A ARk
e Bl B éﬁ ZAF Pt

Reducing Instruction Fetehing Traffic
Using Loop Buffer in Autonomous Instruction Memory Design

LIS N - | I A - S

fp ddp £ e R R BT B R Ay £ P

Reducing Instruction Fetching Traffic
Using Loop Buffer in Autonomous Instruction Memory Design

YR < & 7 Student : Yu-Sheng Shu
R AR Advisor : Chung-Ping Chung
TWERICKTAEFTF LT
R
A Thesis

Submitted to College of Electrical'and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Industrial Technology R & D Master Program on
IC Design

January 2009

Hsinchu, Taiwan, Republic of China

P o8 |/ 4 L o~ E -

P

p idp 4 e RMARR Y B w By B AR A S P E

g4 0 eip B BEFE A gL

A
|4
“k
(=
A-
%
&H

TS E LA L LR

2

EEER qI] PRpRERHAERE AR T Y TR D:Ef:s'zJ‘FE?LE'@f'[-ﬁﬁﬁ'l‘%FE‘ﬁlj
et Em@s&ﬁ, n‘{ll—ﬁj’ﬁ[i PRIy LGP T F‘ P R 4 R ?ﬁ&‘;ﬁ“[‘*
o UB“[EECPU GURES TRy ﬂc'l SNAG e e Sty S h A R
@W%f#ﬁﬁvi’ iﬁfﬁq*ﬁw%mﬁswﬁﬁ%imé*ﬁ““iﬁiﬂﬁﬂ$ﬁ% A
Sl F*Eéi’quIEHﬁiiriJlFEﬂffﬂﬁF HGEF B o P*JIF*‘MF‘EJEJ,L IR kL e Y v
IFFEIE .V 3R % CPU A 'I%‘?"PE” e e N RE AR TR FLE‘%LFIEF
Y raa;{v[F”Fﬁf&&

ﬁ"ﬁfﬁ% A PRFVIHIRE » = VAL CPU EJ[U S N VR

SR AR xﬂi[ﬁ‘w%r‘?’%ﬂ = E AR - 2 %lﬁlfﬁlﬁd*&ﬁ”? TEUET ”%E' IEAY
RS A - CPU Al T IV B r‘;%gg][gu#ﬁbj Z[| &y CPU FIf 12 F" f’ TR f]
fF‘[?J H ?&Eﬁéfﬁﬁsﬁﬁug i

1&[F‘Eiﬁw%ﬁﬁﬁf e PRV IR - éﬁy' | CPU ﬂlﬁ Jr%‘ TR g

qu, F'iﬁﬂé” 4 'EF'JIH“* Tl & s ey & R S I e) E s R

FL R E | o Al R O A o T
)RR Rt et - SSVEEDR 1)) line buffer iy R Jf:w—%ﬁ
L e (1 EE 1 loop buffer %‘%fﬁrﬁh R AL b B R E R FLEEY’WE
wéww] g .walﬁwﬁ CPU [fiUsg s i WI@HEJ}V‘:LL[ST
% BTN P I 3 ff fﬁﬁ' FLIZ‘éi’TuFEF”@“V Y IR R e BRIV S T
éjr‘ﬁ,sl g R B LHJE@’WE{?F[= TRAIE] P R 2R S R s - gy =
Elfj?{g.%;'ﬁ .j*[ﬁ,

Reducing Instruction Fetching Traffic
Using Loop Buffer in Autonomous Instruction Memory Design

Student: Yu-Sheng Shu Advisor: Dr. Chung-Ping Chung

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College
National Chiao Tung University

Abstract

The idea of Autonomous Instruction Memory (AIM) is to combine Top-Level
Instruction Memory (TLIM) and Branch'Target Buffer (BTB). This kind of architecture has
an character of self-generating instruction.address. With this character, CPU core needs not to
transfer instruction address to AlM, and this will'obtain the goal of reducing traffic on
instruction address bus. Under this kind of architecture; although the traffic on instruction
address bus has been greatly reduced, the instruction content bus between CPU core and AIM
still works every clock cycle. Therefore;.our problem is to reduce the traffice on instruction
content bus between CPU core and AIM.

Our primitive idea for solving this problem is to introduce a tagless buffer inside CPU
core storing those used instructions. CPU core can access instructions inside buffer instead of
fetching from instruction content bus and then power consumption on instruction content bus
can be saved.

Our design will including additional auxiliary hardware, buffer inside CPU core, and an
efficient control bus communication protocol between CPU core and TLIM plus BTB and
instruction memory are essential to maintain which instructions can be write into buffer and
when to reuse these instructions.

Based on the above ideas, | will use line buffer as a first design. And then integrate loop
buffer as my second design. Finally we use instruction content bus to deliver the buffer access
position as my third design. Under this design, the buffer inside CPU core can store the nested
loop and reuse them. Therefore, the access time of instruction content bus can continuously be
reduced. Besides, we evaluate the efficiency impact if we merge the two dedicated bus into a
common bus.

o]

AR RO TR v EW@W?%ﬁﬁﬁﬂﬁﬁﬁﬂ~ﬁT§@@W
;:Zf?i I.I ljl%[awﬂijfﬁI"i& IH;LHFQ;EJJ:F FIJFH:E M- RENBEETe

PRGBS PR SRR T PPORIRS S BRI i
PRI R B o Tl RGBS O 1R LY IOHT I - Q'H'éﬁw aRf¥
A F P PP - fﬁxﬂﬁukﬂ*ﬂf “RIMpREE

TGRS = AR 2D - AGTS CLEAVELED - SV jojo R~ TGRSR ~ g
E A ﬁ'l[f ey 2 F [L ﬁ'[l . '”Jﬁk Td:;ﬁﬁ’[@ﬁ?‘}j) ?F—‘If& f}L%ﬁlElEﬁa’?’F}h o

ﬁ«ﬂ%ﬂm CAIE TR BRI T 2 0 2 WPV RS S -
AR A IRVEAL SRR 1 e -

LTS~ RSO o b PR m s sl -

List of Contents

It

2.2
2.3

2.4

3.1

3.2

3.3

4.1
4.2

2.1.1
2.1.2
2.1.3

23.1
2.3.2

3.11
3.1.2
3.1.3

3.2.1
3.2.2
3.2.3

3.3.1
3.3.2

... i
... i
... iii
... iV
... Vi
... viii
INTrOCUCTION t e vee e eeeeeeeeeereneinneeieteteeieteeeeseeseeesseeetoncnnsesnecncns 1
IMOtIVATION -+t ereeeeeerereeeetitieiiietieetieieteeetesseeececeesetecscessececsnnns 2
ODJECHIVE -+ e rrreeerrs s ee ettt 4
Organization Of thiS TheSiS - eceeeereeeceeceteeieteeitiiittieieiectsencicecenencnns 4
Background & Related Work:«++««seseeeereneemmiinniiiiiiii, 5
Intelligent Autonomous INStruction MemOry«-««««« oeteeeeeeeeereeenianianns 5
MEChaniSM OF AT -+ ceeveeernennnnnneenteneeeteeteeeereetaaeiaaiaenneneeneeens 5
Control Signal between CPU Ore and iAIM:««-+ceeeereemeeireiniiiiiiinie. 6
Block Diagram. Of IAHME s cisie e eeinttiiin 8
Line BUffer:- -5 watammttibe s i B8coovveieininiiiaiiinineieninenraeaaes 9
LOOP BUFfer: S - psdishiannn st eodidenennnenniniiniiiiiiiiiiiiiiiinien e 11
Basic Idea of LOOP BUFfer-++ : sasteeueeeniiiiiii, 11
Loop Buffer with ‘FORWArd Branch--««««--++sseeeeerreeeerriiiinniiiiinniiiin, 13
Nested LOOP BUffers-« eeeeeeeemmrmenniiiii, 14
Design of Proposed Architecture« «--s+sreereeeeeeeeeiiiiiiea.n]9
Proposed Design of AIM with Loop Buffer--««-«cseeueeeeeeneniiiniinies 19
Challenges in DESign«««««++++ssesserrrrnaeermmiiietriiiiieiiie e, 19
Key 1deas in DESignes«+«=ssesressremrenreumtuntiiiiiiiiiiitietenn 20
MY Proposed DESige«««+«esseseeeseenrensermtutiintitiiiiitiiiitiatann. 20
Proposed Design of AIM with Modified Loop Buffer-«----cceeeeeeeeeeenees 21
Analysis of Nested Loop Backward Branch Miss Prediction Behavior---21
Key 1deas in DESignes«+«=seessemseenreureumtumtiiiiiiiiitieeann 24
MY Proposed DESige«««+«=ssesseestensenseunmeutiintitiiititititiatann. 25
Proposed Design of Multiplex Bus under AIM with Modified Loop Buffe27
Multiplex Bus under Single Cycle Instruction Fetch Architecture:-------- 28
Multiplex Bus under Multiple Cycle Instruction Fetch Architecture:----- 31
Evaluation and DiSCUSSION -+« «««++reeseereenrerrerieeruersreiuererieeesernernnens 35
Evaluation Methodology -« +«««=ssrreseerrememmieemiiiiniiiiii 35
EVAlUAtiON IMELIICS -« vvrvrrrrerreereesesteeteeeeeeeeeeeeeseseseeseeneenseneanns 37

4.3
4.4
4.5

14

h.1
5.2
Reference

Experimental ENVIFONMENt:«««««ssseeeeremmmmminnririiiiii 38
Experimental Benchmark:««««««+++seeeermmmmmnininiiiiiiiii, 40
Experimental Results and DiSCUSSION:«++++++-serererrrmmmmmmiininiensiniinnne. 42
Conclusion and EULUIE WOTIK:««««««reerrrerermrmriiuiuieiineiiinieeneneenn. 47
(07013 1o I3 1o To) £ PR TN 47
FULUFE WVOIK - e cveeeerreenenenmneitinininiiitetieaieeiaeeneenineereaeaenenes 48
... 49

List of Figures

Fig 1.1 Block diagram of conventional architeCture:««++«++ss=ssseremeermmuimneriiiianniiiinnnnn. 3
Fig 1.2 Block diagram of my proposed architeCture:«««««s«=++++ssrrrueeneeeremmuiinnnnneiiiniinn, 3
Fig 2.1 Additional control signals between CPU core and i1AIM:«-+«ceeeeeeeeeerereaeennenen. 6
Fig 2.2 Block Diagram Of JAIM«««+s«eseeenerumttiitiiiii e 8
Fig 2.3 Block Diagram of Line BUffer-««++««sesseeeermemmiiiiniiiiiiiiii, 10
Fig 2.4 Memory Accessing in DIifferent States:««««++«ssressrrsrruarrunnmiinriinniiniianiiis 11
Fig 2.5 State Diagram of Loop Buffer CONtroller-+««««+++ssseeseermimanemiiiiinniiiiiiin, 12
Fig 2.6 Profile the Execution Time of MiBenCh«««++«sseeseeesreueminmiiiniinniiin, 13
Fig 2.7-1 Code Sequence Of a Nested LQQp:««++++++++ssssrrrssserrrrusnerrmiiieneiiiineeiiiinenn, 15
Fig 2.7-2 Loop Buffer Storing Nested Lo@pess s« -sss«ssreserrnsruunmtinniiniiinniiniianiin, 15
Fig 2.8 An Example of Buffering NESted LOOP«+ssx--+5-++rreereerrresermiiiinnniiiineiiiiine, 16
Fig 3.1 Primitive Design Idea of AIM With/E00p BUFfer-«-«+«-+eeeeeerrnrinniiiniiinni, 20
Fig 3.2 L-Indicate control lines that AHMIUSES t0 INform CPU-««+-veerermrerenrieirnieniennne. 20
Fig 3.3 Modified Loop Buffer State Diagrame«««««++«=+sssssesserrsrruimeiarrinniiniiianninne 23
Fig 3.4 Block Diagram inside AIM side for AIM with Modified Loop Buffer-«---««-«-eszexe-e 25
Fig 3.5 Block Diagram inside CPU side for AIM with Modified Loop Buffer-««««««cceceeeeeee 26
Fig 3.6 Block Diagram of Multiplex Bus under AIM with Modified Loop Buffer--«--------- 28
Fig 3.7 An Example of COOE SEqUENCE-«++««++rssrrrsrrrnsrrunmrintiittintietiaetiteetia 29
Fig 3.8 Data Transfer on Bus under SCIF ArchiteCture:-««««-«--seeeeeeeerereneamiiiiiiiaena. 30
Fig 3.9 The 8-stage Pipeline Structure of the RAQ00«+««++««+ressrresrrusremmminniiniinniinns 31
Fig 3.10 Data Transfer on Bus under MCIF Architecture:-«««-««-seeeeeeeereneeaniiiiiaiiiaena. 32
Fig 4.1 Design flow in our implementation:-««««««ssseeeeermrmnneeriiiiiiiiiii, 39
Fig 4.2 Percentage of Bit Transitions on Instruction Content Bus and Control Signals------ 42

Vi

F|g 4.3 Percentage Of Instruction Cache ACCESS: e steesseessnsttasstsssasstosssosssasssssssases 42

Fig 4.4 Increasing Bit Transition Rate on Merged Instruction Bus under SCIF Architecture43

Fig 4.5 Performance Degradation under SCIF Architecture with Multiplex Bus--««««-++«+--- 44
Fig 4.6 Increasing Bit Transition Rate of AIM with Modified Loop Buffer--«-«-«-«eceeeeeenens 45
F|g 4.7 Power and Area Estimation under 90 Nmeseeseeseerestesceseetestestostseseissssassacsans 45

vii

List of Tables

Table 3.1 Nested Loop Backward Branch Miss Prediction Behavior
Table 3.2 Case Analysis for Selected Benchmarks:««-««-«+eeeeeeeeeses

Table 4.1 Communication Cost between CPU and AlIM:------cceevvee.

viii

Chapter 1

Introduction

Because of memory bottle neck, modern computer architecture design will introduce
TLIM (Top Level Instruction Memory) near by CPU core. And because of increasing system
performance, modern computer architecture design will deploy BTB (Branch Target Buffer)
for recording executed branch instructions near by CPU core. Although these two components
have great contributions on releasing memory bottle. neck and increasing system performance,
they also occupy an immense part of CPU. Therefore, if we can move TLIM and BTB away
from CPU and do not effect on the systemperformance, we can place other components
which is more useful into CPU, EX: registers, carry-fook ahead adder, divider. As we move
these two components away from CPU, first we will face the problem of bus power
consumption between CPU and TLIM plus BTB. Besides, we must promise the program
correctness and can not drop the system performance. Under this architecture, bus between

these two components can be divided into instruction address bus and instruction content bus.

Fortunately, previous research has resolved one of them. The author of [1] proposes an
IAIM (intelligent Autonomous Instruction Memory) architecture which can efficiently solve
the instruction address bus problem between CPU core and TLIM plus BTB. He organizes
TLIM and Branch Target Buffer (BTB) as iAIM. Because of the sequential characteristic of
program execution and BTB's ability of predicting branch instruction, iAIM can generate
instruction address by itself and then send instruction to CPU core. Therefore, our problem

can be translated to efficiently use the instruction content bus between CPU core and iAIM.

Our primitive idea for solving this problem is to introduce a tagless buffer inside CPU
storing those used instructions. CPU can access instructions inside buffer instead of fetching
from instruction content bus and then power consumption on instruction content bus can be
saved. Furthermore, since we can greatly reduce the transferred times on both instruction
address bus and instruction content bus between CPU and iAIM, we can consider further
about merging these two buses into one unified multiplex bus. Therefore, we can reduce half

bus demand between CPU and iAIM.

1.1 Motivation

My research comes from below four observations:

1. TLIM and BTB occupy an immense part of CPU.

If we can move these two components away from CPU, we can place other components
which is more useful into CPU; such'asresisters, carry look ahead adder, divider.

2. Inside [1], by proposing an iAIM architecture, the instruction address transfer times
between CPU and iAIM can be greatly reduced. During the process of instruction fetch,
although the instruction address transfer times can be greatly reduced by the mechanism of
IAIM, the instruction content bus between CPU and iAIM works every clock cycle.

3. Research for reducing power on instruction content bus between CPU and IM (Instruction
Memory) does not appear a lot. But, many research focus on saving IM access power. In
fact, the methodology for saving IM access power can also be applied to saving instruction
content bus power.

4. Several kinds of methods can be used for saving IM power, like drowsy cache, cache line
decay, buffering mechanism etc. For saving IM access power without affecting system

performance, buffering reused instructions mechanism is a better choice.

As a conclusion, if we can propose an efficiently instruction transferring mechanism
from iAIM to CPU. Then the idea of moving TLIM and BTB away from CPU can be realized.
My primitive idea is to integrate the methodology of buffering repeatedly reused instructions
into system with AIM. Then we can obtain a more power efficiency architecture. Furthermore,
since the data transfer times on both buses have been greatly reduced, it is reasonable to
merge instruction address bus and instruction content bus into one multiplex bus. And half
bus demand between CPU and IM can be reduced. Figure 1.1 and Figure 1.2 show block

diagrams of conventional architecture and my proposed architecture respectively.

Instruction Address Bus

CPU

BTB

Instruction
Memory

-

Instruction Content Bus

Figure 1.1: Block diagram of conventional architecture

C PU < Multiplex Bus R iAI M

buffer

Figure 1.2: Block diagram of my proposed architecture

1.2 Objective

As applying my design idea to iAIM architecture, total execution time and reduction in
bus traffic (it includes percentage of reduced instruction content bus active cycles and
percentages of reduced bit transitions) are evaluation metrics on achievement in objective.
Energy conservation on instruction content bus will be evaluated from "bus active cycles" and
"bit transitions on bus" metrics indirectly. The evaluation results of conventional architecture,
original iAIM design and loop buffer design under the same BTB organization are given as
contrasts. As to evaluating the design of merging two dedicated bus into one multiplex bus,
we will evaluate the system performance impact by detecting the occurrence of transferring

instruction address and instruction data at the same cycle.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows: Chapter 2 will illustrate my research
background. Chapter 3 explains the design detail of iAIM plus line buffer, iIAIM plus loop
buffer, modified iAIM plus loop buffer and multiplex bus under single cycle instruction fetch
architecture or multiple cycle instruction fetch architecture. Chapter 4 presents evaluation
methodology, experiment results and discussion. Conclusion and future works are then

provided in Chapter 5.

Chapter 2

Background and Related Works

In this chapter, we will describe the design idea and architecture of iAIM firstly. Then

we will present about the buffering mechanism for saving instruction memory access power.

2.1 Intelligent Autonomous Instruction Memory

The author of [1] organizes TLIM and BTB as iAIM. Because of the sequential
characteristic of program execution and BTB's ability of predicting branch instruction, iIAIM
can generate instruction address by.itself and then send instruction to CPU core. Besides, the
author proposes another two enhanced design. One of them equips iAIM with a partial
instruction decoder capable of calculating“branch target address by decoding branch
instruction. The other one equips IAIM with a partial instruction decoder and a return stack.
The experiment results show three proposed designs can reduce instruction address
transmission to 97.71%, 98.49% and 99.99% and reduce total bit transitions to 84.99%,
86.54% and 92.01% compared with conventional architecture respectively. All these designs
greatly outperform TO encoding technique. The third design outperforms TO DAT with 128

entries technique slightly.

2.1.1 Mechanism of iAIM

During program executes, it can be divided into sequential execution and taken branch
execution. Sequential execution occupies about 85-90% portion of program execution, while
the other occupies about 10-15%. When program executes sequentially, next instruction

address comes from current instruction address plus instruction size. But when program does

5

not execute sequentially, next instruction address comes from complicated mechanism. And
next instruction address has less relationship with current instruction address. For taken
branch execution instructions, it can be divided into two categories-fixed target branches and
changing target branches. Most taken branches are fixed target branches and these instructions
can be handled by BTB. Therefore, the basic two ideas that iAIM can generate next
instruction address by itself are:

(1) For sequential execution instructions, with help of adder we can generate next
instruction address.

(2) For fixed target taken branches, we can get branch target address with help of BTB.
Under the mechanism of iAIM, those changing target branches besides procedure return will

be the remainder instruction addresses that CPU core needs to transfer to iAIM.

2.1.2 Control Signal between CPU core and iAIM

Although iAIM can generate most'of-instruction addresses by itself, there are still a few
instrctuion addresses in want of CPU core transferring. And because BTB is moved from
CPU core to instruction memory, the execution results of branch instruction need to be
communicated between CPU core and iAIM. Therefore we need to introduce some additional
control signals for transferring these messages. Additional control signals for iAIM design

display as Figure 2.1.

P-Taken control line

Fy

S-indicate

control lines .

CPU 00 : “Autonomous” AlM

01 : “Pipeline Stall”
10 : “Wrong Prediction”
11 : “Compulsory”

Figure 2.1: Additional control signals between CPU core and iAIM

P-Taken: (control signal from iAIM to CPU core)

P-Taken=1 : predictive taken branch was found at last clock cycle

P-Taken=0 : otherwise

Because BTB is moved into iAIM, iAIM needs to tell CPU core that the branch prediction

direction by BTB when taken branch happens.

S-Indicate: (control signals from CPU core to iAIM)
Those messages CPU core needs to tell iAIM include:

(1) Which one instruction address should iAIM use? The instruction address generated
by IAIM it self or the instruction address transferred by CPU core.

(2) When branch miss prediction happens, CPU core needs to transfer corrected
instruction address to iAIM.

(3) Pipeline stall happens inside CPU core.
After appropriate encoding, we can use 2 additional control signals to generate 4 different

state to transfer messages what we mention‘above.

Autonomous (00):

CPU will not transfer instruction address to iAIM, and iAIM will generate instruction
address by itself.
Pipeline Stall (01):

CPU will stall for one clock cycle, and iAIM will send the same instruction as the previous
clock cycle.
Wrong Prediction (10):

CPU detects branch miss prediction happens, and will send corrected instruction address to
IAIM.
Compulsory (11):

Exception situation (including system initiates and procedure return), CPU will send

instruction address to iAIM.

2.1.3 Block Diagram of iAIM

The block diagram of iAIM displays as Figure 2.2.

o BOEL | PO
[ETE-1 B TEe-2
\ ™ Instmsction
Last PC L Flakeml || PTien Memoary
Last PO —4
™ BTH
o Brauch Targel | =
- *
Address from CPU :
- = Partial Decoder
Address from RS |_.
Target
Adddress from Targst i
Lamt BT =4
Address from FallTho | FallThru
P, Fetched
— instruction
S __.-\ l
[- Offloading traffic on Address from CPL]
Renmun Stack (BS)
Ta CPU
r

Figure 2.2: Block Diagram of iAIM

PC Incrementer is used for generating instruction address when the program is sequential
execution. And BTB can give the branch target address when taken branch happens. The two
34-bit registers (PC-1(PCt-1, INBTBt-1, PTaken-1), PC-2(PCt-2, InBTBt-2, PTaken-2)) is
designed for updating branch prediction result. The reason is that the actual branch execution
result will be available at the 3rd stage of pipeline. The last PC on purple line comes from
PC-1 works when the pipeline stall happens in CPU core. The Address from CPU on red line
comes from CPU core is used for transferring instruction address when the instruction address

can not be generated by iAIM itself.

Partial decoder is designed for recognizing some special instructions, like branch
instruction, procedure call and procedure return. With the help of partial decoder, iAIM is
able to generate the both two branch results (branch target address and fallthrough address) in
time. Because of this, when branch miss prediction happens, CPU core need not to transfer
the corrected branch instruction address, and what CPU core need to do is to inform the
happening of the situation. Return Stack is used to save the return address of procedure return.
When the program goes into a new procedure, the return address will be pushed into return
stack. And when the program gets out from the procedure, the return address will be popped
from return stack. With the help of partial decoder, iAIM is able to detect the happening of
procedure call and procedure return. And with the existence of return stack, the return address
will also need not to be transferred from CPU core. Then the traffic from CPU core can be

offloaded.

2.2 Line Buffer

Several kinds of methods can be used for saving IM power, like drowsy cache, cache
decay, buffering mechanism etc. But, drowsy cache [6] and cache decay [7] accompany
performance degradation.

In [6], drowsy cache saves the instruction memory power by lowering supply voltages of
cache lines. The contents in the cache line will not be destroyed because of the low supply
voltage. But, to access the contents in the cache line will need 1-2 clock cycle because the line
must be reinstated to a high-power mode. Therefore, this incurs system performance loss.

In [7], cache decay saves the instruction memory power by gating supply voltages of
cache lines. The contents in the cache line are destroyed because the supply voltage is gated.
The basic idea of cache decay is that before the cache lines are evicted from instruction
memory, they have a period of "dead time". The author tries to turn off these cache lines when

they get into dead time. The drawback of this approach is that the state of the cache line is lost

9

when it is turned off and reloading it from the level 2 cache has the potential to negate any
energy savings and have a significant impact on performance. Therefore, we adopt the buffer
mechanism for saving IM access power.

In [2], author proposed line buffer design. Line buffer is a cache line size buffer placed
in front of instruction cache to capture temporal and spatial locality of reference. The block

diagram of line buffer is as figure 2.3.

———

CPU core

Line Buffer

Figure 2.3: Block Diagram of Line Buffer

The mechanism of line buffer describes as below:
(1) Once an instruction is accessed,

the line containing that instruction:is transferred to the line buffer.
(2) The next access, if sequential,

will be accessed from the line buffer instead of the cache.
Because of the mechanism describes above, instruction cache accessing power can be saved.
The advantage of line buffer design is that instruction reusing can start quickly if the
subsequent instruction is on the same cache line.

However, the design idea of line buffer may not be appropriate for our design. The
reason is that inside line buffer design line buffer need to be placed close to instruction cache.
This situation accompanies high communication bus cost between line buffer and instruction
cache. And this problem can be ignored inside loop buffer design because line buffer is placed
close to instruction cache. However, as we introduce line buffer design idea into our design,
line buffer and instruction cache are placed in two separate blocks. This contravenes the

design idea of line buffer.

10

2.3 Loop Buffer

2.3.1Basic Idea of Loop Buffer

Loop buffer [3] used a tagless buffer storing those instructions inside innermost loop.
Loop buffer design tries to utilizes the observation of that program execution spends most of
time in loop execution. With loop buffer, CPU core can fetch instructions from loop buffer
instead of instruction cache, and then instruction cache accessing power can be saved. The
author of [3] introduces a 3-phase buffer managing mechanism. The whole mechanism

describes as figure 2.4:

[DLE FILL ACTIVE
IL1 IL1 ILI
Loop Loop Loop
buffer buffer buffer
................ { e | L
CPU core CPU core CPU core

Figure 2.4: Memory Accessing in Different States
The operation status consists of three states: IDLE, FILL and ACTIVE. In the figure 2.4,
the gray rectangle and the solid black line are currently accessing block and bus respectively
during different states. When CPU core initializes or resets, Loop Buffer Controller (LBC)
enters IDLE state first. During IDLE state, LBC detects an innermost loop. If LBC finds that
the same innermost loop has been filled into loop buffer, LBC enters ACTIVE state,

otherwise LBC enters FILL state. The state diagram of the LBC’s finite state machine (FSM)

11

is shown in the figure 2.5.

C. Existing loop i.s detected

J. Miss—prédiclionf

A. Detecting loop

L
e

—{ IDLE }—_
J'r\ . ’/*’ \\\\

E. New Iﬁcp is detected

Y

F. Loop buffer full
G. Miss-prediction

%,
*
*

| K.Break by BIG loop \ -.

\ N "
._ ’ I. Loop buffer refill & |

" - N e e

Yol ~__(Loop buffer mlSS}"'-----..____ S,
_»| ACTIVE | . il N
| / '-.K\ / - -.‘\\ J / .,
H. Fetch instruction™ T el
E. NORM loop fill completely

S -

-

Figure 2.5: State Diagram of Loop Buffer Controller

The transition between different basically depends on loop detection. Besides this, when
branch miss prediction happens, the state will go back to IDLE state (J, G). And LBC can also
handle the situation when the loop size is bigger than loop buffer size (F, K). Under this
mechanism, loop buffer can be easily controlled by a few control signals. Since we need only

three state to handle the access of loop buffer, the extra control signals we need will be only

two. (2*2 =4 > 3)

For meeting above state diagram, additional hardware is proposed. An extra register
L_addr records the start or end address of an innermost loop been stored in loop buffer.

Another register L_leng records how many instructions are stored in loop buffer when the

instructions are filled into loop buffer.

12

' D Loop buffer fill/

2.3.2Loop Buffer with Forward Branch

Inside previous loop buffer design [3], loop buffer can only handle innermost loop. For
those innermost loops containing forward branch or procedure call, loop buffer can only
buffer those instructions till the happening of forward branch or procedure call. Those
instructions after forward branch or procedure call must be fetched from instruction memory

without reusing. This greatly reduces the efficiency of loop buffer.

/ w/o forward branch wiofb | (32.90%)

(71.22%) wio subroutine \
Innermost w/ forward branch wifh | (26.58%)

o loop
(79.85%) wi subroutine o wisr | (11.76%)
loop

others » 0 (8.56%)
others * N (20.15%)

Figure 2.6: Profile the Execution Time of MiBench

As figure 2.6 shows, only 32.90% of the whole program can be completely buffered into
loop buffer. And about 38.32% of the whole program cannot be completely filled into loop
buffer. If this problem can be solved, the efficiency of loop buffer will be greatly improved.

According to this, many ideas are proposed to solve this problem. Nevertheless, on
design complexity dictates most loop buffer designs to store only innermost loops without
forward branch or instructions within innermost loops before a forward branch or procedure
call. [4] proposes a simple and effective way to cope with this complexity. Author supposes
that BTB is a norm in most designs, if we add an extra bit in BTB, indicating if the loop

buffer stores the fall-through or target trace after a within-the-innermost-loop forward branch,

13

then much of the complexity can be avoided.

To store no-loop-inside subroutine in loop buffer, loop buffer must handle about the
situations of procedure call and procedure return. The basic idea of handling subroutine return
is to fill but disregard these invalid instructions followed with subroutine return. Since a
subroutine return is an always-taken branch, CPU core will fetch G invalid instructions.
According to when the subroutine return is detected by CPU core, G has two different values:

(1) G is number of pipeline stages between IF and EXE; and

(2) G is number of pipeline stages between IF and instruction decoder (ID).

However, these invalid instructions would be automatically flushed by CPU core and do not
affect the correctness of program. If we store G invalid instructions into loop buffer, the
instruction fetch sequence is held. This makes loop buffer can store forward branch or

procedure call inside innermost loop.

2.4 Nested Loop Buffer

If we observe figure 2.6 more closely, it will-have about 8.56% of the whole program we
can still improve. The problem is handling nested loop inside loop buffer. The author of [5]
observes that the use of backward branch (BB) instructions of a nested loop has the
characteristics of "First in, Last out” just like the using characteristics of stack.
The use of BB of a nested loop is:
After the program executes once the BB of outer loop, the program must execute completely
those BB inside the outer loop. Then the program will execute this BB again.
The mechanism of applying nested loop to a stack is as follows.
When a loop enters, BB instruction will be pushed to the top of stack. When the loop exits,
this BB instruction will be popped from the stack.
Each entry inside stack will contain 5 components:
BB instruction address, fill bit, up index, down index, up instruction no.

As figure 2.7-1 and figure 2.7-2:

14

UP

X
BB_X——p
Y OWN
BB Y —»p
CODE SEQUENCE

Figure 2.7-1:Code Sequence of a Nested Loop

Up inde

Up instruction n

Down inde

Y up

Y down

LOOP BUFFER

Figure 2.7-2: Loop Buffer Storing Nested Loop

15

Fill bit:
For recording if the segment between the exit of inner loop and the exit of the adjacent
outer loop is filled in buffer
Up/Down index:
For pointing out where the up/down of loop body is storing inside loop buffer
Up instruction no:
For recording the instruction count of up part of loop body stored inside loop buffer
An example for illustrating how to use a stack and stack entries to control the buffering of a

nested loop shows in Figure 2.8.

Instruction address

— Fill bit
I(X) F(X) A(X)
X
LOOP
BUFFER +
Top=10 STACK Top=1 x D Top=1 x .1
(a) (b} € T
I(Y) F(Y) A(X)
Y UP
X
X |1
Top=0 Top =1 Y U Top=2 Y D
i) (e) (f)
F(Y) A(Y) l
Y UP Y UP
Y DWON
Top=1 Y 0 Top=1 Y 1 Top=10
(g (h) (i)

Figure 2.8: An Example of Buffering Nested Loop

16

Before we present this example, we first define some notations. S(L) means the
processor is executing the backward branch instruction of the closest loop L and the next state
of the Loop Buffer Controller is S, where S = {I(IDLE), F(FILL), A(ACTIVE)}, top points to
the top of the stack. X and Y stand for nested loop as shown inside Figure 2.7-1.

This example begins with an IDLE state and top is 0 as shown in Figure 2.8(a). When an
backward branch instruction BB_X of loop X is detected the first time, the controller enters
the FILL state and pushes the address of BB_X to stack as shown in Figure 2.8(b). The value
of fill is set to 0 because instructions of loop X are not filled to buffer yet. In FILL state, the
loop of X is executed in the second iteration and the instructions are buffered. When BB_X is
executed the second time, the address on top of stack is compared with PC. Since they are
identical, this BB_X instruction becomes a triggering backward branch instruction. The state
of controller is set to ACTIVE and the fill bit is setto 1 as shown in Figure 2.8(c). In the
subsequent iterations, the controller remairis'in ACTIVE state till BB_X instruction is
executed and found to be not-taken, i.e. loop X exits.;When the processor exits from loop X,
the pop operation to the stack is performed. The result is shown in Figure 2.8(d).

When the backward branch instruction BB_Y, at the end of loop Y is executed the first
time, the address of BB_Y instruction is pushed to the top of stack and the state of the
controller is transferred to FILL state as shown in Figure 2.8(e). Since loop Y is not filled to
buffer yet, the value of fill is set to 0. When the loop X in loop Y is executed the second time
and BB_X in loop X is executed the second time, we know that loop X is already in the buffer.
Hence, the value of fill is set to 1 and the state is transferred to ACTIVE state as shown in
Figure 2.8(f). When loop X exits, the stack is popped. At the same time, the controller will
check if the value of top-1 equals 0. If not, it means that there is a nesting loop and the
controller will check if the fill field of top-1 of the stack is 0 (not filled) or 1 (already filled).
Since the value is 0, the controller will enter FILL state as shown in Figure 2.8(g) and the
segments between BB_X and BB_Y will be filled in buffer. When BB_Y is executed the

second time, its address is compared with the top stack and found to be equal. This backward

17

branch instruction becomes triggering backward branch and the controller goes to ACTIVE
state. Since loop Y is already in buffer, the fill field is set to 1 as shown in Figure 2.8(h).

When loop Y exits, the top of stack is popped as shown in Figure 2.8(i).

18

Chapter 3

Design of Proposed Architecture

In this chapter, we propose our architecture. In section 3.1 we present the architecture of
AIM with loop buffer. In section 3.2 we present the architecture of AIM with modified loop
buffer for handling nested loop problem. In section 3.3 we describe the architecture of
merging instruction address bus and instruction content bus into unified multiplex bus under

single cycle instruction fetch architecture and multi-cycle instruction fetch architecture.

3.1 Proposed Design of AIM with Loop Buffer

3.1.1Challenges in Design

When loop buffer is added into CPU core for saving IM power, problems of buffer
maintenance and instruction content source choice are introduced and need to be solved.
These problems arise from separated loop buffer and loop buffer controller. To integrate loop
buffer into system with AIM for saving instruction content bus power, loop buffer have to be
allocated inside CPU core. And loop buffer controller need to be allocated inside AIM
because it need to get branch information coming from BTB plus control IM access and
instruction content bus activity. The problem of buffer maintenance means buffer controller
need to enter, update buffer entries inside CPU core. And the problem of instruction content
source choice means that CPU core need to know when to use the previous saved instruction

inside buffer and when to use the value on Instruction Content Bus prepared by AIM.

19

3.1.2Key Ideas in Design

For overcome the design challenges proposed inside previous section, our primitive
design idea is to add additional control buses and to design an efficient communication

protocol. This shows in Figure 3.1.

Additional Control Bus

Instruction Address Bus

CPU |AIM

buffer «

Instruction Content Bus

Figure 3.1: Primitive Design Idea'of AIM with Loop Buffer

3.1.3My Proposed Design

Based on the ideas proposed in previous section and the ideas proposed in loop buffer [3],
to integrate loop buffer into system with AIM, what we need to do is to increase 2 additional

control lines to indicate the loop buffer state.

L-indicate

A

control lines

A

CPU 00 : “IDLE” situation AIM

01 : “FILL” situation
10 : “ACTIVE” situation

Figure 3.2: L-Indicate control lines that AIM uses to inform CPU

20

As Figure 3.2 shows, 2 control lines from AIM to CPU for AIM to inform CPU one of 3
kinds of situations (called "Loop Buffer Situation Indication™ or "L-Indication" control lines):
00 for IDLE
CPU fetches instructions from AlM
01 for FILL
CPU fetches instructions from AIM and also CPU fills instructions into loop buffer
10 for ACTIVE

CPU fetches instructions from loop buffer

3.2 Proposed Design of AIM with Modified Loop Buffer

3.2.1Analysis of Nested Loop Backward Branch Miss
Prediction Behavior

For loop buffer with the ability to access nested loop, we propose the modified design.
At first we analyze the nested loop backward branch miss prediction behavior. As Table 3.1

shows.

Loop | WP FILLY Current | Next description operation
type | type REUSE | state state

B1 | Inner | NT = T | REUSE | FILL INDEX Inner laop iterates CPU gets branch target instruction from loop
= buffer
ACTIVE
B21 | Inner | T = NT | FILL ACTIVE | FILL Exits from inner loop CPU gets instructions from instruction content

bus and fillz instructions info loop buffer
just after the branch instruction.

B22 | Inner | T = NT | REUSE | ACTIVE | ACTIVE | Exits from inner loop | CPU gets instructions after

the branch instructions from loop buffer

B31 | OQuter | NT = T | FILL IDLE FILL Outer loop iterates CPU gets instructions from instruction content
bus and fillz instructions into loop buffer's 1st
Place
B32 | Outer | NT =T | REUSE | FILL INDEX Quter loop iterates CPU gets branch target instructions from loop
= buffer's 1sf place
ACTIVE
B4 Outer | T= NT | X ACTIVE | IDLE exits from outer loop | CPU gets instructicns from instruction content

bus and does not need to fill instructions
into loop buffer

Table 3.1: Nested Loop Backward Branch Miss Prediction Behavior

21

Loop type: Outer loop / Inner loop
Outer loop: The outerest loop detected by loop buffer controller

Inner loop: Other loop containing inside outer loop

WP (Wrong Prediction) type: NT=>T / T>NT
NT->T: BTB predicts branch as a not taken branch, but the branch execution result is taken.

T->NT: BTB predicts branch as a taken branch, but the branch execution result is not taken.

FILL / REUSE:

How CPU core handles the following instructions?

FILL: CPU core will fetch instructions from instruction content bus and write instructions
into loop buffer.

REUSE: CPU core will fetch instructions from_ loop buffer.

This table is partitioned by loop type, branch miss prediction type and the handling of
CPU core fetching instructions. And the row of Table 3.1 should be 8 rows at first, not 6 rows
what we present here. It is because that these 2 rows will not happen anymore. Therefore we
cancel these 2 rows at last.

The first row we cancel here is the row (Inner, NT-->T, FILL). We cancel this row here
because inner loop instructions will have been filled into loop buffer previously when we
detect the branch miss prediction of inner loop. These instructions are filled previously when
outer loop is filled into loop buffer. Loop buffer controller will find out where the branch
target instruction is allocated.

The second row we cancel here is the other row of (Outer, T-->NT). It is because when
we detect the problem has exited from nested loop, CPU core can only fetch instructions from

instruction memory.

22

A new state of loop buffer state diagram is introduced here-INDEX_ACTIVE.
INDEX_ACTIVE state is used to tell CPU reading index from instruction content bus and
using it to find out instructions from loop buffer. For loop buffer only storing innermost loop,
CPU core can fetch instructions from loop buffer sequentially. But for loop buffer storing
nested loop, CPU core need to fetch instructions from loop buffer randomly. Only the loop
buffer controller knows how these instructions are stored inside loop buffer. The idea of
INDEX_ACTIVE state will be explained in the following section.

According to Table 3.1, we propose a modified loop buffer state diagram as Figure 3.3.
Inside this diagram, we hide the existed state transition descriptions. We only show those state

transitions come from handling nested loop.

B4 Exit frombuter loop B310uter loo

iterates filling

21Exit from inner loop reusin

B1 Inner loop reusing
B32 Outer loop reusip

B22 Exit fr

(e

Figure 3.3: Modified Loop Buffer State Diagram

23

3.2.2Key Ideas in Design

Two ideas for we can store nested loop inside loop buffer will introduce here. The first
idea is loop buffer index. Loop buffer index is used to index the access location of loop buffer,
and is sent by AIM. For loop buffer with the ability to access nested loop, CPU core has the
difficulty in fetching reused instructions from loop buffer. With the help of loop buffer index,
CPU core can know where to fetch instructions from loop buffer. The notion of loop buffer
index is:

When CPU gets instructions from loop buffer, the instruction content bus is free to use.
Therefore, we can use instruction content bus to send the loop buffer index.

With this notion, loop buffer controller can ask CPU core to fetch instructions from any
locations of loop buffer without increasing extra-hardware. But, we still need to use this
notion carefully. It is because that the 'use of loop buffer index also means bit transitions on
instruction content bus. Therefore, we only-use this nation when the program sequence
changes.

The second idea is the additional state: INDEX_ACTIVE state. INDEX_ACTIVE state
is used to tell CPU reading index from instruction content bus and using it to find out
instructions from loop buffer. For loop buffer with the ability to access nested loop, CPU core
has the difficulty in fetching reused instructions from loop buffer. The idea of loop buffer
index is to use instruction content bus sending the access location of loop buffer. But, we still
need to do some modifications on the buffer managing mechanism. To help CPU core
knowing where to fetch next instructions when this instructions storing inside loop buffer.
Although we introduce an extra state, the algorithm still keeps invariable. Because the extra
state is just used to tell CPU where to fetch the next instruction, it is still reusing instructions

from loop buffer (ACTIVE state).

24

3.2.3My Proposed Design

Figure 3.4 shows the block diagram inside AIM side for AIM with modified loop buffer
design. LBC stands for Loop Buffer Controller. LS stands for Loop Stack. Lines and blocks in

blue mean new components different from previous AIM design.

L-Indicate Contreol Signal to CPU

S1S0 X L Instruction | 5
LA,

Al Confrol l =
. . e Address

erated by AIM :
Enable
— Instruction Memory

Next PC

Instruction to CPU

Figure 3.4: Block Diagram inside AIM side for AIM with Modified Loop Buffer

Loop stack is responsible for handling nested loop. Each entry inside loop stack contains
backward branch instruction address, fill bit, and the length of instructions storing inside loop
buffer. Fill bit records if the segment between the exit of inner loop and the exit of the
adjacent outer loop is filled in buffer.

AIM controller receives S-Indicate (S0, S1) and instruction address from CPU core and
generates correct instruction address for LBC and instruction memory. AIM controller
receives branch information from BTB and is responsible for updating it inside BTB. After
receiving instruction address from AIM controller and branch information from BTB, LBC

decides how to send instructions to CPU core based on the state diagram showing inside

25

Figure 3.3. LBC uses L-Indicate to inform CPU core where to fetch the next instructions as
previous section describes. LBC will also disable the instruction memory when CPU core

fetch instructions from loop buffer.

L-Indicate Conjtrol Signal

- LBC

Instruction/|nflex Bus
pad/Write Control Sig‘al CPU Core
Loop Buffer Index

') Enable
Loop Bu%er *

Instruction N

]

Figure 3.5: Block Diagram inside CPU side for-AlM with Modified Loop Buffer

Figure 3.5 shows the block diagram inside CPU side for AIM with Modified Loop
Buffer. SR stands for State Register. State register locates in loop buffer controller inside
CPU and is used to handle different branch prediction results between CPU and AIM. State
register is composed of 2 bits loop state (10, 11) and 1 bit bpr (branch prediction result). Loop
state bits are used to remember the last cycle's loop state delivered by AIM from L-Indication
control signals. Bpr bit is used to remember the branch prediction result delivered by AIM
from P-Taken control signal. With the help of state register, CPU is able to distinguish miss
prediction directions (forward branch or backward branch), miss prediction types (taken to not
taken or not taken to taken), loop types (inner or outer).

LBC inside CPU receives L-Indicate and instruction from AIM and according to the
state L-Indicate shows decides where to fetch next instruction. LBC will disable the access of

loop buffer when the loop buffer state is under IDLE state.

26

3.3 Proposed Design of Multiplex Bus under AIM with
Modified Loop Buffer

Through the above architecture what we propose, the transmission times on instruction
content bus between CPU and AIM can be greatly reduced. And the purpose of AIM is
focused on reducing the transmission times on instruction address bus between CPU and AIM.
Since the transmission times on instruction content bus and instruction address bus under the
architecture of AIM with modified loop buffer have become sufficient few, we attempt to
merge these two buses into one multiplex bus.

The advantage of using multiplex bus under system with AIM plus modified loop buffer
is that half bus during instruction fetching between CPU and AIM can be saved and the static
power due to this bus can also be saved. But, one problem emerging from the using of
multiplex bus is that system perfoarmance may reduce.-The reason is when CPU and AIM
need to send instruction address and instruction at the same clock cycle, AIM needs to wait
one clock cycle until CPU completes the transmission of instruction address. We call this as
bus contention. Although the transmission times of instruction address are greatly reduced
due to the design of AIM, bus contention still happens unavoidable. The problem of bus
contention is very important. This may destroy our effort on both instruction address bus and
instruction content bus. As bus contention happens once, the system'’s total execution time
will extend one clock cycle. The extension of total execution time means more power is
consumed. Another problem is that after bus merging, bit transitions on multiplex bus may
increase. The effect of this problem is not very great in fact. The reason is the increasing
number of bit transitions is small. Then we will focus on the problem of bus contention. In the
following section, we will discuss this issue inside single cycle instruction fetch architecture

and multiple cycle instruction fetch architecture respectively.

27

3.3.1Multiplex Bus under Single Cycle Instruction Fetch
Architecture

Instruction fetch including CPU core transferring instruction address to instruction
memory and instruction memory transferring instruction to CPU core. Single cycle instruction
fetch (SCIF) architecture means that as CPU core fetches instructions from instruction
memory, this takes one clock cycle. Therefore, multiple cycle instruction fetch (MCIF)
architecture stands for the fetching time of CPU core getting instructions from instruction
memory more than one clock cycle. Conventional computer architecture adopts the SCIF
design. As we adopt the idea of multiplex bus into our AIM with modified loop buffer design
under SCIF architecture, the issue of bus contention is unavoidable. The advantage of our
design for adopting multiplex bus is‘that for reducing instruction address transferring times
AIM performs better than other design. Therefore this-can reduce the happening of bus
contention. Figure 3.6 shows the-block diagram of our-design. With one additional control
signal (multiplex bus direction), CPU core can tell’ AIM when to receive instruction address
from multiplex bus and when to transfer instruction through multiple bus according to if CPU

core needs to transfer instruction address.

Multiplex bus direction

=) Control Bus

Ihstruction address
i ———
]

Instruction data

CPU

Multiplex Bus

r__-_-_—-—_

L ﬂ

’\ Instruction address
e

F—
-
Instruction data

AIM

Figure 3.6: Block Diagram of Multiplex Bus under AIM with Modified Loop Buffer

28

A10 0x800015dc [10 sl r10, 15,8
Al11 0x800015e0 I11 beq r3, r0, S
Al12 0x800015e4 [12 addiu 17, 10, 4
A13 0x800015e8 [13 addiu 17, 10, 4
A14 0x800015ec I14 or 15,15, r10
A15 0x80001510 [15sllr10, 15, 16

A17 0x800015£8 [17 subu 17, 16, 13
A18 0x800015tc I18 or 16, 13, 10

Figure 3.7: An Example of Code Sequence

Here we use an example to Hlustrate-the data transferring on instruction address bus,
instruction content bus and multiplex:bus under different instruction fetching architecture.
Figure 3.7 is a code sequence example. Each row is a pair of instruction address and
instruction. And the green one is a branch instruction while the yellow one is the branch target
instruction of this branch instruction. The environment is a 5-stage pipeline with IF
(instruction fetch), ID (instruction decode), EX (execution), MEM (memory) and WB (write
back). And the branch prediction result will produce in ID stage.

While CPU core executes the code sequence in Figure 3.7, a forward branch miss
prediction happens. Figure 3.8 shows how data transferring on different bus environment
under SCIF architecture. Inside the picture of "Seperate |Adrs bus and ID bus", TX stands for
the current clock cycle. Red line stands for instruction address bus while instruction address
in red locates above this red line. Blue line stands for instruction bus while instruction in blue
locates above this blue line. Inside the picture of "Unified Multiplex Bus", Light blue line

stands for multiplex bus.

29

Separate |Adrs bus and ID bus Unified Multiplex Bus

T10 [10slir10, 15, 8 T10 _ 110slir10, 15,8

A

T11 _ 111beqr3, 10, 5 ™1 11beqrs. 10,5

F Y

T12 112 addiur7/, 10, 4

-4

T12 112 addiur7, 10 4

F 3

A16 0x80001574 T13 A16 0x800015f4

T13 [16andr3, 16, 15

F 3

T14 _116andr3, 16, 15

Figure 3.8: Data Transfer on Bustunder SCIF Architecture

Under the system using separate instruction ‘address bus and instruction data bus, after
CPU core receives branch instruction at 11-clock cycle, the branch result is calculated at 12
clock cycle. And at 13 clock cycle CPU core sends the corrected instruction address to AIM,
then AIM transfers the corresponding instruction back to CPU core. The miss penalty is 1
clock cycle.

Under the system using multiplex bus, after CPU core receives branch instruction at 11
clock cycle, the branch result is calculated at 12 clock cycle. At 13 clock cycle bus contention
happens, AIM needs to wait one clock until CPU completes the transmission of instruction
address. This extends the miss penalty to 2 clock cycle.

Besides extending the total execution, the other issue of adopting multiplex bus under
SCIF architecture is the need for additional latch. Additional latch is necessary for keeping
instruction address behind the output of multiplex bus inside AIM and this will emerge two
consecutive problems.

1. Latch will extend the instruction fetch time, and this will result in cycle time violation.

2. No applicable trigger in the system is able to enable latch.

30

3.3.2Multiplex Bus under Multiple Cycle Instruction Fetch
Architecture

For improving system performance, MCIF architecture is common in current computer
architecture design. Figure 3.9 shows the 8-stage pipeline structure of the MIPS R4000
processor family. The R4000 implements MIPS64 but uses a deeper pipeline than that of
conventional 5-stage design both for integer and FP programs. This deeper pipeline allows it
to achieve higher clock rates by decomposing the 5-stage integer pipeline into 8 stages.
Because cache access is particularly time critical, the extra pipeline stages come from
decomposing the memory access. As Figure 3.9 shows. The R4000 decomposes the
instruction memory access into 2 stages while the data memory access is decomposed into 3
stages. The function of each stage is as follows:

IF: First half of instruction fetch; PC 'selection-actually happens here.

IS: Second half instruction fetch.

RF: Instruction decode and register fetch, hazard checking, and also instruction cache hit
detection.

EX: Execution, which includes effective address calculation, ALU operation, and
branch-target computation and condition evaluation.

DF: Data fetch, first half of data cache access.

DS: Second half of data fetch, completion of data cache access.

TC: Tag check, determine whether the data cache access hit.

WB: Write back for loads and register-register operations.

EE [S] RET] EX BE[BS] T WB |

Instruction cache Data cache

Figure 3.9: The 8-stage Pipeline Structure of the R4000

31

Under MCIF architecture applying multiplex bus under AIM with modified loop buffer
can obtain the benefits of saving power consumption and avoid the problems emerging out of
SCIF architecture. The bus contention issue will disappear under MCIF architecture because
of the characteristic of AIM. That is merging bus under MCIF architecture with design of
AIM with modified loop buffer will not cause performance degradation.

The idea is that under MCIF architecture when bus contention happens, the instruction
that AIM needs to transfer can be abandoned. Therefore miss penalty keep invariance and
performance degradation disappears. The reason is that under the system with AIM as CPU
core needs to transfer instruction address to AIM, it means the program flow changes. Since
the result of branch will calculated at pipeline's third stage and the instruction transferring
from AIM is 1 clock cycle age under MCIF architecture, the instruction that AIM needs to

transfer is useless and can be abandoned.

Separate IAdrs bus and ID bus Unified Multiplex Bus
T11 110l r10, r5, 8 T11 110l r10,r5, 8
T12 _ 111beqr3, 10,5 T12 11beqr3, 10,5
T13 112 addiur7, r0,74 T13 [12addiur7,r0, 4

A16 0x800015f4
T14 113 addiur7, 10, 4 T14 _ A16 0x800015f4
T15 [16andr3,r6, 15 T15 _ 116 .and r3, 16, 15

Figure 3.10: Data Transfer on Bus under MCIF Architecture

32

Here we use an example to explain the idea mentioned above. Figure 3.10 shows how
data transferring on different bus environment under MCIF architecture. The code sequence is
the same as Figure 3.7. Under the system using separate instruction address bus and
instruction data bus, CPU core receives branch instruction at 12 clock cycle, the branch result
is calculated at 13 clock cycle. At 14 clock cycle CPU core sends the corrected instruction
address to AIM, and AIM still transfers the wrong instruction to CPU core. The corrected
instruction will be received by CPU core at 15 clock cycle. The miss penalty is 2 clock cycle.

Under the system using multiplex bus, after CPU core receives branch instruction at 12
clock cycle, the branch result is calculated at 13 clock cycle. At 14 clock cycle bus contention
happens, and the wrong instruction transferred by AIM is abandoned. The corrected
instruction is still received by CPU core at 15 clock cycle. The miss penalty holds on 2 clock
cycle.

Here we verify our ideas by:checkingall'possibly:-happening cases on multiplex bus.
Under our system with AIM plus‘modified-loop buffer; the data transmission times from CPU
core are greatly less than those from /AlM. Therefore, we analysis the behavior of CPU core
transferring instruction address.

As section 2.1 mentioned, with combining BTB, AIM can generate sequential instruction
address and branch target address by itself. By the help of partial decode, AIM is able to
generate corrected instruction address as branch miss prediction happens. With partial decode,
AIM can save return address of procedure return. Through these mechanisms, the
transmission times of CPU core transferring instruction address can be reduced to 0.1%
compared to the conventional architecture. At last, three kinds of instruction addresses still
need to be transferred by CPU core under our system.

LINITIAL: The 1st instruction address as program starts.
2.JR_OTHER: Jump to register that is not link register.

3.JALR: Jump and link register

33

The instruction addresses of type 2 and type 3 have not fixed branch target address and can
not be calculated previously. They must be supplied by CPU core. Table 3.2 shows the details

what we mention above.

total instruction count INITIAL JR_OTHER JALR

basicmath 60104486 1 40693 19753
bitcount 47555290 1 37 39
jpegdecode 38965 1 42 59
jpegencode 43520 1 44 59
lame 246729 1 37 59
dijkstra 29067 1 3 17
stringsearch 214676 1 116 7T
rijndaeldecrypt 20825 I 5 23
rijndaelencrypt 20822 1 5 23
sha 16655 1 5 23
adpcmedecode 31112964 1 1403 1418
adpcmencode 38689120 1 1404 1419
CRC32 19059 1 8 24
FFT 18740927 1 210 125
FFTinverse 16194643 1 172 106

Table 3.2: Case Analysis for Selected Benchmarks

34

Chapter 4

Evaluation and Discussion

Proposed designs in Chapter 3 are evaluated by trace-driven simulator. The benchmark
suit is a subset of MiBench [9], which is a benchmark suite for embedded programs. The
results are evaluated by four metrics: total execution cycles, percentage of resident bit
transitions on instruction content bus, percentage of resident instruction cache access rate, and

percentage of increased bit transition on multiplex bus

4.1 Evaluation Methodology

Since proposed designs in Chapter 3 are system-level innovation in computer
architecture, behavioral simulation like trace-drivensimulator can be a suitable approach to
prove how many benefits such innovation gains compared with other architecture.

Proposed designs are evaluated by a trace-driven simulator. Since proposed designs in
this thesis are based on classic MIPS five-stage pipeline, my simulator uses MIPS |
instruction trace as key input.

My trace-driven simulator accepts the following parameters as its input:

1. Architecture: AIM, AIM with line buffer, AIM with loop buffer, proposed design of
AIM with modified loop buffer, and proposed design applying multiplex under
SCIF/MCIF architecture

2. Loop buffer size: 4, 8, 16, ..., 1024

3. MIPS I instruction trace of benchmark program

My trace-driven simulator will records bit transitions for every line of instruction content

bus and additional control lines (original AIM architecture has no additional control line;

35

AIM with line buffer has 1+N additional control lines (N depends on line buffer size); AIM
with loop buffer and my proposed design have 2 additional control lines, and my proposed
design applying multiplex bus has 3 additional control lines.) at every clock cycle during

MIPS 1 instruction trace is being fed. We summarize these in Table 4.1.

TIAdrs bus + Contfrol lines from | Control lines from
instruction content bus | CPU to AIM AIM to CPU
AIM 32 + 32 2 |
AIM+ 32+ 32 2 I+1+N
li].].e bllff&l’ (M depends on line buffer size)
AIM+ 32 +32 2 1+2
Loop buffer
AIM-+modified 32 +32 2 1+2
loop buffer
AII\-'IIJrI\-'ILB with 32 2+1 1+2
multiplex bus

Table 4.1: Communication Cost between CPU and AIM

After finishes execution, my simulator will output the following data:

1. Total execution cycles

2. Instruction address bus active cycles

3. Total bit transitions on instruction address bus and control line (s)

4. Instruction content bus active cycles

5. Total bit transitions on instruction content bus and control line (s)

6. Multiplex bus active cycles

7. Total bit transitions on multiplex bus and control line (s)

After collecting all statistics of selected benchmark programs, we have enough data to do

evaluation on proposed designs. The evaluation metrics are listed in next section.

36

4.2 Evaluation Metrics

In this thesis, the following metrics are used to evaluate proposed designs of AIM:

® Total execution cycles

This metric is used to indicate whether proposed multiplex bus designs suffer
performance loss due to longer execution time compared with original AIM
architecture.

® Percentage of resident bit transitions on instruction content bus

This value is defined as:

(Total bit transitions on instruction content bus) / (Total bit transitions on
instruction content bus in conventiohal architecture)

If this value is low, it megans number of bit transitions on instruction content bus is
small. This metric can-effectively be used to-evaluate bus power consumption
indirectly due to self-cdpacitance.

® Percentage of resident instruction cache access rate

This value is defined as:

Instruction content bus active cycles / Total execution cycles

If this value is low, it means instruction cache is disabled most of the time. Under
system with buffering instruction mechanism inside CPU core, if AIM need not to
transfer instructions to CPU core, it means that instructions need not to transferred
through instruction content bus and instruction cache need not to be accessed. Here
we only show the instruction cache access times because instruction cache
consumes more power than instruction content bus.

® Percentage of increased bit transitions on multiplex bus

This value is defined as:

(Total bit transitions on multiplex bus and control lines) / (Total bit transitions on

37

instruction address bus and control lines + Total bit transitions on instruction
content bus and control lines)

If this value is high, it means increasing number of bit transitions on multiplex bus
is great. This metric can effectively be used to evaluate bus power consumption
indirectly due to self-capacitance. Although multiplex bus can reduce the
communication cost between CPU core and AIM by half, it might incur increasing
bit transitions on multiplex bus compared with dedicated bus. Here we have to
verify that these increasing bit transitions is very small, therefore it will not

counteract our effort on multiplex bus.

4.3 Experimental Environment

The experimental toolset MIPS'SDE / MIPS FGT 5.02.02 [10] is used to generate MIPS

I instruction trace for benchmarkprograms !

Install MIPS SDE / MIPS FGT. 5.02.02.

Use command “sde-make. SBD=GSIM1B*"to build MIPS I code (benchmark_ram)
of benchmark program for GNUisimulator platform.

Use command “sde-run --trace-insn=on --trace-file trace_filename benchmark_ram”
to generate MIPS I instruction trace file.

Since delay branch slot is always applied in GNU simulator platform, the generated trace

file needs to be modified to remove delay branch slot for all branch and jump instructions.

The modified trace file is then fed into trace simulator by specifying various parameters like

BTB configuration (perfect BTB or not, the number of entries/set-associativity/replacement

algorithm of BTB), return stack configuration (return stack is used or not), and selected

design (AIM, AIM with line buffer, AIM with loop buffer, proposed design of AIM with

modified loop buffer, and proposed design applying multiplex under SCIF/MCIF

architecture). Figure 4.1 shows the flowchart of simulation.

38

Benchmark Program

Use MIPS SDFE 7/ MIPS
FGT 5.02.02 to build
MIPS I code for GNU

simulator platform

Use GNU simulator of
MIPS SDE /MIPS FGT
5.02.02 to produce

instruction trace file

Remove delay branch slot in

instruction trace file

Result

Figure 4.1: Simulation Flowchart

39

4.4 Experimental Benchmark

The benchmark programs selected are a subset of MiBench [9], which is a benchmark
suite consisting of commercially representative embedded programs. MiBench consists of 6
categories including Automotive and Industrial Control, Network, Security, Consumer
Devices, Office Automation, and Telecommunications. In each category, at least one
benchmark is chosen as experimental benchmark. All chosen benchmarks are listed as below :

® In the category of Automotive and Industrial Control

basicmath: it performs simple mathematical calculations that often don’t have
dedicated hardware support in embedded processors.

bitcount: it tests the bit manipuléation abilities of a processor by counting the
number of bits in an array-of integers.

® In the category of Netwaork

dijkstra : it constructs a farge graph in-an adjacency matrix representation and then
calculates the shortest path between every pair of nodes using
repeated applications of Dijkstra’s algorithm.

® In the category of Security

sha : it is the secure hash algorithm that produces a 160-bit message digest for a
given input. It is often used in the secure exchange of cryptographic
keys and for generating digital signatures.

rijndael encrypt/decrypt : Rijndael was selected as the National Institute of
Standards and Technologies Advanced Encryption Standard (AES). It
is a block cipher with the option of 128-, 192-, and 256-bit keys and
blocks.

40

® In the category of Consumer Devices

jpeg encode/decode : JPEG is a standard, lossy compression image format. It is a
representative algorithm for image compression and decompression
and is commonly used to view images embedded in documents.

lame : it is a GPL'ed MP3 encoder that supports constant, average and variable
bit-rate encoding. It uses small and large wave files for its data inputs.

® In the category of Office Automation

stringsearch : it searches for given words in phrases using a case insensitive

comparison algorithm.
® In the category of Telecommunications

FFT/IFFT : it performs a Fast Fourier Transform and its inverse transform on an
array of data. Fourier-transforms are used in digital signal processing

to find the frequencies contained in a given input signal.

ADPCM encode/decode ;. Adaptive Differential Pulse Code Modulation (ADPCM)
is a variation of the well-known standard Pulse Code Modulation
(PCM). A common implementation takes 16-bit linear PCM samples
and converts them to 4-bit samples, yielding a compression rate of
4:1.

CRC32 : it performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC
checks are often used to detect errors in data transmission.

41

4.5 Experimental Results and Discussion

120.00%
100.00%
80.00%
60.00%
40.00%
20.00%
0.00%

1oNs

5.

Percentage of Bit Transit

LR G 0 G g, G D S G
T.

L AIM with line buffer L aIm with loop buffer L amt with modified 1o5p b

B instruction bus M control signal | Buffer size (instructions)

T

i;:;-’r' :_ . IF :J'
Figure 4.2: Percentage of Bit ';l'fr@n9|'tlbﬁs]'c;)j{§)f'

o .
nst(ucgon Content Bus and Control Signals

o

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

Percentage of Instruction Cache Access

Buffer size (instructions)

B AIM with line buffer Moriginal loop buffer MAIM with modified loop buffer

Figure 4.3: Percentage of Instruction Cache Access

42

Figure 4.2 and Figure 4.3 show resident ratios in instruction content bus bit transitions
and instruction cache access for 3 different designs respectively under different buffer size. In
Figure 4.2, my proposed design of AIM with modified loop buffer is better than the other two
designs at the reduction bit transition rate of instruction content bus and control signals on
different buffer sizes. And Figure 4.2 also shows that the great redundant control signals of
AIM with line buffer counteract the effects on instruction content bus. In Figure 4.3, my
proposed design of AIM with modified loop buffer is better than the design of AIM with loop
buffer on different buffer sizes but buffer size = 8. The reason is when the buffer size is small,
buffer will not be big enough to store nested loop and the refill of buffer will happen
repeatedly. Although AIM with line buffer will perform better on big buffer size, the

increasing bit transitions and extra power due to big buffer size will counteract the superiority.

h

1.20%
1.00%
0.80%
0.60%
0.40%
0.20%
0.00%
-0.20%

Percentage of Increasing Bit Transitions

B AIM with line buffer B AIM with loop buffer B AIM with modified loop buffer

Figure 4.4: Increasing Bit Transition Rate on Merged Instruction Bus under SCIF Architecture

(average of buffer size from 16 to 64 words)

43

Figure 4.4 shows percentage of increasing bit transitions on merged bus under SCIF
architecture for 3 different designs respectively under different experimental benchmark. To
eliminate the biased due to small or big buffer size, we adopt the average buffer size from 16
words to 64 words in Figure 4.4 and Figure 4.6. The increasing bit transitions diverge
between different benchmarks, and the design of AIM with line buffer perform a little better
than other two designs. The increasing rate of bit transitions is very small after the buses are

merged over the whole three designs (about 0.2%).

= 0.30%

2

g 0.25%

E 0.20% |

8 0.15%]

o

g 0.10%j

=}

5 0.05%]

s 0.00%"

@ s T - R S S T RN S EUR < A A @

= re’:’é Jf':'odb%* ﬁ%‘ q}‘%’@ q’%.p é}«? ’:/oof {/‘?o' % q%o %c' Qﬁ[‘» “ ﬁ?) %,
@ @

+= o e, @ G, W R, @ 9wy,)

= e, e oL Yo v Ya, Ter o e e, P L, S

3 % " oy, 4, G, %, % &,

o (] @ (57 2 N '5'0., [Gy T

o L >, % e

M performance degradation

Figure 4.5: Performance Degradation under SCIF Architecture with Multiplex Bus

Figure 4.5 and Figure 4.6 is estimated under my proposed design (AIM with modified
loop buffer). Figure 4.5 shows the percentage of performance degradation when applying
multiplex bus under SCIF architecture with my proposed design. And Figure 4.6 shows the
increasing bit transition rate comparison between SCIF and MCIF architecture with multiplex
bus. As Figure 4.5 shows, although applying multiplex bus will incur performance
degradation, the effort is very small (about 0.1%). In Figure 4.6, the average increasing bit
transition rate under MCIF architecture is better than that of SCIF architecture. It is because
that when some instructions are need not to be transferred in MCIF architecture, the

difference between data on multiplex bus will decrease.

44

o 1.50%
o
=]
a 1.00%
£
= 0.50%
=]
2 0.00%f
3]
o
S -0.50%]
—
o
E J{I" CO %::;;.r %D';q (bl?' Ny qﬁi‘ u{?’o gl 7 {b,'! f'@ C:'? (:? 0‘:?
& P, %, % ? o G oy P A
3 K (] (s} %Q; eq:}y OOOV q;?
E o (&)
o
B SCIF B MCIF

Figure 4.6: Increasing Bit Transition Rateof AIM with Modified Loop Buffer

(average of-buffer size from 16 words to 64 words)

.
e =
| k]

0.07
0.06
0.05
0.04
0.03
0.02
0.01

Increasing Power and Area

64 128 256 512 1024

Buffer size (instructions)

B dynamic energy(n]) M static power(0.1W) B data array(mm2)

Figure 4.7: Power and Area Estimation under 90 nm

45

Figure 4.7 shows the estimation increasing power and area due to our additional loop
buffer under technology node 90 nm. As Figure 4.7 shows, as buffer size bigger than 128, the
area increases greatly. And as buffer size bigger than 512, the dynamic energy and static

power increase dramatically.

46

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The original goal of our research is to save power consumption on instruction content
bus between CPU and AIM. In fact, saving instruction content bus power can not be separated
from saving instruction memory access power. Therefore we obtain our objective by
integrating buffer mechanism into system with AIM. When the data transferred times on both
instruction address bus and instruction econtent bus are greatly reduced, merging these two
buses into one unified multiplex hus can-save more pewer consumption. According to our
experiment results, we have the below conclusions:

1. With some additional circuit, we can-easily integrate buffer mechanism into system

with AIM.

2. The extra power consumption due to large buffer size should be taken into account

when designing.

3. With adopting the idea of multiplex bus, we can save more power due to reduction of

bus hardware.

4. Multiplex bus would also incur system performance degradation, and result in

additional power consumption. This may counteract the benefit of merging bus.

5. Our design would be more power efficiency under off chip instruction memory

system.

47

5.2 Future Work

1. Our design of AIM with modified loop buffer starts from a system with AIM. We can use
other instruction address bus power saving mechanism like TO encoding to replace the role
of AIM. This may create other more power efficiency architecture.

2. When we integrate buffer mechanism into system with AIM, we assume that buffer and
buffer controller should be placed separated inside CPU core and AIM. If buffer and buffer
controller are both placed inside CPU core, the communication cost between CPU core and

AIM may be reduced further. This would need to design new communication mechanism.

48

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

L. M. Wang and C. P. Chung, “Intelligent Autonomous Instruction Memory
Design”, 2006

K Ali, M Aboelaze, S Datta, “Predictive Line Buffer: A fast, Energy Efficient
Cache Architecture”, SoutheastCon, Proceedings of the IEEE, 2006

L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction using loop
caches for embedded applications with small tight loops”, In Intl. Symp. on Low
Power Electronics and Design, Aug. 1999

B. H. Tein and C. P. Chung, “Power Reduction in Instruction Fetch Using
Forward-Branch and Subroutine Bufferable Innermost Loop Buffer with
Assistance of BTB”, 2006

Wu, C.T., and Hwang, T.T., “Instruction buffering for nested loops in low power
design”, in Proc. ISCAS'2002 , vol. 4, pp. 81-84, Scottsdale, Ariz, USA, May 2002
K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:
Simple techniques for reducing leakage power, In Proceedings of the 29th Annual
International Symposium on Computer:Architecture”, pages 147-57, May 2002.
S. Kaxiras, Z. Hu, and M. Martonesi;“‘Cache decay: Exploiting generational
behavior to reduce cache leakage power™; Proc. of Int. Symp. Computer
Architecture, pp. 240-251;2001

J. L. Hennessy and D. A. Patterson; “Computer Architecture - A Quantitative
Approach”, 2003

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite”, In
IEEE 4th Workshop on Workload Characterization, Dec. 2001

[10] MIPS Technologies, Inc., “MIPS SDE / MIPS FGT 5.02.02 Programmers’Guide”,

2003

49

	Reducing Instruction Fetching Traffic Using Loop Buffer in Autonomous Instruction Memory Design
	
	Reducing Instruction Fetching Traffic Using Loop Buffer in Autonomous Instruction Memory Design
	List of Contents
	List of Figures

