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以電子系統層級實作 WiMAX 系統中

錯誤偵測與錯誤校正的行為模型

學生：呂亦琦 指導教授：黃經堯 博士

國立交通大學電機學院產業研發碩士班

摘 要

SoC Designer 是一個電子系統層級模擬平台，適合用來做為通訊系統的設計與驗

證。為了解決傳送端與接收端之間封包的傳送，我們建立的一個行為模型來模擬傳送

端，接收端，與傳輸通道的功能，並且保證資料傳送的完整性。本論文直接從系統規格

書開始，實現通訊系統中錯誤偵測與錯誤校正的行為模型，確定功能正確無誤，將行為

模型從個人電腦的平台移到 SoC Designer 的平台上執行，並且提出一個 Virtual Socket

的概念解決封包傳輸的問題。這個模擬平台也可以做軟體/硬體共同模擬，Hardware

Modeling 的好處是可以節省模擬的時間。經過模擬，證明可以節省模擬時間，改善系統

驗證的效率。
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ABSTRACT

SoC Designer is an electronic system level simulation platform and is suitable for the

communication system design and verification. In order to model the communication between

the transmitter and the receiver, we implement a behavior model which includes the

transmitter, the receiver and the channel. Besides we guarantee the data integrity in the

transmission. We establish our behavior model according to the IEEE802.16 specification.

After developing the prototype on the PC platform, we port the behavior model to the SoC

Designer platform for verification. Furthermore we propose a virtual socket concept to deal
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with the packet transmission. The platform also supports the hardware/software co-simulation

and the simulation time will be decreased by hardware modeling technology. According to the

simulation result, the simulation performance is improved by hardware modeling.
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Chapter 1 Introduction

1.1 Technology Trend

As predicted by International Technology Roadmap Semiconductors (ITRS), there will be

billions of transistors within a single chip in ten years.[25] We understand that design gap is a

series problem. The increasing gap between VLSI complexity and design productivity drives

us to implement our system at the higher abstraction level. Time to market is another issue.

When the lifetime of each electronic product is shorten day by day, the complicated system

like WiMAX is not suitable for simulating at low abstraction level. In order to improve the

simulation performance and design efficiency, we implement our design at electronic system

level (ESL).

1.2 Motivation

IC industry plays an important role in Taiwan. The communication SoC design brings both

opportunities and challenges to local IC design houses. The main challenge of system design

now is to develop the system without functional mistakes and meet the time to market. As



2

shown in Figure 1, verification takes 60%~80% of the overall design effort.[8] Nowadays, the

design bottleneck is verification. To implement a system at higher abstraction level can

increase the design productivity. If we want to improve the design productivity, we must

improve the verification methodology. In this point of view, the efficient simulation platform

is an important role in SoC design.

Figure 1 Breakdown of the Design Effort.

The purpose of this thesis is to implement a behavior model with error detection and error

correction functions on an electronic system level simulation platform and facilitate the

verification efficiency by hardware modeling technology.

The first step in communication system design is functional verification. It is a very
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important issue in communication system development. From a study by the Collett

International Research in 2000, the functional error is the most significant defect in SoC

design as shown in Figure 2.[21] It is necessary to find out all defects before type out the real

chip in order to avoid the expansive penalty of re-spin. Because the simulation platform

provides a heterogeneous simulation environment, the behavior model with hardware

accelerator in this system can be verified before the real RTL model is ready. In this way, the

development of hardware and software can be started concurrently. The high level

co-simulation affects the design efficiency obviously. Take WiMAX for example, it must be

more complicated than any former one. Because the proper design methodology is adopted,

the design and verification schedule will be shortened and the overall productivity will be

increased significantly.

Figure 2 Reasons of Re-Spins.
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1.3 The Focus of Our Work

In order to verify the behavior between the transmitter and the receiver, we implement a

virtual socket for packet transmission. This behavior model is used to deal with packet

transmission without physical connections and the socket API for network communication.

We also implement this virtual socket with error detection and error correction functions for

supporting data integrity. We demonstrate the functional verification at electronic system

level on the ARM-based platform. In order to decease the simulation time, we turn the CRC

function into hardware module for improving the simulation performance.

1.4 Brief in WiMAX

WiMAX (Worldwide Interoperability of Microwave Access) is a wireless Internet service

designed to cover wide geographical areas serving large numbers of users at low cost.

WiMAX is the synonym given to the IEEE 802.16 standard defining wide area wireless data

networking. WiMAX is the standard being adopted worldwide by manufacturers to insure

inter-operability of equipment. WiMAX is considered one of the best solutions for "last mile"

distribution. In contrast, wireless local area networks are designed to provide network access

within an office environment or a home once Internet service has been delivered to that point.

The coverage of WiMAX is about 30 to 50 kilometers, which exceed the existing coverage
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barrier in wireless wideband access. It can provide as high as 75Mbps data rate in a 20MHz

bandwidth. OFDM and OFDMA are kernel physical layer technique of WiMAX. OFDM is a

multi-carrier modulation technology and has already been applied in ADSL and WLAN.

OFDMA is an OFDM multiple access scheme that used in uplink. Each user is allocated

different sub-carriers and thus is distinguished by orthogonal sub-carriers.[17]

Figure 3 WiMAX MAC Architecture.

The functional blocks in the system architecture are shown in Figure 3. The system is

partitioned to two parts - the data plane and the control plane. The MAC data plane functions

include fragmentation, de-fragmentation, packing, concatenation, automatic repeat request,
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and cyclic redundancy check, etc. The MAC control plane functionality, including system

control, can be implemented as a finite state machine in software or hardware.

1.5 Organization

The remainder of this thesis is organized as follows. In chapter 2, we describe the related

works and design concepts in our design. The virtual socket concept for packet transmission

in downlink and uplink are illustrated. In chapter 3, we illustrate the design process step by

step. Besides we demonstrate the heterogeneous simulation at electronic system level. A

hardware modeling technology is adopted in our design and we present the simulation

performance will be improved by hardware modeling technology. In chapter 4, we conclude

with a summary of contributions and suggestions for future works.
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Chapter 2

Related Work

In this chapter, we explain some related works and design concepts about our design. In

order to explain why we implement our behavior model on ARM-based platform at electronic

system level, we discuss the SoC design and verification issues in section 2.1. The MAC

functions that are relative to our behavior model are explored in section 2.2. Different design

and verification languages are used for different purposes at different abstraction levels. In

section 2.3 the hardware modeling technology is discussed and SystemC language for

developing the hardware model in our design is introduced. In the section 2.4, the

platform-based design concept is explored and the actual implementation is demonstrated. In

the section 2.5, we propose a virtual socket concept for the packet transmission. We explain

the concept and the behavior of this model. Finally we make a summary of this chapter in

section 2.6.
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2.1 SoC Design and Verification Issue

As the semiconductor industry continues to drive toward more advanced manufacturing

technologies, all design companies face shrinking product lifecycles and rising demand for

greater functionality. Moore’s Law is the empirical observation made in 1965 that the number

of transistors on an integrated circuit for minimum component cost doubles every 18 months,

as shown in Figure 4.[23] Due to the scale down of the transistor, the capacity in each device

is increasing.

Figure 4 Moore’s Law.

We understand that the progress of semiconductor technology brings more silicon
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complexity. It means the growth of silicon complexity is much more than the designer’s

productivity. Therefore the productivity gap between integration capacity and design

complexity becomes worse as shown in Figure 5. In the SoC design, many design flows and

design methodologies are proposed to close the productivity gap like the platform-based

design and electronic system level design. We adopt both two design methodologies for our

development. We use the top-down design flow to design our communication system.

Figure 5 Productivity Gap.

2.2 The WiMAX System Functional Block

In this subsection, we disclose the basic functions of WiMAX system. The MAC

management message generator is responsible to generate the corresponding message types in

specific communication situations. The cyclic redundancy check is responsible for error

detection, and the automatic repeat request is responsible for error correction. In order to
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support mobile user, the handover function must decide to link with a new base station and

disconnect with the current base station at proper moment. The scheduler is in charge of the

QoS control. Ranging and initialization is responsible for keeping the radio link working, like

synchronization, power control, etc. Packing, fragmentation, concatenation is responsible for

the transmission efficiency by constructing different packet sizes. Bandwidth allocation is

responsible for allocating the proper bandwidth when the subscribers request for bandwidths.

The breakdown of MAC functionality is shown in Figure 6. Detailed definition for each

related function is described in the following section.

Figure 6 Breakdown of MAC Functionality.
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2.2.1 MAC Management Message

A MAC protocol data unit (PDU) consists of a fixed length header, a variable length

payload and an optional field for cyclic redundancy check (CRC). The format of the

management message is given in Figure 7.

Figure 7 Format of MAC PDU.

A set of MAC management messages is defined. These messages shall be carried in the

payload of MAC PDU. All MAC management messages begin with a management message

type field and may contain additional fields. MAC management messages on the basic,

broadcast, and initial ranging connections shall neither be fragmented nor packed. MAC

management messages on the primary management connection may be packed and/or

fragmented. For the SCa, OFDM, and OFDMA PHY layers, management messages carried

on the initial ranging, broadcast, basic, and primary management connections shall have CRC

usage enabled. The encoding of the management message type field is given in Figure 8 and

Figure 9. [1]
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Figure 8 MAC Management Message Table I.
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Figure 9 MAC Management Message Table II.

2.2.2 Header and Subheader

Two MAC header format are defined. The first is the generic MAC header that begins each

MAC PDU containing either MAC management messages or data from the upper layer. The

second is the bandwidth request header used to request additional bandwidth. The single-bit

Header Type (HT) field distinguishes the generic MAC header and bandwidth request header
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formats. The HT field shall be set to zero for the Generic Header and one for a bandwidth

request header. The Figure 10 shows the format of MAC general header.[1]

Figure 10 MAC General Header.

The second is the bandwidth request header used request additional bandwidth. It is used

by the subscriber station to request more bandwidth on the uplink. The Bandwidth Request

PDU shall consist of bandwidth request header alone and shall not contain a payload. The

Figure 11 shows the format of the MAC bandwidth request header.[1]

Figure 11 MAC Bandwidth Request Header.
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There are five types of subheaders. The subheaders may be inserted in MAC PDUs

immediately following the generic MAC header. The definition of the type field is indicated

in Figure 12. The grant management subheader is used to convey bandwidth management

needs to the BS. The fragmentation subheader indicates the presence and orientation of

service data units (SDU) in the payload. The packing subheader indicates the packing of

multiple SDUs into signal PDU. If both the fragmentation subheader and grant management

subheader are indicated, the grant management subheader shall come first. The packing and

fragmentation subheaders are mutually exclusive and shall not both be present within the

same MAC PDU. The mesh subheader is only necessary for mesh network. All the

subheaders included the mesh subheader are within payload. If the mesh subheader is

indicated, it shall precede all other subheaders. The fast-feedback allocation subheader shall

always appear as the last per-PDU subheader. This is used to tell the PHY layer to provide an

immediate measurement of the quality of the radio signal.[1]

Figure 12 Types of Subheaders.
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2.2.3 Automatic Repeat Request

The ARQ mechanism is a part of MAC, which is optional for implementation. When

implemented, ARQ may be enabled on a per-connection basis. The per-connection ARQ shall

be specified and negotiated during connection creation. A connection cannot have a mixture

of ARQ and non-ARQ traffic. Similar to other properties of the MAC protocol the scope of a

specific instance of ARQ is limited to one unidirectional connection. For ARQ-enabled

connections, enabling of fragmentation is optional. When fragmentation is enabled, the

transmitter may partition each SDU into fragments for separate transmission based on the

value of the ARQ_BLOCK_SIZE parameter. When fragmentation is not enabled, the

connection shall be managed as if fragmentation was enabled. In this case, regardless of the

negotiated block size, each fragment formed for transmission shall contain all the blocks of

data associated with the parent SDU. The ARQ feedback information can be sent as a

standalone MAC management message on the appropriate basic management connection, or

piggybacked on an existing connection. ARQ feedback cannot be fragmented.[1]

2.2.4 Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a way to detect small changes in blocks of data.

Error detection is especially important when the control messages are transmitted or data are
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stored, because an error of even one bit is often sufficient to make a system shutdown. An

error correction protocol triggered by CRC error detection can provide this accuracy at low

cost.

The CRC algorithm operates on a block of data as a unit. We can understand the CRC

better if we see a block of data as a single numerical value. The CRC algorithm divides this

large value by a magic number (the CRC polynomial or generator polynomial), leaving the

remainder, which is our CRC result.

The CRC result can be sent or stored along with the original data. According to the format

of PDU, we attach the CRC result to the tailor of payload. When the data is received, the CRC

algorithm can be reapplied, and the latest result compared to the original result. If any error

has occurred, we will probably get a different CRC result. Most uses of CRC do not attempt

to classify or locate the error, but simply arrange to repeat the data operation until no errors

are detected.

2.3 Design and Verification Language

Different design languages are used for different abstraction levels. The higher abstraction

level is suitable for algorithm development. On the other hand, the lower abstraction level is

suitable for modeling the actual hardware behavior. From the Figure 13, we find four different
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design languages. Different design languages are for different purposes. The Matlab is a

powerful mathematic tool and it is used to model the complicated mathematic issues or

advanced algorithms. The hardware description language (HDL) like VHDL or Verilog is

used to model the real hardware behavior and evaluate the physical information like timing,

area, and power.

Figure 13 Different Levels of Abstraction.

In our implementation, we adopt C language and SystemC language to construct our

behavior model. C language is most popular language in the world and supported by various

compliers. It can be ported from one platform to another platform easily, so C language is

suitable for embedded system design. SystemC provides a unified environment for architects,
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verification engineers and implementation engineers. In the following two subsections, we

explore the hardware modeling technology and introduce SystemC language. Our purpose is

to implement the behavior model at electronic system level and execute the heterogeneous

simulation, so both C language and SystemC language are necessary for the development of

our model.

2.3.1 Hardware Modeling

In the early 1980s, the logic of integrated circuits was designed via gate level drawing. The

appearance of the first IEEE HDL standard was in 1987. The hardware description languages

are meant to provide a unified notation for describing electronic systems at register transfer

level. In RTL design, a circuit behavior is defined in terms of the flow of signals or the

transfer of data between registers so the design efficiency is better than the gate level design.

SystemC was announced in 1999. It is a much higher level of abstraction than writing

hardware description language at register transfer level.

There are many differences between traditional and modern design processes. The main

advantage in the modern process is to enable both software and hardware development

concurrently. In order to start the software development and verification prior to the hardware

is completed, a hardware model becomes essential. The hardware modeling technology not
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only shortens the SoC development schedule but also improves the simulation performance at

electronic system level platform. In our behavior model, we compare the performance

between the pure software version and the new version with hardware modeling. After the

simulation, we prove the hardware CRC module can improve the simulation performance.

2.3.2 SystemC

The first version of SystemC was released in September 1999. Early development was done

by Synopsys, UC Irvine and CoWare. The Open SystemC Initiative (OSCI) was founded in

2000. SystemC becomes one IEEE standard in 2005.

As a standard, SystemC could possibly enable and accelerate the exchange of system level

intellectual property (IP) models and executable specifications using a common C-based

modeling platform. SystemC provides a single language to define hardware and software

components, to facilitate hardware/software co-simulation, and to facilitate step by step

refinement of a system design down to the register transfer level for synthesis.

Replacing the traditional hardware description language (DHL) with SystemC minimizes

the communication overheads involved in current system design flow, deceases simulation

time and thus speeds up the design process.[12]

The advantages of SystemC as a system level design level design language are [13]



21

[14][15]. The first is it enables modeling of systems above the RTL level of abstraction –

including systems that might be implemented in hardware, software or a combination of both.

The second is SystemC promotes reuse of the developed components from one system to

another with minimum efforts. The third is SystemC offers good design space exploration of

functional specification and architectural implementation alternatives. The Figure 14 shows

the architecture of SystemC language.[24]

Figure 14 SystemC Language Architecture.

2.4 Platform-based Design

Our behavior model is implemented according to the platform-based design methodology.

Platform-based design is a powerful concept for releasing the increased pressure on
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time-to-market, design and manufacturing costs. The modern SoC design flow increases the

productivity of each engineer. Usually the engineers just change few functions in the former

design to create a new one. Most design effort is reused and shared in the following projects.

The engineers will reuse the components like the ARM processor, the memory, and some

peripheral modules. As shown in Figure 15, the AMBA interface and protocol enable the

designer to develop the SoC system by assembling essential IPs. The platform-based design

concept is adopted by our design methodology. In the following subsections, we will

introduce the features of AMBA, the interaction of hardware and software, and the memory

mapping concept for accessing declared registers.

Figure 15 The Platform-based Design.

2.4.1 AMBA

The AMBA protocol is an open standard, on-chip bus specification that details a strategy
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for the interconnection and management of functional blocks that makes up a System-on-Chip

(SoC). The AMBA protocol enhances a reusable design methodology by defining a common

backbone for SoC modules.

There are three different buses in the AMBA specification: AHB, ASB and APB. AHB

stands for Advanced High-performance Bus. AHB is a new generation of AMBA bus which

is intended to address the requirements of high-performance synthesizable designs. It is a

high-performance system bus that supports multiple bus masters and provides high-bandwidth

operation. ASB stands for Advanced System Bus. This is an older version has been replaced

by AHB. APB stands for Advanced Peripheral Bus. It is a simple lower performance and low

power bus used for low speed peripherals. The APB is optimized for minimal power

consumption and reduced interface complexity. The macrocells designed to interface with

AMBA can be seen as building blocks which can be reused in future designs and mixed and

matched in different combinations to realize complex systems in a shorter period of time. The

AMBA architecture is shown as Figure 16.[22]
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Figure 16 The AMBA Architecture.

2.4.2 The HW/SW Interaction

Hardware/software interaction plays an important role in co-design of the embedded system.

It connects the software part and the hardware part in a system. There are two main

approaches for hardware/software interaction: Polling and Interrupt.

Polling the device usually means reading its status register so often until the device's status

changes to indicate that it has completed the request. Interrupt is a signal from a device

attached to a processor or from a program within the processor that causes the main program

that operates the system to stop and figure out what to do next. An interrupt can be generated

by one of two sources: software interrupt and hardware interrupt. The interrupt signals

initiated by programs are called software interrupt. An interrupt also can be generated by an



25

external device. These are called hardware interrupts. When a program receives an interrupt

signal, it takes a specified action. Interrupt signals can cause a program to suspend itself

temporarily to service the interrupt.

Figure 17 Interaction between Hardware and Software.

The behavior of the interrupt and the actual layout is shown in the Figure 17. The

interaction between our hardware module and ARM processor is hardware interrupt. This is a

more effective approach than polling. After the unprocessed data is moved into the input

buffer, the CRC module is enabled by software with the CRC_enable signal. Then the CRC

hardware module will start to process the data and return the CRC result. After the CRC

hardware finishing it job, the hardware module will inform the ARM core to fetch the CRC

result from the output buffer by using the interrupt signal. In the embedded system design, the

interrupt signal is connected to an interrupt control IC. Then the IC will inform the CUP that a

hardware module requests the interrupt service routine. The CPU compares the ID of the
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hardware module and jumps to the address of the service routine and deal with the process.

2.4.3 Hardware Registers

In embedded system design, hardware registers compose a storage area for control signals

and data. Hardware registers are contained within a certain peripheral unit. Usually we divide

the hardware registers into three types -- control registers, status registers, and data buffers. A

status register is a collection of bits for a processor that indicates the status of various specific

operations. When a status register is read, it will report the state of the peripheral device.

When a control register is written, it will change the state of the peripheral device. The data

buffers usually storage the raw data for processing and the output data for accessing. Registers

is costly, so the registers will not be used unlimited.

2.4.4 Memory Mapping

Memory mapping is a process that a digital hardware is connected to a processor’s address

bus and data bus. In this way, the component can be accessed exactly as if it were a memory

cell. To a processor, everything is memory. The memory mapping is to define the address of

the I/O registers in the memory table so the embedded processor can exactly access the

specific registers. Memory-mapped I/O (MMIO) and port-mapped I/O (PMIO) are two
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complementary methods of performing input/output between the CPU and I/O devices in an

embedded system. In our implementation, we use the memory-mapped I/O methodology.

Memory-mapped I/O uses the same bus to address both memory and I/O devices, and the

same CPU instructions are used to access both memory and I/O devices. The I/O devices

monitor the CPU's address bus and map the address to their hardware registers. The Figure 18

shows the memory map in our implementation.

Figure 18 Memory Map.
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2.5 Virtual Socket Concept

A socket is one end-point of a two-way communication link between two programs running

on the network. Socket classes are used to represent the connection between a client program

and a server program. In our simulation platform, we don’t have the socket API for

communication, so we propose the virtual socket concept for our simulation platform. In the

simulation platform, we use share memory as the transmission medium. Besides we define an

arbiter, some control flags, and a finite state machine for synchronizing the data transmission.

2.5.1 Simulation Platform and Architecture

SoC Designer is a system level simulation tool supporting the hardware modeling in

SystemC. New SystemC components can be created using the SoC Designer Component

Wizard. For legacy SystemC TLM model reuse, existing SystemC models can be imported

into SoC Designer with little or no modifications to the original source code. There are two

different methods for importing SystemC models into SoC Designer environment: one can

use a SoC Designer component as a top level wrapper to instantiate the modules as

sub-components, or one can import a module directly without a wrapper by changing the

module to inherit from a special base class provided in SoC Designer.[20] The Figure 19

shows the SoC Designer co-simulation environment, which supports systemC transaction
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level model to accelerate the simulation speed.

Figure 19 The Architecture of Simulation Platform.

2.5.2 Downlink and Uplink Procedure

The ESL simulation platform can support the multi-cores simulation. Take advantage of

this characteristic, we can model the behavior of the transmitter and the receiver with the

virtual socket. Furthermore, we build a traffic model for the uplink and downlink traffic, so

the interaction between different members becomes possible. Besides developing the

transmitter and the receiver, we build an error model to present the channel fading. In order to

synchronize these components in this platform, we defined a finite state machine to

synchronize the data transmission. Then we can verify the simple protocol between different
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components in this simulation environment.

In the left side of Figure 20 shows the downlink traffic behavior. In the beginning, the base

station will generate the packets and transmit these packets to the subscriber station.

According to the specification, the base station will generate the CRC result and attach to the

tailor of the packet. It is used for error detection in the unstable wireless environment. In the

TX State of base station, we write the packet into the RX buffer. The channel runs a program

and presents an error probability on the air. The error model of the channel will decide to

change the value in the RX buffer or not according to a random number. In the RX state of the

subscriber station, the subscriber station will receive the packet in the RX buffer, compare the

CRC result and inform the transmitter to transmit the next packet or retransmit the original

one.

In the right side of Figure 20 shows the behavior of uplink traffic. The subscriber station

will generate the ARQ frame to inform the base station the outcome of the transmission. In

the TX state of the subscriber station, the subscriber station will transmit the ARQ frame

according to the CRC check result and write the ARQ packet into the TX buffer. In the TX

state of the base station, the base station will receive the packet, decode the packet and decide

to transmit the next packet or retransmit the original one.
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Figure 20 Downlink and Uplink Procedure

2.6 Summary

In this chapter, we introduce the design concepts for our behavior model. In the section 2.1,

we discuss the SoC design and verification issues. In the section 2.2, we identify some

subfunctions which are relative to our implementation. In the section 2.3, we explore the

abstraction level of our implementation and choose the proper design language to model our

design. In the section 2.4, we illustrate the concept of platform-based design, the embedded

system design and the details for hardware modeling. In the section 2.5, we introduce the

simulation tool and we propose a virtual socket for the data transmission.
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Chapter 3

Case Study:A Behavior Model Design

The related work about our implementation is described in the previous chapter. In this

chapter, we describe the development of our behavior model and demonstrate the simulation

result. In the beginning, we develop and verify our reference software and applications in C

language on the personal computer environment. Then we port our C model to the ESL

platform and verify the functionality of the traffic behavior, the error detection behavior, and

the error correction behavior. Further, we implement a hardware module for

hardware/software co-simulation platform. We modify the firmware to define the interaction

between the hardware module and the processor.

3.1 Our Design Flow for Behavior Model

We implement our behavior model in C code according to the IEEE 802.16 specification.

The specification describes the MAC functionality in English. When we study the meanings

of these functionalities, we have to turn these descriptions from the nature language into
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executable code in C language. The executable specification not only avoids the ambiguous

meaning in nature language but also provides the quantitative analysis in engineering

applications. After verifying on PC, we use the ADS (ARM Developer Suite) tool to generate

the image file and download to the SoC Designer for simulation. Then we design a hardware

module for CRC function and compare the simulation performance with the pure software

verison. The Figure 21 shows the design flow and the development environments for our

behavior model.

Figure 21 Design Flow for Behavior Model
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3.1.1 Reference Software Development

The basic function of our behavior model is to provide data integrity during the

transmission. There are three subsystems are built in our implementation – the BS module, the

MS module, and the Channel module. The transmission side generates the transmitted packets

based on the proper format and generates the CRC result for the error detection. The channel

models the behavior of channel fading and changes the value in the RX buffer. The channel

also acts like the arbiter to schedule the TX/RX behavior by changing the control flags and

the state of finite state machine. The received side generates the CRC result again and

compares the CRC value to confirm the completeness of received packet. According to the

comparison, the receiver generates the ACK message to inform the transmitter to transmit the

next packet or retransmit the original one.

Figure 22 The Function for Error Detection and ARQ Frame Generation.

Some control flags and data buffers are used in the transmission behavior, most of the

details are not declared in the specification, so we have to prototype and verify the error
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detection function and the retransmission scheme on the PC platform as shown in Figure 22.

Furthermore we implement a basic protocol for TX/RX transmission. Stop and wait

transmission is the simplest reliability technique and is adequate to a very simple

communications environment. A stop and wait protocol transmits a Protocol Data Unit (PDU)

of information and then waits for a response. The receiver receives each PDU and sends an

acknowledgement (ACK) PDU if a data PDU is received correctly, and a negative

acknowledgement (NACK) PDU if the data was not received correctly. The Figure 23 shows

the behavior of transmission.

Figure 23 The System Approximation on PC Platform.
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3.1.2 Simulation on ADS and ESL Platform

When we verify the communication system, we need to create the environment for

communication under the conditions that no physical layer and no socket API are existed. We

establish the logic architecture, which is shown in the Figure 24. We divide our C model to

three subsystems – the BS module, the MS module, and the Channel model.

The design concept of the communication system is different from the other systems like

various multi-media decoders. Communication systems must communicate with the other

members in the wireless environment. Usually it is hard to build the whole system and verify

the protocol in the beginning. In our simulation platform, the SoC designer supports the

multi-core simulation. It means different programs can be executed concurrently on this

platform. We take advantage of the simulation platform and construct a logic system on it

including the base station, the subscriber station, and the channel model to verify the

downlink and uplink traffic.

When developing exactable codes for three ARM processors, we use ARM Developer Suite

(ADS) to generate the three image files. After passing the debugging in the ARM compiler,

linker, and utility programs proved by ADS, we load the image codes to three subsystems on

the SoC Designer platform.
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Figure 24 The Logic and Physical System Architecture.

3.1.3 System Level Simulation with Pure Software

The Figure 25 shows the functional verification on the ESL platform. The simulation

demonstrates the interaction between the base station and the subscriber station on the

downlink traffic and the uplink traffic. The simulation also demonstrates the error model to

replace the real wireless channel because there are no physical connection and actual medium.

This simulation also demonstrates the error detection and error correction function in a

wireless environment for supporting data integrity.
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Figure 25 The Functional Verification.

3.2 Our Design Flow for Hardware Modeling

In this section we explore our design flow for hardware modeling. The design process

includes the interface design, I/O register design, behavior model coding, and firmware

coding. The Figure 26 shows the design flow and the development environments for our

hardware modeling. In the research [16] [18] indicate the framing function, ARQ function, the

encryption function, and the CRC function are timing critical and large overhead. Among

these functions of MAC, we choose the CRC function as an example for hardware modeling.
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Figure 26 Design Flow for Hardware Modeling

3.2.1 Interface Design

There are three main interfaces in our hardware module. One is the AMBA for transferring

the transmitted packet and fetching the CRC result. Another is the interrupt signal for

indicating the processor that the CRC result is ready. The third is the input pin of clock cycle.

The appearance of CRC module is shown in Figure 27 below.
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Figure 27 Interface Design

3.2.2 Input/Output Register Design

Within the hardware module we define input registers, output registers, and data buffers.

The CRC_enable, BytesOffset, and Input_Buffer are input ports. The CRC_done and

CRC_result are the output ports. The processor moves the unprocessed data to the

Input_Buffer and defines the length of unprocessed data by setting the CRC_length. The

processor enables CRC hardware module by setting the CRC_enable equal to “high”. After

calculating, the CRC result will be written into the Output_Buffer. Then CRC_done register

will be set to “high” and this signal is wired to the processor for informing the processor that

the CRC value is ready. The architecture is shown as Figure 28.
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Figure 28 I/O Register Design

3.2.3 Behavior Model Coding

New SystemC components can be created by using the SoC Designer Component Wizard.

We use a SoC Designer component as a top level wrapper to instantiate the modules as

sub-components. The component wizard will generate the following files: A cpp/h file for the

SoC Designer component, a cpp/h file for each slave port, and a cpp/h file MxDI if

selected.[20] The newly generated SoC Designer component does not contain any behavior

and we have to construct the CRC function in Visual C++ environment. Then we generate a

library with correct behavior. The design is based on the SystemC language. It can facilitate

the design speed of our hardware module.
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3.2.4 Import to the ARM-based Platform

We imported the SystemC component and connected the interfaces properly to the ralative

SoC Designer modules. In general, ports and channels of imported SystemC modules are

based on user-defined SystemC interfaces. We drag the CRC module from the component

window and connect the module to the AMBA bus and the interrupt controller.

3.2.5 System Level Simulation with Hardware Modeling

After we establish the SystemC model, we can fast prototype the hardware model in

SystemC at higher abstraction level. This is good for designers to verify the system

functionality concurrently by both the hardware side and the software side. This also can

reduce the rework penalty and the delay in a rush schedule.

As the Figure 29 shown, the simulation result demonstrates the hardware/software

heterogeneous simulation on SoC Designer platform. The completed module can be defined

as a library, and this design can be reused and redesign in the future.
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Figure 29 The SoC Designer Co-simulation Environment.

3.3 Simulation Result and Application

There are two purposes for the hardware/software co-simulation. The first is we want to

guarantee that the hardware module behavior is correct. The second is we want to improve the

simulation performance at electronic system level.

3.3.1 Hardware/Software Co-verification

In this subsection, we demonstrate the functional verification of hardware and software

in an electronic system level platform. The function of our behavior model provides a virtual
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socket for packet transmission and guarantees the data integrity in a channel with an error

model. The behavior model is implemented on the ARM-based platform. It can be used to

design the other embedded communication systems. Due to the higher abstraction level, the

simulation overhead is less than the register transfer level. Furthermore, the simulation

platform supports the hardware/software co-verification. We turn the CRC function into

hardware module in SystemC language. Hardware/software co-verification is to make sure the

embedded software works correctly with the hardware parts. The design methodology

accelerates the firmware debugging. Early debugging also reduces the risk of redesign.

3.3.2 Simulation Model and Simulation Result

In this subsection, we use three simulation models to compare the simulation performance.

We want to calculate the clock cycle of the software function and hardware module based on

different packet sizes. There are three simulation models - the model with no CRC function,

the model with software CRC function, and the model with hardware CRC module. The

Figure 30 shows the clock cycles of three simulation models in three different packet sizes.

Figure 30 The Clock Cycles of Three Simulation Models in Different Packet Sizes
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The Figure 31 shows the comparison of simulation result. We obtain the clock cycle for

software function and hardware module in different transmitted packet sizes. The simulation

result explains the improvement of the overall system performance in heavy traffic data. The

simulation shows that there are 1.6% and 11.7% improvements by setting the packet size in

100bits and 1000bits respectively.

0

5000000

10000000

15000000

20000000

25000000

30000000

without

CRC

with SW

CRC

with HW

CRC

without

CRC

with SW

CRC

with HW

CRC

without

CRC

with SW

CRC

with HW

CRC

Function

C
lo

ck
C

y
cl

e

10(bits)

100(bits)

1000(bits)

Figure 31 The Simulation Result

The processed data is transferred between software and hardware through the AMBA bus.

The bus transaction is an overhead for system simulation. For the small packet size, the

simulation result of hardware version is worst because the extra overhead in bus transaction is

larger than the processing gain of hardware component. For the large packet size, the

hardware version obtains the better simulation result because the extra overhead in the bus
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transaction is smaller than the processing gain of hardware component. The packet size in

100bits is an approximate threshold in our behavior model for using the CRC accelerator.

3.4 Summary

In this chapter, we illustrate our implementation process and demonstrate our simulation

results. In the section 3.1, we explore our design flow for our behavior model and finish the

system level simulation. In the section 3.2, we explore our design flow for hardware modeling

and finish the heterogeneous simulation. In the section 3.3, we have a comparison between the

pure software version and the other version with hardware accelerator model. The design

methodology and platform can be used to verify different communication scenarios. By using

this platform, a behavior model with the error detection and error correction function is

demonstrated in this chapter. The simulation result shows our hardware accelerator can

improve the simulation performance for this platform.
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Chapter 4

Conclusions and Future Work

This thesis presents an implementation of our behavior model on an electronic system level

simulation platform to enable the data transmission. A virtual socket concept is proposed to

deal with the packet transmission. We implement our behavior model at the electronic system

level simulation platform, which provides three purposes: system level design, system level

verification, and hardware/software co-design. The design concepts and design methodology

are exploded. This behavior model demonstrates the packet transmission between the

transmitter and the receiver and guarantees the data integrity. The behavior model also can be

used to verify the different communication scenarios.

The heterogeneous simulation improves the efficiency of the system simulation. The

hardware module is become a library that can be reuse for the other designs. Finally, we

demonstrate the heterogeneous simulation at electronic system level and improve the efficient

for the system simulation.

For the further improvement of our behavior model, the hardware module can be realized in

the register transfer level and obtain the time, area, and power information.
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