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用 計 算 方 法 識 別 哺 乳 類 動 物 的 基 因 轉 錄 啟 始 點 

學生：林在營               指導教授：黃憲達 教授 

國立交通大學理學院碩士在職專班 

中文摘要 

轉錄是ＲＮＡ從基因染色體的ＤＮＡ片段進行複製的過程，其受到啟

動子區域的影響而作用。 核心啟動子（Core promoter）是在轉錄起始點

（TSS）鄰近約100個基元的區域，轉錄啟始點是轉錄過程的起始點，而準

確的定位出核心啟動子的區域是我們理解基因轉錄規則的第一步。 

在這篇論文裡，我們提出一種基於ＤＮＡ穩定性及核苷酸分布及機器

學習理論的計算方法用以鑑定哺乳類動物基因組的轉錄啟始點。 己知的轉

錄啟始點資料是從DBTSS資料庫取得而哺乳類動物的基因組序列則是由

NCBI第35版的資料庫裡取得。我們整合了支持向量機器 (Support Vector 

Machine)來建立預測轉錄啟始點的模型。為了了解我們進行預測的方法的

好壞，我們使用了交叉比對(k-fold cross-validation)的方式進行驗證。初步

的結果顯示我們的預測方法的準確性達70%以上，而跟其他論文提出的方法

進行比較，我們的系統的確較其他方法有較好的效能。 

 

關鍵字: Transcriptional start sites, promoter, Support Vector Machine (SVM), 
DNA stability 
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Computationally Identifying Core Promoter Regions of 
Genes in Mammalian Genomes 

student：Tsai-Ying Lin                       Advisors：Dr. Hsien-Da Huang 

Institute of Science, 
National Chiao Tung University 

ABSTRACT 

  Gene transcription is an extremely important mechanism in the cell, which is 
regulated by transcription factors (TFs), binding mostly and specifically to the 5’ 
end of genes, the so called promoter region. The core promoter is a region of 
about 100 base-pairs flanking the transcriptional start site (TSS), which serves as 
the recognition site for the basal transcription apparatus. To accurately determine 
the core promoter in gene upstream is the first step to decipher the regulation of 
gene transcription.  

In the study, we incorporated Support Vector Machine (SVM) with three 
useful regulatory features such as statistically significant 6-mer patterns, 
nucleotide composition, and DNA stability to identify the transcriptional start 
sites in mammalian genomes. The experimentally verified transcriptional start 
sites were obtained from DBTSS, and the genomic sequences of the mammalian 
genomes were obtained from NCBI build 35. K-fold cross-validation was used 
to evaluate the prediction performance of the three regulatory features extracted 
for core promoters, and the preliminary results suggested that the prediction 
accuracy could be greater than 70%. By comparing to other previously 
developed approach, our method had better prediction performance than others. 
 
Keywords: Transcriptional start sites, promoter, Support Vector Machine 
(SVM), DNA stability 
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Chapter 1 Introduction 

 
1.1 Background 

The science was stemmed from exploring the universe’s secret. The life is a 

part of the universe, so studying the mysterious biological phenomena clearly 

had been one of the goals of scientist’s efforts. Since James Watson and Francis 

Crick derived out the structure model of DNA in 1953, the scientist untied the 

hereditary secret and regulatory mechanism of the gene progressively with this 

foundation. 

 

1.1.1 Central Dogma 

The majority of genes are expressed as the proteins they encode. As shown in 

the Figure 1.1, the central dogma of molecular biology is based on the principle 

that the flow of genetic information travels from DNA to RNA and finally to the 

translation of proteins. In the transcription step, DNA is transcribed to RNA. 

There are various types of RNA including tRNA (transfer RNA), rRNA 

(ribosomal RNA) and mRNA (messenger RNA) in the transcription step. The 

mRNA is the blueprint in the process of protein synthesis. The process of mRNA 

transform to protein called translation. The direction of transcription and 

translation is unidirectional, no reverse direction is detected. But one process of 

RNA transform to DNA called reverse transcription which occur in mRNA 
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reverse transcript to cDNA (complementary DNA) for RNA amplification. 

 

 

Figure 1.1 Central dogma of molecular biology. 

(The figure is obtained from http://cats.med.uvm.edu/.../1_centraldogma_wisc_13.jpg)  

 

1.1.2 Transcriptional Start sites (TSS) 

Transcription, the process whereby RNA copies are made from sections of the 

DNA genome, is directed by promoter regions (Down and Hubbard 2002). The 

promoter is a DNA sequence which is usually located on the upstream of a gene 

transcriptional starting site (TSS). The core promoter, a region of about 100 

base-pairs flanking the transcriptional start site (TSS), serves as the recognition 

site for the basal transcription apparatus (Ohler, Liao et al. 2002). Figure 1.2 

shows a simplified gene structure and promoter region. When RNA polymerase 

II and some kinds of transcription factors bind onto the gene promoter region 
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together, the transcription of a gene will be activated and the messenger RNA 

(mRNA) will be transcribed from the DNA sequence. We have known that the 

promoter region is always located on the upstream of a gene and we will try to 

find out some hallmarks nearby the known transcriptional start sites. Thus, we 

can identify the transcriptional start sites on the unknown DNA sequences by 

using these hallmarks. 

 

 

Figure 1.2 A simplified gene structure. 

 

1.1.3 Transcriptional Regulation 

Transcriptional regulation is one of the most important means of gene 

regulation. Uncovering transcriptional regulatory networks helps us to 

understanding the complex cellular process (Xing and van der Laan 2005). As 
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shown in the Figure 1.3, gene transcription is regulated by transcription factors 

(TFs) which are binding mostly and specifically to the 5’ end of genes. The RNA 

polymerase II promoter is the critical region that regulates differential 

transcription of protein coding genes (Solovyev and Shahmuradov 2003), and is 

located near the transcription start site (TSS). A typical promoter region is 

believed to comprise short DNA sequences known as regulatory elements, 

which includes transcription factor binding sites (TFBSs) (Prakash and Tompa 

2005). 

About 10~15% of mammalian DNA re-associated very rapidly. This class 

includes tandem repeats. It includes Satellites (100 kb to over 1Mb), 

Ministatellites (1kb ~ 20kb), Microsatellites (Short Tandem repeats, 1~ 6 base in 

a region less than 150 base). Interspersed repeats are repeated DNA sequences 

located at dispersed regions in a genome. They are also known as mobile 

elements or transposable elements. In mammals, the most common mobile 

elements are LINEs (Long Interspersed Nuclear Elements) and SINEs (Short 

Interspersed nuclear Elements). 

The structure of eukaryotic promoters is more complex than prokayotic 

promoters and they have several sequence motifs, for example TATA box, 

CCAAT box, GC box, and INR box (Kanhere and Bansal 2005). Therefore, 

some concepts are also used to analyze the promoter, including the presence of 

CpG islands close to the transcription start site, the presence of a specific 
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transcription factor binding site, statistical properties of proximal and core 

promoters rather than other genomic sequences, the orthologous gene promoters, 

and restricting the promoter region from using information from mRNA 

transcripts (Bajic, Tan et al. 2004). 

 

 

Figure 1.3 Transcriptional regulation. 

(The figure is obtained from http://www.wellesley.edu/.../06eukaryotes.jpg) 
 

1.2 Motivation 

To accurately determine the core promoter in gene upstream is the first step 

to decipher the regulation of gene transcription. In recent years, powerful 
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computational techniques have increasingly been used to analyze annotated 

DNA sequences to uncover the secret of human genomes. Gene promoter 

prediction is important for guiding experimental biologists to find novel gene 

promoter region. However, the existing promoter prediction tools result in low 

sensitivity or low specificity. The low prediction accuracy stems from the low 

quality of regulatory features or training data source. Therefore, a computational 

method integrated with good regulatory features should be proposed. 

 

1.3 Goal 

Developing an efficient and effective system to identify gene transcriptional 

start sites is important in silico tools for guiding experimental biologists. 

However, the existing promoter prediction programs can only be used for minor 

reference because of them results in low sensitivity or low specificity. Therefore, 

the main purpose of this study is to incorporate the powerful computational 

method with useful regulatory features of core promoters for gene promoter 

identification that results in high prediction sensitivity and specificity. This study 

can help researchers identifying gene transcriptional promoter region more 

efficiently and exactly. 

 

1.4 Challenges 

  Before extracting the useful regulatory features for core promoters, the 
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experimentally verified transcriptional start sites need to be obtained. In this 

thesis, the main source of the known transcriptional start sites were obtained 

from DBTSS and the genomic sequences of the mammalian genomes were 

obtained from NCBI build 35. All the promoter sequences obtained from 

DBTSS were stored into our databank for analyzing the core promoter region. 

However, the length of sequences obtained from DBTSS was 1201 bps (from 

-1000 to +200), which was too short to completely analyze the flanking region 

of TSS. We used the Blast program to align the promoter sequence of DBTSS to 

the genomic sequences of NCBI build 35, then the longer sequences of 6001 

(from -3000 to +3000) were obtained.  

Besides, the problem of identifying gene transcriptional start sites itself 

remains some difficult challenges. The most important one challenge is that no 

reliable dataset of experimentally verified transcriptional start sites can be used 

to analyze the specifically regulatory elements of promoter. Moreover, the 

existing promoter prediction tools result in low numbers of true positive 

predictions and high numbers of false positive predictions. The detailed 

description of the existing promoter prediction methods will be discussed in 

chapter 2. 

The research scope of this thesis is concentrated on mammalian (human and 

mouse) genomes. The reason for using the mammalian genomes is that the 

sequences of gene transcriptional start sites obtained from DBTSS just had 

human and mouse. In addition, the reason for obtaining the sequences of gene 
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transcriptional start sites from DBTSS is its amount much more than other 

databases. Therefore, we constrict our scope to identify transcriptional start sites 

in mammalian genomes. 
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Chapter 2 Related Works 

 
2.1 Experimental TSS data source 

 Two popular experimentally verified transcriptional start site databases, 

such as Eukaryotic Promoter Database (EPD) and Database of Transcriptional 

Start Site (DBTSS), were widely used to analyze the promoter region. 

 

2.1.1 Eukaryotic Promoter Database (EPD) 

The Eukaryotic Promoter Database (EPD) is an annotated non-redundant 

collection of eukaryotic POL II promoters, for which the transcription start site 

has been determined experimentally (Schmid, Praz et al. 2004). EPD is a 

collection of 4,810 eukaryotic POL II promoters. Tools for analysing sequence 

motifs around TSSs defined in EPD are provided by the signal search analysis 

server. EPD can be accessed at http://www.epd. isb-sib.ch. 

 

2.1.2 Database of Transcriptional Start Sites (DBTSS) 

  Suzuki et al developed a novel method namely oligo-capping to collect the 

full-length cDNA libraries. The different between cloning method and 

oligo-capping method is shown in Fig. 2.1. The characteristics of oligo-capping 

method are extensive, high throughput, and high accuracy. DBTSS (Suzuki, 

Yamashita et al. 2004) was constructed in 2002 based on the full-length cDNA 
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libraries. 

 

 

Figure 2.1 The comparison between the cloning method and the oligo-capping 
method.  

(The figure is obtained from http://dbtss_old.hgc.jp/hg17/) 
 

DBTSS is a collection of transcriptional start sites and adjacent promoters, 

which are experimentally determined by intensive analyses of full-length 

cDNAs. In order to extract biological insight from the compiled sequence 

information, search engines for putative transcription factor binding sites are 

implemented. Also, for molecular evolutionary studies of the transcriptional 

regulations, detailed sequence alignments of the promoters between human, 

mouse and other model organisms are provided. DBTSS is available on the web 

in Japan at http://dbtss.hgc.jp. The positional information of the TSSs, sequences 

of the promoters and related information can also be downloaded in flat file 

form from the download site. The current release of DBTSS (5.1) contains TSS 
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information of 15,262 and 14,162 genes determined by 1.4 and 0.4 million 

cDNAs in humans and mice respectively. 

 

2.2 Related Works of Gene Promoter Prediction Tools 

Gene promoter prediction is important in silico analysis for guiding 

experimental biologists. Although several gene promoter prediction tools had 

been developed, wet-lab biologists didn’t much believe that because of the low 

prediction accuracy. Until the appearance of PromoterInspector (Scherf, 

Klingenhoff et al. 2000), gene promoter prediction tools suffered from low 

accuracy. After the appearance of PromoterInspector, several efficient gene 

promoter prediction tools have also been developed. In the following, we expand 

further on their reviews and include more recent research on gene promoter 

prediction. 

 

2.2.1 NNPP (Version 2.2)  

NNPP 2.2 (Reese 2001) is constructed of time-delay neural networks. The 

network model is a special case of a feed-forward neural network, which has 

been successfully applied to voice recognition. Time-delay neural networks 

slightly differ from feed-forward neural networks in the design of the hidden 

layer. The hidden nodes of a standard feed-forward model are determined by 

experiment or by lemma. In a time-delay model, the hidden nodes are 
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determined by the number of the input nodes and the input size of the receptive 

fields. Therefore, the input layer and the hidden layer are no longer fully 

connected. The hidden nodes in a hidden layer are only connected to input nodes 

within a particular receptive field. In a time-delay model, the hidden node is also 

called a feature node and is known as weight sharing in neural network 

technology.  

In the training process, all the weights in the same receptive filed will be 

calculated and then copied to each other. However, the weights computed 

between the hidden nodes and the output nodes are still based on standard 

feed-forward algorithms. To optimize promoter prediction accuracy, two 

time-delay neural network models which recognize TATA-box with 30 bp (-40 

bp to -10 bp from the TSS) and Inr (-14 bp to +11 bp from the TSS) regions of 

promoters are used. A combined model with 51 bps (-40 bps upstream to +11 

bps downstream of TSS) is used along with the two models mentioned above for 

promoter prediction. The testing results showed that NNPP demonstrated 75% 

true positives for a fruit fly genome with a length of 2.9 Mbps. 

 

2.2.2 McPromoter 

MCPromoter (Ohler, Stemmer et al. 2000) coordinated three interpolated 

Markov chains (IMCs) to look for eukaryotic polymerase II TSSs in genomic 

DNA. It consists of a model for promoter sequences and a mixture model for 

non-promoter sequences, containing sub-models for coding and non-coding 
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sequences. To localize TSSs, a window of 300 bases is shifted over the sequence 

in steps of 10 bases. At every position, the difference between the log likelihood 

of the promoter and the non-promoter model is computed. The resulting plot 

describes the regulatory potential over the sequence and is smoothed by a 

median and hysteresis filter (see Duda and Hart 1973) to eliminate single false 

predictions and reduce the high number of neighboring minima that are due to 

noise. The program then makes a prediction for each local minimum below a 

pre-specified threshold. 

  The training dataset are extracted from the EPD which contains a total of 565 

vertebrate promoter sequences, and each contained 250 bp upstream and 50 bp 

downstream from the TSS. After the five-fold cross validation evaluation, the 

system reached an 84% correlation coefficient for promoters versus coding 

regions and achieved a 53% correlation coefficient for promoters versus 

non-coding regions. 

 

2.2.3 Eponine 

  Eponine (Down and Hubbard 2002) proposed a probabilistic method for 

detecting transcription start sites (TSS) in mammalian genomic sequence, with 

good specificity and excellent positional accuracy. Eponine models consist of a 

set of DNA weight matrices recognizing specific sequence motifs. Each of these 

is associated with a position distribution relative to the transcription start site. 
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  Eponine has been tested by comparing the output with annotated mRNAs 

from human chromosome 22. From this work, they estimate that using the 

default threshold (0.999), it detects >50% of transcription start sites with 70% 

specificity. However, it does not always predict the direction of transcription 

correctly. It’s an effect which seems to be common among computational TSS 

finders. 

 

2.2.4 CpGProD 

CpGProD (Ponger and Mouchiroud 2002) is a program dedicated to the 

prediction of promoters associated with CpG Islands in mammalian genomic 

sequences. In vertebrate genomes, the CpG Islands (CGIs) are involved in DNA 

methylation of gene transcription. 50-60% of the human genes exhibit a CGI 

over the transcription start site (TSS) but not all the CGIs are associated with 

promoter regions (Larsen, Gundersen et al. 1992). CpGProD uses a CGI 

definition more stringent than that proposed by Gardiner-Garden and Frommer 

(1987). CpG Island are defined as DNA regions longer than 500 nucleotides 

(instead 200 bp), with a moving average G + C frequency above 0.5 and a 

moving average CpG observed/expected (CpG o/e) ratio greater than 0.6. 

Although it is strictly dedicated to this particular promoter class corresponding 

to ≈50% of the genes, CpGProD exhibits a higher sensitivity and specificity than 

other tools used for promoter prediction.  
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2.2.5 PromoterInspector 

PromoterInspector (Scherf, Klingenhoff et al. 2000) is one of the most 

well-known content-based gene TSSs prediction tools, which gives attention to 

analyzing genetic context instead of context location. Its main idea is to extract 

common sequence features from sequences and generate a set of context 

features called IUPAC (International Union of Pure and Applied Chemistry) 

word dictionaries. IUPAC word dictionaries are composed of an IUPAC group 

which is defined by a set of oligonucleotides and a number of undefined base 

pairs (i.e. the letter “N” could represent A, C, G or T). To optimally distinguish 

a promoter region from an un-annotated DNA sequence, PromoterInspector 

introduces not only a promoter region as the training set but also three 

non-promoter sequences, that is, exon, intron, and 3’UTR. These training data 

sets then generate three classifiers: promoter and exon, promoter and intron, and 

promoter and 3’UTR. These three classifiers are the basis of PromoterInspector. 

In the experiment results, the vertebrate promoter training data were extracted 

from EPD, and the non-promoter exon and intron were randomly downloaded 

from NCBI GenBank; the 3’UTR was selected from the UTR database. The 

valuation data that were collected by Ficktt and Hatzigeorgiou were tested. The 

greatest advantage of PromoterInspector seems to be that of dramatically 

reducing the false positives. This advantage can help lab researchers avoid 



 16

unnecessary experiments or help other prediction tools further and exactly locate 

the transcriptional start sites. 

 

2.2.6 Promoter 2.0 

Promoter 2.0 (Knudsen 1999) combines several neural networks. Each 

neural network model uses perceptron-like algorithms. In the training phase, the 

inputs of the neural networks are a small window of DNA sequence and the 

output of other networks. For example, giving a network with a given input 

window size and a set of weights, the network scans along a DNA sequence and 

records the scores that are generated from every segment. Next, another new 

network with the same structure but with different weight scans the same DNA 

sequence. The highest score of each of all the previous networks for the same 

DNA sequence will be multiplied by a separation function. The result will 

become the input of this new network. In Promoter 2.0, there are four networks 

responded to TATA-box, cap site, CCAAT-box and GC box. To optimize these 

neural networks, genetic algorithms are used to randomly choose and change an 

individual weight. If the performance of network improved, the new weight was 

kept. The new weight was ignored if the performance did not improve. 

Nevertheless, the crossover operation of genetic algorithms is not used in 

Promoter 2.0. The training and testing data of Promoter 2.0 were 100 vertebrate 

sequences. For a positive set, 200 bps upstream of the cap site was selected as 

the promoter sequence. In contrast, 200 bps downstream of the cap site was 
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assigned as the non-promoter sequence; Promoter 2.0 reported 63% true 

positives for its testing data. 

 

2.2.7 Dragon Promoter Finder 

The Dragon Promoter Finder 1.2 (DPF) (Bajic, Seah et al. 2002) is an gene 

promoter prediction model for vertebrates. The DPF consists of a nonlinear 

promoter recognition model, sensors for recognizing specific functional regions 

of DNA, signal processing, and artificial neural networks. Before using the DPF, 

a user has to supply a DNA sequence and a selected accuracy range to the DPF 

system. The DPF then reads the DNA sequence by a sliding window and shifts 

one base pair each time. The data window’s content passes through three sensors. 

Each sensor responds to a specific functional region, such as a promoter, exon 

and intron. A non-linear signal processing model further analyzes the sensor’s 

output and feeds it into to a neural network to ascertain the input DNA sequence 

and determine if a promoter region exists. 

The DPF 1.3 extends the capability for recognizing a GC-rich or GC-poor 

DNA sequence. The DPF used 793 different vertebrate promoter sequences 

from EPD as positive training set; each sequence was 250 bps long, covering 

200 bps upstream and 50 bps downstream from the TSS. For a negative training 

set, the DPF used 800 coding-exon and 4000 intron sequences. To further tune 

the system parameters, DPF extended 400 3’ UTR human sequences and 200 

human exon and 500 human intron sequences to the training set. Each sequence 
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was also 250 bps long. The final testing data contained 146 human and 

humanviral sequences, which contained 159 TSSs. The DPF showed 66% true 

positives, which outperformed other tools significantly. 

 

2.2.8 Dragon Gene Start Finder 

  Dragon Gene Start Finder (Dragon GSF) (Bajic and Seah 2003) combines 

three systems. The first one is Dragon Promoter Finder (DPF) (Bajic et al (2003), 

the second one is the system which estimates the presence of the CpG Islands, 

and the third one combines information from these two into the final predictions. 

The third system performs the sensor fusion function utilizing data 

preprocessing and an artificial neural network (ANN). The combination 

algorithm will only select the one of possibly many predicted TSS locations in 

the region [-3700,+3700] relative to the central point of the CpG Island, such 

that jointly with the other input data the ANN produces the highest score above 

the selected threshold. 

Dragon GSF made every effort not to mislead the user with claims of 

superior performance. Dragon GSF presented the performance as found on the 

tests on different genomic sequences including whole human chromosomes 4, 

21, and 22. Based on these results Dragon GSF infer that the gene start finding 

capabilities of Dragon GSF system are among the best currently available. The 

estimated performance for the human genome of Dragon GSF implies sensitivity 

of ~65% (relative to all promoters), sensitivity of ~88% relative to the CpG 
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Island related promoters, and positive predictive value of ~78% relative to all 

known genes. 

 

2.2.9 First Exon Finder 

 First Exon Finder (FirstEF) (Davuluri, Grosse et al. 2001) uses different 

discriminating functions structured as a decision tree to predict the first exons 

and promoters in a gene. The probabilistic models are designed to find potential 

first donor sites and CpG-related and non-CpG-related promoter regions based 

on discriminating analysis. For each potential first donor and upstream promoter 

region, FirstEF decides whether the intermediate region could be a potential first 

exon based on a set of quadratic discriminating functions. Test and training sets 

came from the same database. 

 FirstEF’s accuracy was tested by ten-fold cross-validation analysis and 

running the program on the complete exon sequences of genes in chromosomes 

21 and 22. First exons predictions were considered true positives if the predicted 

first donor site was identical to the real donor site and the predicted 

transcriptional start site (TSS) fell within the region between 500 bp before and 

200 bp after the real TSS. Recall, precision, and the correlation coefficient were 

used to judge the accuracy of FirstEF. 

 

2.2.10 Summary of Gene Promoter Prediction Tools 
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  The gene promoter prediction tools introduced in this Session are summarized 

in Table 2.1. No previously developed tools can achieve the performance with 

higher sensitivity than 70% and higher specificity than 70%. 
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Table 2.1 Summary of gene promoter prediction tools. 

Tool Method Species Feature 
Consider 

Data 
Source Citation Sn. Sp. 

False 
positive 

rate 
Acc. Available 

Eponine 
Relevance 
Vector Machine 
(RVM) 

Mammalian TATA box in a G+C 
rich domain EPD Reese 2001  53.5% 73.5% - - Yes 

Promoter 2.0 ANN Vertebrate 
Four TFBSs (TATA 
box, CCAAT box, 
GC box, Inr) 

EPD Ohler, Stemmer 
et al. 2000  

68% - 8% - No 

NNPP 2.2 ANN Drosophila TATA box & Inr EPD Down and 
Hubbard 2002  

70% - 7.2% - Yes 

CpGProD Statistics based mammalian CpG Island GenBank Ponger and 
Mouchiroud 2002 56% 39% - - Yes 

PromoterInspector Statistics based Vertebrate IUPAC EPD 
Scherf, 
Klingenhoff  
et al. 2000  

48% 85% - - No 

Dragon PF ANN Human Chr. 
22 CpG Island related EPD Knudsen 1999  60.17% - - - No 

Dragon GSF ANN Human Chr. 
4,21,22 

G+C rich &G+C 
poor DBTSS Bajic, Seah et al. 

2002  
65.10% - - 77.80% No 

McPromoter ANN Human Chr. 
22 

Interpolated 
Markov 
Model 

EPD Bajic and Seah 
2003  

52.1% 40.3% - - Yes 

First Exon Finder 
Quadratic 
discriminating 
analysis 

Human Chr. 
21,22 CpG Island related NCBI Davuluri, Grosse 

et al. 2001  
79.3% 53.5% - - No 

* Sn. = Sensitivity, Sp. = Specificity, Acc. = Accuracy. 
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2.3 DNA stability 

Aditi Kanhere et al. (Kanhere and Bansal 2005) devised a novel regulatory 

feature, DNA stability, for prokaryotic promoter prediction. The DNA stability is 

the structural property of the fragment of the DNA duplex, which is calculated 

based on the minimum free energy created by the hydrogen bond of the A-T and 

C-G pairs. There are several factors that stabilize a DNA double helix. Among the 

significant factors are: 

1. Stacking Interaction 

2. Watson-Crick Hydrogen Bonding Interaction 

3. Interaction with Water Molecules and Metal Ions 

SantaLucia et al. (SantaLucia 1998) use the unified standard free energy of ten 

dinucleotides duplexes, such as AA/TT, AT/TA, TA/AT, CA/GT, GT/CA, CT/GA, 

GA/CT, CG/GC, GC/CG, and GG/CC (SantaLucia 1998), to calculate the standard 

free energy change of a DNA oligonucleotide based on dinucleotid e composition. 

The free energy formula and the calculation example that used by Santalucia were 

shown in Fig. 2.2 and Fig. 2.3, respectively. 
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Figure 2.2 The formula of calculating the free energy for the DNA sequence. 

 

 
Figure 2.3  The example of free energy computation. 

 

Aditi Kanhere and Manju Bansal presented a novel prokaryotic promoter 

prediction method based on DNA stability (Kanhere and Bansal 2005). They 

showed that the promoter region is less stable and hence more prone to melting as 

compared to other genomic regions. Figure 2.4 shows the distributions of average 

free energy of DNA duplex formation, and reveals a peak near the TSS, lying 
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between -10 and -30 region, which corresponds to the TATA box in the eukaryotic 

promoter sequences.  Their analysis also showed that a method of promoter 

prediction based on the differences in the stability of DNA sequences in the 

promoter and non-promoter region works much better compared to existing 

prokaryotic promoter prediction programs, which are based on sequence motif 

searches. At present the method works optimally for genomes such as that of 

Escherichia coli, which have near 50 % G+C composition and also performs 

satisfactorily in case of other prokaryotic promoters. 

 

 

Figure 2.4 Average free energy nearby TSSs of three species. 

 

2.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a popular technique for classification (Hsu, 

Chang et al.). A support vector machine (SVM) is a supervised learning technique 

from the field of machine learning applicable to both classification and regression. 
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Rooted in the Statistical Learning Theory developed by Vladimir Vapnik and 

co-workers at AT&T Bell Laboratories in 1995(Vapnik 1995), SVMs are based on 

the principle of Structural Risk Minimization. As shown in Fig. 2.5, the goal of 

SVM is to produce a model which predicts target value of data instances in the 

testing set which are given only the attributes. 

 

 
Figure 2.5 The concept of SVM 

 

LIBSVM (Chang and Lin 2001) was developed by Chih-Chung Chang and 

Chih-Jen Lin. LIBSVM is an integrated software for support vector classification, 

regression, and distribution estimation. LIBSVM supports the multi-class 

classification. Since version 2.8, it implements an SMO-type algorithm. Their goal 

is to help users from other fields to easily use SVM as a tool. The SVM process 
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overview is shown in Fig. 2.6. 

 

 

Figure 2.6 SVM process overview 
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Chapter 3 Material and Methods 

 
3.1 Materials 

The experimentally verified transcriptional start sites of DBTSS and human 

genome sequence of NCBI are used in this research.  

 

3.1.1 Database of Transcriptional Start Site (DBTSS) and EPD 

  We extract the flanking sequence of experimentally verified transcriptional start 

sites form DBTSS. The vision of DBTSS we used is release 5.1.0. As given in 

Table 3.1, it contains 30,964 human promoter sequences which are length 1,201 

base pairs (from -1,000 to +200) within 15,262 genes. And 8,308 human genes are 

found to have putative multiple promoters. As shown in Table 3.2, 1,871 human 

promoter sequences with length 6,000 base pairs (from -3000 to +3000) were 

obtained from EPD for the independent test, as well as the 196 mouse promoter 

sequences. 

 

Table 3.1 The statistics of human and mouse experimentally TSSs in DBTSS. 

Species TSSs Genes Region length 

Human 30,964 15,262 -1000 ~ +200 1,201 

Mouse 19,924 13,704 -1000 ~ +200 1,201 
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Table 3.2 The statistics of human and mouse experimentally TSSs in EPD. 

Species TSSs Region length 

Human 1,871 -3000 ~ +3000 6,000 

Mouse 196 -3000 ~ +3000 6,000 

 

3.1.2 NCBI Genome Sequences 

  We extract the human whole genome sequences from NCBI. The vision we used 

is NCBI build 35 release 1. The total length of sequences assembled was 

3,021,400,000 base pair. 

 

3.2 Methods 

We developed a gene promoter prediction method which integrates novel 

regulatory features with Support Vector Machine (SVM). Figure 3.1 shows the 

system flow in this works, there are three stages in developing TSSs prediction 

method. Stage 1 is to construct the training dataset for the TSS prediction. In the 

Stage 2, three kinds of regulatory features in the flanking region of experimentally 

verified TSSs are extracted and analyzed. Finally, Stage 3 uses the SVM to 

construct the classifying model for the three selected features and evaluate the 

prediction performance. We will discuss every stage in detailed as following. 
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Figure 3.1 System flow of prediction tool developing. 

 

3.2.1 Dataset Construction 

  The experimentally verified human promoter sequences were extract from 

DBTSS which contains 30,964 experimentally TSSs. All the promoter sequence 
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length of DBTSS are 1,201 base pairs (bps), which is extracted from 1,000 bps 

upstream to 201 bps downstream of the TSS. Because of the sequences we 

obtained from DBTSS were too short to be analyzed, we use BLAST to align the 

promoter sequences of DBTSS to the human whole genome sequence. With the 

alignment preprocess, we got the 6,000 bps sequence length of each promoter 

sequence (from 3,000 bps upstream to 3000 downstream of the TSS).  

After the alignment preprocessing, we should make sure that each promoter 

sequence only contains just one TSS in the region of 6,000 bps sequence length. 

Therefore, we dropped the promoter sequences that had multiple experimental 

TSSs in the region of 6,000 bps sequence length. Finally, it remains 6,464 

promoter sequences which have unique TSS in the region of 6,000 bps sequence 

length. 

Furthermore, we also consider if the sequences in our dataset contains CpG 

Island or not. We used the CpG island prediction tool “CpGproD” to classify all 

the 6,464 promoter sequences into two groups (has CpG Isalnd or not). Table 3.2 

shows the number of sequences of three groups, Group 1: all promoter sequences; 

Group 2: promoter sequences without CpG Island; Group 3: promoter sequences 

with CpG Island.  

Table 3.3 Numbers of sequence of group 1, 2, and 3. 

Group Numbers of sequence 
1 (All) 6,464 
2 (Non-CpG) 1,566 
3 (CpG) 4,898 
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3.2.2 Feature Extraction 

In the feature extraction stage, we were trying to extract the useful regulatory 

features of promoter sequences to accurately identify human TSSs. We surveyed 

many related promoter prediction methods, and finally extracted three classifying 

features such as statistically significant 6-mer pattern, nucleotide composition, and 

DNA stability. 

 

3.2.2.1 Statistically Significant 6-mer Pattern 

First of all, we must to define the positive set and negative set of training data. 

Positive set was extracted from flanking regions of TSSs liked the upstream 200 to 

downstream 100 of TSS. The whole genomic regions other than the regions of 

positive set were defined as negative set. Following, we computed occurrence 

probability of 6-mer patterns for positive set and negative set according to the 

formula: 

∑

∑
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                                                  (1) 

, where P denotes the occurrence probability, S denotes the number of 6-mer 

pattern occurrence in one sequence, and Len denotes the length of a sequence. 

After that we computed the occurrence ratio of every 6-mer pattern. The formula 

of Occurrence ratio: 



 32

 
Pneg
PposO =                                                       (2) 

, where O denotes occurrence ratio, Ppos denotes the probability of positive set, and 

Pneg denotes the probability of negative set. Finally, by optimized the top 

occurrence ratio pattern number, we chose top 60 occurrence rate of these patterns 

as features. 

 

3.2.2.2 Nucleotide Composition 

  We try to analyze the nucleotide composition in the promoter region, the 

average occurrence rate of monomer, dimer, and trimer nucleotide are calculated 

in window size 20 bps sliding on the promoter sequence. The formula of average 

nucleotide occurrence rate:  

N

P
AVG

N

i
∑
== 1                                                     (3) 

, where AVG denotes average nucleotide occurrence rate of the sliding window 

with size 10 bps, P denotes pattern occurrence times of every sequence, and N 

denotes the total number of sequences in our dataset. Then we specify the 

monomer nucleotide A and C occurrence rate as standard and computed a Pearson 

correlation coefficient for the other patterns with these two patterns to determine 

whether their correlation coefficient values are highly correlated. The cutoff value 

of the Pearson correlation coefficient is set to 0.8 to decide whether two patterns 

highly correlated or not. 
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3.2.2.3 DNA Stability 

  We computed the average of free energy of the 15 bps nucleotides and shift in 

the size of 5 bps nucleotides in our dataset sequences. The formula of DNA 

sequences of free energy is shown in Figure 3.2. The standard free energy change 

( 0
37GΔ ) corresponding to the melting transition of an ‘n’ nucleotide (or ‘n-1’ 

dinucleotides) long DNA molecule, from double strand to single strand, is 

calculated as shown in Fig. 3.2 (Kanhere and Bansal 2005). 0
iniGΔ  denotes two 

types of initiation free energy : “initiation with terminal G⋅C” and “initiation with 

terminal A⋅T”; 0
symGΔ  is +0.43 kcal/mol and is applicable if the duplex is 

self-complementary, and 0
, jiGΔ  represents the standard free energy change for type 

ij dinucleotide. In the present calculation, each promoter sequence is divided into 

overlapping windows of 15 bps (or 14 dinucleotide steps), and for each window 

the free energy is calculated as shown above. We used the free energy of the 15 

bps nucleotides and shift in the size of 5 bps nucleotides as features. 

 



 34

 
Figure 3.2 Formula of DNA sequences free energy. 

   
Aditi Kanhere et al. (Kanhere and Bansal 2005) demonstrated that the change 

in DNA stability appears to provide a much better clue than the usual sequence 

motifs. Therefore, this work provides the DNA stability of the promoter region to 

enhance the promoter identification. 

 

3.2.3 Model Learning and Evaluation 

After the process of feature extraction, the three kinds of feature are trained by 

LIBSVM (Chang and Lin 2001) which developed by Chih-Chung Chang and 

Chih-Jen Lin. LIBSVM is an integrated software for support vector classification, 

regression, and distribution estimation. The three features of the positive and 

negative training set are transformed into LIBSVM input format, and the input 

values are normalized before the SVM model construction. The constructed SVM 

models of the three kinds of feature are evaluated by K-fold cross-validation. 

We used 5-fold cross validation to evaluate the prediction performance of the 

SVM-trained model. To express the prediction quality of the models, we applied 
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several criteria. These evaluation criteria included sensitivity, specificity, accuracy, 

and precision. Figure 3.3 shows the definition of sensitivity, specificity, accuracy, 

and precision. To optimize our models’ performance, we do parameter 

optimization in the window size, selected numbers of 6-mer pattern, and feature 

combinations. 

 

 
Figure 3.3 The definition of four performance measures. 

 

To fairly evaluate the prediction performance of the gene promoter prediction 

method, an evaluation benchmark should be constructed. By surveying previous 

related works, one of the several evaluation benchmarks they used was chosen by 

us. As shown in Fig. 3.4, the positive sets were extracted from the positive region, 

and negative sets were randomly extracted from the six kinds of negative regions. 

There are five kinds of window sizes for positive set including 80, 150, 300, 450, 

and 600 bps. We show the regions of positive and six kinds of negative in detail in 

Table 3.3. 
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Figure 3.4 Evaluation Benchmark. 

 

 

Table 3.4 Positive region and six kinds of negative region of window size we 
optimized. 

Window size 80 150 300 450 600 
Core promoter 

regions -60~+20 -100~+50 -200~+100 -300~+150 -400~+200 

Overlap 
regions -50~+30 -50~+30 -50~+30 -50~+30 -50~+30 

Overlap 
regions -70~+10 -70~+10 -70~+10 -70~+10 -70~+10 

Neighbor 
regions +21~+100 +21~+100 +21~+100 +21~+100 +21~+100 

Neighbor 
regions -140~ -81 -140~ -81 -140~ -81 -140~ -81 -140~ -81 

Far  
regions +2921~+3000 +2921~+3000 +2921~+3000 +2921~+3000 +2921~+3000

Far  
regions -3000~-2921 -3000~-2921 -3000~-2921 -3000~-2921 -3000~-2921 
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Chapter 4 Results 

 
Here we present the results of our evaluation benchmark to show the 

prediction performance of the constructed models based on Support Vector 

Machine (SVM). We also compared our models’ accuracy with several existing 

gene promoter prediction tools that we obtained. 

 

4.1 Feature Observations 

 Three features such as statistically significant 6-mer patterns, nucleotide 

composition, and DNA stability of promoter sequences are extracted and observed 

to decide some parameters such as the number of 6-mer patterns and the window 

size of positive set. 

 

4.1.1 Statistically Significant 6-mer Patterns 

  By optimizing the selected numbers of pattern, we selected the top 60 patterns 

as our prediction feature .The selected top 60 patterns of group 1 are given in 

Table 4.1. The selected top 60 patterns of group 2 are given in Table 4.2. The top 

60 selected patterns of group 3 are given in Table 4.3. We will show top 100 

patterns in detail in appendix. 

 

Table 4.1  Top 60 selected pattern of group 1 (all). 
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CGCGCG CGCGCA CGCCGA CGGTCG 
GCGCGC TGCGCG TCGGCG CGGCCG 
CGCCGC CCCGCG CGGCGA CGCCCC 
GCGGCG CGCGGG TCGCCG GGGGCG 
CGGCGC CGCGAG CGAGCG ACGCCG 
GCGCCG CTCGCG CGCTCG CGGCGT 
CGCGGC CGCGGA CCGCGA GCCGCC 
GCCGCG TCCGCG TCGCGG GGCGGC 
CCGCCG TCGCGA CGCGTC CCCCGC 
CGGCGG CGCGAC GACGCG GCGGGG 
CCGGCG GTCGCG ACGCGC CCGCCC 
CGCCGG CGTCGC GCGCGT GGGCGG 
AGCGCG GCGACG CGACGC GCGGCC 
CGCGCT CCGCGC GCGTCG GGCCGC 
CCGCGG GCGCGG CGACCG CCGTCG 

 

Table 4.2  Top 60 selected pattern of group 2 (non-CpG island). 
CGCGAA TTCGCG CGCCCC GGGGCG 
CCGCCC GGGCGG CCCCGC GCGGGG 
ATCCGG CCGGAT GACGTC CCGCAG 
CTGCGG CGCGAG CTCGCG CGGAAG 
CTTCCG ACGTCA TGACGT CGTCGA 
TCGACG CCGGAA TTCCGG GCCGGC 
CGGCAG CTGCCG ACTCGC GCGAGT 
CGCGGA TCCGCG CCGCGA TCGCGG 
CGGCGA TCGCCG CGACTC GAGTCG 
GCGGCA TGCCGC CGGCCC GGGCCG 
TCCGCA TGCGGA CGGGGC GCCCCG 
GCCGGA TCCGGC GCCCGA TCGGGC 
AGGGCG CGCCCT CGTCAC GTGACG 
ACCGGA TCCGGT GGGCCC ACGGCC 
GGCCGT GCCGAC GTCGGC CGGCAC 

 
Table 4.3  Top 60 selected pattern of sequences group 3 (CpG island). 

CGCGCG GCGCGC CGCCGC GCGGCG 
CGGCGC GCGCCG CGCGGC GCCGCG 
CCGCCG CGGCGG CCGGCG CGCCGG 
AGCGCG CGCGCT CCGCGG CGCGCA 
TGCGCG CCCGCG CGCGGG CGCGAG 
CTCGCG CGCGGA TCCGCG TCGCGA 
CGCGAC GTCGCG CGTCGC GCGACG 
CCGCGC GCGCGG CGCCGA TCGGCG 
CGGCGA TCGCCG CGAGCG CGCTCG 
CGCGTC GACGCG ACGCGC GCGCGT 
CCGCGA TCGCGG CGACGC GCGTCG 
CGACCG CGGTCG CGGCCG CGCCCC 
GGGGCG ACGCCG CGGCGT GCCGCC 
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GGCGGC GCGGCC GGCCGC CCCCGC 
GCGGGG CCGTCG CGACGG CCGCCC 

 

4.1.2 Nucleotide Composition 

  The distributions of monomer, dimer, and trimer nucleotide composition of 

group 1, 2, and 3 are shown in Fig. 4.1, 4.2, and 4.3, respectively. The cutoff value 

of the Pearson correlation coefficient is set to 0.8 to decide whether two 

distribution patterns highly correlated or not. The selected highly correlated 

patterns of monomer, dimer, and trimer nucleotide composition are given in Table 

4.4, 4.5, and 4.6, respectively. 

 

 
Figure 4.1 The distribution of monomer, dimer, and trimer nucleotide 

composition of group 1 (all). 
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Table 4.4  The selected highly correlated patterns of nucleotide composition of group 
1 (all). 

  C.C. with A 
>0.8 

C.C. with C 
>0.8 

No select 

Monomer 
 and 

Dimer 

T,AA,AT, 
AC,TA,TT,CA 

G,CC,CG, 
GC,GG 

AG,TC,TG, 
CT,GA,GT 

Trimer 

AAA,AAT,AAC
A A G, ATA , AT C
AT T, AT G, A C A
A C T, A G ATA A
TA C , TAT, TA G
T TA , T T T, T C A
TGA,CAA,CAT

CTA 

ACG,AGC,TCC,TCG
CTC,CCC,CCG,CGA
CGT,CGC,CGG,GAC
GTC,GCC,GCG,GGA

GGC,GGG 

ACC,AGT,AGG,TTC
TTG,TCT,TGT,TGC
TGG,CAC,CAG,CTT
CTG,CCA,CCT,GAA
GAT,GAC,GAG,GTT
GTG,GCA,GCT,GGT

 

 
Figure 4.2 The distribution of monomer, dimer, and trimer nucleotide 

composition of group 2 (non-CpG island). 
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Table 4.5  The selected highly correlated patterns of nucleotide composition of 
group 2 (non-CpG island). 

  C.C. with A 
>0.8 

C.C. with C 
>0.8 

No select 

Monomer 
 and  

Dimer 
AA,AT,TA 

G,AG,CC,CG,CT 
GC,GG,TC 

T,AC,CA,GA,GT,TG,TT

Trimer AAA,ATA 

ACG,AGC,AGG,CAG
CCA,CCC,CCG,CCT
CGA,CGT,CGC,CGG
CTC,CTG,GAC,GAG
GCC,GCG,GCT,GGA
GGC,GGG,GTC,TCC

TGC,TGG 

AAC,AAG,AAT,ACA
ACC,ACT,AGA,AGT
AT C , AT G, AT T, C A A
CAC,CAT,CTA,CTT
GAA,GAT,GCA,GGT
GTA,GTG,GTT,TAA
TA C , TA G, TAT, T C A
T C T, T G A , T G T, T TA

TTC,TTG,TTT 

 

 
Figure 4.3 The distribution of monomer, dimer, and trimer nucleotide 

composition of group 3 (CpG island). 

 



 42

Table 4.6  The selected highly correlated patterns of nucleotide composition of 
group 3 (CpG island). 

  C.C. with A 
>0.8 

C.C. with C 
>0.8 

No select 

Monomer 
 to  

Dimer 

T,AA,AT, 
AC,TA,TT,CA 

G,CC,CG, 
GC,GG 

AG,TC,TG, 
CT,GA,GT 

Trimer 

AAA,AAT,AAC,AAG
ATA,ATC,ATT,ATG
ACA,ACT,AGA,AGT
TAA,TAC,TAT,TAG
TTA,TTT,TCA,TCT
TGA,CAA,CAT,CTA

GAA,GAT,GTA 

ACG,AGC,TCC,TCG
CTC,CCC,CCG,CGA
CGT,CGC,CGG,GAC

GTC,GCC,GCG 
GGA,GGC,GGG 

ACC,AGG,TTC
T T G, T G T, T G C
TGG,CAC,CAG
C T T, C T G, C C A
CCT,GAG,GTT
GTG,GCA,GCT

GGT 

 

4.1.3 DNA Stability 

The distributions of the average free energy for the 3,000 upstream and 3000 

downstream of TSSs with the 15 nucleotides sliding window and shift in 5 

nucleotides are shown in Fig. 4.4, 4.5, and 4.6, respectively. 
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Figure 4.4 The distribution of average free energy relative to TSSs of group 1 
(all). 

 

 
Figure 4.5 The distribution of average free energy relative to TSSs of group 2 

(non-CpG island). 

 

 

 

Figure 4.6 The distribution of average free energy relative to TSSs of group 3 
(CpG island). 
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4.2 Prediction Performance 

 With the evaluation benchmark described previously in chapter 3, the 

prediction performance of the three SVM models can be evaluated fairly and 

clearly. 

 

4.2.1 Statistically Significant 6-mer Patterns 

  The prediction sensitivity (Sen.), specificity (Spe.), accuracy (Acc.), and 

precision (Pre.) of the constructed SVM model based on statistically significant 

6-mer patterns of group 1 (all), 2 (non-CpG), and 3 (CpG) are given in Table 4.7, 

4.8, and 4.9, respectively. In addition, the negative set is randomly extracted from 

six negative regions we define in Table 3.3. As you can see, the larger window size 

is, the higher prediction performance is. Even so, we still choose the models of 

window size 300 to be our prediction models because of the prediction accuracy is 

over 70% and we want to determine the core promoter region accurately. Moreover, 

the prediction performance of group 3 (CpG) is better than group 1 (all) and 2 

(non-CpG).  

Table 4.7  The models accuracy of 6mer pattern in group 1(all). 

Negative set Positive set Window size Sen. Spec. Acc. Pre. 
Random - 60 ~ + 20 80 51% 77% 64% 69% 
Random -100 ~ + 50 150 58% 76% 67% 71% 
Random -200 ~ +100 300 62% 77% 70% 73% 
Random -300 ~ +150 450 64% 80% 72% 76% 
Random -400 ~ +200 600 65% 83% 74% 79% 
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Table 4.8  The models accuracy of 6mer pattern in group 2 (non-CpG island). 

Negative set Positive set Window size Sen. Spec. Acc. Pre. 
Random - 60 ~ + 20 80 22% 85% 53% 59% 
Random -100 ~ + 50 150 28% 85% 56% 65% 
Random -200 ~ +100 300 32% 83% 58% 66% 
Random -300 ~ +150 450 32% 83% 58% 66% 
Random -400 ~ +200 600 35% 82% 58% 66% 

 

Table 4.9  The models accuracy of 6mer pattern in group 3 (CpG island). 

Negative set Positive set Window size Sen. Spec. Acc. Pre. 
Random - 60 ~ + 20 80 56% 75% 66% 70% 
Random -100 ~ + 50 150 67% 74% 71% 72% 
Random -200 ~ +100 300 75% 76% 76% 76% 
Random -300 ~ +150 450 77% 78% 78% 78% 
Random -400 ~ +200 600 79% 82% 80% 81% 

 

Figure 4.7 shows the distribution of predictions by the constructed SVM 

models (-200 ~ + 100) based on statistically significant 6-mer patterns of group 1, 

2, and 3 in the regions of upstream 3,000 bps to downstream 3,000 bps of the TSS. 

The sliding window size was set to 300 nt which determined by the selective 

window size (-200 ~ +100) of positive set and shift in the size of 50 bps nt, and the 

number of predictions were calculated in each window. As it show, the group 1 and 

3 have the similar prediction performance, and both of them are better than group 

2. 
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Figure 4.7 Distributions from 6 mer pattern models’ predictions of group 1, 2, 

and 3 in the interval [-3000, +3000] relative to the TSS based on DBTSS. 

 

4.2.2 Nucleotide Composition  

  The prediction sensitivity (Sn.), specificity (Sp.), accuracy (Acc.), and 

precision (Pre.) of the constructed SVM model based on monomer to dimer and 

monomer to trimer of group 1 are given in Table 4.10 and 4.11, respectively. 

Because the results of monomer to trimer did not have much increases, we chosen 

monomer to dimer to evaluate group 2, and group 3. Thus The prediction 

sensitivity (Sn.), specificity (Sp.), accuracy (Acc.), and precision (Pre.) of the 

constructed SVM model based on monomer to dimer of group 2, and 3 are given in 

Table 4.12, and 4.13, respectively. In addition, the negative set is randomly 
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extracted from six negative regions we define in Table 3.3. As you can see, the 

larger window size is, the higher prediction performance is. Even so, we still 

choose the models of window size 300 to be our prediction models. Because its’ 

model accuracy is over 70% and we want to determine the core promoter region 

accurately. Moreover, the prediction performance of group 3 (CpG) is better than 

group 1 (all) and 2 (non-CpG). 

 

Table 4.10  The models accuracy of monomer to dimer of group 1 (all). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 69% 69% 69% 69% 
Random -100 ~ + 50 150 67% 71% 70% 70% 
Random -200 ~ +100 300 69% 74% 71% 72% 
Random -300 ~ +150 450 70% 75% 72% 74% 
Random -400 ~ +200 600 72% 75% 74% 74% 

 

Table 4.11  The models accuracy of monomer to trimer of group 1 (all). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 66% 71% 69% 70% 
Random -100 ~ + 50 150 67% 73% 70% 71% 
Random -200 ~ +100 300 67% 73% 70% 71% 
Random -300 ~ +150 450 69% 76% 73% 74% 
Random -400 ~ +200 600 71% 75% 73% 74% 
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Table 4.12  The models accuracy of monomer to dimer of group 2 (non-CpG island). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 61% 71% 66% 68% 
Random -100 ~ + 50 150 62% 68% 65% 66% 
Random -200 ~ +100 300 65% 69% 67% 68% 
Random -300 ~ +150 450 63% 68% 66% 67% 
Random -400 ~ +200 600 63% 68% 66% 66% 

 

Table 4.13  The models accuracy of monomer to dimer of group 3 (CpG island). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 74% 68% 71% 70% 
Random -100 ~ + 50 150 75% 69% 72% 71% 
Random -200 ~ +100 300 76% 71% 74% 73% 
Random -300 ~ +150 450 77% 74% 75% 74% 
Random -400 ~ +200 600 80% 75% 77% 76% 

 

Figure 4.8 shows the distribution of predictions by the constructed SVM 

models (-200 ~ + 100) based on nucleotide composition of group 1, 2, and 3 in the 

regions of upstream 3,000 bps to downstream 3,000 bps of the TSS. The sliding 

window size was set to 300 nt which determined by the selective window size 

(-200 ~ +100) of positive set and shift in the size of 50 bps nt, and the number of 

predictions were calculated in each window. As it show, the group 1 and 3 have the 

similar prediction performance, and both of them are better than group 2. 
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Figure 4.8 Distributions from nucleotide composition models’ predictions of 
group 1, 2, and 3 in the interval [-3000, +3000] relative to the TSS based on 

DBTSS. 

 

4.2.4 DNA Stability 

The prediction sensitivity, specificity, accuracy, and precision of the constructed 

SVM model based on DNA stability in group 1, 2, and 3 are given in Table 4.14, 

4.15, and 4.16, respectively. The negative set is randomly extracted from six 

negative regions we define in Table 3.3. As you can see, the larger window size is, 

the higher prediction performance is. Even so, we still choose the models of 

window size 300 to be our prediction models because of the prediction accuracy of 

the constructed model is more than 70% and we want to determine the core 

promoter region accurately. Moreover, the prediction performance of group 3 

(CpG) is better than group 1 (all) and 2 (non-CpG). 
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Table 4.14  The models accuracy of DNA stability in group 1 (all). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 67% 69% 68% 69% 
Random -100 ~ + 50 150 68% 71% 69% 70% 
Random -200 ~ +100 300 70% 74% 71% 73% 
Random -300 ~ +150 450 70% 72% 71% 72% 
Random -400 ~ +200 600 71% 74% 72% 73% 

 

Table 4.15  The models accuracy of DNA stability in group 2 (non-CpG island). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 62% 68% 65% 66% 
Random -100 ~ + 50 150 62% 69% 65% 66% 
Random -200 ~ +100 300 64% 68% 66% 67% 
Random -300 ~ +150 450 65% 69% 66% 67% 
Random -400 ~ +200 600 66% 70% 67% 68% 

 

Table 4.16  The models accuracy of DNA stability in group 3 (CpG island). 

Negative set Positive set Window size Sn Sp Acc Pre 
Random - 60 ~ + 20 80 74% 70% 71% 71% 
Random -100 ~ + 50 150 75% 71% 73% 72% 
Random -200 ~ +100 300 76% 72% 74% 73% 
Random -300 ~ +150 450 79% 73% 76% 75% 
Random -400 ~ +200 600 81% 74% 77% 75% 

 

Figure 4.9 shows the distribution of predictions by the constructed SVM 

models (-200 ~ + 100) based on DNA stability of group 1, 2, and 3 in the regions 

of upstream 3,000 bps to downstream 3,000 bps of the TSS. The sliding window 

size was set to 300 nt which determined by the selective window size (-200 ~ +100) 

of positive set and shift in the size of 50 bps nt, and the number of predictions were 

calculated in each window. As it show, the group 1 and 3 have the similar 
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prediction performance, and both of them are better than group 2. 

 

 
Figure 4.9 Distributions from DNA stability models’ predictions of group 1, 2, 

and 3 in the interval [-3000, +3000] relative to the TSS based on DBTSS. 
 

4.2.5 The Prediction Performance of Combinatorial Features 

We try to test all the combinations of the three kinds of regulatory features, and 

want to find the best combination for increasing the prediction performance. The 

prediction sensitivity, specificity, accuracy, and precision of the constructed SVM 

model based on combinatorial models in group 1, 2, and 3 are given in Table 4.17, 

4.18, and 4.19, respectively. As you can see, we selected the highest model 

accuracy models of combination all of three features to be our prediction model. 

Moreover, the prediction performance of group 3 (CpG island) is better than group 
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1 (all) and 2 (non-CpG island). 

 

Table 4.17  The model accuracy of Combinational models in group 1 (all). 

Window size  300 
Negative Set Positive Set Feature Sn Sp Acc Pre 

Random -200 ~+100 6m+nc 71% 79% 75% 77%
Random -200 ~+100 6m+ds 69% 78% 74% 76%
Random -200 ~+100 nc+ds 74% 76% 75% 75%
Random -200 ~+100 6m+nc+ds 72% 79% 76% 78%

 

Table 4.18  The model accuracy of Combinational models in group 2(non-CpG island). 

Window size  300 
Negative Set Positive Set feature Sn Sp Acc Pre 

Random -200 ~+100 6m+nc 64% 70% 67% 68%
Random -200 ~+100 6m+ds 62% 71% 66% 68%
Random -200 ~+100 nc+ds 65% 67% 66% 66%
Random -200 ~+100 6m+nc+ds 65% 71% 68% 69%

 

Table 4.19  The model accuracy of Combinational models in group 3 (CpG island). 

Window size  300 
Negative Set Positive Set feature Sn Sp Acc Pre 

Random -200 ~+100 6m+nc 81% 79% 80% 79%
Random -200 ~+100 6m+ds 80% 76% 78% 77%
Random -200 ~+100 nc+ds 82% 75% 78% 77%
Random -200 ~+100 6m+nc+ds 81% 78% 80% 79%

 

Figure 4.10 shows the distribution of predictions by the constructed SVM 

models (-200 ~ + 100) based on all of those three features of group 1, 2, and 3 in 

the regions of upstream 3,000 bps to downstream 3,000 bps of the TSS. The 

sliding window size was set to 300 nt which determined by the selective window 
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size (-200 ~ +100) of positive set and shift in the size of 50 bps nt, and the number 

of predictions were calculated in each window. As it show, the group 1 and 3 have 

the similar prediction performance, and both of them are better than group 2. 

 
Figure 4.10 Distributions of 6-mer pattern, nucleotide composition, and DNA 

stability models’ predictions of group 1, 2, and 3 in the interval [-3000, 
+3000] relative to the TSS based on DBTSS. 

 
4.3 Summary of Results 

According to the prediction performance of the constructed SVM models 

described above, it is found that the three models of extracted features have similar 

accuracy. The model of 6-mer pattern has higher specificity so the numbers of 

prediction far from real TSS is lower. As shown in Fig. 4.11, the model of 

nucleotide composition has higher sensitivity so the numbers of prediction of real 

TSS position is lower.  

The prediction accuracy of dataset with CpG island is better than dataset without 
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CpG island. And by examining all possible combinations of those three models, 

we demonstrate that such combinations can improve our prediction accuracy. 

 
Figure 4.11 The comparison of the prediction performance for the three kinds of 

feature and Combination of those three features. 

4.4 Web Interface  

    Considering both the prediction performance and core promoter window size, 

we chose those models with window size 300 bps as the gene promoter 

identification models. Here we implemented a user friendly interface that can be 

access from the World Wide Web. This system is implemented on the Linux 

operation system (Red Hat Enterprise). We use the Apache web server and the 

PHP4 server side script engine. Those modules are implemented by using PHP 

program language.  
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User can input a DNA sequence and specify considering CpG Island or not for 

the promoter prediction. If users specify two of those features, the combinational 

models will be use. Here we makes some clustering of the predictions if 

predictions around 300 nt, and define the midpoint of that as our prediction TSS 

position. The user web interface is shown in Fig. 4.12 and Fig. 4.13. 

 

 
Figure 4.12 Web interface [1]. 
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Figure 4.13 Web interface [2]. 
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Chapter 5 Discussion 

 

5.1 Limitations 

There are several limitations in the system which we proposed. One of the 

limitations is that the determined window size of selected model were 300 base 

pairs, the sequence length inputted from user must be longer than 300 base pairs. 

The other limitation is that, the proposed method was not implemented as 

standalone package for user to download. Therefore, users only can use the 

web-based program to identify the core promoter region in the user input 

sequence. 

 

5.2 Comparison 

 There are three promoter prediction tools such as NNPP2.2, McPromoter, and 

Eponine which could be obtained from the internet, so we compared our method 

with the three tools. We get 1871 human promoter sequences which length 6000 

bps (from -3000 to +3000) form EPD for independence test. 

 

5.2.1 Prediction Accuracy 

 The comparison of our proposed method with NNPP2.2, McPromoter, and 

Eponine is shown in Table 5.1. The three promoter prediction tools we obtained 

from internet were evaluated the prediction performance based on the evaluation 
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benchmark we proposed. All the combinations of our methods performed better 

than NNPP2.2, McPromoter, and Eponine. Based on the same evaluation 

benchmark, NNPP2.2 results in low specificity (45%). Mcpromoter and Eponine 

result in high specificity 97% and 85%, respectively, but low sensitivity 5% and 

25%, respectively. The prediction accuracy of our method is better than the three 

previous promoter prediction tools.  

 Maybe someone wonder that does our method perform better than other 

promoter prediction tools other than NNPP2.2, McPromoter, and Eponine? We 

could not obtain the other promoter prediction tools, because some of them would 

not be downloaded for usage in client. Therefore, there is no fair evaluation 

platform for the other promoter prediction tools such as Promoter 2.0, Dragon GSF, 

Dragon PF, and so on. However, according to the proposed prediction accuracy on 

Table 2.1, no promoter prediction tool performs better than our method. 

 

Table 5.1  Comparison of our method with other tools. 

  Positive 
Set Sn. Sp. Acc. Pre. 

Our 
method 6m+nc+ds 92% 64% 78% 72% 92% 

NNPP2.2 67% 45% 56% 55% 67% 

Mcpromoter 2.0 5% 97% 51% 72% 5% 
Other 
tools 

Eponine 32% 85% 58% 74% 32% 

 

5.2.2 Characteristics 
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The study incorporates the powerful computational method with three useful 

regulatory features of core promoters for gene promoter identification that results 

in high prediction sensitivity and specificity. Especially the three extracted 

regulatory features such as statistically significant 6-mer patterns, nucleotide 

composition, and DNA stability, provided useful discriminating power. Moreover, 

the incorporated support vector machine also represented the powerful 

classification ability. Therefore, as shown in Fig. 5.1, the predictions of our method 

are performed better than other three promoter tools in the regions of upstream 

3,000 bps to downstream 3,000 of TSSs.  

 

Figure 5.1 Comparison of our method and other tools. 

 

5.3 Future Works 

  The features we extract in this research are only from one species (human). In 
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fact, our selected features can be applied to other species. The accuracy of our 

method is better with smaller DNA sequences. When the evaluated level of DNA 

sequences region increasing, the accuracy will be down. So it is important for us to 

improve our method to increase the prediction accuracy in large scale DNA 

sequences. Now we just consider one promoter sequence containing single TSS. 

However, we need to consider one promoter sequence containing multiple TSSs in 

the future. 
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Chapter 6 Conclusions 

   

This study incorporated the powerful support vector machine with useful 

regulatory features of core promoters such as statistically significant 6-mer 

patterns, nucleotide composition, and DNA stability identify the transcriptional 

start sites in mammalian genomes. By evaluating the prediction performance of the 

constructed SVM models based on the evaluation benchmark we constructed, our 

method results in high prediction sensitivity and specificity. The results showed 

that the accuracy of our method is greater than 70%. Furthermore, the 

combinatorial SVM model of the statistically significant 6-mer pattern, nucleotide 

composition, and DNA stability performs better than the individual or pair of them. 

By comparing our method to other previously proposed gene promoter prediction 

methods, the performance was also better than others. Therefore, we implement an 

efficient and effective web interface for guiding biologist to analyze gene 

promoters and transcriptional start sites. 
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Appendix A 

 
Table A.1  Top 100 patterns of statistically significant 6-mer pattern in group 1 

(all). 
SN pattern whole Whole pro. 80num Pos pro. OC ratio 

1 CGCGCG 93380 0.0000164 1354 0.001396 85.20718
2 GCGCGC 142810 0.0000251 1676 0.001729 68.96482
3 CGCCGC 165495 0.0000290 1916 0.001976 68.03347
4 GCGGCG 165495 0.0000290 1916 0.001976 68.03347
5 CGGCGC 119385 0.0000210 1347 0.001389 66.30266
6 GCGCCG 119385 0.0000210 1347 0.001389 66.30266
7 CGCGGC 123365 0.0000217 1388 0.001432 66.11665
8 GCCGCG 123365 0.0000217 1388 0.001432 66.11665
9 CCGCCG 156119 0.0000274 1558 0.001607 58.64409

10 CGGCGG 156119 0.0000274 1558 0.001607 58.64409
11 CCGGCG 111276 0.0000195 1080 0.001114 57.03421
12 CGCCGG 111276 0.0000195 1080 0.001114 57.03421
13 AGCGCG 72155 0.0000127 683 0.000704 55.62466
14 CGCGCT 72155 0.0000127 683 0.000704 55.62466
15 CCGCGG 129318 0.0000227 1206 0.001244 54.80265
16 CGCGCA 75745 0.0000133 697 0.000719 54.07431
17 TGCGCG 75745 0.0000133 697 0.000719 54.07431
18 CCCGCG 127926 0.0000225 1163 0.001199 53.42372
19 CGCGGG 127926 0.0000225 1163 0.001199 53.42372
20 CGCGAG 63936 0.0000112 562 0.00058 51.65401
21 CTCGCG 63936 0.0000112 562 0.00058 51.65401
22 CGCGGA 61387 0.0000108 525 0.000541 50.25664
23 TCCGCG 61387 0.0000108 525 0.000541 50.25664
24 TCGCGA 29124 0.0000051 238 0.000245 48.0218
25 CGCGAC 35935 0.0000063 289 0.000298 47.25988
26 GTCGCG 35935 0.0000063 289 0.000298 47.25988
27 CGTCGC 44589 0.0000078 329 0.000339 43.35912
28 GCGACG 44589 0.0000078 329 0.000339 43.35912
29 CCGCGC 210901 0.0000370 1521 0.001569 42.38025
30 GCGCGG 210901 0.0000370 1521 0.001569 42.38025
31 CGCCGA 51860 0.0000091 371 0.000383 42.03916
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32 TCGGCG 51860 0.0000091 371 0.000383 42.03916
33 CGGCGA 56495 0.0000099 396 0.000408 41.19057
34 TCGCCG 56495 0.0000099 396 0.000408 41.19057
35 CGAGCG 65811 0.0000116 453 0.000467 40.44943
36 CGCTCG 65811 0.0000116 453 0.000467 40.44943
37 CCGCGA 55823 0.0000098 367 0.000379 38.63365
38 TCGCGG 55823 0.0000098 367 0.000379 38.63365
39 CGCGTC 59353 0.0000104 390 0.000402 38.61302
40 GACGCG 59353 0.0000104 390 0.000402 38.61302
41 ACGCGC 66140 0.0000116 428 0.000441 38.02714
42 GCGCGT 66140 0.0000116 428 0.000441 38.02714
43 CGACGC 41872 0.0000074 270 0.000278 37.89237
44 GCGTCG 41872 0.0000074 270 0.000278 37.89237
45 CGACCG 33411 0.0000059 208 0.000215 36.58352
46 CGGTCG 33411 0.0000059 208 0.000215 36.58352
47 CGGCCG 176492 0.0000310 1056 0.001089 35.16022
48 CGCCCC 362006 0.0000635 2130 0.002197 34.57615
49 GGGGCG 362006 0.0000635 2130 0.002197 34.57615
50 ACGCCG 64787 0.0000114 373 0.000385 33.83243
51 CGGCGT 64787 0.0000114 373 0.000385 33.83243
52 GCCGCC 344938 0.0000605 1890 0.001949 32.19831
53 GGCGGC 344938 0.0000605 1890 0.001949 32.19831
54 CCCCGC 426331 0.0000748 2201 0.00227 30.33793
55 GCGGGG 426331 0.0000748 2201 0.00227 30.33793
56 CCGCCC 518352 0.0000910 2647 0.00273 30.00832
57 GGGCGG 518352 0.0000910 2647 0.00273 30.00832
58 GCGGCC 261440 0.0000459 1330 0.001372 29.89456
59 GGCCGC 261440 0.0000459 1330 0.001372 29.89456
60 CCGTCG 44482 0.0000078 226 0.000233 29.85637
61 CGACGG 44482 0.0000078 226 0.000233 29.85637
62 CCGGAA 199323 0.0000350 1000 0.001031 29.48189
63 TTCCGG 199323 0.0000350 1000 0.001031 29.48189
64 CGCACG 77899 0.0000137 381 0.000393 28.74135
65 CGTGCG 77899 0.0000137 381 0.000393 28.74135
66 CGGGGC 371940 0.0000653 1806 0.001863 28.53367
67 GCCCCG 371940 0.0000653 1806 0.001863 28.53367
68 CGCGAA 30243 0.0000053 145 0.00015 28.17444
69 TTCGCG 30243 0.0000053 145 0.00015 28.17444
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70 ACGCGG 69430 0.0000122 326 0.000336 27.59189
71 CCGCGT 69430 0.0000122 326 0.000336 27.59189
72 ACGGCG 68155 0.0000120 312 0.000322 26.90103
73 CGCCGT 68155 0.0000120 312 0.000322 26.90103
74 CGCGCC 291748 0.0000512 1310 0.001351 26.38613
75 GGCGCG 291748 0.0000512 1310 0.001351 26.38613
76 CCGACG 45809 0.0000080 200 0.000206 25.6562
77 CGTCGG 45809 0.0000080 200 0.000206 25.6562
78 GCCGGC 246470 0.0000433 1066 0.001099 25.41593
79 CGGAAG 262733 0.0000461 1119 0.001154 25.02812
80 CTTCCG 262733 0.0000461 1119 0.001154 25.02812
81 AACGCG 38488 0.0000068 161 0.000166 24.58179
82 CGCGTT 38488 0.0000068 161 0.000166 24.58179
83 CGGACG 65539 0.0000115 261 0.000269 23.40193
84 CGTCCG 65539 0.0000115 261 0.000269 23.40193
85 GCCGGA 184107 0.0000323 721 0.000744 23.01324
86 TCCGGC 184107 0.0000323 721 0.000744 23.01324
87 CTGCGC 288998 0.0000507 1098 0.001132 22.32648
88 GCGCAG 288998 0.0000507 1098 0.001132 22.32648
89 CACGCG 89405 0.0000157 331 0.000341 21.75602
90 CGCGTG 89405 0.0000157 331 0.000341 21.75602
91 GCGCGA 113177 0.0000199 414 0.000427 21.49582
92 TCGCGC 113177 0.0000199 414 0.000427 21.49582
93 ACGTCG 36991 0.0000065 135 0.000139 21.44626
94 CGACGT 36991 0.0000065 135 0.000139 21.44626
95 GAGCGC 183691 0.0000322 656 0.000677 20.98595
96 GCGCTC 183691 0.0000322 656 0.000677 20.98595
97 ACGCGA 32037 0.0000056 114 0.000118 20.91052
98 TCGCGT 32037 0.0000056 114 0.000118 20.91052
99 TGCGCA 174690 0.0000307 616 0.000635 20.72174

100 CGCGTA 22145 0.0000039 78 8.04E-05 20.69811
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Table A.2  Top 100 patterns of statistically significant 6-mer pattern in group 2 
(non-CpG island). 

SN pattern whole Whole pro. 80num Pos pro. OC ratio 

1 CGCGAA 30243 0.0000053 6 0.0000255 4.810317
2 TTCGCG 30243 0.0000053 6 0.0000255 4.810317
3 CGCCCC 362006 0.0000635 71 0.0003023 4.759941
4 GGGGCG 362006 0.0000635 71 0.0003023 4.759941
5 CCGCCC 518352 0.0000910 100 0.0004257 4.678166
6 GGGCGG 518352 0.0000910 100 0.0004257 4.678166
7 CCCCGC 426331 0.0000748 82 0.0003491 4.666908
8 GCGGGG 426331 0.0000748 82 0.0003491 4.666908
9 ATCCGG 135765 0.0000238 26 0.0001107 4.650647

10 CCGGAT 135765 0.0000238 26 0.0001107 4.650647
11 GACGTC 138788 0.0000244 26 0.0001107 4.536287
12 CCGCAG 305519 0.0000536 54 0.0002299 4.2889
13 CTGCGG 305519 0.0000536 54 0.0002299 4.2889
14 CGCGAG 63936 0.0000112 11 0.0000468 4.181111
15 CTCGCG 63936 0.0000112 11 0.0000468 4.181111
16 CGGAAG 262733 0.0000461 45 0.0001916 4.155551
17 CTTCCG 262733 0.0000461 45 0.0001916 4.155551
18 ACGTCA 227674 0.0000400 39 0.0001660 4.150702
19 TGACGT 227674 0.0000400 39 0.0001660 4.150702
20 CGTCGA 23424 0.0000041 4 0.0000170 4.143193
21 TCGACG 23424 0.0000041 4 0.0000170 4.143193
22 CCGGAA 199323 0.0000350 34 0.0001447 4.135498
23 TTCCGG 199323 0.0000350 34 0.0001447 4.135498
24 GCCGGC 246470 0.0000433 42 0.0001788 4.129318
25 CGGCAG 310633 0.0000545 52 0.0002214 4.061849
26 CTGCCG 310633 0.0000545 52 0.0002214 4.061849
27 ACTCGC 134642 0.0000236 22 0.0000937 3.968512
28 GCGAGT 134642 0.0000236 22 0.0000937 3.968512
29 CGCGGA 61387 0.0000108 10 0.0000426 3.941788
30 TCCGCG 61387 0.0000108 10 0.0000426 3.941788
31 CCGCGA 55823 0.0000098 9 0.0000383 3.90961
32 TCGCGG 55823 0.0000098 9 0.0000383 3.90961
33 CGGCGA 56495 0.0000099 9 0.0000383 3.862316
34 TCGCCG 56495 0.0000099 9 0.0000383 3.862316
35 CGACTC 145121 0.0000255 23 0.0000979 3.839765
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36 GAGTCG 145121 0.0000255 23 0.0000979 3.839765
37 GCGGCA 221533 0.0000389 35 0.0001490 3.830323
38 TGCCGC 221533 0.0000389 35 0.0001490 3.830323
39 CGGCCC 309351 0.0000543 48 0.0002043 3.763209
40 GGGCCG 309351 0.0000543 48 0.0002043 3.763209
41 TCCGCA 176001 0.0000309 27 0.0001149 3.719823
42 TGCGGA 176001 0.0000309 27 0.0001149 3.719823
43 CGGGGC 371940 0.0000653 57 0.0002427 3.716025
44 GCCCCG 371940 0.0000653 57 0.0002427 3.716025
45 GCCGGA 184107 0.0000323 28 0.0001192 3.690392
46 TCCGGC 184107 0.0000323 28 0.0001192 3.690392
47 GCCCGA 172187 0.0000302 26 0.0001107 3.665079
48 TCGGGC 172187 0.0000302 26 0.0001107 3.665079
49 AGGGCG 258763 0.0000454 39 0.0001660 3.657007
50 CGCCCT 258763 0.0000454 39 0.0001660 3.657007
51 CGTCAC 192503 0.0000338 29 0.0001235 3.652568
52 GTGACG 192503 0.0000338 29 0.0001235 3.652568
53 ACCGGA 127794 0.0000224 19 0.0000809 3.610959
54 TCCGGT 127794 0.0000224 19 0.0000809 3.610959
55 GGGCCC 909212 0.0001596 134 0.0005705 3.574887
56 ACGGCC 186522 0.0000327 27 0.0001149 3.515062
57 GGCCGT 186522 0.0000327 27 0.0001149 3.515062
58 GCCGAC 118157 0.0000207 17 0.0000724 3.496194
59 GTCGGC 118157 0.0000207 17 0.0000724 3.496194
60 CGGCAC 202327 0.0000355 29 0.0001235 3.477656
61 GTGCCG 202327 0.0000355 29 0.0001235 3.477656
62 CGCAGA 233353 0.0000410 33 0.0001405 3.426471
63 TCTGCG 233353 0.0000410 33 0.0001405 3.426471
64 TCGGCA 177866 0.0000312 25 0.0001064 3.411162
65 TGCCGA 177866 0.0000312 25 0.0001064 3.411162
66 CCCGGA 256531 0.0000450 36 0.0001533 3.405705
67 TCCGGG 256531 0.0000450 36 0.0001533 3.405705
68 CCGGTC 136422 0.0000239 19 0.0000809 3.38433
69 GACCGG 136422 0.0000239 19 0.0000809 3.38433
70 CCCGCC 746914 0.0001311 104 0.0004427 3.377412
71 GGCGGG 746914 0.0001311 104 0.0004427 3.377412
72 CGGAAC 129310 0.0000227 18 0.0000766 3.375698
73 GTTCCG 129310 0.0000227 18 0.0000766 3.375698
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74 CCGGCA 230262 0.0000404 32 0.0001362 3.371985
75 TGCCGG 230262 0.0000404 32 0.0001362 3.371985
76 GCGAAC 79344 0.0000139 11 0.0000468 3.368952
77 GTTCGC 79344 0.0000139 11 0.0000468 3.368952
78 TCGCGA 29124 0.0000051 4 0.0000170 3.332392
79 GGCCCC 1025386 0.0001800 140 0.0005960 3.311782
80 GGGGCC 1025386 0.0001800 140 0.0005960 3.311782
81 GCGGAA 168690 0.0000296 23 0.0000979 3.307906
82 TTCCGC 168690 0.0000296 23 0.0000979 3.307906
83 CGAACG 29492 0.0000052 4 0.0000170 3.28736
84 CGTTCG 29492 0.0000052 4 0.0000170 3.28736
85 CGCGTA 22145 0.0000039 3 0.0000128 3.283134
86 TACGCG 22145 0.0000039 3 0.0000128 3.283134
87 ACGTCG 36991 0.0000065 5 0.0000213 3.279762
88 CGACGT 36991 0.0000065 5 0.0000213 3.279762
89 GCGGAC 110933 0.0000195 15 0.0000639 3.274716
90 GTCCGC 110933 0.0000195 15 0.0000639 3.274716
91 CACCGG 200517 0.0000352 27 0.0001149 3.265413
92 CCGGTG 200517 0.0000352 27 0.0001149 3.265413
93 AGCGTC 171060 0.0000300 23 0.0000979 3.2638
94 GACGCT 171060 0.0000300 23 0.0000979 3.2638
95 AGTCGG 157158 0.0000276 21 0.0000894 3.239121
96 CCGACT 157158 0.0000276 21 0.0000894 3.239121
97 CTCCGA 203551 0.0000357 27 0.0001149 3.219679
98 TCGGAG 203551 0.0000357 27 0.0001149 3.219679
99 ACGCTG 294212 0.0000516 39 0.0001660 3.217599

100 CAGCGT 294212 0.0000516 39 0.0001660 3.217599
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Table A.3  Top 100 patterns of statistically significant 6-mer pattern in group 3  
(CpG island). 

SN pattern whole Whole pro. 80num Pos pro. OC ratio 

1 CGCGCG 93380 0.0000164 1350 0.001837 112.0417
2 GCGCGC 142810 0.0000251 1674 0.002278 90.77614
3 CGCCGC 165495 0.0000290 1903 0.00259 89.31631
4 GCGGCG 165495 0.0000290 1903 0.00259 89.31631
5 CGGCGC 119385 0.0000210 1338 0.001821 86.7215
6 GCGCCG 119385 0.0000210 1338 0.001821 86.7215
7 CGCGGC 123365 0.0000217 1377 0.001874 86.37025
8 GCCGCG 123365 0.0000217 1377 0.001874 86.37025
9 CCGCCG 156119 0.0000274 1544 0.002102 76.69847

10 CGGCGG 156119 0.0000274 1544 0.002102 76.69847
11 CCGGCG 111276 0.0000195 1067 0.001452 74.47659
12 CGCCGG 111276 0.0000195 1067 0.001452 74.47659
13 AGCGCG 72155 0.0000127 678 0.000923 72.66344
14 CGCGCT 72155 0.0000127 678 0.000923 72.66344
15 CCGCGG 129318 0.0000227 1198 0.001631 71.83249
16 CGCGCA 75745 0.0000133 689 0.000938 70.51111
17 TGCGCG 75745 0.0000133 689 0.000938 70.51111
18 CCCGCG 127926 0.0000225 1155 0.001572 69.86979
19 CGCGGG 127926 0.0000225 1155 0.001572 69.86979
20 CGCGAG 63936 0.0000112 551 0.00075 66.96125
21 CTCGCG 63936 0.0000112 551 0.00075 66.96125
22 CGCGGA 61387 0.0000108 515 0.000701 64.90429
23 TCCGCG 61387 0.0000108 515 0.000701 64.90429
24 TCGCGA 29124 0.0000051 234 0.000318 62.32825
25 CGCGAC 35935 0.0000063 288 0.000392 62.1231
26 GTCGCG 35935 0.0000063 288 0.000392 62.1231
27 CGTCGC 44589 0.0000078 325 0.000442 56.4952
28 GCGACG 44589 0.0000078 325 0.000442 56.4952
29 CCGCGC 210901 0.0000370 1509 0.002054 55.5108
30 GCGCGG 210901 0.0000370 1509 0.002054 55.5108
31 CGCCGA 51860 0.0000091 365 0.000497 54.59356
32 TCGGCG 51860 0.0000091 365 0.000497 54.59356
33 CGGCGA 56495 0.0000099 387 0.000527 53.09936
34 TCGCCG 56495 0.0000099 387 0.000527 53.09936
35 CGAGCG 65811 0.0000116 447 0.000608 52.44928
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36 CGCTCG 65811 0.0000116 447 0.000608 52.44928
37 CGCGTC 59353 0.0000104 386 0.000525 50.51774
38 GACGCG 59353 0.0000104 386 0.000525 50.51774
39 ACGCGC 66140 0.0000116 425 0.000578 49.86788
40 GCGCGT 66140 0.0000116 425 0.000578 49.86788
41 CCGCGA 55823 0.0000098 358 0.000487 49.72181
42 TCGCGG 55823 0.0000098 358 0.000487 49.72181
43 CGACGC 41872 0.0000074 266 0.000362 49.25885
44 GCGTCG 41872 0.0000074 266 0.000362 49.25885
45 CGACCG 33411 0.0000059 204 0.000278 47.383
46 CGGTCG 33411 0.0000059 204 0.000278 47.383
47 CGGCCG 176492 0.0000310 1048 0.001426 46.01395
48 CGCCCC 362006 0.0000635 2059 0.002803 44.13393
49 GGGGCG 362006 0.0000635 2059 0.002803 44.13393
50 ACGCCG 64787 0.0000114 368 0.000501 43.93726
51 CGGCGT 64787 0.0000114 368 0.000501 43.93726
52 GCCGCC 344938 0.0000605 1854 0.002523 41.7104
53 GGCGGC 344938 0.0000605 1854 0.002523 41.7104
54 GCGGCC 261440 0.0000459 1306 0.001778 38.72759
55 GGCCGC 261440 0.0000459 1306 0.001778 38.72759
56 CCCCGC 426331 0.0000748 2119 0.002884 38.55843
57 GCGGGG 426331 0.0000748 2119 0.002884 38.55843
58 CCGTCG 44482 0.0000078 221 0.000301 38.51512
59 CGACGG 44482 0.0000078 221 0.000301 38.51512
60 CCGCCC 518352 0.0000910 2547 0.003467 38.09584
61 GGGCGG 518352 0.0000910 2547 0.003467 38.09584
62 CCGGAA 199323 0.0000350 966 0.001315 37.56635
63 TTCCGG 199323 0.0000350 966 0.001315 37.56635
64 CGCACG 77899 0.0000137 376 0.000512 37.35573
65 CGTGCG 77899 0.0000137 376 0.000512 37.35573
66 CGGGGC 371940 0.0000653 1749 0.002381 36.4558
67 GCCCCG 371940 0.0000653 1749 0.002381 36.4558
68 ACGCGG 69430 0.0000122 321 0.000437 35.81254
69 CCGCGT 69430 0.0000122 321 0.000437 35.81254
70 CGCGAA 30243 0.0000053 139 0.000189 35.62954
71 TTCGCG 30243 0.0000053 139 0.000189 35.62954
72 ACGGCG 68155 0.0000120 306 0.000416 34.70804
73 CGCCGT 68155 0.0000120 306 0.000416 34.70804
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74 CGCGCC 291748 0.0000512 1303 0.001774 34.63893
75 GGCGCG 291748 0.0000512 1303 0.001774 34.63893
76 CCGACG 45809 0.0000080 194 0.000264 32.84246
77 CGTCGG 45809 0.0000080 194 0.000264 32.84246
78 GCCGGC 246470 0.0000433 1024 0.001394 32.18859
79 AACGCG 38488 0.0000068 159 0.000216 32.06146
80 CGCGTT 38488 0.0000068 159 0.000216 32.06146
81 CGGAAG 262733 0.0000461 1074 0.001462 31.70979
82 CTTCCG 262733 0.0000461 1074 0.001462 31.70979
83 CGGACG 65539 0.0000115 258 0.000351 30.53598
84 CGTCCG 65539 0.0000115 258 0.000351 30.53598
85 GCCGGA 184107 0.0000323 693 0.000943 29.20254
86 TCCGGC 184107 0.0000323 693 0.000943 29.20254
87 CTGCGC 288998 0.0000507 1074 0.001462 28.83276
88 GCGCAG 288998 0.0000507 1074 0.001462 28.83276
89 CACGCG 89405 0.0000157 329 0.000448 28.52241
90 CGCGTG 89405 0.0000157 329 0.000448 28.52241
91 GCGCGA 113177 0.0000199 410 0.000558 28.04276
92 TCGCGC 113177 0.0000199 410 0.000558 28.04276
93 ACGTCG 36991 0.0000065 130 0.000177 27.26394
94 CGACGT 36991 0.0000065 130 0.000177 27.26394
95 GAGCGC 183691 0.0000322 642 0.000874 27.13746
96 GCGCTC 183691 0.0000322 642 0.000874 27.13746
97 ACGCGA 32037 0.0000056 111 0.000151 26.88293
98 TCGCGT 32037 0.0000056 111 0.000151 26.88293
99 TGCGCA 174690 0.0000307 604 0.000822 26.77864

100 CGTACG 22916 0.0000040 78 0.000106 26.4094
 


