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國立交通大學電機資訊學院 資訊學程﹙研究所﹚碩士班 

摘 要       
 

非同步電路有諸多的優點，例如時脈歪斜問題的消除、平均效能的表現、以及低功

率消耗的特性，在在吸引著我們去深入探討這樣特性的電路結構。尤其是低消耗功率的

特性 , 對於現今行動裝置產品而言是非常重要的。 

本篇論文針對 ATMEL 公司 8 位元 RISC 架構的 AVR 微控制器，以非同步電路的方式

將其重新設計與做部分的實現。 

我們採用 Sutherland 的微管線（Micropipeline）架構做為設計基礎，修改成為

雙軌（dual rail）與延遲無關（delay insensitive）的電路設計，將整個非同步處理

器設計結合目前的同步電路工具進行合成 , 並將設計下載至 FPGA 晶片以完成實現。 

我們完成了算術及邏輯運算指令如 ADD、SUB、AND、OR，資料搬移指令如 MOV、LSI，

分支指令如 JMP 等主要的指令，以建構成我們的非同步版本的 AVR 微控制器。 
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ABSTRACT 

There are many advantages which allure us to explore contents of asynchronous circuits 

on asynchronous circuits, such as elimination of clock skew problems, average case 

performance and lower system power consumption. Furthermore, low power consumption is 

one of the most important issues for mobile devices. 

 This thesis focuses on the implementation of an asynchronous Atmel AVR 8-bit RISC 

microcontroller. 

We implement our design with Sutherland’s dual rail DI micropipeline. The whole 

asynchronous AVR microcontroller was synthesized with current synchronous EDA tools, and 

realized with FPGA chip. 

The following instructions were accomplished: arithmetic and logic instructions, such as 

ADD, SUB, AND, OR; data transfer instructions, such as MOV, LDI; branch instructions, such 

as JMP. These instructions were used to comprise our asynchronous AVR microcontroller. 
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Chapter 1 Introduction 
1.1 Motivations 

Because of clock less characteristics, the major advantages of asynchronous logic are 

average case performance and lower power consumption. These advantages that become the 

most important issues for future applications, especially for 3C products are fully being 

suitable for embedded system design. That’s why we designed this asynchronous processor 

core to accommodate the advantages above. 

The instruction set selected is AVR. AVR is a very popular RISC architecture developed 

by Atmel. In fact, AVR and 8051 are popular microcontroller for embedded system. However, 

compared to 8051, AVR has better performance than 8051, almost 12 times faster than the 

8051 in synchronous version. 

After finishing our asynchronous circuits design, we need to simulate our design to 

validate its functionality. We used FPGA chip, a flexible programmable chip, to implement 

our design to make sure it really works. 

 

1.2 Contributions 

    In this thesis, we propose the design and implementation of an asynchronous 

AVR microcontroller. We describe the behavior of AVR instruction by using data dependency 

graph. We also establish several asynchronous FPGA cell libraries in Verilog. Once the design 

methodology established, we can use the same way to survey and implement other 

asynchronous CPU core. Finally, we implement this design into the FPGA chip and confirm 

that the asynchronous design really works. 
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1.3 The organization of this thesis 

In first chapter, we present the motivations and contributions of this research. 

In chapter 2, we give the background of the AVR architecture, the instruction set, the 

asynchronous circuits’ classification, and the limitations of asynchronous circuit 

implementation with synchronous FPGA chip. In chapter 3, we propose the architecture of 

asynchronous AVR microprocessor, design methodology and the existing synchronous tools 

used in our design. In chapter 4, we introduce the testing environment of our design. Chapter 

5 concludes this thesis. 
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Chapter 2 Background 
 

2.1 The AVR architecture 

The AVR microcontroller is a Reduced Instruction Set Computer (RISC) architecture 

designed by Atmel Norway. Its predecessor isμRISC, first developed in a Diploma Thesis at 

NTH (NTNU). This core is a standard 8-bit microcontroller, used widely in Atmel products. 

[7] 

 

2.1.1 The AVR architecture overview 

The AVR architecture has two major advantages. The first of all, it provides a load and 

store multiple instruction to maximize the data throughput. Second, it uses the Harvard 

architecture to improve the instruction execution bandwidth. 

 

AVR registers 

‧Program Counter 

Program Counter can be used as a pointer to the instruction being executed. Most AVR 

instructions are 2 bytes long (one 16-bit word). The PC contains 12 bits in AT90S8515 family. 

With the relative jump and call instructions, the whole 4K address space can be directly 

accessed. 

‧Status register 

Status Register (SREG) storing the ALU operation result and can be referenced by the 

next instruction. SREG is 1 bytes long (one 8-bit), that contains carry, zero, negative, two’s 

complement overflow indicator, condition bit for signed tests instruction set, half carry, 

transfer bit and global interrupt enable/disable indicator. 

‧General purpose register 
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The AVR core has 32 general purpose working registers. All the 32 registers are directly 

connected to the arithmetic logic unit (ALU), allowing two independent registers to be 

accessed in one single instruction. The data communication with two general purpose 

registers can be finished in one instruction. Six of the 32 registers can be used as three 16-bits 

indirect address register pointers for Data Space addressing - enabling efficient address 

calculations. One of the three address pointers is also used as the address pointer for the 

constant table lookup function. These added function registers are the 16-bits X-register, 

Y-register and Z-register. 

‧I/O register 

The I/O memory space contains 64 addresses for CPU peripheral functions for Control 

Registers, Timer/Counters, A/D-converters, and other I/O functions. The I/O Memory can be 

accessed directly. In addition, the AVR uses the Harvard architecture concept that separates 

memories and buses for program and data.  

 

Figure 1 .AVR Memory Maps 
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2.1.2 AVR organization 

Figure 2 shows the organization of AVR [1]. The main components are described as 

followings: 

‧The program counter as described above, used as a pointer to the instruction being  

executed. 

‧32 general purpose registers, which store the temporary results. It has two read ports 

and one write port which can be used to access any register. 

‧The ALU, supports arithmetic and logic functions between registers or between a   

constant and a register. Single-register operations are also executed in the ALU. 

‧The instruction register, the codes are executed with a two stage pipeline. While one 

instruction is being executed, the next one is pre-fetched from the program memory and 

stored here.  

‧The instruction decoder, accepts the instructions from instruction register and issue   

essential control signals to the CPU and peripheral resources.  

‧The RAM used as I/O register space, stack space and other operation purposes. 

 

Figure 2  AVR Organization   
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2.1.3 The AVR instruction set 

AVR employs the load-store architecture, which means that the value will be processed 

inside the registers and the result will be stored into a register. The only operations for 

memory access are LOAD and STORE instructions. 

AVR instruction set categories 

AVR instructions fall into the following four categories: 

‧Arithmetic and logic instructions 

These instructions can only use the value inside the registers for computation. For 

example, an ADD instruction can add two values in two registers and place the result in 

another register. 

‧Data transfer instructions 

These instructions copy memory values into registers or store register values into 

the memory.  

‧Branch instructions 

Branch instructions cause the execution path to switch to a different address.  

‧Bit and bit test instructions 

These instructions can change the register value in bit element or set the status 

register flag content to affect the next instruction executing. 
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2.2 Asynchronous circuits 

Circuit design styles can be classified into two major categories, namely synchronous 

and asynchronous. Synchronous circuits can be simply designed as circuits which are 

sequenced by one or more global, distributed periodic timing signals called clocks. 

Asynchronous circuits use special "Handshaking" protocol to communicate with each other. 

 

2.2.1 Signaling protocol 

Most asynchronous circuit signaling schemes are based on some sorts of protocols 

involving requests which are used to initiate an action and corresponding acknowledgments, 

to signal the completion of that action. These control signals provide all of the necessary 

sequence controls for computational events in the system. Strictly speaking these handshake 

signals are independent of any global system time and are only concerned with the local 

relative temporal relationships between two sub circuits sharing a common interface. 

There are several choices of how these alternating events are encoded into specific wires. [1] 

 

Figure 3  4 phase asynchronous signaling protocol 

 

One common choice is the 4-phase protocol shown in Figure 3. Other names for this 

protocol are also in common use: return to zero (RZ), 4-phase and level signaling. 

In this protocol, 4 transitions (2 on the request and 2 on the acknowledgement) are required to 
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complete a particular event transition. 

4-phase proponents argue that the falling (return to zero) transitions on the request and 

acknowledgement lines do not usually cause performance degradation because falling 

transition can be happened in parallel with other circuit operations. 

The other common choice is 2-cycle signaling shown in Figure 4, also called transition, 

2-phase, or NRZ (non-return to zero) signaling. In this protocol, the waveforms are the same 

as for 4-phase signaling with the exception that every transition on the request wire, both 

falling and rising, indicates a new request. The same is true for transitions on the 

acknowledgement wire. 

 

Figure 4  2 phase asynchronous signaling protocol 

 

2-phase proponents argue that 2-cycle signaling is better on both the power consumption 

and performance standpoints, since every transition represents a meaningful event and no 

transitions or power are consumed in returning to zero, since there is no resetting of the 

handshake link. 

While in principle aspect this is true, it is also important to notice that most 2-phase 

interface implementations require more logic than their 4-phase equivalents. The increasing 

logic complexity may consume more power than that is saved by reducing control transitions. 
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2.2.2 Data encoding 

There are two common choices for how to encode data, one is the use of bundled 

protocol with either 2- or 4-phase signaling [2]. 

In this case, for an n-bit data value to be passed from the sender to the receiver, n+2 

wires will be required (n bits of data, 1 request bit, 1 acknowledgement bit). The constraint of 

this protocol is that the propagation times of the control and data lines are either equal or that 

the control propagates slower than the data signals. If this were not the case, the receiver 

could initiate the requested action with incorrect values. Fig 5 illustrates the procedure. 

 

Figure 5 Two phase bundled data convention 

The common alternative to the bundled data approach is dual rail encoding. In this case, 

data and control signals are not separated onto distinct wire paths. Instead, with the dual-rail 

approach a bit of data is encoded with its own request onto 2 wires. In this case, for an n-bit 

data value, the wire complexity is 2n+1 wire: 2n for the data and the requests plus an 

additional acknowledgement signal. In a four cycle variant of this dual rail protocols, sending 

a bit requires the transition from the idle state to either the valid 0 or valid 1 state and then, 
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after receiving the acknowledgement, it must transition back to the idle state. The 

acknowledgement wire must be reset prior to a subsequence assertion of a valid 0 or 1. 

Dual rail signaling is insensitive to the delays on any wire and therefore is more robust 

while assumptions like the bundling constraint cannot be guaranteed. The receiver will need 

to check for validity of all n-bits before using the data or asserting the acknowledgement. 

    The downside of the dual-rail approach is often the increasing complexity in both wiring 

and logic. 

 

2.2.3 Classes of asynchronous circuits 

Asynchronous circuits can be divided into the following classes [2]. 

A delay-insensitive (DI) circuit is designed to operate correctly regardless of the delays 

on its gates and wires. That is, an unbounded gate and wire delay model is assumed. The 

concept of a delay insensitive circuit grows out of work by Clark and Molnar in the 1960’s on 

Macro modules [16]. The DI systems have been formalized by [10] and [4]. Many practical 

DI circuits can be built if one allows more complex components [11, 12]. A complex 

component is constructed out of several simple gates. 

A quasi-delay-insensitive (quasi-DI or QDI) circuit is delay-insensitive except that 

"isochoric forks" are required [14]. An isochoric forked wire where all branches have exactly 

the same delay. In contrast, in a DI circuit, delays on the different fork branches are 

completely independent. The motivation of QDI circuits is that they are weakest compromise 

to pure delay-insensitivity needed to build practical circuits using simple gates and operators. 

A speed-independent (SI) circuit is the circuit that operates correctly regardless of gate 

delays; wires are assumed to have zero or negligible delay. SI circuits were introduced by 

David Muller in the 1950’s [13]. 

 A self-timed circuit, described by Seitz [2], contains a group of self-timed "elements". 

Each element is contained in an "equipotential region”, where wires have negligible or 

19 



 

well-bounded delay. An element itself maybe is an SI circuit, or a circuit whose correct 

operation relies on use of local timing assumptions. However, no timing assumptions are 

made on the communication between regions; that is, communication between regions is 

delay-insensitive. 

 

2.2.4 Asynchronous circuits’ advantages 

An asynchronous circuit is one in which synchronization is performed without a global 

clock. Asynchronous circuits have several advantages over their synchronous counterparts, 

including [3]: 

#Elimination of clock skew problems 

As system become larger, increasing amounts of design effort is necessary to guarantee 

minimal skew in the arrival time of the clock signal at different parts of the chip. In an 

asynchronous circuit, skew in synchronization signals can be tolerated. 

#Average case performance 

In synchronous systems, the performance is dictated by worst-case conditions. The clock 

period must be set to be long enough to accommodate the slowest operation even though the 

average delay of the operation is often much shorter. In asynchronous circuits, the speed of 

the circuit is allowed to change dynamically, so the performance is governed by the average 

case delay. 

#Lower system power requirements 

Asynchronous circuits reduce synchronization power by no requiring additional clock 

drivers and buffers to limit clock skew. They also automatically power down unused 

components. Finally, asynchronous circuits do not waste power due to spurious transitions. 

#reduced noise 

In a synchronous design, all activity is locked into a very precise frequency. The result is 

nearly all the energy is concentrated in very narrow spectral bands at the clock frequency and 
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its harmonics. Therefore, there is substantial electrical noise at these frequencies. Activity in 

an asynchronous circuit is uncorrelated, resulting in a more distributed noise spectrum and a 

lower peak noise value.  

#Component modularity and reuse 

In an asynchronous system, components can be interfaced without the difficulties 

associated with synchronizing clocks in a synchronous system. 

#Better technology migration potential 

In asynchronous systems, migration of only the more critical system components can 

improve system performance on average, since performance is dependent on only the current 

active path. Also, since many asynchronous systems sense computation completion, 

components with different delays may often be substituted into a system without altering 

other elements or structures. 

#adaptively to processing and environmental variations 

The delay of a VLSI circuit can change with variations in fabrication, temperature and 

power-supply voltage. Synchronous designs have their clock rate set to allow correct 

operation under some allowed variations. Due to asynchronous circuits’ adaptive nature, it 

operates correctly under all variations. 
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2.3 MICROPIPELINE 

Micropipeline was introduced by Sutherland to build asynchronous pipelines [9].        

A micropipeline has alternating computation stages separated by storage elements and control 

circuitry. Sutherland’s approach uses transition-signaling for control along with bundled data 

and employs a "capture-pass" latch as a data storage element; and implementation is 

illustrated in Figure 6. 

 

 

Figure 6. Event controlled storage elements 

 

The data storage element uses two latches side by side and activates them alternately. 

The switches connecting IN to latches change over in response to an event on the Capture line 

while the switch connecting OUT to the latches changes over in response to pass events. 

The capture – pass latch is transparent until an event occurs on its Capture line; this 

causes the latch to hold any data that was at its input line at that time. The Cd event signal 

report the data capture operation has completed, and the OUT represents the captured data. In 

this moment, any data change will have no effect on the OUT value. When the OUT value has 

been consumed, then a subsequent event on the pass control wire will return the latch to its 

transparent state, ready for the next data value and input event. The Pd event signals reports 

the completion of the pass operation. 
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Capture-pass latch structures can be interconnected to form micropipeline using Muller 

C-gates to ensure correct operation of the bundled data protocol; Figure 8 illustrates the 

operation of a micropipeline with 4 stages. A control stage of the pipeline consists of a Muller 

C-element. A C-element with two inputs and one output behaves as follows. If both inputs are 

1, the output is 1; if both inputs are 0, the output is 0. Otherwise, if inputs have different 

values, the output holds its current value. Figure 7 details a Muller C-element and its 

properties. The C-elements in the micropipeline behave similarly, except that each has one 

inverted input.  

 

    Figure 7. Muller C-element and its properties 

 

 Initially, all C-gate outputs are initialized to zero; the inversion is thus necessary to 

"prime" the C-gate for firing on the first event received on R(in). This will cause the first 

stage to capture the data presented at D(in). On completion of the capture, an 

acknowledgement is returned to the sender of D(in) as an event on A(in); the sender can then 

respond with new data on D(in). This acknowledgement is also forwarded to the next stage, 

via a delay, to the C-gate controlling the second capture-pass stage. The delay element 

ensures that data is valid at the second stage prior to the issue of a capture event. 

 The same behavior is repeated at the second stage: On completion of the first stage 

output value captured, an acknowledgement returned to the first stage and reset the latch to its 

transparent stage. Also, the acknowledgement is forwarded to the next stage. This process 
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continues through stages 3 and 4, and a final request appears at R(out). 

Further new data may arrive D(in), can not process until the first stage capture-pass latch 

becomes transparent, the same situation on the second stage, and so on. A(out) 

acknowledgement event from the receiver must be responses that the D(out) has been 

consumed, thus enabling pipeline data to progress continuously. 

 

Figure 8. Micropipeline with 4 stages  

 

2.4 Data dependency graph 

Given an instruction set and hardware resources such as registers and functional units, 

we can specify the behavior of each instruction by using DDG [24]. For high-speed operation, 

the microprocessor should execute as many micro operations as possible in parallel. Naturally, 

a dependency relation between two micro operations may require one micro operation to be 

completed before the other is initiated. DDG can be used to represent such dependency 

relations. DDG is constructed by five types of primitive elements: Oval, Fork, Join, Select and 

Merge. These elements are shown in Figure 9.  
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Figure 9. Five basic elements of data dependency graph and its mapping circuit 
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Chapter 3 Design and implementation 
 

3.1 The asynchronous AVR microcontroller architecture 

According to the analyzing the AVR instruction set, we propose an organization for our 

asynchronous AVR microprocessor. There are four stages in our asynchronous AVR, 

instruction fetch (IF) stage, instruction decode (ID) stage, execution (EX) stage and write 

back (WB) stage. The dot lines represent the acknowledgement event, the coarse lines 

represent request event and the thin lines represent dual-rail data. 

The whole controller process is governed by the control components (Q element) in the 

left side. The motion of the Q element is that, the request event is received in Q element, and 

then a complete 4-phase handshake procedure sends out to accomplish the data transmission.  

Figure 10 illustrates Q element and its procedure. The Q element details are in [15]. 

 

 

Figure 10. Q Element and its procedure 

 

The complete asynchronous AVR microcontroller procedure was introduced below: 

Once the reset signal received in the AVR microcontroller, the internal register content was set 

to zero, and waiting the next request event signal. After receiving the request event, the first 

stage Instruction Fetch stage was activated to accomplish the three sequence procedure 
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below ： 

Once the request event signal received in Q1 control component, Q1 transfers the action 

to the Q1_1 control component, then Q1_1 repeat the same action to transfer request event to 

PC register. The PC register acknowledgement the content value to be the instruction memory 

address signal. The instruction code is then decided from the outside instruction memory 

output dual rail format instruction. After the instruction register received the instruction code, 

it acknowledges Q1_1 element to complete the first procedure in instruction fetch stage. 

The second procedure is that the PC register contents transmit to the NPC register. After the 

NPC register received the PC data, it acknowledges Q1_2 element to complete the second 

procedure in instruction fetch stage. The Q1_3 issues the request event signal to let the NPC 

register and INC register contents transmit to the INC adder to accumulate the PC value. 

Then the new pc value transmits to the PC register to complete the third procedure in 

instruction fetch stage. 

 The procedures in instruction decode stage are described below. Once the request event 

signal received in Q2 control component, Q2 sends the request event signal to instruction 

register to show the instruction codes. After the decoder receiving the instruction code, it 

sends the control lines to the corresponding peripheral resources, such as register files to fetch 

the register contents. And it sends some related decode information, such as opcode sub-index 

and destination register index to next stage. After the next stage received enough data, it 

acknowledges Q2 element to complete the procedure in instruction decode stage. 

The procedures in execution stage are described below. Once the request event signal 

received in Q3 control component, Q3 sends the request event signal to execution stage 

register to show the corresponding data. After the ALU receiving the demand data, it starts to 

figure out the result and pass it to the write back stage register. After the next stage received 

the enough data, it acknowledges Q3 element to complete the procedure in execution stage. 

The procedures in write back stage are described below. Once the request event signal 
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received in Q4 control component, Q4 sends the request event signal to write back stage 

register to show the corresponding data. After the register file received the destination register 

index and its contents, it starts to refresh the register contents. Once the fresh procedure 

finished, the register file acknowledges Q4 element to complete the procedure in write back 

stage. The Q4 component then acknowledges initial request event signal to complete the one 

instruction procedure. Figure 11 illustrates the asynchronous AVR microcontroller. 

 

 

 

Figure 11 the organization of asynchronous AVR microprocessor 
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3.1.1 Our asynchronous Micropipeline circuits 

The original Micropipeline structure comprises the two side-by-side register with two 

phase bundled data convention. In order to ensure the correctness in FPGA environment 

implementation, some modification is needed. The modified Micropipeline structure 

comprises one register with four phases, dual rail data convention. Figure 12 illustrates dual 

rail, 4 phases, delay insensitive Micropipeline with 4 stages. 

 

 
Figure 12. Dual-rail, 4 phase, delay insensitive Micropipeline with 4 stages 

 

The differences between original Micropipeline and our micropipeline are described 

below： 

We use dual rail data protocol to replace single-rail bundled data protocol. In order to 

detect to data arrived, we use a xor gate to sense the data variation. The most advantage is 

that we do not need to consider the synthesis and place & route problem arising in FPGA 

environment. The delay insensitive structure is insensitive to this constraints in which ensure 

the implementation accuracy. 
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3.1.2 Instruction fetch stage (IF) 

There are three registers, one adder and three procedure control components in 

instruction fetch stage. PC, NPC and INC comprise the three registers. Program Counter (PC) 

stores the current program memory address value; NPC stores the next program memory 

address value. The NPC and PC value are set to dual rail zero after the initial reset signal 

arrived. The NPC register data width is eight bits and the same as the PC register. The INC 

registers stores the program counter increment, its value is one. The NEXTPC is an adder 

using calculate the next program memory address. The NEXTPC result is stored in NPC 

register. 

The three procedure control components Q1_1, Q1_2 and Q1_3 govern the instruction 

fetch stage procedure. These control components ensure the correct flow; the first procedure 

is sending the memory address to instruction memory to fetch the instruction code; the second 

and the third procedure is refreshing the NPC value. 

The NPC register provides two input port; one port is used for receiving the NEXTPC 

result and the other port is used for receiving the branch instruction result from ALU. After 

the ALU figures out the new branch address, NPC register could be update immediately to 

improve the performance. Figure 13 illustrates the organization of instruction fetch Stage.  

 

Figure 13. The organizations of instruction fetch Stage  
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3.1.3 Instruction decode stage (ID) 

There are two registers and one decoder in instruction-decode stage. Figure 14 illustrates 

the organization of instruction decode stage. 

 

 

 

 

 

 

Figure 14 The organization of instruction decode stage 

 

The widths of the instruction register are 16 bits as wide as the AVR instruction set 

format. According the instruction contents, the decoder sends the necessary control lines to 

corresponding peripheral resources to accomplish the procedure. For example, the instruction 

ADD R1, R3 means adds the R1 register value and the R3 register value, stores the result back 

to the R1 register. When the decoder received the instruction code, it sends request signal to 

the register files. The register files responses the R1 register value and R3 register value.  

The next latch acknowledges to Q2 to accomplish the instruction procedure in this stage. The 

decoder also sends the destination register index and the micro-instruction index to the next 

latch to serve the corresponding action. 

 

3.1.4 Execution stage (EX) 

There are four registers and one ALU in execution stage. Figure 15 illustrates the 

organization of execution Stage.  
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Figure 15. The organization of execution stage 

 

The Q3 (EX) send the request signal to execution stage latch and show the opcode 

(micro-instruction index), source register value and destination register value to ALU. It also 

passes the destination register index to the next latch. The next latch acknowledges to Q3 to 

accomplish the instruction procedure in this stage. 

In order to simplify the basic design the implementation of the arithmetic logic unit 

provides only the integer functions of addition and subtraction. The configuration of the ALU 

is based on an implementation described in [5]. 

The ALU provides a branch instruction output port. The new branch address result was 

send from this port to NPC register. When Q3 (EX) receives the acknowledgement from NPC, 

it will influence the next control component Q4 procedure and bypass the write back stage 

procedure. It means that write the result back to the register files is no necessary. It could 

improve the performance. 

 

3.1.5 Write back stage (WB) 

There are two registers in write back stage. Figure 16 illustrates the organization of 

execution stage. The two register contents are destination register index and destination 

register value. The Q4 (WB) send the request signal to write back stage latch and show the 

destination register index and destination register value to register file. The register file 
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acknowledges to Q4 to accomplish the instruction procedure in this stage. 

  

 

 

 

 

 

 

Figure 16 The organization of write back Stage 

 

3.1.6 The register file      

The register files comprises 32, 8-bit wide general purpose registers. It provides two 

output ports for read and one write port for write. The hardware organization helps the data 

manipulation between registers more efficiency. In order to observe the register contents, we 

connect the register R31 data output port to outward. This function will be demonstrated 

below. 
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3.2 Design methodology  

In this section, we introduce the design procedure and its development tools. Section 

3.2.1 introduces the DDG of instruction – a method to describe the micro operation of AVR 

instruction. Section 3.2.2 introduce the design methodology and explain how to combine the 

synchronous CAD tool to explore asynchronous circuits.  

 

3.2.1 Data dependency graph of AVR microcontroller 

After defining the asynchronous AVR hardware organization, we implement the AVR 

instruction set to the organization. The DDG is used to describe the AVR instruction set micro 

operation. Every part of DDG is mapped to the corresponding hardware [8]. 

The instruction ADD Rd, Rs is used to explain how DDG describe the AVR instruction 

set. The meaning of the instruction ADD Rd, Rs is that add the value of register Rd and the 

value of register Rs, and stores the result in the destination register Rd. Its operation and 

instruction format is shown in Figure 17.  

 

 

 

Figure17. The instruction content of ADD instruction 

 

According the organization of AVR microcontroller, the DDG of ADD Rd, Rs instruction 

is shown in Figure 18. Because the first stages of all AVR instructions are the same, we only 
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show the DDG of ADD Rd, Rs instruction from instruction decode stage to write back stage. 

After the decoder receiving the instruction code, it provides the Rd and Rs register 

contents to the ID_EX latch. The execution stage adds these two values and stores it in 

EX_WB latch. The write back stage sends the Rd data back to the register file. The whole 

procedure is the same as we described in section 3.1. 

 

 

Figure18. The DDG of ADD instruction 

 

3.2.2 Design steps  

Figure 19 illustrates the asynchronous design steps and how to integrate the existing 

tools in our design. We describe the design steps below: 

Referencing to [6], we created enough delay-insensitive FPGA elements with Verilog 

language and verify its function with Modelsim software. According to the specification, AVR 

organization and its DDG of AVR instruction set, we wrote the AVR organization HDL with 

Verilog language. The Modelsim software was used to verify the correctness of AVR in HDL. 

Finally we download our design to the physical chip to validate the AVR functions.  
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Figure19. The design and implementation procedure 

 

3.2.3 Design environment 

 Table1 illustrates the existing tools using in our design and its purpose. 

 

Synchronous Tools Name Purpose 

Xilinx ise 4.2.03i Project Management 

Download design into Target Board 

Synplify Pro 7.6 Logic synthesis 

Modelsim SE/EE PLUS 5.4 Simulation and verification  

 Table 1. The design environment tools 
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3.3 Implementation  

In this section, we introduce implementation environment. Section 3.3.1 introduces the 

issue for using FPGA to implement asynchronous circuit. Section 3.3.2 introduces the target 

board and selected FPGA Chip. 

 

3.3.1 FPGA design issues for asynchronous logic 

It is no doubt that FPGA is an extremely effective means of performing fast development  

and test of digital circuits. The employment of large amounts of simple logic gates and 

datapaths that can be rapidly programmed and reprogrammed until a desired solution has been 

found is a very cost effective method of hardware design. 

Asynchronous circuits design is sensitive to the hazard that was introduced from the 

FPGA working phases, such as software mapping, routings and placements. The characteristic 

of delay-insensitive (DI) circuit that can operate correctly regardless of the delays on its gates 

and wires is suitable for the FPGA’s implementation. 

 

3.3.2 Implementation environment 

 

Xilinx prototype board 

The Xilinx prototype board (model: AFX BG560-100) is used as the target board. It 

helps to implement our asynchronous AVR microcontroller design without other additional 

efforts. The traditional approach to experimenting with new devices involving wiring together 

some ICs on a circuit board is becoming impractical and ineffective. Instead, with new 

high-density devices on custom PC boards represents a substantial investment of time and 

money. This prototype boards from device manufacturers can meet this requirement for 

experimentation. More details about Xilinx prototype board can be found in [17]; Figure20 
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shows the photo of physical xilinx prototype board. 

 

 

   Figure20. Xilinx prototype board 

 

FPGA chip  

The target FPGA chip is XCV 1600E BG560 Virtex�-E 1.8 V; The main feature of 

Virtex E chip are fast, high density system gate count and low power consumption. More 

details about Virtex FPGA Chip can be found in [18]. 
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Chapter 4 Testing 
 

In order to test the implementation of AVR, a simple program was designed that could 

be used to exercise the paths. The general purpose of this program was to load data from an 

external memory, manipulate that data through ALU and then change the register file contents. 

Resultant values could be observed by the register file. Table2 shows a typical sequence of 

execution of instructions. 

 

   Table 2.Sequence of instruction execution 
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There are instances in the execution of a number of instructions in AVR that requires the 

concurrent access of the register file or other such logic. As AVR has not been designed to 

function in a concurrent manner, e.g. only sequential processing of instructions can occur in 

any stage; even with the modified micropipeline structure was introduced.  

The obvious conclusions from above statements are that there are likely to be a large 

performance compromise but rather as a prototype device to investigate how existing tools 

could cope with such a task. 

The AVR test program along with a number of other numeric constants, e.g. values 

representing the data that would be actually found in the external memory, has been connected 

to the AVR. The general configuration of this external logic with the associated connectivity 

can be seen in Figure 21, and introduced below. 

 

 

Figure21. Testing configuration 

 

4.1 Testing configuration introduction 

In Figure 21, the right block represents the asynchronous AVR. In order to observe the 

register contents, we extend the general-purpose register R31 data to outside, named 

OUTPUT, as you can see in the right part of the asynchronous AVR. We connect a LED to its 
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OUTPUT port to indicate the register content. The left upper block is used for controlling the 

testing procedure and it receives a 50 MHz signal to internal timing. When this control block 

detects the reset signal (active low), the minimum 20ms reset signal will send into the 

asynchronous chip to ensure the internal register situation from the sim_clr port. 

Sim_req request event signal arise later to start the first instruction operation. The AVR 

feedback the acknowledgement events to control block after complete inner operation. The 

low Sim_req request event signal response the acknowledgement from AVR. The request and 

acknowledgement situation are idled when transaction is fully completed. The next instruction 

repeat the procedure described above around.  

The instruction fetch stage of AVR will send out an EPROM Enable signal and address 

signal. Due to the characteristic of the EPROM 2764 active low enable signal is different 

from the AVR active high enable signal and the voltage level transformation is needed. The 

instruction code generated from EPROM pass through the one rail to two rail circuits where 

transfer the single rail Instruction code to the dual–rail instruction code and finally, to the 

AVR microcontroller.  

 

4.2 16 bits instruction composition 

The type of EPROM unit employed was an 8K MD2764 device with 8-bit addressing. In 

order to present the 16-bits instruction or data value to an AVR instruction input, two of these 

devices would be enabled in parallel in order to construct that 16-bit word. The structural 

organization of these EPROM units is shown in Figure 22. 
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Figure22. EPROM 16-bit word configuration 

 

4.3 Memory interface 

In order to connect to synchronous components, some modification must be inserted to 

meet synchronous requirement to assure the correct function, and introduced below.  

 

4.3.1 Dual-rail to single-rail circuit 

 The internal register in our AVR is designed for dual rail format. Every data-bit in dual 

rail format is represented by two one-bit latches. The address data provided from the NPC 

register is positive part of dual rail data. Furthermore, the EPROM strobe signal is provided 

by the combination of dual rail address data. The combination organization is constructed by 

the Muller-C circuits. The strobe signal is guaranteed to be late to the address data which the 

EPROM output the correct instruction code. Figure23 illustrates that the two-rail data 

constructs the strobe signal with Muller-C circuits and Y signal is directed from the positive 
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part of the dual rail X data. More details can be found in [13]. 

 

Figure23. Two Rails to One Rail Circuit  

 

4.3.2 Single-rail to dual-rail circuit 

 The instruction register is dual-rail format. The instruction code generated from EPROM 

must pass through the one-rail to two-rail circuits. The differential line driver IC (AM26LS31) 

is used to the transformation circuits. Figure24 illustrates that the two bit single-rail data is 

transferred to two dual-rail data. The strobe signal is used to control the dual-rail format data. 

The Z data is valid with the strobe signal is high. The Z condition is high impedance with the 

strobe signal is low. More details can be found in [13]. 

 

Figure24. One-rail to two-rail circuit  
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4.3.3 Return to zero circuits 

The ultimate condition of four-phase handshake protocol is that request and 

acknowledgement signals are set to the idle (L) condition. To achieve the rule standard, the 

extra circuits are needed. We connect the return to zero circuits to the output of the single-rail 

to dual-rail circuits output. The handshake between instruction fetch stage and EPROM is 

ended with the strobe signal is low. The single-rail to dual-rail circuits output condition is 

high impedance with the strobe signal is low. The dual-rail data is low with the return to zero 

circuits because of the electronic rules. It meets the four-phase return to zero handshake 

protocol. Figure 25 illustrates the return to zero circuits. 

 

Figure25. Return to zero circuits  

 

4.4 HDL verification 

The Modelsim software is used to simulate the system level behaviors of AVR and verify 

the AVR instruction set function. Figure26 illustrates a looping addition function. 

The clr signal is send from outside to reset the internal condition in AVR. The req_AIC is 

send from outside to start an instruction procedure. After AVR finished one instruction, it 

sends acknowledgement ack_AIC signal outside. The EPROM_AD and EPROM_ENABLE 

are issued from instruction fetch stage to outside EPROM. Its feedback instruction data in  

44 



 

dual-rail format are INSTR_Id0 and INSTR_Id1.The REG_31_OUT is the register 31 

contents. 

After receiving the reset signal, the contents of the register R31 are cleared to zero. The 

contents are updated the first instruction executed. And it decrease one after the ADD 

instruction (INSTR_id1 =0ffe) executed. The REG_31_OUT is complement format to match 

up the outside LED circuits. 

 

 Figure26. Simulation result in Modelsim SE/EE PLUS 5.4 

 

4.5 Physical circuits’ validation 

The simulation software is used to verify the hardware behaviors. The verified design is 

downloading to the physical circuits to check the function. Table3 show the test program. 

 

MEMORY ADDRESS ASSEMBLY CODE Description 

000000 LDI   R31 , 0 R31 = 0 

000001 LDI   R30 , 1 R30 = 1 

000010 ADD  R31 , R30 R31 = R31 + R30 

000011 JMP   00000010 Branch to 00000010 

Table 3. The test program of looping addition 
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We can validate the physical circuits with our downloading design by observing the LED 

status. The correct function of the physical circuits has the following meanings. First, the 

software simulation is reliable with the delay insensitive model. Second, peripheral device 

with the protocol transformation circuits are also working correctly. Finally, it proves 

correctness of the design methodology we described. Figure27, Figure28 illustrates the 

physical circuits. The Xilinx prototype board in Figure 27 comprises Virtex E FPGA Chip 

which used to implement the AVR microcontroller core and control procedure circuits. The 

I/O Card in Figure 28 comprises the EPROM, Memory interface, Output LED and Remote 

RESET button. 

 

 

 

 

 

 

Figure27. Xilinx prototype board with Virtex E FPGA Chip 

 

 

 

 

 

 

 

Figure28. I/O Card 
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Chapter 5 Conclusion  
 

In this thesis, we propose an asynchronous AVR microcontroller and implement it using 

FPGA chip with asynchronous circuit models. The AVR microcontroller is the Reduced 

Instruction Set Computer (RISC) architecture and the core is a standard 8-bit microcontroller, 

widely used in Atmel products. 

We describe the behavior of AVR instruction by using data dependency graph. In 

addition, we also establish several asynchronous FPGA cell libraries in Verilog. Following the 

verification in simulation software and validation in physical circuits, these cells also proved 

to work correctly in FPGA environment. With the delay insensitive model, we do not worry 

about the synthesis and place & routing variation. The design can be downloaded to any 

FPGA chip arbitrarily without altering it. 

We did not implement all 90 instructions in AVR specification. The implemented 

instructions are listed in table 4. 

Owing to lack of asynchronous design tools, we use the existing synchronous tools, such 

as Modelsim and Xilinx ISE4.2i, to accomplish the design and simulate it. The successful 

combination with existing synchronous tools is demonstrated. But the development period is 

long and slow and complication increasing with the scale. In order to shorten the development 

time, the asynchronous design tools are needed.   

We modify Sutherland’s Micropipeline to dual-rail and delay insensitive Micropipeline 

and it could be implemented in FPGA chip without losing the asynchronous characteristics. 

Once the design methodology established, we can use the same way to survey and 

implement other asynchronous CPU cores. The asynchronous AVR is not intended to be a 

fully custom designed microcontroller such as the AMULET processors, but it is as a 
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prototype device to investigate how existing tools could cope with such a task. In the future, a 

fully custom designed microcontroller will be realized in such way. 

 

Instruction type Instruction counts Instruction lists 

Arithmetic and  

Logic instructions  

20 ADD ,ADC,SUB,SUBI,SBC ,SBCI,AND, 

ANDI,OR ,ORI ,EOR ,COM,NEG,SBR, 

CBR ,INC ,DEC ,TST ,CLR ,SER 

Branch Instructions 25 RJMP,JMP,CP,CPC,CPI,BRBS,BRBC, 

BREQ,BRNE,BRCS,BRCC,BRSH,BRLO, 

BRMI,BRPL,BRGE,BRLT,BRHS,BRHC, 

BRTS,BRTC,BRVS,BRVC,BRIE,BRID 

Data Transfer  

instructions 

2 MOV,LDI 

Bit and Bit-test  

instructions(17/31) 

17 SEC,CLC,SEN,CLN,SEZ,CLZ,SEI,CLI, 

SES,CLS,SEV,CLV,SET,CLT,SHE,CLH, 

NOP 

 
Table 4. Implemented AVR instructions 
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