output nodes [7]. The formula of sigmoidal function is as follows.

1
1 + e—net

f(net) = f(net)(1- f(net)) (2-3)

f(net) =

(2-2)

MLP network is trained by supervised learning. Supervised learning requires a
desired response to be trained, and is based on the comparison between the actual
output of network and the desired output. The learning process of MLP network has
two phases, one is the forward computation and the other is the backward learning
[8]. In forward computation, training pattern is presented to the network from the
input layer, and transmit to the hidden layers, the outputs of hidden layers are then
transmitted to output layer, finally the real output values are computed. In backward
learning phase, the error between the real output value and the desired output value
is propagated back to the network to update the connection weights. Figure 2-1 is

the example of MLP network with one hidden layer.



Input layer Hidden layer Output layer
Weight w;; between Weight wy; between
input layer and hidden layer hidden layer and output layer

Fig. 2-1. MLP network with one hidden layer.

2.2 Gradient Descent Method

Gradient descent method 1s a functionToptimization method that uses the
negative derivative of the function. MLP.netweork 1s often trained using the gradient
descent method. Assuming we have a MLP network with one hidden layer. There
are / nodes in input layer (not including the bias), J nodes in hidden layer (not
including the bias), and K nodes in output layer, i, j, and k denote the node index. wy;
denotes the weight value connecting output node and hidden node, and wj; denotes
the weight value connecting hidden node and input node. The BP algorithm is to
modify the weight value iteratively so that the error function of network E is

minimized. An error function of a network E is defined as follows.
E= EZ (d,~ ) (2-4)
k=1

where d;and y;denote the desired output value and the real output value of the K"
output node respectively.

According to the gradient descent method, the weight change is in the reverse
direction of the gradient. The formula of weight change in hidden node and output

node is:



OF
ow,,

g

Aw, = w,(t+)—w, (t)=-n (2-5)

where 7 is the learning rate and ¢ is the iteration index.

By applying the chain rule on equation (2-5), the weight change in hidden node

and output node is:

Aij =n(d, —,)f (net, )yj (2-6)
Similarly, the weight change in input node and hidden node is:
oF
Aw, = w,(t+D)-w, () =-n . (2-7)

Ji
By applying the chain rule on equation (2-7), the weight change in input node

and hidden node is:

iji ZU[Z(dk -y (netk)wkj]f‘ ("el,)y,- (2-8)

2.3 Momentum Term

In equation (2-5) and (2-7), the learning rate determines the speed of
convergence by acting as a step ‘size. If itsis too large, the network training may fail
to convergence because of oscillation. ©On the other hand, smaller learning rate may
get slow convergence in training. To get the advantage of using large learning rate
and to lessen the oscillation, Rumelhart et al. (1986) [9] suggested adding a
momentum term to stabilize the weight change. The weight update at a given

iteration index ¢ becomes:
Aw,(t)=n(d, —y,)f" (net)y,+ pAw,(t—1) between hidden and

output node, and
K
Aw, () =7l (d, ~y)f" (net)w,1f" (net))y, + fAw, (1=1)
k=1

between input and hidden node. S5 is the momentum parameter.



3. Training Neural Network with Conjugate
Gradient Method

3.1 Conjugate Gradient Method

The gradient descent method simply uses the first order (gradient) information,
however, using the second order information is often more effective in convergence
[10]. There has been technique about the usage of second order information, such as
Newton’s method [2]. The Newton’s method requires storage and expensive
computation cost of the inverse Hessian matrix. On the other hand, the conjugate
gradient method takes advantages of the second order information but not requires
the process of the Hessian matrix [11]. The major difference between the gradient
descent method and the conjugate gradient method is in finding the search direction.
In gradient descent method, the search'directionsis always the negative of gradient;
however, in conjugate gradient® method the search direction is the conjugate
direction to improve the search efficiency [12]. 7[:’712'1‘; ffi*'] Matlab v7.1 %R
AffEE Toolbox » ') H )% 1 13”'4‘51@%'1@%‘?"[’@‘%‘ R A R P A
E TGRSR | SESERSAGE S 0 B - R I S o
AT
HAHI LB R R xR FEORES ] d6)
R ) dG-D R AR (2] )
d()"Ad(i-1) =0 (3-1)
e (R R XA AR AR ] dG) > o ROV T R
AU = ad) - FAERE a@)FTH AXGQ) + a()d@)=E - o RS FHATS £
IR d@OFH R @) o [T R PO EIEF RN — SRR Al 2
(3-2)J‘}7s'fq%’|‘(3-l)f[’?ﬁ :
X(i+1) = x(7) + o(?)d() (3-2)
G- DR FHEIERrXO)AE - 153 TrZ L[] 0y a(0)FEER: - ')
TR FIF OO > YT S ) A5 o)
FEETFTIORER > (MR T SRR



X2

|
-2 0 2
X1

Fig. 3-1. The iterative computation.

B SO AT RS SRR R 1T 31,1 AR
Wby > SRSy T RTHIERIN " SR 9t ) e ek ,3.1.2'5{7
FePH A IR 1R U T TS 4 (Quadratic Termination) » Y HERLSERS n AR AU
NFEE o0 dteration [ H{BEA PR K FT 0 HA U TR 3,13
I ESEMEERIN ST ik 2= LRI SR (IR

3.1.1 Conjugate Directions

T AR VERE A R o - SRR - WRR
ORI~ PR AT [ AR ) - fff“ﬁ'}@“fgfﬁ (=] Eredr pofgss
TR RIE FEE

S Wl VEE )N Y- R S 2]

f(x)= %XTAX+bTX+C (3-3)

EE A REPFE T o P [2] PR
VAx)=Ax+b (3-4)



R

4 2
28

f(X)= %XTAX+bTX+cHU 3D Ell,?&Lq%ﬁ' » EEf AZ{

T %l!ﬁ’l@ r’ﬂjf‘%f ﬁ"ﬁ?%ﬁﬂ-O.SZ 0.14)% »

21:”]_\__ Lat

180~

o
S

L

iy =
o
e,
Lot
ﬁ"#}
oy

L

w4

.
el 7

{7

“‘:

',
e,
i,
7

¥,

o
G
o
G
e,
i
2
55
4""
£
y,
&
77
ry
o

",

2o
7
Jr,.?

¥,
%
e
i

ey
Coy,
A

o,
%,
r,,.ﬁ:

*,

50~

'ty
A

o
ol
7
ey
by

/7
T
Fo

o

A
£
gl
) L
e
s

s
ot
G
‘l
ol
W)
b
o

o

=

- @R
e 5

AX -+l =0 UL EL I B glgl— [RIG-2)r b R

e
0

0>

BRRE L LTI

Fig. 3-2. Graph of a ”difédfatic form.

R Hg{;\évﬁﬁﬁjyﬁ?—ﬁﬁfji@ﬁﬂ [F[JElffﬁj % (Jonathan Richard Shewchuk - [12]) >
B0 IRV TR r() AT Y AXCE AXG) I RIpEE B

r(i) = AX — AX(7)
r(i) =-b — AX(i)
r@i) = -\VAX(@)
bt Tl
AX(@) = X - X(i)

(3-5)

R B AXG) » A 0 Y I B

(3-6)

P (IR AXCEE ] d ORRES PRS2 (320 3-6) L

X(it+1) = X(@) + a(i)d()
X —X(+1) = x — X(i) — a(d)d(7)
AX(i+1)= AX(i) — o(i)d(7)
BV R R XG) 35 [l d@PERUE R o)

(3-7)
SEET U RLY o))



e £ (K(E) + a()A) FES 1 (0 [T SO +e)d () B a@)fiogi s
HIHERL

—(f(X(l) +a(i)d() =0

F f(X(l+ 1)) 0

S’ T

(i) X(i+1) =0

-r'((+1)d(@) =0

(AX(i+1)-Ax)'d(i)) =0 (by equation (3-5))
AX(+1)-x)"d(i) =0

“AAXG+DTd@E) =0

d()"AAX(+1)=0 (3-8)

TELE[J%Z} :0(3_1)%5‘4)5{\ A-H gfﬁ’:ﬁé% Ny d(Z)EaAX(,+1)fQ_ Wﬁ;ﬁ; A-H il
Ay W ; iﬁgﬂgjﬁ?_ﬁ',‘ U (3-8)1 | s W e

d(i))"A(A x(i) — a)d(@) = 0 (by equation (3-7))

d()"A A X(i) — d(@) Aai)d@).=0

a(i) = d(i)'TTAAx('i)
d(@) Ad()

__d@'re
d(i)"Ad(i)
L —dO)"'VA(x())
N T (3-9)

P ) A ERLE | r()H IV L R GOV IR T ekl i T

HRpy SR N1

afiy= LOT0.
r(i) Ar()
a(i) = VZJE )(()((l()l?i:é ]E)(()((l()l;) , for gradient descent method.  (3-10)

UPI3-3Y52 2 25 (3-8) 7 » (E@IFRIX(OF 3l d(OVPSE) - $5 5 4
R a(O) JFRET x(1) » A4 LA X(1) d(0)ED A-FUISAYIERE 3 9 iikhlEt » Hie

10



BIL B A XA AL~ () (1) » 3V s A A
B0 PO PSR PR R i g i r ()R Rk -

X2

) 1
-2 ] 2
X1

Fig. 3-3. Conjugate gradient method-finds minimum in 2 iterations.

3.1.2 Quadratic Termination of Conjugate Gradient

Method
S PRI T RS AT R R D R AN A
1 B A RPE R B S R [ A
= REREET e TR e n B IS EA TR (2] o IR o
RS
AX(n)=0

PPN o383 B B P H B 90 7% 1k 19 5 A2 5 % (Jonathan Richard
Shewchuk - [121]) > #[1[!(3-4)5- ,ﬂéltzf[guaﬂ%‘ [RIEY m&er?[ (77) A X(O)RLF! 1 et
T kel A- IRV RIED d(0) AX(DRsERE 'Fﬁﬁ AR = ﬁgm s AR
IR AN R A > [NIREE [ R AXO) ) F ’?‘%J%ZEHJ[ d(i)



R £

AX(0) = 21: 5(i) d(i) (3-11)

FFaG) A8 G == R ) d@fv ke

X2

0
X1

Fig. 3-4. Conjugate gradient method converges in # iterations.

L TFE RTS8 pfifi > T AR 2 (3-7) LLI'IAX(I')F[GJ%E,JI}I?:—_C » SHRL
AX(i+1)= AX(i) — o(i)d(7) (=4 3-7)
IR0 PORETREN O POE] 4, BT A
AX(1)= AX(0)—a(0)d(0)
AX(2)= Ax(1)—a(l)d(1)
AX(3)= AX(2)—a(2)d(2)

AX@i) = AX(i-1) — a(i-1)d(i-1)
SRS A AR, AR E AXGY l%% [N

12



AX(1)=AX(0) - Y- (/) d() (3-12)

FIF 2t ,:“(3-12)?J%$3Ax(1‘)p@%§4f{e;t =l F'ﬁjtzﬁ,?&ﬂ&(i) FYfifi o prA g,
fﬁjd(mﬁ‘?‘] ELA-H gﬁga@@? ) [ﬂfff PIFE D 2 (3-1 1)%&%% el d(k)TAEfHJ
B IR ST 8G) T B E T T kAR 0]

AX(0) = §5(i) d@) (2274 (3-11))

d(k)" AAX(0) = Zl: 8(i) d(k)" Ad(i)

d(k)" AAX(0) = 5(0)d(k)" Ad(0) +
S(Dd(k)" Ad(1) +

5(1)d(k)" Ad(i)
d(k)" AAX(0) = 3(k)d(k)" Ad(k) ..(bysA-conjugate property)
5(k) — d(k)TTAAx(O)
d(k)TAd(k)

4) ABX(0) ~ X aG)()

= (by A-conjugate property of

d(k)"Ad(k)
2 a()d(0)' Ad()=0)
_d(o Arx(k) a0 o 1
=i adry Y X0 =) ;au)d(/)) (3-13)

(M2 G92G-13) - [T BRI a ()22 6 YRR -
o) = - 40OV (X(0)
d(i)"Ad(i)
_d@)'r@)
—d()TAd()
_d(@)" AAX()
~d@i)TAd()
=8(i)
a(i) = 8(i) (3-14)

13



i il Y =N ?“(3-12)%%5?‘Ax(i)ﬁ%%%]';{':;V fie T ] pudsgy

AX(i) = AX(0) - ia(z’) ()

z )d() - ZS(I)d(/)

Ax(D) = Y 3)() (3-15)

PR UEEA > T 8 i step RV (1B AXQ) 0 SHIEDT 1 5 n-1 step
Y THIFOZETE R SRR LS A S VR ’Tdiﬁff? E= T E TR P
A n VS i Ax(n) =0 0 P T o SRV T OVEREEE T 8 SR p
S AR A ] B
PPN EE p=3 g IR -
AX(0) = 3(0)d(0) + 8(1)d(1) + 8(2)d(2)
Ax(1) =3(1)d(1) + 8(2)d(2)
AX(2) =8(2)d(2)
AX(3)=0
£)— 7% {teration .V & ?ﬁﬁ?’:& P SRS ER AT 0 5 3 W iteration 7%
MR B AX(3) =0 SRR A | gfk

3.1.3 Construction of Conjugate Directions

301 = 3012 LAyl T R P [y Ef”?}iﬂ— SR R R E
[l > fj 30 DR g PO P AT AR - AR (R d(0) -
d(l) > ... > d(n-1D)fiv 3% (Jonathan Richard Shewchuk > [12]) » El{[1n {852 7%
FrEPEVAE, o

A [F[JHU;FE}?E?E £h,Gram-Schmidt Conjugate Process [12] ° ]'@l%@“’ i
% VR FYEIEIU0) > u(l) ..o u(e-1) > BIEEE >0 BUf=— Hpda) > [l
VUG SRR 1 O R [ A-H AR T B - IIG-5)FT o Ry
MV O TR U2 u(DIFT > 5d(0) = u(0) - MUCDELE R 53 BhuF==u s '
[ E U= 5 d(0)3 ELA-HE » i u IR d(0) T ST RN 4
FERLUCL) T d(O)FHERY, - B U(DI U™l i > B e 00 Bl u IR L P H g [y

14



d(1) » 7+ Gram-Schmidt[~% { @“ﬁfﬁl Fl, $2Ry P TR e =d(0) e i )]
B B(1,0) -

u(l)=u"+u*

u*=u(l)—u"

d(1)=u(l)—u"=u(l) + A(1,0)d(0)

u(0) d(0) (0)

d(l)
u(l)

Fig 3-5. Gram-Schmidt conjugate process.

[FFE » dQ)EH uQ@)i . 7 dO)FHERL | 2 7 d(DHER > “TERL -
d(2) =u(2) + 4(2,0)d(0) =@, (1)

PP SRS (2 RSN ) d() g Y

d(i) :u(z')+iz_1: B kAR, iS5k (3-16)

BL SRR BGLK) IO o S 38 (3-16)3 d()TA » H 1>

d@®'Ad() =u(®’ Ad(/)+2ﬂ(l kyd(%)" Ad()

0 =u(@)" Ad() +8(i,0)d(0)" Ad(j)+3(i,1)d(1) Ad()+ ... +8(, k)d(k)" Ad())
0 =u(@)"Ad() + B3, HA() AdG), i >j (by A-conjugate property)

. = _U) Ad() o ]
B, J) 4oy Ad()’ i>] (3-17)
Pp =2 (3-16)=- » Gram-Schmidt Conjugate Process Elfiﬁ—ﬁigf&ﬁ? -
AV @R > VRS S [ R~ SR TR
A r@) 2V RV ERAEY u@) [12] > iiRRLE U(l) =r(i) » NI BRI
= [Hpj,jh(_?,-m)rl PldsEERY 2t 4 (3-18) =4 ,jk(3-17)9J f’ P gyay 2

15



(3-19)

di)=r()+ 3 pabdE). ik (3-18)
o r)'Ad() L _
B, Jj) 40y Ad()’ i>] (3-19)

SRR ORI 1 7> 8 2 2 G-15)% HAR)'A
Ax(z‘)=z_6@'>do) (A (3-15))

d(k)" AAX() = 3. 5()d() Ad(K)

d(k)T AAX(i) = 0
d(k)T A(x=x(i)) = 0
d(k)" (Ax—AXx(i)) =0

dk)'r(i) =0, i >k _.«(by A-conjugate property) (3-20)
G200 AT r()= E ViR ppd (R 55 -0 | UI}J [

BRI - B @) PRy d()fY - TR
ST [E'H r(i)Jv e u(z)ﬁliﬁiﬁﬂ E'“F' I T Fl %\,\]Jﬂ—’rg gﬂj f' ]E.%HHJ*JT S
o [ dG-1) - JITR g B dG) @

P F[H] 2 20 (3-18)» w20 RS HIVEFIE T rG)fOr R B i

d@)=r@i)+ iﬂ(i,k)d(k), i>k (Y =4(3-18))

di)"r() =r()'r()+ Y BT ()

0 =r@)'r() (by equation d(i)"r(j) = 0) (3-21)
AN NI
d@)'r@@) =r@'r(@) (3-22)

PISE o PN B20) LR o T PO AX@FV =S ik
KL r(@) = AAX() > I

16



r(i+1)=AAX(@+1)

r(i+1) = ACAX() — a()d(?)) (F13743-7)

r(i+1) = AAX(G) — Aa(i)d(i)

r(i+1) = r(i) — a()Ad() (3-23)

B SR BG HPNI S R FR G2 R EVR i 2 R
FUor@)fier i iﬁﬁl’éﬁlfﬂﬁlﬁﬂﬂ%ﬂ*@ r(i) Ad() - I'J VR S 2 28 (3-19)f] 1
H Ba, /)i

rG+1) = r(j) — a()HAd()
r(i)'r(7+1) = r(@)'r(j) - o) r@) Ad()
o) r(i)' Ad() = r(i)'r() — r() r(+1)

r(i)'Ad() = ——(r(i) r() — (i) T(+1)
()
A 2 AP () ADG)

(@) r(z‘)TAd(z'):%r(z‘)Tr(i), i~j

(b) r@)"Ad()= - r@'r@), =+l

o(i=1)
(c) r()'Ad()=0, i>j+1
i P P (a) o [“Eu?', i=j Elflﬁ\jj (% BB B3, j) -5 HiE > I

(A PN () 73 IR B J) EIFTRAy -
Cr@'AdG) 1 r(i)'r(i)

O PED= =457 adg) “aG-n ey AdD T s
o _ _FO'AG) >

2) B, j)= - A _ 1

2 pGJ) 40" Ad() I (3-25)

e d(@) =r@) + Iiﬂ(l} NAG) > EYNE R E25)H T 0 B, j) = 0if i >+

PP R dG) 0 T EIRIEY 1 R ) bR
G NFSRCEFIj = 1) AN A= by dG-DsR i o i B

17



B, j) =BG, -1)=FG) - A FEOgig e [ F PR >0 [ - (- BixG)
g [fi) d@)PVRH T 2

d(i) =r@@)+ B@, HAdG) =r@) + p@Hd@-1), >0
ol

o\ r@i)'r() [ (3 Y (R
BG) AT (F127(3-24)=(3-9)

_ ('@
CrG-Dri-1)

(Frd@-1)'r@-1) = r@-1)"r(i-1))

RS r(i) = =N/AX(@) » PR DR EE RIS p) d@)py s SO
d(0) =-V/(x(0)
d(?)=-V/(x@)+ D@1, >0
ol

Vf (X(0)"Vf (X(@)
Vf (X(i-1))'VAX(i-1)

p)=

PI S S EIR  BRE ETR 1 A  fSE

B0

Algorithm 3-1: To minimize quadratic function using conjugate gradient method.
Input: Start point X(0).
Output: The solution X.

Stepl:

Fi’;“ iteration index i = 0
AL %%'[%HF X(0)EL AR S/AX(0)) » = S BT CRAuiEEL T, [F,JF%% EIE,
Hf

d(0) =-\/f(x(0))

e =) VA(X(O))
AR o= =y O TAd©)

RIFEERIEX(1) = X(0) +a(0)d(0)

18



Step2:

Fi’;“ i=it1
Rk~ R X(0) LIV N AX(D))
SRR OR

B(i) = vf (X(i)):Vf (X(1)

Vf (X(@-1)) VS (X(@-1))

RPN R dG) |

d(i) == Vf(x()) + p(D)d(-1)
Al a)

-
RIFEHEETX(+1) = X() +a()d(i)

Step3:

=t BT B+ )RR
PN T S A S SR LRl R R o g e
X =X(+1) ;

F‘[ Hl [H‘?U step 2.

Example 1

32
To find the minimum of f(X) = %XT {2 3} X using conjugate gradient

' 3x, +2x,
The gradient vector \/f(X) =

2x, +3x,

-0.9
Set starting point X(0) = {0 5 }

Iteration 1

F%Ej‘y R D ETRIR g

23
d(0) =-\/Ax(0)) = L'z}

SHETHR 5 [T o(0) = _d(i?gf%xé)m) |

19



2.3 321 [23
aO) =-2312)) 7| /12312]) 7| | 7| =02155

El%ﬂ?@%’l%ﬁx(l) :

1.2

0.4586

~0.9 23 ~0.4044
X(1) = X(0) +a(0)d(0) = | 7 | +02155 =

Iteration 2

S ETE B

axiy - |3 2][F04044] _ [-02957
SXDI= 15 31 04586 | ~ | 05672

VI x(W)'VA(x(1)
Vf (x(0))"'Vf (x(0))

Rl A1) =

1= 1202957 0.56721] 27| 123121 2| < 0.0608
A =120. ' ]0.5672 [_’_’]—1.2 e
S BT [y d(D) -

0.2957 2.3
d(1) = —\/Ax(1)) #B(1)d(0) = {—o 5672} +0.0608 L 2}

_ 04355
—0.4942
B et —d(D)'V/(x(1)) .
SLETH 2, Pt = :
AR o T E (1) AT Ad(D)
[—0.2957} {3 2} {0.4355
a(1)=-[0.4355 -0.4942] /[0.4355 -0.4942]
0.5672 2 3] -0.4942
=0.9281
RIFTEIBSIRIX() -

~0.4043 0.4355
X(2) =x(1) +a(1)d(1) {0.4586 }0'9281 [—0.4942}

[-0.00017 [0
—0.0001| |0

SR B QR

ower- L3

20



P OB XQUEEORIE £ 0, [RIfi' S| f 1= R | i

I=N)

[

As expected, the quadratic function can be minimized in 2 iterations as shown
in Figure 3-6, because the number of dimension of parameter is 2. The results of
iterations are list in Table 3-1. Figure 3-7 and Table 3-2 is the result of same
example but using the gradient descent method with exact step size. The gradient

descent method needs more iterations than conjugate gradient method to converge.

Fig. 3-6. Conjugate gradient method with exact step size.

Table 3-1. Result of conjugate gradient for 2 iterations.

Iteration 1 2
. —0.4044 —0.0001
Updated point (x1,x2) 0.4586 —0.0001
_ ~0.2957 0
Gradient 0.5672 0

21



Fig. 3-7. Gradient descent method with exact step size.

Table 3-2. Result of gradient déscent for 6 iterations.

Iteration 1 2 3 4 5 6
Updated —0.4044 —0.1867 ' —0.0839' |- -0.0387 | —0.0174 | —0.0080
point (x1,x2) | 0.4586 0.0415 0.0952 0.0086 0.0197 0.0018
Gradient —0.2957 -0.4772 .=0.0614_| -0.0990 | —0.0127 | —0.0205

0.5672 —0.2490 0.1177 -0.0517 0.0244 -0.0107
Example 2

Consider the same problem in example 1, we now set the step size o(i) a

constant. Figure 3-8 shows that if the step size is set too small, the convergence is

slow down in gradient descent method. And in conjugate gradient method, it can not

find the minimum in 2 iterations. On the other hand, if the step size is set too large,

oscillation happens in both gradient descent method and conjugate gradient method

as shown in Figure 3-9.

22




w1

(a) The gradient descent method with step size 0.1.

el

(b) The conjugate gradient method with step size 0.1.

Fig. 3-8. The curve in (a) gradient descent and (b) conjugate gradient when step size
1s 0.1.

23



e

(a) The gradient descent method with step size 0.4.

d

(b) The conjugate gradient method with step size 0.4.

Fig. 3-9. The curve in (a) gradient descent and (b) conjugate gradient when step
size 1s 0.4.

") B HERIE L R FTRLHET BT R )
LN PSR BTN EOR R E"if”ifmﬁlﬁffﬁi'ﬁﬂ R
JED VPR NI B - | dteration fUHR o o PRSP Y T G-9)FTH
Bl R RERSERE I £ TR RD R gt SR FFI
IraiNE T A [Eﬁlf R o~ Jﬂ?f? T n % iteration(n EY iR CTY

24



& (NI 0 teration F[EE n IR R [ £ 39?%3“ EEVEIRIE R (Hagan,
Neural Network Design, page 12-18, [2]) » F|#&&4F fHFH I9HE 3 o R U [REFER

|'—I o

3.2 Back-Propagation with Conjugate Gradient Method

Conjugate gradient method is one of the numerical optimization techniques and
can be used to train MLP networks. The algorithm that describes how the conjugate
gradient method is used to train MLP networks is called conjugate gradient
back-propagation (CGBP). CGBP is a batch mode algorithm (Hagan, Neural
Network Design, page 12-18, [2]), as the gradient is computed after the entire
training set has been presented to the network. 0[[%‘(3-10)5’?—? > — i %Fgﬁlfiﬁefﬁﬁ%‘,
O ) W R )

W = [Wiiy oy Wigit1), Whjs -+ » wk(,-+1)]T
s R IR S SR PR 1 kL e Ve~ &
LIPS e O pVREE N i = s Lgisds,. 5, and k=1, L., Ko i Jo
= K TR R S

Input layer Hidden layer Output layer
Weight w;; between Weight wy; between
input layer and hidden layer hidden layer and output layer

Fig. 3-10. MLP network

The training process is to minimize the error function E iteratively, and E is the

network error over the entire training set:

25



K

: z z (dy — ynk)

(3-26)
n=1 k=I
TR OB > KRLE RS R OB du Sy ) BIRLD P STn
# rﬂ"wﬁ STk AR T 00 L ﬂ%ﬁ"ﬁﬁt L

o i

= f(net,) ° net, %F g AT T o AT f(net)—

— hactivation

function * 1937 P[I ELAEE R PR SRR fIpvaaigl

_ OE
97 w
FI JE-{‘ETJ’J‘ j_: [ﬂ E«L s 57 Hliﬁi}qﬁéﬁi—?% E*L ° q:ﬁj/\ﬁ%df ;F}U@ F[ |
:?rﬁﬁ?“i/m :
8y == 2Ly = ,0f (et ), (3-27)
SRR E > FS
8= _%Z{[ Z(dnk — Vi )f '(netnk )ij ]f '(netnj )ym} (3'28)

AR G A ISR 1

o HRUEFRRE (9 DA
BERE o PR RS N WOl >V BT RS IR d(0)
RLEIRN R B )
d(0) = -g(0) (3-29)
RIFPREE fLRLIAT T po 2

W(rt1) =w() +a (Hd(@)

(3-30)
d(t+1) = -g(#+1)+ B (++1)d(?)

(3-31)
fol 5 R PpAE R E AE T R (B a S SRV FTE S
BbEt PR [ Y R T SRR

9()'9(1)
B(t)y=—1 2=~ 3-32
O~ gengeD =52

Pt a ?Eﬁ’?%flﬁ%@ﬁ?ﬁ?ﬁ%’ ~ HTEEL_F:’}T‘N iteration FI}’H If! update HEE [fIfiY Fl[”*" )

Hmfwaﬁa:a RO T LT VI N T R S S

R TR R ) (A e RO R T [ B

26



3.2.1 Golden Section Search
RS ] P “ljf[[ﬁ (iR > 57— [RGB ] 1 (Interval
Location) - “J’H“#fﬂc?p%* I Lo > $5h b A | IS G R - 23
[ ERERE [ETH ] (Interval Reduction) » 4/ ifh Ui i~ + B¢ 5 o e
o AR TR CEPORSRE BRIl P ARV AT Tk R £ 5
r,Ll?ik 2] -
A. Interval Location.
DPIRI3-1 1) YR = 9805 5= flca > X0 Xe > i Xa <xp < Xe [
2 f(xa) > f(x0) <f(xe) o BT [Xa, Xc] /R ~atty A@ o fill e iy
%’l@ﬁf‘,@ﬁf’gﬂ [Xa, Xl [ FJRUIEAERARAY T (2] I0G-11)F - <
wF RS~ (W &R PO Bl f (o) > B EHETE AR Wl RS e (1
O RO TR el Eej gl S (x2) - FEFHF T YR (3 Y B RS
T IR S () » PSRRI, S U E R T
T PP R 1 = TR TR SR 1 L) = flifilioce ~ s v
Ao BhH] [X2, X4] ;\'HTE‘E",’?'J‘?H%‘(3-1la)?EEifJEaFE?J [Xa, Xc]> F*E%Féﬂdiqiﬁ
(A 1 > TR g Tt 5 P SR o By | 1 i A B ] [ X,
Xo] FORL [X6, Xe]

f)

(a) (b)

Fig. 3-11. Interval location.

27



P LB IR O

Algorithm 3-2: I'J G ik 4% > &S & F’?Eﬂf{@\%f@’f T I T ]
Input: [k /== B RS X
Output: “IJH’ET]J il Fra T fi]

Stepl: F% Xsart = X1
FRMERT R R e p RS
X2= X1 + ¢
X3= X1 +2¢
mc=4¢
SN £ (0) ~ f(x) % f(x)
Step2: WHILE ( f'(x1) > f(x2) AND f(x2) < f(x3) Trv)

Td%l W va“é

S (a)=f(x2) (R FrEet f(x2))
S (x2)= f(x3) (&L £ (xs))
X1=X> CRIFR AR
X2=X3 (RiFHE=Rx2)
X3 = Xewr +inc (PR )

T FIFHEETE S (xs)

mec= 2 X inc
END
Step3: ﬁE‘HEEﬁF [x1, X3]° iﬁjﬂiiﬁ%ﬁd

Example
PPN )= Repy s i o s ™ Rhpre f (x) =2x° —3x+1
R i ﬁﬁ”ﬁﬁ@?ﬁj']‘ il ] °§%@ﬁfif§§"gfxl —
0> = {# Matlab Toolbox JFJ@FF‘E?@ , ?ﬁ{é@‘% . I%JT I REpEREE e = 0.01 ©
Tl Al 32 BT3RO (3-3)H1. > 7 teration 6 fi J]ﬁ = S el A o 52
FF o iRl = (RS £ () > £ () [ 2 f(x2) < S (x3) > e poadil B
i [x1, Xx3]=1[0.32,1.28] qiéﬂ[(?) 12)Fr= o

28



Table 3-3. Computation process of interval location.

Iteration X1 X2 X3 f(x) f(x2) f(x3)
0 0 0.01 0.02 1 0.97 0.94
1 0.01 0.02 0.04 0.97 0.94 0.88
2 0.02 0.04 0.08 0.94 0.88 0.77
3 0.04 0.08 0.16 0.88 0.77 0.57
4 0.08 0.16 0.32 0.77 0.57 0.24
5 0.16 0.32 0.64 0.57 0.24 -0.10
6 0.32 0.64 1.28 0.24 -0.10 0.43
Fo

251

20F

151

10F

=0.32

B. Interval Reduction.

- VA G BAR [Xa, Xe] WEEN T BRI N B
@[ Uiﬁﬂjﬁi* CREES Y
f T R T R R et ?Mﬁ*ﬂ b

,J\Jfgﬁ:«]s;{ijj [P [EFHE
T L £ T I -

Fig. 3-12. Result of interval location.

Ehio % ﬁﬁ?\ﬁﬁﬁa

T T S

Xa “‘:,’-ixl [/F IEIJELE:

S (x2)

29

[Xa, X2] F5RL [X1, Xc]-

S 002 S Xe V[ BRLEE o R Pl PSR f(xl)‘j’

Fi 1R Ay ] Rk O ATk fe] PIRI(3-13) -




I Qe > f (oe) o BT o0 2V PSR PR X o 1] X2 30 FERo it [ L
Py L, Xe] 0PI HEC PRIG-1)F > G () < f () o JIE xS
FOE PTRxe > )X 2V PO BB RS R Y [Xa, X2]

T

X

Fig. 3-13. Minimum occurs in interval ~ Fig. 3-14. Minimum occurs in interval
[ X1, Xc]. [Xa, X2].

P R PR X e o I G-15) - R
PIBAEED [0, 1] P [Xa, Xe]3 Maiib] A xa 2 xi fORRBEE xo %)) Xe OMREE

Ol > AL -

X1— Xa —
Xc— Xa
bIIH ] 2 R 0 ] 202 [FOBHEEE Xa 2] e OBESIOES > <UTERL -
X2—Xi =z = 1_2r (3_33)
Xc— Xa

R W APV kL [Xa, Xo] > SFRERL (X0, Xe ] TP
RESTSP FTEVI IRL [, Xe ] P 53 K PUR IR R ATV [0, Xe]

Hio X2, xi] PURAEE (X, Xe] RERVESf i 1 SRR VB E] [ Xa, Xe]
=~

e [x1, Xa] fURAEZE [Xa, Xe] HHE"“J’%%:
z r
=_=7 3-34
I-r 1 ( :
P 250 (3-33)2(3-34) » i BECRIL
1-2r _
1-r

= 1-3r+r=0

30



= r= ~0.382

3-5
2

TR X ::[J Xa pﬁf’ﬂ?ﬁ%ﬁtﬂi{p& il [ Xa, Xc] F|€j[:“~l’® r i, BL{#F[J [H‘\}\'%LCH IIF]WJ
[ ISR 0 2 2 OB L AL

X1=Xa+1(Xc— Xa)
X2=Xc-¥(Xe— Xa)

P AR A1 {0 A B IESE - 03 Ry R BT
= WRLEE (3P Rl B L ORIV (R AR DPIRB-15)7 > [Xa, e ]
FREIE B ] > o0 X KRR 0 IR 00 ) o BRSO X 2 e fUFIE
BV HHIRLETHEAE T B SIS ALY £~ T iteration [1 > BfPEIR— [
P REETR S [T DRV SRER O - R e ﬁITUL—TU RS
TER R PIYE Te B W dteration 1 FE wr[[ﬁi '}?PET FrEedE o A
FIURf BRI P T ERUR 9 10382 = 0618 i« Aft[ i FIF3PH TIR(3-16)7Fr
o FEE(3-16a)f 1 pliif‘%ﬁ%%ﬁm e () > f(x2) > ﬂﬂ“%b@ rg%&;v
FEHi e PTRVIR IR AT [0, X3 J S e TR AR e E?Hgﬁl(?)-mb) e
J(x2)> f (x) > Pl Be g BefiBaiffEs (X0, x2] [ Rcs -
IIG-160)F7 = HHIE fE) ) - x }H%’ﬁm;}ﬁ, 1
B o[Xs, X2]°

— s

Fig. 3-15. Two initial internal points.

31



Fig. 3-16. Interval reduction.

PPN ERE £ 7?*U?¢lliﬁ4§ﬁiﬁ%4 » EUPIEL ] [Xa, Xe] SRASEHT R H
BREFFH SIS A tol 27 &0 PG ] IAVEARIRTIES - B8 S 0t | B
L LR g ] B EJHI A [14] 0 [HG-17) LA ¢

Algorithm 3-3: ﬁeﬂiizs.}#*ﬂgrf 97T ;E"m“
Input: @ﬂF[Eﬁ FEIJ [ a, XC]
FrEe f

Output: [/ [y | i o X

32



Step 1: F%Eh [AIFEES tol.
r=0.382
F%xl = Xa+ 1 (Xc— Xa)
X2=Xc-1(Xc— Xa)
A ETER R S (0) = f(x2)
Step 2: WHILE (Xc — Xa ) > tol
IF f(x) < f(x2)
S )= 1(x)
Xc= X2
X2= X1
X1=Xa+r(Xc— Xa)
Compute f (XI)
ELSE
S(x)=f(x2)
Xa = X1
X1=X2
X2 = Xe - 1(Xe —Xa)
Compute f (xz)
END
END

Xa+ Xc
2

Step 3:3’@?6[ Xm = ’ ?Fﬁﬂ 1 e

33



1. &% accuracy tolerance tol
o r=10.382
i o= Xa+ 7 (xc—Xa)
X2=Xe-F(Xc—Xa)

SRR (o) BT £ (xa)
!

.WHILE ( X, - x, )= tol
IF Flxn < Fx2)

=]

Fixz) = f(xy
Xe =022
Xa=MQa

X1=Xa+ ¥ (Xe— Xa)
Compute f{m)
ELSE
Jix) = fxy)
La=X1
L1= Xz
X2= e - P(Zec— Xa)
Cotmpute J (X2)
END
END

Y

3 *ﬁ:blh | m = Icz-zl-Ic

Fig. 3-17. Flowchart of Golden Section Search.

Example

PINIERG L ] A SRR SRR 50 I A5 e
Nl f(x)=2x*-3x+1> @i[ﬁ@h f]EL [0.32, 1.28] " [AMatlab
Toolbox I ¥4 1 (Y Wk RS 10l 0.0005 » JEXTibA: (321 FTHH3EH 411
(3-4)F=- » |’ ') 355 ¥ iteration 16 EI(’JEﬁ foe > Bk [Xa, Xc]=1[0.7498,0.7503] > =I

34



SEE AR R o PO R 2 R T R =

Table 3-4. Computation process of Golden Section Search.

Iteration Xa Xe Xi X2 f(x1) f(x2)
0 0.32 1.28 0.6867 0.9133 -0.1170 -0.0717
1 0.32 0.9133 0.5466 0.6867 -0.0423 -0.1170
2 0.5466 0.9133 0.6867 0.7732 -0.1170 -0.1239
3 0.6867 0.9133 0.7732 0.8267 -0.1239 -0.1132
4 0.6867 0.8267 0.7402 0.7732 -0.1248 -0.1239
5 0.6867 0.7732 0.7198 0.7402 -0.1232 -0.1248
6 0.7198 0.7732 0.7402 0.7528 -0.1248 -0.1250
7 0.7402 0.7732 0.7528 0.7606 -0.1250 -0.1248
8 0.7402 0.7606 07480 0.7528 -0.1250 -0.1250
9 0.7402 0.7528 0,7450 0.7480 -0.1250 -0.1250
10 0.7450 0.7528 0.7480 0.7498 -0.1250 -0.1250
11 0.7480 0.7528 047498 0.7510 -0.1250 -0.1250
12 0.7480 0.7510 0.7491 0.7498 -0.1250 -0.1250
13 0.7491 0.7510 0.7498 0.7503 -0.1250 -0.1250
14 0.7491 0.7503 0.7496 0.7498 -0.1250 -0.1250
15 0.7496 0.7503 0.7498 0.7500 -0.1250 -0.1250
16 0.7498 0.7503 0.7500 0.7501 -0.1250 -0.1250

3.2.2 Training Process Using Conjugate Gradient Method
) RO IR T S RO ET » R hR
AEE RO  JERLTE 50— - iteration 1 FIARIFH RIS I R] > SREF G
R lp) > S5 RIRIFORRE [ & > FR fRsm Y LA H??‘(3-29)
FG-3DFHETH S o [ RUFHOREE [IFI B I £ 50 I T -
HRER I 2 50 KR ATRIGERRAI VBRI P = T Rl |y
15 S T E DA E iy J@gllﬁ[ﬂ El o B[ Juﬂf@?;i (L T PR T IR w ] F'
s T RTAEE S R TR B(w) - 35 RLET BT~ REPUAEEE RS [l > =2



B~ RIS BB e o S E TP ) d o o IERLE T E(wred)fV i -
AGAIST T *“ﬁ R FHTE B(w+2ed) » SERLIN TSR ST 41 [FOTHEES ]

*%jﬂ*lﬁ RERTN = AR ng%&waHAed) DR 2 e
RGPS R PR SR A BT S PRI 1 S RRL B

PRI A TR A LT R rilH‘} [W+0lad, W+0led] 7
RAIRIES Y SR ORI ) IR b R
LS B I 1T IROREE IR W S Y d - 155
o FHESRAVRBET T B - 0 AR PR TIEGW+ a ) 5 fyd TR T 1
I ERRER IR £ TR > 35 R R B P T A -

Algorithm 3-4: ", & 5 iﬂii PO R A AR i &
Input: @KIF’}E&FHJ [W+0Lad W+ 0lcd ]

IO R w Sy d

AER PR PR E (272 3-26)
Output: R IFrUREE (i £l

Step 1: %ﬂgﬁ%@ tol.
& r=0.382
% ol = Ola+ 7(0le — Ola)
o2 =0c-r(0c—0aa)
it BTG FRARE(W + a 1) E(W + a »d)
Step 2: WHILE (0O.c — Qla ) > tol
IF E(w+a d) <E(W+a,d)
E(w+a,d)=Ew+qa d)
Oc=0a>
d2=a1
oL = 0la+ 7(Ole — Ola)
Compute E(w+ ¢ 1d)
ELSE
E(w+ad)=E(w+a,d)
Qa=a1
d1=A2
Ol = (X,c—l"((lc—Ota)
Compute E(w + ¢ »d)
END

36



END

Step3: Wa = Qa+ Qe

2

> gt R P AR ET i E wtad

o T

PIPS I HATG R0 (R LR 7 AR el poa R A - [ (3-18)

AT -

Algorithm 3-5: il [-H 8 (Y [ i 7 R st
Input: Ffs I w1 @ﬁ?“'qj

PG PR E P E RS error
Output: "t 5 A MEET ffl

Step 1: P%mdex t=0, '] WEE A AT T=0
?7{3’ stopping error || & fg A A fL gl

A A PR T [y B (0)
Step 2: ffay * 7 bR A
T pUVE 1B 9(0) -
EffE Vet o EL PRI

1
g = —ﬁg[ (dy = y) S (et )y, ]

SRR IR [P0 2

8= _% Z {[ Z (= yu)f '(net, )Wk/]f '(netnj)yni}

Step 3: ﬂfﬁ ﬁf’j H

[Ft=0

d(0) = -g(0)
ELSE

S0y 90'90

g(t-1)"g(z-1)

d(®) = -9() + p(nd(z-1)
END

Step 4: FUKE ORI U BIWOEIRS 00 » 71 2

37

TR iR



FOMBE ikt 5 SR T ISR RS BB ] (o, o] FF ]
PYE VR AR (] Ehw(o) i'H%E'*'Jié’_JLEFH[Hd(t) nil”*“*ﬂ"tlpﬁaﬁdm
B[] P FEE a (OPHESKAVREE [fIRIE - T B AR R PR TR E(W()
+a(nd() =l e
Step 5: iy PrituREE fifpI&! -
w(tl) = w() +a (9)d(0)
Step 6: fili%[I') ™ 2 5Bl error » ' RS -

N K

1
=ﬁ22(dk yk)

n=1 k=1
Step 7: Y[HN error ’[ %= stopping error ﬁ‘/?{ T =lZ[E A e Pl - F\[
Flei s - 4
Step 8: IF #+1 = n,, (moh LB S MR 7 (R AURERD)
=5 W(0) = W)

[
EyE
ELSE

r%t:wrl
END
T=T+1

Repeat by going to step 2

38



. 7% index 1= 0, BUTHURAAE T=0
3% stopping error and maximal iteration
Given initial w(0)

2. f AFRARAS, LLRG TR g(0):

SHLHRALTL, T
8y == 2Ly =2, f (et ), ]

i@ HLT, (2

£:= —%Z{[ > (=3, (et w1 '(nern,,-)ym}
v
3. B

IFt=0
d(0) = -g(0)

ELSE .
o) - 9090

g(-1)"g(z-1)

d(?) = -g(1) + f(nd(z-1)
END

v
4. FRIER H ATARE EEAIE ) Sow () BRI el d (7)), o o
B3 ENE R A R R BT ME B e B DAE T
TENABRIHRAEE T [ a o, o o, Fe P EME )
BW(OIRE JTE0d(), ARG FRREE A, T2 H)
a (DREBERR A RE SR (E A &, (IRt Ey
Ew()+ a(Hd()) e/ IME

v
5. R E

w(r+1) =w(n) +a()d(1)

v
6. ST S B E:

A

+ 8.IFt+1=n,
7. PSR EVMR stopping ELSE
error & T Tl AR H ?
END
T=T+1

Set w(0) = w(z+1)
Setr=0

Setr=1¢+1

Fig. 3-18. Flowchart of CGBP algorithm to train MLP network.

39




4. Experiments on Well Logging Inversion

We use the well logging datasets in general MLP network and higher-order
feature neural network that is trained by gradient descent method and conjugate
gradient method respectively. From section 4.2 to section 4.5, the used learning rule
is gradient descent method. In section 4.6, the used learning rule is conjugate
gradient method. The input to neural network is the conductivity, which is the
inverse of combined synthetic apparent resistivity, and the inverted true formation
conductivity is the network output. The total number of well logging dataset is 31
and each of them contains 200 input/output pairs. The depth is from 490 feet to
589.5 feet, and data is recorded every 0.5 feet. Three of the datasets are shown in
Figure 4-1.

We do experiments with Matlab ® v7.1, using the personal computer with
single Intel ® 1.8 GHz processor and512 ' Mb of memory. For each experiment, we
use 30 datasets as the training set to tnainithe network;, and the remaining 1 dataset is
used to evaluate the performance 'of trained network=in each trial. After 31 trials,
average these 31 testing results as the experimental /performance. The performance
in each trial is evaluated by comparing the real outputs that are inverted by network
and the desired outputs of testing dataset, soO we use the mean absolute error (MAE)
to evaluate the performance of a trained network.

1 N
MAE = WZ‘ |d, -y, |
where N is the number of features, N = 200, d; and y; is the desired output and the
real output of the i-th node.

— — —input — — —input
desired output

desired output

0.8

0.6

L L L L L L L L L ) 0 L L L L L L L L L )
9190 500 510 520 530 540 550 560 570 580 590 490 500 510 520 530 540 550 560 570 580 590

(a) Dataset number 6. (b) Dataset number 16.

40



0 L L L L L L L L L ,
490 500 510 520 530 540 550 560 570 580 590

(c) Dataset number 31.

Fig. 4-1. Three samples of well logging datasets.

4.1 Data Pre-processing

A data normalization process is carried out in pre-processing phase. In our
experiments, the data is normalized to range [0.1, 0.9]. After testing, the testing
value is then reversed back to the original;data range. Supposed the largest value in
dataset is denoted as M, the smallest value.is denoted as N, then arbitrary value x
that in range [N, M] can be transformed to x* that in range [a, b] by

X=[(x-N)(b=a)/ (M=N)]+a
and is reversed back to the original range [N,M] by
y=[(y-a)(M-N)/(bsa)yl+N

4.2 Determination of the Stopping Error

In this section, we compare the network performance with different stopping
errors. The architecture of MLP network we used is 200-400-200 (not include bias).
The learning rate is set to 0.1, the momentum parameter is set to 0.9, and the
maximal iteration is set to 10,000. To decrease the impact of the initial weight, we
repeat 15 trials for each testing case. In each trial, 30 datasets are used for training
and 1 dataset is used for testing.

First, the used stopping errors are set to 0.000005, 0.00001 and 0.000015
respectively. The testing result shows that the mean absolute error of network when
stopping error is set to 0.000005 is the smallest one, however, the training time is
apparently longer. On the other hand, the difference of training time between the
network using stopping error of 0.00001 and 0.000015 is smaller but the difference

of mean absolute is about 2.48%, so we consider the stopping error of 0.00001 is

41



appropriate. The testing result is shown in Table 4-1(a). Second, we compare the
network performance using the stopping error around 0.00001, which range from
0.000008 to 0.000012. The testing result is shown in Table 4-1(b). There is no
significant difference about absolute error between them. By considering the mean

absolute error and the training time, we choose the stopping error of 0.00001.

Table 4-1. The network performance using different stopping errors.

(a) The used stopping error of 0.000005, 0.00001, and 0.000015.

Stopping error Avg. of MAE Avg. iterations Avg. of training time
(Sec.)
0.000005 0.096507 2,565 8,134
0.000010 0.116438 1,658 4,467
0.000015 0.141254 1,159 3,710

(b) The used stopping error from 0.000008 to 0.000012.

Stopping error Avg. of MAE Avg. iterations Avg. of training time
(Sec.)
0.000008 0.118764 2,243 6,487
0.000009 0.120594 2,016 5,461
0.000010 0.116438 1,658 4,467
0.000011 0.128648 1,562 4,665
0.000012 0.127716 1,348 4,250

4.3 Determination of the Number of Input Nodes
A. MLP Network with 200 Input and Output Nodes

In the network architecture of 200-400-200, the number of connection weights
of such a network is 160,600 (201x400+401x200, including bias), and divergence is
happened in our experiment sometimes. One of the experiments that successfully
achieve the convergence is shown in Figure 4-2. In that experiment we use dataset
number 1 to number 30 as the training datasets, and number 31 as the testing dataset.
Figure 4-2(a) shows the figure of well logging dataset umber 31, including the
inputs and the desired outputs. Figure 4-2(b) shows the MSE curve in training, and
Figure 4-2(c) shows the testing result, which the solid line is the desired outputs and

the dotted line is the real outputs. The number of training iterations in this

42




experiment is 3,379, the CPU time is 5,853 seconds, and the mean absolute error is
0.0895. One can see that the fitting result is not well, so we will try to increase the

number of training pattern to improve the network performance in next section.

desired output . 6
— — —input /
0.8} | (

0.6

0.4} [ 1 | 2

0.2t v J \ I \
/ \ \ 1 \

— -~ ~ -

N

0 L L L L L L L L L , L L L L L L L
490 500 510 520 530 540 550 560 570 580 590 0 200 400 600 800 1000 1200

(a) Original well logging dataset 31. (b) MSE curve in training.

desired output

1l
— — —real output N I~
I

08} ‘)

0.6

0.4

0 L L L L L L L L L ,
490 500 510 520 530 540 550 560 570 580 590

(c) Testing result.

Fig. 4-2. Testing result of MLP network with 200 input nodes.

B. Network with Smaller Number of Input and Output
Nodes

In order to increase the number of training pattern and the convergence rate, we
use the smaller network by grouping the input features of each dataset. The number
of input nodes of network is set to 10, 20, 40, 100 and 200. Figure 4-3 is an example
that the number of input nodes is 10. We use the features from the 1*' to 10™ as the
first input pattern, and then use the 11" to 20™ features as the second input pattern.
In this way all of the features in each dataset can be processed. In this case, the
number of training pattern becomes 20 for each dataset and then the total number of

training patterns becomes 600 (20x30 datasets).

43



To evaluate the MLP network performance of different number of input nodes,
31 trials for each network are done. The learning rate is set to 0.1, the momentum
parameter is 0.9, the maximal number of iterations is 10,000, and the stopping error
is set to 0.00001. The number of hidden nodes of each MLP network is 20, 40, 80,
200, and 400 respectively. Table 4-2 and Figure 4-4 show the experimental results
of each MLP network. The MLP network with 10 input nodes has the smallest

average of mean absolute error.

1 2 10 LI 191 200

X

i: 1 2 10 il 191 e 200

Fig. 4-3. MLP network with smaller number of input nodes.

Table 4-2. Experimental results of each kind of MLP network.

Network size Num. of Avg. of MAE Avg. Avg. training
training patterns iterations time (sec.)
10-20-10 600 0.002612 1,986 2,887
20-40-20 300 0.003592 1,553 2,355
40-80-40 150 0.007378 3,230 3,465
100-200-100 60 0.061248 3,605 4,618
200-400-200 30 0.123413 1,723 4,745

44



0.14 r
0.12

0.1
0.08
0.06
0.04
0.02

Average of MAE

10 20 40 100 200

Number of input nodes

Fig. 4-4. Average performance with different number of input nodes.

4.4 Determination of the MLP Network Parameters
A. Learning Rate Determination

One of the important parameters to MLP network performance is the learning
rate. The learning rate determines the speed of training. In general, a larger learning
rate generates more weight change while adjusting the connection weight, but may
result in the divergence because of.escillation. A smaller learning rate, on the other
hand, generates a smaller weight adjusting and tesults in slow training speed. We
use the network with 10 input nodes, 20 hidden nodes, and 10 output nodes to test
with the different learning rate The stoppingerror is set to 10”, the maximal
number of iteration is 10,000, and the momentum parameter is set to 1-77, where 7
denotes the learning rate. 31 trials are done for average performance of each
learning rate. The testing result is shown in Table 4-3 and plot in Figure 4-5. The
MLP network with learning rate 0.6 generates the smallest average of mean absolute

error in our experiments.

Table 4-3. MLP network performance with different learning rate.

Network size . Num. of Learning rate Avg. of MAE | Smallest MAE
training patterns (1)
600 0.1 0.002649 0.001685
600 0.2 0.002804 0.001898
600 0.3 0.002774 0.001910
600 0.4 0.002873 0.001671
10-20-10 600 0.5 0.002806 0.001882
600 0.6 0.002508 0.001584
600 0.7 0.003255 0.002096
600 0.8 0.003184 0.002418
600 0.9 0.004117 0.002302

45



0.005 1
0.004
0.003
0.002
0.001

Average of MAE

01 02 03 04 05 06 07 08 09

Learning rate

Fig. 4-5. Mean absolute error in MLP networks with different learning rate.

B. Number of Hidden Nodes Determination

For neural network architecture design, the MLP network size is usually
dependent on different problem. In our experiment, the number of nodes in the input
and the output layer is determined:in advance; however, the choice of the number of
nodes in hidden layer is not determined. A number of techniques have been
developed to help selecting the ‘appropriate number of nodes in hidden layer. One
method is called pruning method:[15]" The pruning method starts with a trained
network with large number of hidden ‘modes and then tries to remove some of the
redundant hidden nodes. This involves computing a saliency measure of each
hidden node. A saliency measure is the importance of a hidden node to the network.
A low saliency means that the hidden node has low influence to the network
performance, and then can be removed. In this study, we adopt the pruning method
called Unit Selection Algorithm (USA) that was proposed by Messer et al. [16] to
search for the appropriate number of nodes in hidden layer.

The algorithm to test saliency needs two datasets: a training dataset D, and a
verification dataset D,.,. We must specify a mean absolute error level E,; that we are
ready to accept on the verification dataset.

The unit selection algorithm then proceeds as follows. The flowchart is shown
in Figure 4-6.

Algorithm 4-1: Unit selection algorithm to prune MLP network.
Input: Training datasets and verification datasets.

Output: Pruned MLP network.

46



Step 1: Set error level E,,.
Step 2: Construct a large MLP network with /4 hidden nodes and train until the mean
absolute error on training dataset is less than an error threshold.

Step 3: Calculate the saliency of each hidden node S;, i =1, ..., A.

n( I+1)

Si: Z (W/I)Z / n( I+1)
j=1

where S; is the saliency of node i in hidden layer /, wj; is the weight

connecting node i in hidden layer / to the node ; in the next layer (/+1), n""
is the number of nodes in layer (/+1). Figure 4-7 shows layer / and layer /+1
of the MLP network.

Step 4: Find the node that has the smallest saliency and remove it, and set the
current number of hidden nodes 7 =4 — 1.

Step 5: Retrain the network for N, iterations and compute the mean absolute error
E.., on verification dataset.

Step 6: If E,., > E,,;, algorithm stops, else; go to/step 3.
Step 7:seth=h+ 1.

In step 6, we compare E,. and error level E;;. If E,. is larger than E,;, the
algorithm stops, otherwise, repeat by going to step 3. In step 7, the node that just
removed in step 4 must be restored, so we set 4 = 4 + 1. The reason is that E,,, will
increase as more nodes are removed, so the optimal number of hidden nodes is
chosen at the point just before E,.. exceeds the error level that we are ready to

accept.

Inputs . * Outputs

Layer (/) Layer (/+1)

Neuron Index : i J

Fig. 4-6. The MLP network.

47



In our experiments, we construct a MLP network with 10 input nodes and 10
output nodes. Since the algorithm starts from a large network, we use 20 hidden
nodes. The used learning rule is gradient descent method, the learning rate is 0.6,
and the momentum parameter is 0.4. The mean absolute error level E,; that we are
ready to accept is set to 0.005 for all experiments. Initially we train the MLP
network until the mean absolute error on training dataset is less than 0.003. Then
after each hidden node removal, the network is retrained for 10 iterations. Training
datasets are 16 out of the total 31 datasets, and the remaining 15 datasets are used
for verification. We repeat 20 experiments to find the average number of hidden
nodes. Table 4-4 shows the results of 20 experiments, and the average number of
hidden nodes is 11.8.

Then we compare the network performance between the original MLP network
(20 hidden nodes) and the MLP network pruned by the algorithm (12 hidden nodes).
31 trials are done for each network. Themnumber of input nodes is 10, the stopping
error is set to 10, the learning rate'is 0.65and the momentum parameter is 0.4. The
testing results are shown in Table 4-5. The size of MLP network that pruned by
USA algorithm is smaller but still keeps the same performance level. However, the
used training time is different. A"smaller-size network not only saves the required
memory but also saves the training time. The suggested number of hidden nodes is

1.2 times of the number of input nodes for the experiments.

48



1. Set error level E,,

v

2. Construct MLP network with % hidden nodes,
and train until the mean absolute error on D,, is less
than an error threshold

3. Calculate the saliency of each hidden node, S,
i=1, -, h

A

4. Remove the hidden node with smallest saliency,
andseth=h-1

5. Retrain the network for N, iterations, and
compute the E,,,

— Mg "
Yes
7.Seth=h+1

Fig. 4-7. Flowchart of USA algorithm.

Table 4-4. Number of hidden nodes by USA algorithm.

Hidden nodes by USA algorithm in {12, 14, 11, 9, 10, 16, 14, 13, 10, 11, 13, 16,
20 experiments 13,12,8,12,9,10, 12, 11.
Average 11.8

Table 4-5. Comparison of MLP network performance between full network and the
network that pruned by USA algorithm.

Network | Number of Avg. of Smallest Avg.
size training MAE MAE training time
patterns (Sec.)
Full 10-20-10 600 0.002972 0.001904 2,454
network
USA 10-12-10 600 0.003008 0.002065 2,105

49




C. Number of Hidden Layers Determination

We use the second hidden layer and test the MLP networks with different
number of nodes in the second hidden layer. 31 trials are done for each MLP
network, and the number of training datasets is 30 for each trial The network
parameters are the same as used in the previous experiments that the learning rate is
0.6, the momentum parameter is 0.4, and the stopping error is 10”. Table 4-6 shows
the experimental results of network with one and two hidden layers. For both the
average of mean absolute error and the smallest error cases, no significant difference
can be observed. Adding one more hidden layer does not provide apparent

improvement, so we use one hidden layer in our experiments.

Table 4-6. Comparison of MLP network performance with one and two

hidden layers.

Hidden Network | Number of Avg. of Smallest Avg.

layer(s) size training MAE MAE training
patterns time (sec.)

ggzrhldden 10-12-10 | 600 0.003008 | 0.002065 | 2,105

Two 10-12-3-10 600 0.003169 0.002258 2,602

hidden 10-12-4-10 600 0.003304 0.002323 1,957

layers 10-12-5-10 600 07003312 0.002257 2,751

10-12-6-10 600 0.003128 0.002487 2,446

10-12-7-10 600 0.003058 0.002037 1,954

4.5 Higher-Order Feature Multi-Layer Neural Net
(HOML)

In order to enhance the non-linear mapping of network, input features can be
expanded to a larger space through the transformation of non-linear functions. In
this study, we expand the input features using the higher-order function which from
second-order function to 5"™-order function. Using these functions we design 5
higher-order feature neural nets: HOML-1, HOML-2, HOML-3, HOML-4, and
HOML-5, and are listed in Table 4-7. HOML-1 is actually the general MLP network
with no higher-order features. All of these 5 network types are trained by gradient
descent method, and the number of hidden nodes is 1.2 times of the number of input
nodes. Figure 4-8 is an example that shows the HOML-2 that expands input features

using second-order function.

50



Table 4-7. Five different HOML types.

Network type Features (include bias) Network size
HOML-1 1+x 10-12-10
HOML-2 1+x+x 20-24-10
HOML-3 l+x+x+x 30-36-10
HOML-4 l+x+xX2+x+x" 40-48-10
HOML-5 l+x+x+x+x+x° 50-60-10

1 2.4 10 oo 191 =«

200

1O O

.
.’.Q

B

o

Pt “ ¥ features

. i <+—— 20 input nodes
|

(0 OOl -0l O

1 2...10 e 191 -

.0

200

Fig. 4-8. HOML-2 with original and expanded features.

A. Comparison of Performance of Network that without
Hidden Layer and that with One Hidden Layer

In this section, we use five higher-order feature neural nets with single layer:
HOSL-1, HOSL-2, HOSL-3, HOSL-4, and HOSL-5 that listed in Table 4-8. Figure
4-9 is an example that shows the HOSL-2 that expands input features using
second-order function. We test the inverse ability of HOSL networks for well
logging data and compare the performance with the HOML networks. Both HOSL
and HOML networks use gradient descent method as learning rule. The learning rate
is 0.6, the momentum parameter is 0.4, and the stopping error is 0.00001. The

maximum iterations are set to 10,000. Repeat 10 trials for each experiment and the

51




number of training datasets is 30 for each trial. The dataset number to test the
trained network for these 10 trials is 1, 5, 10, 12, 15, 17, 20, 23, 25, and 30
respectively. Each experimental result is the average of 10 trials and is shown in
Table 4-9. The testing results show that higher-order feature neural nets without
hidden layers can be used for well logging data inversion. However, from the results
we found:

First, the average training time of each HOSL network is long since they failed
to achieve the training goal and stop training at maximum iterations. However,
HOSL-3, 4, and 5 have significant improvement in mean absolute error. The reason
is that the networks become more non-linear with the usage of higher-order features.

Second, for each network type, the average training time of HOML is shorter
than that of HOSL. This is because the HOML networks are more non-linear than
HOSL networks with the usage of hidden layer and converged before reaching the
maximal iterations. Figure 4-10 shows the comparison of MSE curve between
HOML-5 and HOSL-5, the used testing dataset is number 30. HOSL-5 is failed to
achieve the training goal and reaches the.maximal iterations. The training time of
HOML-5 is shorter, and the training ‘goal is achieved at 1,189 iterations. From the
above discussion we found that'the network with one hidden layer performs better
than that without hidden layer, s6:we use the one-hidden layer network to test the

well logging data inversion.

Table 4-8. Five different HOSL types.

Network type Features (include bias) Network size
HOSL-1 1+x 10-10
HOSL-2 1+x+x° 20-10
HOSL-3 l+x+xX°+x 30-10
HOSL-4 l+x+x+x+x" 40-10
HOSL-5 l+x+xX+x°+x+x 50-10

52



Table 4-9. Testing results of HOSL and HOML.

Network size|Num. Of training| Avg. of MAE |Avg. training time
patterns (Sec.)
HOSL-1 10-10 600 0.023098 9,042
HOSL-2 20-10 600 0.022937 9,068
HOSL-3 30-10 600 0.009271 9,354
HOSL-4 40-10 600 0.009274 9,867
HOSL-5 50-10 600 0.009272 9,915
HOML-1 10-12-10 600 0.003033 1,882
HOML-2 20-24-10 600 0.002926 1,268
HOML-3 30-36-10 600 0.002879 1,121
HOML-4 40-48-10 600 0.002865 1,043
HOML-5 50-60-10 600 0.002860 1,231
1 2...10 191 ««v 200
O OO0 OO 1O O---O

,,,,,,,,,,,,,,,

. i =t—— 10 output nodes
|

I
.| <4— 20 input nodes

x::[0 O---0][0 O---0)--

1. 1 2...10

191 . 200

Fig. 4-9. HOSL-2 with original and expanded features.

53




fffff MSE curve of HOSL-5
MSE cune of HOML-5

MSE

OF

| | | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
lteration

Fig. 4-10. Comparison of MSE curye between HOML-5 and HOSL-5.

B. Experiments of HOML with One Hidden Layer

We use the networks from"HOML-1to HOML-5 with one hidden layer. The
learning rate is 0.6, the momentum parameter 1s 0:4; and the stopping error is 107
31 trials are done for average performance for'each network type. The testing results
are shown in Table 4-10, and the average of mean absolute error of each network is
plotted in Figure 4-11. From the experimental results, we make the following two
discoveries:

First, the HOML-1 that without expanding the input features yields the largest
average of mean absolute error. The average of mean absolute error is smaller with
adding higher-order features on the input features (from HOML-2 to HOML-5). It is
obvious that the performance of HOML is better than general MLP network. Figure
4-12 is an example that shows the testing result of HOML-5 on dataset number 23.

Second, the average training time of HOML-2 to HOML-5 that with
higher-order features is shorter. In 31 trials of each HOML network, we plot the
training time for each testing dataset in Figure 4-13. In order to emphasize the
training time for HOML-1, a solid line connects the nodes. In Figure 4-13, most of
the training times of HOML-1 are longest among 5 network types. The networks

with higher-order features have more input nodes than HOML-1; however, they

54



have the shorter average training time (also shown in average training time column

of Table 4-10). The reason is that the output of networks with higher-order features

can fit the desired output more non-linear, the convergence becomes more quickly.

Table 4-10. Testing result of each type of HOML.

Network size| Avg. of MAE | Smallest MAE| Avg. training
time (sec.)
HOML-1 10-12-10 0.003008 0.002065 2,105
HOML-2 20-24-10 0.002514 0.002149 1,804
HOML-3 30-36-10 0.002496 0.002040 1,483
HOML-4 40-48-10 0.002501 0.002075 1,633
HOML-5 50-60-10 0.002407 0.001912 1,663
0.0032
0.003
§ 0.0028
E 0.0026
5 0.0024
tI AR RN
0.002 : : : :
HONN-I ~ HONN-2 ~ HONN-3 ~ HONN4  HONN-5
Network type
Fig. 4-11. Average of mean absoluteerrorin different HOML networks.

0.8+

0.6

- — — — desired output
real output

0
490

500 510

520

530 540 550

560 570 580

590

Fig. 4-12. Testing result of HOML-5 on dataset number 23.

55



4200 1 —— HONN-1

3200 1 B HONN-2

Training time (Sec.)

200 f Y] al ¥ A HONN-3
A A

1200 [ Q" ﬁ%ﬁ . + HONN-4

X HONN-5

200

0 5 10 15 20 25 30

Index of testing dataset

Fig. 4-13. Training time for each dataset in 5 HOML networks.

4.6 Higher-Order Feature Multi-Layer Neural Net with
Conjugate Gradient (HOCG)

In this section, we use neural networks that are trained by conjugate gradient
method instead of the gradient descent method,and also expand the input features
using the higher-order functions® which' from second-order function to 5"-order
function. We design 5 higher=order featuré neural® nets using these functions:
HOCG-1, HOCG-2, HOCG-3, HOCG=4,-and-HOCG-5, and are listed in Table 4-11.
These experiments are run with toolbox of Matlab ® v7.1 which use function
newff(...) to create a neural network and assign the search routine as Golden Section

Search (srchgol).

A. Evaluation of HOCG Networks

Table 4-12 shows the testing result of each network type. The stopping error is
set to 107 for all experiments. Each network performance is evaluated by the
average of mean absolute errors of 31 trials that achieve the training goal. From
Table 4-10 and 4-12, the experimental results show that the neural networks trained
by conjugate gradient method have better performance than those trained by
gradient descent method. The average of mean absolute error of HOCG network is
smaller and the average training time is shorter than corresponding HOML. Table
4-13 shows the comparison of average of mean absolute error in network
performance between HOML and HOCG. Among all these 5 network types,
HOCG-3 yields the largest improvement (16.1%) than the others.

56



Table 4-11. Five different HOCG types.

Network type Features (include bias) Network size
HOCG-1 1+x 10-12-10
HOCG-2 1 +x+x° 20-24-10
HOCG-3 l+x+x*+x 30-36-10
HOCG-4 l+x+xX+xX+x" 40-48-10
HOCG-5 l+x+xX+xX+x"+x° 50-60-10

Table 4-12. Comparison of each type of HOCG.

Network size | Avg. of MAE | Smallest MAE | Avg. training
time (sec.)
HOCG-1 10-12-10 0.002861 0.002326 558
HOCG-2 20-24-10 0.002475 0.002018 529
HOCG-3 30-36-10 0.002095 0.001824 616
HOCG-4 40-48-10 0.002369 0.001792 395
HOCG-5 50-60-10 0.002154 0.001765 408

Table 4-13. Comparison of average of mean absolute error between

HOML and HOCG.
Network Avg. of MAE Network Avg. of MAE | Improvement
HOML-1 0.003008 HOCG-1 0.002861 4.9%
HOML-2 0.002514 HOCG-2 0.002475 1.5%
HOML-3 0.002496 HOCG-3 0.002095 16.1%
HOML-4 0.002501 HOCG-4 0.002369 5.3%
HOML-5 0.002407 HOCG-5 0.002154 10.5%

B. Discussion of Divergence

The training process can be observed by monitoring the MSE curve. Here we

(1) The initial weight values.

summarize two of the reasons that may cause the learning unsuccessfully.

Gradient-based method starts the learning procedure from initial connection

goal at iteration 1,556 in this trial.

57

weights, then update iteratively with the selected search direction and the step size.
Since the error surface of neural network has numerous local minima, improper
initial connection weights may cause the learning unsuccessfully. Figure 4-14 shows
one of the testing cases in HOCG-5 that tests on dataset number 10. The error can
not go down after large iterations. On the contrary, Figure 4-15 shows the result of

another testing of HOCG-5 on the same testing dataset, and achieves the training




Errar
=]

&
0 . . . . . . . . . )
i} 1000 2000 3000 4000 5000 BOOO 7000 B8O00 9000 10000
10000 lterations

Fig. 4-14. Testing case of HOCG-5 on dataset number 10 that does
not achieve the training goal.

Error

1 1 1
0 500 1000 1500
1656 lterations

Fig. 4-15. Testing case of HOCG-5 on dataset number 10 that
achieves the training goal.

(2) The maximal number of iterations.

The learning procedure may stop if the maximal number of iterations is not set
to large enough. Figure 4-16 shows one of the test cases in HOCG-2 that tests on
dataset number 12. The training converges at iteration 3,315, but no effective
training is observed before about 2,600 iterations. Obviously, the training will fail to
achieve the training goal if the maximal number of iterations is set to less than 2,600

in this trial.

58



Error
=]

1 L 1 1 1 L
0 500 1000 1500 2000 2500 3000
3315 lterations

Fig. 4-16. Testing case of HOCG-2 on dataset number 12.

4.7 Experiments on Reversing the Input and Output of
Well Logging Data
A. Determine the Suitable.Number of Input Nodes of

Network

In order to generate the synthetic training data from the desired true formation
conductivity, we reverse the input and'the-output of well logging data. That means
the original input becomes the desired output and the original desired output now
becomes the input. By observing some datasets, such as number 2 and 5 as shown in
Figure 4-17, some data intervals, for example, the depth from 490 to 500 feet in
dataset number 2 and the depth from 540 to 560 feet in dataset number 5 have the
same input features (the dotted line), so a network with short length 10 or 20 input
nodes may not be suitable for training with these datasets. To find the number of
input nodes, we compare the network performance with 10, 20, 40, and 50 input
nodes. 10 experiments are done to get the average performance. The used network
model is HOML-1 that uses the gradient descent method. The stopping error is set
to 0.0005, the learning rate is 0.6, the momentum parameter is 0.4, and the used
testing dataset is number 1, 5, 10, 12, 15, 17, 20, 23, 25, and 30. The number of
training datasets is 30 for each testing. In Table 4-14, HOML-1 with 10 and 20 input
nodes can not converged. In this case, HOML-1 is not able to achieve the training
goal. However, it converged when the number of input nodes is 40 and 50, and the

one with 50 input nodes has better performance, so we use the HOML networks

59



with 50 inputs nodes to do experiments of reversing the input and output of well

logging data.

Table 4-14. Average of mean absolute error with 10, 20, 40, and 50 inputs nodes in

HOML-1.

Number of input nodes Network size Avg. of MAE
10 10-12-10 Diverged
20 20-24-20 Diverged
40 40-48-40 0.02398
50 50-60-50 0.02143

— — — input — — — input
[ output

output

0.8+

0.6

0.4

0 L L L L L L L L L ) 0 L L L L L L L L L )
490 500 510 520 530 540 550 560 570 580 590 490 500 510 520 530 540 550 560 570 580 590

(a) Dataset number 2. (b) Dataset number 5.

Fig. 4-17. Two welljlogging datasets.

B. Experimental Results of HOML and HOCG
From Table 4-13, the HOML-3, 4, 5 and the HOCG-3, 4, 5 have smaller

average of mean absolute error, so we use these three models with 50 input and
output nodes to do the experiments on reversing the input and output of well logging
data. The number of hidden nodes is 1.2 times of the number of input nodes. The
learning rate for HOML is 0.6 and the momentum parameter is 0.4. The stopping
error is set to 0.0005. Table 4-15 and 4-16 show the comparison of average of mean
absolute error and training time of HOML and HOCG respectively.

The testing of HOML-3 on dataset number 10, HOML-4 on dataset number 20,
and HOML-5 on dataset number 30 are shown in Figure 4-18 respectively. From the
testing result of HOML-4 and HOCG-4 in Figure 4-18(b), HOML that trained by
gradient descent method has the better performance than HOCG that trained by

60



conjugate gradient method. However, as shown in Table 4-15, among all three types
we used, the average of mean absolute error of HOCG networks are smaller than
HOML network types. From Table 4-16, for larger-size network (HOML-5 and
HOCG-5), they do not have much difference in the average training time although
the difference of average of mean absolute error between them is significant. On the
other hand, for smaller-size network, they have much more difference in average

training time as HOML-3 and HOCG-3. For small network, conjugate gradient

method has more significant improvement in training time to convergence.

Table 4-15. Average of mean absolute error of HOML and HOCG.

HOML-3 vs. HOML-4 vs. HOML-5 vs.
HOCG-3 HOCG-4 HOCG-5

Network size 150-180-50 200-240-50 250-300-50
HOML 0.01684 0.01965 0.01947
HOCG 0.01507 0.01758 0.01361

Table 4-16. Training time:0f HOMIL . and HOCG in seconds.

HOML-3 vs. HOML-4 vs. HOML-5 vs.
HOCG-3 HOCG-4 HOCG-5
Network size 150-180-50 200-240-50 250-300-50
HOML 3,957 3;864 5,284
HOCG 1,768 2,239 4,729
HOML-3 HOCG-3

0.81

061

— — — desired output
real output

0 L L L L L L L L L ,
490 500 510 520 530 540 550 560 570 580 590

0 L L L L L L L L L )
490 500 510 520 530 540 550 560 570 580 590

On dataset number 10, MAE is 0.01481.

On dataset number 10, MAE is 0.01817.

(a) HOML-3 vs. HOCG-3.

61




HOML-4

HOCG-4

— — — desired output
real output

0 L L L L L L L L L )
490 500 510 520 530 540 550 560 570 580 590

— — — desired output
real output

0 L L L L L L L L L \
490 500 510 520 530 540 550 560 570 580 590

On dataset number 20, MAE is 0.01356.

On dataset number 20, MAE is 0.01569.

(b) HOML-4 vs. HOCG-4.

HOML-5

HOCG-5

— — — desired output
real output

0.8+

0.6

0 L L L L L L L L L |
490 500 510 520 530 540 550 560 570 580 590

— — — desired output
real output

0.8

0.6+

0 L L L L L L L L L )
490 500 510 520 530 540 550 560 570 580 590

On dataset number 30, MAE is 0.02326.

On dataset number 30, MAE is 0.00992.

(c) HOML-5 vs. HOCG-5.
Fig. 4-18. Comparison of network performance of HOML and HOCG.

4.8 Summary

From Table 4-10, 4-12 and 4-15, we summarize the testing performance of

networks and shown in Table 4-17 and Table 4-18. In Table 4-17, each HOCG

network has smaller average of mean absolute error and shorter average training

time than HOML network, which shows that the conjugate gradient method

improves the training efficiency. Also the network with higher-order features has

better performance than general MLP network that using both gradient descent

method and conjugate gradient method, which shows that the proposed higher-order

feature neural nets are more suitable for well logging data inversion. The same




result can be seen in Table 4-18, which shows the comparison of experimental
results of reversing the input and output of well logging data. Moreover, the average
training time of experiments of reversing the input and output of well logging data is
much more than previous normal inverse procedure. One of the reasons is that the
network size is larger because we use 50 input nodes for each higher-order feature
neural net. Another possible reason is that the input features are distributed in the

shape of straight lines as shown in Figure 4-17.

Table 4-17. Comparison of HOML and HOCG in average of mean absolute
error and average training time.

Network size Avg. of MAE Avg. training time (Sec.)
HOML-1 10-12-10 0.003008 2,105
HOCG-1 10-12-10 0.002861 558
HOML-2 20-24-10 0.002514 1,804
HOCG-2 20-24-10 0.002475 529
HOML-3 30-36-10 0.002496 1,483
HOCG-3 30-36-10 0.002095 616
HOML-4 40-48-10 0:002501 1,633
HOCG-4 40-48-10 0.002369 395
HOML-5 50-60-10 0.002407 1,663
HOCG-5 50-60-10 0.002154 408

Table 4-18. Comparison of experimental reésults of reversing the input and
output of well logging data.

Network size Avg. of MAE Avg. training time (Sec.)
HOML-3 | 150-180-50 0.01684 3,957
HOCG-3 | 150-180-50 0.01507 1,768
HOML-4 | 200-240-50 0.01965 3,864
HOCG-4 | 200-240-50 0.01758 2,239
HOML-5 | 250-300-50 0.01947 5,284
HOCG-5 | 250-300-50 0.01361 4,729

63



5. Genetic Algorithm (GA) on Well Logging
Inversion

5.1 Introduction

Genetic algorithm (GA) was investigated by John Holland et al. in 1975 [17]. It
was based on the biological evolution. GA’s learning is a competition among all
chromosomes in population, and treats these chromosomes for the potential
solutions to the target problem. Population consists of a set of chromosomes and a
chromosome consists of a number of genes. The number of individuals in
population is called the population size A chromosome is also called an individual
in GA, and an iteration referred to the GA is called a generation. In each generation,
individuals are operated by genetic algorithm procedure to form the next generation.
The fitness value can be obtained through fitness function and is used to evaluate
each individual. Fitness value can be regarded as a measure of indicating how good
an individual is. The fitness function 1s specifically designed for the different
problem. Through competition the individual with better fitness value has higher
probability to be reproduced and-generates offspring, ih such a way that the solution
will be better and better to the target problem:~GA is:a global search algorithm that
provides chance to avoid getting trapped at local mmimum, and then often treated as
one of the powerful tool to optimization problem. Moreover, GA needs only a
fitness function and does not use the gradient information. Because it is easy to
implement, GA is widely used in many applications. [18]-[19].

The GA process can be summarized as following steps:

(1) Generate the initial population with many individuals.

The GA process starts with an initial population of random chromosomes. A
chromosome consists of one or more genes. The basic way of coding is in binary
format. Figure 5-1 shows a chromosome consists of 3 genes and each gene consist

of 3 bits.

gene 1 gene 2 gene 3

o 1 1, 1 1,00} 1]0

Fig. 5-1. Binary format of an individual with 3 genes.

64



(2) Evaluate the fitness value of each individual.

Each chromosome will then be evaluated by computing its fitness value.
Individuals with the higher fitness value have more chance to generate offspring
during evolution because through competition they have more chance to be
reproduced in reproduction phase.

(3) Termination condition.

Rank the fitness values and find the best individual. The algorithm is terminated
when the best individual meets the desired requirement or the evolution reaches the
maximal number of generations.

(4) Reproduction.

Reproduction is the process for selecting individuals to be reproduced for the
next generation. The methods of roulette wheel selection and tournament selection
can be used to select individuals.

1. Roulette wheel selection.

In roulette wheel selection‘method; thespopulation is viewed as mapping on
a roulette wheel. Each individual is represented by a space that proportionally
corresponds to its fitness value, which means, an-individual with higher fitness
value occupies more space in-the roulette wheel so that has more chance to be
reproduced. For example, the number of individuals of population is N, f; is the
fitness value of individual i, and then the number of individual i to be

reproduced is:

NG S )
2. Tournament selejction.
There are three stages in this reproduction method:
(a) Select two or more individuals.
(b) Reproduce the individual that has the highest fitness value among them.
(c) Repeat step (a) and step (b) until the number of reproduced individuals
is equal to the current population size.
(5) Crossover.
Crossover is the process of exchanging gene information of randomly selected
two individuals by the crossover probability P,, one basic crossover process is the

single point crossover as illustrated in Figure 5-2.

65



crossover point
Parents :

=)
—
=)
N

B

EEEEN ' | - | - BN

Fig. 5-2. Single point crossover from two individuals, each element
of individual is a gene.

(6) Mutation.

Mutation is the process to flip a bit in an individual. The mutation probability P,
decides how many bits will be mutated in population. For example, set mutation
probability of 1% means totally 1% bits in whole population will be flipped.

Reproduction, crossover, and mutation are three major GA operators that used to
produce the new population. A niew genération starts by going to step (2). The

flowchart of genetic algorithm is'shown in Figure 5-3.

1. Generate the initial
population with many
individuals

v

2. Evaluate the fitness
value of each individual

6. Mutation
4

3. Termination
condition ?

4. Reproduction - 5. Crossover

Fig. 5-3. Flowchart of genetic algorithm.

66



5.2 Real-Coded Genetic Algorithm (RCGA)

The difference between the RCGA and GA is the coding format of individuals
[20]. In RCGA, the individuals are directly represented with real number instead of
the binary string. The binary format has the disadvantage in computational cost
because of encode and decode phases. In addition, RCGA deals with continuous
search space without sacrificing numerical precision as the binary format does.
RCGA applies different crossover operator and mutation operator from GA. In order
to do crossover and mutation on real-coded individuals, Michalewicz [21]
introduced the arithmetic crossover and arithmetic mutation.

(1) Arithmetic crossover.

Consider two selected individuals X = {xj, ..., x,} and 'y = {yi, ..., yu} to

produce offspring p and q as shown in Figure 5-4:

pi=h xxi + (1—h) x yi
gi=(1—h) xxi + h x yi
where /; is a uniform random_crossover.parameter.

(2) Arithmetic mutation.

Given an individual X =y, %, ..., Xi5%.., X, )-that is selected to be mutated
and an interval [a;, b;] Where g; and b;-are the lower and upper bound for
gene x;. While doing mutation, a new gene x;’ is uniform randomly selected

from range [a;, b;] to replace the original gene x; and then a new individual

X’ =(x1, X2, ..., Xi, ..., X ) 1s formed.
Parent : Offspring
X1 | X2 e oo Xn h;
P | p2 s Pn
yi | » s Yn -

(a) Offspring p;=/hixx; + (1—A) Xy,

Parent : Offspring

-x] x2 e o o xl’l

9> s qn

Yi | » Vn

(b) Offspring ¢;=(1—1A) xx; + hixy;

Fig. 5-4. Arithmetic crossover.

67



5.3 Experiments on Well Logging Data Inversion

We use the hybrid method that combines neural network and GA to do the well
logging data inversion. In section 5.3.1, we describe how an individual can be used
to represent a neural network. In section 5.3.2, we describe the reason and give
flowchart of the combination of neural network and GA. In section 5.3.3, we do
experiments to evaluate the performance of the hybrid method. In section 5.3.4, we
do experiments on reversing the input and output of well logging data, and section

5.3.5 is the summary of experiments.

5.3.1. Representation of Weights of Neural Network

When applying GA in finding the weight values of neural network, each gene
of individual represents a connection weight of neural network and each individual
forms a neural network. The number of gene of an individual is equal to the total
number of connection weight of a networks For example, there are / input nodes, J
hidden nodes, and K output nodes:in a neusal.network, an individual that represents
the network have L genes, where-L = (I+1)(NH+H(Jt1)(K)). Figure 5-5 shows how an
individual can be used to represent a metwork. The network has 2 input nodes, 3
hidden nodes, and 2 output nodes, the total number of connection weight is
(2+1)(3)+(3+1)(2) = 17. Since each gene represents a connection weight, we can use

an individual that contains 17 genes to represent such a MLP network.

Wp4a | WDB | WDC | WEA Wir | WiG

E— 17 genes B —

Fig. 5-5. A MLP network represented by an individual.

68



5.3.2. Combination of Neural Network and GA

GA offers a way to search for connection weights of MLP networks. However,
GA 1is relatively slow in local search although it is good at global search. The
learning efficiency of GA can be improved by integrating a local search procedure
into the evolution. The local search algorithm could be BP learning algorithm [22].
In our experiment, GA is the main procedure that used to find the connection
weights of MLP network, and in order to improve the learning efficiency of GA, a
BP training using gradient descent is incorporated for N, iterations with the best
individual every Ny GA generations. The fitness function is defined as the inverse of
mean squared error. The algorithm is described as follows, and the flowchart is
shown in Figure 5-6.
Algorithm 5-1: Hybrid method for well logging data inversion.
Input: Well logging datasets and the corresponding desired output values. 30

datasets are used in training and 1 dataset is used in testing.

Output: Mean absolute error using L.tésting dataset.

Step 1: Initialization.
1. Set the stopping error.
2. Set parameters of GA and BP training.
3. Generate the initial population with many individuals, and each individual
forms a network.
Step 2: Input 30 well logging datasets to each individual for training, and do genetic
algorithm for one generation.

Step 3: Compute the fitness values of all individuals.
Step 4: Find the best one individual to do BP training that use gradient descent

method for N, iterations.
Step 5: Compute the fitness value of individual that operated in step 4.
If the fitness value of best one individual is less than the stopping error or
the computation reaches the maximal number of generations, then algorithm
stops.
Otherwise, repeat by going to step 2.

Step 6: Input 1 testing well logging dataset, and compute the mean absolute error.

69



1. Set the stopping error, parameters of
GA ad BP training, and generate initial
population with many individuals.
Each individual forims a network.

v

2. Input training datasets, and do
genetic algorithm procedure

Y

3. Compute the fitness value of all
individuals

v

4. Find the best one individual to do BP
training that use gradient descent
method for N, iterations.

5. If the fitness value of best
individual is less than the stopping
error or the computation reaches
the maximal number of
generations 7

6. Input the testing dataset, and compute
the mean absolute error.

Fig. 5-6. Flowchart of the hybrid method on well logging inversion.

5.3.3 Evaluation of Hybrid Neural Network and GA

Global search procedure such as GA is usually computationally expensive, and
it would be better to employ local search procedure, so we do BP training with the
best individual after each GA generation. The local search procedure here is used to
refine the network with the best individual, not to find the final optimal weight with

that individual, so the number of iterations is not necessary to be large, and we set

70



Np = 10. The number of individual in population is 30, and the maximal number of
generations is 10,000. The crossover rate and the mutation rate are set to 0.8 and
0.001 respectively. The crossover parameter is randomly selected in range [0, 1],
and the mutation range is set to range [-1.0, 1.0]. The used reproduction method is
tournament selection. We use hybrid method of HOML-1 with GA to HOML-5 with
GA, the learning rate in HOML networks is 0.6 and the momentum parameter is 0.4.
The stopping error is set to 10™. 10 experiments are done for each hybrid method to
get the average performance. The used testing datasets are 1, 5, 10, 12, 15, 17, 20,
23, 25, and 30 respectively, and the number of training datasets is 30. The testing
result is shown in Table 5-1.

Table 5-1 shows the testing result of different architecture of hybrid methods.
In our experiments, adding more higher-order terms in input features do not provide
more improvement in reducing the mean absolute error. Among these 5 hybrid
methods, HOML-3 with GA yields the smallest average of mean absolute error. By
comparing Table 5-1 and the testing results:ef HOML as shown in Table 4-10, no
significant difference about averageé of mean.absolute error can be found. However,
the average training time of hybrid'method is' much more than that of HOML.
Figure 5-7 shows two of test cases. Figure 5-7(a) shows the test case of HOML-2
with GA on dataset number 10, and it*1s the test'case that has the smallest mean
absolute error among 10 trials. Figure‘5-7(b)ishows the test case of HOML-3 with
GA on dataset number 20, and it is the test case that has the smallest mean absolute
error among 10 trials.

Table 5-1. Testing results of HOML with GA.

Network Num. of Avg. of Smallest Avg.
size training MAE MAE training
patterns time (sec.)
HOML-1
with GA 10-12-10 600 0.002927 0.002768 9,568
HOML-2
with GA 20-24-10 600 0.002492 0.002207 9,218
HOML-3
with GA 30-36-10 600 0.002349 0.002008 13,521
H.OML_4 40-48-10 600 0.002729 0.002461 14,254
with GA
HOML-5
with GA 50-60-10 600 0.002658 0.002125 14,168

71




- - - - desired output
real output

0.8+

0.6+

0
490 500 510 520 530 540 550 560 570 580 590

(a) Testing dataset on number 10 with the mean absolute error
0.002507 using HOML-2 with GA.

- - — - desired output
real output

0.8+

0.6+

0
490 500 510 520 530 540 550 560 570 580 590

(b) Testing dataset on number 20 with the mean absolute error
0.002208 using HOML-3 with GA.

Fig. 5-7. Testing results in HOML-2 with GA and HOML-3 with GA.

5.3.4 Experiments on Reversing the Input and Output of

Well Logging Data
We use HOML-3 with GA to HOML-5 with GA to do the experiments on

72



reversing the input and output of well logging data. The number of hidden nodes is

1.2 times of the number of input nodes. The learning rate for BP training is 0.6, the

momentum parameter is 0.4, and the stopping error is set to 0.0005. 10 trials are

done for experiment of each network type with dataset number 1, 5, 10, 12, 15, 17,

20, 23, 25, and 30 as the testing dataset. The number of training datasets is 30. The

testing results are shown in Table 5-2. Figure 5-8 shows the tests of HOML-3 with

GA to HOML-5 with GA on testing dataset number 15, 25, and 30 respectively.

According to the testing results in Table 5-2, the average of mean absolute error in

HOML-5 with GA is small. There is no significant difference about the average of
mean absolute error in HOML-3 with GA and HOML-4 with GA.

Table 5-2. Average performance of three hybrid methods.

Network Num. of Avg. of Smallest Avg.
size training MAE MAE training
patterns time (sec.)
HOML-3
with GA 150-180-50 120 0.02237 0.01861 7,628
HOML-4
with GA 200-240-50 120 0.02452 0.01749 9,205
HOML-5
with GA 250-300-50 120 0.01364 0.00983 11,458

Original dataset

Experimental result

0.8+

0.6

0.4

0.2+

desired output

— — — input

L L L L L L
490 500 510 520 530 540 550

L L L )
560 570 580 590

desired output

— — — real output

0 I I I I I I I I I )
490 500 510 520 530 540 550 560 570 580 590

On dataset 15, MAE is 0.021522.

(a) Testing result on dataset number 15 using HOML-3 with GA.

73




Original dataset Experimental result

desired output desired output

— — — real output

0 L L L L L L L L L ] 0 L L L L L L L L L ]
490 500 510 520 530 540 550 560 570 580 590 490 500 510 520 530 540 550 560 570 580 590

On dataset 25, MAE is 0.027113.

(b) Testing result on dataset number 25 using HOML-4 with GA.

Original dataset Experimental result
desired output desired output
1 — — —input i — — — real output

0.8 0.8
0.6 0.6f
0.4 0.4t

— <7

« |

| ~ - i

I I I I I I I I I ) 0 L L L L L L I I I ]
%90 500 510 520 530 540 550 560 570 580 590 490 500 510 520 530 540 550 560 570 580 590

On dataset 30, MAE is 0.011405.

(c) Testing result on dataset number 30 using HOML-5 with GA.
Fig. 5-8. Testing results of HOML with GA.

5.3.5 Summary

Table 5-3 and Table 5-4 are summaries of the testing performance in Chapter 4
and Chapter 5. Table 5-3 shows the average of mean absolute error and the average
training time of HOML-1 to HOML-5, HOCG-1 to HOCG-5, and HOML-1 with
GA to HOML-5 with GA. From our testing results we make two conclusions. First,
hybrid method that combines higher-order feature neural network and GA is not
always converging to a better solution than higher-order feature neural network does.
In HOML-4 with GA and HOML-5 with GA, the average of mean absolute error is
slightly larger than that of HOML network. Second, as compared with
gradient-based optimization technique that used by HOML and HOCG, GA requires

74




much more training time to accomplish the training goal.

Table 5-4 shows the experimental results of reversing the input and output of
well logging data of HOML-3 to HOML-5, HOCG-3 to HOCG-5, and HOML-3
with GA to HOML-5 with GA. In comparing the average of mean absolute error,
HOCG-5 is the smallest one. And for average training time, HOCG-3 is the shortest
one, which shows the HOCG network has best performance among all of these

experiments.

Table 5-3. Comparison of HOML and HOCG in average of mean absolute error
and average training time.

Network Avg. of MAE Avg. training time (Sec.)
HOML-1 0.003008 2,105
HOCG-1 0.002861 558
HOML-1 with GA 0.002927 9,568
HOML-2 0.002514 1,804
HOCG-2 0.002475 529
HOML-2 with GA 0.002492 9,218
HOML-3 0.002496 1,483
HOCG-3 0.002095 616
HOML-3 with GA 0.002349 13,521
HOML-4 0.002501 1,633
HOCG-4 0.002369 395
HOML-4 with GA 0.002729 14,254
HOML-5 0.002407 1,663
HOCG-5 0.002154 408
HOML-5 with GA 0.002658 14,168

Table 5-4. Comparison of experimental results of reversing the input and
output of well logging data.

Network Avg. of MAE Avg. training time

(Sec.)
HOML-3 0.01684 3,957
HOCG-3 0.01507 1,768
HOML-3 with GA 0.02237 7,628
HOML-4 0.01965 3,864
HOCG-4 0.01758 2,239
HOML-4 with GA 0.02452 9,205
HOML-5 0.01947 5,284
HOCG-5 0.01361 4,729
HOML-5 with GA 0.01364 11,458

75



6. Experiments on Real Field Logs

In order to verify the effectiveness of the well logging data inversion using our
proposed higher-order feature neural nets, an inversion of real field logs are
presented. In our study, the used real field log covers depth that from 5,577.5 to
6,682 feet. There are 2 points per foot so we have total 2,210 points in field logs.

The experimental results that listed in Table 5-3 show that the network type
HOCG-3 has the best inverse performance, the mean absolute error can be down to
about 0.209%, so we use HOCG-3 to invert the real field logs. The number of input
nodes is 10 (not include bias) and the number of output nodes is 10. Using
second-order and third-order transformation function expands input features, so the
number of hidden nodes is 36. The maximal number of iterations is 10,000, and the
stopping error is set to 10™. In each trial, we use 31 synthetic combined well logging
datasets to training the network. After training, real field logs are transformed to
conductivity and then presented to _thestrained network to get the inverted
conductivity. The conductivity is: thengconverted back to the true formation
resistivity. In order to lower the impact of initial weights on final output, we test 20
trials and compute the average inverted conductivity. Figure 6-1 shows two samples
of MSE curve of these 20 trials while i training..The average training time is 469
seconds and the inverted result is ‘shown from Figure 6-2 to Figure 6-6 that
represents an input/output mapping. The input is the field logs and the output is the
inverted true formation resistivity. To view the result more detail, we split the
inverted true formation resistivity into 4 sections and list in Figure 6-2 to Figure 6-5,
and Figure 6-6 is the result of the whole field logs. The experimental result shows
that our proposed higher-order feature neural net is an effective alternative to

process the well logging data inversion.

L L L L L
L L L L L 0 200 400 600 800 1000
1) 200 400 600 G600 1000 1180 Iterations

1181 herations

Fig. 6-1. Two samples of MSE curve while in training.

76



Inverted true formation resistivities
— — — Field logs

10

Resistivity (ohm-m)

1 1
5600 5650 5700 5750
Depth (feet)

Fig. 6-2. The inverted true formation resistivity between 5,577.5 to 5,827 feet.

Inverted true formation resistivities
— — — Field logs

Resistivity (ohm-m)

L L
5850 5900 5950 6000 6050
Depth (feet)

Fig. 6-3. The inverted true formation resistivity between 5,827.5 to 6,077 feet.

Inverted true formation resistivities
— — — Field logs

10" -

Resistivity (ohm-m)

1 1 1
6100 6150 6200 6250 6300
Depth (feet)

Fig. 6-4. The inverted true formation resistivity between 6,077.5 to 6,327 feet.

77



Resistivity (ohm-m)

10

Inverted true formation resistivities
— — — Field logs

1 1 1 1
6350 6400 6450 6500 6550 6600 6650
Depth (feet)

Fig. 6-5. The inverted true formation resistivity between 6,327.5 to 6,682 feet.

Resistivity (ohm-m)

Resistivity (ohm-m)

1 — Field log
L I I I I I I I I I I
5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600
Depth (feet)
(a) The field log.

L Inverted true formation resistivity
L | | | | | | | | |
5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600

Depth (feet)

(b) The inverted true formation resistivity.

78



Resistivity (ohm-m)

Inverted true formation resistivity
10t - — — —Field log
i
b
)
i I
' \| ! 1Kl i
i Aty
I I i
I o I i ( ‘r ol
I
) I :‘ ' : I ! } [ I ) i
T (- Y ] M ‘v g )
EHIE 1 I I
1 i ) |
iRl - | r 0y ‘ !
| I I I
| L1 f 1 “ I
R LA Nl \‘ oy
. »J I ! | |
I g
AN
10°
1 1 1 1 1 1 1 1 1 1
5700 5800 5900 6000 6100 6200 6300 6400 6500 6600
Depth (feet)

(c) Graph of field log and inverted true formation resistivity.

Fig. 6-6. The field logs and the inverted true formation resistivity.

79



7. Conclusions

In this study, we have adopted the MLP network and a hybrid method that
combines MLP network and GA to apply on the well logging data inversion. MLP
network is trained by gradient descent method and conjugate gradient method. We
also expand the input features in MLP network to design 5 higher-order feature
neural nets, and the testing result of higher-order feature neural nets is compared to
the testing result of general MLP network.

In order to get more training pattern and better convergence result, each well
logging dataset is split into sections. The number of features in each section is
corresponding to the number of input nodes of MLP network. We have tested the
MLP networks with 10, 20, 40, 100, and 200 input nodes respectively. Experimental
results show that the network with 10 input nodes has the smallest average of mean
absolute error. Besides, the performance of BP algorithm depends on the parameters
and topology of neural networks, so we. test:the different learning rate, the number
of hidden nodes, and the number of hidden layers. As our experiments, the
one-hidden layer network with learning rate of 0.6, momentum parameter of 0.4,
and the number of hidden nodes of 1.2 times the nuthber of input nodes have the
best performance. We then design 5 +higher-order: feature neural nets using the
gradient descent method and conjugate gradient method. The experimental results
show that the higher-order feature neural nets always have better performance than
general MLP network that without higher-order features. The average training time
is shorter and the mean absolute error is smaller. The network HOCG-3 that
expands input features using second-order function and third-order function
provides the largest improvement among all of 5 higher-order feature neural nets.
The testing results presented show that our proposed higher-order feature neural nets
using the conjugate gradient method is an effective alternative to well logging data
inversion problem.

We also do the experiments on reversing the input and output of well logging
data. This work is divided into two parts. First, we examine the inverse ability of
MLP network using different number of input nodes with gradient descent method.
The MLP network with 10 and 20 input nodes can not converged. However, the
MLP network with 40 and 50 input nodes converged, and the MLP network with 50

input nodes has better performance, so we use 50 input nodes for HOML and

80



HOCG. Second, we do experiments on HOML and HOCG and compare the
network performance between them. Experimental results show that the average
performance of HOCG is better than HOML. Also we notice that the experiments
on reversing the input and output of well logging data are more time-consuming
than previous normal well logging data inversion tests.

In addition to the higher-order feature neural nets, we use the hybrid method
that combines the neural network that using gradient descent and genetic algorithm.
According to our testing result, it was shown that the performance of hybrid method
has better performance than general MLP networks. Among the higher-order feature
neural nets, HOML-3 with GA is the best combination that has the smallest average
of mean absolute error. However, a disadvantage of using genetic algorithm in
combination with neural network is the large computation cost required.

According to our experimental results, the network HOCG-3 has smallest
average of mean absolute error, so we use HOCG-3 to do the well logging inversion
which using the real field logs. The experimental result shows that our proposed
higher-order feature neural net is afi effective.alternative to process the well logging

data inversion.

ACKNOWLEDGEMENT

The author is grateful to Prof. Liang C. Shen for the well logging datasets, this

paper will not be accomplished without these valuable datasets.

81



References

[1] P. Lippmann, “An Introduction to Computing with Neural Nets,” IEEE ASSP
Magazine Volume 4, Issue 2, Part 1, pp. 4-22, April 1987.

[2] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design, PWS
Publishing Co., Boston, 1996.

[3] L. S. Martin, D. Chen, and T. Hagiwara, “Neural Network Inversion of Array
Induction Logging Data for Dipping Beds,” SPWLA 42™ Annual Logging
Symposium, Paper U1-U11, June 17, 2001.

[4] Z. H. Tan, “Hybrid Evolutionary Approach for Designing Neural Networks for
Classification,” Electronics Letters, Volume 40, Issue 15, pp. 955-957, 22 July
2004.

[51 W. Kinnebrock, “Accelerating the standard backpropagation method using a

genetic approach,” Neurocomput., Volume 6, pp. 583-588, 1994.

[6] C. P. Erick and K. Chandrika, “Evolving Neural Networks for the Classification
of Galaxies,” Proceedings ofsythe Genetic and Evolutionary Computation
Conference, pp. 1019-1026,,2002.

[7] R. A. Dilruba, N. Chowdhuty, F. F. Liza;and C: K. Karmakar, “Data Pattern
Recognition Using Neural Network with 'Back-Propagation Training,”
International Conference on Electrical and"Computer Engineering (ICECE), pp.
451-455, Dec. 2006.

[8] R. Hecht-Nielsen, “Theory of the Backpropagation Neural Network,”
International Joint Conference on Neural Networks (IJCNN), Volume 1, pp.

593-605, 18-22 June 1989.

[9] N. Qian, “On the momentum term in gradient descent learning algorithms,”

Neural Networks, Volume 12, Number 1, pp. 145-151, January 1999.

[10] M. Towsey, D. Alpsan, and L. Sztriha, “Training A Neural Network with
Conjugate Gradient Methods,” IEEE International Conference on Neural
Networks, Volume 1, pp. 373-378, 27 Nov.-1 Dec. 1995.

[11] D. Goryn and M. Kaveh, “Conjugate Gradient Learning Algorithms for
Multilayer Perceptrons,” Proceedings of the Circuits and Systems 3
Midwest Symposium, Volume 2, pp. 736-739, 14-16 Aug. 1989.

[12] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain,” School of Computer Science Carnegie Mellon University
Pittsburgh, Aug. 4, 1994.

[13] C. Charalambous, “Conjugate Gradient Algorithm for Efficient Training of

Artificial Neural Networks,” IEE Proceedings on Circuits, Devices and

82



Systems, Volume 139, Issue 3, pp. 301-310, June 1992.

[14] C. H. Chen and H. Lai, “An Empirical Study of the Gradient Descent and the
Conjugate Gradient Backpropagation Neural Networks,” OCEANS °92.
‘Mastering the Oceans Through Technology’. Proceedings Volume 1, pp.
132-135, October 26-29, 1992.

[15] R. Reed, “Pruning Algorithms-A Survey,” IEEE Transactions on Neural
Networks, Volume 4, Issue 5, pp. 740-747, Sept. 1993.

[16] K. Messer and J. Kittler, “Fast Unit Selection Algorithm for Neural Network
Design,” 15th International Conference on Pattern Recognition, Volume 2, pp.
981-984, 3-7 Sept. 2000.

[17] D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and Computing,
Volume 4, Number 2, pp. 65-85, June 1994.

[18] J. Stender, “Introduction to Genetic Algorithms,” Applications of Genetic
Algorithms, IEE Colloquium, pp. 1/1-1/4, 15 Mar 1994.

[19] Y. Sasaki, H. Garis, and P. W. Box, “Genetic Neural Networks for Image
Classification,” IEEE International on Geoscience and Remote Sensing
Symposium (IGARSS), Volume 6,pp. 3522-3524, 21-25 July 2003.

[20] D. X. Gone and X. G. Ruan; “A Neural: Networks for Real Coded Genetic
Algorithm,” IEEE International Confetence on Robotics, Intelligent Systems
and signal Processing, Voluime 2, pp. 874-879, 8-13 Oct. 2003.

[21] Z. Michalewicz, “Evolutionaty “Computation Techniques for Nonlinear
Programming Problems,” Intetnational Transactions in Operational Research,
Volume 1, Number 2, pp. 223-240, 1994.

[22] X. Yao, “Evolving artificial Neural Networks,” Proceedings of the IEEE,
Volume 87, Number 9, pp. 1423-1447, Sep. 1999.

83



	Neural Networks and Genetic Algorithms for Well Logging Inversion
	Neural Networks and Genetic Algorithms for Well Logging Inversion 

	Master of Science
	Degree Program of Computer Science
	National Chiao Tung University   ABSTRACT 
	ACKNOWLEDGEMENT



