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ABSTRACT

Gene transcription is an extremely, important mechanism in the cell, which is
regulated by transcription factors (TFs), binding mostly and specifically to the 5’
end of genes, the so called-promoter tegion. The core promoter is a region of
about 100 base-pairs flanking the transcriptional start site (TSS), which serves as
the recognition site for the basal transcription apparatus. To accurately determine
the core promoter in gene upstream 1s the first step to decipher the regulation of
gene transcription.

In the study, we incorporated Support Vector Machine (SVM) with three
useful regulatory features such as statistically significant 6-mer patterns,
nucleotide composition, and DNA stability to identify the transcriptional start
sites in mammalian genomes. The experimentally verified transcriptional start
sites were obtained from DBTSS, and the genomic sequences of the mammalian
genomes were obtained from NCBI build 35. K-fold cross-validation was used
to evaluate the prediction performance of the three regulatory features extracted
for core promoters, and the preliminary results suggested that the prediction
accuracy could be greater than 70%. By comparing to other previously
developed approach, our method had better prediction performance than others.

Keywords: Transcriptional start sites, promoter, Support Vector Machine
(SVM), DNA stability

v



2

ek 7 s EREFALZKIALET > Aips Ep 342 AR R A
g EE R IR LA hme S EA A F T AR LR
AR EERS G R S I EARAREFT Y i ARE 2
PRy BEBREMELIITHEIZLEEL > 2 RAFEAGHZ #p%-‘\

TFEEFE Y B e o BAGF T B TA B RF ATIRAL o
FREDACFLP - RPN D ipE  FHREDREF

WP LA Ep T ApFIE 2 BB 0 fo s R 42 meeting shp + 0 &

AL b o P %k P BRI E L RE ey R o
(ERMNEIIHRETR BB E AN E X R R Bk

gl T > BAPYERLS A HERAATA LT F A REE R R
ey A o
15 B R BN R A mi‘}:& *F 3Rk By AR L ) F

T S IERED EREE S RN SRR EUTE RS I

POTHE S RO BRI REAEFEY A TG A - AT o

—

FIRLFF

Ak a4 8 2006 & 2 0



Table of Contents

P& i
ABSTRACT L.t v
FE Bl Y%
TABLE OF CONTENTS ... VI
LIST OF FIGURES.......c.o oo Vil
LIST OF TABLES ... .ot X
CHAPTER 1 INTRODUCTION ..ottt e 1
1.1 BACKGROUND ....cttiiiiieiieeiteeeitee sttt e sttt et et e et e sbeesbeeesbeeenaee e 1
1.1.1 Central DOgMa.......ccccoiiiiiieiieiie e 1
1.1.2 Transcriptional Start SiteS (TSS) .....covviiiiiiiiiie st 2
1.1.3 Transcriptional REgUIATION ......ccvvriieiieiie e 3

1.2 MOTIVATION ..ot ifobiteeereeeeeee st e etteeeieeesieeesieeesnteesbeesbeeenneeenneeenane 5
1.3 GOAL...oorveeeeeeee 8l AR, T oo 6
1.4 CHALLENGES ...t ittt et taus e sttt e st e st e et e sbeesbeeenbeeeninee e 6
CHAPTER 2 RELATED WORKS ..o it 9
2.1 EXPERIMENTAL T'SS DATA SOURCE .....cft el e eeeeeieieeeiieeenieeeeniieeeeiieeesieeesnaneeas 9
2.1.1 Eukaryotic Promoter Datahase (EPD) .........ccccoevevievviieneeie e, 9
2.1.2 Database of Transcriptional Start Sites (DBTSS) .......ccccevvvvvvviienninnne 9

2.2 RELATED WORKS OF GENE PROMOTER PREDICTION TOOLS..........ccccuveeen..e. 11
2.2.1 NNPP (VBISION 2.2) ..ieiiiie ettt 11
2.2.2 MCPIOMOTEN .....oviiiiiiie ettt e re e e e e e e s snaee e 12
2.2.3 EPONING ...ttt e 13
2.2.4 CPGPIOD ... .ot 14
2.2.5 PromoterInSPECIOL ........ei ittt 15
AT o 011110 (=] o SRR 16
2.2.7 Dragon Promoter FINGEr ........cccceiiiiieniesiese e 17
2.2.8 Dragon Gene Start FINGET ........ccovviiiiiiieiiesee e 18
2.2.9 FIrSt EXON FINGEE ....ooiviiiiiic et 19
2.2.10 Summary of Gene Promoter Prediction TOOIS..........c.cccovveviriiennnenn, 19

2.3 DNA STABILITY .eettettteeiteenieeniteeieeeieeeieeesseeesiteesmeeesiseessseesaseesseesnseesnseeens 22
2.4 SUPPORT VECTOR MACHINE (SVM) ...ouviiiiiiiiiieeeieee ettt 24
CHAPTER 3 MATERIAL AND METHODS.........ccooiiiiieeeee e 27
3.1 IMIATERIALS <.ttt ettt ettt ettt ettt sttt e it e sateesateesaneesnaeens 27



3.1.1 Database of Transcriptional Start Site (DBTSS)........cccccevivvrvviinannnn, 27

3.1.2 NCBI GENOME SEOUENCES ... .eeeiieieitieeiieeieeesieeesieeesireesisessbeesieesneeens 28

B2 IMETHODS .....uitiitiieeeeeeeeeeectee e e e e e e e e et ae e e e e e e eeeeeetasaaeeeeeeeeeeeeenssssaaaeaaaeens 28
3.2.1 Dataset CONSIIUCTION........c.uuiiiiiiiieee ettt 29
3.2.2 FEature EXraCtioN.........ccouveiiiiiiiiiic et 31
3.2.2.1 Statistically Significant 6-mer Pattern.............cccoeevevviieniernnnnnne. 31
3.2.2.2 Nucleotide COMPOSTLION .......veeeeeuiireeiiiieeiiieeeeieeeeieeeeiveeeeivee e 32
3.2.2.3 DNA Stability...c.veeiouiiiiieieiieeieecree et 33

3.2.3 Model Learning and Evaluation ...........ccccoevviiiiniiinienis e, 34
CHAPTER 4 RESULTS ...ttt 37
4.1 FEATURE OBSERVATIONS .......uuutiiiiieeeeeeeeeeiiinreeeeeeeeeeeeesisssssseeeeseseessennssssees 37
4.1.1 Statistically Significant 6-mer Patterns.........cccoccovvevieeiienieniesiceenn 37
4.1.2 Nucleotide COMPOSITION ......ueeiiieiiiiieiii e 39
4.1.3 DNA Stability ...ccoveeiieeeie e 42

4.2 PREDICTION PERFORMANC E .......cuutiiiieeiieeeiiiiiieeeeeeeeeeeeeeernnneeeeeeeeeeeennnsneess 44
4.2.1 Statistically Significant 6-mer Patterns.........cccoocvvvviiiiienienienieennn 44
4.2.2 Nucleotide COmMPOSITION ahlhiiam cveerrerreeerieerieeseeseesieesseeseesreesseeseens 46
4.2.4 DNA StabIlITY .......ooifiei o e esbie e esieeeseeesne e ste e sieeesrneeseeeeeeeannes 49
4.2.5 The Prediction Performance-of Combinatorial Features ................... 51

4.3 SUMMARY OF RESULTS ... oo sieciietieee et etitecieeeeeeeeeeeeeeeiaareeeeeeeeeeeeannnsneeas 53
4.4 WEB INTERFACE .......... et st T et e e e e 54
CHAPTER 5 DISCUSSION i tiii it iiiiaie ettt snvraeas 57
5.1 LIMITATIONS. ...uutititieeeeeeeeeiititreeeeeesaeeeeetraareeeeeeeeeeeesassseeeeaeeeeeeeannsssaeeeaaaeens 57
5.2 COMPARISON ......uutiiiieeeeeeeiiiuirrreeeeeeeeeeeeiisraseeeeaeeeeeaaesararaeseaeseeseeannssrsaeseaaeeens 57
5.2.1 PrediCtion ACCUIACY ......ccueiueeiiieiieeiiiesiiesieesteestee e see e sseesseesseesnee e 57
A O T | - (o1 (=] g 1) £ o2 58

S.3 FUTURE WORKS ...ccceeiiiiieiiiiiiieeee e e e eeeectittee e e e e e e e eeeaaasaeaeeeeeeeeeennnssaaaeaaaeens 59
CHAPTER 6 CONCLUSIONS ...ttt 61
REFERENGCES ........o oottt 62
F AN o = N T G NSRS 64

vii



List of Figures

Figure 1.1 Central dogma of molecular biology.........ccccoeceeviiviiniiniiiiniinicienene 2
Figure 1.2 A simplified gene Structure. ..........coevevervierieneenienieneeeneeeeee e 3
Figure 1.3 Transcriptional regulation. ..........cccceoerieriiiinienienienieeeeeeseee e 5

Figure 2.1 The comparison between the cloning method and the oligo-capping
method. 10
Figure 2.2 The formula of calculating the free energy for the DNA sequence. ....23

Figure 2.3 The example of free energy computation...........ccceeceeeeeeerieeiieenieenneens 23
Figure 2.4 Average free energy nearby TSSs of three species. ........ccceveriencenene 24
Figure 2.5 The concept 0f SVM ....couiiiiiiiiiiiiicetceeeee e 25
Figure 2.6 SVM PrOCESS OVETVIEW ...c.eveiieuiiriiiniiiienirenieeiesieenieeeesieesieesesieenseeneens 26
Figure 3.1 System flow of prediction tool developing. ..........cccceeceveciienieriiiennnnne. 29
Figure 3.2 Formula of DNA sequences free energy.........ccocceeeveeveeeieenienveenneenne 34
Figure 3.3 The definition of fourjperformance measures. ...........cccceevveeruereeneennnens 35
Figure 3.4 Evaluation Benchmark. ......cfu oo 36

Figure 4.1 The distribution of monomer, dimer, and trimer nucleotide composition
OF @LOUP 1 (@l1). e e ettt ettt e 39

Figure 4.2 The distribution of monomer, dimer, and trimer nucleotide composition

of group 2 (NON-CPG iSIAN@):.......c.veeesiiieit ot 40
Figure 4.3 The distribution of monomer, dimer, and trimer nucleotide composition
of roup 3 (CpG island). ....cceeeuiiiiiiiieeie e 41
Figure 4.4 The distribution of average free energy relative to TSSs of group 1 (all).
.............................................................................................................. 43
Figure 4.5 The distribution of average free energy relative to TSSs of group 2
(NON-CPG IS1ANA). .eeieiiiiiiieie e 43
Figure 4.6 The distribution of average free energy relative to TSSs of group 3
(CPG ISIANA). ettt ettt et ne 43
Figure 4.7 Distributions from 6 mer pattern models’ predictions of group 1, 2, and
3 in the interval [-3000, +3000] relative to the TSS based on DBTSS.................... 46

Figure 4.8 Distributions from nucleotide composition models’ predictions of
group 1, 2, and 3 in the interval [-3000, +3000] relative to the TSS based on

DBTSS. 49
Figure 4.9 Distributions from DNA stability models’ predictions of group 1, 2,
and 3 in the interval [-3000, +3000] relative to the TSS based on DBTSS............. 51

Figure 4.10 Distributions of 6-mer pattern, nucleotide composition, and DNA
stability models’ predictions of group 1, 2, and 3 in the interval [-3000, +3000]

viii



relative to the TSS based on DBTSS. ..ot 53
Figure 4.11 The comparison of the prediction performance for the three kinds of

feature and Combination of those three features. ..........cccceeveeviieiiiiiiiinieeieeee, 54
Figure 4.12  Web interface [1]. ..coceeeiieiieiiieieeie et 55
Figure 4.13  Web interface [2]. ..ooceecvieiieeieeieeie ettt 56
Figure 5.1 Comparison of our method and other tools..........cccceceviininiiiniencnnns 59

X



List of Tables

Table 2.1 Summary of gene promoter prediction tools. ........ccceevveerireiiieniieienne. 21
Table 3.1 The statistics of human and mouse experimentally TSSs in DBTSS....27
Table 3.2  The statistics of human and mouse experimentally TSSs in EPD. ....... 28
Table 3.3 Numbers of sequence of group 1,2, and 3. .......ccceeveieieniiiiienieeiene 30
Table 3.4 Positive region and six kinds of negative region of window size we
optimized. 36

Table 4.1 Top 60 selected pattern of group 1 (all). ..cceeevieviiiiiiiiiiiieieeie 37
Table 4.2 Top 60 selected pattern of group 2 (non-CpG island)..........c.cccceenenee. 38
Table 4.3 Top 60 selected pattern of sequences group 3 (CpG island).................. 38
Table 4.4 The selected highly correlated patterns of nucleotide composition of

EOUP 1 (A11). e st 40
Table 4.5 The selected highly correlated patterns of nucleotide composition of

group 2 (Non-CpG iS1and). ..ot iliiis e eeeerie ettt 41
Table 4.6  The selected.highly correlated patterns of nucleotide composition of

group 3 (CpG island). s ..o i it et 42
Table 4.7 The models accuracy of 6mer pattern in group 1(all)..........ccceeevennennne.
Table 4.8 The models.accuracy of 6mer pattern in group 2 (non-CpG island). ....45

Table 4.9 The models accuracy of 6mer-pattern in group 3 (CpG island). ........... 45
Table 4.10 The models accuracy of monomer to dimer of group 1 (all)............... 47
Table 4.11 The models accuracy of monomer to trimer of group 1 (all)............... 47
Table 4.12 The models accuracy of monomer to dimer of group 2 (non-CpG
ISIANA). e e et e e e aa e e eaae s 48
Table 4.13 The models accuracy of monomer to dimer of group 3 (CpG island). 48
Table 4.14 The models accuracy of DNA stability in group 1 (all)....................... 50
Table 4.15 The models accuracy of DNA stability in group 2 (non-CpG island). 50
Table 4.16 The models accuracy of DNA stability in group 3 (CpG island). ....... 50
Table 4.17 The model accuracy of Combinational models in group 1 (all). ......... 52
Table 4.18 The model accuracy of Combinational models in group 2(non-CpG
ISIANA). e e et e e aa e aae s 52
Table 4.19 The model accuracy of Combinational models in group 3 (CpG island).
............................................................................................................. 52
Table 5.1 Comparison of our method with other tools. ........c.cccoceeviiiiniiniinennns 58
Table A.1 Top 100 patterns of statistically significant 6-mer pattern in group 1
(@10, et ettt sttt sbe et et 64
Table A.2 Top 100 patterns of statistically significant 6-mer pattern in group 2

X



(NON-CPG IS1ANA). .eeieiiieiiieie e 67
Table A.3 Top 100 patterns of statistically significant 6-mer pattern in group 3
(@516 T3 F:1 4 1¢ ) R O U S U UURR PR 70

X1



Chapter 1 Introduction

1.1 Background

The science was stemmed from exploring the universe’s secret. The life is a
part of the universe, so studying the mysterious biological phenomena clearly
had been one of the goals of scientist’s efforts. Since James Watson and Francis
Crick derived out the structure model of DNA in 1953, the scientist untied the
hereditary secret and regulatory mechanism of the gene progressively with this

foundation.

1.1.1 Central Dogma

The majority of genes are éxpressed as the proteins they encode. As shown in
the Figure 1.1, the central dogma of molecular biology is based on the principle
that the flow of genetic information travels from DNA to RNA and finally to the
translation of proteins. In the transcription step, DNA is transcribed to RNA.
There are various types of RNA including tRNA (transfer RNA), rRNA
(ribosomal RNA) and mRNA (messenger RNA) in the transcription step. The
mRNA is the blueprint in the process of protein synthesis. The process of mRNA
transform to protein called translation. The direction of transcription and
translation 1s unidirectional, no reverse direction is detected. But one process of

RNA transform to DNA called reverse transcription which occur in mRNA



reverse transcript to cDNA (complementary DNA) for RNA amplification.

transcription
RNA Y /’—\
Replication
|
Translation

Figure 1.1 =Central:‘dogma of molecular biology.

(The figure is obtained from http://cats. med.uvm.edu/.../1 centraldogma_wisc_13.jpg)

1.1.2 Transcriptional Start sites (TSS)

Transcription, the process whereby RNA copies are made from sections of the
DNA genome, is directed by promoter regions (Down and Hubbard 2002). The
promoter is a DNA sequence which is usually located on the upstream of a gene
transcriptional starting site (TSS). The core promoter, a region of about 100
base-pairs flanking the transcriptional start site (TSS), serves as the recognition
site for the basal transcription apparatus (Ohler, Liao et al. 2002). Figure 1.2
shows a simplified gene structure and promoter region. When RNA polymerase

IT and some kinds of transcription factors bind onto the gene promoter region



together, the transcription of a gene will be activated and the messenger RNA
(mRNA) will be transcribed from the DNA sequence. We have known that the
promoter region is always located on the upstream of a gene and we will try to
find out some hallmarks nearby the known transcriptional start sites. Thus, we
can identify the transcriptional start sites on the unknown DNA sequences by

using these hallmarks.

Transcriptional |
Start Site (TSS) 3’ Untranslated Region (UTR)
5" Untranslated Region (UTR)

' B v
5 3
A

' Gene region

Promoter/ Terminator
Control Region Sequence
N -
e e
DI A,

Figure 1.2 A simplified gene structure.

1.1.3 Transcriptional Regulation

Transcriptional regulation i1s one of the most important means of gene
regulation. Uncovering transcriptional regulatory networks helps us to

understanding the complex cellular process (Xing and van der Laan 2005). As



shown in the Figure 1.3, gene transcription is regulated by transcription factors
(TFs) which are binding mostly and specifically to the 5’ end of genes. The RNA
polymerase II promoter is the critical region that regulates differential
transcription of protein coding genes (Solovyev and Shahmuradov 2003), and is
located near the transcription start site (TSS). A typical promoter region is
believed to comprise short DNA sequences known as regulatory elements,
which includes transcription factor binding sites (TFBSs) (Prakash and Tompa
2005).

About 10~15% of mammalian DNA re-associated very rapidly. This class
includes tandem repeats. It includes. Satellites (100 kb to over 1Mb),
Ministatellites (1kb ~ 20kb),:Microsatellites (Short Tandem repeats, 1~ 6 base in
a region less than 150 base). Interspersed repeats are repeated DNA sequences
located at dispersed regions ina.genome. They are also known as mobile
elements or transposable elements. In mammals, the most common mobile
elements are LINEs (Long Interspersed Nuclear Elements) and SINEs (Short

Interspersed nuclear Elements).

The structure of eukaryotic promoters is more complex than prokayotic
promoters and they have several sequence motifs, for example TATA box,
CCAAT box, GC box, and INR box (Kanhere and Bansal 2005). Therefore,
some concepts are also used to analyze the promoter, including the presence of

CpG islands close to the transcription start site, the presence of a specific



transcription factor binding site, statistical properties of proximal and core
promoters rather than other genomic sequences, the orthologous gene promoters,

and restricting the promoter region from using information from mRNA

transcripts (Bajic, Tan et al. 2004).
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Figure 1.3 Transcriptional regulation.

(The figure is obtained from http://www.wellesley.edu/.../06eukaryotes.jpg)

1.2 Motivation

To accurately determine the core promoter in gene upstream is the first step

to decipher the regulation of gene transcription. In recent years, powerful



computational techniques have increasingly been used to analyze annotated
DNA sequences to uncover the secret of human genomes. Gene promoter
prediction is important for guiding experimental biologists to find novel gene
promoter region. However, the existing promoter prediction tools result in low
sensitivity or low specificity. The low prediction accuracy stems from the low
quality of regulatory features or training data source. Therefore, a computational

method integrated with good regulatory features should be proposed.

1.3 Goal

Developing an efficient and effective system to identify gene transcriptional
start sites is important in=silico tools for -guiding experimental biologists.
However, the existing prometer prediction programs can only be used for minor
reference because of them results in low ‘sensitivity or low specificity. Therefore,
the main purpose of this study is to incorporate the powerful computational
method with useful regulatory features of core promoters for gene promoter
identification that results in high prediction sensitivity and specificity. This study
can help researchers identifying gene transcriptional promoter region more

efficiently and exactly.

1.4 Challenges

Before extracting the useful regulatory features for core promoters, the



experimentally verified transcriptional start sites need to be obtained. In this
thesis, the main source of the known transcriptional start sites were obtained
from DBTSS and the genomic sequences of the mammalian genomes were
obtained from NCBI build 35. All the promoter sequences obtained from
DBTSS were stored into our databank for analyzing the core promoter region.
However, the length of sequences obtained from DBTSS was 1201 bps (from
-1000 to +200), which was too short to completely analyze the flanking region
of TSS. We used the Blast program to align the promoter sequence of DBTSS to
the genomic sequences of NCBI build 35, then the longer sequences of 6001
(from -3000 to +3000) were obtained:

Besides, the problem of identifying .gene transcriptional start sites itself
remains some difficult challenges. The most important one challenge is that no
reliable dataset of experimentally verified transcriptional start sites can be used
to analyze the specifically regulatory elements of promoter. Moreover, the
existing promoter prediction tools result in low numbers of true positive
predictions and high numbers of false positive predictions. The detailed
description of the existing promoter prediction methods will be discussed in
chapter 2.

The research scope of this thesis is concentrated on mammalian (human and
mouse) genomes. The reason for using the mammalian genomes is that the
sequences of gene transcriptional start sites obtained from DBTSS just had

human and mouse. In addition, the reason for obtaining the sequences of gene
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transcriptional start sites from DBTSS is its amount much more than other
databases. Therefore, we constrict our scope to identify transcriptional start sites

in mammalian genomes.



Chapter 2 Related Works

2.1 Experimental TSS data source

Two popular experimentally verified transcriptional start site databases,
such as Eukaryotic Promoter Database (EPD) and Database of Transcriptional

Start Site (DBTSS), were widely used to analyze the promoter region.

2.1.1 Eukaryotic Promoter Database (EPD)

The Eukaryotic Promoter Database (EPD) i1s an annotated non-redundant
collection of eukaryotic POL: 11 ,promoters, for which the transcription start site
has been determined experimentally (Schmid, Praz et al. 2004). EPD is a
collection of 4,810 eukaryotic:POL II promoters. Tools for analysing sequence
motifs around TSSs defined in EPD are provided by the signal search analysis

server. EPD can be accessed at http://www.epd. isb-sib.ch.

2.1.2 Database of Transcriptional Start Sites (DBTSS)

Suzuki et al developed a novel method namely oligo-capping to collect the
full-length cDNA libraries. The different between cloning method and
oligo-capping method is shown in Fig. 2.1. The characteristics of oligo-capping
method are extensive, high throughput, and high accuracy. DBTSS (Suzuki,

Yamashita et al. 2004) was constructed in 2002 based on the full-length cDNA
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libraries.
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Figure 2.1

The comparison betweq:m the clomng method and the oligo-capping
<] method
(The figure is ébtaineid-:ﬁ‘om http://dbtss old.hgc.jp/hgl7/)

DBTSS is a collection of ffanscriptioﬁéi- start sites and adjacent promoters,
which are experimentally determined by intensive analyses of full-length
cDNAs. In order to extract biological insight from the compiled sequence
information, search engines for putative transcription factor binding sites are
implemented. Also, for molecular evolutionary studies of the transcriptional
regulations, detailed sequence alignments of the promoters between human,
mouse and other model organisms are provided. DBTSS is available on the web

in Japan at http://dbtss.hgc.jp. The positional information of the TSSs, sequences

of the promoters and related information can also be downloaded in flat file

form from the download site. The current release of DBTSS (5.1) contains TSS
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information of 15,262 and 14,162 genes determined by 1.4 and 0.4 million

cDNAs in humans and mice respectively.

2.2 Related Works of Gene Promoter Prediction Tools

Gene promoter prediction is important in silico analysis for guiding
experimental biologists. Although several gene promoter prediction tools had
been developed, wet-lab biologists didn’t much believe that because of the low
prediction accuracy. Until the appearance of Promoterlnspector (Scherf,
Klingenhoff et al. 2000), gene promoter prediction tools suffered from low
accuracy. After the appearance of PromoterInspector, several efficient gene
promoter prediction tools have.also been developed. In the following, we expand
further on their reviews and inclidé more recent research on gene promoter

prediction.

2.2.1 NNPP (Version 2.2)

NNPP 2.2 (Reese 2001) is constructed of time-delay neural networks. The
network model is a special case of a feed-forward neural network, which has
been successfully applied to voice recognition. Time-delay neural networks
slightly differ from feed-forward neural networks in the design of the hidden
layer. The hidden nodes of a standard feed-forward model are determined by

experiment or by lemma. In a time-delay model, the hidden nodes are

11



determined by the number of the input nodes and the input size of the receptive
fields. Therefore, the input layer and the hidden layer are no longer fully
connected. The hidden nodes in a hidden layer are only connected to input nodes
within a particular receptive field. In a time-delay model, the hidden node is also
called a feature node and is known as weight sharing in neural network
technology.

In the training process, all the weights in the same receptive filed will be
calculated and then copied to each other. However, the weights computed
between the hidden nodes and the output nodes are still based on standard
feed-forward algorithms. To optimize., promoter prediction accuracy, two
time-delay neural network models which recognize TATA-box with 30 bp (-40
bp to -10 bp from the TSS):and Inr(-14bp to:+11 bp from the TSS) regions of
promoters are used. A combined model'with 51 bps (-40 bps upstream to +11
bps downstream of TSS) is used along with the two models mentioned above for
promoter prediction. The testing results showed that NNPP demonstrated 75%

true positives for a fruit fly genome with a length of 2.9 Mbps.

2.2.2 McPromoter

MCPromoter (Ohler, Stemmer et al. 2000) coordinated three interpolated
Markov chains (IMCs) to look for eukaryotic polymerase II TSSs in genomic
DNA. It consists of a model for promoter sequences and a mixture model for

non-promoter sequences, containing sub-models for coding and non-coding
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sequences. To localize TSSs, a window of 300 bases is shifted over the sequence
in steps of 10 bases. Atevery position, the difference between the log likelihood
of the promoter and the non-promoter model is computed. The resulting plot
describes the regulatory potential over the sequence and is smoothed by a
median and hysteresis filter (see Duda and Hart 1973) to eliminate single false
predictions and reduce the high number of neighboring minima that are due to
noise. The program then makes a prediction for each local minimum below a
pre-specified threshold.

The training dataset are extracted from the EPD which contains a total of 565
vertebrate promoter sequences, and each. contained 250 bp upstream and 50 bp
downstream from the TSS. After the five-fold cross validation evaluation, the
system reached an 84% correlation coefficient for promoters versus coding
regions and achieved a 53%  correlation coefficient for promoters versus

non-coding regions.

2.2.3 Eponine

Eponine (Down and Hubbard 2002) proposed a probabilistic method for
detecting transcription start sites (TSS) in mammalian genomic sequence, with
good specificity and excellent positional accuracy. Eponine models consist of a
set of DNA weight matrices recognizing specific sequence motifs. Each of these

is associated with a position distribution relative to the transcription start site.
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Eponine has been tested by comparing the output with annotated mRNAs
from human chromosome 22. From this work, they estimate that using the
default threshold (0.999), it detects >50% of transcription start sites with 70%
specificity. However, it does not always predict the direction of transcription
correctly. It’s an effect which seems to be common among computational TSS

finders.

2.2.4 CpGProD

CpGProD (Ponger and Mouchiroud 2002) is a program dedicated to the
prediction of promoters associated with:CpG Islands in mammalian genomic
sequences. In vertebrate genomes, the CpG Islands (CGlIs) are involved in DNA
methylation of gene transcription.-50-60% of the human genes exhibit a CGI
over the transcription start site (T'SS) but not all the CGIs are associated with
promoter regions (Larsen, Gundersen et al. 1992). CpGProD uses a CGI
definition more stringent than that proposed by Gardiner-Garden and Frommer
(1987). CpG Island are defined as DNA regions longer than 500 nucleotides
(instead 200 bp), with a moving average G + C frequency above 0.5 and a
moving average CpG observed/expected (CpG o/e) ratio greater than 0.6.
Although it is strictly dedicated to this particular promoter class corresponding
to =50% of the genes, CpGProD exhibits a higher sensitivity and specificity than

other tools used for promoter prediction.
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2.2.5 PromoterlInspector

PromoterInspector (Scherf, Klingenhoff et al. 2000) is one of the most
well-known content-based gene TSSs prediction tools, which gives attention to
analyzing genetic context instead of context location. Its main idea is to extract
common sequence features from sequences and generate a set of context
features called IUPAC (International Union of Pure and Applied Chemistry)
word dictionaries. [UPAC word dictionaries are composed of an [UPAC group
which is defined by a set of oligonucleotides and a number of undefined base
pairs (i.e. the letter “N” could represent Ay.C, G or T). To optimally distinguish
a promoter region from an un-annotated .DNA sequence, PromoterInspector
introduces not only a promotet reégion as' the training set but also three
non-promoter sequences, that is, exon, intron, and 3’UTR. These training data
sets then generate three classifiers: promoter and exon, promoter and intron, and
promoter and 3’UTR. These three classifiers are the basis of PromoterInspector.
In the experiment results, the vertebrate promoter training data were extracted
from EPD, and the non-promoter exon and intron were randomly downloaded
from NCBI GenBank; the 3’UTR was selected from the UTR database. The
valuation data that were collected by Ficktt and Hatzigeorgiou were tested. The
greatest advantage of PromoterInspector seems to be that of dramatically

reducing the false positives. This advantage can help lab researchers avoid
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unnecessary experiments or help other prediction tools further and exactly locate

the transcriptional start sites.

2.2.6 Promoter 2.0

Promoter 2.0 (Knudsen 1999) combines several neural networks. Each
neural network model uses perceptron-like algorithms. In the training phase, the
inputs of the neural networks are a small window of DNA sequence and the
output of other networks. For example, giving a network with a given input
window size and a set of weights, the network scans along a DNA sequence and
records the scores that are generated ftom every segment. Next, another new
network with the same structure but with different weight scans the same DNA
sequence. The highest score of eachyefrall the previous networks for the same
DNA sequence will be multiplied by ‘a” separation function. The result will
become the input of this new network. In Promoter 2.0, there are four networks
responded to TATA-box, cap site, CCAAT-box and GC box. To optimize these
neural networks, genetic algorithms are used to randomly choose and change an
individual weight. If the performance of network improved, the new weight was
kept. The new weight was ignored if the performance did not improve.
Nevertheless, the crossover operation of genetic algorithms is not used in
Promoter 2.0. The training and testing data of Promoter 2.0 were 100 vertebrate
sequences. For a positive set, 200 bps upstream of the cap site was selected as

the promoter sequence. In contrast, 200 bps downstream of the cap site was
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assigned as the non-promoter sequence; Promoter 2.0 reported 63% true

positives for its testing data.

2.2.7 Dragon Promoter Finder

The Dragon Promoter Finder 1.2 (DPF) (Bajic, Seah et al. 2002) is an gene
promoter prediction model for vertebrates. The DPF consists of a nonlinear
promoter recognition model, sensors for recognizing specific functional regions
of DNA, signal processing, and artificial neural networks. Before using the DPF,
a user has to supply a DNA sequence and a selected accuracy range to the DPF
system. The DPF then reads thesDNA sequence by a sliding window and shifts
one base pair each time. The data window’s content passes through three sensors.
Each sensor responds to a specific-funetional region, such as a promoter, exon
and intron. A non-linear signal processing model further analyzes the sensor’s
output and feeds it into to a neural network to ascertain the input DNA sequence
and determine if a promoter region exists.

The DPF 1.3 extends the capability for recognizing a GC-rich or GC-poor
DNA sequence. The DPF used 793 different vertebrate promoter sequences
from EPD as positive training set; each sequence was 250 bps long, covering
200 bps upstream and 50 bps downstream from the TSS. For a negative training
set, the DPF used 800 coding-exon and 4000 intron sequences. To further tune
the system parameters, DPF extended 400 3> UTR human sequences and 200

human exon and 500 human intron sequences to the training set. Each sequence
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was also 250 bps long. The final testing data contained 146 human and
humanviral sequences, which contained 159 TSSs. The DPF showed 66% true

positives, which outperformed other tools significantly.

2.2.8 Dragon Gene Start Finder

Dragon Gene Start Finder (Dragon GSF) (Bajic and Seah 2003) combines
three systems. The first one is Dragon Promoter Finder (DPF) (Bajic et al (2003),
the second one is the system which estimates the presence of the CpG Islands,
and the third one combines information from these two into the final predictions.
The third system performs the,,sensor fusion function utilizing data
preprocessing and an artificial mneural:, network (ANN). The combination
algorithm will only select the one of possibly-many predicted TSS locations in
the region [-3700,+3700] relative. to the central point of the CpG Island, such
that jointly with the other input data the ANN produces the highest score above
the selected threshold.

Dragon GSF made every effort not to mislead the user with claims of
superior performance. Dragon GSF presented the performance as found on the
tests on different genomic sequences including whole human chromosomes 4,
21, and 22. Based on these results Dragon GSF infer that the gene start finding
capabilities of Dragon GSF system are among the best currently available. The
estimated performance for the human genome of Dragon GSF implies sensitivity

of ~65% (relative to all promoters), sensitivity of ~88% relative to the CpG
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Island related promoters, and positive predictive value of ~78% relative to all

known genes.

2.2.9 First Exon Finder

First Exon Finder (FirstEF) (Davuluri, Grosse et al. 2001) uses different
discriminating functions structured as a decision tree to predict the first exons
and promoters in a gene. The probabilistic models are designed to find potential
first donor sites and CpG-related and non-CpG-related promoter regions based
on discriminating analysis. For each potential first donor and upstream promoter
region, FirstEF decides whether, the intetmediate region could be a potential first
exon based on a set of quadratic discriminating functions. Test and training sets
came from the same database.

FirstEF’s accuracy was tested by ten-fold cross-validation analysis and
running the program on the complete exon sequences of genes in chromosomes
21 and 22. First exons predictions were considered true positives if the predicted
first donor site was identical to the real donor site and the predicted
transcriptional start site (TSS) fell within the region between 500 bp before and
200 bp after the real TSS. Recall, precision, and the correlation coefficient were

used to judge the accuracy of FirstEF.

2.2.10 Summary of Gene Promoter Prediction Tools
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The gene promoter prediction tools introduced in this Session are summarized
in Table 2.1. No previously developed tools can achieve the performance with

higher sensitivity than 70% and higher specificity than 70%.
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Table 2.1

Summary of gene promoter prediction tools.

False
Tool Method Species g(?r?;? dreer Slgjltfie Citation Sn. Sp. positive  Acc. Available
rate
Relevance TATA box in a G+C
Eponine Vector Machine Mammalian rich domain EPD Reese 2001 53.5% 73.5% - - Yes
(RVM)
Four TFBSs (TATA Ohler. Stemmer
Promoter 2.0 ANN Vertebrate box, CCAAT box, EPD ot al ’2000 68% - 8% - No
GC box, Inr) )
. Down and o o
NNPP 2.2 ANN Drosophila TATA box & Inr EPD Hibbard 2002 70% - 7.2% - Yes
. . Ponger and 0 o ) )
CpGProD Statistics based ~mammalian CpG Island GenBank Mouchiroud 2002 56% 39% Yes
Scherf;
PromoterInspector Statistics based  Vertebrate IUPAC EPD Klingenhoff 48% 85% - - No
et.al: 2000
Dragon PE ANN 2H2“man Chr oG Island related ~ EPD Knudsen 1999 60.17% i ; ; No
Human Chr.  G+C rich &G+C Bajic, Seah et al. 0 i ) o
Dragon GSF ANN 42122 poor DBTSS 2002 65.10% 77.80% No
Interpolated .
McPromoter ANN I;zu man Chr. Markov EPD ]2333)1; and Seah 52.1% 40.3% - - Yes
Model
Quadratic .
First Exon Finder  discriminating Human Chr. CpG Island related  NCBI Davuluri, Grosse 79.3% 53.5% - - No
analysis 21,22 et al. 2001

* Sn. = Sensitivity, Sp. = Specificity, Acc. = Accuracy.
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2.3 DNA stability

Aditi Kanhere et al. (Kanhere and Bansal 2005) devised a novel regulatory
feature, DNA stability, for prokaryotic promoter prediction. The DNA stability is
the structural property of the fragment of the DNA duplex, which is calculated
based on the minimum free energy created by the hydrogen bond of the A-T and
C-G pairs. There are several factors that stabilize a DNA double helix. Among the
significant factors are:

1. Stacking Interaction

2. Watson-Crick Hydrogen Bonding Interaction

3. Interaction with Water Molecules and Metal Ions

Santal.ucia et al. (SantaLucia. 1998) use the unified standard free energy of ten
dinucleotides duplexes, such as AASTT,"AT/TA, TA/AT, CA/GT, GT/CA, CT/GA,
GA/CT, CG/GC, GC/CG, and GG/CC (SantaLucia 1998), to calculate the standard
free energy change of a DNA oligonucleotide based on dinucleotid e composition.
The free energy formula and the calculation example that used by Santalucia were

shown in Fig. 2.2 and Fig. 2.3, respectively.
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where,

G} is the initiation free energy for dinucleotide of type ij.
AG? sym €quals +0.43 kcal/mol and is applicable if the duplex is
self-complementary.

AG] j 1s the standard free energy change for the dinucleotide of

type ij.

Figure 2.2 The formula of calculating the free energy for the DNA sequence.

AG®,(pred.) = AG(CG/GC) + AG(GT/CA) + AG(TT/AA)
+ AG*(TG/AC)+ AG*(GA/CT) + AG®(init.)
=217 - 1.44 - 1.00 - 1.45 - 1.30 + 0.98 + 1.03

AG®,,(pred.) = -5.35 kcal/mol

AG?,,(obs.) = -5.20 kcal/mol

Figure 2.3 The example of free energy computation.

Aditi Kanhere and Manju Bansal presented a novel prokaryotic promoter
prediction method based on DNA stability (Kanhere and Bansal 2005). They
showed that the promoter region is less stable and hence more prone to melting as
compared to other genomic regions. Figure 2.4 shows the distributions of average

free energy of DNA duplex formation, and reveals a peak near the TSS, lying
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between -10 and -30 region, which corresponds to the TATA box in the eukaryotic
promoter sequences. Their analysis also showed that a method of promoter
prediction based on the differences in the stability of DNA sequences in the
promoter and non-promoter region works much better compared to existing
prokaryotic promoter prediction programs, which are based on sequence motif
searches. At present the method works optimally for genomes such as that of
Escherichia coli, which have near 50 % G+C composition and also performs

satisfactorily in case of other prokaryotic promoters.
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Figure 2.4 Average free energy nearby TSSs of three species.

2.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a popular technique for classification (Hsu,
Chang et al.). A support vector machine (SVM) is a supervised learning technique

from the field of machine learning applicable to both classification and regression.
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Rooted in the Statistical Learning Theory developed by Vladimir Vapnik and
co-workers at AT&T Bell Laboratories in 1995(Vapnik 1995), SVMs are based on
the principle of Structural Risk Minimization. As shown in Fig. 2.5, the goal of
SVM is to produce a model which predicts target value of data instances in the

testing set which are given only the attributes.

O N
s OO OO Q. %
0 070 o ™ Miam

Greg Grudic Machine Learning

Figure 2.5 The concept of SVM

LIBSVM (Chang and Lin 2001) was developed by Chih-Chung Chang and
Chih-Jen Lin. LIBSVM is an integrated software for support vector classification,
regression, and distribution estimation. LIBSVM supports the multi-class
classification. Since version 2.8, it implements an SMO-type algorithm. Their goal

is to help users from other fields to easily use SVM as a tool. The SVM process
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overview is shown in Fig. 2.6.
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data

Magic black box
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Figure 2.6 SVM process overview
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Chapter 3 Material and Methods

3.1 Materials

The experimentally verified transcriptional start sites of DBTSS and human

genome sequence of NCBI are used in this research.

3.1.1 Database of Transcriptional Start Site (DBTSS) and EPD

We extract the flanking sequence of experimentally verified transcriptional start
sites form DBTSS. The vision of DBTSS we used is release 5.1.0. As given in
Table 3.1, it contains 30,964 human premoter sequences which are length 1,201
base pairs (from -1,000 to +200) within15,262 genes. And 8,308 human genes are
found to have putative multiplé-promoters. As shown in Table 3.2, 1,871 human
promoter sequences with length 6,000 base pairs (from -3000 to +3000) were
obtained from EPD for the independent test, as well as the 196 mouse promoter

sequences.

Table 3.1 The statistics of human and mouse experimentally TSSs in DBTSS.

Species TSSs Genes Region length
Human 30,964 15,262 -1000 ~+200 1,201
Mouse 19,924 13,704 -1000 ~+200 1,201
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Table 3.2 The statistics of human and mouse experimentally TSSs in EPD.

Species TSSs Region length
Human 1,871 -3000 ~ +3000 6,000
Mouse 196 -3000 ~ +3000 6,000

3.1.2 NCBI Genome Sequences

We extract the human whole genome sequences from NCBI. The vision we used
is NCBI build 35 release 1. The total length of sequences assembled was

3,021,400,000 base pair.

3.2 Methods

We developed a gene promoter prediction method which integrates novel
regulatory features with Support Vector Machine (SVM). Figure 3.1 shows the
system flow in this works, there are three stages in developing TSSs prediction
method. Stage 1 is to construct the training dataset for the TSS prediction. In the
Stage 2, three kinds of regulatory features in the flanking region of experimentally
verified TSSs are extracted and analyzed. Finally, Stage 3 uses the SVM to
construct the classifying model for the three selected features and evaluate the

prediction performance. We will discuss every stage in detailed as following.
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Figure 3.1 System flow of prediction tool developing.

3.2.1 Dataset Construction

The experimentally verified human promoter sequences were extract from

DBTSS which contains 30,964 experimentally TSSs. All the promoter sequence
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length of DBTSS are 1,201 base pairs (bps), which is extracted from 1,000 bps
upstream to 201 bps downstream of the TSS. Because of the sequences we
obtained from DBTSS were too short to be analyzed, we use BLAST to align the
promoter sequences of DBTSS to the human whole genome sequence. With the
alignment preprocess, we got the 6,000 bps sequence length of each promoter
sequence (from 3,000 bps upstream to 3000 downstream of the TSS).

After the alignment preprocessing, we should make sure that each promoter
sequence only contains just one TSS in the region of 6,000 bps sequence length.
Therefore, we dropped the promoter sequences that had multiple experimental
TSSs in the region of 6,000 bpsssequence length. Finally, it remains 6,464
promoter sequences which have unique TSS. in“the region of 6,000 bps sequence
length.

Furthermore, we also consider if the s€quences in our dataset contains CpG
Island or not. We used the CpG island prediction tool “CpGproD” to classify all
the 6,464 promoter sequences into two groups (has CpG Isalnd or not). Table 3.2
shows the number of sequences of three groups, Group 1: all promoter sequences;
Group 2: promoter sequences without CpG Island; Group 3: promoter sequences
with CpG Island.

Table 3.3 Numbers of sequence of group 1, 2, and 3.

Group Numbers of sequence

1 (All) 6,464
2 (Non-CpQG) 1,566
3 (CpG) 4,898
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3.2.2 Feature Extraction

In the feature extraction stage, we were trying to extract the useful regulatory
features of promoter sequences to accurately identify human TSSs. We surveyed
many related promoter prediction methods, and finally extracted three classifying
features such as statistically significant 6-mer pattern, nucleotide composition, and

DNA stability.

3.2.2.1 Statistically Significant 6-mer Pattern

First of all, we must to definesthe positive set and negative set of training data.
Positive set was extracted from flanking regions of TSSs liked the upstream 200 to
downstream 100 of TSS. The-whole genomic regions other than the regions of
positive set were defined as negative'set. Following, we computed occurrence
probability of 6-mer patterns for positive set and negative set according to the

formula:

P (1)

, where P denotes the occurrence probability, S denotes the number of 6-mer
pattern occurrence in one sequence, and Len denotes the length of a sequence.
After that we computed the occurrence ratio of every 6-mer pattern. The formula

of Occurrence ratio:
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o= Ppos )
Pneg

, where O denotes occurrence ratio, Ppos denotes the probability of positive set, and
Pneg denotes the probability of negative set. Finally, by optimized the top
occurrence ratio pattern number, we chose top 60 occurrence rate of these patterns

as features.

3.2.2.2 Nucleotide Composition

We try to analyze the nucleotide composition in the promoter region, the
average occurrence rate of monomer, dimer, and trimer nucleotide are calculated
in window size 20 bps sliding on the promoter sequence. The formula of average
nucleotide occurrence rate:

N
> P
i=1

N

AVG =

3)

, where AVG denotes average nucleotide occurrence rate of the sliding window
with size 10 bps, P denotes pattern occurrence times of every sequence, and N
denotes the total number of sequences in our dataset. Then we specify the
monomer nucleotide A and C occurrence rate as standard and computed a Pearson
correlation coefficient for the other patterns with these two patterns to determine
whether their correlation coefficient values are highly correlated. The cutoff value
of the Pearson correlation coefficient is set to 0.8 to decide whether two patterns

highly correlated or not.
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3.2.2.3 DNA Stability

We computed the average of free energy of the 15 bps nucleotides and shift in
the size of 5 bps nucleotides in our dataset sequences. The formula of DNA
sequences of free energy is shown in Figure 3.2. The standard free energy change

(AGY,) corresponding to the melting transition of an ‘n’ nucleotide (or ‘n-1’

dinucleotides) long DNA molecule, from double strand to single strand, is
calculated as shown in Fig. 3.2 (Kanhere and Bansal 2005). AG’ denotes two

types of initiation free energy : “initiation with terminal G-C” and “initiation with

terminal A-T”; AG!

sym

is +0.43.1keal/mol and is applicable if the duplex is
self-complementary, and AG/ represents the standard free energy change for type

1j dinucleotide. In the present calculation, each promoter sequence is divided into
overlapping windows of 15 bps (or 14 dinucleotide steps), and for each window
the free energy is calculated as shown above. We used the free energy of the 15

bps nucleotides and shift in the size of 5 bps nucleotides as features.
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where,

<0
G

i 18 the initiation free energy for dinucleotide of type ij.

AGY,,, equals +0.43 kcal/mol and is applicable if the duplex is
self-complementary.

A(}:-f j 1s the standard free energy change for the dinucleotide of
type ij.

Figure 3.2 Formula of DNA sequences free energy.

Aditi Kanhere et al. (Kanhere and Bansal 2005) demonstrated that the change
in DNA stability appears to provide a much better clue than the usual sequence
motifs. Therefore, this work provides the DNA stability of the promoter region to

enhance the promoter identification.

3.2.3 Model Learning and Evaluation

After the process of feature extraction, the three kinds of feature are trained by
LIBSVM (Chang and Lin 2001) which developed by Chih-Chung Chang and
Chih-Jen Lin. LIBSVM is an integrated software for support vector classification,
regression, and distribution estimation. The three features of the positive and
negative training set are transformed into LIBSVM input format, and the input
values are normalized before the SVM model construction. The constructed SVM
models of the three kinds of feature are evaluated by K-fold cross-validation.

We used 5-fold cross validation to evaluate the prediction performance of the

SVM-trained model. To express the prediction quality of the models, we applied
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several criteria. These evaluation criteria included sensitivity, specificity, accuracy,
and precision. Figure 3.3 shows the definition of sensitivity, specificity, accuracy,
and precision. To optimize our models’ performance, we do parameter
optimization in the window size, selected numbers of 6-mer pattern, and feature

combinations.

» Sensitivity Real
=TP/ TP+FN
» Specificity
=TN/FP+TN
» Accuracy
= (TP+TN)/(TP+TN+FP+FN)
»# Precision
= TP/ TP+FP

Figure 3.3 The definition of four performance measures.

To fairly evaluate the prediction performance of the gene promoter prediction
method, an evaluation benchmark should be constructed. By surveying previous
related works, one of the several evaluation benchmarks they used was chosen by
us. As shown in Fig. 3.4, the positive sets were extracted from the positive region,
and negative sets were randomly extracted from the six kinds of negative regions.
There are five kinds of window sizes for positive set including 80, 150, 300, 450,
and 600 bps. We show the regions of positive and six kinds of negative in detail in
Table 3.3.
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Figure 3.4+ Evaluation Benchmark.
Table 3.4 Positive region and six kinds of negative region of window size we
optimized.
Window size 80 150 300 600
Core promoter ¢, »o -100~+50 2200100 -300~+150  -400~+200
regions
Overlap -50~+30 -50~+30 _50~+30 -50~+30
regions
Overlap ~70~+10 ~70~+10 70~+10 70~+10
regions
Neighbor +21~+100 +21~+100 +21~+100 +21~+100 +21~+100
regions
Neighbor 140~ -81 -140~ -81 140~ -81 -140~ -81
regions
rez;iorns +2921~+3000 +2921~+3000 +2921~+3000 +2921~+3000 +2921~+3000
F?r -3000~-2921 -3000~-2921 -3000~-2921 -3000~-2921 -3000~-2921
regions
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Chapter 4 Results

Here we present the results of our evaluation benchmark to show the
prediction performance of the constructed models based on Support Vector
Machine (SVM). We also compared our models’ accuracy with several existing

gene promoter prediction tools that we obtained.

4.1 Feature Observations

Three features such as statistically significant 6-mer patterns, nucleotide
composition, and DNA stability.of promoter sequences are extracted and observed
to decide some parameters such ‘as the number 6f 6-mer patterns and the window

size of positive set.

4.1.1 Statistically Significant 6-mer Patterns

By optimizing the selected numbers of pattern, we selected the top 60 patterns
as our prediction feature .The selected top 60 patterns of group 1 are given in
Table 4.1. The selected top 60 patterns of group 2 are given in Table 4.2. The top
60 selected patterns of group 3 are given in Table 4.3. We will show top 100

patterns in detail in appendix.

Table 4.1 Top 60 selected pattern of group 1 (all).
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CGCGCG CGCGCA CGCCGA CGGTCG
GCGCGC TGCGCG TCGGCG CGGCCG
CGCCGC CCCGCG CGGCGA CGCCCC
GCGGCG CGCGGG TCGCCG GGGGCG
CGGCGC CGCGAG CGAGCG ACGCCG
GCGCCG CTCGCG CGCTCG CGGCGT
CGCGGC CGCGGA CCGCGA GCCGCC
GCCGCG TCCGCG TCGCGG GGCGGC
CCGCCG TCGCGA CGCGTC CCCCGC
CGGCGG CGCGAC GACGCG GCGGGG
CCGGCG GTCGCG ACGCGC CCGCCC
CGCCGG CGTCGC GCGCGT GGGCGG
AGCGCG GCGACG CGACGC GCGGCC
CGCGCT CCGCGC GCGTCG GGCCGC
CCGCGG GCGCGG CGACCG CCGTCG
Table 4.2  Top 60 selected pattern of group 2 (non-CpG island).
CGCGAA TTCGCG CGCCCC GGGGCG
CCGCCC GGGCGG CCCCGC GCGGGG
ATCCGG CCGGAT GACGTC CCGCAG
CTGCGG CGCGAG CTCGCG CGGAAG
CTTCCG ACGTEA TGACGT CGTCGA
TCGACG CCGGAA TTECGG GCCGGC
CGGCAG CTGCCG ACTCGC GCGAGT
CGCGGA TCCGCG CCGCGA TCGCGG
CGGCGA TCGCCG CGACTC GAGTCG
GCGGCA TGCCGC CGGCCC GGGCCG
TCCGCA TGCGGA CGGGGC GCCCCG
GCCGGA TCCGGC GCCCGA TCGGGC
AGGGCG CGCCCT CGTCAC GTGACG
ACCGGA TCCGGT GGGCCC ACGGCC
GGCCGT GCCGAC GTCGGC CGGCAC
Table 4.3  Top 60 selected pattern of sequences group 3 (CpG island).
CGCGCG GCGCGC CGCCGC GCGGCG
CGGCGC GCGCCG CGCGGC GCCGCG
CCGCCG CGGCGG CCGGCG CGCCGG
AGCGCG CGCGCT CCGCGG CGCGCA
TGCGCG CCCGCG CGCGGG CGCGAG
CTCGCG CGCGGA TCCGCG TCGCGA
CGCGAC GTCGCG CGTCGC GCGACG
CCGCGC GCGCGG CGCCGA TCGGCG
CGGCGA TCGCCG CGAGCG CGCTCG
CGCGTC GACGCG ACGCGC GCGCGT
CCGCGA TCGCGG CGACGC GCGTCG
CGACCG CGGTCG CGGCCG CGCCCC
GGGGCG ACGCCG CGGCGT GCCGCC
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GGCGGC GCGGCC GGCCGC CCCCGC
GCGGGG CCGTCG CGACGG CCGCCC

4.1.2 Nucleotide Composition

The distributions of monomer, dimer, and trimer nucleotide composition of
group 1, 2, and 3 are shown in Fig. 4.1, 4.2, and 4.3, respectively. The cutoff value
of the Pearson correlation coefficient is set to 0.8 to decide whether two
distribution patterns highly correlated or not. The selected highly correlated
patterns of monomer, dimer, and trimer nucleotide composition are given in Table

4.4,4.5, and 4.6, respectively.
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Figure 4.1 The distribution of monomer, dimer, and trimer nucleotide
composition of group 1 (all).
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Table 4.4 The selected highly correlated patterns of nucleotide composition of group

1 (all).
C.C.>\c/)v;3th A C.C;\évgh C No select
Monoﬁler TAAAT, G.CC.CG, AGTC.TG,
Dia;er AC,TA,TT,CA GC,GG CT,GA,GT
AAA,AAT,AAC
AAG,ATA ,ATC ACC,AGT,AGG,TTC
ATT,ATG,ACA é%géggggcc}ggi TTG,TCT,TGT,TGC
timer  ACT,AGATAA  (oCcCCaaaac | TGGCAC,CAGCTT
HMer TAC,TAT, TAG S1C GeeGeaoaa | CTGCCA,CCT.GAA
TTA,TTT,TCA Pevepepeere GAT,GAC.GAG,GTT
TGA,CAA,CAT ’ GTG,GCA,GCT,GGT
CTA
=
s
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Figure 4.2 The distribution of monomer, dimer, and trimer nucleotide
composition of group 2 (non-CpG island).
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Table 4.5  The selected highly correlated patterns of nucleotide composition of

group 2 (non-CpG island).

C.C.withA
>0.8

C.C.withC
>0.8

No select

Monomer
and
Dimer

Trimer

GAGCC,CGCT

AAAT, TA GC.GG.TC

ACG,AGC,AGG,CAG
CCA,CCC,CCG,CCT
CGA,CGT,CGC,CGG
AAAATA CTC,CTG,GAC,GAG
GCC,GCG,GCT,GGA
GGC,GGG,GTC, TCC

TGC, TGG

T,AC,CA,GA,GT,TGTT

AAC,AAG,AAT,ACA
ACC,ACT,AGA,AGT
ATC,ATG,ATT,CAA
CAC,CAT,CTA,CTT
GAA,GAT,GCA,GGT
GTA,GTG,GTT,TAA
TAC,TAG,TAT,TCA
TCT,TGA,TGT,TTA
TTC,TTG,TTT

ﬁr Compgaition
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Figure 4.3 The distribution of monomer, dimer, and trimer nucleotide
composition of group 3 (CpG island).
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Table 4.6  The selected highly correlated patterns of nucleotide composition of
group 3 (CpG island).

C.C. with A

C.C.with C

~0.8 ~0.8 No select
M"“t"mer T.AAAT, G.CC.CG, AGTC.TG,
Din?er AC,TA,TT,CA GC.GG CT.GA,GT

AAA,AAT,AAC,AAG

ATA,ATC,ATT,ATG

ACA,ACT,AGA,AGT

Trimer TAA,TAC,TAT, TAG

TTA, TTT, TCA, TCT

TGA,CAA,CAT,CTA
GAA,GAT,GTA

ACC,AGG,TTC

ACGAGC,TCC,TCG | TTG, TGT, TGC
CTC,CCC,CCG,CGA | TGG,CAC,CAG
CGT,CGC,CGGGAC |CTT,CTG,CCA
GTC,GCC,GCG CCT,GAG,GTT
GGA,GGC,GGG | GTG,GCA,GCT

GGT

4.1.3 DNA Stability

The distributions of the average free energy for the 3,000 upstream and 3000

downstream of TSSs with the 15 nucleotides: sliding window and shift in 5

nucleotides are shown in Fig. 4.4, 4.5, and 4.6, respectively.
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Figure 4.4 The distribution of average free energy relative to TSSs of group 1
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Figure 4.5 The distribution of average free energy relative to TSSs of group 2
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4.2 Prediction Performance

With the evaluation benchmark described previously in chapter 3, the

prediction performance of the three SVM models can be evaluated fairly and

clearly.

4.2.1 Statistically Significant 6-mer Patterns

The prediction sensitivity (Sen.), specificity (Spe.), accuracy (Acc.), and
precision (Pre.) of the constructed SVM model based on statistically significant
6-mer patterns of group 1 (all), 2 (non-CpG), and 3 (CpGQG) are given in Table 4.7,
4.8, and 4.9, respectively. In addition, the negative set is randomly extracted from
six negative regions we define’in Table 3:3. As you can see, the larger window size
is, the higher prediction performance is. Even so, we still choose the models of
window size 300 to be our prediction models because of the prediction accuracy is
over 70% and we want to determine the core promoter region accurately. Moreover,
the prediction performance of group 3 (CpQG) is better than group 1 (all) and 2

(non-CpQG).

Table 4.7 The models accuracy of 6mer pattern in group 1(all).

Negative set Positive set Windowsize Sen.  Spec.  Acc. Pre.

Random -60~+20 80 51% 77% 64% 69%
Random -100 ~+ 50 150 58% 76% 67% 71%
Random -200 ~+100 300 62% 77% 70% 73%
Random -300 ~ +150 450 64% 80% 72% 76%
Random -400 ~ +200 600 65% 83% 74% 79%
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Table 4.8 The models accuracy of 6mer pattern in group 2 (non-CpG island).

Negative set Positive set Windowsize Sen. Spec. Acc.  Pre.
Random -60~+20 80 22% 85% 53% 59%
Random -100 ~ + 50 150 28%  85%  56%  65%
Random  -200 ~+100 300 32%  83%  58%  66%
Random  -300 ~+150 450 32%  83%  58%  66%
Random  -400 ~+200 600 35%  82%  58%  66%

Table 4.9 The models accuracy of 6mer pattern in group 3 (CpG island).

Negative set Positive set Windowsize Sen. Spec. Acc. Pre.
Random -60 ~+20 80 56%  75%  66%  70%
Random -100 ~+ 50 150 67%  T4%  T1%  72%
Random  -200 ~+100 300 75%  T76%  76%  76%
Random -300 ~+150 450 77% 78% 78% 78%
Random  -400 ~ +200 600 79%  82%  80%  81%

Figure 4.7 shows the distribution” of predictions by the constructed SVM
models (-200 ~ + 100) based on‘statistically significant 6-mer patterns of group 1,
2, and 3 in the regions of upstream 3,000 bps to downstream 3,000 bps of the TSS.
The sliding window size was set to 300 nt which determined by the selective
window size (-200 ~ +100) of positive set and shift in the size of 50 bps nt, and the
number of predictions were calculated in each window. As it show, the group 1 and

3 have the similar prediction performance, and both of them are better than group

2.
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Figure 4.7 Distributions from 6 merpattern models’ predictions of group 1, 2,
and 3 in the interval [-3000, +3000] relative to the TSS based on DBTSS.

4.2.2 Nucleotide Composition

The prediction sensitivity (Sn.), specificity (Sp.), accuracy (Acc.), and
precision (Pre.) of the constructed SVM model based on monomer to dimer and
monomer to trimer of group 1 are given in Table 4.10 and 4.11, respectively.
Because the results of monomer to trimer did not have much increases, we chosen
monomer to dimer to evaluate group 2, and group 3. Thus The prediction
sensitivity (Sn.), specificity (Sp.), accuracy (Acc.), and precision (Pre.) of the
constructed SVM model based on monomer to dimer of group 2, and 3 are given in

Table 4.12, and 4.13, respectively. In addition, the negative set is randomly



extracted from six negative regions we define in Table 3.3. As you can see, the
larger window size is, the higher prediction performance is. Even so, we still
choose the models of window size 300 to be our prediction models. Because its’
model accuracy is over 70% and we want to determine the core promoter region
accurately. Moreover, the prediction performance of group 3 (CpG) is better than

group 1 (all) and 2 (non-CpG).

Table 4.10  The models accuracy of monomer to dimer of group 1 (all).

Negative set Positive set Windowsize.. Sn Sp Acc Pre
Random - 60 ~+ 20 80 69%  69%  69%  69%
Random -100 ~+ 50 150 67% 71% 70% 70%
Random  -200 ~+100 300 69% T74%  T1%  72%
Random  -300 ~+150 450 70%  75%  72% @ 74%
Random  -400 ~ +200 600 2%  15%  74%  74%

Table 4.11  The models accuracy of monomer to trimer of group 1 (all).

Negative set Positive set Windowsize  Sn Sp Acc Pre
Random -60 ~+20 80 66%  71%  69%  70%
Random -100 ~+ 50 150 67%  73%  70%  71%
Random  -200 ~+100 300 67%  73%  70%  71%
Random  -300 ~+150 450 69%  76%  73%  74%

Random -400 ~ +200 600 1%  75%  73%  74%
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Table 4.12  The models accuracy of monomer to dimer of group 2 (non-CpG island).

Negative set Positive set Window size  Sn Sp Acc Pre
Random -60 ~+20 80 61% 71%  66%  68%
Random -100 ~ + 50 150 62%  68%  65%  66%
Random  -200 ~+100 300 65%  69%  67%  68%
Random  -300 ~+150 450 63% 68%  66%  67%
Random  -400 ~+200 600 63% 68% 66%  66%

Table 4.13 The models accuracy of monomer to dimer of group 3 (CpG island).

Negative set Positive set Windowsize  Sn Sp Acc Pre
Random - 60 ~+ 20 80 74%  68%  T1%  70%
Random -100 ~ + 50 150 75%  69%  T72%  71%
Random  -200 ~+100 300 76%  T1%  74%  73%
Random  -300 ~+150 450 77%  T74%  75%  74%
Random  -400 ~ +200 600 80%  75%  T77%  76%

Figure 4.8 shows the distribution” of predictions by the constructed SVM
models (-200 ~ + 100) based onnucleotide eomposition of group 1, 2, and 3 in the
regions of upstream 3,000 bps to downstream 3,000 bps of the TSS. The sliding
window size was set to 300 nt which determined by the selective window size
(-200 ~ +100) of positive set and shift in the size of 50 bps nt, and the number of
predictions were calculated in each window. As it show, the group 1 and 3 have the

similar prediction performance, and both of them are better than group 2.
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Figure 4.8 Distributions from nucleotide composition models’ predictions of
group 1, 2, and 3 in the interval [=3000, +3000] relative to the TSS based on
DBTSS.

4.2.4 DNA Stability

The prediction sensitivity, specificity, accuracy, and precision of the constructed
SVM model based on DNA stability in group 1, 2, and 3 are given in Table 4.14,
4.15, and 4.16, respectively. The negative set is randomly extracted from six
negative regions we define in Table 3.3. As you can see, the larger window size is,
the higher prediction performance is. Even so, we still choose the models of
window size 300 to be our prediction models because of the prediction accuracy of
the constructed model is more than 70% and we want to determine the core

promoter region accurately. Moreover, the prediction performance of group 3

(CpQ) is better than group 1 (all) and 2 (non-CpG).
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Table 4.14 The models accuracy of DNA stability in group 1 (all).

Negative set Positive set Windowsize  Sn Sp Acc Pre
Random -60~+20 80 67%  69% 68% 69%
Random -100 ~+ 50 150 68%  71% 69% 70%
Random  -200 ~+100 300 70%  74%  71%  73%
Random  -300 ~+150 450 70%  72%  71%  72%
Random  -400 ~+200 600 1%  74%  72%  73%

Table 4.15 The models accuracy of DNA stability in group 2 (non-CpG island).

Negative set Positive set Windowsize  Sn Sp Acc Pre
Random -60 ~+20 80 62%  68%  65%  66%
Random -100 ~+ 50 150 62%  69%  65%  66%
Random  -200 ~+100 300 64% 68%  66%  67%
Random  -300 ~+150 450 65% 69%  66%  67%
Random  -400 ~ +200 600 66% 70% 67%  68%

Table 4.16 The models accuracy.of DNA stability in group 3 (CpG island).

Negative set Positive set Windew size " Sn Sp Acc Pre
Random -60 ~+20 80 74%  70%  71%  71%
Random -100 ~+ 50 150 75% 71% 73% 72%
Random -200 ~+100 300 76% 2% 74% 73%
Random  -300 ~+150 450 79%  13%  76%  75%
Random  -400 ~ +200 600 81%  74%  77%  75%

Figure 4.9 shows the distribution of predictions by the constructed SVM
models (-200 ~ + 100) based on DNA stability of group 1, 2, and 3 in the regions
of upstream 3,000 bps to downstream 3,000 bps of the TSS. The sliding window
size was set to 300 nt which determined by the selective window size (-200 ~ +100)
of positive set and shift in the size of 50 bps nt, and the number of predictions were

calculated in each window. As it show, the group 1 and 3 have the similar
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prediction performance, and both of them are better than group 2.
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Figure 4.9 Distributions from DNAstability' models’ predictions of group 1, 2,
and 3 in the interval [-3000, +3000] relative to the TSS based on DBTSS.

4.2.5 The Prediction Performance of Combinatorial Features

We try to test all the combinations of the three kinds of regulatory features, and
want to find the best combination for increasing the prediction performance. The
prediction sensitivity, specificity, accuracy, and precision of the constructed SVM
model based on combinatorial models in group 1, 2, and 3 are given in Table 4.17,
4.18, and 4.19, respectively. As you can see, we selected the highest model
accuracy models of combination all of three features to be our prediction model.

Moreover, the prediction performance of group 3 (CpG island) is better than group
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1 (all) and 2 (non-CpG island).

Table 4.17 The model accuracy of Combinational models in group 1 (all).

Window size 300

Negative Set  Positive Set Feature Sn Sp Acc Pre
Random -200 ~+100 6m+nc 71% 79% 75% 77%
Random -200 ~+100 6m+ds 69%  78% 74% 76%
Random -200 ~+100 nc+ds 74%  76% 75% 75%
Random -200 ~+100  6m+nc+ds 2%  79% 76% 78%

Table 4.18 The model accuracy of Combinational models in group 2(non-CpG island).

Window size 300

Negative Set  Positive Set feature Sn Sp Acc Pre
Random -200 ~+100 om+ng 64% 70% 67% 68%
Random -200 ~+100 6m-+ds 62%  71% 66% 68%
Random -200 ~+100 nc+ds 65% 67% 66% 66%
Random -200 ~+100 “ 6m+nc+ds 65% 71% 68% 69%

Table 4.19 The model accuracy of Combinational models in group 3 (CpG island).

Window size 300

Negative Set  Positive Set feature Sn Sp Acc Pre
Random -200 ~+100 6m-+nc 81% 79% 80% 79%
Random -200 ~+100 6m+ds 80% 76% 78% 77%
Random -200 ~+100 nc+ds 82% 75% 78% 77%
Random -200 ~+100 6m-+nc+ds 81% 78% 80% 79%

Figure 4.10 shows the distribution of predictions by the constructed SVM
models (-200 ~ + 100) based on all of those three features of group 1, 2, and 3 in
the regions of upstream 3,000 bps to downstream 3,000 bps of the TSS. The

sliding window size was set to 300 nt which determined by the selective window
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size (-200 ~ +100) of positive set and shift in the size of 50 bps nt, and the number
of predictions were calculated in each window. As it show, the group 1 and 3 have

the similar prediction performance, and both of them are better than group 2.
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Figure 4.10 Distributions of 6-mer pattern, nucleotide composition, and DNA
stability models’ predictions of'group I, 2, and 3 in the interval [-3000,
+3000] relative.to.the TSS based on DBTSS.

4.3 Summary of Results

According to the prediction performance of the constructed SVM models
described above, it is found that the three models of extracted features have similar
accuracy. The model of 6-mer pattern has higher specificity so the numbers of
prediction far from real TSS is lower. As shown in Fig. 4.11, the model of
nucleotide composition has higher sensitivity so the numbers of prediction of real
TSS position is lower.

The prediction accuracy of dataset with CpG island 1s better than dataset without
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CpG island. And by examining all possible combinations of those three models,

we demonstrate that such combinations can improve our prediction accuracy.
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Figure 4.11 The comparison of theprediction performance for the three kinds of
feature and Combination of those three features.

4.4 \Web Interface

Considering both the prediction performance and core promoter window size,
we chose those models with window size 300 bps as the gene promoter
identification models. Here we implemented a user friendly interface that can be
access from the World Wide Web. This system is implemented on the Linux
operation system (Red Hat Enterprise). We use the Apache web server and the
PHP4 server side script engine. Those modules are implemented by using PHP

program language.
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User can input a DNA sequence and specify considering CpG Island or not for
the promoter prediction. If users specify two of those features, the combinational
models will be use. Here we makes some clustering of the predictions if
predictions around 300 nt, and define the midpoint of that as our prediction TSS

position. The user web interface is shown in Fig. 4.12 and Fig. 4.13.

_______ PreTSS
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Search

PreTSS is a program for identifyting core promoter regions in mamallian genomic DNA sequences.

Paste a single seguence or several seguences in FASTA format Into the field below:
GHFACGGAGGGGGTCCCCGETCGGTCCCGCC TTC TAGGGC TCCGEGAAGGATGGGGTTC TCGGEAGGGLLG £

CACTGC TG TAGAGAGGGOCACAGCAGAGCCTCAGCCCCAGEGC AGGCCGTGARAGGAGGCGGGGECGCC0
CGLGGCOCTGTGGACCCCAGGE GGG TG TTCOCAGCAGGGCCTGC ATCTE TTGGGAAGGLGGGGTGGGE
GAGGCCCACCOCCATCTGTGTCCCOCATOCATGGCCCCCATCCGCGTCOTEGTGOACCTAGGAAGGCCOT
| TGTGGGECTGRGTGRGEGCAGC TTCTGATGCCGCOTTGRAGAC AGC TGAGAGGCGETTGATALLATC TAL ()|

Submit a file (< 2MB) in FASTA format directiy from your local disk:

Consider Cp G island or not

& Ifer Pattern Feature
Necleotide Composition Feature
DINA Stability Feature

At least chose one feature of above. If you chose two of them combinational model will be use.

[ Submit | [ Clear fields |

Bid Lak, Institute of Bioinformatics, National Chico Tung University , Taiwan.
Contact us:bryan@mail nctu edu, te with questions or comments

Figure 4.12 Web interface [1].
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Chapter 5 Discussion

5.1 Limitations

There are several limitations in the system which we proposed. One of the
limitations is that the determined window size of selected model were 300 base
pairs, the sequence length inputted from user must be longer than 300 base pairs.
The other limitation is that, the proposed method was not implemented as
standalone package for user to download. Therefore, users only can use the
web-based program to identify the core promoter region in the user input

sequence.

5.2 Comparison

There are three promoter prediction tools such as NNPP2.2, McPromoter, and
Eponine which could be obtained from the internet, so we compared our method
with the three tools. We get 1871 human promoter sequences which length 6000

bps (from -3000 to +3000) form EPD for independence test.

5.2.1 Prediction Accuracy

The comparison of our proposed method with NNPP2.2, McPromoter, and
Eponine is shown in Table 5.1. The three promoter prediction tools we obtained

from internet were evaluated the prediction performance based on the evaluation
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benchmark we proposed. All the combinations of our methods performed better
than NNPP2.2, McPromoter, and Eponine. Based on the same evaluation
benchmark, NNPP2.2 results in low specificity (45%). Mcpromoter and Eponine
result in high specificity 97% and 85%, respectively, but low sensitivity 5% and
25%, respectively. The prediction accuracy of our method is better than the three
previous promoter prediction tools.

Maybe someone wonder that does our method perform better than other
promoter prediction tools other than NNPP2.2, McPromoter, and Eponine? We
could not obtain the other promoter prediction tools, because some of them would
not be downloaded for usage in_client:sTherefore, there is no fair evaluation
platform for the other promoter prediction toels such as Promoter 2.0, Dragon GSF,
Dragon PF, and so on. However, according to the proposed prediction accuracy on

Table 2.1, no promoter prediction tool-performs better than our method.

Table 5.1 Comparison of our method with other tools.

Po;gt;ve sn. Sp. Acc. Pre.
Our . . . : ]
method 6m+nc+ds 92% 64% 78% 72% 92%
Oth NNPP2.2 67% 45% 56% 55% 67%
tooles ! Mcpromoter 2.0 5% 97% 51% 729%, 50,
Eponine 32% 85% 58% 74% 32%

5.2.2 Characteristics
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The study incorporates the powerful computational method with three useful
regulatory features of core promoters for gene promoter identification that results
in high prediction sensitivity and specificity. Especially the three extracted
regulatory features such as statistically significant 6-mer patterns, nucleotide
composition, and DNA stability, provided useful discriminating power. Moreover,
the incorporated support vector machine also represented the powerful
classification ability. Therefore, as shown in Fig. 5.1, the predictions of our method
are performed better than other three promoter tools in the regions of upstream

3,000 bps to downstream 3,000 ofiTSSs.
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Figure 5.1 Comparison of our method and other tools.

5.3 Future Works

The features we extract in this research are only from one species (human). In

59



fact, our selected features can be applied to other species. The accuracy of our
method is better with smaller DNA sequences. When the evaluated level of DNA
sequences region increasing, the accuracy will be down. So it is important for us to
improve our method to increase the prediction accuracy in large scale DNA
sequences. Now we just consider one promoter sequence containing single TSS.
However, we need to consider one promoter sequence containing multiple TSSs in

the future.
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Chapter 6 Conclusions

This study incorporated the powerful support vector machine with useful
regulatory features of core promoters such as statistically significant 6-mer
patterns, nucleotide composition, and DNA stability identify the transcriptional
start sites in mammalian genomes. By evaluating the prediction performance of the
constructed SVM models based on the evaluation benchmark we constructed, our
method results in high prediction sensitivity and specificity. The results showed
that the accuracy of our method is gteater than 70%. Furthermore, the
combinatorial SVM model of ‘the statistically significant 6-mer pattern, nucleotide
composition, and DNA stability.petrforms better than the individual or pair of them.
By comparing our method to other previously proposed gene promoter prediction
methods, the performance was also better than others. Therefore, we implement an
efficient and effective web interface for guiding biologist to analyze gene

promoters and transcriptional start sites.
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Appendix A

Table A.1 Top 100 patterns of statistically significant 6-mer pattern in group 1

(all).
SN pattern whole Whole pro. 80num Pos pro. OC ratio
1 CGCGCG 93380 0.0000164 1354  0.001396 85.20718
2 GCGCGC 142810 0.0000251 1676  0.001729 68.96482
3 CGCCGC 165495 0.0000290 1916  0.001976 68.03347
4 GCGGCG 165495 0.0000290 1916  0.001976 68.03347
5 CGGCGC 119385 0.0000210 1347 0.001389 66.30266
6 GCGCCG 119385 0.0000210 1347 0.001389 66.30266
7T CGCGGC 123365 0.0000217 1388 0.001432 66.11665
8 GCCGCG 123365 0.0000217 1388 0.001432 66.11665
9 CCGCCG 156119 0.0000274 1558 0.001607 58.64409
10 CGGCGG 156119 ,+0.0000274 1558 0.001607 58.64409
11 CCGGCG 111276 0.0000195 1080 0.001114 57.03421
12 CGCCGG 111276 ' 0.0000195 1080 0.001114 57.03421
13 AGCGCG 72155 0.0000127 683 0.000704 55.62466
14 CGCGCT 72155 - 0.0000127 683 0.000704 55.62466
15 CCGCGG 129318, :-0.0000227 1206  0.001244 54.80265
16 CGCGCA 75745 0.0000133 697 0.000719 54.07431
17 TGCGCG 75745 0.0000133 697 0.000719 54.07431
18 CCCGCG 127926 0.0000225 1163 0.001199 53.42372
19 CGCGGG 127926 0.0000225 1163 0.001199 53.42372
20 CGCGAG 63936 0.0000112 562 0.00058 51.65401
21 CTCGCG 63936 0.0000112 562 0.00058 51.65401
22 CGCGGA 61387 0.0000108 525 0.000541 50.25664
23 TCCGCG 61387 0.0000108 525 0.000541 50.25664
24 TCGCGA 29124 0.0000051 238 0.000245 48.0218
25 CGCGAC 35935 0.0000063 289 0.000298  47.25988
26 GTCGCG 35935 0.0000063 289 0.000298  47.25988
27 CGTCGC 44589 0.0000078 329 0.000339  43.35912
28 GCGACG 44589 0.0000078 329 0.000339  43.35912
29 CCGCGC 210901 0.0000370 1521 0.001569  42.38025
30 GCGCGG 210901 0.0000370 1521 0.001569  42.38025
31 CGCCGA 51860 0.0000091 371 0.000383 42.03916
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32 TCGGCG
33 CGGCGA
34 TCGCCG
35 CGAGCG
36 CGCTCG
37 CCGCGA
38 TCGCGG
39 CGCGTC
40 GACGCG
41 ACGCGC
42 GCGCGT
43 CGACGC
44 GCGTCG
45 CGACCG
46 CGGTCG
47 CGGCCG
48 CGCCCC
49 GGGGCG
50 ACGCCG
51 CGGCGT
52 GCCGCC
53 GGCGGC
54 CCCCGC
55 GCGGGG
56 CCGCCC
57 GGGCGG
58 GCGGCC
59 GGCCGC
60 CCGTCG
61 CGACGG
62 CCGGAA
63 TTCCGG
64 CGCACG
65 CGTGCG
66 CGGGGC
67 GCCCCG
68 CGCGAA
69 TTCGCG

51860
56495
56495
65811
65811
55823
55823
59353
59353
66140
66140
41872
41872
33411
33411
176492
362006
362006
64787
64787
344938
344938
426331
426331
518352
518352
261440
261440
44482
44482
199323
199323
77899
77899
371940
371940
30243
30243

0.0000091
0.0000099
0.0000099
0.0000116
0.0000116
0.0000098
0.0000098
0.0000104
0.0000104
0.0000116
0.0000116
0.0000074
0.0000074
0.0000059
0.0000059
0.0000310
0:0000635
0.0000635
0.0000114
0.0000114
0:0000605
0.0000605
0.0000748
0.0000748
0.0000910
0.0000910
0.0000459
0.0000459
0.0000078
0.0000078
0.0000350
0.0000350
0.0000137
0.0000137
0.0000653
0.0000653
0.0000053
0.0000053
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371
396
396
453
453
367
367
390
390
428
428
270
270
208
208
1056
2130
2130
373
373
1890
1890
2201
2201
2647
2647
1330
1330
226
226
1000
1000
381
381
1806
1806
145
145

0.000383
0.000408
0.000408
0.000467
0.000467
0.000379
0.000379
0.000402
0.000402
0.000441
0.000441
0.000278
0.000278
0.000215
0.000215
0.001089
0.002197
0.002197
0.000385
0.000385
0.001949
0.001949

0.00227

0.00227

0.00273

0.00273
0.001372
0.001372
0.000233
0.000233
0.001031
0.001031
0.000393
0.000393
0.001863
0.001863

0.00015

0.00015

42.03916
41.19057
41.19057
40.44943
40.44943
38.63365
38.63365
38.61302
38.61302
38.02714
38.02714
37.89237
37.89237
36.58352
36.58352
35.16022
34.57615
34.57615
33.83243
33.83243
32.19831
32.19831
30.33793
30.33793
30.00832
30.00832
29.89456
29.89456
29.85637
29.85637
29.48189
29.48189
28.74135
28.74135
28.53367
28.53367
28.17444
28.17444



70 ACGCGG
71 CCGCGT
72 ACGGCG
73 CGCCGT
T4 CGCGCC
75 GGCGCG
76 CCGACG
7T CGTCGG
78 GCCGGC
79 CGGAAG
80 CTTCCG
81 AACGCG
82 CGCGTT
83 CGGACG
84 CGTCCG
85 GCCGGA
86 TCCGGC
87 CTGCGC
88 GCGCAG
89 CACGCG
90 CGCGTG
91 GCGCGA
92 TCGCGC
93 ACGTCG
94 CGACGT
95 GAGCGC
96 GCGCTC
97 ACGCGA
98 TCGCGT
99 TGCGCA
100 CGCGTA

69430
69430
68155
68155
291748
291748
45809
45809
246470
262733
262733
38488
38488
65539
65539
184107
184107
288998
288998
89405
89405
113177
113177
36991
36991
183691
183691
32037
32037
174690
22145

0.0000122
0.0000122
0.0000120
0.0000120
0.0000512
0.0000512
0.0000080
0.0000080
0.0000433
0.0000461
0.0000461
0.0000068
0.0000068
0.0000115
0.0000115
0.0000323
0:0000323
0.0000507
0.0000507
0.0000157
0:0000157
0.0000199
0.0000199
0.0000065
0.0000065
0.0000322
0.0000322
0.0000056
0.0000056
0.0000307
0.0000039

326
326
312
312
1310
1310
200
200
1066
1119
1119
161
161
261
261
721
721
1098
1098
331
331
414
414
135
135
656
656
114
114
616
78

0.000336
0.000336
0.000322
0.000322
0.001351
0.001351
0.000206
0.000206
0.001099
0.001154
0.001154
0.000166
0.000166
0.000269
0.000269
0.000744
0.000744
0.001132
0.001132
0.000341
0.000341
0.000427
0.000427
0.000139
0.000139
0.000677
0.000677
0.000118
0.000118
0.000635
8.04E-05

27.59189
27.59189
26.90103
26.90103
26.38613
26.38613

25.6562

25.6562
25.41593
25.02812
25.02812
24.58179
24.58179
23.40193
23.40193
23.01324
23.01324
22.32648
22.32648
21.75602
21.75602
21.49582
21.49582
21.44626
21.44626
20.98595
20.98595
20.91052
20.91052
20.72174
20.69811
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(non-CpG island).

Table A.2 Top 100 patterns of statistically significant 6-mer pattern in group 2

pattern whole Whole pro. 80num Pos pro. OC ratio

1 CGCGAA 30243 0.0000053 0.0000255 4.810317

2 TTCGCG 30243 0.0000053 0.0000255 4.810317

3 CGCCCC 362006 0.0000635 71 0.0003023 4.759941

4 GGGGCG 362006 0.0000635 71 0.0003023 4.759941

5 CCGCCC 518352 0.0000910 100 0.0004257  4.678166

6 GGGCGG 518352 0.0000910 100 0.0004257  4.678166

7 CCCCGC 426331 0.0000748 82 0.0003491 4.666908

8 GCGGGG 426331 0.0000748 82 0.0003491 4.666908

9 ATCCGG 135765 0.0000238 26 0.0001107  4.650647
10 CCGGAT 135765 0.0000238 26 0.0001107  4.650647
11 GACGTC 138788 0.0000244 26 0.0001107  4.536287
12 CCGCAG 305519 0.0000536 54 0.0002299 4.2889
13 CTGCGG 305519 0.0000536 54 0.0002299 4.2889
14 CGCGAG 63936 .+0.0000112 11 0.0000468 4.181111
15 CTCGCG 63936 0.0000112 11 0.0000468 4.181111
16 CGGAAG 262733 © 0.0000461 45 0.0001916  4.155551
17 CTTCCG 262733 0.0000461 45 0.0001916  4.155551
18 ACGTCA 227674 . 0.0000400 39 0.0001660  4.150702
19 TGACGT 227674, -0.0000400 39 0.0001660  4.150702
20 CGTCGA 23424 0.0000041 4 0.0000170  4.143193
21 TCGACG 23424  0.0000041 4 0.0000170  4.143193
22 CCGGAA 199323  0.0000350 34 0.0001447  4.135498
23 TTCCGG 199323  0.0000350 34 0.0001447  4.135498
24 GCCGGC 246470 0.0000433 42 0.0001788  4.129318
25 CGGCAG 310633 0.0000545 52 0.0002214  4.061849
26 CTGCCG 310633 0.0000545 52 0.0002214  4.061849
27 ACTCGC 134642 0.0000236 22 0.0000937 3.968512
28 GCGAGT 134642 0.0000236 22 0.0000937 3.968512
29 CGCGGA 61387 0.0000108 10 0.0000426 3.941788
30 TCCGCG 61387 0.0000108 10 0.0000426 3.941788
31 CCGCGA 55823 0.0000098 0.0000383 3.90961
32 TCGCGG 55823 0.0000098 0.0000383 3.90961
33 CGGCGA 56495 0.0000099 0.0000383 3.862316
34 TCGCCG 56495 0.0000099 0.0000383 3.862316
35 CGACTC 145121 0.0000255 23 0.0000979 3.839765
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36 GAGTCG
37 GCGGCA
38 TGCCGC
39 CGGCCC
40 GGGCCG
41 TCCGCA
42 TGCGGA
43 CGGGGC
44 GCCCCG
45 GCCGGA
46 TCCGGC
47 GCCCGA
48 TCGGGC
49 AGGGCG
50 CGCCCT
51 CGTCAC
52 GTGACG
53 ACCGGA
54 TCCGGT
55 GGGCCC
56 ACGGCC
57 GGCCGT
58 GCCGAC
59 GTCGGC
60 CGGCAC
61 GTGCCG
62 CGCAGA
63 TCTGCG
64 TCGGCA
65 TGCCGA
66 CCCGGA
67 TCCGGG
68 CCGGTC
69 GACCGG
70 CCCGCC
71 GGCGGG
72 CGGAAC
73 GTTCCG

145121
221533
221533
309351
309351
176001
176001
371940
371940
184107
184107
172187
172187
258763
258763
192503
192503
127794
127794
909212
186522
186522
118157
118157
202327
202327
233353
233353
177866
177866
256531
256531
136422
136422
746914
746914
129310
129310

0.0000255
0.0000389
0.0000389
0.0000543
0.0000543
0.0000309
0.0000309
0.0000653
0.0000653
0.0000323
0.0000323
0.0000302
0.0000302
0.0000454
0.0000454
0.0000338
0:0000338
0.0000224
0.0000224
0.0001596
0:0000327
0.0000327
0.0000207
0.0000207
0.0000355
0.0000355
0.0000410
0.0000410
0.0000312
0.0000312
0.0000450
0.0000450
0.0000239
0.0000239
0.0001311
0.0001311
0.0000227
0.0000227
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23
35
35
48
48
27
27
57
57
28
28
26
26
39
39
29
29
19
19
134
27
27
17
17
29
29
33
33
25
25
36
36
19
19
104
104
18
18

0.0000979
0.0001490
0.0001490
0.0002043
0.0002043
0.0001149
0.0001149
0.0002427
0.0002427
0.0001192
0.0001192
0.0001107
0.0001107
0.0001660
0.0001660
0.0001235
0.0001235
0.0000809
0.0000809
0.0005705
0.0001149
0.0001149
0.0000724
0.0000724
0.0001235
0.0001235
0.0001405
0.0001405
0.0001064
0.0001064
0.0001533
0.0001533
0.0000809
0.0000809
0.0004427
0.0004427
0.0000766
0.0000766

3.839765
3.830323
3.830323
3.763209
3.763209
3.719823
3.719823
3.716025
3.716025
3.690392
3.690392
3.665079
3.665079
3.657007
3.657007
3.652568
3.652568
3.610959
3.610959
3.574887
3.515062
3.515062
3.496194
3.496194
3.477656
3.477656
3.426471
3.426471
3.411162
3.411162
3.405705
3.405705

3.38433

3.38433
3.377412
3.377412
3.375698
3.375698



74 CCGGCA
75 TGCCGG
76 GCGAAC
7T GTTCGC
78 TCGCGA
79 GGCCCC
80 GGGGCC
81 GCGGAA
82 TTCCGC
83 CGAACG
84 CGTTCG
85 CGCGTA
86 TACGCG
87 ACGTCG
88 CGACGT
89 GCGGAC
90 GTCCGC
91 CACCGG
92 CCGGTG
93 AGCGTC
94 GACGCT
95 AGTCGG
96 CCGACT
97 CTCCGA
98 TCGGAG
99 ACGCTG
100 CAGCGT

230262
230262
79344
79344
29124
1025386
1025386
168690
168690
29492
29492
22145
22145
36991
36991
110933
110933
200517
200517
171060
171060
157158
157158
203551
203551
294212
294212

0.0000404
0.0000404
0.0000139
0.0000139
0.0000051
0.0001800
0.0001800
0.0000296
0.0000296
0.0000052
0.0000052
0.0000039
0.0000039
0.0000065
0.0000065
0.0000195
0:0000195
0.0000352
0.0000352
0.0000300
0:0000300
0.0000276
0.0000276
0.0000357
0.0000357
0.0000516
0.0000516

32
32
11
11

140
140
23
23

whm O W W B~ BN

15
15
27
27
23
23
21
21
27
27
39
39

0.0001362
0.0001362
0.0000468
0.0000468
0.0000170
0.0005960
0.0005960
0.0000979
0.0000979
0.0000170
0.0000170
0.0000128
0.0000128
0.0000213
0.0000213
0.0000639
0.0000639
0.0001149
0.0001149
0.0000979
0.0000979
0.0000894
0.0000894
0.0001149
0.0001149
0.0001660
0.0001660

3.371985
3.371985
3.368952
3.368952
3.332392
3.311782
3.311782
3.307906
3.307906
3.28736
3.28736
3.283134
3.283134
3.279762
3.279762
3.274716
3.274716
3.265413
3.265413
3.2638
3.2638
3.239121
3.239121
3.219679
3.219679
3.217599
3.217599
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Table A.3 Top 100 patterns of statistically significant 6-mer pattern in group 3

(CpG island).
SN pattern whole Whole pro. 80num Pos pro. OC ratio

1 CGCGCG 93380 0.0000164 1350  0.001837 112.0417

2 GCGCGC 142810 0.0000251 1674  0.002278 90.77614

3 CGCCGC 165495 0.0000290 1903 0.00259 89.31631

4 GCGGCG 165495 0.0000290 1903 0.00259 89.31631

5 CGGCGC 119385 0.0000210 1338 0.001821 86.7215

6 GCGCCG 119385 0.0000210 1338 0.001821 86.7215

7T CGCGGC 123365 0.0000217 1377 0.001874 86.37025

8 GCCGCG 123365 0.0000217 1377 0.001874 86.37025

9 CCGCCG 156119 0.0000274 1544  0.002102 76.69847
10 CGGCGG 156119 0.0000274 1544  0.002102 76.69847
11 CCGGCG 111276 0.0000195 1067 0.001452 74.47659
12 CGCCGG 111276 0.0000195 1067 0.001452 74.47659
13 AGCGCG 72155 0.0000127 678 0.000923 72.66344
14 CGCGCT 72155 .+0.0000127 678 0.000923 72.66344
15 CCGCGG 129318 0.0000227 1198 0.001631 71.83249
16 CGCGCA 75745 ' 0.0000133 689 0.000938 70.51111
17 TGCGCG 75745 0.0000133 689 0.000938 70.51111
18 CCCGCG 127926 - 0.0000225 1155 0.001572 69.86979
19 CGCGGG 127926, 0.0000225 1155 0.001572 69.86979
20 CGCGAG 63936 0.0000112 551 0.00075 66.96125
21 CTCGCG 63936 0.0000112 551 0.00075 66.96125
22 CGCGGA 61387 0.0000108 515 0.000701 64.90429
23 TCCGCG 61387 0.0000108 515 0.000701 64.90429
24 TCGCGA 29124 0.0000051 234 0.000318 62.32825
25 CGCGAC 35935 0.0000063 288 0.000392 62.1231
26 GTCGCG 35935 0.0000063 288 0.000392 62.1231
27 CGTCGC 44589 0.0000078 325 0.000442 56.4952
28 GCGACG 44589 0.0000078 325 0.000442 56.4952
29 CCGCGC 210901 0.0000370 1509 0.002054 55.5108
30 GCGCGG 210901 0.0000370 1509 0.002054 55.5108
31 CGCCGA 51860 0.0000091 365 0.000497 54.59356
32 TCGGCG 51860 0.0000091 365 0.000497 54.59356
33 CGGCGA 56495 0.0000099 387 0.000527 53.09936
34 TCGCCG 56495 0.0000099 387 0.000527 53.09936
35 CGAGCG 65811 0.0000116 447 0.000608 52.44928
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36 CGCTCG
37 CGCGTC
38 GACGCG
39 ACGCGC
40 GCGCGT
41 CCGCGA
42 TCGCGG
43 CGACGC
44 GCGTCG
45 CGACCG
46 CGGTCG
47 CGGCCG
48 CGCCCC
49 GGGGCG
50 ACGCCG
51 CGGCGT
52 GCCGCC
53 GGCGGC
54 GCGGCC
55 GGCCGC
56 CCCCGC
57 GCGGGG
58 CCGTCG
59 CGACGG
60 CCGCCC
61 GGGCGG
62 CCGGAA
63 TTCCGG
64 CGCACG
65 CGTGCG
66 CGGGGC
67 GCCCCG
68 ACGCGG
69 CCGCGT
70 CGCGAA
71 TTCGCG
72 ACGGCG
73 CGCCGT

65811
59353
59353
66140
66140
55823
55823
41872
41872
33411
33411
176492
362006
362006
64787
64787
344938
344938
261440
261440
426331
426331
44482
44482
518352
518352
199323
199323
77899
77899
371940
371940
69430
69430
30243
30243
68155
68155

0.0000116
0.0000104
0.0000104
0.0000116
0.0000116
0.0000098
0.0000098
0.0000074
0.0000074
0.0000059
0.0000059
0.0000310
0.0000635
0.0000635
0.0000114
0.0000114
0:0000605
0.0000605
0.0000459
0.0000459
0:0000748
0.0000748
0.0000078
0.0000078
0.0000910
0.0000910
0.0000350
0.0000350
0.0000137
0.0000137
0.0000653
0.0000653
0.0000122
0.0000122
0.0000053
0.0000053
0.0000120
0.0000120

71

447
386
386
425
425
358
358
266
266
204
204
1048
2059
2059
368
368
1854
1854
1306
1306
2119
2119
221
221
2547
2547
966
966
376
376
1749
1749
321
321
139
139
306
306

0.000608
0.000525
0.000525
0.000578
0.000578
0.000487
0.000487
0.000362
0.000362
0.000278
0.000278
0.001426
0.002803
0.002803
0.000501
0.000501
0.002523
0.002523
0.001778
0.001778
0.002884
0.002884
0.000301
0.000301
0.003467
0.003467
0.001315
0.001315
0.000512
0.000512
0.002381
0.002381
0.000437
0.000437
0.000189
0.000189
0.000416
0.000416

52.44928
50.51774
50.51774
49.86788
49.86788
49.72181
49.72181
49.25885
49.25885
47.383
47.383
46.01395
44.13393
44.13393
43.93726
43.93726
41.7104
41.7104
38.72759
38.72759
38.55843
38.55843
38.51512
38.51512
38.09584
38.09584
37.56635
37.56635
37.35573
37.35573
36.4558
36.4558
35.81254
35.81254
35.62954
35.62954
34.70804
34.70804



T4 CGCGCC
75 GGCGCG
76 CCGACG
7T CGTCGG
78 GCCGGC
79 AACGCG
80 CGCGTT
81 CGGAAG
82 CTTCCG
83 CGGACG
84 CGTCCG
85 GCCGGA
86 TCCGGC
87 CTGCGC
88 GCGCAG
89 CACGCG
90 CGCGTG
91 GCGCGA
92 TCGCGC
93 ACGTCG
94 CGACGT
95 GAGCGC
96 GCGCTC
97 ACGCGA
98 TCGCGT
99 TGCGCA
100 CGTACG

291748
291748
45809
45809
246470
38488
38488
262733
262733
65539
65539
184107
184107
288998
288998
89405
89405
113177
113177
36991
36991
183691
183691
32037
32037
174690
22916

0.0000512
0.0000512
0.0000080
0.0000080
0.0000433
0.0000068
0.0000068
0.0000461
0.0000461
0.0000115
0.0000115
0.0000323
0.0000323
0.0000507
0.0000507
0.0000157
0:0000157
0.0000199
0.0000199
0.0000065
0:0000065
0.0000322
0.0000322
0.0000056
0.0000056
0.0000307
0.0000040

1303
1303
194
194
1024
159
159
1074
1074
258
258
693
693
1074
1074
329
329
410
410
130
130
642
642
111
111
604
78

0.001774
0.001774
0.000264
0.000264
0.001394
0.000216
0.000216
0.001462
0.001462
0.000351
0.000351
0.000943
0.000943
0.001462
0.001462
0.000448
0.000448
0.000558
0.000558
0.000177
0.000177
0.000874
0.000874
0.000151
0.000151
0.000822
0.000106

34.63893
34.63893
32.84246
32.84246
32.18859
32.06146
32.06146
31.70979
31.70979
30.53598
30.53598
29.20254
29.20254
28.83276
28.83276
28.52241
28.52241
28.04276
28.04276
27.26394
27.26394
27.13746
27.13746
26.88293
26.88293
26.77864

26.4094

72



