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Abstract

A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control
is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic
systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly
used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.
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1. Introduction

In recent years, synchronization in chaotic dynamic system has been a very interesting problem and has been
widely studied [1–3]. Synchronization means that the state variables of a response system approach eventually to that
of a drive system. There are many control techniques to synchronize chaotic systems, such as linear error feedback
control, adaptive control, active control [2–17].

In this paper, a new general strategy to achieve chaos synchronization by variable strength linear coupling is
proposed. This method, in which the time derivative of Lyapunov function in series form is firstly used, can give
either local synchronization which is usually good enough or global synchronization which is usually an unnecessary
high demand [18–21].

This paper is organized as follows. In Section 2, synchronization strategy by variable strength linear coupling
without another active control is proposed, in which the Lyapunov function derivative in series form is first used.
In Section 3, Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated
examples. In Section 4, conclusions are given.
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2. Synchronization strategy by variable strength linear coupling and Lyapunov function derivative in series
form

(a) Consider the following unidirectional coupled identical chaotic systems

ẋ = Ax+ f(x)

ẏ = Ay+ f(y)+ 0(y− x),
(1)

where x = [x1, x2, . . . , xn]T
∈ Rn , y = [y1, y2, . . . , yn]T

∈ Rn denote two state vectors, A is an n × n constant
coefficient matrix, f is a nonlinear vector function, and 0 is an n × n matrix which gives the variable strength of the
linear coupling term (y− x).

In order to study the synchronization of x and y, define e = y− x as the state error. Error equation can be written
as

ė = Ay+ f(y)+ 0(y− x)− Ax− f(x). (2)

By Taylor expansion

f(y)− f(x) = f(x+ e)− f(x) = f′(x)e+ HOT of e

= F(x)e+ HOT of e, (3)

where f′(x) is the time derivative f(x), and F(x) = f′(x).

Theorem 1. The chaotic systems in Eq. (1) can be locally completely synchronized, if ‖e‖2 is smaller than a bounded
value and 0 is chosen such that A+ 0 + F = −C, where C is a positive definite diagonal matrix.

Proof. Choose a positive definite function as

V (e) =
1
2

eTe. (4)

Then

V̇ (e) = eTė

= eT(Ay+ f(y)+ 0(y− x)− Ax− f(x))

= eT(Ae+ 0e+ f(y)− f(x))

= eT(A+ 0 + F)e+ HOT of e. (5)

Since ‖e‖2 is smaller than a bounded value and 0 is chosen such that A + 0 + F = −C, Eq. (5) becomes
V̇ (e) = −eTCe + HOT of e < 0, since −eTCe is a definite form, the higher-order terms of e have no influence
on the definiteness of V̇ , provided that ‖e‖2 is smaller than a bounded value. The proof of this theorem can be found
in [22,23], which is used extensively in the theory of stability of motion. By the Lyapunov asymptotical stability
theorem, the origin of error equation (2) is locally asymptotically stable and the chaotic systems in Eq. (1) are locally
completely synchronized. �

Corollary 1. If f(x + e) − f(x) is a linear function of e,De, Eq. (5) becomes V̇ (e) = eT(A + 0 + D)e. Let
A + 0 + D = −C, then V̇ (e) = −eTCe < 0. By the Lyapunov asymptotical stability theorem, the origin of
error equation (2) is globally asymptotically stable. Hence, the chaotic systems in Eq. (1) are globally completely
synchronized. �

(b) Consider the following two unidirectional coupled different chaotic systems

ẋ = Ax+ f(x)

ẏ = Ây+ f(y)+ u, (6)

where x = [x1, x2, . . . , xn]T
∈ Rn , y = [y1, y2, . . . , yn]T

∈ Rn denote two state vectors, A and Â are two different
n×n constant coefficient matrices, f is a nonlinear vector function, and u is the coupling vector of which the elements
are functions of x and y.
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In order to study the synchronization of x and y, define e = y− x as the state error. Error equation can be written
as

ė = Ây+ f(y)+ u− Ax− f(x). (7)

By Taylor expansion

f(y)− f(x) = f(x+ e)− f(x) = f′(x)e+ HOT of e

= F(x)e+ HOT of e. (8)

Theorem 2. Choose 0 = −C− A− F and B = −Ã, where C is positive definite diagonal matrix and Ã = Â− A.
The chaotic systems in Eq. (6) can be locally completely synchronized, if ‖e‖2 is smaller than a bounded value and
u = 0e+ By.

Proof. Choose a positive definite function as

V (e) =
1
2

eTe. (9)

Then

V̇ (e) = eTė

= eT(Ây + f(y)+ u− Ax− f(x))

= eT(Ãy + Ae+ u+ f(y)− f(x)). (10)

Let u = 0e+ By, Eq. (10) becomes

V̇ (e) = eT(Ãy+ Ae+ 0e+ By+ f(y)− f(x))

= eT(A+ 0 + F)e+ eT(Ã+ B)y+ HOT of e. (11)

Since ‖e‖2 is smaller than a bounded value, 0 and B are chosen such that A + 0 + F = −C and B = −Ã, Eq. (10)
becomes V̇ (e) = −eTCe+HOT of e < 0. By the Lyapunov asymptotical stability theorem, the origin of error equation
(7) is locally asymptotically stable and the chaotic systems in Eq. (6) are locally completely synchronized. �

Corollary 2. If f(x+ e)− f(x) is a linear function of e,De, Eq. (11) becomes V̇ (e) = eT(A+0+D)e+ eT(Ã+B)y.
Let A + 0 + D = −C and B = −Ã, then V̇ (e) = −eTCe < 0. By the Lyapunov asymptotical stability theorem,
the origin of error equation (7) is globally asymptotically stable, and the chaotic systems in Eq. (6) are globally
completely synchronized. �

3. Numerical results for typical chaotic systems

First example for Theorem 1 is the Rössler system. Consider the following two unidirectional coupled chaotic
Rössler systems:

ẋ1 = −y1 − z1

ẏ1 = x1 + ay1

ż1 = b + z1(x1 − c)

ẋ2 = −y2 − z2 + Γ11e1 + Γ12e2 + Γ13e3

ẏ2 = x2 + ay2 + Γ21e1 + Γ22e2 + Γ23e3

ż2 = b + z2(x2 − c)+ Γ31e1 + Γ32e2 + Γ33e3,

(12)

where

A =

0 −1 −1
1 a 0
0 0 −c

 . (13)
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Fig. 1. Chaotic phase portraits for the Rössler system.

Choose a Lyapunov function in the form of a positive definite function:

V (e1, e2, e3) =
1
2
(e2

1 + e2
2 + e2

3) (14)

by Taylor Formula

f(y)− f(x) =

 0
0

z1e1 + x1e3 + e1e3

 =
 0 0 0

0 0 0
z1 0 x1

 e+

 0
0

e1e3


= Fe+ · · · . (15)

Let

0 = −I− A− F =

−1 1 1
−1 −1− a 0
−z1 0 −1+ c − x1

 . (16)

According to Theorem 1, we obtain that

V̇ = −e2
1 − e2

2 − e2
3 + HOT of e < 0 (17)

is negative definite when ‖e‖2 is smaller than a bounded value. The Rössler systems in Eq. (12) are locally
synchronized. For the initial states (−20, 10, 25), (−21, 10.5, 25) and system parameters a = 0.2, b = 0.2, c = 5.7,
the chaotic phase portraits and state errors versus time are shown in Figs. 1 and 2.
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Fig. 2. Time histories of errors for two Rössler systems.

Second example for Corollary 1 is the Hyper-Rössler system. Consider the following two unidirectional coupled
chaotic Hyper-Rössler systems:

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2 + x4

ẋ3 = b + x1x3

ẋ4 = cx4 − dx3

ẏ1 = −y2 − y3 + Γ11e1 + Γ12e2 + Γ13e3 + Γ14e4

ẏ2 = y1 + ay2 + y4 + Γ21e1 + Γ22e2 + Γ23e3 + Γ24e4

ẏ3 = b + y1 y3 + Γ31e1 + Γ32e2 + Γ33e3 + Γ34e4

ẏ4 = cy4 − dy3 + Γ41e1 + Γ42e2 + Γ43e3 + Γ44e4,

(18)

where

A =


0 −1 −1 0
1 a 0 1
0 0 0 0
0 0 −d c

 . (19)

Choose a Lyapunov function in the form of a positive definite function:

V (e1, e2, e3, e4) =
1
2
(e2

1 + e2
2 + e2

3 + e2
4) (20)

f(y)− f(x) =


0
0

y1 y3 − x1x3
0

 =


y3 0 0 0
0 0 0 0
0 0 x1 0
0 0 0 0

 e = De. (21)

Let

0 = −C− A− D =


−1− y3 1 1 0
−1 −1− a 0 −1
0 0 −1− x1 0
0 0 d −1− c

 . (22)
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Fig. 3. Chaotic phase portraits for the Hyper-Rössler system.

Fig. 4. Time histories of errors for two synchronized Hyper-Rössler systems.

According to Corollary 1, we obtain

V̇ = −e2
1 − e2

2 − e2
3 − e2

4 < 0. (23)

The Hyper-Rössler systems in Eq. (18) are globally synchronized. For the initial states (−20, 0, 0, 15), (−20, 10.15,
15) and system parameters a = 0.25, b = 3, c = 0.05, d = 0.5, the chaotic phase portraits and state errors versus
time are shown in Figs. 3 and 4.

Third example for Theorem 2 is the Duffing system. Consider the following two unidirectional coupled chaotic
Duffing systems:

ẋ1 = x2

ẋ2 = −δx2 + αx1 − βx3
1 + a cosωt

(24)
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Fig. 5. Chaotic phase portrait for the Duffing system.

ẏ1 = y2 + u1

ẏ2 = −δ̂y2 + α̂y1 − βy3
1 + a cosωt + u2,

where u = [u1, u2]
T is the coupling term.

A =
[

0 1
α −δ

]
. (25)

Choose a Lyapunov function in the form of a positive definite function:

V (e1, e2) =
1
2
(e2

1 + e2
2). (26)

By Taylor expansion

f(y)− f(x) =
[

0
−βy3

1 + βx3
1

]
=

[
0 0

−3βx2
1 0

]
e+

[
0

−6βx1e2
1 + · · ·

]
= Fe+ H.O.T. of e. (27)

Let u = 0e+ By

0 = −I− A− F =
[

−1 −1
−α + 3βx2

1 −1+ δ

]
(28)

B = −Ã =
[

0 0
α̂ − α −δ̂ + δ

]
. (29)

According to Theorem 2, we obtain that

V̇ = −e2
1 − e2

2 + HOT of e < 0 (30)

is negative definite when ‖e‖2 is smaller than a bounded value. The Duffing systems (24) are locally synchronized.
For the initial states (2, 2), (5, 5) and system parameters α = −0.01, δ = 0.1, β = ω = 1, a = 10, α̂ = 1 and
δ̂ = 0.15, the chaotic phase portrait and state errors versus time are shown in Figs. 5 and 6.
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Fig. 6. Time histories of errors for two synchronized Duffing systems.

Last example for Corollary 2 is the Lorenz system. Consider the following two unidirectional coupled chaotic
Lorenz systems:

ẋ1 = σ(y1 − x1)

ẏ1 = γ x1 − x1z1 − y1

ż1 = x1 y1 − βz1

ẋ2 = σ̂ (y2 − x2)+ u1

ẏ2 = γ̂ x2 − x2z2 − y2 + u2

ż2 = x2 y2 − β̂z2 + u3,

(31)

where u = [u1, u2, u3]
T is the coupling term.

A =

−σ σ 0
γ −1 0
0 0 −β

 . (32)

Choose a Lyapunov function in the form of a positive definite function:

V (e1, e2, e3) =
1
2
(e2

1 + e2
2 + e2

3) (33)

f(y)− f(x) =

 0
−x2z2 + x1z1
x2 y2 − x1 y1

 =
 0 0 0
−z2 0 −x1
y2 x1 0

 e = De. (34)

Let u = 0e+ By

0 = −I− A− D =

 σ − 1 −σ 0
−γ + z2 0 x1
−y2 −x1 β − 1

 (35)

B = −Ã =

 6 −6 0
−17.92 0 0

0 0 4/3

 . (36)

According to Corollary 2, we obtain that

V̇ = −e2
1 − e2

2 − e2
3 < 0 (37)
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Fig. 7. Chaotic phase portraits for the Lorenz system.

Fig. 8. Time histories of errors for two synchronized Lorenz systems.

is negative definite. The Lorenz systems (31) are global synchronized. For the initial states (0.5, 1, 5), (0.6, 2, 5.3)
and system parameters σ = 10, γ = 28, β = 8/3, σ̂ = 16, γ̂ = 45.92 and β̂ = 4, the chaotic phase portraits and
state errors versus time are shown in Figs. 7 and 8.

4. Conclusions

In this paper, two theorems for chaos synchronization are proposed by using variable strength linear coupling
without another active control, while the time derivative of the Lyapunov function in series form is firstly used, which
makes the demand for the Lyapunov function derivative as negative sum of the square of state variables, lower. They
give the criteria of chaos synchronization for two identical chaotic systems and for two different chaotic dynamic
systems. Either local synchronization which is mostly good enough or global synchronization which is mostly an
unnecessary high demand, can be obtained. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system
are used as simulation examples which effectively confirm the scheme.
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