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a b s t r a c t

Scheduling packets is a usual solution to allocate the bandwidth on a bottleneck link. How-
ever, this solution cannot be used to manage the downlink bandwidth at the user-side
access gateway, since the traffic is queued at the ISP-side gateway but not the user-side
gateway. An idea is scheduling the requests at the user-side gateway to control the amount
of the responses queued in the ISP-side gateway. This work first investigates the possibility
of applying the class-based fair queuing discipline, which was widely and maturely used in
scheduling packets, to schedule requests. However, we found that simply applying this dis-
cipline to schedule requests would encounter the timing and ordering problems at releas-
ing requests and may not satisfy high-class users. Thus, we propose a minimum-service
first request scheduling (MSF-RS) scheme. MSF-RS always selects the next request from
the class receiving the minimum service to provide user-based weighted fairness, which
ensures more bandwidth for high-class users. Next, MSF-RS uses a window-based rate con-
trol on releasing requests to maintain full link utilization and reduce the user-perceived
latency. The results of analysis, simulation and field trial demonstrate that MSF-RS pro-
vides fairness while reducing 23–30% of user-perceived latency on average. Besides, a
MSF-RS gateway can save 25% of CPU loading.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction or other packet-based bandwidth management [1] at the
Numerous enterprises connect to the Internet with the
access link of Internet service provider (ISP), a typical
topology of which is depicted as Fig. 1. In general, ISPs
are willing to invest money in expanding the backbone
bandwidth to provide their customers better service. How-
ever, to minimize costs, their customers often delay
upgrading the bandwidth of the access link, which conse-
quently becomes a potential bottleneck to access the Inter-
net. To guarantee key traffic getting enough bandwidth
when passing through the bottlenecked link, their custom-
ers may employ a class-based fair queuing (FQ) discipline
. All rights reserved.
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user-side access gateway to scheduling packets.
Unfortunately, these packet scheduling solutions fail to

provide such guarantee for key traffic when the downlink
is the bottleneck. In this case, packets are queued at the
ISP-side gateway, not at the user-side gateway, for travers-
ing the bottleneck. Scheduling packets at the user-side ac-
cess gateway is useless because the packets have passed
the bottleneck. On the other hand, although scheduling
packets at the ISP-side gateway is useful, classifying pack-
ets at this gateway may be troublesome because of the net-
work address translation (NAT), which is widely deployed
at the user-side gateway to allow multiple users in an
intranet sharing a public IP address. The packets which in-
tend to enter the intranet cannot be classified by the ISP-
side gateway because the classification needs to refer to
the destination IP address of these packets but unfortu-
nately they own the same one before they enter the NAT-
embedded user-side gateway.
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Fig. 1. A typical network topology that an enterprise accesses the Internet through ISP.
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Scheduling requests, instead of packets, at the user-side
access gateway may solve the above mentioned failure of
packet scheduling. Such an idea is based on that applica-
tions running over the Internet mostly adopt the client–
server model, i.e. the request/response model, such as
HTTP, FTP, and E-mail. Requests sent from clients go
through the access gateway and the uplink of the access
link to remote servers, and the corresponding responses
answered by the remote servers return to clients through
the downlink of the access link and the access gateway.
The downlink bandwidth could be managed by controlling
the releasing of uplink requests.

Request scheduling was used in several studies to pro-
vide differential Web QoS for the requests of different
types or the users of different classes. Such a usage was
first introduced in [2] to schedule requests at a Web server.
Then, the earliest deadline first scheduling was taken in [3]
to ensure that requests of different types can be served
within their specific deadlines. Besides, requests of a new
session may be blocked from getting service in [4] to pre-
vent the server from overloading and thus ensure the ser-
vice quality of existing sessions. Compared with [2–4],
which deployed request scheduling at a Web server, [5–
7] deployed it at a Web-side gateway, i.e. a gateway in
front of a group of Web servers. Requests were scheduled
based on their resource requirements for load balance in
[6] while this scheduling was for performance guarantee
of users in different classes in [7].

Although many request scheduling algorithms were
proposed for a Web server or a Web-side gateway, no pub-
lished studies discussed how to schedule requests at the
user-side access gateway to provide differential services
for users. The key difference of scheduling requests at a
server or a Web-site gateway from at a user-side gateway
is that the destination Web servers in the former are spe-
cific and their statuses are easy to be measured or con-
trolled for assisting in the scheduling operation.
However, the servers in the latter are infinite in number,
distributed over the Internet, and cannot be controlled.

In order to provide bandwidth sharing and weighted
fairness among users of different classes on their downlink
responses, this work studies how to schedule uplink re-
quests at the user-side access gateway. We first investigate
the possibility of applying the class-based FQ discipline,
which was widely and maturely used in scheduling pack-
ets, to schedule requests. However, we found that simply
applying this discipline to schedule requests would
encounter three problems. The first two are determining
the timing of releasing requests and selection of the next
released request. The last one is that the class-based
weighted fairness, achieved by a class-based FQ discipline,
does not suit for the user-level differentiation, i.e. may not
guarantee high-class users to get more bandwidth than
low-class ones when more users appear in the high class.
Based on the above investigation, we further propose a
minimum-service first request scheduling (MSF-RS)
scheme to provide bandwidth sharing and user-based
weighted fairness, i.e. a policy that the ratio of the band-
width allocated for each high-class user to that for each
low-class user matches the ratio of their weights.

MSF-RS consists of a minimum-service order arbiter
(MOA) and a window-based rate controller (WRC). MOA al-
ways selects the next request from the class which receives
the lowest amount of responses while WRC determines the
timing in releasing a request by monitoring the downlink
utilization to control the number of outstanding responses.
A response is regarded as outstanding if its corresponding
request is released, but the response has not been received
completely. MSF-RS is originally designed based on the
assumption that the uplink traffic consists of requests only
and the downlink traffic consists of their corresponding re-
sponses. However, MSF-RS also works well under the envi-
ronment where the exceptive traffic coexists with the
assumed traffic. We would further discuss the traffic-mixed
case and show the robustness of MSF-RS by simulation in
Section 6.

The remainder of the paper is organized as follows. Sec-
tion 2 identifies the three problems occurring in schedul-
ing requests with the class-based fair queuing discipline.
Also, the user-based weighted fairness is introduced here-
in. Section 3 proposes the MSF-RS scheme. Section 4 proves
that MSF-RS does shorten the user-perceived latency and
also analyzes the worst-case fairness of MSF-RS, which
are further demonstrated through the simulation results
in Section 5. Besides, the affection of exception traffic on
MSF-RS is discussed in Section 6. Section 7 demonstrates
the effect of MSF-RS through field trail, where MSF-RS is
implemented in Squid [8], an open-source Web proxy
package. Section 8 gives the conclusions and future work.
2. Problems on using class-based fair queuing

Three problems would occur when the class-based FQ is
used to schedule requests. The former two are related to
the FQ discipline while the last is about the class-based
weighted fairness policy.

2.1. The timing for releasing requests

A FQ-based packet scheduler selects and sends the next
packet via a link right after the last packet has finished its
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transmission. The bandwidth of the link would be totally
consumed by the scheduled packets themselves. That is,
each packet transmission fully uses the link bandwidth.

However, a FQ-based request scheduler cannot send the
next request immediately following the last request, be-
cause a request does not directly consume the bandwidth
of the bottleneck downlink, which actually will be con-
sumed when receiving its responses. Releasing requests
one-by-one may bring a large number of concurrent re-
sponse transmissions at the bottleneck downlink, because
the transmission time of a response, due to its size, is often
longer than that of a request. Each transmission, under
such a condition, only shares small bandwidth, resulting
in the serious congestion or the long user-perceived la-
tency. On the other hand, the request scheduling cannot
just wait to send the next request till the preceding request
completely gets its response, because such a waiting may
waste the downlink bandwidth. After a request is sent
out, until the first packet of its response returns, the down-
link will be idle. Besides, even when the response is trans-
mitting, the transmission may not run out the whole
downlink bandwidth, because the Internet bandwidth
available for the transmission may be smaller than the
downlink bandwidth.

Since requests cannot be sent out as packets, a mecha-
nism is necessary to control the release of uplink requests
based on the utilization of downlink bandwidth, in order to
avoid the downlink from congestion and to keep it on high
utilization.

2.2. The determination of the next request

A FQ-based packet scheduler selects the next packet
which is the earliest one to be completely served, i.e., fully
transmitted, in the fluid-based general processor sharing
(GPS) model [9]. The order of service completion is easily
determined when a packet arrives because the determina-
tion only involves two known parameters, packet arrival
time and packet size. For two packets arriving at the same
time, the packet size decides the order of service comple-
tion time. A smaller packet finishes service earlier.

However, in a FQ-based request scheduler, although the
arrival time of each request is known, the size of a request
does not affect the service time of the request, which how-
ever is counted from releasing a request to receiving its
whole response and mainly contributed by the transmission
time of the response. Because the transmission time is deter-
mined by the response size and the available bandwidth in
Internet, it is uncertain at the request-scheduling moment.
Therefore, the completion time is uncertain too and the re-
quest scheduling cannot select the next request simply by
its completion order. Hence, this selection is a problem
when the FQ discipline is applied to request scheduling.

2.3. The class-based weighted fairness policy

The class-based weighted fairness policy is originally
proposed to provide differential QoS for different service
types of connections. For example, the real-time connec-
tions and the best-effort connections would be classified
into two distinct classes. Then, according to the weights
of these classes, each class is allocated with a fixed propor-
tion of bandwidth. When the policy is applied, to guarantee
that each connection in a class gets enough bandwidth,
controlling the number of the active connections in the
class is necessary. Establishing a new connection will be
rejected when the number of active connections exceeds
the expected value.

However, when the class-based weighted fairness policy
is applied on providing differential QoS for different levels of
users, it may expose undesirable characteristics for high-
class users. For example, a high-class user may be rejected
from getting service when the number of users now in the
high class exceeds the expected value. Besides, if the number
of users in the high class is much more than that in the low
class, each high-class user may get lower bandwidth than
the low-class user. Therefore, another policy may be neces-
sary to always provide the high-class users enough band-
width particularly when more users are active in the high
class than the low class. We call such a policy the user-based
weighted fairness. The policy guarantees that the ratio of
bandwidth allocated for each high-class user to that for each
low-class user matches the ratio of their weights.

3. A request scheduling scheme in user-side gateway

The section proposes a minimum-service first request
scheduling (MSF-RS) scheme, which is deployed at the
user-side access gateway and can provide user-based
weighed fairness, bandwidth sharing, full bandwidth utili-
zation, and short user-perceived latency. As shown in
Fig. 2, the MSF-RS scheme consists of a minimum-service
order arbiter (MOA) and a window-based rate controller
(WRC). The former decides which request is the next one
while the latter determines the timing to release requests.

3.1. Minimum-service order arbiter (MOA)

As shown in Fig. 2, MOA includes a request selector, a
request receiver, and three groups of variables. There are
N classes and each class is allocated a queue Q, a user coun-
ter (UC), a service counter (SC), and a weight w. MOA se-
lects the next request from one of the class queues, i.e.
Q1 to QN, based on the value in SCs, which are updated
by considering UCs and w’s.

(1) UC and SC: The UC of a class keeps the number of the
active users now in the class, where the active user means
an intranet user who has requests or outstanding
responses in MSF-RS. The SC of a class keeps the amount
of services which the class has received. Herein the service
represents the received responses in bytes after normal-
ized with w and UC. That is, every time when one class,
say the class i, receives its partial response of length Lp,
its SC, SCi, is updated as

SCnew
i ¼ SCold

i þ
Lp

wi � UCi
: ð1Þ

By normalizing Lp with w and UC during the SC update, for
any two classes with the same SC, the ratio of their
received responses will match the ratio of their weights



Fig. 3. Two procedures in MOA: request selector and request receiver.
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and their active users, respectively. That is, even when the
number of active users in the high class is much more than
that in the low class, the ratio of the responses got by one
high-class user to that by one low-class user still matches
the ratio of their pre-assigned weights.

(2) Next request selection: As shown in Fig. 2, when a
request arrives, the classifier forwards the request into
the corresponding Q. On the other hand, the request selec-
tor selects the head-of-line (HOL) request from the queue
with the minimum SC. A class with the smaller SC repre-
sents that it received less services than other classes.
Selecting a request from such a queue improves the fair-
ness between classes, because it minimizes the difference
of their SCs. Besides, if multiple classes have the same SC,
the request selector selects the class with the highest
product of the weight and UC. An idle class represents
that the class has no outstanding responses and its
request queue is empty. When a class idles for a long
period, its SC may be far smaller than the SCs of active
classes. Once the idle class has incoming requests, its
far-small SC may cause the starvation of other classes.
That is, until its SC is larger than any one SC of other
classes, no request can be selected from other classes.
To avoid this unfavorable condition, once the idle class
becomes busy, its SC is updated to the minimal SC among
all active classes. Such an update lets MOA follow the
sharing concept used in the fair queuing discipline: the
bandwidth freed from the idle classes would be shared
by active classes, and these active classes will not be
punished for the sharing, e.g. get less bandwidth when
the idle classes become active. Notably, if all classes are
idle, all SCs will be reset to 0.

(3) Basic procedures: Fig. 3 lists the pseudo codes of the
two components in MOA. The request_selector picks the
class queue with the minimum SC and releases the HOL
request of this queue. The request_receiver classifies and
en-queues all incoming requests. If an arrival request is
classified into an idle class, i.e. the class’s UC is zero, the
request receiver resets the SC of this class. Next, the request
is put into the belonging queue. If the request comes from a
user j who has no request waiting for service or being
served, i.e. ReqFromUser[j] = 0, then the UC of its belonging
class will be added one, implying one more user arrives in
this class. If the system is idle, i.e. no responses are
outstanding, the request_receiver actively asks the request_
selector to release the just coming request immediately.

3.2. Window-based rate controller (WRC)

As shown in Fig. 2, WRC controls the maximum of out-
standing responses, W+, according to the bandwidth utili-
zation of the link, denoted by U. The variable W is used



3396 S.-C. Tsao et al. / Computer Networks 52 (2008) 3392–3404
to record the current number of outstanding responses. U
is updated by the expression:

Um ¼
Sm=T

C
; ð2Þ

where Um is the utilization between the mth and (m + 1)th
updates, C is the link capacity, T is the time interval be-
tween two updates, and Sm is the responses in bytes re-
ceived during T. Next, once Um is changed, WRC updates
W+ by the equation

Wþ
mþ1 ¼min

Uþ

Um
;K

� �
�Wþ

m; ð3Þ

where Wþ
m and Wþ

mþ1 are the maximum of outstanding re-
sponses allowed after the mth and (m + 1)th update,
respectively. Also, Wþ

0 ¼ 1 and Uþ is the target utilization.
K is a constant and assigned to 2 to avoid WRC from over-
estimating the new W+ particularly when the old W+ is
small. When Um is lower than U+, Wþ

mþ1 will be set to a
larger value so that more outstanding responses can use
the bandwidth and then raise the utilization Um+1. For
example, if the current W+ is six and U is 60%, then the
next W+ will be set to 10 when U+ = 99%. On the contrary,
when Um is higher than U+, Wþ

mþ1 will be decreased so
that fewer responses compete for the downlink
bandwidth.

U+ is constant and should be smaller than 100%
(U+ < 100%). Otherwise, when U+ = 100% and Um = U+, it
cannot be distinguished whether the bandwidth required
by the responses is larger than or just equal to the link
capacity. Notably, W+ should be recomputed only when
W = W+. When W < W+, it is wrong to expect the raise of
U by increasing W+, because a low U is caused by insuffi-
cient arrival requests, but not too small W.

Fig. 4 lists the pseudo code of WRC. When WRC receives
any part of a response, it looks for the class and the user
Fig. 4. Procedure of window-based service-rate controller (WRC).
which this response belongs to, and updates its class’s SC.
Once the received data includes the last packet of a re-
sponse, W is decreased by one to imply that a request has
been fully answered. Also, ReqFromUser of this user is de-
creased by one. If this is the last request, UC of this class
is decreased by one also, because one user leaves the class.
Next, the request_selector is invoked to release requests as
more as possible, till W = W+ or all queues are empty.
4. Analysis for latency and fairness

In the section, we first demonstrate that a MSF-RS gate-
way provides users shorter latency than an ordinary gate-
way on the average. An ordinary gateway means that it
directly forwards the requests or responses once receiving
them. Then, we analyze the fairness provided by MSF-RS in
the worst case.

4.1. User-perceived latency

In general, the user-perceived latency of a request rep-
resents the time interval beginning when the client host
sends out the request and ending when it receives the re-
sponse of the request. As shown in Fig. 1, when a user-side
gateway G is deployed at the gate of the Intranet to the
Internet, we divide such a latency into four parts: (1) the
transmission time of the request and its response between
the client host and G, (2) the queuing time Tq of the request
in G, (3) the transmission time of the request from G to the
Internet destination site, and (4) the service time Ts of the
request, i.e. the time of receiving its response from the site.
The time of the first and third parts are ignored in the fol-
lowing comparison because they are small and unchanged
no matter MSF-RS is deployed or not in G. Besides, the sum
of Tq and Ts is called the active time of the request in G, de-
noted as Ta.

First, we conceptually explain why the Ts of a response
in MSF-RS is shorter than that in an ordinary gateway
when both gateways achieve the same high downlink uti-
lization. In general, the link utilization is the most domi-
nated factor to affect the packet’s Ts, the transmission
time over the link. However, since a Web response consists
of a crowd of packets and its Ts spans from transmitting the
first packet of the response to the end of its last packet’s
transmission, thus Ts depends on not only the utilization
but also the concurrent number of the response transmis-
sions. That is, a large number of concurrent transmissions
would also increase the Ts of a response. Recall that the
number of concurrent responses in MSF-RS is controlled
to run out but not overload the downlink, while that in
an ordinary gateway is uncontrolled and increased with
the arrival rate of requests. When both MSF-RS and the or-
dinary gateway operate at the high link utilization, MSF-RS
would have a smaller number of concurrent transmissions
and thus provide a shorter Ts. For example, assume that
100 concurrent transmissions of responses can right ex-
haust the downlink bandwidth. Then, when 200 responses
are concurrently transmitted through an ordinary gateway,
although the downlink is exhausted too, the transmission
time of the 200 responses would prolong doubly at least,
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because each response transmission in the former only
gets half bandwidth of that in the latter on average.

The following formally proves that MSF-RS provides
shorter Ta on average than an ordinary gateway under a
case that a batch of m requests arrives into the gateways.
Assume MSF-RS has a fixed W+ and the m requests would
ask the responses of size L. Besides, the maximum band-
width that W+ responses can use would approximate to
the downlink bandwidth C, because if a MSF-RS gateway
allows the current transmission of W+ responses, then
these responses are expected to completely occupy but
not overload the downlink. Therefore, the maximum band-
width of each response can be expressed as C/W+. Although
the assumption of C/W+ may be unrealistic, it is for the con-
venience in analysis and does not impose any constraint on
the conclusions, which are validated by our simulations
and experiments where no such an assumption is given.

Let us first consider the situation under an ordinary
gateway. Since this work concerns the condition when
the downlink is the bottleneck for an enterprise to con-
nect the Internet, we assume the uplink bandwidth is
far higher than the bandwidth necessary for the transmis-
sion of requests. Also, because the ordinary gateway sim-
ply forwards any received requests without considering
the utilization of downlink and a request is usually far
smaller, in length, than its corresponding response, the
Tq’s of these requests are closed to zero, compared to
their Ts’s. Then, since the responses of the m requests will
concurrently share the downlink bandwidth, the band-
width got by each response can be written as C

m. There-
fore, the average Ta of requests under an ordinary
gateway is

avgðTordinary
a Þ ¼ 0þ L

C
m

¼ mL
C
: ð4Þ

Next, consider the case under MSF-RS. The Tq’s of the
first W+ requests are zero because they are forwarded
immediately. Then, others requests will be queued until
any of the W+ requests have been served. In the worst case,
the W+ requests end concurrently. Thus, the Tq’s of the next
W+ requests would equal to the Ts’s of the first W+ requests,
i.e. WþL

C . Next, the Tq’s of the following W+ requests would
equal to 2 WþL

C . The Tq’s of the residual requests could be de-
rived from the same way. Thus, by summing up the Tq’s of
W+ requests in each round and considering the possibility
that the number of requests in the last round may be less
than W+, the average Tq of the m requests could be calcu-
lated as

avgðTMSF-RS
q Þ¼ 1

m
Wþ 0þ1þ2þ�� �þmax

m
Wþ

� �
�1;0

� �� ��

þðmmodWþÞ m
Wþ

� ��
WþL

C
: ð5Þ

Similarly, the mean Ts of the m requests could be expressed
as

avgðTMSF-RS
s Þ ¼ 1

m
ðm� ðmmodWþÞÞW

þL
C

�

þðmmodWþÞ ðmmodWþÞL
C

�
: ð6Þ
Therefore, we get the average Ta of requests under a MSF-
RS by summing up Eqs. (5) and (6).

To compare the average Ta of requests over the two
gateways, Fig. 5 plots the ratio of the MSF-RS gateway
to an ordinary gateway on Ta over different m and W+.
Fig. 5 shows that the ratio is smaller than 1 always, i.e.
the average time to queue and serve requests under
MSF-RS is no more than that under an ordinary gateway.
For example, as plotted by the dotted line, MSF-RS can
reduce 25% of Ta when the number of arrival requests
is two times of W+. These results demonstrates that
MSF-RS does not cause additional delay on Ta through
MSF-RS does queue requests, i.e prolong Tq, to prevent
the downlink from being the bottleneck of the response
transmission.

The following gives an example to further clarify the
fact. Assume there are 12 requests waiting for being
forwarded. Also, we suppose that the downlink band-
width can support four response transmissions in 1 s,
i.e. Ts = 1, when four responses are received
concurrently.

When an ordinary gateway is deployed, all the 12
requests would be immediately forwarded. Since there
are 12, instead of four, response transmissions concur-
rently competing the downlink, each transmission will
get only 1/12, instead of 1/4, of downlink bandwidth.
Therefore, Ts of the 12 requests becomes three and
their user-perceived latency is Tq + Ts = 0 + 3 = 3 s on
average.

In contrast, when a MSF-RS gateway is deployed, since
it monitors the downlink utilization to control the number
of the concurrent response transmissions, only four re-
sponses would be allowed to be transmitted concurrently.
Thus, the first four requests are forwarded without any de-
lay and their responses are received in one second; mean-
while, the other eight requests are queued in the gateway
for 1 s. Then, the next four requests are forwarded and
their responses are received in the 2nd second, while the
last four requests are still queued. Finally, the last four re-
quests are forwarded.

Therefore, the average Tq for the 12 requests can be eas-
ily calculated as (0 � 4 + 1 � 4 + 2 � 4)/12 = 1 s. Besides, Ts of
the 12 request is 1 s. Then, their average user-perceived la-
tency is equal to 1 + 1 = 2 s, which is obviously shorter than
that achieved by an ordinary gateway.
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4.2. Fairness

The fairness parameter that we use is based on the def-
inition presented by Golestani [10] for the analysis of self-
clocked fair queuing. The parameter is defined as the
maximum difference of the service got by any two back-
logged classes over arbitrary time intervals, which can be
written in a mathematical formula as

MAX
Diðt1; t2Þ

wi
� Djðt1; t2Þ

wj

����
����

� �
ðt2 > t1Þ;

where t1 and t2 are two arbitrary instants when the two
classes are backlogged. wi is the weight of Class i, and
Di(t1, t2) represents the received service of Class i during
[t1, t2]. A scheduling algorithm has a zero value of fairness
if it always provides equal service for any two classes even
in a short time interval. We consider two classes, Class i
and Class j, through the following analysis because the def-
inition of fairness only concerns two classes. The existence
of more backlogged classes does not affect the difference of
services got between two classes.

As shown in Fig. 6, assume the MSF-RS is idle before the
time t0, i.e. W = 0. Then, at the time t0 more than W+ re-
quests of Class i arrive. Let v denotes the timestamp of
the first request of Class i, where the timestamp represents
the value in SCi when the request arrives into Class i. Upon
these requests arrives, MSF-RS will forward the first W+

ones and W is set to W+. Let request k be the (W+ + 1)th
one of Class i, i.e. it would be the first request in the queue
of Class i after t0. Since W+ requests of Class i would be
served before k, k will have a timestamp vk expressed by

vk ¼ vþ 1
wi

XWþ

h¼1

Lh
i 6 vþWþLþi

wi
;

where Lh
i is the size of the hth response of Class i and Lþi is

the maximum size of response of Class i.
Assume that the requests of Class j arrive right after the

time t0, and the first request should have the timestamp v
since the timestamp of the request latest released by the
server right after the time t0 is equal to v. However,
although the first request of Class j has timestamp v smal-
ler than that of Class i, i.e. vk, no requests can be forwarded
from Class j because all W+ sub-links are busy for Class i.
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Fig. 6. The difference of the service between Class i and Class j.
Let the sub-links become idle at t1. Then, in the worst case
all requests of Class j with a timestamp no larger than vk

will be forwarded before k. Assume the Class-j request
with vk asks a response with size equal to Lþj . Then, be-
tween t1 and t2 the maximum of the total responses re-
ceived by Class j will be

wj
1
wi

WþLþi

� �
þ Lþj : ð7Þ

However, as shown in Fig. 6, Class i does not get any service
during the period. Thus, between t1 and t2, the difference of
the service between the two classes is WþLþ

i
wi
þ Lþj

wj
, got by

dividing (7) by wj.
For the time later than t2, when the service of a class al-

ready equals to another one, the additional service which
the class can get must smaller than Lþ

i
wi

since Lþ
i

wi
P

Lþj
wj

is sup-
posed. Since the difference of service after t2 and before t1

is smaller than that between t1 and t2, the difference of the
service between t1 and t2 is the worst-case fairness of MSF-
RS, that is

WþLþi
wi

þ
Lþj
wj
:

5. Simulation results

This section first verifies the effects of MSF-RS by ns-2
[11] in terms of the fairness and bandwidth sharing,
user-perceived latency and the relationship between U
and W+. Then, the effect of U+ on latency is investigated.

5.1. Topology

The HTTP/Cache in ns-2 acts as a Web proxy cache and
sits between clients and Web servers. It intercepts the re-
quests sent from clients and forwards them to the remote
servers if the requested data is not cached yet. This work
disables the cache function and implements MSF-RS in
HTTP/Cache. Fig. 7 shows the topology used in the simula-
tion. The MSF-RS gateway provides three classes, Class 1,
Class 2, and Class 3, with the weights, 4, 2, and 1, respec-
tively. Each class involves four clients and each client
repeatedly requests pages from the 12 remote Web servers
through the MSF-RS gateway. For each client, the time
interval between two requests is an exponential distribu-
tion with mean equal to 5 s.

The link between the MSF-RS gateway and every client
is 10 Mbps with 2 ms propagation delay. The ISP gateway
connects to twelve servers with twelve independent links.
These servers are classified into two equal numbers of
groups, representing overseas servers and domestic serv-
ers. Links between the gateway and these servers have a
uniform distribution, as shown in Fig. 7. By the statistics
from the real Internet [12], the Web response size has a
lognormal distribution with M = 9.357 and S = 1.318,
where the probability density function P(x) of the lognor-
mal distribution can be written as

PðxÞ ¼ 1
S
ffiffiffiffiffiffiffi
2p
p

x
e�ðln x�MÞ2=ð2S2Þ:



2Mbps
10ms

ISP-side
Gateway

6 Overseas Servers
BW: uniform [1-5] Mbps
RTT: uniform [40-140] ms

6 Domestic Servers
BW: uniform [1-20] Mbps
RTT: uniform [0-40] ms

User-side
Gateway

10Mbps
2ms

Class 1

Class 3

Class 2

Fig. 7. Simulation topology for three classes with service ratio 4:2:1.
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The average response size is eMþS2=2 bytes, i.e. 27,656 bytes.
The U+ in WRC is set to 98% and the time interval between
two updates is set to 5 s. Section 5.6 would further reveal
the effects of different U+’s on link utilization, but that of
different update intervals are ignored to show because of
their insignificant effects. Besides, we use TCP SACK and
assume no delayed acknowledgments. Over the simulation
the packet size is 1000 bytes and the maximum congestion
window of TCP is 200. The queues at the two gateways are
managed by Drop-Tail and their sizes are 1.5 bandwidth-
delay products.

5.2. Weighted fairness and bandwidth sharing

First, we demonstrate that when all classes have the
same users, MSF-RS provides weighted fairness between
classes and the idle bandwidth is shared by active classes.
Four phases are included in the simulation and the dura-
tion of each phase is 200 s. In the first phase, all of the
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Fig. 8. The average throughput of three classes over
three classes have backlogged requests. In the next two
phases, Class 1 and 2 stop requesting individually, and
then both of them have backlogged requests again in
the last phase.

Fig. 8a shows the average throughput under MSF-RS in
each phase. During the first phase, the three classes get
proportional bandwidth in ratio 3.96:1.98:1, which is close
to the expected ratio 4:2:1. In the second phase, the idle
bandwidth freed by Class 1 is shared by Class 2 and Class
3 proportionally. Both of the bandwidth obtained by Class
2 and Class 3 increase in this phase, and the usage ratio be-
tween them is still 2:1. After Class 2 stops requesting in the
third phase, Class 3 occupies all bandwidth until the end of
this phase. During the second and the third phases, Class 1
and Class 2 still obtain a bit of bandwidth separately due to
their unfinished responses at the 200th and 400th s,
respectively. Once all idle classes have requests again in
the last phase, the three classes obtain the bandwidth in
the expected proportion, 4:2:1, again.
3 4 Phase

3 4 Phase

the four phases under (a) MSF-RS and (b) DRR.
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As mentioned in Section 1, packet scheduling algo-
rithms fail to allocate the downlink bandwidth at the
user-side gateway, because the packets of responses have
passed the bottleneck and can be immediately forwarded
to the clients. Under the situation, a packet scheduling
algorithm would degrade into a first-in-first-out schedul-
ing. To demonstrate such degradation, we employ a deficit
round robin (DRR) [13] instead of MSF-RQ at the user-side
gateway. DRR is a widely used packet scheduling algorithm
because it is easy to be implemented. Fig. 8b shows the
bandwidth allocation managed by DRR. Obviously, over
the four phases, Class 1 and Class 2 do not get higher band-
width than Class 3, even though both classes have larger
weights than Class 3. Further observation shows that the
request queues of three classes in DRR are empty during
the simulation, which verifies that requests are forwarded
upon their arrival, i.e. a FIFO order.

5.3. User-perceived latency

The simulation scenario here is the same as that used in
the first phase in Section 5.2. Fig. 9 illustrates the user-per-
ceived latency for the three classes, the average latency of
all classes, and the latency if no MSF-RS is deployed, de-
noted as non-MSF-RS. The latency is decomposed into
the queuing time and the service time of the requests, as
introduced in Section 4.1.

First, by comparing the left three bars, the three classes
in MSF-RS experience the different user-perceived laten-
cies, mainly caused from different queuing time since they
have different weights. Second, by comparing the right two
bars, the average latency (6.76 s) in MSF-RS is shorter than
that in non-MSF-RS (8.83 s) by 23.44%. It is because the
average service time in MSF-RS (1.44 s) is far shorter than
that in non-MSF-RS (8.83 s). The service time in MSF-RS is
reduced because it has the well-controlled number of con-
current outstanding responses and thus each response can
be received in a short time.

5.4. User-based weighted fairness

Next, we show the MSF-RS gateway provides the high-
class users more bandwidth than the low-class users
regardless of the number of users in the high class. The
same testing scenario as that in Section 5.2 is used, but
the number of users in Class 1 is increased from 4 to 24.
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Fig. 9. The comparison on the user-perceived latency am
Also, all of the three classes have backlogged requests dur-
ing the whole testing time, 800 s. Fig. 10a plots the differ-
ence of the average bandwidth allocated for the users in
each class. When there are 4 users in Class 1, each user
in this class owns 270 Kbps, which is the two and four
times of that allocated for the user in Class 2 and Class 3,
respectively. The fixed ratio of the allocated bandwidth
among the three classes is kept even when the number
of users in the first class is increased. Fig. 10b plots the re-
sult provided by the MSF-RS gateway without considering
the number of users when updating SC, i.e. the Lp in Eq. (1)
is not divided by UC. Obviously, under such a gateway, the
users in Class 1 cannot be ensured to get more bandwidth
than that in other classes when more users are active in
Class 1.

5.5. Adjustment of outstanding responses

The subsection observes the adjustment of W+ when the
arrival of requests is not backlogged always, i.e. MSF-RS
may be idle sometimes. In a 1500-s test, clients in Class 1
and 2 send requests every 1 s while that in Class 3 sends
one every 10 s. Besides, during the middle 500 s, clients
in Class 1 and 2 stop sending requests, which results in
insufficient requests so that the MSF-RS gateway has no re-
quest to send out. Fig. 11 reveals the relation between U
and W+. The utilization of access link stays around 0.98
as the expected U+ in the first and last 500-s periods be-
cause of sufficient arrival requests.

In the 500th–1000th s, the utilization falls apparently
and the value of W+ keeps constant as described in Section
3.2. Increasing W+ for raising the utilization during the per-
iod is in vain because the low utilization results from the
fact that the incoming requests are too few to occupy all
sub-links. Besides, the value of W varies with a wide range,
determined by the dynamically arrival requests. During the
period, any requests are forwarded immediately once they
arrive, since there are always free sub-links. Notably, at the
1000th s, once the two stopped classes restart sending re-
quests, all requests can be released soon and the utilization
jumps to the expected value.

5.6. Effect of U+ on latency

Fig. 12 depicts the user-perceived latency and the queu-
ing time spent in the MSF-RS access gateway and in the
8.83

5.32

1.44

3 Average Non-MSF-RS 

ong classes and between MSF-RS and non-MSF-RS.
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ISP-side gateway when U+ is assigned from 0.65 to 0.99.
Raising U+ follows shorter user-perceived latency because
more responses can be concurrently transmitted and the
bandwidth can be more utilized. However, the raise also
causes packets to be queued in the ISP-side gateway be-
cause of less free bandwidth to eliminate the queued pack-
ets as U+ is high. By the observation in Fig. 12, the value of
U+ is suggested to be set to 98%.
6. Affection of exceptive traffic

MSF-RS is designed under the assumption that the up-
link traffic comprises requests only and the downlink traf-
fic comprises their corresponding responses only.
However, the exceptive traffic does coexist with the as-
sumed traffic in the real environment. We classify the
exceptive traffic into three types and explain why they
do not affect the fairness or link utilization provided by
MSF-RS.

(1) Uplink exceptive traffic: The type of traffic may
include the uplink responses and the packets actively sent
from the internal users. If this traffic is heavy enough to
turn the uplink to a bottleneck, a packet scheduler with
the FQ discipline is suggested to be deployed at the access
gateway first. MSF-RS can coexist with the uplink FQ disci-
pline well, as shown in Fig. 13a. Also, if the weighted fair-
ness on uplink is not a concern, the combination of MSF-RS
and priority queues is a simple solution, as shown in
Fig. 13b. The solution gives the request traffic higher prior-
ity since they are smaller than responses usually.

(2) Downlink exceptive traffic belonging to some classes:
Such traffic is still the downlink responses, but their
requests are not recognized by the implementation of
MSF-RS. For example, POP3 mail traffic for someone’s host
belongs to Class i. It is possible since only the Web request
is recognizable for the present implementation of MSF-
RS.The MOA in MSF-RS regards these exceptive packets
as the received service of classes. That is, when the packets
not triggered by an (recognized) request arrive from the
Internet, their sizes are accumulated into the SC of the
class which the packets belong to, as other response pack-
ets triggered by requests. That is, if a user of Class i receives
a crowd of such packets from the Internet, the sizes of
packets would be accumulated into SCi. Although the addi-
tional value in SCi caused by these exceptive packets brings
the fewer requests sent out from Class i by MSF-RS, it does
not affect the weighted fairness and the link utilization.
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(3) Downlink exceptive traffic not belonging to any class:
Exceptive traffic not belonging to any class may include
requests from outside network for the responses provided
by the internal servers, or the malicious attacks. The for-
mer case is possible for the enterprises having Web servers
for their customers. The exceptive traffic contributed from
such requests is usually small, compared with other
response traffic running on the downlink. The latter case
may rudely and fully occupy the downlink, resulting in
the failure for all transmissions. However, the latter case
is a security problem and out of the scope of this work.

Since this exceptive traffic is not belonging to any class
and not counted in any SC, it will not affect the weighted
fairness between classes. Besides, although it would be
counted by WRC in the utilization of the downlink, it does
not degrade the high link utilization which WRC can en-
sure. Such traffic only causes WRC to have a smaller W+

than that in the case without the exceptive traffic. That
is, WRC may think such a small W+ is enough to fully utilize
the downlink bandwidth. Moreover, when the exceptive
traffic passed, because WRC would quickly adjust W+

according to the new U, the link utilization is not affected
in this case.

We use the following simulation to demonstrate that
the utilization is not affected by the downlink exceptive
traffic. The on–off CBR traffic not belonging to any classes
with different rates during different periods are generated
to demonstrate the responsiveness of WRC is fast enough
to keep the high link utilization. Five on/off periods are
tested: 40, 80, 160, 320, and 640 s. During the on-period,
three rates of CBR traffic are tested individually: 20%,
40%, and 60% of the downlink capacity. Each test is run
for 3000 seconds and U+ is set to 98%. Fig. 14 shows the
case where on/off period is 640 s and CBR rate is 40% of link
capacity, i.e. 0.8 Mbps. At 1280 and 2560, once the CBR
traffic stops, WRC immediately resets W+ from 7 to 13 in
order to release more requests. The bandwidth freed by
CBR traffic is fully and fast occupied by the response traffic.
In fact, the results in all tests, as shown in Table 1, reveal
that WRC keeps the utilization on 97.84% averagely, clos-
ing to the designed goal, 98%.

Although the exceptive traffic does not degrade the fair-
ness and link utilization achieved by MSF-RS, it reduces the
bandwidth available for response transmissions and thus
increases the user-perceived latency of these responses.
As shown in Section 4.1, MSF-RS has the advantage of
shorter user-perceived latency than an ordinary gateway
under no exceptive traffic. Actually, the advantage still
holds when exceptive traffic appears, as explained in the
following. When the exceptive traffic exists, the downlink
bandwidth C used in Eqs. (4)–(6) is decreased to a smaller
value, and thus a smaller W+ is adopted in MSF-RS, as
shown in Fig. 14. From Fig. 5, we know that the ratio on
Ta of a MSF-RS gateway to an ordinary gateway under a
small W+ is smaller than that under a large W+. That is, a
MSF-RS gateway can provide a much shorter user-per-
ceived latency than an ordinary gateway when exceptive
traffic exists, although the latencies in both gateways are
indeed increased in this circumstance.

7. Field trial

We implemented MSF-RS in Squid [8], which is an open-
source package of Web proxy cache, and performed a field
trial in an open network environment. Fig. 15 illustrates
the test bed for evaluating MSF-RS in Squid. An applica-
tion-layer traffic generator named Avalanche [14] is used
to emulate the behaviors of multiple clients and send re-
quests to the Web servers in the Internet. Avalanche is im-
ported with a URL list, a historical record logged by an
enterprise in a couple of days.

The access gateway installed with MSF-RS is configured
as a transparent proxy with iptables [15]. All HTTP re-
quests destined to port 80 are directed to port 3128, the
service port of Squid. A layer 3 switch is acted as the ISP-
side gateway. The bandwidth of the access link between
the access gateway and the layer 3 switch is limited to
2 Mbps. As the configuration in simulation, three classes
are provided with service ratio 4:2:1. Notably, the cache
function is disabled to avoid getting responses directly
from caches. The effects of MSF-RS Squid are observed in
terms of weighted fairness, user-perceived latency, and
CPU loading as follows.



Table 2
User-perceived latency comparisons

Item Case

Original
Squid

MSF-RS Squid

User-perceived
latency

1686.1 ms 1174.9 ms (include queuing time
515.5 ms)

Table 3
Comparison between MSF-RS and the original Squid on CPU time

Case Link capacity

2 Mbps 10 Mbps

MSF-RS Squid with 10 Classes 44.8 s 56.34 s
MSF-RS Squid with 100 Classes 46.02 s 58.04 s
Original Squid 63.22 s 84.90 s

Table 1
The utilization of link under oscillating CBR traffic (U+ = 98%)

On/off period (s) The rate of CBR during on-period

0.4 Mbps (%) 0.8 Mbps (%) 1.2 Mbps (%)

40 97.94 97.91 97.62
80 97.90 97.95 97.77
160 97.94 97.92 97.68
320 97.83 97.80 97.76
640 97.93 97.83 97.85
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(1) Weighted fairness: The amounts of bandwidth allo-
cated to three classes for a 200-s test are 1.03, 0.52, and
0.26 Mbps, respectively, when backlogged requests are
applied. The result quite obeys the configured service ratio
4:2:1.

(2) User-perceived latency: Table 2 shows the latency
provided by the original Squid and the MSF-RS Squid.
The original Squid case represents all requests are immedi-
ately released by the proxy. The MSF-RS Squid reduces
(1686-1175)/1686, or 30%, of the average user-perceived
latency in the original Squid case, although the user-per-
ceived latency in MSF-RS includes the additional queuing
time, 515.5 ms.

(3) CPU loading: Table 3 shows the benchmark results on
CPU time occupied by the MSF-RS Squid process and the
original Squid process when both processes provide the
same link-speed throughput during 200 s. As expected,
the CPU time increases as the number of classes or the
access link bandwidth increases. Notably, the time under
MSF-RS is always lower than that under the original Squid.
Under the original Squid, all requests are immediately
released by the proxy, bringing great number of concurrent
responses. However, a proper number of concurrent
responses are allowed by MSF-RS. It is believed that the
number of concurrent responses dominates the cost of
CPU computing.
8. Conclusions and future work

Scheduling the uplink requests is a potential method to
manage the bottlenecked downlink at the user-side access
gateway. Because the class-based fair queuing (FQ) disci-
pline is widely and maturely used in scheduling packets,
user space
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Fig. 15. The test bed for fiel
we first investigate the possibility of applying this disci-
pline to schedule requests. However, we found that three
problems occur at applying the class-based FQ discipline
to schedule requests: the timing and ordering to release re-
quests and the suitability of class-based weighted fairness
for user-level differentiation. Based on the investigation on
the three problems, we propose the minimum-service first
request scheduling (MSF-RS) scheme to manage the access
link bandwidth at user-side access gateway. To achieve
high bandwidth utilization while avoiding congesting the
link, the window rate control module in MSF-RS deter-
mines the releasing rate of requests and the number of out-
standing responses. To perform user-based weighted
fairness and bandwidth sharing, the minimum-service
arbiter module in MSF-RS always selects the request from
the class receiving the least normalized responses.

The analysis first proves that MSF-RS shortens 25% of
the user-perceived latency on average, compared with an
ordinary gateway, because the number of concurrent
transmissions is controlled, even though this control may
queue requests in the MSF-RS gateway. Besides, the analy-
sis on worst-case fairness represents that the MSF-RS gate-
way does provide the differential services among classes
while avoiding the low-class users from long latency. The
results in the simulation and in the field trial show that
the bandwidth usage between classes conforms to the tar-
geted ratio and the idle bandwidth is proportionally shared
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by all active classes. Besides, MSF-RS reduces 23.44% and
30% of user-perceived latency in the simulation and the
field trial, respectively.

Currently, http traffic is growing due to the explosion of
video streaming services. For streaming services, MSF-RS is
still better than an ordinary gateway. The reason is ex-
plained as follows. MSF-RS does not provide a high-class
user to use a significantly high throughput to download
the video. In fact, it simply releases requests from high-
class queue more frequently than low-class queue, but
does not control the downloading rate of a single transmis-
sion. If the video server can properly determine transmit-
ting rate, the transmission will not overuse the
bandwidth. Actually, many existing servers can adjust this
rate according to the size of client’s buffer. In contrast, if
the video server sends data as soon as possible, only a
few high-class requests will be released since MSF-RS pro-
vides weighted fairness among high and low classes. Thus
the low-class users do not encounter the starvation. There-
fore, for streaming services, MSF-RS is still better than an
ordinary gateway where all requests are released and no
differentiation exists. Under an ordinary gateway, either
high-class or low-class users will suffer insufficient band-
width. The viewing of videos will be suspended to wait
more data arrival, although users may be quickly
initialized.

In the future, we will further enhance MSF-RS to sup-
port other request–response protocols, such as FTP and
POP3. Finally, to further reduce the overhead, implement-
ing MSF-RS in the kernel space may be considered.
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