Bt S PEFERE BT 2
% 3% 5 SystemC 2 B i

Efficient SystemC Modeling Technology

for Cycle-Accurate Instruction Set Simulator

oy o4 Rk
R R Ea

PoE X R4 L+ - E T

—_—

R kWA 4 B R E

B st SystemC i B i

Efficient SystemC Modeling Technology

for Cycle-Accurate Instruction Set Simulator

Fopo4 Rk Student : Yung-Hsiang Chang
hERE IR EE £L Advisor : Dr. Juinn-Dar Huang

RS ElE 4R
TR ICHPEE
A A

g
£

AL TT

A Thesis
Submitted to College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Industrial Technology R & D Master Program on
IC Design

May 2008
Hsinchu, Taiwan, Republic of China

PERARA4 L FT 8

J&* ik Py %%Féfg B E
F SystemC & fi-F v

SRR S hEREFaE #4

Rz~ F

TE A YT F AL

E D PR AR R P ARAE e o7 F) - ffw%; S et O M Rl &

)&

&322 o SystemC £ - AR CH TA B L HAREAE %> 2 B iL
Je* SRR REDR G AR BRI e

A - R VMR £ B E L F oS SystemC 2
Boplahre 0 32 A fdp 4 F A~ ST E S B A iz SystemC
Mt R BERA B R ORBAE 5—T G E @ﬁiﬂé} PUYE BT
WRE 5 Ko o AL Bordi* 22 B %45 ARM £ 2 B (52
BR) e A PRI R ATk D e 2 4R 20 Verilog HoA 2 fEERPE R R (T2
et F RS R T > A PR N AT SR sdp 4 BHRE

2 iy W 2B 2. Verilog 23] -+ & o

Efficient SystemC Modeling Technology

for Cycle-Accurate Instruction Set Simulator

Student: Yung-Hsiang Chang Advisor: Dr. Juinn-Dar Huang

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College
National Chiao Tung University

ABSTRACT

With the increase of the complexity of chip-design, Electronic System-Level (ESL)
design is becoming a mainstream design.methodology. SystemC, a language based on
C++, supports a broad range of abstraction levels and views, and is widely used as an
ESL language both for modeling and verification.

In this thesis, an efficient SystemC modeling technology for cycle-accurate
instruction set simulator (ISS) is presented. A 32-bit RISC embedded processor core is
modeled in SystemC at two different abstraction levels, the register-transfer level
(RTL) and the cycle-accurate behavioral level, as an evaluation case. The instruction
set architecture (ISA) of the modeled processor core adopts ARM ISA Version 4. We
measure the simulation time of the proposed models and the reference Verilog model
for performance comparison. The experimental results show that our proposed
cycle-accurate behavioral level ISS is ten times faster than the reference Verilog

model.

Acknowledgement

®

)

R AR AR SRR R - Ly

=5

BEZBERETP2Z L RENFF PO ZEER

i
%

pe

Ao kg g
RH#HHELTF L g AT g 2 RY 55 4R b aes .
BRHHACARF%HZRFEZT F4EPE 2% 20 g

Lt 2 T S S B R R T B B A S

B ERE R o
BAHFETH 0Ll s BB 23 LG 2 F 514

;%»gﬁﬁ,@ﬁﬁWiﬁﬂ\aﬁﬁogaQEﬁWﬁlﬁg%,

BALFRA o A w BB oA s ERE PR I
RGP ERTERE DRMA P A B R B A M- L EL

ﬁ%?ia’éiﬁﬁﬂﬁﬁﬂﬂwéﬁbi?Bﬁﬁo

%@%Q%¢?%}A%$mﬂi_ﬁﬁ?ﬂ!!

Contents

ADSIrACt (CRINESE). .. e e i
Abstract (English)........ooii ii
Acknowledgement........cooeieiie e e,
(000131 (=10 | K F PP PPT PPN iv
List OF TADIES. ...t e eV
LISt Of FIQUIES. ..ot e e e e e e e e e e e e e vii
Chapter 1 INtrodUCTION... ... e e e e e e e e e e e 1
L1 MOTIVALION . .. ot e e e e e e e 1
1.2 Contribution........coue e i e e e 2
1.3 Thesis Organization...l i e e e e e e e e v aenan 3
Chapter 2 Preliminaries. i s e et e e e et e e 4
2.1 Overview of System ... e it e 4
2.2 Processor Modeling at Different Abstraction Levels and Views............ 6
2.3 Overview of ARM7TDMI and ACARMY7 Verilog RTL Model.............. 7
2.3.1 Core Architecture of ARM7TDMI......oiiiiiiiii e, 7
2.3.2 Programmer’s MOdel..........oooiii i e e 10
2.3.3 ARM Instruction Set Architecture Version 4...........c...ccovveevveennnn, 14
2.3.4 ACARMY Verilog RTL Model.............cooeviiiiiiiiici i, 15
Chapter 3 Proposed SystemC Register-Transfer Level Model...................... 19
3.1 BIOCK Diagram.......cuuieiie e e e e e e 19
I O] 11 (o] I o] | [PP 22
3.3 Arithmetic/Logical Operation in Execution Stage...................ccevve.. 24

3.4 Multi-Cycle Multiplication in Execution Stage............ccovvvvvvinnnnnnns 25

Chapter 4 Proposed SystemC Cycle-Accurate Instruction Set Simulator.........
4.1 BIOCK DIagram.euieitet e e e e e e e e e e
3 =Yoo o [
4.3 Register File and Instruction Execution Unit..................ooei e,
4.4 EXCeption DetectOr PrOCESS.viu et e e e e e
4.5 Instruction Cycle Operations ProCesS........ccvvuirieriieiieie e e e eeen,

Chapter 5 Verification Strategies.oovuiiriie i e e
5.1 Deterministic Verification...........c.cooii i e e,
5.2 Constrained Random Verification.............coooiiiiiiiiii i i

Chapter 6 Experimental ReSUItS..........c.ooiiiii i
6.1 Experimental ENVIrONMENt.oooiiiiei e e e
6.2 Experimental Benchmarks. .oo
6.3 Experimental Results and-DISCUSSIONS. v us e frevveeve e e eneaaeaanaennns

Chapter 7 Conclusions and FUtUre WOIKS e« e e vvvenieeinecniiiineine e,

[R5 (2] (=) 4o PP s

33

35

37

37

38

39

39

List of Tables

Table 2.1 SystemC data types that are supported in SystemC RTL.................
Table 2.2 Abstraction of different views of modeling..........................c
Table 2.3 PSR MOode DIt VAIUES.........ccooiieieiieiieece e
Table 2.4 EXCeption priorities.ooov i e e
Table 2.5 The ARM INStrUCtION SEL.......ovvveiieiie e e e
Table 2.6 Condition code SUMMAIY.........coiiniie e e e e e e v aeeae
Table 4.1 INStruction type INAEX.......ov it
Table 4.2 Functions of instruction execution Unit...............ccoovviivviiinninn.
Table 6.1 Experimental environment s it v
Table 6.2 Benchmarks of MiBeneh.....oiii i it e e
Table 6.3 Cycle counts of selected benchmarks.......c.......cccooviiiiiiiinnnn.
Table 6.4 Simulation execution time.of proposed.and reference models..........

Table 6.5 Simulation speed of proposed and reference models.....................

Vi

18

29

32

39

40

41

42

List of Figures

Fig

Fig

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

. 1.1 An efficient cycle-accurate ISS can serve as a fast cycle-accurate
functional model when performing system-level simulation..............
. 2.1 Basic components of SYStemC..........cc.vviiiiiieie e
2.2 ARM7TDMI core diagram..........ccouiiiiiiiiiiiiiiee e e e e e
2.3 ARM7TDMI single-cycle instruction 3-stage pipeline operation.........
2.4 ARM multi-cycle instruction 3-stage pipeline operation...................
2.5 ARMT7TDMI register organization in ARM state...................o.eeee.
2.6 Program status register format................cooiiiiii i
2.7 ARM instruction set formatSs s i, e e e e e
3.1 Block diagram of the proposed SystemC.RTL model......................
3.2 Source selection of the:addreSs regISter.o ... vvvve e e,
3.3 Read/Write SEIECHOr.o i e e e e e e e e
3.4 FSMs of the control 10giC.........oouuie i
3.5 Detailed block diagram of EX stage........c.oovveiiiiiii i,
3.6 7-stage multiplication SUb-FSM......... oo,
4.1 Core diagram of the SystemC ISS..........ccoiiiiii i,
4.2 Code segment of SystemC ISSmodel............ccooiiiiiiiiii s
4.3 Detection flow of abort exceptions............cooooi i,
4.4 DeteCtion FIOW........oiei i
4.5 Flow of the instruction cycle operations process.............coocevevuennnn.

5.1 Constrained random verification mechanism.............ccooevviiviniiniin.

vii

10

11

12

16

20

21

21

22

24

25

28

31

33

34

35

Chapter 1
Introduction

1.1 Motivation

With the progress of semiconductor technology, more and more transistors can be
integrated into a chip and the complexity of chip design increases. In order to reduce
chip design costs and ease the pressure of time-to-market, electronic system level
(ESL) [1] methodology has been proposed and is becoming a mainstream.

SystemC [2], a language based on C++, provides hardware-oriented constructs
within the context of C++ as a class library,.implemented in standard C++. It covers a
broad range of abstraction levels'and views;.and is.widely used as an ESL language
both for modeling and verification.

When developing a processor, -an-instruction set simulator (ISS) is necessary and
is usually written in a high level language ‘like C/C++. An ISS can be used for
algorithms testing, architectural exploration and functional verification. Also,
software developers can take advantage of an ISS to develop software applications in
early design phase and shorten the development time.

The accuracy of an ISS depends on what view is taken by the designer such as
functional view (FV), programmer’s view (PV), architecture view (AV), and
verification view (VV). A related work, by Lu et al. [3], shows that simulation speeds
of PV model and AV model both written in SystemC are approximately 18 and 500
times faster, respectively, than that of Verilog RTL model. However, it does not point
out the performance comparison between SystemC-based cycle-accurate ISS and

Verilog-based RTL model in VV.

An efficient cycle-accurate ISS can serve as a golden model to verify the RTL
design. Besides, as shown in Fig. 1.1, it can replace the RTL design and serve as a fast

cycle-accurate functional model when performing system-level simulation.

Cycle-Accurate
1SS

N 7

Processor
Core RTL

»;
o

RTL Model

BUS]

eI

Fig. 1.1 An efficient cycle-accurate 1SS can-serve as a fast cycle-accurate functional

model when performing system-level simulation.

1.2 Contribution

This thesis proposes an efficient SystemC modeling technology for cycle-accurate
ISS. One trivial way for cycle-accurate 1SS development is modeling the processor at
RT-level directly. Our proposed way is modeling the processor in behavioral level
with a cycle-accurate wrapper. The experimental results show that the performance
comparisons among different modeling techniques. The simulation speed of our
proposed cycle-accurate behavioral level ISS is ten times faster than that of reference

Verilog RTL design.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 describes
preliminaries of this thesis. We give the overview of SystemC and the abstraction
levels of processor modeling. Also, we introduce the instruction set architecture (ISA)
that we adopt for ISS implementation. Chapter 3 describes the SystemC RTL model.
Chapter 4 describes the proposed SystemC cycle-accurate behavioral level ISS.
Chapter 5 shows our verification strategies. Chapter 6 discusses the experimental
results and Chapter 7 concludes this thesis and describes the future works. The

reference is provided afterward.

Chapter 2
Preliminaries

This chapter describes the preliminaries of this thesis. Section 2.1 introduces the
SystemC basic components. Section 2.2 describes the abstraction levels and views of
processor modeling. At last, Section 2.3 introduces the ARM7TDMI and the related

processor ACARM?Y.

2.1 Overview of SystemC

SystemC is based on the C++ programming language. It can be used at a very
high level such as system level and can,also be used at lower levels such as the
register transfer level. It basically:extendsjthe capabilities of C++ to enable hardware

description. Fig. 2.1 shows basic components of SystemC.

SC_MODULE

SC_METHOD -

sc_in (Process) sc_out
SC METHOD —
L~

(Process)

sc_in sc_out

SC MODULE
(Child Module)]

sc_out

Fig. 2.1 Basic components of SystemC: A module, ports, processes and signals.

4

® Modules: A module is the basic unit for describing a structure or class in
SystemC and can be described by the SC_ MODULE macro. A module can be
hierarchical in that it can have processes and the other child modules instantiated
within it.
® Processes: A process is used to describe functionality. A module can have one or
more processes. There are three kinds of processes: SC_METHOD,
SC_THREAD, and SC_CTHREAD. An SC_METHOD process can be invoked
multiple times but can not be suspend during the execution. An SC_THREAD or
an SC_CTHREAD can be invoked only once and it has the option to suspend
itself,
® Ports: Ports including input, output, and inout ports are used to communicate
with other modules.
® Signals: Asignal is used to-connect processes.and child modules.
Besides the C++ native dataitypes,—SystemC also supports synthesizable

hardware-oriented data types in SystemC RTL-as shown in Table 2.1 [4].

Table 2.1 SystemC data types that are supported in SystemC RTL.

Name Description

sc_bit Single bit with two values, ‘0’ and ‘1’
sc_bv<n> Acrbitrary width bit vector

sc_logic Single bit with four values, ‘0°, ‘1°, *X’, ‘Z’
sc_lv<n> Arbitrary width logic vector

sc_int<n> Signed integer type, up to 64 bits
sc_uint<n> Unsigned integer type, up to 64 bits
sc_bigint<n> | Arbitrary width signed integer type
sc_biguint<n> | Arbitrary width unsigned integer type

2.2 Processor Modeling at Different Abstraction

Levels and Views

A processor can be modeled at different abstraction levels and views to meet
different evaluation requirements. Different abstraction levels such as register-transfer
level and transaction-level modeling (TLM), different views such as Programmer’s
View (PV), Architecture View (AV) and Verification View (VV), all have different

functionalities and play different roles in design and verification, as shown in Table

2.2 [3].
Table 2.2 Abstraction of different views of modeling.
View Model Accuracy & Purpose
Functional View Event:ordering:

Functional specification and algorithm development.
Programmer’s View | Bit accurate.

Software development and verification.
Architecture View | Cycle appreximate:

Architectural exploration and verification.
Verification View Cycle accurate.

System level Verification.

A Functional View model is used for developing and verifying software functions
and algorithms. Only the instruction set of the processor is modeled. This model is
just instruction-accurate and un-timed for achieving high simulation speed. Similarly,
a Programmer’s View model is used for software development too. Typically, the
model is bit-accurate and un-timed.

On the other hand, an Architecture View model is used for architecture exploration,
which is transaction-accurate and usually a cycle approximate model. As for
Verification View, it is a cycle accurate model and typically focuses on

6

hardware-software co-simulation and co-verification.

2.3 Overview of ARM7TDMI and ACARMY7 Verilog

RTL Model

2.3.1 Core Architecture of ARM7TDMI

ARMT7TDMI [5, 6] is a general-purpose 32-bit RISC processor developed by

Advanced RISC Machine (ARM) Limited. It employs the von Neumann architecture

which uses a single memory to hold both instructions and data. Fig. 2.2 illustrates the

ARMT7TDMI core diagram [5]. The major components are:

The address register and incrementer, which select and hold all memory
addresses and generate sequential addresses when required.

The register file, which contains 31 32-bit general purpose registers and six
status registers.

The 32x8 multiplier, which can-perform-multi-cycle multiply operations.

The barrel shifter, which can:shift. or rotate one operand by an immediate
offset or a register offset.

The ALU, which can perform arithmetic and logic operations.

The read and write data registers, which hold data storing to or lording from
memory.

The instruction decoder and control logic, which can decode instructions and

generate associated control signals.

A[31:0]

{L

~>

Address

Ly Iy o

Address Register

Incrementer

Register File

SNQ Ja]Ualalou|

SITY (1 1V

ST

7T

32x8
Multiplier

Scan Control

{r

Barrel Shifter

=

/

Instruction
Decoder
&
Control Logic

= DBGRQI
= BREAKPTI
=» DBGACK
—» ECLK

=» nEXEC

le— ISYNC

= BL[3:0]
e APE

e MCLK
= nWAIT

=» nRW

= MAS[1:0]
le= nIRQ

e nFIQ

e NRESET
l¢= ABORT
- NTRANS
—» nMREQ

—* nOPC
—> SEQ
—» LOCK
= nCPI
[+ CPA
+= CPB
= nM[4:0]
le= TBE
= TBIT

—» HIGHZ

it

ﬁ

Write Data Register

Instruction Pipeline
& Read Data Register

& Thumb Instruction Decoder

nENOUT

DBE

nENIN

<

D[31:0]

Fig. 2.2 ARM7TDMI core diagram.

The ARM7TDMI adopts a 3-stage pipeline including the instruction fetch (IF)
stage, the instruction decode (ID) stage, and the execution (EX) stage. In the IF stage,
the instruction is fetched from memory and then queued in the instruction pipeline. In
the ID stage, the instruction is decoded and the control signals are generated for the
next cycles. In the EX stage, the instruction enters into the datapath. The register bank
is read, the second operand is shifted or rotated if needed, and the result is generated
by ALU and written back to a destination register. For a single-cycle instruction, such
as a data processing instruction, the processor takes one EX stage cycle as shown in
Fig. 2.3. For a multi-cycle instruction, the processor takes more than one EX stage
cycle. As shown in Fig. 2.4, a sequence of single-cycle ADD instructions, with a data
store instruction, STR, occurring after the first ADD instruction. The cycles that
access memory are shown with shading and we can see that the memory is used in
every cycle. The datapath is likewise used in-every eycle since two EX stage cycles,
one is for address calculation and the other-is for data transfer, are taken by STR
instruction. Actually, the memory accessing.is the major limiting factor that limits the

number of cycles taken by a sequence of instructions.

Instruction

1 fetch I decode I execute ‘

2 ’ fetch I decode I execute ‘

3 ’ fetch I decode I execute
>
Time

Fig. 2.3 ARM7TDMI single-cycle instruction 3-stage pipeline operation.

Instruction

1 Zt)c]l; decode | execute
2 fetch calc. data
STR decode addr. | transfer
3 fetch
ADD decode | execute
4 fetch
ADD decode | execute
5 fetch
ADD decode | execute
-
Time

Fig. 2.4 ARM multi-cycle instruction 3-stage pipeline operation.

2.3.2 Programmer’s Model

ARMT7TDMI can be in one:of two states, ARM state or THUMB state. In ARM
state, the processor executes 32-bit, word-aligned ARM instructions; while in
THUMB state, the processor executes 16-bit, halfword-aligned THUMB instructions.
Since the proposed designs described in Chapter 3 and 4 implement ARM ISA
without THUMB instructions and coprocessor instructions, we only focus on the
ARM state in this thesis.

ARMT7TDMI has 37 registers including 31 general-purpose registers and six status
registers as shown in Fig. 2.5 [5]. The processor state and operating modes determine
which registers are available to the programmer. ARM7TDMI supports seven
operating modes including user mode, system mode, fig mode, supervisor mode, abort
mode, irg mode, and undefined mode. The non-user modes, a.k.a. privileged modes,
are used for system level programming and typically for handling interrupts or

exceptions.

10

ARM State General Registers and Program Counter

System & User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8_fiq R8 R8 R8 R8
R9 R9 fig R9 R9 R9 R9
R10 R10_fiq R10 R10 R10 R10
R11 R11 fiq R11 R11 R11 R11
R12 R12 fiq R12 R12 R12 R12
R13 R13 fiq R13 svc R13 _abt R13 irg R13 und
R14 R14 fiq R14 svc R14 abt R14_irq R14 und

R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)

ARM State General Program Status Registers

| CPSR | CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

[] =banked register

Fig. 2.5 ARM7TDMI register‘organization in ARM state.

ARMT7TDMI has six program status registers (PSRs) including a current program
status register (CPSR) and five saved program status registers (SPSRs). These
registers are used to hold information about the most recently executed ALU
operation, control the enabling and disabling of FIQ/IRQ interrupts, and set the
processor operating mode. Fig. 2.6 [5] shows the PSR format. The top four bits (N, Z,
C, V), ak.a. the condition code flags, may be affected by a result of an
arithmetic/logical instruction, and may be used to determine whether an instruction
should be executed. The bottom eight bits are the control bits. When | bit or F bit set,
the processor disables IRQ and FIQ interrupts, respectively. The T bit describes the

state of ARM7TDMI. When T bit set, the processor is in THUMB state, otherwise the

11

processor is in ARM state. The M4, M3, M2, M1, MO bits are the mode bits. The
mode bits determine the current operating mode of the processor. Table 2.3 shows the

mode bit values and the corresponding operating modes.

condition code flags (reserved) control hits
| 1o 1 \
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N Z| C|V I .o | F|T|M4 M3|M2| M1 MO
[|
LOverflow L Mode bits
Carry / Borrow State bit
/ Extend FIQ disable
Zero IRQ disable

Negative / Less Than

Fig. 2.6 Program,status register format.

Table 2.3'PSR ' mode hit values.

M[4:0] Maode
10000 User
10001 FIQ

10010 IRQ

10011 Supervisor
10111 Abort
11011 Undefined
11111 System

12

ARM exceptions can be classified into three groups:

® Exceptions generated as the direct effect of executing an instruction, such as
software interrupt (SWI), undefined instruction, and prefetch abort
(instruction fetch memory fault).

® Exceptions generated as the side-effect of an instruction, such as data abort
(data access memory fault).

® Exceptions generated externally, unrelated to the instruction flow, such as
reset, IRQ (normal interrupt request), FIQ (fast interrupt request).

When two or more exceptions arise at the same time, the exception priorities

determine the order in which the exceptions are handled. Table 2.4 shows the

exception priorities from high to low.

Table 2.4 Exception priorities.

Priority | EXception

1 Reset

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

Undefined instruction
Software interrupt

13

2.3.3 ARM Instruction Set Architecture Version 4

The ARM7TDMI adopts the ARM ISA version 4. It can be classified into eight

instruction types:

Data processing instructions. These instructions perform arithmetic and logical
operations on data values in registers and typically require two operands and
produce one single result. These instructions allow the second register operand
performing a shift or rotate operation before it is operated with the first
operand.

Program status register transfer instructions. The MRS instruction moves PSR
contents to a register. The MSR instruction moves a register contents or a
32-bit immediate value to the, relevant PSR. Note that in user mode, the
control bits of the CPSR are protected.from change, so only the condition code
flags of CPSR can be changed.

Multiply instructions. ™ -These ““instructions perform multiply and
multiply-accumulate operations.

Data transfer instructions. These instructions copy memory values into
registers (lord instructions) or copy register values into memory (store
instructions).

Swap instruction. This instruction exchanges values between a memory
location and a register.

Branch instructions. These instructions execute to switch to a different address,
either permanently (B) or saving a return address (BL).

Coprocessor instructions. This class of instructions is used to tell a
coprocessor to perform some data operations or data transfers.

Software interrupt instruction. The SWI instruction is used to enter supervisor

14

mode in a controlled manner.

Fig. 2.7 shows the encoding formats, and Table 2.5 lists the complete set of the
ISA [5]. In the Fig. 2.7 [5], the most significant four-bit segment of each instruction is
called condition field. In ARM state, all instructions are conditionally executed
according to the CPSR condition codes and the condition field of the instruction. The
instruction is only executed when the condition is true, otherwise it is ignored. Table

2.6 lists the conditions [5].

2.3.4 ACARMY Verilog RTL Model

The ACARMT7 Verilog RTL model is an ultra low-power, high performance
ARMT7-like processor core. This Verilog model and our proposed design are
co-developed based on the same ISA. \We use ACARM7 Verilog RTL model as our

reference model for co-simulation; co-verification and performance comparison.

15

31302928 27 26 25 24 23 2221 2019 18 17 16 15 14 13 12 N

109 &8 76 65 43 21

0

Cond |0|0|!| Opcode |S Rn Rd Operand 2
cond |0|o|o]ofo[o]als] Ra Rn rs |1]ofo]1] Rm
cond |0]o0fo]o[1[uals] RaHi RdLo rn |1]olo][1] Rm
cond |0]o[o][1]0[B]o[o] Rn Rd |olofolol1][o]o[1] Rm
Cond 000100101‘1‘1‘11‘1‘1‘111110001 Rn
cond |0]o|o|P[ulolw[L] Rn Rd |ololo|o|1[s|H[1] Rm
cond |0]ofo|P[u[1|w|L] Rn Rd Offset | 1 |S|H| 1] Offset
cond |0|1[1]P[U[BW[L] Rn Rd Offset
Cond |0|1]1 M
cond |1|0|o|P U‘S‘W‘L‘ Rn ‘ Register List
Cond 1(0|11]|L Offset
cond |1]1[0][P[U[NW[L] Rn CRd cP# Offset
cond |1]1]1]0o] cPope | cRn CRd cpz | cPp |o| crm
Cond |1]1]1]o]cPopeL]| CRn Rd cpg | cP |1| CcRm
Cond |[1(1({1]1 Ignored by processor

3130292827 262524232221 20191817 161651413 121110 9 &8 7 6 5 4 3 2 1 0

Fig. 2.7 ARMinstruction set formats.

16

Data Processing /
PSR Transfer

Multiply
Multiply Long

Single Data Swap
Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immediate offset

Single Data Transfer
Undefined

Block Data Transfer
Branch

Coprocessor Data
Transfer

Coprocessor Data
Operation

Coprocessor Register
Transfer

Software Interrupt

Table 2.5 The ARM Instruction set

Mnemonic Instruction Action
ADC Add with carry Rd := Rn + Op2 + Carry
ADD Add Rd := Rn + Op2
AND AND Rd := Rn AND Op2
B Branch R15 := address
BIC Bit Clear Rd := Rn AND NOT Op2
BL Branch with Link R14 := R15, R15 := address
BX Branch and Exchange R15 :=Rn,
T bit := Rn[0]
CDP Coprocesor Data (Coprocessor-specific)
Processing
CMN Compare Negative CPSR flags := Rn + Op2
CMP Compare CPSR flags := Rn - Op2
EOR Exclusive OR Rd := (Rn AND NOT Op2)
OR (op2 AND NOT Rn)
LDC Load coprocessor.from Coprocessor load
memory
LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from Rd = (address)
memory
MCR Move CPU register to cRn :=rRn {<op>cRm}
coprocessor register
MLA Multiply Accumulate Rd := (Rm * Rs) + Rn
MOV Move register or constant | Rd : = Op2
MRC Move from coprocessor | Rn := cRn {<op>cRm}
register to CPU register
MRS Move PSR status/flags to | Rn := PSR
register
MSR Move register to PSR PSR := Rm
status/flags
MUL Multiply Rd := Rm * Rs
MVN Move negative register Rd := OXFFFFFFFF EOR Op2
ORR OR Rd := Rn OR Op2

17

Table 2.5 The ARM Instruction set (Continued)

Mnemonic Instruction Action
RSB Reverse Subtract Rd :=0p2-Rn
RSC Reverse Subtract with Rd :=0Op2-Rn -1+ Carry
Carry
SBC Subtract with Carry Rd :=Rn-Op2 -1+ Carry
STC Store coprocessor address := CRn
register to memory
STM Store Multiple Stack manipulation (Push)
STR Store register to memory | <address> := Rd
SUB Subtract Rd :=Rn - Op2
Swi Software Interrupt OS call
SWP Swap register with Rd := [Rn], [Rn] :=Rm
memory
TEQ Test bitwise equality CPSR flags := Rn EOR Op2
TST Test bits CPSR flags := Rn AND Op2
Table 2.6'Condition code summary.
Code Suffix Flags Meanings
0000 EQ Z set equal
0001 NE Z clear not equal
0010 CS C set unsigned higher or same
0011 CcC C clear unsigned lower
0100 Ml N set negative
0101 PL N clear positive or zero
0110 VS V set overflow
0111 VC V clear no overflow
1000 HI Csetand Z clear unsigned higher
1001 LS C clear or Z set unsigned lower or same
1010 GE N equals V greater or equal
1011 LT N not equal to V less than
1100 GT Z clear AND (N equals V) greater than
1101 LE Z set OR (N not equal to V) | less than or equal
1110 AL (ignored) always

18

Chapter 3
Proposed SystemC
Register-Transfer Level Model

This chapter describes the proposed SystemC RTL design. An ARM7-like, 32-bit
RISC embedded processor core is implemented in the register-transfer level with
SystemC language. Section 3.1 depicts the block diagram of the proposed design.
Section 3.2 describes the control logic of the proposed design. Section 3.3 describes
how an arithmetic/logical operation functions in EX stage, and Section 3.4 describes

the mechanism of multi-cycle multiplication in EX stage.

3.1 Block Diagram

The proposed SystemC RTL model consists/ of 10 major functional blocks
including the decoder, register file, barrel shifter(BS), arithmetic/logical unit (ALU),
32x8 multiplier (MUL), forwarding unit, address register, read data selector, write
data selector, and control logic. Fig. 3.1 shows the block diagram of the proposed

design.

19

Control Logic

a[31:0] Address |-
] .
Register |« J
din[31:0] |2 g
= = [s} >
8| Decoder [Regsiter [| &} | ALU —
3 File ey >
& z o
%, _ ©, ™| 32x8
& > g MUL [|
@ @ >
o | ReadData | | F nE
Unit
dout[31:0] | Write Data | _

Selector

Fig. 3.1 Block diagram of the proposed SystemC RTL model.

The decoder unit obtains the instruction from IF phase and decodes it to generate
all the information needed for the other functional units.

The register file is composed of total 37 registers — 31 general-purpose 32-bit
registers and six status registers as shown in Fig. 2.5.

The execution stage consists of a BS, an ALU, and a 32x8 multiplier. The
arithmetic and logical operations are implemented with the ALU module whose
second operand is received from the BS to perform shift operations if needed. The
32x8 multiplier produces a 40-bit product. More details of multi-cycle multiply
operation will be described in Section 3.4.

The forwarding unit forwards the output data of EX stage to make sure that the

20

next instruction can get these data as soon as possible.
The address register chooses one valid address from four sources including the PC
incrementer, the ALU output, LDM (lord multiple)/STM (store multiple) output, and

the interrupt as shown in Fig. 3.2.

’PC incrementer‘ ’ ALU ‘ ’ LDM/STM ‘ ’ Interrupts

|

| B y v
4-to-1 MUX

'

Address
Register

1o

Fig. 3.2 Source.selection of the.address register.

31 16 Load 31 16 15 0
data | halfwosd [reo/sign extend | |
2316 Load byte 3! 87 0
| data | —_— | zreo/sign extend | |
Memory
Store 31 16 15 0
Lgltword | data | data |
A |
Storebyte 31 2423 1615 87 0
4——— | data | data | data | data |
))) |

Fig. 3.3 Read/write selector.

21

The read/write selector performs data alignment operations. As shown in Fig. 3.3,
the read selector shifts byte data and halfword data to the bottom of a 32-bit register
with zero-extended or sign-extended when the processor reads byte data or halfword
data from memory. For writing halfword data to memory, the write selector copies the
low halfword part to the high halfword part to fill the 32-bit data width. For writing
byte data to memory, the write selector copies the least significant byte to the other

three more significant bytes.

3.2 Control Logic

The control logic controls all the data flows of combinational logic and the
sequential logic. The instruction operation cycles are controlled by five finite state
machines (FSMs) including lord/store, sub-FSM, shift sub-FSM, multiplication

sub-FSM, branch sub-FSM, and gne main:FSM.as shown in Fig. 3.4.

. FSM
hift-amoun hift-amount
Wait + Br Wait

Brarcir
¥ sub-FSM

@r—. Calc.

Load/Store sub-FSM

Y

Fetch &
Refill

WAP Addr. Data Wait Write Data =>./NO rmal =% Multiply
Calc. Finish Cycle
Main .
ESM sub-ESM

Fig. 3.4 FSMs of the control logic.

22

The lord/store sub-FSM handles four types of instructions including store, load
with branch, lord without branch, and swap. Store instructions contain the single data
store instruction and the multiple data store instruction. For the single data store
instruction, the destination address is calculated at the first state and the data is written
to memory at the second state then finishes the instruction. For the multiple data store
instruction, the sub-FSM stays at the second state until all data transfers are done.
Except the store instructions, all the other instructions finish their last execution cycle
at the normal main state. Like store instructions, load instructions also contain the
single data load instruction and multiple data load instruction. The load address is
calculated at the first state, and then the data is fetched from memory at the second
state. The single data load instruction finishes their last execution cycle at the normal
main state; and the multiple data .lead instruction.moves to the normal main state at
the last execution cycle until-all.data transfers, are done. The load with branch
instruction will moves to the branch sub-ESM after the load operation. The swap
instruction performs data exchange-between a register and external memory, and can
be implemented by a load operation followed by a store operation.

The shift sub-FSM handles data processing instructions with shifted register
amount. When the destination register is r15 (PC), the processor moves to branch
sub-FSM to perform branch operation.

The multiplication sub-FSM handles the multiply instructions. The finish signal is
sent to the main FSM and the processor moves to the normal main state at the last
execution cycle. More details will be discussed in Section 3.4 later.

The branch sub-FSM handles the instructions that use rl5 as the destination
register. A new PC address is calculated at the first state and the proper new

instruction is then fetched to refill the pipeline at the second state.

23

3.3 Arithmetic/Logical Operation in Execution Stage

Fig. 3.5 shows the detailed block diagram of EX stage.

7-stage

Src b
32

Mul sub-FSM *

32x8

Multiplier

EX_Stage
Controller

32-bit
Barrel
Shifter

1

Rev
Inv
MUX
+
Y Y
Mux_a Mux_b fete——
Hi-part of Lo-part of 3L?)b|g
64-bit adder 64-bit adder e

Fig. 3.5 Detailed block diagram of EX stage.

Arithmetic and logical operations are performed by ALU. Src_a and Src_b are the

two inputs of the EX stage and are fed to the multiplier directly to perform

multiplication instructions which will be discussed in the next section.

Src_b can be fed into BS to perform any type of shift/rotate operations including

24

logical shift left, logical shift right, arithmetic shift right, and rotate right. Then the
output of BS and Src_a are fed into a reverse-inverse-multiplexer which decides
whether the two inputs should be inversed due to the consideration about subtraction
or reversed for specific instructions like RSB and RSC.
The results of the reverse-inverse-multiplexer are sent to a logical unit to perform
a logical operation, or sent to a 64-bit adder [7] to perform an arithmetic operation.
The arithmetic instructions like ADD, SUB, ADC, ..., use the higher 32-bit part of

the adder. The lower 32-bit part is filled with zeros.

3.4 Multi-cycle Multiplication in Execution Stage

For a multiply instruction, Src_a and Src_b are fed to the multiplier [8] directly to

perform multiply operation. Fig. 3.6 shows the 7-stage multiplication sub-FSM.

multiplier >> 8-bit |multiplier >>8-bit - multiplier >> 8-bit

Writing 64-bit result without
accumulation)

With accumulation

Finish
Finish , . (Without writing 64-bit result
(With 64-bit result) Finish and accumulation)

(Without writing 64-bit result)

25

Fig. 3.6 7-stage multiplication sub-FSM.

The 40-bit product of the multiplier is calculated by the 32-bit multiplicand and
bottom 8-bit of the multiplier. A normal multiply instruction without accumulation
needs at least 2 cycles since a 40-bit product is obtained in the first one cycle and
added into 64-bit adder to get final 64-bit result. While all 32-bit of multiplier is valid,
four cycles are needed (8-bit once). In each cycle, the 64-bit adder result is added by
the 40-bit product obtained from the preceding cycle. Therefore, a normal multiply
instruction takes at most 5 cycles to finish the multiplication. However, a multiply
with accumulate instruction takes one more cycle and writing 64-bit result out to two
32-bit registers also takes one more cycle. As a result, a 32-bit multiplicand
multiplying a 32-bit multiplier with accumulation and writing a 64-bit result to 2
32-bit registers takes 7 cycles totally.

While the multi-cycle multiply.operation.is finished, a finish signal is sent from
multiplication sub-FSM to main'FSM.to-tell-that the-multi-cycle operation is finished

and the next instruction may get executed to.continue the program flow.

26

Chapter 4

Proposed SystemC
Cycle-Accurate
Instruction Set Simulator

This chapter describes the proposed cycle-accurate instruction set simulator.
Section 4.1 depicts the block diagram. Section 4.2 to 4.5 describes the decoder, the
instruction execution unit, the exception detector process, and the instruction cycle

operations process of the proposed design.

4.1 Block Diagram

The proposed cycle-accurate 1SS implementation is embedded in a SystemC
wrapper. The proposed ISS consists of two-method processes which include exception
detector process and instruction cycle-operations process, and three child functional
units which include decoder, register file, and instruction execution unit. Fig. 4.1

shows the core diagram of the proposed implementation.

27

SystemC Wrapper

Exception Detector

Instruction Cycle
Operations

sc_in sc_out
Instruction Register
Decoder Execution Ifq'l —)
Unit e sc_out
EI : SC_port e 5C_Signal . function call

Fig.4.1 Core diagram of the SystemC ISS.

The SystemC wrapper contains all 1/0 ports of the ISS. The input ports are
declared using sc__i1n, and the output ports are declared using sc_out.
The exception detector process (excpt_detect proc) and the instruction
cycle operations process (cycle_op_proc) are triggered by the negative edge of
mclk and nreset signals. Then the instruction cycle operations process calls

sub-routines such as decoder, instruction execution unit, and register file.

28

4.2 Decoder

The instructions of the ARM ISA are classified into 37 instruction types. Table 4.1

shows these instruction types with index values.

Table 4.1 Instruction type index.

Index | Instruction Type Description

101 IT_ BX Branch and exchange

102 IT_MSR_REG Transfer register contents to PSR

103 IT_ MSR_REG FLG Transfer register contents to PSR flag bits only
104 IT_MRS Transfer PSR Contents to a register

105 IT_ SWP Single data swap

106 | IT_MUL Multiply

107 IT_ MLA Multiply and accumulate

108 IT_MULL Multiply long

109 IT_MLAL Maultiply.and‘accumulate long

110 IT_HLDR_REGOFF Lord halfword; register offset

111 IT HLDR_REGOFF_BR | Lord halfword;'register offset, dest = pc

112 IT HSTR_REGOFF Store-halfword, register offset

113 IT HLDR_IMMOFF Lord-halfword, immediate offset

114 IT_ HLDR_IMMOFF_BR | Lord halfword, immediate offset, dest = pc
115 IT_HSTR_IMMOFF Store halfword, immediate offset

116 IT_DP_REG_SHIFT Data processing, shift by register

117 IT_DP_REG_SHIFT_BR | Data processing, shift by register, dest = pc
118 IT_DP_IMM_SHIFT Data processing, shift by immediate

119 IT_DP_IMM_SHIFT_BR | Data processing, shift by immediate, dest = pc
120 IT_ MSR_IMM_FLG Transfer immediate value to PSR flag bits only
121 IT_DP_IMM Data processing, immediate offset

122 IT_DP_IMM_BR Data processing, immediate offset, dest = pc
123 IT LDR_IMMOFF Lord word, immediate offset

124 IT LDR_IMMOFF_BR Lord word, immediate offset, dest = pc

125 IT_ STR_IMMOFF Store word, immediate offset

126 IT_ LDR_REGOFF Lord word, register offset

127 IT_ LDR_REGOFF BR Lord word, register offset, dest = pc

128 IT_ STR_REGOFF Store word, register offset

29

129 IT_ UND Undefined instruction

130 IT_ LDM_1R Lord Multiple, 1 register

131 IT_ LDM _1R BR Lord Multiple, 1 register, dest = pc
132 IT STM_1R Store Multiple, 1 register

133 IT_ LDM Lord Multiple

134 IT_LDM_BR Lord Multiple, dest = pc

135 IT_STM Store Multiple

136 IT B Branch instruction

137 IT_SWI Software interrupt

The decoder decodes the instruction into the corresponding instruction type and
generates the information that the instruction execution unit and instruction cycle
operations process need. Refer to Fig. 2.7, these information contain the register
number of operands (Rn, Rm, Rs, Rd, RdHi, and RdLo0), the opcode of data
processing instructions, the shift type, and.the immediate offset of instructions.

Besides, the decoder performs the condition test of the instruction. The instruction
is only executed if the condition-is truge; oriotherwise it is ignored and replaced with a

NOP instruction.

4.3 Register File and Instruction Execution Unit

As shown in Fig. 2.5, the register file consists of 31 general-purpose registers and
Six status registers. However, not all registers are visible at the same time. According
to the mode type signal (acarm7_mode), a set of pointers in the register file is used
to point the proper register as the visible one. Then the instruction operands will point
to the corresponding registers by the decoded register numbers. Fig. 4.2 shows an

example.

30

switch(acarm7_mode)

{
case 0x12: //M[4:0] == 10010

rO_ptr = &rO0_tmp;
rl_ptr = &rl_tmp;
r2_ptr = &r2_tmp;
r3_ ptr = &r3_tmp;
r4_ptr = &r4_tmp;
r5_ptr = &r5_tmp;
ré_ptr = &r6_tmp;
r7_ptr = &r7_tmp;
r8 ptr = &r8_tmp;
ro_ptr = &r9_tmp;
ri0_ptr = &rl0_tmp;
ril ptr = &rll_tmp;
rl2_ptr = &rl2_tmp;
rl3 ptr = &ril3irg_tmp;
rl4 ptr = &rldirg_tmp;
rl5 ptr = &pc;
spsr_ptr = &spsrirg_tmp;
break;

}

switch(rd_num)

{

case 3 : rd
case 4 : rd
case 5 : rd

,

&r3 _ptr;= break;
&rd_ptr; “break;
&r5 ptr; break;

switch(rn_num)

{

case 3 : rn
case 4 - rn
case 5 - rn

,

&r3 ptr; break;
&rd _ptr; break;
&r5 ptr; break;

switch(rm_num)

{

case 4 - rn
case 5 - rn
case 6 : rn

&rd _ptr; break;
&r5 ptr; break;
&r6_ptr; break;

Fig. 4.2 Code segment of SystemC ISS model.

31

An instruction, ADD r3, r4, r5, isexecuted inthe IRQ mode. The mode bits
of CPSR is M[4:0] == 10010. The value of rd_num, rn_num, and the rm_num is 3,
4, and 5 respectively. In the first switch-case statement, the IRQ mode registers are
pointed. In the following three switch-case statement, the operand rd, rn, and rm
points to the r3_ptr, r4_ptr, and r5_ptr respectively.

The instruction execution unit contains 10 sub routines to be called by

cycle _op_proc and to perform the executed instruction. Table 4.2 shows these

sub-routines.

Table 4.2 Functions of instruction execution unit.

Function | Description

nop to perform the nop instruction

shifter to perform the shift/rotate operation

alu to perform the arithmetic and logical instruction

mac to perform the multiply/multiply-and-accumulate instruction
sdt to perform the single data transfer-instruction

hdt to perform the halfword data.transfer‘instruction

bdt to perform the block data transfer instruction

swp to perform the swap instruction

bbx to perform the branch, and branch and exchange instructions
excpt to perform the exception operation

A multiple-cycle instruction may call the sub-routine more than once and a
variable ex_count (execution cycle count) determines what operations should be
done in that cycle. For a load halfword instruction, the first cycle, ex_count == 1,
performs the address calculation; the second cycle, ex_count == 2, performs the
base register modification; and the third cycle, ex_count == 3, performs the data

fetch from memory. In other words, a small FSM exists in a multi-cycle instruction

controlled by the ex_count signal.

32

4.4 Exception Detector Process

The exception detector process plays a role of a synchronizer and an exception
detector.

When ISYNC is low, nFIQ and nIRQ inputs are considered asynchronous. A cycle
delay for synchronization is incurred before the interrupt can affect the processor flow.
After synchronization, the exception detector process detects whether prefetch abort,

data abort, FIQ, and IRQ exceptions occur.

ABORT asserted?

Data abort occurs

Prefetch abort
occurs

A

Fig. 4.3 Detection flow of abort exceptions.

Fig. 4.3 shows the abort exception detection flow. If the abort signal is high, the
process checks the instruction fetch enable (i1_fetch_en) signal. If the
i_Tetch_en is high, then a prefetch abort exception occurs, else a data abort

exception occurs.

33

FIQ event occurs

~bit disable?

False

FIQ exception
occurs

Ignore FIQ event

@)

IRQ event occurs

|_bit disable?

False

IRQ exception
occurs

Ignore IRQ event

(b)

Fig. 4.4 Detection flow of (a) FIQ exception and (b) IRQ exceptions.

Fig. 4.4 (a) shows the detection flow of the FIQ exception. If the nfiq signal is low,
an FIQ event can be marked. However, the process has to check the F-bit of CPSR. If
the F-bit is high, the FIQ event is ignored and the exception does not occur in the ISS.

The detection flow of the IRQ exception is similar to that of the FIQ one as shown in

Fig. 4.4 (b).

34

4.5 Instruction Cycle Operations Process

The instruction cycle operations process is the main process of the ISS. The
process contains the instruction execution FSM. The instruction type (inst_type)
and the execution cycle count (ex_count) signals determine the state of FSM. Fig.

4.5 shows the process flow.

True
ISS initialization

False

Register file refreshment

Instruction decode if needed

Instruction fetch if needed

l

Exception type assignment

l

Instruction execution FSM

Fig. 4.5 Flow of the instruction cycle operations process.

35

First, if the nRESET signal is asserted, the ISS initialization is performed, else the
register file refreshment is performed. The instruction decode and instruction fetch are
performed depend on whether the enable signals (1_fetch_en and decode_en)
are asserted.

Then the exception type assignment is performed if any of the output signals of
exception detector process is asserted. According to the type of exception, the
instruction type and the mode type signals is set to the corresponding values and the
proper set of registers is selected. According to the instruction type and execution
cycle count signal, the instruction execution FSM calls the proper subroutine of the

instruction execution unit and assigns the right values to the output signals of ISS.

36

Chapter 5
Verification Strategies

We use the simulation and co-simulation to verify the proposed designs. The
commercial tools are available for SystemC and Verilog co-simulation. This thesis
provides two kinds of verification strategies to ensure the functional correctness of the
proposed designs. Section 5.1 describes the deterministic verification. Section 5.2

describes the constrained random verification.

5.1 Deterministic Verification

Deterministic verification is performed,in the simulation phase and composed of
two parts including the corner-case verification:and the real application verification.

According to the datasheet, ‘we analyze the torner cases of each kind of
instructions, and write them into. the “verification patterns. We can discover the
corner-case bugs by comparing the simulationresults with the correct pre-calculated
results.

After the corner-case verification, we start to perform the real application
verification. The real application verification patterns consist of some benchmarks
like Dhrystone, and DSPstone. Moreover, a JPEG encoder program is also used to
verify the correctness of the proposed models. The real application verification helps
the designer avoid misunderstanding the specification and is essential in deterministic
verification phase.

After deterministic verification, the next verification stage, constrained random

verification, can be started.

37

5.2 Constrained Random Verification

The constrained random verification is performed by the constraint-driven random
pattern generator which generates random patterns to both ISS model and Verilog
RTL model, and output values of both models are compared on-the-fly cycle by cycle.
Fig. 5.1 shows the constrained random verification mechanism. This kind of
verification is performed to detect the unanticipated cases and the random patterns are
constrained to avoid generating undefined instructions. More simulation cycles are
verified, larger vector space is explored by random patterns. Therefore, the design

models can be more robust. Until now, over one billion cycles have been verified.

Verilog RTL Output

Model
Constrained
Random Pattern Compare
Generator
SystemC RTL Mode?l/ Output
—p1 Cycle-Accurate Behavioral
Model

Fig. 5.1 Constrained random verification mechanism.

38

Chapter 6
Experimental Results

This chapter provides the experimental results of the proposed models. Section 6.1
describes the experimental environment. The experimental benchmarks are introduced
in Section 6.2. Section 6.3 presents the experimental results, and followed by the

discussion in Section 6.4.

6.1 Experimental Environment

We run all the experiments on a HP wx8400 workstation. The commercial
simulators are the Cadence NC-Verilog simulator and the Cadence NC-SC simulator.
For pure SystemC simulation, frée toolsrare available from Open SystemC Initiative
(OSCI). Table 6.1 shows the-detail of the experimental hardware and software

platform.

Table 6.1 Experimental environment.

Hareware

CPU: Intel® Xeon® CPU 2.0GHz

RAM: DDR2-667 ECC FB-DIMM 14GB
Software

OS: CentOS 5 x86_64 (with Linux 2.6 kernel)
Cadence NC-Verilog version 6.1

Cadence NC-SC version 6.1

OSCI SystemC version 2.2

39

6.2 Experimental Benchmarks

The experimental benchmarks are parts of MiBench [9]. MiBench is a free,
commercially representative embedded benchmark suite. It consists of six categories
including automotive, industrial control, network, security, consumer devices, office
automation, and telecommunications. We choose one benchmark per category as

shown in Table 6.2.

Table 6.2 Benchmarks of MiBench.

Auto./Industrial | Consumer Office Network Security Telecomm.
basicmath jpeg ghostscript dijkstra blowfish CRC32
bitcount lame ispell patricia pap FFT
gsort mad rsynth rijndael IFFT
susan tiff2bw sphinx sha ADPCM
tiff2rgba stringsearch GSM
tiffdither
tiffmedian
typeset

These six benchmarks, bitcount, jpeg, stringsearch, dijkstra, sha and CRC32, are
described as follows:

bitcount: The bit count algorithm tests the bit manipulation abilities of a processor
by counting the number of bits in an array of integers.

jpeg encode/decode: JPEG is a standard, lossy compression image format. It is a
representative algorithm for image compression and decompression and is commonly
used to view images embedded in documents.

stringsearch: This benchmark searches for given words in phrases using a case
insensitive comparison algorithm.

dijkstra: The Dijkstra benchmark constructs a large graph in an adjacency matrix
representation and then calculates the shortest path between every pair of nodes using

40

repeated applications of Dijkstra’s algorithm.

sha: SHA is the secure hash algorithm that produces a 160-bit message digest for a
given input. It is often used in the secure exchange of cryptographic keys and for
generating digital signatures. It is also used in the well-known MD4 and MD5 hashing
functions.

CRC32: This benchmark performs a 32-bit Cyclic Redundancy Check (CRC) on a
file. CRC checks are often used to detect errors in data transmission. The data input is
the sound files from the ADPCM benchmark.

The simulation cycle counts of these selected benchmarks are from 2.8 million to

28 million as shown in Table 6.3.

Table 6.3 Cyclecounts of selected benchmarks.

Benchmark | Simulation Cycle Counts
bitcount 9,087,665
jpeg encoder | 2,893;310
jpeg decodér |.8,796,271
stringsearch | 2,916,981

dijkstra 12,075,954
sha 21,041,117
CRC32 28,148,849

6.3 Experimental Results and Discussions

We measure the simulation execution time of these benchmarks with models
including ARM DSM, Verilog RTL, SystemC RTL, and SystemC ISS. The Verilog
RTL model is applied to the NC-Verilog simulator. The ARM DSM, SystemC RTL,
and SystemC ISS is applied to the NC-SC simulator. These results are presented in
Table 6.4. Table 6.5 shows the simulation speed of other models as the normalized

speed by setting the Verilog RTL speed as 1.

4

Table 6.4 Simulation execution time of proposed and reference models.

ARM DSM Verilog RTL | SystemC RTL | SystemC ISS | SystemC ISS

@NC-Verilog | @NC-Verilog | @NC-SC @NC-SC @OSCI SystemC
bitcount 9941 240 500 202 23.56
jpeg encoder 1944 104 267 58 7.48
jpeg decoder 5833 263 543 220 22.51
stringsearch 1752 74 155 55 7.40
dijkstra 6732 292 622 245 30.75
sha 13967 582 1259 527 54.46
CRC32 18848 788 1682 706 71.73
Time Unit: sec

Table 6.5 Simulation speed of proposed and reference models.

ARM DSM Verilog RTL | SystemC RTL | SystemC ISS | SystemC ISS

@NC-Verilog | @NC-Verilog | @NC-SC @NC-SC @OSCI SystemC
bitcount 0.02 1 0.48 1.19 10.19
jpeg encoder 0.05 1 0.39 1.79 13.90
jpeg decoder 0.05 1 0.48 1.20 11.68
stringsearch 0.04 1 0.48 1.35 10.00
dijkstra 0.04 1 047 1.19 9.50
sha 0.04 1 0.46 1.10 10.69
CRC32 0.04 1 0.47 1.12 10.99

From the Table 6.5, the ranges of the simulation speed of the other models are

from 0.02 to 13.90 times faster than the simulation speed of the Verilog RTL model.

The ARM DSM, a timing accurate model, has features of pin-to-pin delays and

output delays for timing simulation so that the simulation speed is the slowest.

By comparing the simulation speed of the Verilog RTL and the SystemC RTL, the

simulation speed of the SystemC RTL is only about half of the \erilog one. It

indicates that although SystemC can acts as an HDL. However, the efficiency of RTL

modeling of SystemC is worse than that of Verilog.

The SystemC ISS @NC-SC is exported as a Verilog module by using the

42

NCSC_MODULE_EXPORT macro [10]. The memory system of SystemC ISS
@NC-SC is written in Verilog. On the other hand, the SystemC ISS @OSCI SystemC
is simulated by the OSCI SystemC kernel. The memory system of SystemC ISS
@OSCI is written in SystemC. The simulation speed of the former is about nine times
faster than the simulation speed of the latter. Therefore, simulation environments
affect simulation speed very much.

Finally, we can observe that the simulation speed of our proposed SystemC ISS is
one order faster than that of Verilog RTL. The proposed SystemC ISS can get the best

performance under the pure SystemC simulation environment.

43

Chapter 7
Conclusions and Future Works

In this thesis, two abstraction levels of processor modeling in SystemC are
proposed. One is SystemC RTL model, and the other is SystemC behavioral 1SS
model. SystemC can act as an HDL language for RTL modeling, or can be a high
level language like C++ with hardware-oriented class extension to implement higher
abstraction level model. The experimental results regarding the performance
comparison between SystemC ISS and Verilog RTL model in VV indicate that our ISS
model is indeed efficient and suitable for co-simulation and co-verification.

In the future, we will focus ontan efficient configurable SystemC architecture of
cycle-accurate ISS implement. I two processers, e.g-ARM7TDMI and ARM9TDMI,
adopt the same ISA, the functional model-should the same. The difference between
them is the instruction cycle operations_since the number of pipeline stages is
different. We will develop a configurable SystemC ISS including a configurable
un-timed programmer view model plus two timed modules corresponding to the two

processors to achieve this goal.

44

Reference

[1] http://www.esl-now.com/

[2] D. Black, J. Donovan, SYSTEMC: FROM THE GROUND UP, Kluwer Academic

Publishers, 2004.

[3] VY. -J. Lu, et. al., “Microprocessor Modeling and Simulation with SystemC,” in

VLSI-DAT 2007, Apr. 2007, pp. 4-7.

[4] J. Bhasker, A SystemC Primer, 2nd ed.,.Star Galaxy Publishing, 2002.

[5] ARM7TDMI datasheet, Advanced RISC-Machine Ltd., 1995.

[6] S. Furber, ARM System-on Chip Architecture, 2™ ed., Addison Wesley, 2000.

[7] Y. -C. Fong, “A High-Speed Area-Minimized Reconfigurable Adder Design,”
Master’s thesis, National Chiao Tung University, Department of Electronics

Engineering, Jul. 2006.

[8] H. -K. Ling, “A High-Performance Reconfigurable Sub-Word Parallel
Multiplier-Accumulator Design,” Master’s thesis, National Chiao Tung University,
Department of Electronics Engineering, Jul. 2006.

[9] M. Guthaus et. al., “MiBench: A free, commercially representative embedded
benchmark suite”, in WWC-4. 2001 IEEE International Workshop on Workload

Characterization, Dec. 2001, pp. 3-14.

45

http://www.esl-now.com/

[10] NC-SC® Simulator User Guide, Cadence Design Systems, Inc., Apr. 2007, pp.

222-224.

46

	00_封面.doc
	Efficient SystemC Modeling Technology
	for Cycle-Accurate Instruction Set Simulator

	00_書名頁.doc
	Efficient SystemC Modeling Technology
	for Cycle-Accurate Instruction Set Simulator

	01_Abstract_C.doc
	02_Abstract_E.doc
	03_Acknowledgement.doc
	04_Contents_v2.doc
	05_List_of_Tables.doc
	06_List_of_Fig.doc
	Chap1_v2.doc
	Chap2_v2.doc
	Chap3_v2.doc
	Chap4_v2.doc
	Chap5_v2.doc
	Chap6_v2.doc
	Chap7_v2.doc
	Reference_v2.doc

