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研 究 生：張詠翔 指導教授：黃俊達  博士 

 

國立交通大學 

電機學院產業研發碩士班 

 

摘        要 

 

隨著晶片設計複雜度日趨複雜，電子系統層級設計正成為主流的

設計方法。SystemC 是一種基於 C++，並支援各種虛擬層級，且廣泛

應用於建模及驗證的電子系統層級設計語言。 

本論文提出一應用於週期精確指令集模擬器之高效率 SystemC 建

模技術。以 32 位元精簡指令集嵌入式處理器為例，我們使用 SystemC

將該處理器建模於兩個不同的虛擬層級—暫存器傳輸層級以及週期

精確行為層級。該處理器所採用之指令集架構為 ARM 指令集(第四

版)。我們測量所提出的模型及參照之 Verilog 模型之模擬時間來作效

能比較。實驗數據顯示，我們提出的週期精確行為層級指令集模擬器

之效能比參照之 Verilog 模型快十倍。 
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ABSTRACT 
 

With the increase of the complexity of chip design, Electronic System-Level (ESL) 

design is becoming a mainstream design methodology. SystemC, a language based on 

C++, supports a broad range of abstraction levels and views, and is widely used as an 

ESL language both for modeling and verification. 

In this thesis, an efficient SystemC modeling technology for cycle-accurate 

instruction set simulator (ISS) is presented. A 32-bit RISC embedded processor core is 

modeled in SystemC at two different abstraction levels, the register-transfer level 

(RTL) and the cycle-accurate behavioral level, as an evaluation case. The instruction 

set architecture (ISA) of the modeled processor core adopts ARM ISA Version 4. We 

measure the simulation time of the proposed models and the reference Verilog model 

for performance comparison. The experimental results show that our proposed 

cycle-accurate behavioral level ISS is ten times faster than the reference Verilog 

model. 
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Chapter 1 
Introduction 
 
1.1 Motivation 

With the progress of semiconductor technology, more and more transistors can be 

integrated into a chip and the complexity of chip design increases. In order to reduce 

chip design costs and ease the pressure of time-to-market, electronic system level 

(ESL) [1] methodology has been proposed and is becoming a mainstream. 

SystemC [2], a language based on C++, provides hardware-oriented constructs 

within the context of C++ as a class library implemented in standard C++. It covers a 

broad range of abstraction levels and views, and is widely used as an ESL language 

both for modeling and verification. 

When developing a processor, an instruction set simulator (ISS) is necessary and 

is usually written in a high level language like C/C++. An ISS can be used for 

algorithms testing, architectural exploration and functional verification. Also, 

software developers can take advantage of an ISS to develop software applications in 

early design phase and shorten the development time. 

The accuracy of an ISS depends on what view is taken by the designer such as 

functional view (FV), programmer’s view (PV), architecture view (AV), and 

verification view (VV). A related work, by Lu et al. [3], shows that simulation speeds 

of PV model and AV model both written in SystemC are approximately 18 and 500 

times faster, respectively, than that of Verilog RTL model. However, it does not point 

out the performance comparison between SystemC-based cycle-accurate ISS and 

Verilog-based RTL model in VV. 
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An efficient cycle-accurate ISS can serve as a golden model to verify the RTL 

design. Besides, as shown in Fig. 1.1, it can replace the RTL design and serve as a fast 

cycle-accurate functional model when performing system-level simulation. 

 

BUS

Processor 
Core RTL

RTL RTL RTL

RTL ModelCycle-Accurate 
ISS

System
 

Fig. 1.1 An efficient cycle-accurate ISS can serve as a fast cycle-accurate functional 

model when performing system-level simulation. 

 

1.2 Contribution 
This thesis proposes an efficient SystemC modeling technology for cycle-accurate 

ISS. One trivial way for cycle-accurate ISS development is modeling the processor at 

RT-level directly. Our proposed way is modeling the processor in behavioral level 

with a cycle-accurate wrapper. The experimental results show that the performance 

comparisons among different modeling techniques. The simulation speed of our 

proposed cycle-accurate behavioral level ISS is ten times faster than that of reference 

Verilog RTL design. 
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1.3 Thesis Organization 
The remainder of this thesis is organized as follows: Chapter 2 describes 

preliminaries of this thesis. We give the overview of SystemC and the abstraction 

levels of processor modeling. Also, we introduce the instruction set architecture (ISA) 

that we adopt for ISS implementation. Chapter 3 describes the SystemC RTL model. 

Chapter 4 describes the proposed SystemC cycle-accurate behavioral level ISS. 

Chapter 5 shows our verification strategies. Chapter 6 discusses the experimental 

results and Chapter 7 concludes this thesis and describes the future works. The 

reference is provided afterward. 
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Chapter 2 
Preliminaries 
 

This chapter describes the preliminaries of this thesis. Section 2.1 introduces the 

SystemC basic components. Section 2.2 describes the abstraction levels and views of 

processor modeling. At last, Section 2.3 introduces the ARM7TDMI and the related 

processor ACARM7. 

2.1 Overview of SystemC 
SystemC is based on the C++ programming language. It can be used at a very 

high level such as system level and can also be used at lower levels such as the 

register transfer level. It basically extends the capabilities of C++ to enable hardware 

description. Fig. 2.1 shows basic components of SystemC. 

 

 

Fig. 2.1 Basic components of SystemC: A module, ports, processes and signals. 
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 Modules: A module is the basic unit for describing a structure or class in 

SystemC and can be described by the SC_MODULE macro. A module can be 

hierarchical in that it can have processes and the other child modules instantiated 

within it. 

 Processes: A process is used to describe functionality. A module can have one or 

more processes. There are three kinds of processes: SC_METHOD, 

SC_THREAD, and SC_CTHREAD. An SC_METHOD process can be invoked 

multiple times but can not be suspend during the execution. An SC_THREAD or 

an SC_CTHREAD can be invoked only once and it has the option to suspend 

itself. 

 Ports: Ports including input, output, and inout ports are used to communicate 

with other modules. 

 Signals: A signal is used to connect processes and child modules. 

Besides the C++ native data types, SystemC also supports synthesizable 

hardware-oriented data types in SystemC RTL as shown in Table 2.1 [4]. 

 

Table 2.1 SystemC data types that are supported in SystemC RTL. 

Name Description 

sc_bit Single bit with two values, ‘0’ and ‘1’ 
sc_bv<n> Arbitrary width bit vector 
sc_logic Single bit with four values, ‘0’, ‘1’, ‘X’, ‘Z’ 
sc_lv<n> Arbitrary width logic vector 
sc_int<n> Signed integer type, up to 64 bits 
sc_uint<n> Unsigned integer type, up to 64 bits 
sc_bigint<n> Arbitrary width signed integer type 
sc_biguint<n> Arbitrary width unsigned integer type 
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2.2 Processor Modeling at Different Abstraction 

Levels and Views 
A processor can be modeled at different abstraction levels and views to meet 

different evaluation requirements. Different abstraction levels such as register-transfer 

level and transaction-level modeling (TLM), different views such as Programmer’s 

View (PV), Architecture View (AV) and Verification View (VV), all have different 

functionalities and play different roles in design and verification, as shown in Table 

2.2 [3]. 

 

Table 2.2 Abstraction of different views of modeling. 

View Model Accuracy & Purpose 
Functional View Event ordering. 

Functional specification and algorithm development. 
Programmer’s View Bit accurate. 

Software development and verification. 
Architecture View Cycle approximate. 

Architectural exploration and verification. 
Verification View Cycle accurate. 

System level Verification. 

 

A Functional View model is used for developing and verifying software functions 

and algorithms. Only the instruction set of the processor is modeled. This model is 

just instruction-accurate and un-timed for achieving high simulation speed. Similarly, 

a Programmer’s View model is used for software development too. Typically, the 

model is bit-accurate and un-timed. 

On the other hand, an Architecture View model is used for architecture exploration, 

which is transaction-accurate and usually a cycle approximate model. As for 

Verification View, it is a cycle accurate model and typically focuses on 
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hardware-software co-simulation and co-verification. 

2.3 Overview of ARM7TDMI and ACARM7 Verilog 

RTL Model 

2.3.1 Core Architecture of ARM7TDMI 

ARM7TDMI [5, 6] is a general-purpose 32-bit RISC processor developed by 

Advanced RISC Machine (ARM) Limited. It employs the von Neumann architecture 

which uses a single memory to hold both instructions and data. Fig. 2.2 illustrates the 

ARM7TDMI core diagram [5]. The major components are: 

 The address register and incrementer, which select and hold all memory 

addresses and generate sequential addresses when required. 

 The register file, which contains 31 32-bit general purpose registers and six 

status registers. 

 The 32x8 multiplier, which can perform multi-cycle multiply operations. 

 The barrel shifter, which can shift or rotate one operand by an immediate 

offset or a register offset. 

 The ALU, which can perform arithmetic and logic operations. 

 The read and write data registers, which hold data storing to or lording from 

memory. 

 The instruction decoder and control logic, which can decode instructions and 

generate associated control signals. 
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Fig. 2.2 ARM7TDMI core diagram. 
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The ARM7TDMI adopts a 3-stage pipeline including the instruction fetch (IF) 

stage, the instruction decode (ID) stage, and the execution (EX) stage. In the IF stage, 

the instruction is fetched from memory and then queued in the instruction pipeline. In 

the ID stage, the instruction is decoded and the control signals are generated for the 

next cycles. In the EX stage, the instruction enters into the datapath. The register bank 

is read, the second operand is shifted or rotated if needed, and the result is generated 

by ALU and written back to a destination register. For a single-cycle instruction, such 

as a data processing instruction, the processor takes one EX stage cycle as shown in 

Fig. 2.3. For a multi-cycle instruction, the processor takes more than one EX stage 

cycle. As shown in Fig. 2.4, a sequence of single-cycle ADD instructions, with a data 

store instruction, STR, occurring after the first ADD instruction. The cycles that 

access memory are shown with shading and we can see that the memory is used in 

every cycle. The datapath is likewise used in every cycle since two EX stage cycles, 

one is for address calculation and the other is for data transfer, are taken by STR 

instruction. Actually, the memory accessing is the major limiting factor that limits the 

number of cycles taken by a sequence of instructions. 

 

 

Fig. 2.3 ARM7TDMI single-cycle instruction 3-stage pipeline operation. 
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Fig. 2.4 ARM multi-cycle instruction 3-stage pipeline operation. 

 

2.3.2 Programmer’s Model 

ARM7TDMI can be in one of two states, ARM state or THUMB state. In ARM 

state, the processor executes 32-bit, word-aligned ARM instructions; while in 

THUMB state, the processor executes 16-bit, halfword-aligned THUMB instructions. 

Since the proposed designs described in Chapter 3 and 4 implement ARM ISA 

without THUMB instructions and coprocessor instructions, we only focus on the 

ARM state in this thesis. 

ARM7TDMI has 37 registers including 31 general-purpose registers and six status 

registers as shown in Fig. 2.5 [5]. The processor state and operating modes determine 

which registers are available to the programmer. ARM7TDMI supports seven 

operating modes including user mode, system mode, fiq mode, supervisor mode, abort 

mode, irq mode, and undefined mode. The non-user modes, a.k.a. privileged modes, 

are used for system level programming and typically for handling interrupts or 

exceptions. 
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Fig. 2.5 ARM7TDMI register organization in ARM state. 

 

ARM7TDMI has six program status registers (PSRs) including a current program 

status register (CPSR) and five saved program status registers (SPSRs). These 

registers are used to hold information about the most recently executed ALU 

operation, control the enabling and disabling of FIQ/IRQ interrupts, and set the 

processor operating mode. Fig. 2.6 [5] shows the PSR format. The top four bits (N, Z, 

C, V), a.k.a. the condition code flags, may be affected by a result of an 

arithmetic/logical instruction, and may be used to determine whether an instruction 

should be executed. The bottom eight bits are the control bits. When I bit or F bit set, 

the processor disables IRQ and FIQ interrupts, respectively. The T bit describes the 

state of ARM7TDMI. When T bit set, the processor is in THUMB state, otherwise the 
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processor is in ARM state. The M4, M3, M2, M1, M0 bits are the mode bits. The 

mode bits determine the current operating mode of the processor. Table 2.3 shows the 

mode bit values and the corresponding operating modes. 

 

 

 
Fig. 2.6 Program status register format. 

 

 

Table 2.3 PSR mode bit values.  

M[4:0] Mode 
10000 User 
10001 FIQ 
10010 IRQ 
10011 Supervisor 
10111 Abort 
11011 Undefined 
11111 System 
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ARM exceptions can be classified into three groups: 

 Exceptions generated as the direct effect of executing an instruction, such as 

software interrupt (SWI), undefined instruction, and prefetch abort 

(instruction fetch memory fault). 

 Exceptions generated as the side-effect of an instruction, such as data abort 

(data access memory fault). 

 Exceptions generated externally, unrelated to the instruction flow, such as 

reset, IRQ (normal interrupt request), FIQ (fast interrupt request). 

When two or more exceptions arise at the same time, the exception priorities 

determine the order in which the exceptions are handled. Table 2.4 shows the 

exception priorities from high to low. 

 

Table 2.4 Exception priorities. 

Priority Exception 

1 Reset 

2 Data abort 

3 FIQ 

4 IRQ 

5 Prefetch abort 

6 
Undefined instruction 
Software interrupt 
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2.3.3 ARM Instruction Set Architecture Version 4 

The ARM7TDMI adopts the ARM ISA version 4. It can be classified into eight 

instruction types: 

 Data processing instructions. These instructions perform arithmetic and logical 

operations on data values in registers and typically require two operands and 

produce one single result. These instructions allow the second register operand 

performing a shift or rotate operation before it is operated with the first 

operand. 

 Program status register transfer instructions. The MRS instruction moves PSR 

contents to a register. The MSR instruction moves a register contents or a 

32-bit immediate value to the relevant PSR. Note that in user mode, the 

control bits of the CPSR are protected from change, so only the condition code 

flags of CPSR can be changed. 

 Multiply instructions. These instructions perform multiply and 

multiply-accumulate operations. 

 Data transfer instructions. These instructions copy memory values into 

registers (lord instructions) or copy register values into memory (store 

instructions). 

 Swap instruction. This instruction exchanges values between a memory 

location and a register. 

 Branch instructions. These instructions execute to switch to a different address, 

either permanently (B) or saving a return address (BL). 

 Coprocessor instructions. This class of instructions is used to tell a 

coprocessor to perform some data operations or data transfers. 

 Software interrupt instruction. The SWI instruction is used to enter supervisor 
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mode in a controlled manner. 

Fig. 2.7 shows the encoding formats, and Table 2.5 lists the complete set of the 

ISA [5]. In the Fig. 2.7 [5], the most significant four-bit segment of each instruction is 

called condition field. In ARM state, all instructions are conditionally executed 

according to the CPSR condition codes and the condition field of the instruction. The 

instruction is only executed when the condition is true, otherwise it is ignored. Table 

2.6 lists the conditions [5]. 

2.3.4 ACARM7 Verilog RTL Model 

The ACARM7 Verilog RTL model is an ultra low-power, high performance 

ARM7-like processor core. This Verilog model and our proposed design are 

co-developed based on the same ISA. We use ACARM7 Verilog RTL model as our 

reference model for co-simulation, co-verification and performance comparison. 
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Fig. 2.7 ARM instruction set formats. 
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Table 2.5 The ARM Instruction set 

Mnemonic Instruction Action 
ADC Add with carry Rd := Rn + Op2 + Carry 
ADD Add Rd := Rn + Op2 
AND AND Rd := Rn AND Op2 
B Branch R15 := address 
BIC Bit Clear Rd := Rn AND NOT Op2 
BL Branch with Link R14 := R15, R15 := address 
BX Branch and Exchange R15 := Rn, 

T bit := Rn[0] 
CDP Coprocesor Data 

Processing 
(Coprocessor-specific) 

CMN Compare Negative CPSR flags := Rn + Op2 
CMP Compare CPSR flags := Rn - Op2 
EOR Exclusive OR Rd := (Rn AND NOT Op2)  

OR (op2 AND NOT Rn) 
LDC Load coprocessor from 

memory 
Coprocessor load 

LDM Load multiple registers Stack manipulation (Pop) 
LDR Load register from 

memory 
Rd := (address) 

MCR Move CPU register to 
coprocessor register 

cRn := rRn {<op>cRm} 

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn 
MOV Move register or constant Rd : = Op2 
MRC Move from coprocessor 

register to CPU register 
Rn := cRn {<op>cRm} 

MRS Move PSR status/flags to 
register 

Rn := PSR 

MSR Move register to PSR 
status/flags 

PSR := Rm 

MUL Multiply Rd := Rm * Rs 
MVN Move negative register Rd := 0xFFFFFFFF EOR Op2 
ORR OR Rd := Rn OR Op2 
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Table 2.5 The ARM Instruction set (Continued) 

Mnemonic Instruction Action 
RSB Reverse Subtract Rd := Op2 - Rn 
RSC Reverse Subtract with 

Carry 
Rd := Op2 - Rn - 1 + Carry 

SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry 
STC Store coprocessor 

register to memory 
address := CRn 

STM Store Multiple Stack manipulation (Push) 
STR Store register to memory <address> := Rd 
SUB Subtract Rd := Rn - Op2 
SWI Software Interrupt OS call 
SWP Swap register with 

memory 
Rd := [Rn], [Rn] := Rm 

TEQ Test bitwise equality CPSR flags := Rn EOR Op2 
TST Test bits CPSR flags := Rn AND Op2 

 

Table 2.6 Condition code summary. 

Code Suffix Flags Meanings 
0000 EQ Z set equal 
0001 NE Z clear not equal 
0010 CS C set unsigned higher or same 
0011 CC C clear unsigned lower 
0100 MI N set negative 
0101 PL N clear positive or zero 
0110 VS V set overflow 
0111 VC V clear no overflow 
1000 HI C set and Z clear unsigned higher 
1001 LS C clear or Z set unsigned lower or same 
1010 GE N equals V greater or equal 
1011 LT N not equal to V less than 
1100 GT Z clear AND (N equals V) greater than 
1101 LE Z set OR (N not equal to V) less than or equal 
1110 AL (ignored) always 
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Chapter 3 
Proposed SystemC 
Register-Transfer Level Model 
 

This chapter describes the proposed SystemC RTL design. An ARM7-like, 32-bit 

RISC embedded processor core is implemented in the register-transfer level with 

SystemC language. Section 3.1 depicts the block diagram of the proposed design. 

Section 3.2 describes the control logic of the proposed design. Section 3.3 describes 

how an arithmetic/logical operation functions in EX stage, and Section 3.4 describes 

the mechanism of multi-cycle multiplication in EX stage. 

3.1 Block Diagram 
The proposed SystemC RTL model consists of 10 major functional blocks 

including the decoder, register file, barrel shifter (BS), arithmetic/logical unit (ALU), 

32x8 multiplier (MUL), forwarding unit, address register, read data selector, write 

data selector, and control logic. Fig. 3.1 shows the block diagram of the proposed 

design. 
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Fig. 3.1 Block diagram of the proposed SystemC RTL model. 

 

The decoder unit obtains the instruction from IF phase and decodes it to generate 

all the information needed for the other functional units. 

The register file is composed of total 37 registers – 31 general-purpose 32-bit 

registers and six status registers as shown in Fig. 2.5. 

The execution stage consists of a BS, an ALU, and a 32x8 multiplier. The 

arithmetic and logical operations are implemented with the ALU module whose 

second operand is received from the BS to perform shift operations if needed. The 

32x8 multiplier produces a 40-bit product. More details of multi-cycle multiply 

operation will be described in Section 3.4. 

The forwarding unit forwards the output data of EX stage to make sure that the 
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next instruction can get these data as soon as possible. 

The address register chooses one valid address from four sources including the PC 

incrementer, the ALU output, LDM (lord multiple)/STM (store multiple) output, and 

the interrupt as shown in Fig. 3.2. 

 

 

Fig. 3.2 Source selection of the address register. 

 

 
Fig. 3.3 Read/write selector. 
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The read/write selector performs data alignment operations. As shown in Fig. 3.3, 

the read selector shifts byte data and halfword data to the bottom of a 32-bit register 

with zero-extended or sign-extended when the processor reads byte data or halfword 

data from memory. For writing halfword data to memory, the write selector copies the 

low halfword part to the high halfword part to fill the 32-bit data width. For writing 

byte data to memory, the write selector copies the least significant byte to the other 

three more significant bytes. 

3.2 Control Logic 
The control logic controls all the data flows of combinational logic and the 

sequential logic. The instruction operation cycles are controlled by five finite state 

machines (FSMs) including lord/store sub-FSM, shift sub-FSM, multiplication 

sub-FSM, branch sub-FSM, and one main FSM as shown in Fig. 3.4. 

 

 

Fig. 3.4 FSMs of the control logic. 
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The lord/store sub-FSM handles four types of instructions including store, load 

with branch, lord without branch, and swap. Store instructions contain the single data 

store instruction and the multiple data store instruction. For the single data store 

instruction, the destination address is calculated at the first state and the data is written 

to memory at the second state then finishes the instruction. For the multiple data store 

instruction, the sub-FSM stays at the second state until all data transfers are done. 

Except the store instructions, all the other instructions finish their last execution cycle 

at the normal main state. Like store instructions, load instructions also contain the 

single data load instruction and multiple data load instruction. The load address is 

calculated at the first state, and then the data is fetched from memory at the second 

state. The single data load instruction finishes their last execution cycle at the normal 

main state; and the multiple data load instruction moves to the normal main state at 

the last execution cycle until all data transfers are done. The load with branch 

instruction will moves to the branch sub-FSM after the load operation. The swap 

instruction performs data exchange between a register and external memory, and can 

be implemented by a load operation followed by a store operation. 

The shift sub-FSM handles data processing instructions with shifted register 

amount. When the destination register is r15 (PC), the processor moves to branch 

sub-FSM to perform branch operation. 

The multiplication sub-FSM handles the multiply instructions. The finish signal is 

sent to the main FSM and the processor moves to the normal main state at the last 

execution cycle. More details will be discussed in Section 3.4 later. 

The branch sub-FSM handles the instructions that use r15 as the destination 

register. A new PC address is calculated at the first state and the proper new 

instruction is then fetched to refill the pipeline at the second state. 
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3.3 Arithmetic/Logical Operation in Execution Stage 
Fig. 3.5 shows the detailed block diagram of EX stage. 
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clk_p

32 32

Src_a Src_b

 
Fig. 3.5 Detailed block diagram of EX stage. 

 

Arithmetic and logical operations are performed by ALU. Src_a and Src_b are the 

two inputs of the EX stage and are fed to the multiplier directly to perform 

multiplication instructions which will be discussed in the next section. 

Src_b can be fed into BS to perform any type of shift/rotate operations including 
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logical shift left, logical shift right, arithmetic shift right, and rotate right. Then the 

output of BS and Src_a are fed into a reverse-inverse-multiplexer which decides 

whether the two inputs should be inversed due to the consideration about subtraction 

or reversed for specific instructions like RSB and RSC. 

The results of the reverse-inverse-multiplexer are sent to a logical unit to perform 

a logical operation, or sent to a 64-bit adder [7] to perform an arithmetic operation. 

The arithmetic instructions like ADD, SUB, ADC, …, use the higher 32-bit part of 

the adder. The lower 32-bit part is filled with zeros. 

3.4 Multi-cycle Multiplication in Execution Stage 
For a multiply instruction, Src_a and Src_b are fed to the multiplier [8] directly to 

perform multiply operation. Fig. 3.6 shows the 7-stage multiplication sub-FSM. 

 

S1 S2 S3 S4

S_Finish

MLALwrite

multiplier >> 8-bit multiplier >> 8-bit multiplier >> 8-bit

Finish
(Without writing 64-bit result 

and accumulation)
Finish

(Without writing 64-bit result)

With accumulation

Writing 64-bit result without 
accumulation)

Writing 64-bit resultFinish
(With 64-bit result)
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Fig. 3.6 7-stage multiplication sub-FSM. 

The 40-bit product of the multiplier is calculated by the 32-bit multiplicand and 

bottom 8-bit of the multiplier. A normal multiply instruction without accumulation 

needs at least 2 cycles since a 40-bit product is obtained in the first one cycle and 

added into 64-bit adder to get final 64-bit result. While all 32-bit of multiplier is valid, 

four cycles are needed (8-bit once). In each cycle, the 64-bit adder result is added by 

the 40-bit product obtained from the preceding cycle. Therefore, a normal multiply 

instruction takes at most 5 cycles to finish the multiplication. However, a multiply 

with accumulate instruction takes one more cycle and writing 64-bit result out to two 

32-bit registers also takes one more cycle. As a result, a 32-bit multiplicand 

multiplying a 32-bit multiplier with accumulation and writing a 64-bit result to 2 

32-bit registers takes 7 cycles totally. 

While the multi-cycle multiply operation is finished, a finish signal is sent from 

multiplication sub-FSM to main FSM to tell that the multi-cycle operation is finished 

and the next instruction may get executed to continue the program flow. 
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Chapter 4  
Proposed SystemC 
Cycle-Accurate 
Instruction Set Simulator 
 

This chapter describes the proposed cycle-accurate instruction set simulator. 

Section 4.1 depicts the block diagram. Section 4.2 to 4.5 describes the decoder, the 

instruction execution unit, the exception detector process, and the instruction cycle 

operations process of the proposed design. 

4.1 Block Diagram 
The proposed cycle-accurate ISS implementation is embedded in a SystemC 

wrapper. The proposed ISS consists of two method processes which include exception 

detector process and instruction cycle operations process, and three child functional 

units which include decoder, register file, and instruction execution unit. Fig. 4.1 

shows the core diagram of the proposed implementation. 
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Fig.4.1 Core diagram of the SystemC ISS. 

 

The SystemC wrapper contains all I/O ports of the ISS. The input ports are 

declared using sc_in, and the output ports are declared using sc_out. 

The exception detector process (excpt_detect_proc) and the instruction 

cycle operations process (cycle_op_proc) are triggered by the negative edge of 

mclk and nreset signals. Then the instruction cycle operations process calls 

sub-routines such as decoder, instruction execution unit, and register file. 
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4.2 Decoder 
The instructions of the ARM ISA are classified into 37 instruction types. Table 4.1 

shows these instruction types with index values. 

 

Table 4.1 Instruction type index. 

Index Instruction Type Description 
101 IT_BX Branch and exchange 
102 IT_MSR_REG Transfer register contents to PSR 
103 IT_MSR_REG_FLG Transfer register contents to PSR flag bits only 
104 IT_MRS Transfer PSR Contents to a register 
105 IT_SWP Single data swap 

106 IT_MUL Multiply 
107 IT_MLA Multiply and accumulate 
108 IT_MULL Multiply long 
109 IT_MLAL Multiply and accumulate long 
110 IT_HLDR_REGOFF Lord halfword, register offset 
111 IT_HLDR_REGOFF_BR Lord halfword, register offset, dest = pc 
112 IT_HSTR_REGOFF Store halfword, register offset 
113 IT_HLDR_IMMOFF Lord halfword, immediate offset 
114 IT_HLDR_IMMOFF_BR Lord halfword, immediate offset, dest = pc 
115 IT_HSTR_IMMOFF Store halfword, immediate offset 
116 IT_DP_REG_SHIFT Data processing, shift by register 
117 IT_DP_REG_SHIFT_BR Data processing, shift by register, dest = pc 
118 IT_DP_IMM_SHIFT Data processing, shift by immediate 
119 IT_DP_IMM_SHIFT_BR Data processing, shift by immediate, dest = pc 
120 IT_MSR_IMM_FLG Transfer immediate value to PSR flag bits only 
121 IT_DP_IMM Data processing, immediate offset 
122 IT_DP_IMM_BR Data processing, immediate offset, dest = pc 
123 IT_LDR_IMMOFF Lord word, immediate offset 
124 IT_LDR_IMMOFF_BR Lord word, immediate offset, dest = pc 
125 IT_STR_IMMOFF Store word, immediate offset 
126 IT_LDR_REGOFF Lord word, register offset 
127 IT_LDR_REGOFF_BR Lord word, register offset, dest = pc 
128 IT_STR_REGOFF Store word, register offset 

 29



129 IT_UND Undefined instruction 
130 IT_LDM_1R Lord Multiple, 1 register 
131 IT_LDM_1R_BR Lord Multiple, 1 register, dest = pc 
132 IT_STM_1R Store Multiple, 1 register 
133 IT_LDM Lord Multiple 
134 IT_LDM_BR Lord Multiple, dest = pc 
135 IT_STM Store Multiple 
136 IT_B Branch instruction 
137 IT_SWI Software interrupt 

 

The decoder decodes the instruction into the corresponding instruction type and 

generates the information that the instruction execution unit and instruction cycle 

operations process need. Refer to Fig. 2.7, these information contain the register 

number of operands (Rn, Rm, Rs, Rd, RdHi, and RdLo), the opcode of data 

processing instructions, the shift type, and the immediate offset of instructions. 

Besides, the decoder performs the condition test of the instruction. The instruction 

is only executed if the condition is true, or otherwise it is ignored and replaced with a 

NOP instruction. 

4.3 Register File and Instruction Execution Unit 
As shown in Fig. 2.5, the register file consists of 31 general-purpose registers and 

six status registers. However, not all registers are visible at the same time. According 

to the mode type signal (acarm7_mode), a set of pointers in the register file is used 

to point the proper register as the visible one. Then the instruction operands will point 

to the corresponding registers by the decoded register numbers. Fig. 4.2 shows an 

example. 
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  switch(acarm7_mode) 
  { 
    … 
    case 0x12: //M[4:0] == 10010 
      r0_ptr   = &r0_tmp; 
      r1_ptr   = &r1_tmp; 
      r2_ptr   = &r2_tmp; 
      r3_ptr   = &r3_tmp; 
      r4_ptr   = &r4_tmp; 
      r5_ptr   = &r5_tmp; 
      r6_ptr   = &r6_tmp; 
      r7_ptr   = &r7_tmp; 
      r8_ptr   = &r8_tmp; 
      r9_ptr   = &r9_tmp; 
      r10_ptr  = &r10_tmp; 
      r11_ptr  = &r11_tmp; 
      r12_ptr  = &r12_tmp; 
      r13_ptr  = &r13irq_tmp; 
      r14_ptr  = &r14irq_tmp; 
      r15_ptr  = &pc; 
      spsr_ptr = &spsrirq_tmp; 
      break; 
      … 
} 

 
  switch(rd_num) 
  { 
    … 
    case 3 : rd = &r3_ptr;  break; 
    case 4 : rd = &r4_ptr;  break; 
    case 5 : rd = &r5_ptr;  break; 
    … 
  } 
 
  switch(rn_num) 
  { 
    … 
    case 3 : rn = &r3_ptr;  break; 
    case 4 : rn = &r4_ptr;  break; 
    case 5 : rn = &r5_ptr;  break; 
    … 
  } 
 
  switch(rm_num) 
  { 
    … 
    case 4 : rn = &r4_ptr;  break; 
    case 5 : rn = &r5_ptr;  break; 
    case 6 : rn = &r6_ptr;  break; 
    … 
  } 

Fig. 4.2 Code segment of SystemC ISS model. 
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An instruction, ADD r3, r4, r5, is executed in the IRQ mode. The mode bits 

of CPSR is M[4:0] == 10010. The value of rd_num, rn_num, and the rm_num is 3, 

4, and 5 respectively. In the first switch-case statement, the IRQ mode registers are 

pointed. In the following three switch-case statement, the operand rd, rn, and rm 

points to the r3_ptr, r4_ptr, and r5_ptr respectively. 

The instruction execution unit contains 10 sub routines to be called by 

cycle_op_proc and to perform the executed instruction. Table 4.2 shows these 

sub-routines. 

 

Table 4.2 Functions of instruction execution unit. 

Function Description 
nop to perform the nop instruction 
shifter to perform the shift/rotate operation 
alu to perform the arithmetic and logical instruction 
mac to perform the multiply/multiply-and-accumulate instruction 
sdt to perform the single data transfer instruction 
hdt to perform the halfword data transfer instruction 
bdt to perform the block data transfer instruction 
swp to perform the swap instruction 
bbx to perform the branch, and branch and exchange instructions 
excpt to perform the exception operation 

 

A multiple-cycle instruction may call the sub-routine more than once and a 

variable ex_count (execution cycle count) determines what operations should be 

done in that cycle. For a load halfword instruction, the first cycle, ex_count == 1, 

performs the address calculation; the second cycle, ex_count == 2, performs the 

base register modification; and the third cycle, ex_count == 3, performs the data 

fetch from memory. In other words, a small FSM exists in a multi-cycle instruction 

controlled by the ex_count signal. 
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4.4 Exception Detector Process 
The exception detector process plays a role of a synchronizer and an exception 

detector. 

When ISYNC is low, nFIQ and nIRQ inputs are considered asynchronous. A cycle 

delay for synchronization is incurred before the interrupt can affect the processor flow. 

After synchronization, the exception detector process detects whether prefetch abort, 

data abort, FIQ, and IRQ exceptions occur. 

 

 

Fig. 4.3 Detection flow of abort exceptions. 

 

Fig. 4.3 shows the abort exception detection flow. If the abort signal is high, the 

process checks the instruction fetch enable (i_fetch_en) signal. If the 

i_fetch_en is high, then a prefetch abort exception occurs, else a data abort 

exception occurs. 
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Fig. 4.4 Detection flow of (a) FIQ exception and (b) IRQ exceptions. 

 

Fig. 4.4 (a) shows the detection flow of the FIQ exception. If the nfiq signal is low, 

an FIQ event can be marked. However, the process has to check the F-bit of CPSR. If 

the F-bit is high, the FIQ event is ignored and the exception does not occur in the ISS. 

The detection flow of the IRQ exception is similar to that of the FIQ one as shown in 

Fig. 4.4 (b). 
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4.5 Instruction Cycle Operations Process 
The instruction cycle operations process is the main process of the ISS. The 

process contains the instruction execution FSM. The instruction type (inst_type) 

and the execution cycle count (ex_count) signals determine the state of FSM. Fig. 

4.5 shows the process flow. 

 

 

Fig. 4.5 Flow of the instruction cycle operations process. 
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First, if the nRESET signal is asserted, the ISS initialization is performed, else the 

register file refreshment is performed. The instruction decode and instruction fetch are 

performed depend on whether the enable signals (i_fetch_en and decode_en) 

are asserted. 

Then the exception type assignment is performed if any of the output signals of 

exception detector process is asserted. According to the type of exception, the 

instruction type and the mode type signals is set to the corresponding values and the 

proper set of registers is selected. According to the instruction type and execution 

cycle count signal, the instruction execution FSM calls the proper subroutine of the 

instruction execution unit and assigns the right values to the output signals of ISS. 
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Chapter 5  
Verification Strategies 
 

We use the simulation and co-simulation to verify the proposed designs. The 

commercial tools are available for SystemC and Verilog co-simulation. This thesis 

provides two kinds of verification strategies to ensure the functional correctness of the 

proposed designs. Section 5.1 describes the deterministic verification. Section 5.2 

describes the constrained random verification. 

5.1 Deterministic Verification 
Deterministic verification is performed in the simulation phase and composed of 

two parts including the corner-case verification and the real application verification. 

According to the datasheet, we analyze the corner cases of each kind of 

instructions, and write them into the verification patterns. We can discover the 

corner-case bugs by comparing the simulation results with the correct pre-calculated 

results. 

After the corner-case verification, we start to perform the real application 

verification. The real application verification patterns consist of some benchmarks 

like Dhrystone, and DSPstone. Moreover, a JPEG encoder program is also used to 

verify the correctness of the proposed models. The real application verification helps 

the designer avoid misunderstanding the specification and is essential in deterministic 

verification phase. 

After deterministic verification, the next verification stage, constrained random 

verification, can be started. 
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5.2 Constrained Random Verification 
The constrained random verification is performed by the constraint-driven random 

pattern generator which generates random patterns to both ISS model and Verilog 

RTL model, and output values of both models are compared on-the-fly cycle by cycle. 

Fig. 5.1 shows the constrained random verification mechanism. This kind of 

verification is performed to detect the unanticipated cases and the random patterns are 

constrained to avoid generating undefined instructions. More simulation cycles are 

verified, larger vector space is explored by random patterns. Therefore, the design 

models can be more robust. Until now, over one billion cycles have been verified. 

 

 

Fig. 5.1 Constrained random verification mechanism. 
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Chapter 6 
Experimental Results 
 

This chapter provides the experimental results of the proposed models. Section 6.1 

describes the experimental environment. The experimental benchmarks are introduced 

in Section 6.2. Section 6.3 presents the experimental results, and followed by the 

discussion in Section 6.4. 

6.1 Experimental Environment 
We run all the experiments on a HP wx8400 workstation. The commercial 

simulators are the Cadence NC-Verilog simulator and the Cadence NC-SC simulator. 

For pure SystemC simulation, free tools are available from Open SystemC Initiative 

(OSCI). Table 6.1 shows the detail of the experimental hardware and software 

platform. 

 

Table 6.1 Experimental environment. 

Hareware 

CPU: Intel® Xeon® CPU 2.0GHz 

RAM: DDR2-667 ECC FB-DIMM 14GB 

Software 

OS: CentOS 5 x86_64 (with Linux 2.6 kernel)

Cadence NC-Verilog version 6.1 

Cadence NC-SC version 6.1 

OSCI SystemC version 2.2 
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6.2 Experimental Benchmarks 
The experimental benchmarks are parts of MiBench [9]. MiBench is a free, 

commercially representative embedded benchmark suite. It consists of six categories 

including automotive, industrial control, network, security, consumer devices, office 

automation, and telecommunications. We choose one benchmark per category as 

shown in Table 6.2. 

 

Table 6.2 Benchmarks of MiBench. 

Auto./Industrial Consumer Office Network Security Telecomm. 

basicmath jpeg ghostscript dijkstra blowfish CRC32 

bitcount lame ispell patricia pgp FFT 

qsort mad rsynth  rijndael IFFT 

susan tiff2bw sphinx  sha ADPCM 

 tiff2rgba stringsearch   GSM 

 tiffdither     

 tiffmedian     

 typeset     

 

These six benchmarks, bitcount, jpeg, stringsearch, dijkstra, sha and CRC32, are 

described as follows: 

bitcount: The bit count algorithm tests the bit manipulation abilities of a processor 

by counting the number of bits in an array of integers. 

jpeg encode/decode: JPEG is a standard, lossy compression image format. It is a 

representative algorithm for image compression and decompression and is commonly 

used to view images embedded in documents.  

stringsearch: This benchmark searches for given words in phrases using a case 

insensitive comparison algorithm. 

dijkstra: The Dijkstra benchmark constructs a large graph in an adjacency matrix 

representation and then calculates the shortest path between every pair of nodes using 
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repeated applications of Dijkstra’s algorithm. 

sha: SHA is the secure hash algorithm that produces a 160-bit message digest for a 

given input. It is often used in the secure exchange of cryptographic keys and for 

generating digital signatures. It is also used in the well-known MD4 and MD5 hashing 

functions. 

CRC32: This benchmark performs a 32-bit Cyclic Redundancy Check (CRC) on a 

file. CRC checks are often used to detect errors in data transmission. The data input is 

the sound files from the ADPCM benchmark. 

The simulation cycle counts of these selected benchmarks are from 2.8 million to 

28 million as shown in Table 6.3. 

 

Table 6.3 Cycle counts of selected benchmarks. 

Benchmark Simulation Cycle Counts

bitcount 9,087,665 

jpeg encoder 2,893,310 

jpeg decoder 8,796,271 

stringsearch 2,916,981 

dijkstra 12,075,954 

sha 21,041,117 

CRC32 28,148,849 

 

6.3 Experimental Results and Discussions 
We measure the simulation execution time of these benchmarks with models 

including ARM DSM, Verilog RTL, SystemC RTL, and SystemC ISS. The Verilog 

RTL model is applied to the NC-Verilog simulator. The ARM DSM, SystemC RTL, 

and SystemC ISS is applied to the NC-SC simulator. These results are presented in 

Table 6.4. Table 6.5 shows the simulation speed of other models as the normalized 

speed by setting the Verilog RTL speed as 1. 
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Table 6.4 Simulation execution time of proposed and reference models. 

 
ARM DSM 
@NC-Verilog 

Verilog RTL 
@NC-Verilog

SystemC RTL
@NC-SC 

SystemC ISS
@NC-SC 

SystemC ISS 
@OSCI SystemC

bitcount 9941 240 500 202 23.56

jpeg encoder 1944 104 267 58 7.48

jpeg decoder 5833 263 543 220 22.51

stringsearch 1752 74 155 55 7.40

dijkstra 6732 292 622 245 30.75

sha 13967 582 1259 527 54.46

CRC32 18848 788 1682 706 71.73

Time Unit: sec      

 

Table 6.5 Simulation speed of proposed and reference models. 

 
ARM DSM 
@NC-Verilog 

Verilog RTL 
@NC-Verilog

SystemC RTL
@NC-SC 

SystemC ISS
@NC-SC 

SystemC ISS 
@OSCI SystemC 

bitcount 0.02 1 0.48 1.19 10.19 

jpeg encoder 0.05 1 0.39 1.79 13.90 

jpeg decoder 0.05 1 0.48 1.20 11.68 

stringsearch 0.04 1 0.48 1.35 10.00 

dijkstra 0.04 1 0.47 1.19 9.50 

sha 0.04 1 0.46 1.10 10.69 

CRC32 0.04 1 0.47 1.12 10.99 

 

From the Table 6.5, the ranges of the simulation speed of the other models are 

from 0.02 to 13.90 times faster than the simulation speed of the Verilog RTL model. 

The ARM DSM, a timing accurate model, has features of pin-to-pin delays and 

output delays for timing simulation so that the simulation speed is the slowest. 

By comparing the simulation speed of the Verilog RTL and the SystemC RTL, the 

simulation speed of the SystemC RTL is only about half of the Verilog one. It 

indicates that although SystemC can acts as an HDL. However, the efficiency of RTL 

modeling of SystemC is worse than that of Verilog. 

The SystemC ISS @NC-SC is exported as a Verilog module by using the 
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NCSC_MODULE_EXPORT macro [10]. The memory system of SystemC ISS 

@NC-SC is written in Verilog. On the other hand, the SystemC ISS @OSCI SystemC 

is simulated by the OSCI SystemC kernel. The memory system of SystemC ISS 

@OSCI is written in SystemC. The simulation speed of the former is about nine times 

faster than the simulation speed of the latter. Therefore, simulation environments 

affect simulation speed very much. 

Finally, we can observe that the simulation speed of our proposed SystemC ISS is 

one order faster than that of Verilog RTL. The proposed SystemC ISS can get the best 

performance under the pure SystemC simulation environment. 
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Chapter 7 
Conclusions and Future Works 
 

In this thesis, two abstraction levels of processor modeling in SystemC are 

proposed. One is SystemC RTL model, and the other is SystemC behavioral ISS 

model. SystemC can act as an HDL language for RTL modeling, or can be a high 

level language like C++ with hardware-oriented class extension to implement higher 

abstraction level model. The experimental results regarding the performance 

comparison between SystemC ISS and Verilog RTL model in VV indicate that our ISS 

model is indeed efficient and suitable for co-simulation and co-verification. 

In the future, we will focus on an efficient configurable SystemC architecture of 

cycle-accurate ISS implement. If two processors, e.g. ARM7TDMI and ARM9TDMI, 

adopt the same ISA, the functional model should the same. The difference between 

them is the instruction cycle operations since the number of pipeline stages is 

different. We will develop a configurable SystemC ISS including a configurable 

un-timed programmer view model plus two timed modules corresponding to the two 

processors to achieve this goal. 
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