磷化銦後段晶圓製程之孔洞蝕刻製程研究

研究生:陳昌隆

指導教授:張 翼 博士

摘要

本論文的研究實驗目的是在研究出適當的4 寸磷化銦晶圓後段製程以及研究磷化銦 材料的乾式蝕刻機制。從結果發現使用次氯化硼 (BCl₃)與氯氣(Cl₂)為主要的蝕刻氣 體可得到每分鐘1.2 微米的高蝕刻率在高寬深比是2:1 的100 微米厚的晶圓,而且 所使用的非光阻光罩材料對磷化銦的蝕刻選擇比超過200 比1。所蝕刻出來的孔洞用 高頻微波分析儀量測特定的監控元件可得到46pH。

A Study of Dry Etching process for InP backside vias

Student: Minkar Chen

Advisor: Dr. Edward Yi Chang

The purpose of my studies is to investigate a proper backside process for 4 inches InP wafers and to do research of the dry etching mechanism of InP material. The result represents that there is $1.2 \mu m/min$ high etching rate at the aspect ratio 2, for 50 μm diameter via in 100 μm thick wafer thickness. The selectivity of hard mask to InP is over 200:1 by using much more safe etching process with BCl₃/Cl₂ gases composition. The backside via inductance is 46 pH which was measured by an S parameter measurement tool at the particular PCM structures.

首先我要感謝我的父親 中村先生、母親 潘 尾春女士、妹妹 素琴和 弟弟 昌惠,雖然父親大人在我中學畢業的暑假辭世,但是他對我做人處 事上影響很深,母親更甚,辛苦教導我們栽培我們長大成人。而妹妹和弟 弟是我的精神依靠,從小共患難。在這三年多的求學過程中,可以讓我全 力專注於學業,進而完成學業,幕後最大的推手,莫過於總是躲在角落默 默支持我的『牽手』 劉 惠玫女士,因為她的體貼,她的鼓勵,讓我完全 沒有後顧之憂,並在這期間全心全意照顧我的一雙兒女(女:羽柔 13 歲, 子:浩群 2 歲)感謝他所為我做的一切。

特別感謝漢威光電 沈義德 博士,個人在任職漢威光電時,給我的提 攜與關懷,之後在全球聯合半導體開始進行本論文之實驗開發,在產品的 開發與論文的撰寫過程當中,更要感謝 侯立平 博士、王興國 博士及 楊 悅非 博士,給我許多經驗的教導,並感謝我的同事們給予實驗上的協助, 在團隊合作下,一起解決許多工程上的問題,才有可能共同完成本次的產 品開發。

再以感恩的心謝謝以上諸位,及其他幫助過我的所有人,皆能以喜悅 及幸福的心境,完成自己想做的事。

III

Contents

Abstract (Chinese)	Ι
Abstract (English)	III
Acknowledgement	IV
Contents	V
Figure Captions	VII
Table Captions	X

Chapter 1	Introduction	1
1.1	Overview	1
1.2	Advantage of InP- based semiconductors	3
1.3	Challenges of InP backside via process	6
1.4	Objective of this study	9
Chapter 2	Theoretical of Dry Etching Process	10
2.1	Dry etching mechanism	10
2.2	Choosing ether and gases for InP backside via	14
	etching	
2.3	The principal of ICP etcher	16
2.4	Side effects in etching process	18
Chapter 3	InP Wafer Backside Fabrication	20
3.1	InP wafer backside process flow	20
3.1.1	Wafer bonding	22
3.1.2	Wafer thinning	23
3.1.3	BV mask	23
3.1.4	Backside via dry etching	24
3.1.5	BV clean and seedlayer sputtering	26
3.1.6	Gold plating	26

3.1.7	BS photolithography, gold etching and PR	27
	striping	
3.1.8	Wafer demounting	28
3.2	Study of backside via inductance measurement	29
Chapter 4	Results and Discussion	30
4.1	Wafer bonding	30
4.2	Wafer thinning	30
4.3	Ni hard mask	31
4.4	Backside via etching	31
4.4.1	Effect of the chlorine percentage	32
4.4.2	Effect of ICP power variation	33
4.4.3	Effect of chuck temperature and working	33
	pressure	
4.4.4	Effect of platen power variation	34
4.4.5	Selectivity of hard mask	35
4.5	Backside via clean	35
4.6	Backside metal plating	36
4.7	Backside metal adhesion	37
4.8	Wafer demount	37
4.9	RF inductance	37
Chapter 5	Conclusions	39
Reference		42
Figures		44
Tables		65

Figure Captions

Fig. 1.1	Cutoff frequency comparison of Si- GaAs- and InP- based semiconductors. Source from Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and	44
Fig. 1.2	Technology Meeting, Minneapolis, September. InP single HBT Ft and Fmax vary junction current, which	45
	were measured at 1x3 μ m device and Vce=1V. Devices were manufactured at GCS Inc.	
Fig. 2.1	A diagram of ICP chamber.	46
Fig. 2.2	A diagram of etching formation mechanism.	47
Fig. 3.1	Flow chart of the InP wafer backside process.	48
Fig. 3.2	Process temperature limitation of current commercial bonding materials in semiconductor industry.	49
Fig. 3.3 (a)	Photoreisist mask thickness is 17 μ m, which was done by	50
	using single coating and photolithography processes.	
Fig. 3.3 (b)	Ni mask, the pattern was defined by wet etching process on thinned InP substrate.	50
Fig. 3.4	Specimen preparation flow.	51
Fig. 4.1	The result of wafer substrate thickness after thinning that can be controlled within $+-5$ m and its Cpk is 1.33.	52
Fig. 4.2	SEM micrograph of the Ni undercut is 0.24 μ m and Ti is 0.72 μ m, respectively.	53
Fig. 4.3 (a)	Top view of 40 μ m via was etched and 10 μ m undercut was obtained when the etching depth is 50 μ m. Ni mask was wrinkled.	54
Fig. 4.3 (b)	Cross section result at 50 μ m via which substrate thickness is 100 μ m.	54
Fig. 4.4	Etching rate as a function of platen power at the condition of ICP power was 900 W, platen power was 150 W and the chuck temperature was 140 $^{\circ}$ C.	55
Fig. 4.5 (a)	Etching rate of InP v.s. ICP power. Specimens were etched at BCl_3/Cl_2 plasma ($BCl_3:Cl_2 = 160 \text{ sccm}/160 \text{ sccm}$), platen power was 150 W and the chuck temperature was 140 °C.	56
Fig. 4.5 (b)	Wafer temperature as a function of ICP power.	56
Fig. 4.6 (a)	Etching rate as a function of chuck temperature at the condition of BC13:C12 =160 sccm/160 sccm, ICP power was fixed at 000 W platen power was 150 W	57
Fig 4.6 (h)	Ftching rate as a function of working pressure	57
Fig. 4.7	SEM micrograph of via profiles when were etched under different working pressures, 10 mtorr, 20 mtorr and 30	58

mtorr.

- Fig. 4.8 Etching rate as a function of the platen power st the 59 condition of $BCl_3:Cl_2=160 \text{ sccm}/160 \text{ sccm}$, ICP power was 900 W, chuck temperature was 140 °C.
- Fig. 4.9 Shows the hard mask Ni was completely etched 60 away during etching process and the InP substrate was over etched about 30 µm. This is a tradeoff situation that we can't keep higher etching without the good electivity.
- Fig. 4.10 Selectivity of Ni, photoresist and low temperature 61 nitride.
- Fig. 4.11 Photograph of the thinned wafer fixture, the ROC 62 patent application number is 208854.
- Fig. 4.12 Backside via inductance test pattern.
- Fig. 4.13 GaAs 2 mil, GaAs 4 mil and InP 4 mil backside via 64 inductance measurement result.

63

Table Captions

- Table 1.1Electrical properties of Si- GaAs- and InP- Based 65
semiconductors.
- Table 2.1List of the melting point, Mp and boiling point, Bp at Ni, 66GaAs and InP halides
- Table 2.2Dissociation species and mass numbers at BCl₃/Cl₂ 67plasma when etching InP materials. The by-products and
etchants for plasma etching of InP were determined using
a mass spectrometer.
- Table 2.3Some side effects that are nearly unavoidable in all 68
etching processes and they can either be beneficial or
harmful.
- Table 3.1Challenge of ICP etching process.

- 69
- Table 3.2Thermal Properties of InP, SiC, glasses and Sapphire 70
materials.

