EWERICKRFALFE ML

;ﬁ..[?‘4\0«;;

1Sk Rk @ IR WIMAX ko s
A5 3E-1 Rl s SRR 0T S i

An Error Detection & Correction Behavior Model |mplementation
for WIMAX System at Electronic System Level

=T B ST

—_—

REREFEE K

o

MRk Sk s TE WIMAX ke
8 3E R B R D 0T R D

An Error Detection & Correction Behavior Model | mplementation for
WiIMAX System at Electronic System Level

oy o4l BT Student : Yi-Chi Lu

hERE 5 aE L Advisor : Dr. Ching-Yao Huang

B2 2 < F
TWERICK I A FFAHFMLIT
Bl

A Thesis
Submitted to College of Electrical & Computer Engineering
National Chiao Tung University
in Partia Fulfillment of the Requirements
for the Degree of
Master
in
Industrial Technology R & D Master Program on
|C Design

Hsinchu, Taiwan, Republic of China

PERRAY L E D

PN Y WS R IV

CESRCEE AT s

B4 E ok hERER R EE B

Hod ~ BT 5 ms 2o mls

2

SoC Designer & - BT+ ke BT o F &% RELi 3 ko b5
B L fRARESe R BHE HBE s AP - BE LA RO
Mo Fefh o &REEE or G B E RE T B R o Aim v B AR SRR
TR TR E Y SR B EERD G E SR M R A BT
PR A T % T 54 3 SoC Designer 0L 5 F 3 7> 7 ® & 41— B Virtual Socket
LG R e B OR A 2 BHCGRT o4 F O R/ A A = HiCEL > Hardware
Modeling #F BB 7 0 & % W - SR HH - FP ¥V L& % HEFF > sl kit

B 7 TS

An Error Detection & Correction Behavior Model | mplementation for

WIMAX System at Electronic System Level

Student : Yi-Chi Lu Advisor : Dr. Ching-Yao Huang

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao-Tung University

ABSTRACT

SoC Designer is an electronic system level simulation platform and is suitable for the
communication system design and verification. In order to model the communication between
the transmitter and the receiver, we implement a behavior model which includes the
transmitter, the receiver and the channel. Besides we guarantee the data integrity in the
transmission. We establish our behavior model according to the IEEE802.16 specification.
After developing the prototype on the PC platform, we port the behavior model to the SoC

Designer platform for verification. Furthermore we propose a virtual socket concept to deal

with the packet transmission. The platform aso supports the hardware/software co-simulation

and the simulation time will be decreased by hardware modeling technology. According to the

simulation result, the simulation performance isimproved by hardware modeling.

>+ 25t
e F
R BmER TR T o
%?ﬁﬁﬁaﬂiﬁ@’ﬁiﬂﬂﬁﬁiﬁﬁ%%ﬁ%%7*?%%*?%%&
B i HROREL AT IES oo AP ET o220 G hALHT -
FUhoOR#HEErRA AP - FREREZATE L REFTIERI Ko
EMHPHRZAFE—GF FH - FF T B2 BFFHRTOTE
Foo bdRFirp ¥ 2R > AR T ket o 0 x a F R Andms L
BHA b o — A o EA A E R B XS FIF R TL kfs L £ AT
vERGER > B - BB AN PR
Boil o ARREHADFA > B P RG AN N SR R A LT ERY B

PSRN PR PN ol SR = o WA m‘iiﬁzﬁ’%'fﬁ VR OPEARGRT & s ES o

2007

{

e
¢

A
‘I
X

i
3

Contents

#F& [
Abstract i
R 1v
Contents %
List of Figures viii
List of Tables Xi
Chapter 1 Introduction 1
00 = o T T o | I = 1 o 1S 1
L2 IMOUIVBLION ..ttt sn e 1
1.3 TheFOCUS Of OUI WOTKoeiiiiiieieiesteeees e 4
LABIIE INWIMAX ettt b bbb b e 4
S @ 0T] 122§ Lo o 6
Chapter 2 Related Work 7
2.1 SOC Design and VerifiCation ISSUEccueieeieeiireeesece et neeas 8
2.2 TheWIMAX System Functional BIOCK..........ccccveevieie i 9

2.2.1 MAC Management MESSAJE.......ccouueiirieeirieesieee e siee e siee e sre e snee e naeeas 11

2.2.2 Header and SUDNEAAEY ..o s 13
2.2.3 Automatic Repeat REQUESL.........cccceeeeriece e 16
2.2.4 Cyclic RedundanCy ChECK........cccvieerieieriese e seere e 16

2.3 Design and Verification LanQUAgEccceeurreerieriieneeniesie e sees e 17
2.3. 1 HardWare MOGEiNG........ccoueieereeiesiese e eee et ee e e e 19
2.3 2 SYSEOMC ...t bbbttt 20

2.4 Platform-based DESIONccoeuiieiieeie ettt st b e s re e 21
2ALAMBA e 22
2.4.2The HW/SW INEEraCtioNcoeriririeiesie st 24

2. 4.3 HarAWare REQISLENS......ccuvcveiierieceeeeesteeteseese e ste et esreenae e sreeee e 26
P (VT 0 qTa VY= o o T S 26
2.5Virtual SOCKEL CONCEPLcveieeiieiieee et 28
2.5.1 Simulation Platform and ArCRILECLUNE..............cceverirerieeee s 28
2.5.2 Downlink and UplinK:ProCeOUIE i, . ivitseereeerreeeesreerieeeesieesieseeseeeseeseeseeeneens 29

2.0 SUIMIMABIY ..ttt et ke essneane ek at2amne smee s haas e st e seesaeeeseeenseeseesaneeaneeanneeaneesaneenes 31
Chapter 3 Case Sudy: A Behavior Model Design 32
3.1 Our Design Flow for Behavior Model ... 32
3.1.1 Reference Software DevelOpMENtc.coveveeieneere e 34
3.1.2 Simulation on ADS and ESL Platformccoevenininieieresesesc e 36
3.1.3 System Level Simulation with Pure Software..........cococvveeveeceneere e 37

3.2 Our Design Flow for Hardware Modelingccccoeeiininneenenieneeneee e 38
AN N [4115 g = o= L= o o S 39
3.2.2 Input/Output REJISLEr DESIGN.....cc.eeceeeiieeeerieesie e see e sae e sre e 40
3.2.3 Behavior Model COOiNgceveeierierieeieseesesee e e see e see e esne e 41
3.2.4 Import to the ARM-based Platform..........cccevvececceie e 42
3.2.5 System Level Simulation with Hardware Modelingcccooeevveerviieeseeennene. 42

3.3 Simulation Result and APPHICALIONcceiiiiiiiieeeee e 43
3.3.1 Hardware/Software Co-VErifiCationccoerereninenieeesesesie s 43
3.3.2 Simulation Model and Simulation ReSUIL.............covviiieieneneeee 44

Vi

Chapter 4 Conclusions and Future Work 47

Bibliography 48

vii

List
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Figure 18

of Figures
Breakdown of the Design Effort. ..o 2
REASONS Of RE-SPINS. ...ttt et 3
WIMAX MAC ATCHITECIUIE. ...ttt 5
MOOTE S LAW. ...ttt e 8
0T (8 o AL 7= o USSR 9
Breakdown of MAC FUNCHONALITY.covviiiiiieieeeeeee e 10
FOrmat Of MAC PDU.oiiiiiereee e 11
MAC Management Message Table |. ... 12
MAC Management Message Table [.o it 13
MAC General HEadEYouii st 14
MAC Bandwidth Request Header.coveeiiri e 14
TYPES Of SUDNEAENS. ... 15
Different Levels of ADSIraction. ... 18
SystemC Language ArChITECIUNE.ooeeiieeiiieeieeee e e 21
The Platform-based DeSIQN........cccoiiiiiieeese et 22
The AMBA ATCHITECIUNE.cuiiiiiiieieeeeeeee e 24
Interaction between Hardware and SOftware.ccocoveeeeieiencnene e 25
MEMOIY IM@D. ..ttt sbe e s e e e saneas 27

viii

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

The Architecture of Simulation Platform. ... 29
Downlink and Uplink ProCeAUIEocoiiriiniieie e 31
Design Flow for Behavior MOdel ... 33
The Function for Error Detection and ARQ Frame Generation.cccccveevenee. 34
The System Approximation on PC Platform.ccccoeieniinienenie e 35
The Logic and Physical System ArchiteCture.ccoceeveeieneeneeie e 37
The Functional VerifiCation.ccceeeiieiiiiierisreseseeee e 38
Design Flow for Hardware Modeling..........cooooveniiiiiienieeeseee e 39
INEEITACE DESIGN ...t st sef g ettt st et be et et e bt e sbe e e e sneenne s 40
[/O REGISIEY DESIGN.... it ieeseaneasseatassbasseanss aneseessessessseessessesssesssesnsssseessesssessesssens 41
The SoC Designer Co-simulation ENVIroNMEeNt.cceovevererenenesesesenennenns 43
The Clock Cycles of Three Simulation Modelsin Different Packet Sizes............ 44
The SIMUIELION RESUIL ..o 45

Chapter 1 Introduction

1.1 Technology Trend

As predicted by International Technology Roadmap Semiconductors (ITRS), there will be
billions of transistors within a single chip in ten years.[25] We understand that design gap isa
series problem. The increasing gap between VLS| complexity and design productivity drives
us to implement our system at the higher abstraction level. Time to market is another issue.
When the lifetime of each electronic productis-shorten day by day, the complicated system
like WIMAX is not suitable for ssmulating at low abstraction level. In order to improve the
simulation performance and design efficiency, we implement our design at el ectronic system

level (ESL).

1.2 Motivation

IC industry plays an important role in Taiwan. The communication SoC design brings both
opportunities and challenges to local IC design houses. The main challenge of system design

now is to develop the system without functional mistakes and meet the time to market. As

shown in Figure 1, verification takes 60%~80% of the overall design effort.[8] Nowadays, the

design bottleneck is verification. To implement a system at higher abstraction level can

increase the design productivity. If we want to improve the design productivity, we must

improve the verification methodology. In this point of view, the efficient simulation platform

isan important role in SoC design.

Verification Design

[] High Level Design
B RTL and Block Test
[] Synthesis

[] DFT

[] Timing Analysis

I BEH Model

B ASIC Testbench

B System Simulation
B Exiended Simulation
[] Equivalence Checking
[] Emulation Support
[] Emulation Software

Figurel Breakdown of the Design Effort.

The purpose of this thesis is to implement a behavior model with error detection and error

correction functions on an electronic system level simulation platform and facilitate the

verification efficiency by hardware modeling technology.

The first step in communication system design is functional verification. It is a very

important issue in communication system development. From a study by the Collett
International Research in 2000, the functional error is the most significant defect in SoC
design as shown in Figure 2.[21] It is necessary to find out all defects before type out the red
chip in order to avoid the expansive penalty of re-spin. Because the ssimulation platform
provides a heterogeneous simulation environment, the behavior model with hardware
accelerator in this system can be verified before the real RTL model is ready. In this way, the
development of hardware and software can be started concurrently. The high level
co-simulation affects the design efficiency obviously. Take WiIMAX for example, it must be
more complicated than any former one. Because the proper design methodology is adopted,
the design and verification schedule will be shortened and the overall productivity will be

increased significantly.

Reasons of Re-spins

Firmware

IR Drop

Power
Mixed-Signal I/F
Yield

Race Condition

Reasons

Slow Path
Clocking

Noise

Functional

0% 20% 40% 60% 80%

Figure2 Reasonsof Re-Spins.

1.3 The Focus of Our Work

In order to verify the behavior between the transmitter and the receiver, we implement a
virtual socket for packet transmission. This behavior model is used to deal with packet
transmission without physical connections and the socket API for network communication.
We also implement this virtual socket with error detection and error correction functions for
supporting data integrity. We demonstrate the functional verification at electronic system
level on the ARM-based platform. In order to decease the simulation time, we turn the CRC

function into hardware module for improving the simulation performance.

1.4 Brief in WIMAX

WIMAX (Worldwide Interoperability of Microwave Access) is a wireless Internet service
designed to cover wide geographical areas serving large numbers of users at low cost.
WIMAX is the synonym given to the IEEE 802.16 standard defining wide area wireless data
networking. WiMAX is the standard being adopted worldwide by manufacturers to insure
inter-operability of equipment. WiMAX is considered one of the best solutions for "last mile"
distribution. In contrast, wireless local area networks are designed to provide network access
within an office environment or a home once Internet service has been delivered to that point.

The coverage of WiMAX is about 30 to 50 kilometers, which exceed the existing coverage

barrier in wireless wideband access. It can provide as high

as 75Mbps data rate in a 20MHz

bandwidth. OFDM and OFDMA are kernel physical layer technique of WiMAX. OFDM is a

multi-carrier modulation technology and has aready been applied in ADSL and WLAN.

OFDMA is an OFDM multiple access scheme that used

in uplink. Each user is alocated

different sub-carriers and thus is distinguished by orthogona sub-carriers.[17]

Upper Layer

i

(G

L

| Ranging/
| Initialization Fragmeniution /

L. Defragmemntation

:

: MAC
Handovar —| Manipement — { Scheduler
Message Gen, |

J"au:kiug. Header / Sabheadar |

| | |

|l Bandwidth ARD
Ml Alloeation |

| I CRC

| 1

(]

i
: H-ARD ——{ Comeatenntion |
[| ‘ —=) ;

Dacoieatenation |

Lower Layer (PHY)

Figure3 WiMAX MAC Architecture.

The functiona blocks in the system architecture are shown in Figure 3. The system is

partitioned to two parts - the data plane and the control plane. The MAC data plane functions

include fragmentation, de-fragmentation, packing, concatenation, automatic repeat request,

and cyclic redundancy check, etc. The MAC control plane functionality, including system

control, can be implemented as afinite state machine in software or hardware.

1.5 Organization

The remainder of this thesis is organized as follows. In chapter 2, we describe the related
works and design concepts in our design. The virtual socket concept for packet transmission
in downlink and uplink are illustrated. In chapter 3, we illustrate the design process step by
step. Besides we demonstrate the heterogeneous simulation at electronic system level. A
hardware modeling technology is-adopted in our. design and we present the simulation
performance will be improved by hardware modeling technology. In chapter 4, we conclude

with a summary of contributions and suggestions for future works.

Chapter 2

Related Work

In this chapter, we explain some related works and design concepts about our design. In
order to explain why we implement our behavior model on ARM-based platform at electronic
system level, we discuss the SoC design and verification issues in section 2.1. The MAC
functions that are relative to our behavior model are explored in section 2.2. Different design
and verification languages are used for different purpases at different abstraction levels. In
section 2.3 the hardware modeling technology.is discussed and SystemC language for
developing the hardware model in our design is introduced. In the section 2.4, the
platform-based design concept is explored and the actual implementation is demonstrated. In
the section 2.5, we propose a virtual socket concept for the packet transmission. We explain
the concept and the behavior of this model. Finaly we make a summary of this chapter in

section 2.6.

2.1 SoC Design and Verification Issue

As the semiconductor industry continues to drive toward more advanced manufacturing

technologies, al design companies face shrinking product lifecycles and rising demand for

greater functionality. Moore's Law is the empirical observation made in 1965 that the number

of transistors on an integrated circuit for minimum component cost doubles every 18 months,

as shown in Figure 4.[23] Due to the scale down of the transistor, the capacity in each device

Isincreasing.

Number of transistors on an integrated cireuit

We understand that the progress of semiconductor technology brings more

10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

2,300

Number of transistors doubling every 18 months.

Itanium 2 g

ntiumd
@ lianium

o Pentium 11
® Pentium Il
Pentium

BO=0

RO0E
4004

Y

1971
1980 1990 2000 2004

2006
Yaer

Figure4 Moore's Law.

silicon

complexity. It means the growth of silicon complexity is much more than the designer's
productivity. Therefore the productivity gap between integration capacity and design
complexity becomes worse as shown in Figure 5. In the SoC design, many design flows and
design methodologies are proposed to close the productivity gap like the platform-based
design and electronic system level design. We adopt both two design methodologies for our

development. We use the top-down design flow to design our communication system.

I 3

Gate Counis . , .
Integration Capacity

Productivity Gap

Design Complexity

-
-

Time

Figure5 Productivity Gap.

2.2 The WIMAX System Functional Block

In this subsection, we disclose the basic functions of WiMAX system. The MAC
management message generator is responsible to generate the corresponding message typesin
specific communication situations. The cyclic redundancy check is responsible for error

detection, and the automatic repeat request is responsible for error correction. In order to

support mobile user, the handover function must decide to link with a new base station and

disconnect with the current base station at proper moment. The scheduler is in charge of the

QoS control. Ranging and initialization is responsible for keeping the radio link working, like

synchronization, power control, etc. Packing, fragmentation, concatenation is responsible for

the transmission efficiency by constructing different packet sizes. Bandwidth alocation is

responsible for allocating the proper bandwidth when the subscribers request for bandwidths.

The breakdown of MAC functionality is shown in Figure 6. Detailed definition for each

related function is described in the following section.

Fragmantation/
Detragmentation

MAC
Management
Message Gen

Packing Header
/Subheader

ARQ
Construct/
Decode

Bandwidth
Allocation

MAC
Functionality

CRC Construct/
Decode

Ranging/
[nitialization

Concatenation/
Deconcatenation

Figure6 Breakdown of MAC Functionality.

10

2.2.1 MAC Management Message

A MAC protocol data unit (PDU) consists of a fixed length header, a variable length
payload and an optiona field for cyclic redundancy check (CRC). The format of the

management message isgiven in Figure 7.

Management

Management Message Pavloa "RC
ey nagement Message Payload CRC

Figure7 Format of MAC PDU.

A set of MAC management messages is defined. These messages shall be carried in the

payload of MAC PDU. All MAC management messages begin with a management message

type field and may contain additional *fields. MAC management messages on the basic,

broadcast, and initial ranging connections shal neither be fragmented nor packed. MAC

management messages on the primary management connection may be packed and/or

fragmented. For the SCa, OFDM, and OFDMA PHY layers, management messages carried

on theinitia ranging, broadcast, basic, and primary management connections shall have CRC

usage enabled. The encoding of the management message type field is given in Figure 8 and

Figure 9. [1]

11

Message Name

Message Description

Type
(0 UCD Uplink Channel Descriptor
] DCD Downlink Channel Descriptor
2 DL-MAP Downlink Access Delinition
3 UL-MAP Uplink Access Delimtion
4 ENG-RE() Ranging Reguest
5 RNG-ESP Ranging Response
] REG-REQ Registration Request
7 REG-RSP Registration Response
8 Reserved
Q PEM-RE() Privacy Key Management Request
10 PEM-RSP Privacy Key Managemenl Response
11 DSA-REQ Dynamic Service Addition Request
12 DSA-RSP Dynamic Service Addition Response
13 DSA-ACK Dynamic service Additon Acknowledgze
14 DSC-REQ Dynamic service Change Request
15 DSC-RSP Dynamic Service Change Response
16 DSC-ACK Dynamic Service Change Acknowledge
17 DSD-REQ Dynamic Service Deletion Eequest
18 DSD-RSP Dynamic Service Deletion Request
19 Reserved
2) Reserved
21 MCA-RE() Multicast Assignment Requesl
22 MCA-RSP Multicast Assignment Response
23 DBPC-REQ Downlink Burst Profile Change Reguest
24 DBPC-PSP Downlink Burst Profile Change Response

Figure8 MAC Management Message Table |.

12

Type Message Name Message Descripion
25 RES_CMD Reset Command
26 SBC-REQ) S5 Basic Capability Request
27 SBD-RSP 585 Basic Capability Response
28 CLK-CMP SS network clock comparison
29 DREG-CMD De/Re-register Command
30 DSX-RVD DSX Received Message
31 TFTP-CPLT Config File TFTP Complete Message
32 TFTP-RSF Config File TFTP Complete Response
33 ARQ-Feedback Standalone ARQ Feedback
34 AROQ-Dhscard ARG Discard message
35 ARQ-Reseat ARQ Reset message
36 REP-RE(Q) Channel measurement Report Request
37 REP-RSP Channel measurement Report Response
38 FPC Fast Power Control
39 MSH-NCFG Mesh Network Conhguration
40 MSH-NENT Mesh Network Entry
41 MSH-DSCH Mesh Distributed Schedule
42 MSH-CSCH Mesh Centralized Schedule
43 MSH-CSCF Mesh Centralized Schedule Conliguration
44 AAS-FBCK-REQ AAS Feedback Request
45 AAS-FBCE-ESP AAS Feedback Response
46 A AS-Beam-Select AAS Beam Select message
7 AAS-Beam-REQ AAS Beam Response message
48 AAS-Beam-RSP AAS Beam Response message
49 DREG-REQ S5 De-registration message
30-253 reserved
Figure9 MAC Management Message Tablell.
2.2.2 Header and Subheader

Two MAC header format are defined. The first is the generic MAC header that begins each

MAC PDU containing either MAC management messages or data from the upper layer. The

second is the bandwidth request header used to request additional bandwidth. The single-bit

Header Type (HT) field distinguishes the generic MAC header and bandwidth request header

13

formats. The HT field shall be set to zero for the Generic Header and one for a bandwidth

request header. The Figure 10 shows the format of MAC general header.[1]

om
o
S
i = Eks |=| LEN
ol = Type (6 =l — =
N b ype (6) =S| @ |3|vsB@
T | W x|o (n'e}
LEN LSB (8) CID MSB (8)
CIDLSB (8) HCS (8)

Figure10 MAGC Genera Header.

The second is the bandwidth request header used.request additional bandwidth. It is used
by the subscriber station to request morebandwidth on the uplink. The Bandwidth Request
PDU shall consist of bandwidth request header a one and shall not contain a payload. The

Figure 11 shows the format of the MAC bandwidth request header.[1]

(aa]
w
E —
=15 | Tvpe (3) BR MSB (11)
= |
I |w
BRLSB (8) CID MSB (8)
CID LSB (8) HCS (8)

Figure1l MAC Bandwidth Request Header.

14

There are five types of subheaders. The subheaders may be inserted in MAC PDUs

immediately following the generic MAC header. The definition of the type field is indicated

in Figure 12. The grant management subheader is used to convey bandwidth management

needs to the BS. The fragmentation subheader indicates the presence and orientation of

service data units (SDU) in the payload. The packing subheader indicates the packing of

multiple SDUs into signal PDU. If both the fragmentation subheader and grant management

subheader are indicated, the grant management subheader shall come first. The packing and

fragmentation subheaders are mutually exclusive and shall not both be present within the

same MAC PDU. The mesh subheader is only necessary for mesh network. All the

subheaders included the mesh subheader are within payload. If the mesh subheader is

indicated, it shall precede al other subheaders. The fast-feedback allocation subheader shall

always appear as the last per-PDU subheader. Thisis used to tell the PHY layer to provide an

immediate measurement of the quality of the radio signal.[1]

Subheader type Carried Information

Fragmentation The fragmentation state of the payload
Grant Bandwidth management needs
Packing The fragmentation state of the payload
Mesh Xmt Node ID

FAST-FEEDBACK PHY-specific Information

Figure 12 Types of Subheaders.

15

2.2.3 Automatic Repeat Request

The ARQ mechanism is a part of MAC, which is optional for implementation. When
implemented, ARQ may be enabled on a per-connection basis. The per-connection ARQ shall
be specified and negotiated during connection creation. A connection cannot have a mixture
of ARQ and non-ARQ traffic. Similar to other properties of the MAC protocol the scope of a
specific instance of ARQ is limited to one unidirectional connection. For ARQ-enabled
connections, enabling of fragmentation is optional. When fragmentation is enabled, the
transmitter may partition each SDU into fragments for separate transmission based on the
value of the ARQ BLOCK_SIZE parameter. When- fragmentation is not enabled, the
connection shall be managed as if fragmentation was enabled. In this case, regardless of the
negotiated block size, each fragment formed for transmission shall contain al the blocks of
data associated with the parent SDU. The ARQ feedback information can be sent as a
standalone MAC management message on the appropriate basic management connection, or

piggybacked on an existing connection. ARQ feedback cannot be fragmented.[1]

2.2.4 Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a way to detect small changes in blocks of data.

Error detection is especially important when the control messages are transmitted or data are

16

stored, because an error of even one bit is often sufficient to make a system shutdown. An
error correction protocol triggered by CRC error detection can provide this accuracy at low
cost.

The CRC agorithm operates on a block of data as a unit. We can understand the CRC
better if we see a block of data as a single numerical value. The CRC agorithm divides this
large value by a magic number (the CRC polynomial or generator polynomial), leaving the
remainder, which is our CRC result.

The CRC result can be sent or stored along with the original data. According to the format
of PDU, we attach the CRC result to the tailor of payload. When the datais received, the CRC
algorithm can be reapplied, and the latest result compared to the origina result. If any error
has occurred, we will probably get adifferent CRC result. Most uses of CRC do not attempt
to classify or locate the error, but ssimply arrange to repeat the data operation until no errors

are detected.

2.3 Design and Verification Language

Different design languages are used for different abstraction levels. The higher abstraction
level is suitable for agorithm development. On the other hand, the lower abstraction level is

suitable for modeling the actual hardware behavior. From the Figure 13, we find four different

17

design languages. Different design languages are for different purposes. The Matlab is a
powerful mathematic tool and it is used to model the complicated mathematic issues or
advanced algorithms. The hardware description language (HDL) like VHDL or Verilog is
used to model the rea hardware behavior and evaluate the physical information like timing,

area, and power.

______ s

Matlab

________________________ Architecture
4 Level

(Software)
C langauge

(Hardware)

RTL

Synthesiser

——————————————— Gate Level

Figure 13 Different Levels of Abstraction.

In our implementation, we adopt C language and SystemC language to construct our
behavior model. C language is most popular language in the world and supported by various
compliers. It can be ported from one platform to another platform easily, so C language is

suitable for embedded system design. SystemC provides a unified environment for architects,

18

verification engineers and implementation engineers. In the following two subsections, we
explore the hardware modeling technology and introduce SystemC language. Our purpose is
to implement the behavior model at electronic system level and execute the heterogeneous
simulation, so both C language and SystemC language are necessary for the development of

our mode!.

2.3.1 Hardware Modeling

In the early 1980s, the logic of integrated circuits was designed via gate level drawing. The
appearance of the first IEEE HDL standard was in 1987. The hardware description languages
are meant to provide a unified notation for_describing eectronic systems at register transfer
level. In RTL design, a circuit behavior is defined in terms of the flow of signals or the
transfer of data between registers so the design efficiency is better than the gate level design.
SystemC was announced in 1999. It is a much higher level of abstraction than writing
hardware description language at register transfer level.

There are many differences between traditiona and modern design processes. The main
advantage in the modern process is to enable both software and hardware development
concurrently. In order to start the software development and verification prior to the hardware

Is completed, a hardware model becomes essential. The hardware modeling technology not

19

only shortens the SoC development schedule but aso improves the simulation performance at
electronic system level platform. In our behavior model, we compare the performance
between the pure software version and the new version with hardware modeling. After the

simulation, we prove the hardware CRC module can improve the simulation performance.

2.3.2 SystemC

Thefirst version of SystemC was released in September 1999. Early devel opment was done
by Synopsys, UC Irvine and CoWare. The Open SystemC Initiative (OSCI) was founded in
2000. SystemC becomes one |EEE standard in 2005.

As a standard, SystemC could paossibly enable and accel erate the exchange of system level
intellectual property (IP) models and executable specifications using a common C-based
modeling platform. SystemC provides a single language to define hardware and software
components, to facilitate hardware/software co-ssimulation, and to facilitate step by step
refinement of a system design down to the register transfer level for synthesis.

Replacing the traditional hardware description language (DHL) with SystemC minimizes
the communication overheads involved in current system design flow, deceases simulation
time and thus speeds up the design process.[12]

The advantages of SystemC as a system level design level design language are [13]

20

[14][15]. The first is it enables modeling of systems above the RTL level of abstraction —
including systems that might be implemented in hardware, software or a combination of both.

The second is SystemC promotes reuse of the developed components from one system to
another with minimum efforts. The third is SystemC offers good design space exploration of
functional specification and architectural implementation alternatives. The Figure 14 shows

the architecture of SystemC language.[24]

Standard Channels for Various

Models of Computation (MOCs) Methodology Specific Channels
Kahn Process Networks Master/Slave Library, etc.

Static Dataflow, etc.

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc.

anguage
Core Languag Data Type
Modules _ .
4-valued logic types (10zx)
Ports ;
4-valued logic vector
Processes E b
Bits and bit-vectors
Events . .
Arbitrary-precision Integers
Interfaces . . h
N Fixed-point numbers
Channels

C++ Language Standard

Figure14 SystemC Language Architecture.

2.4 Platfor m-based Design

Our behavior model is implemented according to the platform-based design methodol ogy.

Platform-based design is a powerful concept for releasing the increased pressure on

21

time-to-market, design and manufacturing costs. The modern SoC design flow increases the
productivity of each engineer. Usually the engineers just change few functions in the former
design to create a new one. Most design effort is reused and shared in the following projects.
The engineers will reuse the components like the ARM processor, the memory, and some
peripheral modules. As shown in Figure 15, the AMBA interface and protocol enable the
designer to develop the SoC system by assembling essential 1Ps. The platform-based design
concept is adopted by our design methodology. In the following subsections, we will
introduce the features of AMBA, the interaction of hardware and software, and the memory

mapping concept for accessing declaredregisters.
. . '_] .I' \

e

AMBA \

—_— =

Figure15 The Platform-based Design.

2.4.1 AMBA

The AMBA protocol is an open standard, on-chip bus specification that details a strategy

22

for the interconnection and management of functional blocks that makes up a System-on-Chip

(SoC). The AMBA protocol enhances a reusable design methodology by defining a common

backbone for SoC modules.

There are three different buses in the AMBA specification: AHB, ASB and APB. AHB

stands for Advanced High-performance Bus. AHB is a new generation of AMBA bus which

is intended to address the requirements of high-performance synthesizable designs. It is a

high-performance system bus that supports multiple bus masters and provides high-bandwidth

operation. ASB stands for Advanced System Bus. This is an older version has been replaced

by AHB. APB stands for Advanced Peripheral Bus. It .is a simple lower performance and low

power bus used for low speed peripherals. The APB is optimized for minimal power

consumption and reduced interface complexity. The macrocells designed to interface with

AMBA can be seen as building blocks which can be reused in future designs and mixed and

matched in different combinations to realize complex systems in a shorter period of time. The

AMBA architecture is shown as Figure 16.[22]

23

High-performance High-bandwidth
ARM processor on-chip RAM
B UART | | Timer
. . R
High-bandwidth AHB or ASB | | APB
External Memory
D
Interface G
E Keypad ‘ PIO
DMAbus
master AHB to APB Bridge
or

Figure16 The AMBA Architecture.

ASB to APB Bridge

2.4.2 The HW/SW Interaction

Hardware/software interaction plays an important rolein co-design of the embedded system.

It connects the software part and the hardware part in a system. There are two main

approaches for hardware/software interaction: Polling and Interrupt.

Polling the device usually means reading its status register so often until the device's status

changes to indicate that it has completed the request. Interrupt is a signal from a device

attached to a processor or from a program within the processor that causes the main program

that operates the system to stop and figure out what to do next. An interrupt can be generated

by one of two sources. software interrupt and hardware interrupt. The interrupt signals

initiated by programs are called software interrupt. An interrupt also can be generated by an

24

external device. These are called hardware interrupts. When a program receives an interrupt
signa, it takes a specified action. Interrupt signals can cause a program to suspend itself

temporarily to service the interrupt.

. o | B Haedware Software
sUd 3HAE D R o
- e LI T Sei T L} N
5

Devl Dev2

Y

Interrupt(n)

¥

Do IRQ(n}

¥
Interrupt Service
Rountine(n)

Figure 17 Interaction between Hardware and Software.

The behavior of the interrupt and ‘the actual layout is shown in the Figure 17. The

interaction between our hardware module and ARM processor is hardware interrupt. Thisisa

more effective approach than polling. After the unprocessed data is moved into the input

buffer, the CRC module is enabled by software with the CRC_enable signal. Then the CRC

hardware module will start to process the data and return the CRC result. After the CRC

hardware finishing it job, the hardware module will inform the ARM core to fetch the CRC

result from the output buffer by using the interrupt signal. In the embedded system design, the

interrupt signal is connected to an interrupt control IC. Then the IC will inform the CUP that a

hardware module requests the interrupt service routine. The CPU compares the ID of the

25

hardware module and jumps to the address of the service routine and deal with the process.

2.4.3 Hardware Registers

In embedded system design, hardware registers compose a storage area for control signals
and data. Hardware registers are contained within a certain peripheral unit. Usually we divide
the hardware registers into three types -- control registers, status registers, and data buffers. A
status register is a collection of bits for a processor that indicates the status of various specific
operations. When a status register is read, it will report the state of the peripheral device.
When a control register is written, it will change the state of the periphera device. The data
buffers usually storage the raw datafor processing.and the output data for accessing. Registers

is costly, so the registers will not be used unlimited.

2.4.4 Memory Mapping

Memory mapping is a process that a digital hardware is connected to a processor’s address
bus and data bus. In this way, the component can be accessed exactly as if it were a memory
cell. To a processor, everything is memory. The memory mapping is to define the address of
the 1/0 registers in the memory table so the embedded processor can exactly access the

specific registers. Memory-mapped I/0O (MMIO) and port-mapped 1/0 (PMIO) are two

26

complementary methods of performing input/output between the CPU and I/O devices in an

embedded system. In our implementation, we use the memory-mapped I/O methodology.

Memory-mapped /O uses the same bus to address both memory and 1/0 devices, and the

same CPU instructions are used to access both memory and 1/0O devices. The 1/0O devices

monitor the CPU's address bus and map the address to their hardware registers. The Figure 18

shows the memory map in our implementation.

- ——

0x00000000 | 0x 70000000
: System Cirl Flags
|
|
: 0x70010000
i Socket Ctrl Flags
|
i 0x70020000
| TX_Buffer
e
0x70030000
. RX_Buffer
|
|
! 0x 70040000
I TX_RX_Buffer
|
|
|
| | |
| i |
[: |
i 0x70060000
: Hardware Module
0xFFFFFFFF I 0x 70070000

—_————-

Figure18 Memory Map.

27

2.5 Virtual Socket Concept

A socket is one end-point of atwo-way communication link between two programs running
on the network. Socket classes are used to represent the connection between a client program
and a server program. In our simulation platform, we don’'t have the socket API for
communication, so we propose the virtua socket concept for our simulation platform. In the
simulation platform, we use share memory as the transmission medium. Besides we define an

arbiter, some control flags, and afinite state machine for synchronizing the data transmission.

2.5.1 Simulation Platform and:Architecture

SoC Designer is a system level ‘simulation toal supporting the hardware modeling in
SystemC. New SystemC components can be created using the SoC Designer Component
Wizard. For legacy SystemC TLM model reuse, existing SystemC models can be imported
into SoC Designer with little or no modifications to the original source code. There are two
different methods for importing SystemC models into SoC Designer environment: one can
use a SoC Designer component as a top level wrapper to instantiate the modules as
sub-components, or one can import a module directly without a wrapper by changing the
module to inherit from a special base class provided in SoC Designer.[20] The Figure 19

shows the SoC Designer co-simulation environment, which supports systemC transaction

28

level model to accelerate the simulation speed.

S Real VW SUEDESIPrESanvas =

| W

Ty | Ry | Ry a o @D

BS Channel
module module module
L | Ul
= [osding Cemp
il.nan. - ok
ity e

Ready

Figure 19 The Architecture of Simulation Platform.

2.5.2 Downlink and Uplink Proceddre

The ESL simulation platform can support the multi-cores simulation. Take advantage of
this characteristic, we can model the behavior of the transmitter and the receiver with the
virtual socket. Furthermore, we build a traffic model for the uplink and downlink traffic, so
the interaction between different members becomes possible. Besides developing the
transmitter and the receiver, we build an error model to present the channel fading. In order to
synchronize these components in this platform, we defined a finite state machine to

synchronize the data transmission. Then we can verify the ssmple protocol between different

29

components in this simulation environment.

In the left side of Figure 20 shows the downlink traffic behavior. In the beginning, the base

station will generate the packets and transmit these packets to the subscriber station.

According to the specification, the base station will generate the CRC result and attach to the

taillor of the packet. It is used for error detection in the unstable wireless environment. In the

TX State of base station, we write the packet into the RX buffer. The channel runs a program

and presents an error probability on the air. The error model of the channel will decide to

change the value in the RX buffer or not according to arandom number. In the RX state of the

subscriber station, the subscriber station will receive the packet in the RX buffer, compare the

CRC result and inform the transmitter to transmit the next packet or retransmit the original

one.

In the right side of Figure 20 shows the behavior of uplink traffic. The subscriber station

will generate the ARQ frame to inform the base station the outcome of the transmission. In

the TX state of the subscriber station, the subscriber station will transmit the ARQ frame

according to the CRC check result and write the ARQ packet into the TX buffer. In the TX

state of the base station, the base station will receive the packet, decode the packet and decide

to transmit the next packet or retransmit the original one.

30

BS Chianael Ms 5 Sbmot M

P = " L= o~

: T { | b Ty
TX_Stte } r ; o) | T Swte | / [R Soe |

_.n""\ . 4 |:\hll’\' Mﬂ:k‘l) i s fdk _.-’I :{l".'ror Madel J 'I‘- --.I
| - = - - E f - I,- . \ & / L
{ CSude | THSue P =
T . =

System Cirl Singals (8

N
. System Cirl Singuls H

[o g
Tl X Bufte g

(4] . [are

(TR
TX_Buffer

IO
RX_Buffer

r . y =N
-4
|
A
|

Figure20 Downlink and Uplink Procedure

2.6 Summary

In this chapter, we introduce the desi gn concepts for our behavior model. In the section 2.1,
we discuss the SoC design and verification issues. In the section 2.2, we identify some
subfunctions which are relative to our implementation. In the section 2.3, we explore the
abstraction level of our implementation and choose the proper design language to model our
design. In the section 2.4, we illustrate the concept of platform-based design, the embedded
system design and the details for hardware modeling. In the section 2.5, we introduce the

simulation tool and we propose a virtual socket for the data transmission.

31

Chapter 3

Case Study: A Behavior Model Design

The related work about our implementation is described in the previous chapter. In this
chapter, we describe the development of our behavior model and demonstrate the simulation
result. In the beginning, we develop and verify our reference software and applications in C
language on the personal computer.environment. Then we port our C mode to the ESL
platform and verify the functionality of the traffic behavior, the error detection behavior, and
the error correction behavior. Further, we implement a hardware module for
hardware/software co-simulation platform. We modify the firmware to define the interaction

between the hardware module and the processor.

3.1 Our Design Flow for Behavior M odel

We implement our behavior model in C code according to the IEEE 802.16 specification.
The specification describes the MAC functionality in English. When we study the meanings

of these functionalities, we have to turn these descriptions from the nature language into

32

executable code in C language. The executable specification not only avoids the ambiguous
meaning in nature language but also provides the quantitative analysis in engineering
applications. After verifying on PC, we use the ADS (ARM Developer Suite) tool to generate
the image file and download to the SoC Designer for simulation. Then we design a hardware
module for CRC function and compare the ssmulation performance with the pure software
verison. The Figure 21 shows the design flow and the development environments for our

behavior modd!.

Porting to SoC

Specification " Des igner Platform

Y Y
Reference Hirdware
Software Modeling Process
development(PC) g -
¥ v
Simulation on Heterogeneous e =, =
== —m—

ADS Simulation e

Figure21 Design Flow for Behavior Model

33

3.1.1 Reference Software Development

The basic function of our behavior model is to provide data integrity during the
transmission. There are three subsystems are built in our implementation — the BS module, the
MS module, and the Channel module. The transmission side generates the transmitted packets
based on the proper format and generates the CRC result for the error detection. The channel
models the behavior of channel fading and changes the value in the RX buffer. The channel
also acts like the arbiter to schedule the TX/RX behavior by changing the control flags and
the state of finite state machine. The received side generates the CRC result again and
compares the CRC value to confirm the completeness of received packet. According to the
comparison, the receiver generates the ACK message to inform the transmitter to transmit the

next packet or retransmit the original one.

researchUmplememt JoBNCTU_MAC_D920\DebugiN! _0921 . = | carchlmplement JobMCTU_MAC 0628%packel hex'] =0l
opened. [# B Bl tooeh Bt Yew Fommd Coben Maw Miael Wadow Bl =18l
e Dsdd @b v L@ oo R L

v |y i |

] | |
FoeHily, yeuFl For T, 15, C0 1] Mo 206AW B4 T e S, 19 1.3

Figure22 The Function for Error Detection and ARQ Frame Generation.

Some control flags and data buffers are used in the transmission behavior, most of the

details are not declared in the specification, so we have to prototype and verify the error

34

detection function and the retransmission scheme on the PC platform as shown in Figure 22.

Furthermore we implement a basic protocol for TX/RX transmission. Stop and wait
transmission is the simplest reliability technique and is adequate to a very simple
communications environment. A stop and wait protocol transmits a Protocol Data Unit (PDU)
of information and then waits for a response. The receiver receives each PDU and sends an
acknowledgement (ACK) PDU if a data PDU is received correctly, and a negative
acknowledgement (NACK) PDU if the data was not received correctly. The Figure 23 shows

the behavior of transmission.

X RX
Transmit
4 \'\-
g
b Receive sful to tansmit packet 9.
e Ack rray = 1111111118
|~ 1
B ———" e the ARQ Frame 3
- 1
‘/-' on ocurrs 17 times,
Transmit
™~
_ 1 to tansmit packet 18
sl The 1 !
~~al
’ The RX Array is =1111111110
a4 Receive
7 Ack he RY Array = 1111111111
s 1
Lo == lation time is
//’ ess any key to contin
Transmit *
\.\
oy T '
Bl Receive
Y

Figure 23 The System Approximation on PC Platform.

35

3.1.2 Simulation on ADS and ESL Platform

When we verify the communication system, we need to create the environment for
communication under the conditions that no physical layer and no socket API are existed. We
establish the logic architecture, which is shown in the Figure 24. We divide our C model to
three subsystems — the BS module, the MS module, and the Channel model.

The design concept of the communication system is different from the other systems like
various multi-media decoders. Communication systems must communicate with the other
members in the wireless environment. Usually it is hard to build the whole system and verify
the protocol in the beginning. In our simuletion platform, the SoC designer supports the
multi-core simulation. It means different programs can be executed concurrently on this
platform. We take advantage of the simulation platform and construct a logic system on it
including the base station, the subscriber station, and the channel model to verify the
downlink and uplink traffic.

When devel oping exactable codes for three ARM processors, we use ARM Developer Suite
(ADS) to generate the three image files. After passing the debugging in the ARM compiler,
linker, and utility programs proved by ADS, we load the image codes to three subsystems on

the SoC Designer platform.

36

Logical System Architecture on SoC Designer Physical System Architecture

Figure24 The Logic and Physical System Architecture.

3.1.3 System Level Simulation with Pure Software

The Figure 25 shows the functiona verification on the ESL platform. The simulation
demonstrates the interaction between the base station and the subscriber station on the
downlink traffic and the uplink traffic. The smulation aso demonstrates the error model to
replace the real wireless channel because there are no physical connection and actual medium.
This simulation aso demonstrates the error detection and error correction function in a

wireless environment for supporting data integrity.

37

S R U |
Geoaal. Dby Wadom Hely

s om b M W e el e
e e I MHE &3
- r.., - - |
1
u 1 1
O | SN EERTT 1
e = |
AlglEy = PE) = |
I 5 o e TRA e - |
] { it § i s 0 o -
| ime his 5 |
1 | T
"] I
1L | ' o b
|| S P21 |
E=1{teviic P 9 Prme 4 Fisn
o |uRe b :: I
D0 (B B mmminiu s =5 I
. P Tt g 1, - I
*a
= |
g
2o |
=
> |
(B 4 cami e o |
SO il e gt Ty o
gt : |
lerodr i i P S 5
bossc it | - |
= | R S el sexe,
LI - =
f {Timeit v g el |
g - |
I ima
= |
= |
T {
[B
Bt ¥ LIRS S =
Tromemii T phohe o, —
Ly | malne 12 L 1
CHF {looe T WM P 4 =
| " b
Birvdtr, st ol 1| FET Rrwe =
Sliibda s
v R g ol CARE B}
e Pien d LMY H e
e
T R Cocenls | o] MR e Camods . | [oo Lot Pial
el

Figure25 The Functional Verification.

3.2 Our Design Flow for. Hardwar e M odeling

In this section we explore our design flow for hardware modeling. The design process
includes the interface design, 1/O register design, behavior model coding, and firmware
coding. The Figure 26 shows the design flow and the development environments for our
hardware modeling. In the research [16] [18] indicate the framing function, ARQ function, the
encryption function, and the CRC function are timing critical and large overhead. Among

these functions of MAC, we choose the CRC function as an example for hardware modeling.

38

Interface Design

s i
Vo chlstcr Firmware Coding ifi
Design i
e U Behavior Model Heterogeneous j’i—a—
Coding Simulation 3

Import to ARM-
based Plarform

Figure26 Design Flow for Hardware Modeling

3.2.1 Interface Design

There are three main interfaces in our hardware module. One is the AMBA for transferring
the transmitted packet and fetching the CRC result. Another is the interrupt signa for
indicating the processor that the CRC result is ready. The third is the input pin of clock cycle.

The appearance of CRC module is shown in Figure 27 below.

39

i
i
R
1) Gt
i
e & - (L1 P G - B o= r— RO ' -~
- o T A = 8 el [Jﬂﬁ i f =t _—
i —3 e |
Step 3 - Add Port Definitions i i pS. =
i | | 1 [i
- — - - —_— - | | SRR

[Fest ame [Tt T [Conat [Bock Siae | Mamory e |) I e 8

[AHE Transec e Ll For | | H | B =

linwerept gl Mastes bort | : Tl l‘-;' S :"""__l' e 1u-u-n— n
| ; ; _|. jE_= |
| 1 T
, H = g T
i . — | | LR .
i N B
I B o] VA ol
| e T L X

e W S i\ -~
: r ==} — ! LY
i - 1 |
i F— \
: =1 '.
i 3 \
i [+ i \
! i | Bl | | ere wrO i
B Edie | | Ingon | : T Il $ AHE INTRD }
| elmeent L] buabill o=t |
| ==
i L i cik-in !
_shek | [Heaw Gl | : L= |

! bom.o 1o =
! s
1
|

Figure 27 Interface Design

3.2.2 Input/Output Register Design

Within the hardware module we-define-input-registers, output registers, and data buffers.
The CRC _enable, BytesOffset, and Input Buffer are input ports. The CRC done and
CRC result are the output ports. The processor moves the unprocessed data to the
Input_Buffer and defines the length of unprocessed data by setting the CRC length. The
processor enables CRC hardware module by setting the CRC_enable equal to “high”. After
calculating, the CRC result will be written into the Output_Buffer. Then CRC_done register
will be set to “high” and this signal is wired to the processor for informing the processor that

the CRC valueisready. The architecture is shown as Figure 28.

40

e e en e E oo Wik S [EREEV Jf_‘ﬂ' CRC Module
Siep 5 - Add Wl Regisiers and Wemory Regons |

W Mulillawetace & Repimcs [Mamosy

[Frptcttone [Barddt [Trve [Mesmcrbogged [Shee ot | bl Ottt [ooyt

PCRC _snable n T AHE [T

[CRC e 32 AHE (500 .

[CRC gy 32 AHE a0 CROC_Enable |

¢

Wt Bl 52
| ST

AHE]
AHE 000

i i -

ByleOiliet

Lo | +|
Bag Edit Dielets
Bk [

Figure28 1/0O Register Design

3.2.3 Behavior Model Coding....

New SystemC components can be created by using the SoC Designer Component Wizard.
We use a SoC Designer component as :a top Ievel. wrapper to instantiate the modules as
sub-components. The component wizard will generate the following files: A cpp/h file for the
SoC Designer component, a cpp/h file for each dave port, and a cpp/h file MxDI if
selected.[20] The newly generated SoC Designer component does not contain any behavior
and we have to construct the CRC function in Visual C++ environment. Then we generate a
library with correct behavior. The design is based on the SystemC language. It can facilitate

the design speed of our hardware module.

41

3.2.4 Import to the ARM-based Platform

We imported the SystemC component and connected the interfaces properly to the raative
SoC Designer modules. In general, ports and channels of imported SystemC modules are
based on user-defined SystemC interfaces. We drag the CRC module from the component

window and connect the module to the AMBA bus and the interrupt controller.

3.2.5 System Level Simulation with Hardware Modeling

After we establish the SystemC model, we can fast prototype the hardware model in
SystemC at higher abstraction level. This is good for designers to verify the system
functionality concurrently by both the hardware side and the software side. This aso can
reduce the rework penalty and the delay in arush schedule.

As the Figure 29 shown, the simulation result demonstrates the hardware/software
heterogeneous simulation on SoC Designer platform. The completed module can be defined

asalibrary, and this design can be reused and redesign in the future.

42

crc[0] (CRC)

\ AHB . INTR? Jp
clk-in i

Figure29 The SoC Designer Co-simulation Environment.

3.3 Simulation Result and/Application

There are two purposes for the hardware/software co-ssimulation. The first is we want to
guarantee that the hardware module behavior is correct. The second is we want to improve the

simulation performance at electronic system level.

3.3.1 Hardware/Software Co-verification

In this subsection, we demonstrate the functional verification of hardware and software

in an electronic system level platform. The function of our behavior model provides a virtual

43

socket for packet transmission and guarantees the data integrity in a channel with an error
model. The behavior model is implemented on the ARM-based platform. It can be used to
design the other embedded communication systems. Due to the higher abstraction level, the
simulation overhead is less than the register transfer level. Furthermore, the simulation
platform supports the hardware/software co-verification. We turn the CRC function into
hardware module in SystemC language. Hardware/software co-verification is to make sure the
embedded software works correctly with the hardware parts. The design methodology

accelerates the firmware debugging. Early debugging also reduces the risk of redesign.

3.3.2 Simulation M odel and Simulation Result

In this subsection, we use three simulation madels to compare the simulation performance.
We want to calculate the clock cycle of the software function and hardware module based on
different packet sizes. There are three simulation models - the model with no CRC function,
the model with software CRC function, and the model with hardware CRC module. The

Figure 30 shows the clock cycles of three simulation models in three different packet sizes.

Function i 10 (bits) 100 (bits) 1000 (bits)
Without CRC 4346642 6908678 21333194

With software CRC 6126742 8336837 29410580

With hardware CRC 7090061 8209836 26327751

Figure 30 The Clock Cycles of Three Simulation Modelsin Different Packet Sizes

44

The Figure 31 shows the comparison of simulation result. We obtain the clock cycle for
software function and hardware module in different transmitted packet sizes. The simulation
result explains the improvement of the overall system performance in heavy traffic data. The
simulation shows that there are 1.6% and 11.7% improvements by setting the packet size in

100bits and 1000bits respectively.

30000000 —

25000000

20000000
B 10(bits)

B 100(bits)
0 1000(bits)

15000000

Clock Cycle

10000000

5000000 H] I I I

without with SV with HW without with SV with HW without with SV with HW
CRC CRC CRC CRC CRC CRC CRC CRC CRC

Function

Figure31 The Simulation Result

The processed data is transferred between software and hardware through the AMBA bus.
The bus transaction is an overhead for system simulation. For the small packet size, the
simulation result of hardware version isworst because the extra overhead in bus transaction is
larger than the processing gain of hardware component. For the large packet size, the

hardware version obtains the better smulation result because the extra overhead in the bus

45

transaction is smaller than the processing gain of hardware component. The packet size in

100bits is an approximate threshold in our behavior model for using the CRC accelerator.

3.4 Summary

In this chapter, we illustrate our implementation process and demonstrate our simulation
results. In the section 3.1, we explore our design flow for our behavior model and finish the
system level simulation. In the section 3.2, we explore our design flow for hardware modeling
and finish the heterogeneous simulation. In the section 3.3, we have a comparison between the
pure software version and the other version with hardware accelerator model. The design
methodology and platform can be used to verify different communication scenarios. By using
this platform, a behavior model with the error detection and error correction function is
demonstrated in this chapter. The simulation result shows our hardware accelerator can

improve the simulation performance for this platform.

46

Chapter 4

Conclusionsand Future Work

This thesis presents an implementation of our behavior model on an electronic system level
simulation platform to enable the data transmission. A virtual socket concept is proposed to
deal with the packet transmission. We implement our behavior model at the electronic system
level smulation platform, which provides three purposes. system level design, system level
verification, and hardware/software co-design. The design concepts and design methodology
are exploded. This behavior model “ demonstraies the packet transmission between the
transmitter and the receiver and guarantees the data integrity. The behavior model aso can be
used to verify the different communication scenarios.

The heterogeneous simulation improves the efficiency of the system simulation. The
hardware module is become a library that can be reuse for the other designs. Finaly, we
demonstrate the heterogeneous simulation at electronic system level and improve the efficient
for the system simulation.

For the further improvement of our behavior model, the hardware module can berealized in

the register transfer level and obtain the time, area, and power information.

47

[1]

[2]

[3]

[4]

[S]

[6]

[7]

[8]

[9]

Bibliography

IEEE 802.16.IEEE Standard for Local and Metropolitan Area Networks-Part 16.Air
Interface for Fixed Broadband Wireless Access Systems-2004.

A. Ghosh et a., “Broadband Wireless Access with WiMA X/802.16:Current Performance
Benchmarks and Future Potential”, IEEE Communications Magazine, vol.43, no.2, pp.
129-136, 2005.

Thorsten Grotker, Stan Liap, Grant Martin and Stuart Swan, System Design with
SystemC, Kluwer Academic Publisher, 2002.

M. Keating and P. Bricaudr, Reuse Methodology Manual for System-On-A-Chip
Designs, Kluwer Academic Publishers; 2002.

Steve Furber, ARM System-on-Chip Architecture second edition, ADDISON WESLEY,
2000.

Takayuki Tachikawa and Makoto Takizawa, “ARQ Protocols for Bi-directional Data
Transmission”, International Conference on Information Networking (ICOIN-12), Tokyo,
Japan, pp.468-473, 1998.

Tim Hopes, “Hardware/Software Co-verification, an IP Vendors Viewpoint”,
Proceedings of the International Conference on Computer Design (ICCD), Austin, TX,
USA, pp.242-246, 1998.

Jing-Yang Chou, “Specia Topicsin Computer Aided Design”.
Theo A.C.M Claasen, “An Industry Perspective on Current and Future State of the Art in

System-on-Chip (SoC) Technology ” Proceedings of the IEEE, Vol. 94, No. 6, pp.
1121-1137, 2006.

[10] ARM Limited, “The Software Development Toolkit”, version 2.50, pp. 370, 1998.

48

[11] Ray Turner, “System Level Verification —a Comparison of Approaches’, Proceedings of
the 10" IEEE International Workshop on Rapid System Prototyping, Clearwater, FL,
USA, pp154-159, 1999.

[12] Joanne DeGroat, Arun Raman, Bakr Y ounis, “A Design Project for System Design with
SystemC”, Proceedings of the IEEE International Conference on Microelectronic

Systems Education, Anaheim, CA, USA, pp108-109, 2003.

[13] Liao, S. Y., “Towards a New Standard for System-Level Design”, Proceedings of the
Eighth International Workshop on Hardware/Software Co-design, San Diego, 2000.

[14] Open SystemC Initiative. See http://mww.systemc.org

[15] J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.

[16] H. Holisaz, S. Shamshiri et al, “Hardware Accelerator IP-Core for Wireless 802.16
MAC”, IFIP Internationa Conference on.Wireess and Optica Communication
Networks, Bangalore, India, 2006.

[17] Liangshan Maand Dongyan Jia, “ The Campetition and Cooperation of WiMAX, WLAN
and 3G", 2" Asia Pacific Conference on Mobile technology application and systems,
Guangzhou, China, 2005.

[18] Nak Woon Sung, “HW/SW Codesigned Implementation of IEEE 802.16 TDMA MAC
for the Subscriber Station”, Proceedings of the Fourth Annual ACIS International
Conference on Computer and International Science, Jgju Island, South Korea, pp436-440,

2005.

[19] Jorg Henkel, “Closing the SoC Design Gap”, Computer, Volume 36, Issue 9, ppl119-121,

2003.

[20] ARM Limited, “RealView SoC Designer SystemC-TML Import”, version 3.06, pp. 22,

2006.

49

[21] Collett International Research:2000, 2002 Functional Verification Studies.

[22] ARM Limited, “AMBA Specification (Rev 2.0)”, pp. 1-4, 1999.

[23] Gordon Moore, “Cramming more components onto integrated circuits’, Electron. Mag,

vol.38, no.8, pp.114-117, 1965.

[24] Thorsten Grotler, Stan Liao, Grant Martin, Stuart Swan, System Design with SystemC,

Kluwer Academic Publishers, 2002.

[25] International Technology Roadmap for Semiconductors, 2006 Update, Semiconductor

Industry Association. Available from http://mww.itrs.net/

50

