

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

應用於週期精確指令集模擬器之

高效率 SystemC 建模技術

Efficient SystemC Modeling Technology

for Cycle-Accurate Instruction Set Simulator

研 究 生：張詠翔

 指導教授：黃俊達 博士

中 華 民 國 九 十 七 年 五 月

應用於週期精確指令集模擬器之

高效率 SystemC 建模技術

Efficient SystemC Modeling Technology

for Cycle-Accurate Instruction Set Simulator

研 究 生：張詠翔 Student：Yung-Hsiang Chang

指導教授：黃俊達 博士 Advisor：Dr. Juinn-Dar Huang

國 立 交 通 大 學
電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on
IC Design

May 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年五月

應用於週期精確指令集模擬器之

高效率 SystemC 建模技術

研 究 生：張詠翔 指導教授：黃俊達 博士

國立交通大學

電機學院產業研發碩士班

摘 要

隨著晶片設計複雜度日趨複雜，電子系統層級設計正成為主流的

設計方法。SystemC 是一種基於 C++，並支援各種虛擬層級，且廣泛

應用於建模及驗證的電子系統層級設計語言。

本論文提出一應用於週期精確指令集模擬器之高效率 SystemC 建

模技術。以 32 位元精簡指令集嵌入式處理器為例，我們使用 SystemC

將該處理器建模於兩個不同的虛擬層級—暫存器傳輸層級以及週期

精確行為層級。該處理器所採用之指令集架構為 ARM 指令集(第四

版)。我們測量所提出的模型及參照之 Verilog 模型之模擬時間來作效

能比較。實驗數據顯示，我們提出的週期精確行為層級指令集模擬器

之效能比參照之 Verilog 模型快十倍。

 i

Efficient SystemC Modeling Technology

for Cycle-Accurate Instruction Set Simulator

Student: Yung-Hsiang Chang Advisor: Dr. Juinn-Dar Huang

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao Tung University

ABSTRACT

With the increase of the complexity of chip design, Electronic System-Level (ESL)

design is becoming a mainstream design methodology. SystemC, a language based on

C++, supports a broad range of abstraction levels and views, and is widely used as an

ESL language both for modeling and verification.

In this thesis, an efficient SystemC modeling technology for cycle-accurate

instruction set simulator (ISS) is presented. A 32-bit RISC embedded processor core is

modeled in SystemC at two different abstraction levels, the register-transfer level

(RTL) and the cycle-accurate behavioral level, as an evaluation case. The instruction

set architecture (ISA) of the modeled processor core adopts ARM ISA Version 4. We

measure the simulation time of the proposed models and the reference Verilog model

for performance comparison. The experimental results show that our proposed

cycle-accurate behavioral level ISS is ten times faster than the reference Verilog

model.

 ii

Acknowledgement

致 謝

能完成這篇論文，首先我要感謝指導教授黃俊達老師。老師除了

授業及解惑專業知識之外，也教導我許多作研究的方法與態度，這些

對我的未來裨益甚大。

感謝義隆電子在我的研究所求學生涯中給予生活上的協助。

感謝 ACAR 實驗室同學及學弟妹們，宏光、維聖、孝恩、翊展、

士祐、之暉、哲霖、南興、威虢、建德、瀚蔚及于翔，感謝你們從旁

給予建議與協助。

感謝清華電機 01 級的大學同學們，沅龍、思儒、建閔、毅軒、

吉興、建翔等，感謝你們支持我、鼓勵我。各位分享你們的工作經驗，

讓我見賢思齊。在此也向其他關心我的朋友、老同學們說聲感謝。

最後且最重要地，感謝我的父母與家人。感謝父母親二十多年來

的養育之恩，有您們無悔的付出，成就了今日的我。

我願將這篇論文獻給支持我的大家。謝謝你們！！

 iii

Contents

Abstract (Chinese)………………………………………………………………. i

Abstract (English)………………………………………………………………. ii

Acknowledgement……………………………………………………………… iii

Contents………………………………………………………………………… iv

List of Tables……………………………………………………………………. vi

List of Figures…………………………………………………………………... vii

Chapter 1 Introduction………………………………………………………….. 1

1.1 Motivation………………………………………………………………... 1

1.2 Contribution……………………………………………………………… 2

1.3 Thesis Organization………………………………………………………. 3

Chapter 2 Preliminaries…………………………………………………………. 4

2.1 Overview of SystemC……………………………………………………. 4

2.2 Processor Modeling at Different Abstraction Levels and Views………… 6

2.3 Overview of ARM7TDMI and ACARM7 Verilog RTL Model………….. 7

2.3.1 Core Architecture of ARM7TDMI…………………………………... 7

2.3.2 Programmer’s Model………………………………………………... 10

2.3.3 ARM Instruction Set Architecture Version 4………………………... 14

2.3.4 ACARM7 Verilog RTL Model………………………………………. 15

Chapter 3 Proposed SystemC Register-Transfer Level Model…………………. 19

3.1 Block Diagram…………………………………………………………… 19

3.2 Control Logic…………………………………………………………… 22

3.3 Arithmetic/Logical Operation in Execution Stage……………………….. 24

3.4 Multi-Cycle Multiplication in Execution Stage…………………………. 25

 iv

Chapter 4 Proposed SystemC Cycle-Accurate Instruction Set Simulator……… 27

4.1 Block Diagram…………………………………………………………… 27

4.2 Decoder…………………………………………………………………... 29

4.3 Register File and Instruction Execution Unit……………………………. 30

4.4 Exception Detector Process……………………………………………… 33

4.5 Instruction Cycle Operations Process……………………………………. 35

Chapter 5 Verification Strategies……………………………………………….. 37

5.1 Deterministic Verification………………………………………………... 37

5.2 Constrained Random Verification………………………………………... 38

Chapter 6 Experimental Results………………………………………………… 39

6.1 Experimental Environment………………………………………………. 39

6.2 Experimental Benchmarks……………………………………………….. 40

6.3 Experimental Results and Discussions…...………………………………. 41

Chapter 7 Conclusions and Future Works………………………………………. 44

Reference………………………………………………………………………... 45

 v

List of Tables

Table 2.1 SystemC data types that are supported in SystemC RTL…………….. 5

Table 2.2 Abstraction of different views of modeling…………………………... 6

Table 2.3 PSR mode bit values... 12

Table 2.4 Exception priorities…………………………………………………... 13

Table 2.5 The ARM Instruction set……………………………………………... 17

Table 2.6 Condition code summary…………………………………………….. 18

Table 4.1 Instruction type index………………………………………………… 29

Table 4.2 Functions of instruction execution unit………………………………. 32

Table 6.1 Experimental environment…………………………………………… 39

Table 6.2 Benchmarks of MiBench……………………………………………... 40

Table 6.3 Cycle counts of selected benchmarks………………………………… 41

Table 6.4 Simulation execution time of proposed and reference models………. 42

Table 6.5 Simulation speed of proposed and reference models………………… 42

 vi

List of Figures

Fig. 1.1 An efficient cycle-accurate ISS can serve as a fast cycle-accurate

functional model when performing system-level simulation…………..

2

Fig. 2.1 Basic components of SystemC………………………………………… 4

Fig. 2.2 ARM7TDMI core diagram…………………………………………….. 8

Fig. 2.3 ARM7TDMI single-cycle instruction 3-stage pipeline operation……... 9

Fig. 2.4 ARM multi-cycle instruction 3-stage pipeline operation………………. 10

Fig. 2.5 ARM7TDMI register organization in ARM state……………………… 11

Fig. 2.6 Program status register format…………………………………………. 12

Fig. 2.7 ARM instruction set formats…………………………………………... 16

Fig. 3.1 Block diagram of the proposed SystemC RTL model…………………. 20

Fig. 3.2 Source selection of the address register………………………………... 21

Fig. 3.3 Read/write selector…………………………………………………….. 21

Fig. 3.4 FSMs of the control logic……………………………………………… 22

Fig. 3.5 Detailed block diagram of EX stage…………………………………… 24

Fig. 3.6 7-stage multiplication sub-FSM……………………………………….. 25

Fig. 4.1 Core diagram of the SystemC ISS………..…………………………… 28

Fig. 4.2 Code segment of SystemC ISS model…………………………………. 31

Fig. 4.3 Detection flow of abort exceptions…………………………………….. 33

Fig. 4.4 Detection flow…………………………………………………………. 34

Fig. 4.5 Flow of the instruction cycle operations process………………………. 35

Fig. 5.1 Constrained random verification mechanism………………………….. 38

 vii

Chapter 1
Introduction

1.1 Motivation

With the progress of semiconductor technology, more and more transistors can be

integrated into a chip and the complexity of chip design increases. In order to reduce

chip design costs and ease the pressure of time-to-market, electronic system level

(ESL) [1] methodology has been proposed and is becoming a mainstream.

SystemC [2], a language based on C++, provides hardware-oriented constructs

within the context of C++ as a class library implemented in standard C++. It covers a

broad range of abstraction levels and views, and is widely used as an ESL language

both for modeling and verification.

When developing a processor, an instruction set simulator (ISS) is necessary and

is usually written in a high level language like C/C++. An ISS can be used for

algorithms testing, architectural exploration and functional verification. Also,

software developers can take advantage of an ISS to develop software applications in

early design phase and shorten the development time.

The accuracy of an ISS depends on what view is taken by the designer such as

functional view (FV), programmer’s view (PV), architecture view (AV), and

verification view (VV). A related work, by Lu et al. [3], shows that simulation speeds

of PV model and AV model both written in SystemC are approximately 18 and 500

times faster, respectively, than that of Verilog RTL model. However, it does not point

out the performance comparison between SystemC-based cycle-accurate ISS and

Verilog-based RTL model in VV.

 1

An efficient cycle-accurate ISS can serve as a golden model to verify the RTL

design. Besides, as shown in Fig. 1.1, it can replace the RTL design and serve as a fast

cycle-accurate functional model when performing system-level simulation.

BUS

Processor
Core RTL

RTL RTL RTL

RTL ModelCycle-Accurate
ISS

System

Fig. 1.1 An efficient cycle-accurate ISS can serve as a fast cycle-accurate functional

model when performing system-level simulation.

1.2 Contribution
This thesis proposes an efficient SystemC modeling technology for cycle-accurate

ISS. One trivial way for cycle-accurate ISS development is modeling the processor at

RT-level directly. Our proposed way is modeling the processor in behavioral level

with a cycle-accurate wrapper. The experimental results show that the performance

comparisons among different modeling techniques. The simulation speed of our

proposed cycle-accurate behavioral level ISS is ten times faster than that of reference

Verilog RTL design.

 2

1.3 Thesis Organization
The remainder of this thesis is organized as follows: Chapter 2 describes

preliminaries of this thesis. We give the overview of SystemC and the abstraction

levels of processor modeling. Also, we introduce the instruction set architecture (ISA)

that we adopt for ISS implementation. Chapter 3 describes the SystemC RTL model.

Chapter 4 describes the proposed SystemC cycle-accurate behavioral level ISS.

Chapter 5 shows our verification strategies. Chapter 6 discusses the experimental

results and Chapter 7 concludes this thesis and describes the future works. The

reference is provided afterward.

 3

Chapter 2
Preliminaries

This chapter describes the preliminaries of this thesis. Section 2.1 introduces the

SystemC basic components. Section 2.2 describes the abstraction levels and views of

processor modeling. At last, Section 2.3 introduces the ARM7TDMI and the related

processor ACARM7.

2.1 Overview of SystemC
SystemC is based on the C++ programming language. It can be used at a very

high level such as system level and can also be used at lower levels such as the

register transfer level. It basically extends the capabilities of C++ to enable hardware

description. Fig. 2.1 shows basic components of SystemC.

Fig. 2.1 Basic components of SystemC: A module, ports, processes and signals.

 4

 Modules: A module is the basic unit for describing a structure or class in

SystemC and can be described by the SC_MODULE macro. A module can be

hierarchical in that it can have processes and the other child modules instantiated

within it.

 Processes: A process is used to describe functionality. A module can have one or

more processes. There are three kinds of processes: SC_METHOD,

SC_THREAD, and SC_CTHREAD. An SC_METHOD process can be invoked

multiple times but can not be suspend during the execution. An SC_THREAD or

an SC_CTHREAD can be invoked only once and it has the option to suspend

itself.

 Ports: Ports including input, output, and inout ports are used to communicate

with other modules.

 Signals: A signal is used to connect processes and child modules.

Besides the C++ native data types, SystemC also supports synthesizable

hardware-oriented data types in SystemC RTL as shown in Table 2.1 [4].

Table 2.1 SystemC data types that are supported in SystemC RTL.

Name Description

sc_bit Single bit with two values, ‘0’ and ‘1’
sc_bv<n> Arbitrary width bit vector
sc_logic Single bit with four values, ‘0’, ‘1’, ‘X’, ‘Z’
sc_lv<n> Arbitrary width logic vector
sc_int<n> Signed integer type, up to 64 bits
sc_uint<n> Unsigned integer type, up to 64 bits
sc_bigint<n> Arbitrary width signed integer type
sc_biguint<n> Arbitrary width unsigned integer type

 5

2.2 Processor Modeling at Different Abstraction

Levels and Views
A processor can be modeled at different abstraction levels and views to meet

different evaluation requirements. Different abstraction levels such as register-transfer

level and transaction-level modeling (TLM), different views such as Programmer’s

View (PV), Architecture View (AV) and Verification View (VV), all have different

functionalities and play different roles in design and verification, as shown in Table

2.2 [3].

Table 2.2 Abstraction of different views of modeling.

View Model Accuracy & Purpose
Functional View Event ordering.

Functional specification and algorithm development.
Programmer’s View Bit accurate.

Software development and verification.
Architecture View Cycle approximate.

Architectural exploration and verification.
Verification View Cycle accurate.

System level Verification.

A Functional View model is used for developing and verifying software functions

and algorithms. Only the instruction set of the processor is modeled. This model is

just instruction-accurate and un-timed for achieving high simulation speed. Similarly,

a Programmer’s View model is used for software development too. Typically, the

model is bit-accurate and un-timed.

On the other hand, an Architecture View model is used for architecture exploration,

which is transaction-accurate and usually a cycle approximate model. As for

Verification View, it is a cycle accurate model and typically focuses on

 6

hardware-software co-simulation and co-verification.

2.3 Overview of ARM7TDMI and ACARM7 Verilog

RTL Model

2.3.1 Core Architecture of ARM7TDMI

ARM7TDMI [5, 6] is a general-purpose 32-bit RISC processor developed by

Advanced RISC Machine (ARM) Limited. It employs the von Neumann architecture

which uses a single memory to hold both instructions and data. Fig. 2.2 illustrates the

ARM7TDMI core diagram [5]. The major components are:

 The address register and incrementer, which select and hold all memory

addresses and generate sequential addresses when required.

 The register file, which contains 31 32-bit general purpose registers and six

status registers.

 The 32x8 multiplier, which can perform multi-cycle multiply operations.

 The barrel shifter, which can shift or rotate one operand by an immediate

offset or a register offset.

 The ALU, which can perform arithmetic and logic operations.

 The read and write data registers, which hold data storing to or lording from

memory.

 The instruction decoder and control logic, which can decode instructions and

generate associated control signals.

 7

PC
 bus

Increm
enter bus

A
 bus

B
 bus

A
LU

 bus

Fig. 2.2 ARM7TDMI core diagram.

 8

The ARM7TDMI adopts a 3-stage pipeline including the instruction fetch (IF)

stage, the instruction decode (ID) stage, and the execution (EX) stage. In the IF stage,

the instruction is fetched from memory and then queued in the instruction pipeline. In

the ID stage, the instruction is decoded and the control signals are generated for the

next cycles. In the EX stage, the instruction enters into the datapath. The register bank

is read, the second operand is shifted or rotated if needed, and the result is generated

by ALU and written back to a destination register. For a single-cycle instruction, such

as a data processing instruction, the processor takes one EX stage cycle as shown in

Fig. 2.3. For a multi-cycle instruction, the processor takes more than one EX stage

cycle. As shown in Fig. 2.4, a sequence of single-cycle ADD instructions, with a data

store instruction, STR, occurring after the first ADD instruction. The cycles that

access memory are shown with shading and we can see that the memory is used in

every cycle. The datapath is likewise used in every cycle since two EX stage cycles,

one is for address calculation and the other is for data transfer, are taken by STR

instruction. Actually, the memory accessing is the major limiting factor that limits the

number of cycles taken by a sequence of instructions.

Fig. 2.3 ARM7TDMI single-cycle instruction 3-stage pipeline operation.

 9

Fig. 2.4 ARM multi-cycle instruction 3-stage pipeline operation.

2.3.2 Programmer’s Model

ARM7TDMI can be in one of two states, ARM state or THUMB state. In ARM

state, the processor executes 32-bit, word-aligned ARM instructions; while in

THUMB state, the processor executes 16-bit, halfword-aligned THUMB instructions.

Since the proposed designs described in Chapter 3 and 4 implement ARM ISA

without THUMB instructions and coprocessor instructions, we only focus on the

ARM state in this thesis.

ARM7TDMI has 37 registers including 31 general-purpose registers and six status

registers as shown in Fig. 2.5 [5]. The processor state and operating modes determine

which registers are available to the programmer. ARM7TDMI supports seven

operating modes including user mode, system mode, fiq mode, supervisor mode, abort

mode, irq mode, and undefined mode. The non-user modes, a.k.a. privileged modes,

are used for system level programming and typically for handling interrupts or

exceptions.

 10

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14

R15(PC)

R0
R1
R2
R3
R4
R5
R6
R7

R8_fiq
R9_fiq

R10_fiq
R11_fiq
R12_fiq
R13_fiq
R14_fiq
R15(PC)

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13_svc
R14_svc
R15(PC)

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13_abt
R14_abt
R15(PC)

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13_irq
R14_irq
R15(PC)

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13_und
R14_und
R15(PC)

System & User FIQ Supervisor Abort IRQ Undefined

ARM State General Registers and Program Counter

ARM State General Program Status Registers

CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

= banked register

Fig. 2.5 ARM7TDMI register organization in ARM state.

ARM7TDMI has six program status registers (PSRs) including a current program

status register (CPSR) and five saved program status registers (SPSRs). These

registers are used to hold information about the most recently executed ALU

operation, control the enabling and disabling of FIQ/IRQ interrupts, and set the

processor operating mode. Fig. 2.6 [5] shows the PSR format. The top four bits (N, Z,

C, V), a.k.a. the condition code flags, may be affected by a result of an

arithmetic/logical instruction, and may be used to determine whether an instruction

should be executed. The bottom eight bits are the control bits. When I bit or F bit set,

the processor disables IRQ and FIQ interrupts, respectively. The T bit describes the

state of ARM7TDMI. When T bit set, the processor is in THUMB state, otherwise the

 11

processor is in ARM state. The M4, M3, M2, M1, M0 bits are the mode bits. The

mode bits determine the current operating mode of the processor. Table 2.3 shows the

mode bit values and the corresponding operating modes.

Fig. 2.6 Program status register format.

Table 2.3 PSR mode bit values.

M[4:0] Mode
10000 User
10001 FIQ
10010 IRQ
10011 Supervisor
10111 Abort
11011 Undefined
11111 System

 12

ARM exceptions can be classified into three groups:

 Exceptions generated as the direct effect of executing an instruction, such as

software interrupt (SWI), undefined instruction, and prefetch abort

(instruction fetch memory fault).

 Exceptions generated as the side-effect of an instruction, such as data abort

(data access memory fault).

 Exceptions generated externally, unrelated to the instruction flow, such as

reset, IRQ (normal interrupt request), FIQ (fast interrupt request).

When two or more exceptions arise at the same time, the exception priorities

determine the order in which the exceptions are handled. Table 2.4 shows the

exception priorities from high to low.

Table 2.4 Exception priorities.

Priority Exception

1 Reset

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6
Undefined instruction
Software interrupt

 13

2.3.3 ARM Instruction Set Architecture Version 4

The ARM7TDMI adopts the ARM ISA version 4. It can be classified into eight

instruction types:

 Data processing instructions. These instructions perform arithmetic and logical

operations on data values in registers and typically require two operands and

produce one single result. These instructions allow the second register operand

performing a shift or rotate operation before it is operated with the first

operand.

 Program status register transfer instructions. The MRS instruction moves PSR

contents to a register. The MSR instruction moves a register contents or a

32-bit immediate value to the relevant PSR. Note that in user mode, the

control bits of the CPSR are protected from change, so only the condition code

flags of CPSR can be changed.

 Multiply instructions. These instructions perform multiply and

multiply-accumulate operations.

 Data transfer instructions. These instructions copy memory values into

registers (lord instructions) or copy register values into memory (store

instructions).

 Swap instruction. This instruction exchanges values between a memory

location and a register.

 Branch instructions. These instructions execute to switch to a different address,

either permanently (B) or saving a return address (BL).

 Coprocessor instructions. This class of instructions is used to tell a

coprocessor to perform some data operations or data transfers.

 Software interrupt instruction. The SWI instruction is used to enter supervisor

 14

mode in a controlled manner.

Fig. 2.7 shows the encoding formats, and Table 2.5 lists the complete set of the

ISA [5]. In the Fig. 2.7 [5], the most significant four-bit segment of each instruction is

called condition field. In ARM state, all instructions are conditionally executed

according to the CPSR condition codes and the condition field of the instruction. The

instruction is only executed when the condition is true, otherwise it is ignored. Table

2.6 lists the conditions [5].

2.3.4 ACARM7 Verilog RTL Model

The ACARM7 Verilog RTL model is an ultra low-power, high performance

ARM7-like processor core. This Verilog model and our proposed design are

co-developed based on the same ISA. We use ACARM7 Verilog RTL model as our

reference model for co-simulation, co-verification and performance comparison.

 15

Fig. 2.7 ARM instruction set formats.

 16

Table 2.5 The ARM Instruction set

Mnemonic Instruction Action
ADC Add with carry Rd := Rn + Op2 + Carry
ADD Add Rd := Rn + Op2
AND AND Rd := Rn AND Op2
B Branch R15 := address
BIC Bit Clear Rd := Rn AND NOT Op2
BL Branch with Link R14 := R15, R15 := address
BX Branch and Exchange R15 := Rn,

T bit := Rn[0]
CDP Coprocesor Data

Processing
(Coprocessor-specific)

CMN Compare Negative CPSR flags := Rn + Op2
CMP Compare CPSR flags := Rn - Op2
EOR Exclusive OR Rd := (Rn AND NOT Op2)

OR (op2 AND NOT Rn)
LDC Load coprocessor from

memory
Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from

memory
Rd := (address)

MCR Move CPU register to
coprocessor register

cRn := rRn {<op>cRm}

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn
MOV Move register or constant Rd : = Op2
MRC Move from coprocessor

register to CPU register
Rn := cRn {<op>cRm}

MRS Move PSR status/flags to
register

Rn := PSR

MSR Move register to PSR
status/flags

PSR := Rm

MUL Multiply Rd := Rm * Rs
MVN Move negative register Rd := 0xFFFFFFFF EOR Op2
ORR OR Rd := Rn OR Op2

 17

Table 2.5 The ARM Instruction set (Continued)

Mnemonic Instruction Action
RSB Reverse Subtract Rd := Op2 - Rn
RSC Reverse Subtract with

Carry
Rd := Op2 - Rn - 1 + Carry

SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry
STC Store coprocessor

register to memory
address := CRn

STM Store Multiple Stack manipulation (Push)
STR Store register to memory <address> := Rd
SUB Subtract Rd := Rn - Op2
SWI Software Interrupt OS call
SWP Swap register with

memory
Rd := [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags := Rn EOR Op2
TST Test bits CPSR flags := Rn AND Op2

Table 2.6 Condition code summary.

Code Suffix Flags Meanings
0000 EQ Z set equal
0001 NE Z clear not equal
0010 CS C set unsigned higher or same
0011 CC C clear unsigned lower
0100 MI N set negative
0101 PL N clear positive or zero
0110 VS V set overflow
0111 VC V clear no overflow
1000 HI C set and Z clear unsigned higher
1001 LS C clear or Z set unsigned lower or same
1010 GE N equals V greater or equal
1011 LT N not equal to V less than
1100 GT Z clear AND (N equals V) greater than
1101 LE Z set OR (N not equal to V) less than or equal
1110 AL (ignored) always

 18

Chapter 3
Proposed SystemC
Register-Transfer Level Model

This chapter describes the proposed SystemC RTL design. An ARM7-like, 32-bit

RISC embedded processor core is implemented in the register-transfer level with

SystemC language. Section 3.1 depicts the block diagram of the proposed design.

Section 3.2 describes the control logic of the proposed design. Section 3.3 describes

how an arithmetic/logical operation functions in EX stage, and Section 3.4 describes

the mechanism of multi-cycle multiplication in EX stage.

3.1 Block Diagram
The proposed SystemC RTL model consists of 10 major functional blocks

including the decoder, register file, barrel shifter (BS), arithmetic/logical unit (ALU),

32x8 multiplier (MUL), forwarding unit, address register, read data selector, write

data selector, and control logic. Fig. 3.1 shows the block diagram of the proposed

design.

 19

Fig. 3.1 Block diagram of the proposed SystemC RTL model.

The decoder unit obtains the instruction from IF phase and decodes it to generate

all the information needed for the other functional units.

The register file is composed of total 37 registers – 31 general-purpose 32-bit

registers and six status registers as shown in Fig. 2.5.

The execution stage consists of a BS, an ALU, and a 32x8 multiplier. The

arithmetic and logical operations are implemented with the ALU module whose

second operand is received from the BS to perform shift operations if needed. The

32x8 multiplier produces a 40-bit product. More details of multi-cycle multiply

operation will be described in Section 3.4.

The forwarding unit forwards the output data of EX stage to make sure that the

 20

next instruction can get these data as soon as possible.

The address register chooses one valid address from four sources including the PC

incrementer, the ALU output, LDM (lord multiple)/STM (store multiple) output, and

the interrupt as shown in Fig. 3.2.

Fig. 3.2 Source selection of the address register.

Fig. 3.3 Read/write selector.

 21

The read/write selector performs data alignment operations. As shown in Fig. 3.3,

the read selector shifts byte data and halfword data to the bottom of a 32-bit register

with zero-extended or sign-extended when the processor reads byte data or halfword

data from memory. For writing halfword data to memory, the write selector copies the

low halfword part to the high halfword part to fill the 32-bit data width. For writing

byte data to memory, the write selector copies the least significant byte to the other

three more significant bytes.

3.2 Control Logic
The control logic controls all the data flows of combinational logic and the

sequential logic. The instruction operation cycles are controlled by five finite state

machines (FSMs) including lord/store sub-FSM, shift sub-FSM, multiplication

sub-FSM, branch sub-FSM, and one main FSM as shown in Fig. 3.4.

Fig. 3.4 FSMs of the control logic.

 22

The lord/store sub-FSM handles four types of instructions including store, load

with branch, lord without branch, and swap. Store instructions contain the single data

store instruction and the multiple data store instruction. For the single data store

instruction, the destination address is calculated at the first state and the data is written

to memory at the second state then finishes the instruction. For the multiple data store

instruction, the sub-FSM stays at the second state until all data transfers are done.

Except the store instructions, all the other instructions finish their last execution cycle

at the normal main state. Like store instructions, load instructions also contain the

single data load instruction and multiple data load instruction. The load address is

calculated at the first state, and then the data is fetched from memory at the second

state. The single data load instruction finishes their last execution cycle at the normal

main state; and the multiple data load instruction moves to the normal main state at

the last execution cycle until all data transfers are done. The load with branch

instruction will moves to the branch sub-FSM after the load operation. The swap

instruction performs data exchange between a register and external memory, and can

be implemented by a load operation followed by a store operation.

The shift sub-FSM handles data processing instructions with shifted register

amount. When the destination register is r15 (PC), the processor moves to branch

sub-FSM to perform branch operation.

The multiplication sub-FSM handles the multiply instructions. The finish signal is

sent to the main FSM and the processor moves to the normal main state at the last

execution cycle. More details will be discussed in Section 3.4 later.

The branch sub-FSM handles the instructions that use r15 as the destination

register. A new PC address is calculated at the first state and the proper new

instruction is then fetched to refill the pipeline at the second state.

 23

3.3 Arithmetic/Logical Operation in Execution Stage
Fig. 3.5 shows the detailed block diagram of EX stage.

32x8
Multiplier

32-bit
Barrel
Shifter

EX_Stage
Controller

Rev
Inv

MUX

Mux_a Mux_b

32-bit
Logic
Unit

Hi-part of
64-bit adder

Lo-part of
64-bit adder

7-stage
Mul sub-FSM

clk_p

32 32

Src_a Src_b

Fig. 3.5 Detailed block diagram of EX stage.

Arithmetic and logical operations are performed by ALU. Src_a and Src_b are the

two inputs of the EX stage and are fed to the multiplier directly to perform

multiplication instructions which will be discussed in the next section.

Src_b can be fed into BS to perform any type of shift/rotate operations including

 24

logical shift left, logical shift right, arithmetic shift right, and rotate right. Then the

output of BS and Src_a are fed into a reverse-inverse-multiplexer which decides

whether the two inputs should be inversed due to the consideration about subtraction

or reversed for specific instructions like RSB and RSC.

The results of the reverse-inverse-multiplexer are sent to a logical unit to perform

a logical operation, or sent to a 64-bit adder [7] to perform an arithmetic operation.

The arithmetic instructions like ADD, SUB, ADC, …, use the higher 32-bit part of

the adder. The lower 32-bit part is filled with zeros.

3.4 Multi-cycle Multiplication in Execution Stage
For a multiply instruction, Src_a and Src_b are fed to the multiplier [8] directly to

perform multiply operation. Fig. 3.6 shows the 7-stage multiplication sub-FSM.

S1 S2 S3 S4

S_Finish

MLALwrite

multiplier >> 8-bit multiplier >> 8-bit multiplier >> 8-bit

Finish
(Without writing 64-bit result

and accumulation)
Finish

(Without writing 64-bit result)

With accumulation

Writing 64-bit result without
accumulation)

Writing 64-bit resultFinish
(With 64-bit result)

 25

Fig. 3.6 7-stage multiplication sub-FSM.

The 40-bit product of the multiplier is calculated by the 32-bit multiplicand and

bottom 8-bit of the multiplier. A normal multiply instruction without accumulation

needs at least 2 cycles since a 40-bit product is obtained in the first one cycle and

added into 64-bit adder to get final 64-bit result. While all 32-bit of multiplier is valid,

four cycles are needed (8-bit once). In each cycle, the 64-bit adder result is added by

the 40-bit product obtained from the preceding cycle. Therefore, a normal multiply

instruction takes at most 5 cycles to finish the multiplication. However, a multiply

with accumulate instruction takes one more cycle and writing 64-bit result out to two

32-bit registers also takes one more cycle. As a result, a 32-bit multiplicand

multiplying a 32-bit multiplier with accumulation and writing a 64-bit result to 2

32-bit registers takes 7 cycles totally.

While the multi-cycle multiply operation is finished, a finish signal is sent from

multiplication sub-FSM to main FSM to tell that the multi-cycle operation is finished

and the next instruction may get executed to continue the program flow.

 26

Chapter 4
Proposed SystemC
Cycle-Accurate
Instruction Set Simulator

This chapter describes the proposed cycle-accurate instruction set simulator.

Section 4.1 depicts the block diagram. Section 4.2 to 4.5 describes the decoder, the

instruction execution unit, the exception detector process, and the instruction cycle

operations process of the proposed design.

4.1 Block Diagram
The proposed cycle-accurate ISS implementation is embedded in a SystemC

wrapper. The proposed ISS consists of two method processes which include exception

detector process and instruction cycle operations process, and three child functional

units which include decoder, register file, and instruction execution unit. Fig. 4.1

shows the core diagram of the proposed implementation.

 27

Exception Detector

Instruction Cycle
Operations

Register
File

Instruction
Execution

Unit
Decoder

SystemC Wrapper

: sc_port : sc_signal : function call

sc_in

sc_in sc_out

sc_out

Fig.4.1 Core diagram of the SystemC ISS.

The SystemC wrapper contains all I/O ports of the ISS. The input ports are

declared using sc_in, and the output ports are declared using sc_out.

The exception detector process (excpt_detect_proc) and the instruction

cycle operations process (cycle_op_proc) are triggered by the negative edge of

mclk and nreset signals. Then the instruction cycle operations process calls

sub-routines such as decoder, instruction execution unit, and register file.

 28

4.2 Decoder
The instructions of the ARM ISA are classified into 37 instruction types. Table 4.1

shows these instruction types with index values.

Table 4.1 Instruction type index.

Index Instruction Type Description
101 IT_BX Branch and exchange
102 IT_MSR_REG Transfer register contents to PSR
103 IT_MSR_REG_FLG Transfer register contents to PSR flag bits only
104 IT_MRS Transfer PSR Contents to a register
105 IT_SWP Single data swap

106 IT_MUL Multiply
107 IT_MLA Multiply and accumulate
108 IT_MULL Multiply long
109 IT_MLAL Multiply and accumulate long
110 IT_HLDR_REGOFF Lord halfword, register offset
111 IT_HLDR_REGOFF_BR Lord halfword, register offset, dest = pc
112 IT_HSTR_REGOFF Store halfword, register offset
113 IT_HLDR_IMMOFF Lord halfword, immediate offset
114 IT_HLDR_IMMOFF_BR Lord halfword, immediate offset, dest = pc
115 IT_HSTR_IMMOFF Store halfword, immediate offset
116 IT_DP_REG_SHIFT Data processing, shift by register
117 IT_DP_REG_SHIFT_BR Data processing, shift by register, dest = pc
118 IT_DP_IMM_SHIFT Data processing, shift by immediate
119 IT_DP_IMM_SHIFT_BR Data processing, shift by immediate, dest = pc
120 IT_MSR_IMM_FLG Transfer immediate value to PSR flag bits only
121 IT_DP_IMM Data processing, immediate offset
122 IT_DP_IMM_BR Data processing, immediate offset, dest = pc
123 IT_LDR_IMMOFF Lord word, immediate offset
124 IT_LDR_IMMOFF_BR Lord word, immediate offset, dest = pc
125 IT_STR_IMMOFF Store word, immediate offset
126 IT_LDR_REGOFF Lord word, register offset
127 IT_LDR_REGOFF_BR Lord word, register offset, dest = pc
128 IT_STR_REGOFF Store word, register offset

 29

129 IT_UND Undefined instruction
130 IT_LDM_1R Lord Multiple, 1 register
131 IT_LDM_1R_BR Lord Multiple, 1 register, dest = pc
132 IT_STM_1R Store Multiple, 1 register
133 IT_LDM Lord Multiple
134 IT_LDM_BR Lord Multiple, dest = pc
135 IT_STM Store Multiple
136 IT_B Branch instruction
137 IT_SWI Software interrupt

The decoder decodes the instruction into the corresponding instruction type and

generates the information that the instruction execution unit and instruction cycle

operations process need. Refer to Fig. 2.7, these information contain the register

number of operands (Rn, Rm, Rs, Rd, RdHi, and RdLo), the opcode of data

processing instructions, the shift type, and the immediate offset of instructions.

Besides, the decoder performs the condition test of the instruction. The instruction

is only executed if the condition is true, or otherwise it is ignored and replaced with a

NOP instruction.

4.3 Register File and Instruction Execution Unit
As shown in Fig. 2.5, the register file consists of 31 general-purpose registers and

six status registers. However, not all registers are visible at the same time. According

to the mode type signal (acarm7_mode), a set of pointers in the register file is used

to point the proper register as the visible one. Then the instruction operands will point

to the corresponding registers by the decoded register numbers. Fig. 4.2 shows an

example.

 30

 switch(acarm7_mode)
 {
 …
 case 0x12: //M[4:0] == 10010
 r0_ptr = &r0_tmp;
 r1_ptr = &r1_tmp;
 r2_ptr = &r2_tmp;
 r3_ptr = &r3_tmp;
 r4_ptr = &r4_tmp;
 r5_ptr = &r5_tmp;
 r6_ptr = &r6_tmp;
 r7_ptr = &r7_tmp;
 r8_ptr = &r8_tmp;
 r9_ptr = &r9_tmp;
 r10_ptr = &r10_tmp;
 r11_ptr = &r11_tmp;
 r12_ptr = &r12_tmp;
 r13_ptr = &r13irq_tmp;
 r14_ptr = &r14irq_tmp;
 r15_ptr = &pc;
 spsr_ptr = &spsrirq_tmp;
 break;
 …
}

 switch(rd_num)
 {
 …
 case 3 : rd = &r3_ptr; break;
 case 4 : rd = &r4_ptr; break;
 case 5 : rd = &r5_ptr; break;
 …
 }

 switch(rn_num)
 {
 …
 case 3 : rn = &r3_ptr; break;
 case 4 : rn = &r4_ptr; break;
 case 5 : rn = &r5_ptr; break;
 …
 }

 switch(rm_num)
 {
 …
 case 4 : rn = &r4_ptr; break;
 case 5 : rn = &r5_ptr; break;
 case 6 : rn = &r6_ptr; break;
 …
 }

Fig. 4.2 Code segment of SystemC ISS model.

 31

An instruction, ADD r3, r4, r5, is executed in the IRQ mode. The mode bits

of CPSR is M[4:0] == 10010. The value of rd_num, rn_num, and the rm_num is 3,

4, and 5 respectively. In the first switch-case statement, the IRQ mode registers are

pointed. In the following three switch-case statement, the operand rd, rn, and rm

points to the r3_ptr, r4_ptr, and r5_ptr respectively.

The instruction execution unit contains 10 sub routines to be called by

cycle_op_proc and to perform the executed instruction. Table 4.2 shows these

sub-routines.

Table 4.2 Functions of instruction execution unit.

Function Description
nop to perform the nop instruction
shifter to perform the shift/rotate operation
alu to perform the arithmetic and logical instruction
mac to perform the multiply/multiply-and-accumulate instruction
sdt to perform the single data transfer instruction
hdt to perform the halfword data transfer instruction
bdt to perform the block data transfer instruction
swp to perform the swap instruction
bbx to perform the branch, and branch and exchange instructions
excpt to perform the exception operation

A multiple-cycle instruction may call the sub-routine more than once and a

variable ex_count (execution cycle count) determines what operations should be

done in that cycle. For a load halfword instruction, the first cycle, ex_count == 1,

performs the address calculation; the second cycle, ex_count == 2, performs the

base register modification; and the third cycle, ex_count == 3, performs the data

fetch from memory. In other words, a small FSM exists in a multi-cycle instruction

controlled by the ex_count signal.

 32

4.4 Exception Detector Process
The exception detector process plays a role of a synchronizer and an exception

detector.

When ISYNC is low, nFIQ and nIRQ inputs are considered asynchronous. A cycle

delay for synchronization is incurred before the interrupt can affect the processor flow.

After synchronization, the exception detector process detects whether prefetch abort,

data abort, FIQ, and IRQ exceptions occur.

Fig. 4.3 Detection flow of abort exceptions.

Fig. 4.3 shows the abort exception detection flow. If the abort signal is high, the

process checks the instruction fetch enable (i_fetch_en) signal. If the

i_fetch_en is high, then a prefetch abort exception occurs, else a data abort

exception occurs.

 33

FIQ event occurs

nfiq_sync
asserted?

F_bit disable?

FIQ exception
occurs

True

Ignore FIQ event

True

False

IRQ event occurs

nirq_sync
asserted?

I_bit disable?

IRQ exception
occurs

True

Ignore IRQ event

True

False

(a) (b)

Fig. 4.4 Detection flow of (a) FIQ exception and (b) IRQ exceptions.

Fig. 4.4 (a) shows the detection flow of the FIQ exception. If the nfiq signal is low,

an FIQ event can be marked. However, the process has to check the F-bit of CPSR. If

the F-bit is high, the FIQ event is ignored and the exception does not occur in the ISS.

The detection flow of the IRQ exception is similar to that of the FIQ one as shown in

Fig. 4.4 (b).

 34

4.5 Instruction Cycle Operations Process
The instruction cycle operations process is the main process of the ISS. The

process contains the instruction execution FSM. The instruction type (inst_type)

and the execution cycle count (ex_count) signals determine the state of FSM. Fig.

4.5 shows the process flow.

Fig. 4.5 Flow of the instruction cycle operations process.

 35

First, if the nRESET signal is asserted, the ISS initialization is performed, else the

register file refreshment is performed. The instruction decode and instruction fetch are

performed depend on whether the enable signals (i_fetch_en and decode_en)

are asserted.

Then the exception type assignment is performed if any of the output signals of

exception detector process is asserted. According to the type of exception, the

instruction type and the mode type signals is set to the corresponding values and the

proper set of registers is selected. According to the instruction type and execution

cycle count signal, the instruction execution FSM calls the proper subroutine of the

instruction execution unit and assigns the right values to the output signals of ISS.

 36

Chapter 5
Verification Strategies

We use the simulation and co-simulation to verify the proposed designs. The

commercial tools are available for SystemC and Verilog co-simulation. This thesis

provides two kinds of verification strategies to ensure the functional correctness of the

proposed designs. Section 5.1 describes the deterministic verification. Section 5.2

describes the constrained random verification.

5.1 Deterministic Verification
Deterministic verification is performed in the simulation phase and composed of

two parts including the corner-case verification and the real application verification.

According to the datasheet, we analyze the corner cases of each kind of

instructions, and write them into the verification patterns. We can discover the

corner-case bugs by comparing the simulation results with the correct pre-calculated

results.

After the corner-case verification, we start to perform the real application

verification. The real application verification patterns consist of some benchmarks

like Dhrystone, and DSPstone. Moreover, a JPEG encoder program is also used to

verify the correctness of the proposed models. The real application verification helps

the designer avoid misunderstanding the specification and is essential in deterministic

verification phase.

After deterministic verification, the next verification stage, constrained random

verification, can be started.

 37

5.2 Constrained Random Verification
The constrained random verification is performed by the constraint-driven random

pattern generator which generates random patterns to both ISS model and Verilog

RTL model, and output values of both models are compared on-the-fly cycle by cycle.

Fig. 5.1 shows the constrained random verification mechanism. This kind of

verification is performed to detect the unanticipated cases and the random patterns are

constrained to avoid generating undefined instructions. More simulation cycles are

verified, larger vector space is explored by random patterns. Therefore, the design

models can be more robust. Until now, over one billion cycles have been verified.

Fig. 5.1 Constrained random verification mechanism.

 38

Chapter 6
Experimental Results

This chapter provides the experimental results of the proposed models. Section 6.1

describes the experimental environment. The experimental benchmarks are introduced

in Section 6.2. Section 6.3 presents the experimental results, and followed by the

discussion in Section 6.4.

6.1 Experimental Environment
We run all the experiments on a HP wx8400 workstation. The commercial

simulators are the Cadence NC-Verilog simulator and the Cadence NC-SC simulator.

For pure SystemC simulation, free tools are available from Open SystemC Initiative

(OSCI). Table 6.1 shows the detail of the experimental hardware and software

platform.

Table 6.1 Experimental environment.

Hareware

CPU: Intel® Xeon® CPU 2.0GHz

RAM: DDR2-667 ECC FB-DIMM 14GB

Software

OS: CentOS 5 x86_64 (with Linux 2.6 kernel)

Cadence NC-Verilog version 6.1

Cadence NC-SC version 6.1

OSCI SystemC version 2.2

 39

6.2 Experimental Benchmarks
The experimental benchmarks are parts of MiBench [9]. MiBench is a free,

commercially representative embedded benchmark suite. It consists of six categories

including automotive, industrial control, network, security, consumer devices, office

automation, and telecommunications. We choose one benchmark per category as

shown in Table 6.2.

Table 6.2 Benchmarks of MiBench.

Auto./Industrial Consumer Office Network Security Telecomm.

basicmath jpeg ghostscript dijkstra blowfish CRC32

bitcount lame ispell patricia pgp FFT

qsort mad rsynth rijndael IFFT

susan tiff2bw sphinx sha ADPCM

 tiff2rgba stringsearch GSM

 tiffdither

 tiffmedian

 typeset

These six benchmarks, bitcount, jpeg, stringsearch, dijkstra, sha and CRC32, are

described as follows:

bitcount: The bit count algorithm tests the bit manipulation abilities of a processor

by counting the number of bits in an array of integers.

jpeg encode/decode: JPEG is a standard, lossy compression image format. It is a

representative algorithm for image compression and decompression and is commonly

used to view images embedded in documents.

stringsearch: This benchmark searches for given words in phrases using a case

insensitive comparison algorithm.

dijkstra: The Dijkstra benchmark constructs a large graph in an adjacency matrix

representation and then calculates the shortest path between every pair of nodes using

 40

repeated applications of Dijkstra’s algorithm.

sha: SHA is the secure hash algorithm that produces a 160-bit message digest for a

given input. It is often used in the secure exchange of cryptographic keys and for

generating digital signatures. It is also used in the well-known MD4 and MD5 hashing

functions.

CRC32: This benchmark performs a 32-bit Cyclic Redundancy Check (CRC) on a

file. CRC checks are often used to detect errors in data transmission. The data input is

the sound files from the ADPCM benchmark.

The simulation cycle counts of these selected benchmarks are from 2.8 million to

28 million as shown in Table 6.3.

Table 6.3 Cycle counts of selected benchmarks.

Benchmark Simulation Cycle Counts

bitcount 9,087,665

jpeg encoder 2,893,310

jpeg decoder 8,796,271

stringsearch 2,916,981

dijkstra 12,075,954

sha 21,041,117

CRC32 28,148,849

6.3 Experimental Results and Discussions
We measure the simulation execution time of these benchmarks with models

including ARM DSM, Verilog RTL, SystemC RTL, and SystemC ISS. The Verilog

RTL model is applied to the NC-Verilog simulator. The ARM DSM, SystemC RTL,

and SystemC ISS is applied to the NC-SC simulator. These results are presented in

Table 6.4. Table 6.5 shows the simulation speed of other models as the normalized

speed by setting the Verilog RTL speed as 1.

 41

Table 6.4 Simulation execution time of proposed and reference models.

ARM DSM
@NC-Verilog

Verilog RTL
@NC-Verilog

SystemC RTL
@NC-SC

SystemC ISS
@NC-SC

SystemC ISS
@OSCI SystemC

bitcount 9941 240 500 202 23.56

jpeg encoder 1944 104 267 58 7.48

jpeg decoder 5833 263 543 220 22.51

stringsearch 1752 74 155 55 7.40

dijkstra 6732 292 622 245 30.75

sha 13967 582 1259 527 54.46

CRC32 18848 788 1682 706 71.73

Time Unit: sec

Table 6.5 Simulation speed of proposed and reference models.

ARM DSM
@NC-Verilog

Verilog RTL
@NC-Verilog

SystemC RTL
@NC-SC

SystemC ISS
@NC-SC

SystemC ISS
@OSCI SystemC

bitcount 0.02 1 0.48 1.19 10.19

jpeg encoder 0.05 1 0.39 1.79 13.90

jpeg decoder 0.05 1 0.48 1.20 11.68

stringsearch 0.04 1 0.48 1.35 10.00

dijkstra 0.04 1 0.47 1.19 9.50

sha 0.04 1 0.46 1.10 10.69

CRC32 0.04 1 0.47 1.12 10.99

From the Table 6.5, the ranges of the simulation speed of the other models are

from 0.02 to 13.90 times faster than the simulation speed of the Verilog RTL model.

The ARM DSM, a timing accurate model, has features of pin-to-pin delays and

output delays for timing simulation so that the simulation speed is the slowest.

By comparing the simulation speed of the Verilog RTL and the SystemC RTL, the

simulation speed of the SystemC RTL is only about half of the Verilog one. It

indicates that although SystemC can acts as an HDL. However, the efficiency of RTL

modeling of SystemC is worse than that of Verilog.

The SystemC ISS @NC-SC is exported as a Verilog module by using the

 42

NCSC_MODULE_EXPORT macro [10]. The memory system of SystemC ISS

@NC-SC is written in Verilog. On the other hand, the SystemC ISS @OSCI SystemC

is simulated by the OSCI SystemC kernel. The memory system of SystemC ISS

@OSCI is written in SystemC. The simulation speed of the former is about nine times

faster than the simulation speed of the latter. Therefore, simulation environments

affect simulation speed very much.

Finally, we can observe that the simulation speed of our proposed SystemC ISS is

one order faster than that of Verilog RTL. The proposed SystemC ISS can get the best

performance under the pure SystemC simulation environment.

 43

Chapter 7
Conclusions and Future Works

In this thesis, two abstraction levels of processor modeling in SystemC are

proposed. One is SystemC RTL model, and the other is SystemC behavioral ISS

model. SystemC can act as an HDL language for RTL modeling, or can be a high

level language like C++ with hardware-oriented class extension to implement higher

abstraction level model. The experimental results regarding the performance

comparison between SystemC ISS and Verilog RTL model in VV indicate that our ISS

model is indeed efficient and suitable for co-simulation and co-verification.

In the future, we will focus on an efficient configurable SystemC architecture of

cycle-accurate ISS implement. If two processors, e.g. ARM7TDMI and ARM9TDMI,

adopt the same ISA, the functional model should the same. The difference between

them is the instruction cycle operations since the number of pipeline stages is

different. We will develop a configurable SystemC ISS including a configurable

un-timed programmer view model plus two timed modules corresponding to the two

processors to achieve this goal.

 44

Reference

[1] http://www.esl-now.com/

[2] D. Black, J. Donovan, SYSTEMC: FROM THE GROUND UP, Kluwer Academic

Publishers, 2004.

[3] Y. -J. Lu, et. al., “Microprocessor Modeling and Simulation with SystemC,” in

VLSI-DAT 2007, Apr. 2007, pp. 4-7.

[4] J. Bhasker, A SystemC Primer, 2nd ed., Star Galaxy Publishing, 2002.

[5] ARM7TDMI datasheet, Advanced RISC Machine Ltd., 1995.

[6] S. Furber, ARM System-on Chip Architecture, 2nd ed., Addison Wesley, 2000.

[7] Y. -C. Fong, “A High-Speed Area-Minimized Reconfigurable Adder Design,”

Master’s thesis, National Chiao Tung University, Department of Electronics

Engineering, Jul. 2006.

[8] H. -K. Ling, “A High-Performance Reconfigurable Sub-Word Parallel
Multiplier-Accumulator Design,” Master’s thesis, National Chiao Tung University,
Department of Electronics Engineering, Jul. 2006.

[9] M. Guthaus et. al., “MiBench: A free, commercially representative embedded

benchmark suite”, in WWC-4. 2001 IEEE International Workshop on Workload

Characterization, Dec. 2001, pp. 3-14.

 45

http://www.esl-now.com/

[10] NC-SC® Simulator User Guide, Cadence Design Systems, Inc., Apr. 2007, pp.

222-224.

 46

	00_封面.doc
	Efficient SystemC Modeling Technology
	for Cycle-Accurate Instruction Set Simulator

	00_書名頁.doc
	Efficient SystemC Modeling Technology
	for Cycle-Accurate Instruction Set Simulator

	01_Abstract_C.doc
	02_Abstract_E.doc
	03_Acknowledgement.doc
	04_Contents_v2.doc
	05_List_of_Tables.doc
	06_List_of_Fig.doc
	Chap1_v2.doc
	Chap2_v2.doc
	Chap3_v2.doc
	Chap4_v2.doc
	Chap5_v2.doc
	Chap6_v2.doc
	Chap7_v2.doc
	Reference_v2.doc

