圖 目 錄

····· 2 ····· 2 笛式 ····· 2
····· 2 笛式 ····· 2
苗式 ····· 2
····· 2
7
曾厚
3
3
5
····· 5
5
〕(壓
6
••••• 6
••••• 7
••••• 7
••••• 8
8
9
9
9
5圖
10
10
••••• 11
••••• 11

••••• 11
設拉
12
自由
,進
12
13
13

圖	1.28	微懸臂樑熱膨脹係數的有限元素分析圖(a).為升溫前(b).為升溫	
		後, θ 為轉動角······	15
圖	1.29	微懸臂樑在不同溫度環境下的撓曲變形圖	15
圖	1.30	薄膜材料熱膨脹係數和微懸臂樑轉動角大小的關係圖	16
圖	1.31	光學干涉儀示意圖	16
圖	1.32	利用光學干涉儀來量測微懸臂樑撓曲變形量	16
圖	1.33	光學影像量測平臺量示意圖	17
圖	2.1	電鍍系統示意圖	18
圖	2.2	製作微懸臂樑結構供測試時使用	21
圖	2.3	使用表面微輪廓儀量測電鍍層階段差	22
圖	2.4	奈米壓痕量測系統	23
圖	2.5	負荷-壓痕深度圖	23
圖	2.6	使用微壓痕器量測電鍍層硬度和楊氏係數	23
圖	2.7	奈米壓痕量測系統所使用的 Berkovich 微壓痕頭 ······	24
圖	2.8	熱膨脹係數量量測示意圖	24
圖	2.9	熱膨脹係數量測平臺示意圖	24
圖	3.1	實驗採用的電鍍系統	27
圖	3.2	電鍍系統的電源供應器	27
圖	3.3	鎳電鍍系統 ····································	28
圖	4.1	電流密度固定,鍍層厚度變化時,楊氏係數的變化	32
圖	4.2	鍍層厚度固定、電流密度變化時,楊氏係數的變化	32
圖	4.3	電流密度固定, 鍍層厚度變化時, 硬度的變化	34
圖	4.4	鍍層厚度固定,電流密度變化時,硬度的變化	34
圖	4.5	電流密度固定,鍍層厚度變化時,熱膨脹係數(0~250℃平均值)	
		的變化	36
圖	4.6	鍍層厚度固定,電流密度變化時,熱膨脹係數(0~250℃平均值)	
		的變化	36
圖	5.1	試片表面組織 AFM 影像	40