Chapter 3
Wide Dynamic Range & Temperature Compensated
Gain CMOS Image Sensor in Automotive Application
Like the introduction said, we can recognize the problem would be suffered on
image sensor in automotive application. We can summarize them and define the goal of
application in three points. First, we should overcome the abominable environment that
automotive applications have to concerned, like high contrast illuminations, inferring
image quality affected by temperature variation. Second, in order to support certain
automotive algorithms, like digital image stable technique, lane line detection, vehicle
side collision warning system, etc, we need an exactly image which no longer define by
our eyes. Third, for the reason to reduce the operation loading of automotive embedded
processor, certain effects which both could be solved on digital signal processing or
analog circuits, have to process on analog part. That makes system can focus its

performance on important judgment.

3.1 System Architecture
The system consists of six parts shown in Fig. 3.1-1. They are active pixel sensor
with analog memory (AMAPS), column correlated double sampling circuit (CDS),
differential difference amplifier with temperature compensate circuit (TMDDA),

bandgap voltage reference, large bias circuit, and timing generator circuit (TG).
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Fig. 3.1-1 System Architecture
extracted from this thesis’ (Shao-Hang Hung. s ) coordination

43



We want to get the pure signal transfer from light, instead of thermal signal, but

both illumination and thermal may cause discharge of photo detector, like Eq. (34)

shows. If we take cover at the same sensor architecture on the same chip, the pure

thermal signal can be transferred like Eq. (35) . Take the difference from those two
signals as Eq. (36) , we can finally get the pure illumination signal. In addition of the

original signal processing, pre-charge signal minus illuminated signal, we need double

difference on the system architecture.

SignalAPS = Signalilluminatinn + SignalThermal > (34)
Signaly,,; = Signaly,,,....» (35)
Signal g — Signaly, g = Signal ..o (36)

Concerning the application requirement, we’ve designed a bandgap reference to
supply a steady voltage reference. The bias circuit has also been designed for large
analog circuits. Finally, the controlling time generated by digital circuits. We would

introduce them on next sections.

3.2 Circuit Design
3.2.1 Analog Memory in Active Pixel Sensor (AMAPS)

The research in analog memory in active pixel sensor has not going down after
Yoshinori’s paper [8]. In 2005, S. Sugawa’s team present a serious paper “A 100dB
Dynamic Range CMOS Image Sensor Using a Lateral Overflow Integration Capacitor”
[31][32][33], which achieves no degradation of the sensitivity in low light, keeps the
sensitivity in very bright light and realizes high S/N in low and very bright lights.
Within the controlling of analog memory in active pixel sensor, we can get the two
kinds of charged electron numbers to satisfy different intensity of photocurrent. Fig.
3.2-1 shows the pixel schematic diagram, and Fig. 3.2-2 is the potential diagram. The
standard correlated double sampling circuit has been used to avoid the mistake in signal
fetch, and we would discuss it on section 3.2.2. The two channel CDS circuit supposed
the sensor can generate two exposure times. The overall architecture demonstrated in
Fig. 3.2-3. Fig. 3.2-4 to Fig. 3.2-10 are the simulation chart within architecture as Fig.
3.2-1. To ensure the sensitivity, we replace the photo detector in phototransistor which
has higher photocurrent than photodiode as mention in Chapter 2. We have successfully

verify their architecture in wide dynamic range function.
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Fig. 3.2-1 Pixel schematic diagram ( FD reset type sensor )
extracted from N. Akahane, S. Sugawa, S. Adaci, K. Mori, 1. Ishiyuki, K. Mizobuchi, “A
sensitivity and linearity improvement of a 100-dB dynamic range CMOS image sensor

using a lateral overflow integration capacitor”, in IEEE JSSC, Vol. 41, Issue 4,
pp-851~858, April 2006./33]

t1, tE' t3’ tq’
M1 M3 M1 M3 1 M3 M1 M3
» Rz S = S
Tom PD PD PD PD
8
FD+CS FD+CS AFD+CS FD CS
£
N2 (Saturated Overflow
Photoelectrons) + N2
s t’ t; t;
M1 M3 M1 M3 M1 M3 S M3
" PP PD PD -I"
FD CS [y ['FD cs FD CS FD+CS
S1+Ni1 S2+N2"

Fig. 3.2-2 Potential diagram ( FD reset type sensor )
extracted from N. Akahane, S. Sugawa, S. Adaci, K. Mori, T. Ishiyuki, K. Mizobuchi, “A
sensitivity and linearity improvement of a 100-dB dynamic range CMOS image sensor

using a lateral overflow integration capacitor”, in IEEE JSSC, Vol. 41, Issue 4,
pp-851~858, April 2006.[33]
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On the Fig.3.2-10, we found an interesting result which never been discussed in
paper. As the result we introduced in chapter 1, M. Schanz et al declare in their paper” A
High-Dynamic-Range CMOS Image Sensor for Automotive Applications” [5], which

dynamic range would decay amount 10dB when heating from 65°C to 85°C in general
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3T APS architecture. Our result presented on Fig. 3.2-10 shows that AMAPS

architecture has effectively defense the dynamic range decay in heating system.

On paper published by N. Akahane et al. “A sensitivity and linearity improvement
of a 100-dB dynamic range CMOS image sensor using a lateral overflow integration

capacitor” [33], the dynamic range (DR ) can define as Eq. (37)

Voo Crp+Cs
SAT2 C
DR =201log - L , (37)

n

where the essential approaches to extend the dynamic range are a higher S2 saturation

voltage Vg, ,,, with a higher ratio of (C,, +Cg )/ Cypand a lower residual noiseV, .
V, has the relation with @, , which corresponds to the input conversion charges, in the

formula as V, =q0, / C,, . Assume the swell factorer, and linear swell Eq. (38)

AL =aLAT, (38)

where the AL variation length of material, L is the length in original standard, and AT

is the temperature variation. The area swell Eq. (39) could be inference as

AA~2AL =2aLAT, (39)

The capacitance with swell function should related with area size that

_&,(1+20AT) A4
- d

C

, (40)

wheree, is the relative permittivity and general valuee, ~ &, ~8.84-107" (F/m). For
the different swell factor in silicon ag;~5x107 ; in  polyl-poly2
capacitance o, = 2.1558x107; in and in aluminuma, ~2.07x107. Set these

parameter into Eq. (37) , that is

(l+2aCSAT)]

Voira+| 1
e ( (1+2a,,AT)
DR =20log v ) (41)

n
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where § =(d,,/d. ), if we choose certain material which made o >, the DR

would increase with heating system. On VLSI technology, we can easily find the

material match the characteristic.

3.2.2 Correlated Double Sampling Circuit

On CDS circuit, we’ve taken the architecture which presented by Yavuz Degerli in
2000,”Analysis and Reduction of Signal Readout Circuitry Temporal Noise in CMOS
Image Sensors for Low-Light Levels” [36]. The architecture has been the popular ones,
with both low-frequency noise and thermal noises are considered. The reset noise, the
influence of floating diffusion capacitance on output noise and the detector
charge-to-voltage conversion gain are also considered. Their result really helpful for our

design and the Fig. 3.2-3 also demonstrate the CDS circuit.
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Fig. 3.2-11 (a) Readout circuit of CMOS photo-gate active pixel image sensor
(b) related operation timing

extracted from Y. Degerli, F. Lavernhe, P. Magnan, J. A. Farré,” Analysis and Reduction
of Signal Readout Circuitry Temporal Noise in CMOS Image Sensors for Low-Light
Levels”, IEEE Trans. On Electron Devices, Vol. 47, No.5, pp. 949~962, May 2000./36]

3.2.3 Temperature Compensated Differential Difference
Amplifier (TCDDA)

In Section 3.1, we have declared that we need double difference function in system

architecture. We took the basic amplifier architecture published by Hussain, 2000,”A
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CMOS Fully Balanced Differential Difference Amplifier and Its Applications” [9]. We
basis from the single output ended differential difference amplifier, reduce the gain
stage since the gain do not need very high in CMOS Image Sensor’s application. We

only used transconductance g, in differential pair as the main gain stage. As the

section 2.6 discussed, temperature variation would influence the performance of the
amplifier. Focus on compensation circuit in input stage, combination the design theorem
of presented by J. A. S.Dias”CMOS Temperature-Stable Linearised Differential Pair”,
1992 [10]. Thus, in order to ensure the circuit would successfully drive the enough
output impedance, we set the parameters which as the values in the oscilloscope input
impedance and designed a Class A output stage. Therefore the Class A output stage is
the most energy exhausted stage in overall system. Fig. 3.2-12 is the architecture of

Temperature Compensated Differential Difference Amplifier( TCDDA ). Fig. 3.2-12~17

are the other simulation which is needed for amplifier design. Finally, our result in

TCDDA with gain variation 135.662ppm/° C(0°C~125°C ),amplifier gain in 12.529dB
at 25°C, Phase Margin in 97.13°

Mn5 L:“

R1 g Mnl9| [Mnl7

Mnl Mnll T Mnl2 || Mn2

S| | Iﬁmw
Temperatufe Compensate

G Part — DDA Core

Fig. 3.2-12 Temperature Compensated Differential Difference Amplifier circuit
extracted from this thesis’ (Shao-Hang Hung. 5 ) coordination
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3.2.4 Bandgap Reference
The thesis refers to K. N. Leung’s paper “A Sub-1-V 15-ppm/°C CMOS Bandgap

Voltage Reference Without Requiring Low Threshold Voltage Device”[11], 2002. The
circuit provide 1v reference voltage, variation in 9.6ppm/°C (0°C~125°C)

Fig. 3.2-18 low voltage bandgap voltage reference
extracted from K. N. Leung, P. K. T. Mok, A Sub-1-V 15-ppm/°C CMOS Bandgap
Voltage Reference Without Requiring Low Threshold Voltage Device”, in IEEE JSSC,
Vol 37, No.4, pp., pp.526~530, April 2002.[11]
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3.2.5 Large Analog System Bias Circuit [3]

Since the full circuit would comprise very large chip area, if we use the traditional
voltage mode bias current as Fig. 3.2-23, the responsibility of circuit would delay for
the wire resistance. The error could be resolved in current mode to transfer bias signal
with less delay and lower power consumption since the current has less defect on wire
resistance. Fig. 3.2-24 shows the current mode bias circuit in the thesis’ chip, where the

bias root gathered up together and transfer the current to each branch component.
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Fig. 3.2-23 (a) voltage mode bias circuit (b) current mode bias circuit
extracted from Behzad Razavi, “Design of Analog CMOS Integrated Circuits”,
McGraw-Hill Companies, Inc. 2004 [3]
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3.2.6 Timing Generator

The most difference between CCD technology and CMOS technology is integrated
ability. CCD needs another Digital Signal Processor to drive the change of image array,
and CMOS can integrate timing generator digital circuit on the same chips. It can
reduce the input signal only need reset and clock cycle. Since the variations in each
pixel or CDS are the same, we can generate the control signal in the same counter with a
multiplexer to achieve each row and column in HDL language writing. Fig. 3.2-24

demonstrated the block diagram of Timing Generator.
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Fig. 3.2-25 Timing Generator
extracted from this thesis’ (Shao-Hang Hung. s ) coordination

Fig. 3.2-26 Timing Generator simulation in ModelSim(Pre-simulation)
extracted from this thesis’ (Shao-Hang Hung. s ) coordination
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Fig. 3.2-27 Timing Generator simulation in ModelSim(Post-simulation)
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simulation in ModelSim(Pre-simulation)
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Fig. 3.2-29 Single pixel operation signals with Timing Generator
simulation in ModelSim(Post-simulation)
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