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ABSTRACT

In this thesis, we propose three high throughput methods for arithmetic encoder to
promote the throughput of CABAC encoder and some hardware sharing methods for
CABAC codec to lower its cost. About the decoder of our CABAC codec, we continue
using the high throughput CABAC decoder [2] which we presented in August 2006.
The proposed high throughput methods are based on the results of data statistic, they
can improve the restriction in throughput caused by data dependence. Our proposed
architecture can achieve 245760 macroblocks per second in average for level 4.1 in
encoding and for level 4.0 in decoding. Therefore, it is sufficient to support 1080HD
for real-time encoding/decoding at 30fps. Based on 0.18 um UMC CMOS Process, our

CABAC codec design needs 173303 gates with SRAM and clock rate at 110MHz.
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Chapter 1
Introduction

1.1 Motivation

H.264/AVC is the state:of-the-art video coding standard developed by ITU-T
Video Coding Experts Group and ISO/AEC Moving Picture:Experts Group (MPEG).
The new standard provides gains in compression efficiency of up to 50% over a wide
range of bit rates and:video resolutions compared ‘with the former standards such as
H.263 and MPEG-4" by 'employing many innovative technologies such as multiple
reference frame, variable block size“motion estimation, in-loop' de-blocking filter and
context-based adaptive binary arithmetic coding (CABAC). Because of its outstanding
performance in quality and compression gain, the H.264/AVC is adopted to be video
standard in more and more consumer application products such as digital video
recorder / player, portable video device...etc.

H.264/AVC contains two alternative entropy coding schemes which are
context-based adaptive variable length coding (CAVLC) and context-based adaptive
binary arithmetic coding (CABAC). The simpler entropy coding method is CAVLC for
simple profile. It can save about 10% for the execution time under increasing about
7% bit-rate compared with CABAC. Because of bit-rate saving, CABAC is the
superior scheme for massive capacity demand of the newest video application.

The compression efficiency improvement in CABAC is obtained at the cost of an

1



inevitable complexity overhead. The results of the software-based complexity analysis
are presented in [3], which claims that switching from CAVLC to CABAC usually
leads to complexity increasing by 25% ~ 30% for encoding and 12% for decoding, in
terms of access frequency (total number of memory transfers per second); therefore,
both the coding acceleration and the cost efficiency promoting of CABAC are
required.

We propose three throughput promoting methods to make CABAC encoder
achieve the specification of 1080HD in level 4.1 stipulated in H.264/AVC standard [1].
For CABAC decoder, we continue using the high throughput CABAC decoder [2]
which we presented in Augusti2006. It can achieve'the specification of 1080HD in
level 4.0. So our CABAC codec is sufficient. to, support 1080 HD video for real-time
encoding and decoding at 30 fps. Besides, we also introduces some low cost methods
such as finite state machine sharing, table reuse..:etc to make the CABAC codec be

better cost efficiency.

1.2 Organization of this thesis

This thesis is organized as follows. In Chapter 2, we present the algorithm of
CABAC. It contains two levels coding procedure. For encoding, the first level is
binarization engine, and the second level is arithmetic encoder. For decoding, the order
of the two levels procedure is just opposite to encoding. Chapter 3 focuses on
throughput promoting. We introduce three arithmetic encoding modes, and showing
the proposed three high throughput methods. Chapter 4 focuses on cost efficiency
designing. We present the proposed low cost methods and the memory requirement. In
the end of this chapter, we show the proposed CABAC codec system architecture
which has adopted the proposed low cost methods. At the final, the results of

2



simulation and chip implementation will be shown in Chapter 5. We make a brief

conclusion and future work in the last chapter.




Chapter 2
Algorithm of CABAC for
H.264/AVC

In this chapter, we introduce the algorithm of CABAC encoding and decoding
respectively. Both CABAC enceding and CABAC decoding are composed of three
parts: the binarization process, the arithmetic.coding process and the context model.
For CABAC encoding, the binarization process reads syntax elements (SE), then
computing the binsto offer the arithmetic “encoding process for encoding the
corresponding bit-streams. For CABAC decoding, the arithmetic decoding process
reads the input bit-streams. generatedby H.264 encoder, and'computing the bin to offer
the binarization process for decoding the suitable SE./Both arithmetic encoding and
arithmetic decoding have to look up context model which records the historical
probability to compute the corresponding bit-streams in encoding and the bin value in
decoding.

About the description of CABAC algorithm in this chapter, it is based on the
content of [1] and [5], where the latter only focuses on decoding aspect, and the
encoding aspect is introduced in addition in this chapter.

This chapter is organized as follows. In Section 2.1, we present the overviews of
the CABAC encoding and decoding flow respectively, and show the two levels coding
processe. In Section 2.2, we introduce all kinds of the binarization process such as the
unary, the truncated unary, the fixed-length, Exp-Golomb and the defined code

4



organization. In Section 2.3, the algorithm of basic binary arithmetic coding will be
introduced briefly. We introduce it in terms of encoding and decoding respectively in
the section 2.3.1 and the section 2.3.2. In Section 2.4, we present the advanced binary
arithmetic coding for H.264/AVC, and relating it to arithmetic coding process. Section
2.5 shows the context model related to the different SEs. In final section, what we

show is that how to get the neighbor SE to index the suitable context model allocation.

2.1 Overview of CABAC encoding/decoding flow

Video Input | H.264
H.264 Encoder (YUV) I Bitstream H.264 Decoder
{ { I Entro
Motion Motion ‘ + | Decodipr?/g
Estimation Compensation :> | l
| Intra Frame | Inverse
Frame Prediction | Quantization
Storage | l
| IDCT
O, |
| Compensation
T DCT N
IDCT |
T Quantization |
I | Intra Frame
nverse Prediction
Quantization I
| De-blocking Frame
Entropy Filter Storage
Encoding | ?
H.264 | Video Output
Bitstream , (YUvV)

Figure 1 H.264/AVC encoder/decoder system block diagram

Figure 1 shows the system block diagram of H.264/AVC encoder and decoder.
Both entropy encoder and entropy decoder contain three entropy coding strategies such
as universal variable length coding (UVLC), context-based adaptive variable length

coding (CAVLC) and context adaptive binary arithmetic coding (CABAC).



For H.264/AVC baseline profile, it only adopts UVLC and CAVLC two variable
length coding (VLC) strategies to code the macroblock (MB) information and the
pixels coefficients. UVLC is one of VLC in baseline profile, it codes not only the MB
information such as the mb_type, coded_block_pattern, intra_prediction_mode, and so
on, but also the MB coefficient such as mvd. Because the residual data coding occupies
over 50% of the entire execution time, the residual coefficients are computed by the
CAVLC architecture for more efficiency.

For H.264/AVC main profile, it has an advance choice except VLC. CABAC can
be used in place of UVLC and CAVLC. Thus, H.264 system just needs CABAC to
code all MB information and pixel data if entropy coding flag is assigned to CABAC.

In this section, we introduce the block diagram of CABAC encoder and decoder.

Then, the execution flow of them will be introduced respectively meanwhile.

bin value for context model update

bin
. . loop over !
non-binary valued bin K + Context
syntax element stiing—~0MS iy Context modele Normal
Y Binarization ——» > Coding
Modeler X
Engine ts
syntax 'X normal it stream
element ¢ >
> bypass ts
binary valued I bin - Bypass
syntax element > Egg!:g
i
Binary Arithmetic Coder

Figure 2 CABAC encoder flow chart [4]

Figure 2 shows the block diagram of CABAC encoder. We first see the left side of
this figure. All syntax elements (SEs) of the H.264/AVC will be transferred into the
binary code “bin” when entering the CABAC encoding process. Besides the SE of
fixed-length coding type, all SEs have to be encoded by the binarization process which

will be defined in Section 2.2. The transferred bin string is encoded to be the bit-stream



by the binary arithmetic encoder. The binary arithmetic encoder has three different
encoding types such as normal, bypass and terminal encoding processes. The terminal
encoding process is seldom applied in CABAC system, which is only executed one
time per macroblock (MB) encoding flow when the current MB is complete. So we
ignore its influence due to its seldom applying opportunities. The normal and bypass
encoding process are two main binary arithmetic coding modes. If it performs the
bypass encoding process, there is no need to refer to the context model because the
probability of bit-stream value is equal (probability = 0.5) between logical “1”” and “0”.
If it applies the normal encoding process, it has to refer the associated context model

depending on the SE type and_the bin index.

Context |_ bin
Modeler
A
v loop over
Normal bin bins
» Decoding — Binarization
Engine i
normal tbl'n
. string
bit stream /
bypass; Bin syntax
> string | ¢
Bypass bin > elemen
» Decoding >
Engine

Binary Arithmetic Deoder

Figure 3 CABAC decoder flow chart

Figure 3 shows the block diagram of CABAC decoder. In H.264/AVC decoder,
the decoding flow is contrary to CABAC encoder. At first, the binary arithmetic
decoder reads the bit-stream and transfers it to be bin string. The binarization process
reads the bin string and decodes it to be SE by five kinds of decoding flows. The
execution sequences between CABAC encoder and decoder are just reverse. But the

context modeler is still determined by binarization and SE for both CABAC encoder



and CABAC decoder.

2.2 Binarization process

In Section 2.2, we focus on the binarization process. In CABAC encoder, it reads
the syntax element and transfers it to be bin string. In CABAC decoder, it reads the bin
string to look up the suitable syntax element. For H.264/AVC, both CABAC encoder
and CABAC decoder adopt five kinds of the binarization methods to encode/decode
the syntax element/bin string respectively. This section is organized as follows. In
Section 2.2.1, the flow of the unary code is shown at first. The unary code is the basic
coding method. Section 2.2.2 shows the.truncatedsunary code which is the advanced
unary coding method. In Section 2.2.3, we introduce-the fixed-length coding flow. It is
the typical binary integer method. Section 2.2.4 is'the Exp-Golomb coding flow. The
Exp-Golomb coding” flow is only used for the residual data and the motion vector
difference (mvd). Section 2:2.5 is the special definition which is by means of the table
method. Specifically, we focus on the binary tree of the macroblock type (mb_type)

and the sub-macroblock type (sub_mb_type).

2.2.1 Unary (U) binarization process

Input to this process is a request for a U binarization for a syntax element. Output
of this process is the U binarization of the syntax element.

The bin string of a syntax element having value synEIVal is a bit string of length
synElVal + 1 indexed by binldx. The bins for binldx less than synEIVal are equal to “1”".
The bin with binldx equal to synElVal is equal to “0”.

Table 1 illustrates the bin strings of the unary binarization for a syntax element. If



the syntax element is equal to “0”, the bin outputs single bit “0”. Except the syntax
element “0”, the bin string sends NuUMSE “1”” and one “0” in the end of the binary value.
The value of numSE is equal to the syntax element. Therefore, we find that the bin

string length of current syntax element is NnumSE + 1.

Table 1 bin string of the unary binarization [1]

Silia;t bin string
0 0
1 1 0
2 | 1 0
3 | 1 1 0
4 1 1 1 1 0
5 1 1 1 1 1 0
binldx [0 1 0= 4 S

According to the unary bin string format shown above; we arrange the encoding
and decoding algorithm in Eq. 1 and Eq. 2. These two equations represent the pseudo
code of the unary encoding/decoding flow.

For unary encoding, it gets the binldx which is the index of the bin string in Table
1 from the value of the input syntax element (SEVal). The for loop in Eq. 1 generates
the bin string according to the binldx. When finishing the for loop, it will generate one
bit “0” as the end bit of the corresponding bin string. Namely, the unary binarization
process arrives at the end of encoding step.

For unary decoding, it sets binldx to zero at the initial step. The while loop in Eq.
2 checks the current bin assigned by binldx from the bin string and binldx counts if the
current bin is equal to “1”. If the current bin is equal to “0”, the unary binarization
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process arrives at the end of decoding step. binldx sends to SEVal which is defined as

the value of the syntax element.

Start unary (U) encoding process

binldx = SEVal;
for (i==0; i <binldx; i ++ ){
bin=1;
}
bin = 0; (Eq. 1)

Start unary (U) decoding process

binldx = 0;
while (bin[binldx] == 1){
binldx = binldx + 1;

b
SEVal = binldx; (Eq. 2)

2.2.2 Truncated unary(TU) binarization:process

Input to this process.is arequest for a TU binarization for a syntax element and
cMax. Output of this process is the TU binarization of the syntax element.

For syntax element values less than cMax, the U binarization process mentioned
in Section 2.2.1 is invoked. For the syntax element value equal to cMax the bin string
is a bit string of length cMax with all bins being equal to “1”. TU binarization is
always invoked with a cMax value equal to the largest possible value of the syntax
element.

The truncated unary binarization process is based on the unary one and has an
additional factor of cMax which is defined as the maximum length of the current bin
string. If the value of syntax element (SEVal) is less than cMax, the truncated unary
and the typical unary binarization process are the same. If SEVal is equal to cMax, the

10



number “1” of the bin string is equal to cMax and there is no “0” bit in the end of the
current string. For example, SEVal(=4") is assumed. If the value of cMax is “5”, the
result of bin string is equal to “11110”. If the value of cMax is also “4”, the result of
the bin string is equal to “1111” where the end bit of “0” is truncated in this case.

Eq. 3 is the truncated unary encoding flow which is modified from Eq. 1. Besides
checking the value of syntax element (SEVal), it also takes cMax into consideration. If
SEVal is less than cMax, it works as the unary encoding process. If binldx isn’t less
than cMax, it doesn’t generate “0” in the end of bin string when completing the

encoding of current syntax element.

Start truncated unary (FU) encoding process

binldx = SEVal;
for (i==0; i < binldx;.1 ++ ){
bin=1;
h
If (SEVal < cMax) bin=0; (Eq. 3)

Eq. 4 is the truncated unary decoding flow which'is modified from Eq. 2. Besides
checking the bin value, it takes cMax as a factor, additionally. It works as the unary
decoding process when binsldx is less than cMax. If binldx isn’t less than cMax, it
doesn’t complete the decoding action until reading the end bit “0” in the end of the bin

string.

Start truncated unary (TU) decoding process
binldx = 0;

while (bin[binldx] == 1 && (binldx < cMax)){
binldx = binldx + 1;

b
SEVal = binldx; (Eq. 4)
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2.2.3 Fixed-length (FL) binarization process

Input to this process is a request for a FL binarization for a syntax element and
cMax. Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using an fixedLength-bit unsigned integer bin
string of the syntax element value. The indexing of bins for the FL binarization is such
that the binldx = 0 relates to the least significant bit with increasing values of binldx
towards the most significant bit.

The fixed-length code is the simple-defined format of the binarization coding
process which is defined as the typical unsigned integer., The coding rule is represented
by means of the typical;binary number..Eor.example, the value of “5,0” is equal to
“101,”. The value of ““51¢” is defined as the decimal style and the value of “101,” is the
binary format whichus the required fixed-length code. Table 2 shows the fixed-length

code definition.

Table 2 bin string of the fixed-length code

Syntax . .
clement bin_string
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 0 0 1 0 0
5 0 0 0 1 0 1
binldx |0 |1 |2 |3 |4 |5

For fixed-length encoding process, the value of input syntax element defines the
binldx. The value of (binldx + 1) is just the required bit numbers for the corresponding
bin string of the current syntax element.

For fixed-length decoding process, it has to refer to the value of cMax which

defines the number size of the current syntax element. In Table 2, the cMax equals five
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because the maximum value of binldx is five. All syntax elements which are decoded

by the fixed-length format are always represented with six binary bits.

2.2.4 Unary/k-th order Exp_Golomb (UEGK)

binarization process

Input to this process is a request for a UEGk binarization for a syntax element,
signedValFlag and uCoff. Output of this process is the UEGk binarization of the syntax
element.

A UEGKk bin string is a concatenation of a prefix'bit string and a suffix bit string.
The prefix of the binarization is specified-by.invoking the TU binarization process for
the prefix part [ Min(,UCoff, Abs( synEIVal ).)"] of a syntax ‘element value SsynElVal as
specified in Section 2:2.2'with cMax = uCoff, where uCoff > 0. Namely, the prefix part
is dominated by cMaX. The suffix part of this code doesn’t always apply because it

isn’t adopted by two cases.

The UEGK bin string is derived ‘as follows:

»  If one of the following is true, the bin string of a syntax element having value
synEIVal consists only of a prefix bit string. Namely, the UEGk doesn’t enter the
suffix coding step.

1. IfsignedValFlag is equal to 1 and the prefix bin contains only one 0 bit, the
value of syntax element is just decided by prefix bin string with truncated
unary (TU) code.

2. IfsignedValFlag is equal to 0 and the prefix bin string isn’t equal to the bit

string which is composed of the string length cMax of bit 1.
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»  Otherwise, the bin string of the UEGk suffix part of a syntax element value

synElVal is specified by a process equivalent to the following pseudo-code:

If( Abs( synE1Val) >=uCoff){
sufS = Abs( synElVal) — uCoff
stopLoop =0
do{
if( sufS >= ( 1<<k)){
put( 1)
sufS = sufS — ( 1<<k)
k++
telse{
put(0)
while( k--)
put(( sufS >>k) & 0x01)
stopLoop= 1
}
} while( !stopLoop)
}
If( signedValFlag &&synElVal !=0)
If( synElVal > 0)
put(0)
else
put( 1) (Eq. 5)

The initial value of k is defined as the order of the unary Exp-Golomb coding
which are named as UEGKk. In the binarization decoding of CABAC, it only applies
two decoding flows such as UEGO and UEG3. UEGO is used by the residual data

decoding process and UEG3 is used by the motion vector difference one.
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2.2.5 Special binarization process

Input to this process is a request for a binarization for syntax element mb_type or
sub_mb_type. Output of this process is the binarization of these two syntax elements.

All formats of the binarization coding process are introduced above. But there is
still a special coding flow which we don’t describe yet. In order to perform the higher
video quality, the macroblock and sub-macroblock are divided into many kinds of
types such as I, P, B, and SI slices. In the four basic types, they are also sorted by
variable block sizes. These two syntax elements are difficult to define by means of the
aforementioned coding flows. {In' H.264/AVC, it adopts the table-based method to
define the macro and sub-macroblock types.. Thesbinarization engine reads the bin
string and checks if the bin string is mapped. the specified location in these tables. If
the assigned bin string is' found in these tables;'it ¢an look up the current macroblock
type.

The binarization scheme for coding of maeroblock type in I slice is specified in
Table 3 [1]. For example, if the value of bin string is equal to “1001011” in I slice, the
mapped macroblock type is equal to, “8” by look up Table 3. We observe that the
probability of the macroblock type appearance is large and its corresponding bin string
is shorter.

For macroblock types in SI slices, the binarization consists of bin strings specified
as a concatenation of a prefix and a suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by by = ( ( mb_type
== SI)? 0 : 1 ). For the syntax element value for which by is equal to 1, the
binarization is given by concatenating the prefix by and the suffix bit string as specified
in Table 3 for macroblock type in I slices indexed by subtracting 1 from the value of
mb_type in SI slices.
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Table 3 Binarization for macroblock types in I slice

Value (name) of mb_type | Bin string
0 (I 4x4) 0
1 (I 16x16 0 0 0) 1{o]o]o 0|0
2 (1 16x16_1 0 0) 1 {0 |0 |0 |0 |1
3(L_16x16 2 0 0) 1 {00 |0 |1 |O
4(1_16x16 3 0 0) 1 {00 |0 |1 |1
5(L_16x16 0 1 0) 1 0|0 |1 |0 O 0
6 (1 16x16 1 1 0) 1{0]0 |1 |0 |0 |1
7 (1 16x16 2 1 0) 1{o]o |1 |0 |1 |oO
8 (I 16x16 3 1 0) 10|01 |0 |1 |1
9 (1 16x16 0 2 0) 10 [0 [1 |1 |0 |0
10 (I_16x16_1 2 40) 17040 k1 [1 |0 |1
11 (I_16x16 272 0) 1L 10 L0 fr"L1 |1 |o
12 (I_16x16 3.2 0) 110 [0 |1 L |1 |1
13 (1_16x16 0 0 1) 140 1 o (0.0
14 (1_16x16.1 0_1) L4001 f0 |0 1
15 (1_16x16.2 0 1) 1o (1 (o170
16 (I_16x16_3 0 1) e Ofekn [ 0 1] 1
17 (1_16x16°0_1- 1) o L1 ko o (o
18 (I_16x16 171 1) 1 10 |1tl0 [0 |1
19 (I_16x16 2 1 1) 70 [1°]1 (0o |1 |oO
20 (1_16x16 3 1 1) 110 [1 [1 |0 |1 |1
21 (1_16x16 0 2 1) 1 (o |1 |1 |1 ]0 |oO
22 (1_16x16 1 2 1) 110 (1 [1 |1 |0 |1
23 (1 16x16 2 2 1) 1o |1 |1 |1 |1 |oO
24 (1 _16x16 3 2 1) 1 ]0o [1 (1 |1 |1 |1
25 (I PCM) 1|1
binldx 0|1 (2 |3 |4 5 6

In other words, the macroblock in SI slice is the enhanced format of the
macroblock type in I slice. The bin string of SI slice macroblock type is composed of

two parts: prefix bit and the suffix part. If the prefix bit is equal to 0, it doesn’t need the
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suffix part and the syntax element is equal to 0. If the prefix bit is equal to 1, the suffix
part is defined in Table 3 and the mapped value of macroblock types has to be added
by 1 in Sl slice.

Besides the macroblock type in SI slice, there are still two cases that they generate
the bin value through the suffix process. The binarization schemes for P macroblock
types in P and SP slices and B macroblocks in B slices are specified in Table 4 [1].
Table 4 is the prefix definitions of mb_type. The suffix parts are decided by the formats
in Table 3 because these fields are the intra macroblock type in P, SP, and B slice. But
the value of the macroblock type in the last fields in P and B slice have to be added by
offset value.

The bin string for I macroblock types.in.P.and.SP slices corresponding to mb_type
value 5 to 30 consists 0f a concatenation of a prefix,; which consists of a single bit with
value equal to 1 as specified in Table 4 and a suffix'as specified in Table 3, indexed by
subtracting 5 from the value of my_type. Namely in the P and SP slices, the value of
mb_type is equal to the'summation of the offset value “5” and the corresponding value
of mb_type for current binsstring in Table 3 if the prefix bitiof the current bin string is
equal to “1”.

The bin string for I macroblock types in B slices (mb_type values 23 to 48) the
binarization consists of bin strings specified as a concatenation of a prefis bit string as
specified in Table 4 and the suffix bit strings as specified in Table 3, indexed by
subtracting 23 from the value of mb type. Namely in the B slices, the value of
mb_type is equal to the summation of the offset value “23” and the corresponding
value of mb_type for current bin string in Table 3 if the prefix bits of the current bin

string is equal to “111101”.
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Table 4 Binarization for macroblock types in P, SP, and B slices

Slice type Value (name) of mb_type Bin string
0 (P_LO 16x16) 0 0 0
1 (P_LO_LO 16x8) 0 1 1
P. SP slice 2 (P_LO LO 8x16) 0 1 0
3 (P_8x8) 0 0 1
4 (P_8x8ref0) na
5 to 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1 (B_LO_16x16) 1 0 0
2 (B_L1 16x16) 1 0 1
3 (B_Bi_16x16) 1 1 0 0 0 0
4 (B_LO_LOQ_16x8) 1 1 0 0 0 1
5 (B_L0%LO 8x16) 1 1 0 0 1 0
6 (B ikl L1 :16x8) 1 1 0 0 1 1
7 (BzL1 L1 8x16) 1 1 0 1 0 0
8(B_LO L1 16x8) 1 1 0 1 0 1
9B L0 L1 8x16) 1 1 0 1 1 0
10(B_ L1 LO.16x8) 1 1 0 1 1 1
B slice 11 (B.L1 L0.8x16) 1 1 1 1 1 0
12 (B 'LO Bi 16x8) 1 1 1 0 0 0 0
13 (B_LO Bi_8x16) | 1 1 0 0 0 1
14 (B L1 Bi 16x8) 1 1 1 0 0 1 0
15(B_L1 Bi 8x16) 1 1 1 0 0 1 1
16 (B_Bi L0 16x8) 1 1 1 0 1 0 0
17 (B_Bi_LO 8x16) 1 1 1 0 1 0 1
18 (B _Bi L1 16x8) 1 1 1 0 1 1 0
19(B_Bi L1 8x16) 1 1 1 0 1 1 1
20 (B_Bi _Bi 16x8) 1 1 1 1 0 0 0
21 (B_Bi_Bi 8x16) 1 1 1 1 0 0 1
22 (B_8x8) 1 1 1 1 1 1
23 to 48 (Intra, prefix only) 1 1 1 1 0 1
binldx 0 1 2 3 4 5 6
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Table 5 Binarization for sub-macroblock types in P, SP, and B slices

Slice type | Value (name) of sub_mb_type | Bin string
0 (P_LO_8x8) 1
1 (P_LO 8x4) 0
2 (P_LO 4x8) 0
3 (P_LO_4x4) 0
0 (B_Direct 8x8) 0
1 (B_LO 8x8) 1
2 (B_L1_8x8) 1
3 (B_Bi_8x8) 1
4 (B_LO 8x4) 1
1
1
1
1
1
1
1
1
0

P, SP slice

— | O O

5(B_LO 4x8)
B slice 6 (B L1 8x4)
7 (B_L1:4x8)
8 (B_Bi 8x4)
9 (BzBi 4x8)
10(B_L0_4x4)
11 (B L1 4x4)
12 (B_Bi_4x4)

p—

— ol =] O

il = =N e ]

el R e e R =N e el B )

p—

UG NN I [ S P G [ S I RN N e el )

0
1
0
0
0
0
1
1
1
1
1
1
2

binldx 3 4 5

For P, SP, and B slieesi the specification of the binarization for sub mb type is
given in Table 5. Instead of looking up the prefix part in one table and looking up the
suffix part in other table, it only takes Table 5 to process the binarization of

sub-macroblock types in P, SP, and B slices.

2.3 Algorithm of basic binary arithmetic coding

In this section, we introduce the basic arithmetic encoding and decoding
algorithm to understand the organization of the arithmetic code. It is the basic concept

to the advanced binary arithmetic algorithm in Section 2.4.
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2.3.1 Basic binary arithmetic encoding algorithm

This section introduces the basic arithmetic encoding algorithm to understand the
binary arithmetic coding algorithm and know how to decode the bit-stream which is
generated by encoder. According to the probability, the binary arithmetic encode
defines two sub-intervals in the current range. The two sub-intervals are named as
MPS (Most Probable Symbol) and LPS (Least Probable Symbol). Figure 4(a) shows
the definition of the sub-intervals. The lower part is MPS and the upper one is LPS.
The range value of MPS is defined as rMPS and the one of LPS is defined as rLPS.
The ranges of the current MPS<and LPS are defined.in Eq. 6. In this equation,

and p s are the probability of MPS and LPS. The summation of LPS and MPS is

equal to one because the probability of the current interval is'one.

Ifbin== “1" Ifbin== “0"

LPS tLPS rLPS_next LPSH LPS rLPS next

range range codlOffset range rLPS

_next
—_— codlOffset codlOffset

codlOffset
rMPS_next — next
rMPS rMPSQ| MPS rMPS| MPS -

rMPS_next

(@ (b) (©)

Figure4  (a) Definition of MPS and LPS and

(b) Sub-divided interval of MPS and

(c) Sub-divided interval of LPS
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rMPS = range x pyes
rLPS =rangex p, s = rangex(1— pyps)

Pwes - The probability of MPS

Prps - The probability of LPS (Eq. 6)
Depending on the bin decision, it identifies as either MPS or LPS. If bin is equal

to “1”, the next interval belongs to MPS. Figure 4(b) shows the MPS sub-interval

condition and the lower part of the current interval is the next one. The range of the

next interval is re-defined as rMPS and p,, is increased. On the contrary, the next

current interval belongs to LPS when bin is equal to “0”. Figure 4(c) shows the LPS
sub-interval condition and the upper part of .the current interval is the next one. The

range of the next interval is re~defined as rLPS and  py;4 is decreased.

We arrange the algerithm in the following Eq. 7 and Eq. 8:

Most probable symbol (MPS) condition:

The MPS probability of the nextinterval” pyoc \exr = Pups + Pins
The range of the next interval: range,.,, = rMPS
The value of the next interval:* codlOffset ey =IMPSX pos \exr

Pine - The increment of p,s - (Eq. 7)

Least probable symbol (LPS) condition:

The MPS probability of the next interval: pyps yexr = Pups — Ppec
The range of the next interval: range,.,, = rLPS
The value of the next interval: codlOffset,,, = codlOffset + rLPS x o5 yexr

Poe - The decrement of p, o - (Eq. 8)
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codlOffset is allocated at the intersection between the current MPS and LPS range.
Depending on codlOffset, the arithmetic encoder produces the bit-stream in order to

achieve the compression effect.

2.3.2 Basic binary arithmetic decoding algorithm

In the binary arithmetic decoder, it decompresses the bit-stream to the bin value
which offers the binarization to restore the syntax elements. The decoding process is
similar to the encoding one. Both of them are executed by means of the recursive
interval subdivision. But they still.have some different coding flow, which is described
as follows.

It is needed to define the initial range and the MPS ‘probability p,,; when
starting the binary arithmetic. décode. The value® of codlOffset is composed of the
bit-stream and compared with rMPS. The MPS and LPS conditions are unlike the
definitions of the encoder. Figure 5 illustrates-the-subdivision of the MPS and LPS
condition. If codlOffset ig less than'fMP.S, the condition belongs to MPS. The range of
the next interval is equal to FMPS:+. The probability of ' MPS ( p,,ss ) 1s increased and
the bin value outputs “1”. The next value of codlOffset remains the current one. Figure
5(a) illustrates the MPS condition. If codlOffset is great than or equal to rMPS, the next
interval turns into LPS. The range of the next interval is defined as rLPS. The
probability of MPS ( p,ss ) is decreased and the bin value outputs “0”. The meaning
of the next value of codlOffset is to subtract the rMPS from the current codlOffset.

Figure 5(b) illustrates the MPS condition.
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LPS rLPS_next (LPS rLPS_next

—codlOffset
range rMPS range rLPS

— codlOffset —

rMPS next rMPS_next
rMPS - rMPS -

(2) (b)

Figure 5 (a) Result of MPS subdivision and

(b) Result of LPS subdivision

We arrange the algorithm in the following Eq. 9 and Eq. 10.

Most probable symbol (MPS) condition: If.(‘codlOffset < rMPS )

The bin Value = “1”

The value of the next codlOffset: codlOffset,.,, = codlOffset
The MPS probability of the néxt intervak: pypsriexr = Pups + Pinc

The range of the next interval: range,.,, = rMPS

Pinc . The increment of pyps -

Least probable symbol (LPS) condition: If( codlOffset >= rMPS )

The value of the next codlOffset: codlOffset,.,, = codlOffset —rMPS
The MPS probability of the next interval: pyps yexr = Pups — Ppec

The range of the next interval: range.,, = rLPS

Poe - The decrement of p, o -
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2.4 Advanced binary arithmetic coding for

H.264/AVC

According to the H.264/AVC standard [1], we introduce the advanced binary
arithmetic algorithm adopted by CABAC in this section. It makes more efficient with
the integer operation for range computation by means of multiplication-free and

table-based probability architecture.

2.4.1 Advanced binary arithmetic encoding algorithm

In Section 2.3.1, we introduce the basic algorithm of the binary arithmetic encode.
Although it can achieve the high compression gain, the algorithm works under the
floating-point operation. The hardware complexity becomes the problem when we
implement the binary arithmetic encoder. In Eq. 6;-it has to compute the values of
rMPS and rLPS with two multipliersiand processes the next value of codlOffset, range,
and the probability by means of the floating adders.and comparators. It consumes the
lots hardware cost because the multipliers and 'floating operations make the complex
circuit. According to H.264/AVC standard [1], we adopt the low complexity algorithm
to implement the CABAD circuit.

In order to improve the coding efficiency, there are three kinds of the binary
arithmetic decoders in H.264/AVC system such as the normal, bypass, and termination
encoding flow. We will show whole algorithms as follows.

The first algorithm is the normal encoding process which is shown in Figure 6.
There are two main factors to dominate the hardware efficiency. One is the multiplier

of rangex p s defined as rLPS and the other is the probability calculation defined
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as p,ps - In Eq. 6, it applies one multiplier to find the range of LPS (rLPS). According
to the H.264/AVC standard, the table-based method is used in place of the
multiplication operation. In the normal decoding flowchart, codlRangeLPS looks up
the table, rangeTabLPS, depending on two indexes such as pStateldx and
qCodIRangeldx. pStateldx is defined as the probability of MPS ( p,,»s ) Which gets
from the context model. qCodIRangeldx is the quantized value of the current range

(codlRange) which is separated to four parts in this table. The second factor of the

improved method is to estimate the value of p,.s . In Section 2.3.1, we know that the
value of p,ps is increased when MPS condition happened and is decreased when
LPS condition happened. But, we can’t find the rule how much the value has to be

increased or decreased.

@codeDecision(ctxldx,binVaD

qCodIRangeldx = (codIRange >> 6) & 3
codlRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codIRange = codIRange - codlRangeLP$S

Yes binVal !=
f valMPS

codlLow = codlLow + codIRange No

codIRange = codlRangeLP$S

o

valMPS = 1 - valMIPS ‘

pStateldx = transldxLPS[pStateldx] pStateldx = transldxMPS[pStateldx]

;

RenormE

!

‘ symCnt = symCnt + 1 ‘

Figure 6 Flowchart of the normal encoding flow [1]
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The flowchart of Figure 6 also shows the table-based method to process the
probability estimation. It divides into two sub-intervals such as MPS and LPS
conditions. Depending on the sub-interval, it computes the next probability by the
transldxLPS table when the interval division is LPS and by the transldxMPS table
when the interval is MPS. These two probability tables are approximated by sixty-four

quantized values indexed by the probability of the current interval.

RenormE

<
<

)
codIRange < 0x100 Yes

Yes

codlLow = codILow - 0x100
bitsOutstanding = bitsOutstanding + 1

codlLow = codlLow - 0x200

No -

v
PutBit(0) PutBit(1)

Y

codIRange = codIRange << 1
codlLow = codlLow << 1

*

Figure 7 Flowchart of renormalization in the encoder [1]

In the basic binary arithmetic encoding, the interval subdivision is operated under
the floating-point operation. In practical implementation, this method causes the
complexity of the circuit to be increased. The advanced algorithm adopts the integer
operation for H.264/AVC. The value of the next range becomes smaller than the

current interval. So we use the renormalization method to keep the scales of codlRange
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and codlLow. Figure 7 shows the flowchart of renormalization in the encoder. The
MSB of codlRange always keeps “1” in order to realize the integer operation. If the
MSB of codlRagne is equal to “0”, the value of codlRagne has to be shifted left until
the current bit is equal to “1”. The codlLow follows the codlRange to shift left
synchronously. Depending on the shifted number of codlRagne, it dominates the
number of iteration for codlLow compute directly and affects the PutBit procedure

indirectly.

PutBit(B)

firstBitFlag = 0 WriteBits(B, 1)

V\
bitsOutstanding > 0 YesT

WriteBits(1 - B, 1)
No bitsOutstanding = bitsOutstanding - 1

%

Figure 8 Flowchart of PutBit(B) [1]

Figure 8 shows the flowchart of PutBit procedure. It is dominated by the codlLow
decision branch and the bitsOutstanding accumulated in renormalization procedure.
The codlLow decision branch dominates its leading bit of one piece bit-stream for
current codlLow. Besides dominating the leading bit, the codlLow decision branch also
controls if the bitsOutstanding should be accumulated. The accumulated
bitsOutstanding dominates the number of bit will be generated in one piece bit-stream
for current codlLow. For example, if the current codlLow is 01 xxxx_ xxxx, and the

current accumulated bitsOutstanding is 5, the bit-stream will not be generated. Instead
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of generating bit-stream, the bitsOutstanding will be added 1. So the next
bitsOutstanding is 6. If the current codlLow is 11_xxxx xxxx, and the current
accumulated bitsOutstanding is 5, the generated bit-stream in PutBit procedure is
10 0000. The length of the generated bit-stream is variable decided by the
accumulated value of bitsOutstanding. The accumulation of bitsOutstanding restricts
the throughput of the whole arithmetic encoder. The proposed method of lowering its
affection in throughput will be introduced in Chapter 3. Besides, the accumulation of
bitsOutstanding also leads to the large range in the length of generated variable
bit-stream. It causes the cost issue in output interface design. The proposed method of

cost efficiency in output interface will also be introduced in Chapter 3.

EncodeBypass(binVal)

codlLow = codlLow << 1

P @

codlLow = codILow + codIlRange

PutBit(1)
l N v

PutBit(0) codlLow = codILow - 0x400

codlLow = codILow - 0x200
bitsOutstanding = bitsOutstanding + 1

|
l

symCnt = symCnt + 1

Figure 9 Flowchart of encoding bypass [1]
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The second algorithm is the bypass encoding process which is applied by the
specified  syntax elements such as abs_mvd, significant_coeff flag,
last_significant_coeff_flag, and coeff_abs_level_minusl. The probabilities of MPS and
LPS are fair; therefore, both probabilities are 0.5. It is unnecessary to refer to the
context model during decoding. Figure 9 shows the flowchart of the bypass encoding
flow. Compared with Figure 6, the bypass encoding process doesn’t estimate the
probability of the next interval. So we don’t see the probability computation in the
bypass encoding. The computed codlRange doesn’t change which means that it has no
renormalization in the bypass decoding. But the codlLow decision branch in bypass
encoding is similar to the one,in.renormalization, so e can modify it to be hardware
sharing with renormalization in hardware, implementation. -Besides, it just uses one
adder and one no iteration renormalization to. implement the encoding process. So we
will adopt the multi=symbol architecture based .on the result of statistic in several
image test sequences to ‘speed up the.throughput of the CABAC system due to its

simple process. The proposed multi-symbol architecture will'be shown in Chapter 3.

EncodeTerminate(binVal)

1

codIRange = codIRange - 2

Yes

;

codlLow = codiLow + codIRange

No

!

RenormE

r

v

symCnt = symCnt + 1

}

Figure 10 Flowchart of the terminal encoding flow [1]
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The third algorithm is the termination encoding process. Figure 10 shows the
flowchart of the terminal encoding flow. The terminal encoding process is simple as
well, but it has the more encoding procedure compared to the bypass encoding process.
It doesn’t need the context model to refer to the probability. No matter the subdivision
condition belongs to MPS or LPS, the value of the next codlRange is always to
subtract two from the current codlRange at first. When the subdivision condition is
LPS, the EncodeFlush process shown at figure 11 has to be executed. The purpose of
EncodeFlush is stuffing several bits to divide the bit-stream of current macroblock and
the bit-stream of next macroblock. In the EncodeFlush process, the codIRange is
always assigned to be the constant value which is two at first. For whole termination
process, both MPS process and LPS process.have.to execute renormalization process.
In the MPS process, it only executes the renormalization process. In the LPS process, it
has to perform two steps process. The first step is to update the codlLow value by

taking original codlLowW to add the initial codIRange which has been subtracted two.

EncodeFlush

codIRange = 2

v

RenormE

v

PutBit((codILow >> 9) & 1)

.

WriteBits(((codlLow >> 7) & 3) | 1, 2)

Figure 11 Flowchart of flushing at termination [1]
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The termination process occurs one time per macroblock encoding process, it is
seldom used during all encoding processes. Therefore, it affects slightly in the
throughput of whole CABAC encoding system. So we will focus on the first two

algorithms in this section.

2.4.2 Advanced binary arithmetic decoding algorithm

In Section 2.3.2, we introduce the basic algorithm of the binary arithmetic decode.
The drawbacks of it is the same as the basic algorithm of the binary arithmetic encode,
it also leads to more complexity in:-hdrdware implementation due to the multipliers and
floating-point operations. zAs arithmetic algorithm-used .in CABAC encoding, the
arithmetic decoding also adopts three kinds of decoding modes such as the normal,
bypass, and termination..decoding flow to slower .its complexity in circuit
implementation. We will show these three decoding algorithms as.follows.

The first algorithm is the normal-decoding-process which is shown in Figure 12.
As advanced binary arithmetic encoding algorithm, thererareralso two main factors to
dominate the hardware efficiency for the advanced binary arithmetic decoding

algorithm. One is the multiplier of rangex p s defined as rLPS and the other is the
probability calculation defined as p 5. In Eq. 6, it applies one multiplier to find the
range of LPS (rLPS). According to the H.264/AVC standard, the table-based method is
used in place of the multiplication operation. In the normal decoding flowchart,
codlRangeLPS looks up the table, rangeTabLPS, depending on two indexes such as
pStateldx and gCodIRangeldx. pStateldx is defined as the probability of MPS ( pyps )
which gets from the context model. qCodIRangeldx is the quantized value of the

current range (codIRange) which is separated to four parts in this table. The second

factor of the improved method is to estimate the value of p,, . In Section 2.3.2, we
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know that the value of p,,s is increased when MPS condition happened and is
decreased when LPS condition happened. But we can’t find the rule how much the
value has to be increased or decreased. The flowchart of Figure 12 also shows the
table-based method to process the probability estimation. It divides into two
sub-intervals such as MPS and LPS conditions. Depending on the sub-interval, it
computes the next probability by the transldxLPS table when the interval division is
LPS and by the transldxMPS table when the interval is MPS. These two probability
tables are approximated by sixty-four quantized values indexed by the probability of

the current interval.

DecodeDecision (ctxldx)

gCodIRangeldx = (codIRange>>6) & 3
codIRangeLPS =rangeTabLPS[pStateldx][qCodIRangeldx]
codIRange = codIRange - codIRangeLPS

NO—J

codl|Offset >= codIRange
binval = lvalMPS binval = valMPS

cod|Offset = codIOffset - codIRange _
codiRange = codiRangelL PS pStateldx = transldxMPS[pStateldx]

Yes

pStateldx == 0? Yesj

‘ valMPS = 1 - valMPS

No ‘

pStateldx = transldxLPS[pStateldx]

v

RenormD

Figure 12 Flowchart of the normal decoding flow [1]

In the basic binary arithmetic decoder, the interval subdivision is operated under
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the floating-point operation. In practical implementation, this method causes the
complexity of the circuit to be increased. The advanced algorithm adopts the integer
operation for H.264/AVC. The value of the next range becomes smaller than the
current interval. So we use the renormalization method to keep the scales of codIRange
and codlOffset. Figure 13 shows the flowchart of renormalization. The MSB of
codlRange always keeps “1” in order to realize the integer operation. If the MSB of
codlRagne is equal to “0”, the value of codlRagne has to be shifted left until the
current bit is equal to “1”. Depending on the shifted number of codIRagne, codlOffset

fill the bit-stream in the LSB.

codlRange< 0x0100

Yes
A 2

codIRange = codIRange << 1
codIOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)

Figure 13 Flowchart of renormalization in the decoder [1]

The second algorithm is the bypass decoding process which is applied by the
specified  syntax  elements such as abs_mvd, significant_coeff_flag,
last_significant_coeff_flag, and coeff_abs_level _minusl. The probabilities of MPS and
LPS are fair, that is, both probabilities are 0.5. It is unnecessary to refer to the context

model during decoding. Figure 14 shows the flowchart of the bypass decoding flow.
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Compared with Figure 12, the bypass decoding process doesn’t estimate the
probability of the next interval. So we can’t see the probability computation in the
bypass decoding. The computed codlRange doesn’t change which means that it has no
renormalization in the bypass decoding. It just uses one subtraction to implement this
decoding process. This algorithm is very simple, so we will use the architecture to

speed up the CABAD system.

DecodeBypass

codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)

codlOffset >=
codIRange

ers

binval =1
codlOffset = codlOffset - codIRange

Figure14 Flowchart.of the bypass decoding flow [1]

DecodeTerminate

codIRange = codIRange-2

codlOffset >= codIRange

binval =1

Yes

binval =0

=2

Figure 15 Flowchart of the terminal decoding flow [1]

The third algorithm is the termination decoding process. Figure 15 show the
flowchart of the terminal decoding flow. The terminal decoding process is very simple
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as well, but it has the more decoding procedure compared to the bypass decoding
process. It doesn’t need the context model to refer to the probability. The value of the
next codlRange is always to subtract two from the current codlRange depending on
whether the subdivision condition belongs to MPS or not. The final values of
codlRange and codlOffset are required to renormalize through the RenormD in this
figure when it branches to the situation that codlOffset is smaller than codlRange (MPS
condition). The architecture of this flowchart is composed of one constant subtraction,
one comparator, and one renormalization. The termination decoding process is used to
trace if the current slice is ended. It occurs one time per macroblock process which is

seldom used during all decoding processes.

2.5 Context model organization

The values of the context model offer the probability value of MPS (pStateldx)
and the historical valuerof bin (MPS)‘in order to achieve the adaptive performance. The
number of the context model is.399 for baseline profileand 701 for main profile. Here
we take the baseline profile context model to introduce the operation of the context
model briefly. In the normal encoding/decoding process of the arithmetic
encoder/decoder, we have to prepare the 399 locations of the context model to record
all encoding/decoding results.
context model index = ctxldxOffset+ctxldxInc (Eq. 11)
context model index = ctxldxOffset+ ctxldxBlockCatOffset+ ctxldxInc (Eq. 12)

We divide into two kinds of the context model index methods to allocate the
context model. Eq. 11 is one of the index methods. Except residual data
encoding/decoding, the context model index is equal to the sum of ctxldxOffset and
ctxldxInc. Depending on the syntax element and the slice type, we can find the value of
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ctxldxOffset in Table 6. The value of ctxldxInc is looked up in Table 9 by referring to
the syntax element and binldx. In table 9, the alphabet of “na” denotes the never
happened issue and the word of “Terminate” means that the encoding/decoding flow
enters the terminal encoding/decoding process. If the generated bin is equal to “1”, the
slice has to be stopped and encodes/decodes the next slice. Table 10 shows the value of
ctxldxInc referring to the required neighbor syntax elements of top and left blocks
which will be explained in Section 2.6. Table 11 shows the value of ctxldxInc in special
binldx when encoding/decoding mb_type in Table 9.

Eq. 12 is the index method for the residual data encoding/decoding which focuses
on the syntax element of _the residual data encoding/decoding flow such as
coded_block_flag, significant_coeff_flag, last_significant_coeff_flag, and
coeff_abs_level minusl. The walue of the. ‘context model index is the sum of
ctxldxOffset, ctxldxBlockCatOffset, and ctxldxinc. The assignment of ctxldxOffset is
also shown in Table 6. The value of ctxldxBlockCatOffset is defined as Table 8 which
is dominated by the parameters of“syntax elements and ctxBlockCat. The value of
ctxBlockCat is the block categories for the different icoefficient presentations.
maxNumCoeff means the required coefficient number of the current ctxBlockCat.
ctxBlockCat sorts five block categories which are luma_DC for 4x4 blocks, luma AC
for 4x4 blocks, luma 4x4, chroma DC, and chroma AC in Table 7. The value of
ctxldxInc in residual data is defined as the scanning position that ranges from 0 to
“maxNumCoeff — 2” in Table 7. The scanning position of the residual data process has
two scanning orders. One is scanned for frame coded blocks with zig-zag scan and the

other is scanned for field coded blocks with field scan.
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Table 6 Value of ctxldxOffset definition [1]

) slice type
image layer syntax element
SI I P,SP B
Jlice data mb_s_klp_flag _ — | — 11 |24
mb_field_decoding_flag 70 70 70 70
mb_type 3 — | — —
mb_type(prefix) 0 — | 14 27
macroblock layer mb_type(suffix) 3 — |7 32
coded_block_pattern(prefix) 73 73 73 73
coded_block_pattern(suffix) 77 77 77 77
mb_gp_delta 60 60 60 60
MB prediction Prev__lntra4x4_pre_mode_flag 68 68 68 68
(intra) rem_intra4x4_pred_mode 69 69 69 69
Intra_chroma pred._mode 64 64 64 64
ref_idx" 10 e | — 54 54
MB prediction and ref—dl dl):)—ll T — — >4
sub-MB prediction TR0 K 40 40
(inter) Mvd_11 X — — 40
mter
Mvd_10_y - B 47 47
Mvd 11y — | -— — 47
sub-MB predictionsub_mb_type —, B — 21 36
coded_block flag 85 85 85 85
Significant coeff flag(field) 1057 105 | 105 | 105
residual data Slgn|f!car1t._coeff_flag(frame) 297 | 277 | 277 | 277
last_significant_coeff_flag(field). | 166 | 166 | 166 | 166
last_significant_coeff_flag(frame)| 338 | 338 | 338 | 338
Coeff_abs_level minusl 227 | 227 | 227 | 227

Table 7 Assignment of ctxBlockCat due to coefficient type [1]

coefficient type | maxNumCoeff ctxBlockCat
luma DC 16 0
luma AC 15 1
Luma coefficient 16 2
chroma DC 4 3
chroma AC 15 4
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elements of the residual data [1]

Syntax element ctxBlockCat
of the residualdata 0 1 2 3 4
coded_block flag 0 4 8 | 12 | 16
Significant_coeff _flag 0 | 15|29 | 44 | 47
last_significant_coeff flag| 0 | 15 | 29 | 44 | 47
coeff_abs_level minusl 0 | 10 | 20 | 30 | 39

Table 9 Definition of the ctxldxInc value for context model index [1]

Table 8 Assignment of ctxldxBlockCatOffset due to ctxBlockCat and syntax

Syntax element binldx
0 1 2 3 4 5 | >=6

mbType_SI(prefix) na na na na | na | na
mbType_SI(suffix

ype_Si(suffix) 0,12 | Terminate |13 4 |s56|67] 7
mbType_|I
Mb_skip_flag_P na na na na | na | na
mbType_P(prefix) 0 1 23 na na | na | na
mbType_P(suffix) 0 Terminate 1 2 23| 3 3
sub_mb_type P 0 1 2 na na | na | na
Mb_skip_flag_B na na na na | na | na

. 0,1,2

mbType_B(prefix) " 4,5 5 5 5 5
mbType_B(suffix) 0 Terminate 1 2 23| 3 3
sub_mbType B 0 1 2,3 3 3 |3 | na
mvdl0_x, mvdI1_x 0.1.2 3 4 5 6 | 6 6
mvdI0_y, mvdll_y o 3 4 5 6 | 6 | 6
Ref idx_10, ref idx_I1 0,1,2,3 4 5 5 515 5
Mb_qp_delta 0,1 2 3 3 313 3
intra_chroma_pred_mode | 0,1,2 3 3 na na | na | na
prev_intradx4 pre_mode fll na na na na | na | na
rem_intradx4 _pred_mode 0 0 0 na na | na | na
Mb_field_decoding_flag 0,1,2 na na na na | na | na
coded_block_pattern(prefix 0.1.23 0,1,2,3 0,1,2,310,1,23 | na | na | na
coded_block_pattern(suffix) ~ 4,5,6,7 na na na | na | na
end_of slice 0 na na na na | na | na
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Table 10 Required syntax elements of the left and top neighbor blocks and the
computation for ctxldxInc

Syntax element A (left block) B (top block) ctxldxInc
mbType mbType mbType A+B
mb_skip_flag mb_skip_flag
mb_skip_flag Mb_skip_flag mb_skip_flag A+B
Sub_mb_type sub_mb_type
MvdlIO_x, mvdIO_y mb_skip_flag mb_skip_flag
ref idx_10 ref idx_10
Sub_mb_type sub_mb_type (Eq. 11)
MvdI1_x, mvdll_y mb_skip_flag mb_skip_flag
ref idx 11 ref idx 11
Sub_mb_type sub_mb_type
ref_idx_lO, ref_idx_I1 mb_skip_flag mb_skip_flag {B,A}

ref idx 10 ref idx |1

ref idx 10 ref idx 1

(mb_gp_delta =0 &&

mb_qgp_delta Na Na coded_block_pattern !=
0)
intra_chroma_pred.made: |sintra_chroma_pred_mode
Intra_chroma_pred_mode mbType mbTjpe A+B
mb_field_decoding flag Mb_field, decoding flag mb_field. decoding_flag A+B
coded_block_pattern(prefix {B,A}
coded: block_pattern Coded_block_pattern binldx ==
ded_block (suffi 0 ®.A
coded_block_pattern(suffix - —
mbType mbType tl)lnldx == | (B, A4
coded_block_flag coded_block_flag coded _block_flag
coded_block_pattern coded ‘block_pattern {B,A}
mbType mbType
Table 11 "Assignment of. ctxldx-for syntax element mbType
current index of value of the
Syntax element g . ) ctxldxInc
y binldx.. | the read-bin read bin
4 3 0 6
1 5
mbType_Sl(suffix) 5 5
5 3
1 6
0 3
mbType__P(prefix) 2 1 I 3
0 3
mbType__ P(suffix) 4 3 0 3
0 5
mbType__B(prefix) 2 1 I )
0 3
mbType__ B(suffix) 4 3 I 3
0 3
sub_mbtype B 2 1 T 3
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In addition, ctxldxInc related to the syntax element of mvd has the special
definition. Eq. 13 shows the ctxldxInc definition of mvd. It checks the sum of the
absolute mvd values in left and top sub-macroblocks. If the summation is less than “3”,
the value ctxldxInc is defined as “0”. If the summation is greater than “32”, the value
ctxldxInc is defined as “2”. Otherwise, the value ctxldxInc is defined as “1”.

sum_A B =abs(mvd[A])+ abs(mvd[B])
If (sum_ A B <3)
ctxldxlnc=10;
else if( sum_A B> 32)
ctxldxlnc=2 ;
else

ctxldxinc=1; (Eq. 13)

2.6 Syntax elements for the neighbor blocks

In the previous section, we have explained the methods to compute the context
model index to offer theqsarithmetic decoder to produce the bin value. In both the
residual data and the general encoding/decoding, the context model index is dominated
by two factors such as ctxIdxOffset and ctxIdxInc. ctxIdxInc is the only one factor
related with the syntax elements of the neighbor blocks. In Table 10, we observe the
variable syntax elements referring to the left and top blocks to define the ctxIdxInc of
the first binldx such as mb Type, mb skip flag, ref idx, mb qp delta,
intra_chroma pred mode, mb_field decoding flag, and coded block pattern. In this
section, we introduce how to refer to syntax elements of the left and top neighbor
blocks.

In CABAC system, it has two side syntax elements to be required such as the left
and top ones. The referred position is based on the current block which can treat as not
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only the macroblock but also the sub-macroblock. So we have two methods to allocate
the required blocks in two levels as follows.

The first method is to get neighbor in macroblock level. Figure 16 illustrates the
left and top macroblocks of the current one. “N” denotes the number of the macroblock
in the current slice. The black block is the current encoding/decoding macroblock
which is the N-th encoded/decoded macroblock coordinated as (MB_x , MB_y) in this
slice. The macroblock “N-1" is the left macroblock and “N-w” is the top block where
“w” is the width of this frame and means that the frame has “w” macroblocks in every
row. In the method of Figure 16, the syntax elements are described for one parameter

each macroblock except mvd, ref idx, and residual data.

\%\%
- >
Nw | | 1 1 0
(MB_x,MB y)
Figure 16 Illustration of the neighbor location in macroblock level

The second method is to get neighbor in sub-macroblock level. Figure 17
illustrates the sub-macroblocks in the current, left and top side macroblocks. The
coordinate of the current sub-macroblock is defined as (sub MB_x , sub MB y). The
neighbor location is like the allocation in macroblock level. If sub MB_x is not equal

to “0”, the left sub macroblock is in the left side of the current macroblock. If
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sub MB x is equal to “0”, the left sub _macroblock can’t be found in the current
macroblock and has to refer to the left side of the macroblock A. The gray circles in the
macroblock A are the required sub-macroblocks which mean the syntax elements of the
sub-macroblock 3, 7, 11, 15 have to be stored in order to record the left
sub-macroblock. If sub MB y is not equal to “0”, the top sub_macroblock is in the
upper side of the current macroblock. If sub MB y is equal to “0”, the top
sub_macroblock can’t be found in the current macroblock and has to refer to the upper
side of the macroblock B. The gray circles in the macroblock B are the required
sub-macroblocks which mean the syntax elements of the sub-macroblock 12, 13, 14,

15 have to be stored in order to record the top sub-macroblock.

)
oo
Y |

0[O

I G VI
ROACAN A

P
[\
— [ —
E =]
— | —
N | —

Figure 17 Illustration of the neighbor location for sub-macroblock level
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2.7 Paper survey for state-of-the-art CABAC designs

In this section, we will introduce some of the state-of-the-art CABAC encoding
designs which have been published recently (2004~ 2006). Instead of introducing the
CABAC encoding and decoding designs, we only introduce the state-of-the-art
CABAC encoding designs due to that the proposed three high throughput methods are
all for encoder.

The main differences of all of these CABAC encoding are almost in arithmetic
encoder due to that the arithmetic encoder is,the main dominator of throughput for the
whole CABAC system, so. we mainly introduce the arithmetic encoders of each
state-of the-art designs here. The state-of-the-art. CABAC encoder designs are
introduced as follows.

1. For the CABAC design of [7] proposed by V. H. Ha, W.—S. Shim, and J.—W.
Kim, the initial design without optimization takes 14 clock ‘cycles per bin. The
optimization strategies are shown:as follows.

(1) Algorithm: optimize computations in each step

(2) Merging: merge multiple steps into one

(3) Pre-fetching: pre-fetch and pre-process data as early as possible

(4) Parallelism: perform independent steps in parallel.

After adopting the four strategies, the processing time is reduced to 5 clock cycles
per bin.

2. Figure 18 shows the arithmetic encoder architecture proposed by Roberto R.
Osorio [11]. For normal encoding mode of arithmetic coding, it combines two sets of
range updating modules and two sets of pre-computing modules for low updating to

achieve the purpose of dual-symbol encoding.
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Figure 18 Arithmetic eoding interval update. (@) Complete iteration.

(b) range updating. (c) Pre-computations for low updating. [11]

3. Figure 19 shows the simplified (pseudo-code) description of the MZ-coder
algorithm (right) proposed by J. Nufiez and V. Chouliaras [9] and the original CABAC
algorithm (left). The MZ-coder evolves from the Z-coder software algorithm presented
in [16] as a generalization of the well known GolombiRice coder for lossless coding of
bi-level images. The variables of coding state for the CABAC algorithm are range and
low, and for the MZ-coder are range and subend. The renormalization process in the
MZ-coder does not include internal dependencies. As a result it can be readily
accomplished with a single shift left operation. On the other hand the pseudo-code for
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the CABAC algorithm shows the internal dependencies of low inside the while loop.
This dependency means that a variable number of cycles (from 0 up to a maximum of

6) are required to maintain the state variables in the required range.

rLPS = table256x8 (stale,range), pLPS = table64x6(state);
range = range — rLPS; Z =range + pLPS;
if ( symbol '= MP5S ) if (Z>=HALF)
{ Z—QUARTER + £>>1;
low+=range; If (symbol == MPS)
range = rLPS; {
} range = Z;
I*rencrmalizetion loop*/ - T
while{ range < QUARTER) if (range >= HALF)
{ .
. _ output [ bit;
l{f(low >= HALF) range <=1;
Qutput bit; subend <=1;
low -= HALF, 1
) }
else else
{ {
if (low< QUARTER) Z=FULL-Z;
Qutput bit; subend +=Z;
else range +=Z;
bits to follow++; shift_bits = shift{range);
low-=QUARTER,; output shift_bits bits,
h range <= shift_bits;
low <<= 1; subend <= shift_bits;
range <<=]; }

Figure 19 CABAC & MZ pseudo-code description [9]

4. The CABAC encoder design of [12] is proposed by Hassan Shojania and
Subramania Sudharsanan. Due to the subtraction operations on codlLow in 1 and 1+
branches of renormalization, a simple barrel shifter can not be used directly to mimic
the cumulative effect of the iterations for codlLow update and output bits generation.
However, since each subtraction only affects a single bit of value at positions 8 or 9, an
iter-size left shift of codlLow still preserves all the necessary information to retrieve
the updated codlLow value. A few special rules are required to derive the updated

value:

(1) The shifted-out bits and the top bit of codlLow (bit 9) form an iter+1-bit
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parsing area to be interpreted from left to right. Figure 20 shows an example
with iter = 5.

(2) Only the leading 1’s in the parsing area are proper output bits which won’t
need further processing. The other 1’s are outstanding bits which need to be
resolved either by a following zero in the current parsing area or other
deterministic 1 or 0 of the subsequent parsing areas resulting from encoding
of next symbols.

(3) The first encountered zero bit is to be always ignored.

(4) The updated codlLow receives bits 0 to 8 of the shifted codlLow. If the
shifted-out bits (top itet:bits) are all 1, bit 9 i§ copied over too; otherwise bit 9
must be set to 0;

These rules help constructing a parscr using combinational logic to obtain updated
codlLow and a bit-string’ of length iter. This combinational logic effectively replaces
the 4K entry ROM discussed earlier. If-no-outstanding bits are present, the string will
correspond to output bits. To speed up update of codlLow, the combinational circuit is
split into two stages corresponding to update of codlLow:(Low Renormalizer) and
generation of the output bits (Parser). Since codlLow is updated at the end of the first

stage, encoding next symbol can start right after this update.

98 o

XXXXKXKKKK
i}

Top bit
Shifted-out bitsl @
——v [l
‘xxxxxlxb(){}()(OOOOO‘

| —

Parsina area

Figure 20 Sample update of codlLow [12]
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Chapter 3
Binary Arithmetic Encoding Engine

In this chapter, we propose three methods to promote the throughput of CABAC
encoder, and the corresponding architectures of these methods will be also introduced.
About the high throughput CABAC decoder, we continue using [2] which we
presented in August 2006. So we don’t mention it any:more here.

The motivation of improving the throughput of binary arithmetic encoder engine
is due to the following reasons. The arithmetic encoding engine is the operating center,
it dominates the throughput of the whole CABAC éncoding system. So the throughput
improving methods which focus on it will be more efficient.

There are two main, bottlenecks in arithmetic encoding engine, they lead to
serious restriction in throughput aspect. One is that the sub-interval algorithm causes
the highly data dependence between the current interval and the next ones due to its
characteristic of high compression gain. Both the arithmetic encoder and the arithmetic
decoder have such a drawback caused by their algorithm intrinsic. The other one is
caused by bitsOutstanding accumulation, it appears only in the arithmetic encoder. The
detail of bitsOutstanding accumulation will be introduced in Section 3.2.1.

In H.264/AVC system, the entropy coding includes the variable length codes
(UVLC and CAVLC) and CABAC. In baseline profile, UVLC and CAVLC are the
main coders to compress the macroblock information related to the parameter and the
pixel coefficients. In main profile, CABAC substitutes for UVLC and CAVLC to
process the video data. CABAC applies two levels hierarchical coding flow. One is the
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binarization coding flow, it is similar to the process of the variable length coders such
as UVLC and CAVLC. Except searching for the context model index, the algorithm of
the binarization is easy to realize. The other one is the arithmetic coding flow, it is also
the focus of our research.

This chapter is organized as follows. In section 3.1, we present the overview of
CABAC for H.264/AVC. In Section 3.2, the proposed three throughput promoting
methods will be introduced. We show these three methods in the three sub-sections

such as Section 3.2.1, Section 3.2.2, and Section 3.2.3 for more detailed description.

3.1 Overview ofiCABAC

Figure 21 is thesproposed system architecture of CABAC encoder, it consists of
three main modules namely the binarization engine, the arithmetic encoder (AE), and
the SRAM module. This architeeture is based on the design [2] which we proposed in
August 2006. The arithmetic ‘encoder is the operating center of the whole CABAC

encoding system, so we focus on promoting its efficiency.

'nsp;t Syntax SE
. Element > i
Buffer (SEB) bin Sl . bit-stream
¥ ™ Arithmetic output
"y left, Encoder
top SE |Binarization
Storage > Engine
SRAM(RS)
4 A
Address left,top| Address pState,
Generator 1 ¢ flag | |Generator 2 ! MPS
(AG1) (AG2)
Context Context
|—> Model |4 Model
ctxIdx SRAM Initial Table

Figure 21 System architecture of CABAC encoder
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The entire CABAC encoding procedure is described as follows. When starting to
encode, it has to initialize the context model SRAM by looking up the initial table
which we implement only by means of the combinational circuit. Besides, the context
model also has to be re-initialized when every new slice starts. The adopted context
model SRAM is (701x7 bits) dual port SRAM. After the initializing step, the
binarization engine has to read the syntax element by syntax element buffer at first.
Meanwhile, the binarization engine also controls the row-storage SRAM to backup the
essential syntax elements from the syntax element buffer. The adopted row-storage
SRAM is (120x208 bits) single port SRAM. The chosen size of the row-storage SRAM
is in order to support the encoding of 1080HD video sequence (1920x1088). The detail
of memory requirement will be shown.in, Section=4.2. Besides, the essential syntax
elements mean the neighbor information which belongs to ‘the neighbor macroblocks
of the current macroblock or the next few macroblocks. The neighbor macroblocks
mean the top macroblock and the left macroblock of the current macroblock or the top
sub-macroblock and the left sub-macroblock -of:the current' sub-macroblock. The
detailed definition of neighbor macroblock and meighbor sub-macroblock are
illustrated in Section 2.6. After binarization process, it generates the corresponding bin
string of the current syntax element to provide for arithmetic encoder. When the
arithmetic encoder encoding the bin string, it refers to the current probability from the
context model SRAM to find the sub-range of MPS and LPS, then it updates the
probability to the location of the current context model index (ctxldx). After arithmetic
encoding process, the corresponding bit-stream will be generated.

AGI generates the address of the row-storage SRAM. AG2generates the address
of the context model SRAM, its organization has been defined in Section 2.5.

Figure 22 is the system architecture of CABAC decoder. As CABAC encoder, it
also consists of three main modules namely the arithmetic encoder (AD), the
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binarization engine, and the SRAM module. This architecture is what we proposed in
August 2006 [2]. The arithmetic decoder also dominates the throughput of the whole
CABAC decoding system.

The entire decoding procedure is described as follows. When starting to decode, it
also has to initialize the context model SRAM as the encoding initial step. Namely, the
entire probabilities of the context model SRAM have to be initialized by the context
model initial table. After the initializing step, arithmetic decoder read bit-stream to
produce the bin value depended on the current range (codlRange) and the current value
(codlOffset). Then, the binarization engine read the bin values to judge if the bin string
forms the meaningful data. If négative, the binarization engine requests the arithmetic
decoder to decode one bin again and re-judges the bin string until the value of the
current syntax element can be identified. Namely, the. binarization engine reads bin
string until matchingsthe bin definition of the'standard [1] and transfers it into the
mapped syntax element such as the macroblock parameter, mvd, residual data, and so
on. If completing the eurrent slice, codlRange is assigned to “512,,” and codlOffset is

refilled in 9-bit bit-stream from the syntax parser.

input
bit-stream !
output
Context SE Syntax usgu
Model » Element —»
Initial Table . - bi Buffer (SEB)
* pState, Arithmetic lﬂ= v
mps | Decoder left, R
Context > Binarization| top SE ow
Model Engine Storage
SRAM < SRAM(RS)
{ Address left;top Addtess
fl
ctxIdx Generator 2 = 9 » Generator 1
(AG2) (AG1)

Figure 22 System architecture of CABAC decoder
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3.2 Three throughput promoting methods

The proposed three throughput promoting methods are all for arithmetic encoder
(AE) in CABAC encoding system. This is because the arithmetic encoder is the
operating center of the whole CABAC encoding system, and it dominates the
throughput of the CABAC encoding system. So the throughput promoting methods
focus on the arithmetic encoder will be more efficient.

Besides, about the CABAC decoding system aspect, we continue using the design
[2] which we proposed in August 2006, and it has been introduced in detail in [5].
Besides, instead of providingany advanced improving methods for decoder, we only
focus on the improving of encoder in the thesis.

The arithmetic encoder is/the second level encoding flow. It compresses the bin
string which is generated by binarization engine (the fist level encoding flow) to be
bit-stream. The arithmetic encoder has three kinds- of the encoding flows such as

normal encoding mode,;bypass encoding mode, and-terminal encoding mode.

Percentage of AE usage

14.93%  0.62%

@ Normal
84.44%

Figure 23 Percentage of the usage of the three encoding modes in AE
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The pie chart (Figure 23) shows the usage rate of the three encoding modes in the
arithmetic encoder. The normal encoding mode occupies about 84.44% usage rate to
the entire times of arithmetic encoding demand. It is the highest usage rate for these
three arithmetic encoding modes, so the process efficiency promoting methods which
aim at normal encoding mode are more efficient. The methods will be introduced
mainly in Section 3.2.3. The bypass encoding mode occupies about 14.93%. We
propose multi-symbol architecture which is based on the statistic result of the bypass
concatenate distribution to promoting the process efficiency of the bypass encoding
mode. The detail of multi-symbol architecture will be introduced in Section 3.2.1. The
terminal encoding mode occupies about 0.62%, it 1s the lowest usage rate for these
three arithmetic encoding.modes. This is.because the terminal encoding mode is only
used to judge if the current slice is completion, it sworks one or two times per
macroblock. Thus, the terminal encoding mode 1s'seldom usedsin CABAC encoding
system. So we don’t provide any|efficiency improving method due to its usage rate

occupies approximatehly 0%:.

3.2.1 Multi-symbol architecture

In this section we introduce the proposed first method, it is the multi-symbol
architecture. The proposed multi-symbol architecture is only for the bypass encoding
mode, it is based on the statistic result of bypass concatenate times per bypass
encoding issue. Besides, the multi-symbol architecture is available due to the low
complexity of the bypass encoding mode.

Figure 24 shows the statistic of the number and the percentage of the concatenate

bypass encoding under executing the six typical video test sequences.
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Figure 24 Percentage of the number of the concatenate bypass encoding per

bypass demand under executing CIF frames for four typical video sequences
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Figure 25 Percentage of the number of the concatenate bypass encoding per
bypass demand under executing 1080HD frames for two typical video sequences
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Figure 24 shows the percentage of the number of the concatenate bypass encoding
per bypass demand under executing CIF frames for four typical video sequences. The
first two typical video sequences which are the foreman (a) and the akiyo (b) belong to
the data characteristic of the low complexity and slow motion. For the foreman
sequence, its maximum number of the concatenate bypass is 16, and the average
number of the concatenate bypass is 1.517 per bypass demand. For the akiyo sequence,
its maximum number of the concatenate bypass is 11, and the average number of the
concatenate bypass is 1.235 per bypass demand. The last two typical video sequences
which are the football (c) and the Stefan (d) belong to the data characteristic of the
high complexity and fast motion.. For the football sequence, its maximum number of
the concatenate bypass is 22, and the average number of the concatenate bypass is
1.633 per bypass demand. For the Stefan .sequence,:its maximum number of the
concatenate bypass is=31, and the average number of the concatenate bypass is 1.710
per bypass demand.

In Figure 25, it shows the percentage of the:number of the concatenate bypass
encoding per bypass demand under executing 13 1080HD frames for two typical video
sequences. The fist typical video sequence which is the station (a) belongs to the data
characteristic of the high complexity but slow motion. The second typical video
sequence which is the riverbed (a) belongs to the data characteristic of the low
complexity but fast motion. For the station sequence, its maximum number of the
concatenate bypass is 20, and the average number of the concatenate bypass is 1.316
per bypass demand. For the riverbed sequence, its maximum number of the
concatenate bypass is 24, and the average number of the concatenate bypass is 1.581
per bypass demand.

According to the statistic result of the six typical video sequences shown in Figure
24 and Figure 25, we can find that the percentage of the concatenating two bypass
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encoding per bypass demand is almost 15% and 10% for CIF video and 1080HD video
respectively, and the average concatenate number of bypass encoding which is greater
than or equal to two occupies about 20.42% for these six video sequences. Besides, we
find the video sequences which are higher complexity or faster motion cause bigger
maximum number and bigger average number of the concatenate bypass encoding.
This phenomenon is due to higher complexity causing more data in I frame and faster
motion causing more data in P and B frame. The average number of concatenate
bypass encoding got from the six video sequences is about 1.5, and the number
increasing with the accelerating of motion or the increasing of complexity but never
being in excess of 2. So weldesign the multi-symbol architecture consisted of
concatenating two bypass encoding units.as.cascade form..For the video which has
higher complexity or faster motion, the performance of our multi-symbol architecture

is more efficient.

codIRange
codiLow[9:0]=
{codlLow[8:0],1'b0}

/
Y 10

binval mux

Put-Bit procedure

Figure 26 Bypass encoding unit

The multi-symbol architecture is available due to the low complexity of bypass
encoding unit. According to the algorithm of bypass encoding introduced in Section

2.4.1, we know that bypass encoding process is quite simple due to it needn’t refer
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context model and no iterant renormalization process. Figure 26 shows the architecture
of bypass encoding unit, it mainly consists of one adder, one 2 to 1 multiplexer, and
one no iterant renormalization process. The bypass encoding needn’t execute
renormalization, but the back of its process is similar to renormalization process which
is no iterant operation controlled by codlRange. The no iterant renormalization process
is much simpler than the renormalization process, the detail of this complexity
comparison can be found in Section 2.4.1. So we modify the back process of bypass
encoding to be hardware sharing with renormalization process, and it is named as one
time renormalization namely the no iterant renormalization mentioned above. Besides,

the whole bypass encoding unitis implemented only with the combinational circuit.

codlLow, codIRange

1 Y bitstream 0 et
- bypass itstream
encoding unit length 0
| 10 //
‘ 1 Y bitstream 1
bitstream
bypass
encoding unit length 1
A \
bitstream combination <
codlLow output process I

{ »F +)
AE 2-level

bitstream output buffer

\

bitstream output

Figure 27 Architecture of the multi-symbol bypass encoding

Figure 27 shows the architecture of multi-symbol bypass encoding. It can improve

the concatenate bypass encoding efficiency, and generating the two corresponding
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bit-streams every one cycle. The whole encoding flow of the multi-symbol architecture
is described as follows. If the bypass flag is concatenate distribution namely the
concatenate number is great than or equal to two, the multi-symbol architecture reads
two bin value from the bin string every time, but it reads one bin value in the last time
when its concatenate bypass number is odd. If it reads two bin value, it also generate
two corresponding bit-stream meanwhile due to the whole bypass encoding unit is
implemented only with the combinational circuit. These two generated bit-streams are
combined into one bit-stream in the bit-stream combination process by referring the
control signals of each bit-stream length. This bit-stream combination process is also
implemented only with the combinational eircuit. Then, the combined bit-stream is
delivered to the arithmetic encoder (AE) .outputsinterface. namely the AE 2-level
bit-stream output bufter. Finally, the 8 bit bit-stream is.outputted from the AE output
interface. The detail of the AE output interface will be introducediin Section 3.2.3.4.
The multi-symbol architecture almost generates two bypass encoded bit-streams
per cycle when the concatenate number of bypass encoding'is greater then or equal to
two. According to the statistic results of Figure 24 and Figure 25, the concatenate
number which is greater than or; equal to two occupies about 20.42%. The 20.42%
concatenate bypass can be speeded up in encoding by the multi-symbol bypass

architecture. The speeding up formula is shown in Eq. 14.

The speeding up formula of multi-symbol architecture:

Multiple of speeding up= {concatenate number/[ceil(concatenate number/2)]} (Eq. 14)

For example, if the concatenate number is 23, it originally needs 23 cycles at least
to finish the 23 bypass encodings, but it only needs 12 cycles to encode the 23 bypass
after applying the proposed multi-symbol architecture. Therefore, if the concatenate
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number is two, it only takes one cycle to finish these two bypass encoding. According
to the statistic results shown in Figure 24 and Figure 25, they shows that there are

about 92.487% concatenate bypass encoding can be finished in one cycle.

3.2.2 Pipeline organization

In this Section we introduce the proposed second method, it is the pipeline
organization of arithmetic encoder. The proposed pipeline organization is mainly for
normal encoding mode, because it must take extra cycles to refer the context model
SRAM. The purpose of the pipelinerorganization is to make the reading and storing of

context model SRAM more. efficient.

cycle1 ; cycle 2 | cycle (m+1) 3 cycle (m+2) cycle (m+n+2) = oo
Without read context _» AE operation ‘ read context _‘» AE operation
Pipeline model { | (mcycles) || model i | (ncycles)
! [ write context |- " write context
! model i ! model
cycle 1 cycle 2 cycle (m+1) cycle (m+n+1) | ...
Pineli read context | | | AE operation ‘ :
ipeline model 7| (mcycles) | 3
| [
i _ i \ looking up
i write context i | Contextmodel |
! model Loy index |
1 / ‘
: <7
| | read context | | | AE operation | |
| model | (n cycles) |
| ! [ write context | |
| | model |

Figure 28  Timing diagram of the pipeline comparison

Figure 28 shows the timing diagram of no pipelining and pipelining for normal
encoding in arithmetic encoder. We divide the normal encoding of arithmetic encoder
into two stages. The first stage is to read the context model SRAM. The second stage is
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to encode the bin string into bit-stream and to write the probability back to the context
model SRAM. We apply these two stages to schedule the pipeline organization.

The bottleneck of the pipeline organization is the variable executing cycle of the
normal encoding caused by the bitsOutstanding accumulating in the renormalization
process, and its maximum executing cycle is 31. The variable executing cycle leads to
the cycle spending of each pipeline stage is not the same, so the pipeline organization
is not efficient due to it is not balanced. If the normal encoding takes more than one
cycle, the pipeline organization will be inefficient due to it only save one cycle every
accessing context model SRAM but the fist access.

We propose a method which will be introduced in Section 3.2.3 to reduce the
variable executing cycle-to be one cycle.in.mostssituations. It not only makes the
normal encoding motre efficient but also .makes- the pipeline organization more
balanced.

When the normal encoding only takes one cycle, the reading and writing of the
context model SRAM-=will act at the'same time.-Such a situation leads to the resource
conflict of reading and writing in the context model SRAM:Therefore, for the context
model SRAM, we adopt dual portt SRAM model to implement it. Applying such a dual
port SRAM model can make the reading and writing actions of the context model

SRAM act in the same cycle.

Figure 29 Timing diagram of bypass encoding just after normal encoding
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Figure 29 shows the timing diagram of the bypass encoding just after the normal

encoding when the concatenate bypass number is bigger than or equal to two. The

multi-symbol bypass encoding only take one cycle, so it is efficient in the pipeline

organization.
cycle 1 ; cycle 2 } cycle 3 } cycle 4 cycle5 | e
Without read context | | | AE operation read context | | [ AE operation
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14 write context | ]| Context model |§
i model i / index i
i - ;
: o f :
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(a) normal encoding
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read context i AE operation
model ! (1 cycles)
| [ write context
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(b) bypass encoding just after normal encoding
Figure 30 Timing diagram after taking the method shown in Section 3.2.3
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Figure 30 shows the timing diagram of normal encoding and bypass encoding
after adopting the method shown in Section 3.2.3 in most situations. The method
makes the normal encoding take only one cycle in most situations, so the pipeline

organization shown in Figure 30 is more efficient due to its balance in each stage.

3.2.3 Case Efficiency Architecture

In this section we introduce the proposed third method which is named as Case
Efficiency Architecture, it is only for normal encoding and terminal encoding due to
they need the renormalization process. The design of Case Efficiency Architecture is
based on the statistic result for bitsOutstanding. Namely, according to the probability
distribution of the cases of the bitsOutstanding accumulating, it can make the normal
encoding more efficiént.

Case Efficiency. Architecture can improve the efficiency of pipeline organization
mentioned in Section3.2.2 due to.it makes-the-mest-situations of normal encoding can
be finished in only one cyele. So the more balanced pipelinesstages make the pipeline
organization more efficient after adopting.

This section is divided into four sub-sections. In Section 3.2.3.1, we draw the
outline of the bottleneck of the throughput promoting in arithmetic encoding. Section
3.2.3.2 shows the proposed design to improve the throughput bottleneck. In Section
3.2.3.3, the cost issue of interface design risen due to the large variable range of the
variable length bit-stream which is caused by the large variable number in
bitsOutstanding accumulating (0~31) will be introduced. Section 3.2.3.4 shows the

proposed interface design which is based on the statistic result of bitsOutstanding.
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3.2.3.1 Throughput bottleneck of arithmetic

encoding engine

The arithmetic encoder is the operating center of the CABAC encoder, it
dominate the throughput of the whole CABAC encoding process. Besides, The
probability of normal encoding is the highest for the three encoding mode of the
arithmetic encoding, it is shown in Figure 23 of Section 3.2. The renormalization
process takes the most time of normal encoding due to the bitsOutstanding
accumulating. So improving the renormalization process is more efficient in
throughput promoting of the. CABAC encoder.

The bottlenecks ,of arithmetic encoding engine is the bitsOutstanding
accumulating in renormalization process. The bitsOutstanding leads to the following
two bottlenecks:

(1) the data dependence between successive symbols.

(2) the variable executing eycles of the renormalization process.

The first throughput bottleneck causes the multi-symbol architecture of normal
encoding to be difficult to implement due to its“data dependence. It is the intrinsic
drawback of the arithmetic encoding algorithm. The second throughput bottleneck is
caused by the bitsOutstanding accumulating. The range of the number of
bitsOutstanding accumulating is from 0 to 31, it means that it have to take 0~31 cycles
to accumulate the bitsOutstanding for one symbol. These two throughput bottlenecks
can be illustrated in Figure 7 and Figure 8 of Section 2.4.1. We give an example shown

as follows:
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If the initial state of the renormalization process is:
The current codlRange is: 0 0000 01xx => it means that the shift =6
The current codlLow is: 11 0110 1110

The initial bitsOutstanding = 0

The corresponding renormalization process:

(step 0): 11 0110 1110 =>  PutBit(1) = |
(step 1): 10 1101 1100 =>  PutBit(1) = 1
(step2): 01 1011 1000 =>  bitsOutstanding = 1
(step 3): 01 _0111 0000 => _bitsOutstanding =' /2
(step 4): 00 _1110_0000 == PutBit(0) == (OH
(step 5): 01 _1100 0000 =>  bitsOutstanding’ . = |

=> The bit-stream of current symbol i1 1011
The remainder bitsOutstanding =1
(PS: The remainder bitsOutstanding carry on being used by the next symbol.)

(Eq. 15)

The remainder bitsOutstanding is the fist throughput bottleneck mentioned above,
it leads to the multi-symbol architecture for normal encoding is difficult to be designed.
The second throughput bottleneck is the bitsOutstanding accumulating. Namely, the
normal encoding may take too many cycles in some situations due to it accumulates
the bitsOutstanding cycle by cycle. In next section, we propose the Case Efficiency

Architecture to improve the inefficiency caused by the second bottleneck.
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3.2.3.2 Throughput efficiency design

The bitsOutstanding accumulating restricts the throughput of the whole arithmetic
encoder, so we analyze the data characteristic of bitsOutstanding to look for an
improving method. We get the statistic results of the following five pie charts
corresponding to five different video test sequences which are the same as those shown

in Figure 24 and Figure 25 of Section3.2.1.

foreman m 6 o 7
m 5 0.76% 0.38%

[ 0
51.35%
akiyo
O 2
12.10%
[ 0
51.48%b0

Figure 31 Statistic of bitsOutstanding for the low complexity and slow motion

video sequence
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Figure 32 Statistic of bitsOutstanding for the high complexity and fast motion

video sequence
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Figure 33 Statisti¢ of bitsOutstanding for 1080HD video sequence

Figure 31, Figure 32, and Figure 33 have Similar probaijility distribution for
bitsOutstanding . We can find that the prebabilities of bitsOutstanding become great
with the getting small-of the accumqleitirigM)f BitsQutstanding, so we will take
the data characteristic of bitsOutsfanding to divide the.whole renormalization process
into cases.

Figure 34 shows the tree map of renormalization process which is corresponding
to the flowchart shown in Figure 7 of Section 2.4.1. In Figure 34, the PB(1) and the
PB(0) mean the putting bit “1” process and the putting bit “0” process, and the (bs+1)
means bitsOutstanding +1. The (9,8) means the bit 9 and the bit 8 of codlLow, and 7, 6,

5,4...,and 0 means the bit 7, 6, 5, 4, ..., and 0 of codlLow.
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We divide the iterant renormalization process into several cases and estimate the
corresponding bit-stream and remainder bitsOutstanding of these cases by the tree
maps shown in Figure 34. The example of it is shown in (Eq. 15) of Section 3.2.3.1.
The dividing of these cases is based on the codlLow of current symbol and the
remainder bitsOutstanding of last symbol. The codlLow is 10 bit, and the maximum
shift dominated by codlRange is 7, so the maximum bitsOutstanding number of one
symbol is 7. The building of cases which are based on the accumulating number of
bitsOutstanding is shown as following tables, and we only show several situation such
those shown in Table 12, Table13, and Table14 here due to too many cases in smaller
bisOutstanding. The cases shown. in Table 12 and Tablel3 are the cases when their last
remainder bitsOutstanding equal to zero,.and.the cases shown in Table 14 are the cases

when their last remainder bitsOutstanding equal to 1.

Table 12 The cases corresponding-to-its-accumulating number of
bitsOutstanding=7 (It'isunder last remainder bitsOutstanding=0) (4 cases)

The corresponding Remainder The generated | bit-stream
codlLow bitsOutstanding bit-stream length
shift=6 | 01 _1111_11xx 7 X 0
shift=7 [ 00 1111 111x 7 0 1
01 1111 110x 0 0111 1111 8
10 1111 111x 7 1 1
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Table 13 The cases corresponding to its accumulating number of

bitsOutstanding=6 (It is under last remainder bitsOutstanding=0) (12 cases)

The corresponding Remainder The generated | bit-stream

codlLow bitsOutstanding bit-stream length

shift=5 | 01 1111 Ixxx 6 X 0
shift=6 | 00 _1111_11xx 6 0 1

01 1111 10xx 0 011 1111 7

10 1111 11xx 6 1 1
shift=7 | 00 0111 _111x 6 00 2

00 1111 110x 0 0011 1111 8

01 O111 111x 6 01 2

01 _1111_100x 0 0111 1110 8

01 1111_101x 1 011 1111 7

10 01115 11X 6 10 2

10 1111 110x 0 1011 1Ll 8

11 0111 111x 6 11 2

Table 14 The cases corresponding to its accumulating number of

bitsOutstanding=5 (It is under last remainder bitsOutstanding=1) (32 cases)
The corresponding Remainder The generated | bit-stream
codlLow bitsOutstanding bit-stream length
shift=4 | 01 1111 xxxx 5 X 0
shift=5 | 00 1111 _1xxx 5 01 2
01 1111 Oxxx 0 011 1111 7
10 1111 1xxx 5 10 2
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shift=6 | 00 0111 11xx 5 010
00 1111 10xx 0 0101 1111
01 0111 11xx 5 011
01_1111_00xx 0 0111_1110
01 1111 0lxx 1 011 1111
10_0111_11xx 5 100
10 1111 10xx 0 1001 1111
11 0111 11xx 5 101

shift=7 [ 00 0011 111x 5 0100
00 0111 110x 0 0:1001 1111
00 1011_111% 5 0101
00 1111 400x 5 0,1011 1110
00 1111_101x 1 0101 1111
01 0011#111x 5 0110
01 0111 T10x 0 0 11011111
01_1011_111x 5 0111
01 1111 000x 0 0 1111 1100
01_1111_001x 1 0111_1110
01 1111 010x 0 0 1111 1101
01 1111 011x 2 011 1111
10 0011 111x 5 1000
10 0111 110x 0 1 0001 1111
10_1011_111x 5 1001
10 1111 100x 0 1 0011 1110
10_1111_101x 1 1001 1111
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11 0011 111x 5 1010 4

11 0111 110x 0 1 0101 1111 9

11 1011 111x 5 1011 4

Table 15 The number of the corresponding cases for the accumulating number of
bitsOutstanding of one symbol

(It is suitable for all kinds of last remainder bitsOutstanding)

The accumulating number
The number of the corresponding cases
of bitsOutstanding

7 4

6 12
5 32
4 80
3 187
2 298
1 355
0 52

Table 15 shows the number of the corresponding cases for the accumulating

number of bitsOutstanding when encoding one symbol, and these cases are 1020.

Verify the number of cases is 1020:

The range of shift which is decided by codlRange is: 0~7

(The detail of the relationship is shown in Table 17)
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The codlLow is 10 bit, but the range of shift is 0~7, so we only consider the 9 bit

codlLow[9:1]. It is illustrated in Figure 35.

bit bit bit bit bit bit bit bit bit

codiLow

bit

9 8 7 6 5 4 3 2 1
aobiy O _ EHEEE_EEE

1 2 3 4 5 6 7
Shift Left <« | | |1 |

Figure 35 Illustration of the shifting left of codlLow

So the total cases can be estimatéd as follows:
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1020 cases

(Eq. 16)

Besides the 1020 cases, the last remainder bitsOutstanding has to be considered.

The range of remainder bitsOutstanding is 0 ~ 31, so there are 32 kinds of remainder

bitsOutstanding. Therefore, the total number of the cases for renormalization process is

1020 x 32 = 32640 cases.

It is inefficient to build all of these cases due to too many cases causing the

critical path too long. We analyze the utility rate of these cases based on the probability

distribution of bitsOutstanding for typical video test sequence.
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Table 16 The utility rate of each case for one symbol

bitsOutstanding 0 1 2 3 4 5 6 7

The numbers of case 52 355 298 187 80 32 12 4

The probability of 51.39 | 24.37 || 12.12 6.05 3.02 1.51 0.76 0.38

appearance % % % % % % % %

Utility rate 0.9883 | 0.0686)| 0.0407 | 0.0324 | 0.0378 | |0.0472 | 0.0633 | 0.095
(probability/cases) % % % % % % % %

Utility rank 1 4 6 8 7 5 3 2

Table 16 shows the analysis of utility rate for each case in one symbol, it is the
same for all kinds of remainder bitsOutstanding. Aecording to the utility rate of cases,
we rank it in order. The cases whose utility  rate.is smaller than 0.041% are
implemented with sequential circuit; namely, the bitsOutstanding accumulates itself
one by one per cycle, and the generated.bit-stream for one symbol is produced not only
one cycle. The cases whose utility rate is greater than 0.041% to implement only with
combinational circuit; namely, the generated bit-stream for one symbol is produced in
only one cycle. The probability of these cases which are one executing cycle is about
78.41%.

Then, we have to consider the occupied probabilities of remainder
bitsOutstanding. We only analyze the bigger probabilities of remainder bitsOutstanding;

namely, the number of it is smaller than or equal to 7.
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Table 17 The number of cases and the probabilities of the different containing
range of remainder bitsOutstanding

the different containing case
the number
range of remainder Probability utility
of cases

bitsOutstanding rate
<no 455x 1=455 78.41%x 51.37%=40.28% | 0.0885%
(<2)0+1 455x 2=910 78.41%x 75.78%=59.42% | 0.0652%
(<3)0+1+2 455x 3=1365 | 78.41%x 87.88%= 68.91% | 0.0505%
(<4) 0+1+2+3 455x 4= 1820 | 78.41%x 93.93%= 73.65% | 0.0405%
(<5) 0+1+2+3+4 455x'5=2275 | 78.41%x 96.95%= 76.01% | 0.0334%
(< 6) 0+14+2+3+4+5 455x 6=2730 | 78.41%%x% 98:46%= 77.20% | 0.0283%
(<7) 0+14+243+4+5+6 455% 7= 3184 | 78.41%x 99.22%= 77.80% | 0.0244%
(< 8) 0+14+2+3+4+5+6+7 455x 8= 3640 | 78.41%x99.60%=78.10% 0.0215%

90%

80% 3650 76:01%  77.20% _ 77.80% 78.10%
- o < o —
70%
/ 68.91%

60% 59.42%
50%
40% 40.28%
30%
20%
10%

0%

<1 <2 <3 <a <5 <6 <7 <8

the different containing range of remainder bitsOutstanding

Figure 36 Probabilities of the different containing range of remainder

bitsOutstaning based on Table 17
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Table 17 shows the number of cases and the final probabilities of the different
containing range of remainder bitsOutstanding. Figure 36 is the probability curve of it
based on Table 17. The curve shows the probabilities will be saturation with the
increasing of the range of remainder bitsOutstanding. So the containing range of
remainder bitsOutstanding which is 3 is adopted by our design; namely, it supports the
remainder bitsOutstanding equaling to 0, 1, and 2. The cases of it are 455 x 3 = 1365
cases, and these cases are implemented only with combinational circuit; namely, there
are 68.91% renormalization process can be executed taking only one cycle.

Besides, the other cases are 32640 — 1365 = 31275 cases. These cases are not
implemented only with combinational cireuit due to too many and too inefficient for
these cases. So these cases are implemented with sequential circuit.

According to the analysis of remormalization process mentioned above, we
propose Case Efficiency Architecture shown in'Figure 37 to promote the efficiency of

the renormalization process.

Shifted

codilow codlLow Output
Shifted

-~ —» codIRange Output
codiRange codIRange
shift Case Matching
Shift Judgment
" Judgment High
Probability
Cases
» (Bitstream)
AE | codiLow
Front-End
Procedure Output
2-Level .
— bitstream
codlLow{[91,[8]} Buffer tstr
Put-Bit ||
codlLow . " procedure
Shift bitsOutstanding
request
> Bitstream Length
Index Output
Controller valid

—>| High Probability Cases
»| (Bitstream Length)

Figure 37 Case Efficiency Architecture for renormalization process
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Figure 37 shows the Case Efficiency Architecture for renormalization process.
The upper blue block is the high probability cases which are implemented only with
combinational circuit. It can produce the bit-stream of current symbol in only one cycle.
The generated bit-stream is variable length, so we design the control signal which is
bit-stream length to put the bit-stream into the bit-stream output buffer. The bit-stream
length is decided in lower blue block of Figure 37, and it is implemented only with
combinational circuit, too. The red block is the low utility rate cases which are
implemented with sequential circuit. Its bitsOutstanding accumulates itself one by one
cycle, so generating the corresponding bit-stream for one symbol takes several cycles
which is dominated by the shift number. The shift' number is decided by current
codlRange (9 bits), the relationship of them is.shown in Table 18. The implementation
of the Shift Judgement block shown'in Figure 37 1S based on the relationship. The
relationship is decided by the codlRange decision.branch shown:in Figure 7 of Section
2.4.1. If the current colRange is smallerthan 256, it has to be shift left until that it is
not smaller than 256,p:anymore. We simplify-the process to be the rule shown in Table
18. According to the rule, the shift can be estimated in only one cycle by implementing
it only with combinational circuit;shown in the shift judgment block of Figure 37. For
Table 18, the number of zero before the first “1” in MSB of the codlRange is the shift
number. For example, if the current codlRange is 0 0010 1101, the corresponding
shift is 3.

The conclusion of this section is that the proposed Case Efficiency Architecture
can make almost 70% normal encoding process take only one cycle due to the

efficiency of renormalization process is improved by Case Efficiency Architecture.
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Table 18 The relationship between shift and codIRange

codlRange
bit8 | bit7 | bitée | bit5 | bit4 | bit3 | bit2 | bit1 | bit 0
Done
1 X X x X X X x X
shift left
1 bit 0 1 X X X X X X X
shift left
2 bit 0 0 1 x X X x x x
shift left
3 bit 0 0 0 1 X X X X X
shift left
4 bit 0 0 0 0 1 X X X X
shift left
5 bit 0 0 0 0 0 1 X X X
shift left
6 bit 0 0 0 0 0 0 1 x x
shift left
7 bit 0 0 0 0 0 0 0 1 x
shift left
3 bit 0 0 0 0 0 0 0 0 1

Fxy means "don’tcare,

3.2.3.3 Cost issue in‘output interface

Each symbol (bin string) processed by arithmetic encoder will produce variable
length bit-stream, and the variable length is mainly dominated by the number of last
remainder bitsOutstanding. The value range of remainder bitsOutstanding which has
been mentioned in Section 3.2.3.2 is 0 ~ 31. The variable length bit-stream causes the
cost issue in bit-stream output buffer due to its large variable range in the length of
bit-stream.

If we design two levels 32 bit bit-stream output buffer, the advantage of it is that
all kinds of different length bit-stream can be written into it taking only one cycle. The
drawback of it is leading to higher cost due to the 32 kinds of bit-stream lengths and
the 32 kinds of position indexes. It causes 32 x 32 = 1024 cases for the bit-stream

output buffer.
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3.2.3.4 Cost efficiency design

According to the statistic of the remainder bitsOutstanding for the five video test
sequences shown in Section 3.2.3.2, we find that the probability distribution of it is not
uniform. So we can design the bit-stream output buffer which is cost efficiency based

on the characteristic of probability distribution of the remainder bitsOutstanding.

Table 19 Probability of bitsOutstanding being greater than 7

bitsOutstanding <=7 >7
Low Foreman 99.6120% | 0.3880%
complexity
and (CIF)
Slow
motion AKiyo 99.5903% | '0.4097%
(CIF)
High Football 99.6104% /| 0.3896%
complexity
and (C“:)
Fast
motion
Stefan 99.6186%0 | 0.3814%
(CIEF)
Riverbed 99.6088% | 0.3912%
(1080HD)

Table 19 shows the statistic result of the five video test sequences, it is divided by
the remainder bitsOutstanding being greater than 7. We can find that the probability of
it being smaller than or equaling to 7 occupies about 99.6% for this five video test
sequences. So we design the two levels 8 bit buffer as bit-stream output buffer for our

CABAC encoder system.
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Output Control Signal
Next =( index < bitstream length)

index © ~ ~
h L
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Buffer

Arithmetic
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Buffer

~ Current
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| Outb'ut 1 byte naex
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Figure 38 . T'he proposeq bit- stream output interface
i F j I._ u .

Figure 38 is the pmposed b1t-stream o#utput m'terface based‘ on the analysis of the

remainder b1tsOutstand1ng shown in Table 19 The proposed b1t-s’§ream output buffer is

composed of two levels 8 bit buffer The-r-easea—e-f-&hit is that the maximum reminder

bitsOutstanding of 99. ;% shown n Table 19 1S 7,I and the ﬁr{st bit of put bit procedure

is 1 bit. The reason of the two levels is to ensure that' 1t can receive any bit-stream
[ it

whose length is smaller than or equal to 8 in only one cycle. Figure 38 shows an

example, and the detailed description is shown as follows.

The operation of the bit-stream output buffer:

If the current situation is:
The current position index is: 2

The current generating bit-stream length is: 5 bit
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(It 1s the situation of the position index being smaller than the bit-stream length, so the
level 1 buffer is not sufficient to receive all the bit-stream, and the partial bit-stream

has to be written to the level 2 buffer.)

The position index update: (2 —-5)=(0010+ 0011 )= 0101

(Ignoring the MSB, and the remainder 3 bit is the next position index.)

Table 20 Required buffer slot for the different length bit-stream

Index of bit-stream L1 buffer(bit) L2 buffer(bit)
L1 cache length
7015 4 |32 o076 |5]|4]|3]2]1

0
1 A%
2 LAY
3 WV
4 Vi [BVE BVES [V

7
5 VI iv| v |v]vV
6 VIVINVIV ]|V
7 VI viv]Vv]V
8 VN v e %
1 v
2 V|V
3 A RN
4 V|V |Vv]|vV

6
5 Viv|v|v]|v
6 Viv|v|v]v
7 ViV |Vv|Vv]|vV
8 ViV |V V]|V %
1 \Y%
2 V|V
3 V| iv|v
4 Vv iv]|v

5
5 V| v iv]|v|vV
6 V| v iv]|v|vV
7 Vv|iv|iv]|v|vV %
8 VI V|V |V]|V A%
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V| V]|V ]|V

VIV |V ]|V ]|V

VIV |V |V |V]V

V| V|V | V| V]V ]|V

vI|iVv |V |V | V]|V IV |V

V| V|V |V

V| V|V ]|V |V

V| V|V [V ]|V |V

ViV (|(V[V ]V |V |V

V| V| V|V ]|V [V | V]|V

V| V| V|V

V| V|V |[V]V

V| iV iV | V]|V ]V

Vi V| V[V |V ]|V |V

V| V|V {V[V | V]|V |V

ViV | V|V

V| iV | V|V |V

V| V| V|V ]|V ]|V

V| V|V |V |V ]|V |V

V| iV |V |V |V [V V]V

VIV | V]V

ViV | V| V|V

V| V|V [V ]|V |V

V(I V| V[V |V |V |V

V| V| V|V ]|V |V | V]|V

“V” denotes the required buffer slot
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Table 20 shows all kinds of situations for the different bit-stream length and the
different position index. The gray rows denote that the level 2 buffer needs to be used.
If the level 1 buffer is full, its control signal is (position index < bit-stream length), and
the bit-stream output interface outputs one 8 bit bit-stream to decoder meanwhile. At
the same time, the level 2 buffer is duplicated to level 1 buffer. The position index
needn’t any modification due to the level 1 buffer and the level 2 buffer use the same
position index.

For the bit-stream length being greater than 8, it will be divided by 8. For example,
if the current bit-stream length is 28 bits, it will be divided by 8. Then we get (28 bits)
= (8 bits) + (8 bits) + (8 bits)i+ (4 bits), taking these_four set of sub-bit-stream into
the bit-stream output buffer will take four.cycle due to the maximum receiving bits of
the bit-stream output buffer is 8 bits.

According to Table 19, the proposed bit-stream output interface can receive about

99.6% bit-stream in only. one cycle.
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Chapter 4
CABAC Codec System Architecture

This chapter focuses on the cost efficiency of the whole CABAC codec system.
We propose some hardware sharing methods to reduce the cost of the CABAC codec.
Besides, we also estimate the requitéd memory which can support to 1080HD of our
CABAC System.

The CABAC decoding process is-contrary to the CABAC encoding process, the
detail of it shown int:Chapter 2. Because of it, there are.many sub-modules can be
hardware shared to reduce the cost of the CABAC codec.

The required memory of our,CABAEC-codee-system is mainly dominated by the
encoded/decoded framessize. Thetbigger the frame size is; the more the memory
requires. So the frame size and the required memery are direct proportion.

This chapter is organized as follows. In Section 4.1, we introduce the proposed
hardware sharing methods and the CABAC codec system architecture after adopting
these hardware sharing methods. Section 4.2 shows the required memory of our

CABAC codec system.

4.1 Hardware Sharing Methods

The CABAC encoder is a table-based encoder, it has many tables to look up. All

of these tables are the same as the CABAC decoder. The proposed strategies for it are
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shown as follows.

(1) The probability table (rangeTabLPS) and the probability index table
(transIdxLPS and transIdxMPS) can be table reuse for arithmetic
encoding/decoding.

(2) The context model can be reused.

Besides, the binary tree of binarization in the CABAC encoder is the same as the

CABAC decoder. The proposed strategy for it is finite state machine (FSM) sharing for

the binarization in encoder and the debinarization in decoder.

Table 21 The states of FSM.which are similar procedures between binarization
and debinarization

States of States of Binarization similar to States Description
Debinarization Debinarization (Binarization)

mode_mbType

mode_IntraPre

mode_IntraCpred writeCIPredMode_CABAC encode the chroma intra prediction
mode of an 8X8 block

mode_readDquant

mode_readRefFrame | writeRefFrame_CABAC encode the reference parameter of
a given MB

mode_readField writeFieldModelnfo_CABAC encode the field mode info of a
given MB

mode_CBPLuma writeCBP_Luma encode the coded block pattern of a

mode_CBPChroma writeCBP_Chroma macroblock

mode_ACStart

mode_residual

mode_mbSkip writeMB_skip_flaginfo CABAC encode macroblock skip flag

mode_h8

mode_mvd writeMVD_CABAC encode the motion vector data of a
B-frame MB

mode_EOS
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The middle column of Table 21 shows the states of FSM which are similar

procedure between binarization and debinarization, and we take these states to be FSM

sharing.

We divide the whole CABAC encoding process shown as Figure 2 of Section 2.1

into three main parts. Figure 39 shows the three main parts of CABAC encoder.

bin value for context model update

non-binary valued bin logp over h 4 b"";‘ lue,
syntax element iiiaities string bins bin n(ioat‘;text conlext -'"C’d*’i_ lé?;:;:;:
eler : Ensi :
e coded bir.ﬁ
regulal reguldry :
syntax i -
element T : bitstream
- : » bypass bypas :
binary lfwfnrd 1 i Bypass | | |coded br'rsg
LY Sl bin value Coding Engine i
o winary Arithmetic Coder
e Context [~ Arithmetic
Binarization = Model |8 Encoder
‘ ] - . ] ‘
Fig 9 AC der
i i | |
We take these th in ring. Figure 40 shows
T h o
what can be hardware sh etween the CABAC encoder and the CABAC decoder

for the three main parts.

CABAC
encoder
syntax bin B
element string bitstream

ta bi -
element string bitstream
CABAC
decoder
FSM-sharing Tables Only
Reuse table-sharing

Figure 40 Illustration of hardware sharing for CABAC encoder and decoder
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Generator 1«+— Debinarization

Binarization /
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pState,
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MPS
bin Arithmetic Bitstream
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Architecture of the hardware sharing CABAC codec system

Figure 41 shows the CABAC' codec . system architecture after adopting the

proposed hardware sharing methods. Comparing. with the CABAC encoding system

architecture in Figure 21 'and the CABAC decoding system architecture Figure 22 of

Section 3.1, we fine that the syntax element buffer,.row storage’'SRAM, context model

initial table and Context Model SRAM are hardware sharing: The red lines of it are the

encoding procedure, and the blue;lines mean the decoding procedure. The green lines

denote the procedure executed in both the encoding and the decoding.

The hardware sharing CABAC codec system architecture not only combines the

encoder and the decoder into CABAC codec but also it adopts some hardware sharing

methods to reduce the cost of CABAC codec.
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4.2 Memory Requirement

There are two SRAM modules in our CABAC codec system, one is context model
dual ports SRAM, the other is row storage (RS) single port SRAM. The required

memory of CABAC system is mainly dominated by the encoded/decoded frame size.

Memory Requirement

Frame Type
Qc1|=7 286 613.4 ‘ O RS| SRAM B clontext mocllel SRAM
cre | Jleaest

vaaf J1040

. CIF#.Q.Z.A__l 1144
720p HD iﬁlﬁ.ﬂ J2080

16 cmb‘ﬁm J 2288
1080HD im 13120
L % L L % ]
0 500 1000 1500 2000 2500 3000 3500

Memory Size (byte)

Figure 42 The required memory size of our CABAC codec system

Figure 42 shows the required memory size of our CABAC codec system at main
profile encoding/decoding. For context model SRAM, its required memory size is
fixed for different frame types. It always needs ( 399 x 7 bits ) / 8 = 349.1 bytes for
baseline profile and ( 701 x 7 bits ) / 8 = 613.4 bytes for main profile. The required
context model SRAM size which we choose is 613.4 bytes due to the target
specification of our CABAC codec is for 1080 HD encoding/decoding belongs to main
profile of H.264/AVC standard. For row storage (RS) SRAM, the required memory

size is dominated by frame size. We find that the required memory size increases with
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the getting large frame size. For our CABAC codec system, we focus on
encoding/decoding the video of 1080HD frame size, so the required memory size of

our row storage SRAM is ( 120 x 208 bits) / 8 = 3120 bytes.
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Chapter 5
Simulation and Implementation
Result for Digital TV Applications

In this chapter, we show the simulation result by presenting the characteristic
curves of our CABAC encoder.The characteristic curves of CABAC decoding are not
shown here due to two xeasons. One is.that the €ABAC decoding of our CABAC
codec continues using [2] which we presented in August’2006. Its throughput can
achieve the level 4.03namely, it can decode the L08OHD@30fpsiat maximum bit-rate
being 20Mbps. The detail of it is shown 1n'[5]. We don’t propose any additional high
throughput method to promote the process efficiency of CABAC decoding in the thesis.
The other is that the propesed three high throughput methods which are introduced in
Chapter 3 are all for CABAC encoding process.

Our CABAC encoding system focuses on supporting the encoding of 1080HD, so
we only take the 1080HD (1920x1088) video sequences as our simulation input. There
are two characteristic curves of our CABAC encoding for each different video
sequence. One is the throughput curve whose throughput unit is macroblock per
second (MB/s), and the other is PSNR curve for Y (luminance). These two
characteristic curves are obtained by modifying different quantization parameter (QP)
under the maximum operating frequency (110MHz) of our CABAC encoder.

This chapter is organized as follows. In section 5.1, we introduce the specification
of H.264 for the different levels. We take the maximum frame rates and the maximum
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bit rate to explain the differences for different levels. Section 5.2 shows the simulation
and implementation result. We take two 1080HD video sequences to simulate the

characteristic curves of our CABAC encoder.

5.1 Specification of different levels

Table 22 Maximum frame rates (fps) for some different frame types [1]

Level: 12 3 31 3.2 4 41 4.2/Lo
Max frame size (macroblocks): 1620 1620 3600 5110 3192 §102 3102
Max macroblockssecond; 20250 40500 108000 216000) 245760 245 760 401 520
Max frame size (samples): 414 7200 414740 9100 13107I0) 2007 152 2097 152 2087 154
Max samplesisecond: 5184 000 10 368 Q00|27 648 00055 296 000) 62 914 560) 62 914 560| 125529 140
Luma| Luma| MBs Luma
Format Width| Height| Total| Samples
SQCIF 128 L] 48 14 283 1740 17210 17410 1741 1740 1740 1740
QCIF 176 144 79 25 344 1740 17210 1721 1741 17210 1740 17210
QVGA 30 Ml ann TE &O0 £7.5 13510 17210 17410 1720 1720 1720
525 SIF 352 i) 330 34 480 il.4 1227 1740 174.1) 1740 1720 1740
CIF 352 158 06| 101376 511 1023 1740 1741 1740 1740 1740
525 HHR 352 480 Aall| 168 960 iz fil 4 163 6 1741 17410 1740 17210
25 HHR 352 576 793 WITHL 156 511 136 4 17410 1720 1720 17210
VA fidil 480 1200 307200 160 338 SNl 17410 1720 1720 1720
525 45IF 04 480 130 337940 153 307 Bl 1634 1740 1740 1740
525 8D 720 480 1330 345400 150 0.0 200 160.0) 17210 1740 17210
4CIF 04 56 1584| 405504 118 256 A7 4 136.4 1552 1552 17210
625 5D 720 576 la0| 414740 115 250 a6, 7 133.3 1517 1517 1740
SVGA S00 600 19000 4&d400 - - 56 8 1137 1493 1493 1740
XGA 1024 08| A07Y TRA 43l - - 354 703 2.0 200 160.0
T20p HD 1280 20| Fa00) 921400 - - ana All.0 fig 3 8.1 136.5
4AVGA 1280 060 4 300| 1238 &00 - - - 451 511 51.2 1024
SEGA 12800 1024 S120| 1310740 - - - 442 450 4.0 940
525 1681F 1408 060 5 280| 135160 - - - - 465 46,5 931
16CIF 1408) 1182 6334 1add 016 - - - - 8.8 358 16
ASVLA 1600l 1200l 7500l 1070000 . R . R ) i) 55
l1|]8|] HD 10200 1088 & 160| 2088 940 - - - - a0l 30.1 fill 4 |
Pising TS 24| o102 2007 122 5 g 5 g Bl Bl 1A
JKx1080 48| 1088 ET04| 23081 - - - - - - -
4XGA 48| 1536 1228%| 3145748
16VGA 25600 19200 19200( 4915200
3616x1536 (2.35:1) 3616|1536 21a94| 59554 174
3672x1536 (2.3%:1) 36800 1536 2I080| Se514E0
K%K 4006) 2048 3376E| B 3REA0R
4096x2304 (16:9 4006) 2304 | 36 And| 9437 184

Table 22 shows the maximum frame rates whose unit is frames per second (fps)
for different frame types. The target of our CABAC encoder is designed to support the
1080HD, so we only consider the 1080HD row which is highlighted by the red block.
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In the 1080HD row we find that the maximum frame rates of the level 4.0 and the level

4.1 are the same, both of they are 30fps.

The difference of the level 4.0 and the level 4.1 can be observed in level limits

shown in Table 23. The maximum macroblock processing rate (MB/s) of the level 4.0

and the level 4.1 are also the same, they are 245760 MB/s. The main difference of

them is the maximum video bit rate. For the level 4.0, its maximum video bit rate is

20Mbps, and the level 4.1 is 50Mbps.

Table 23 level limits [1]

Vertical MV
Level Max Max Max Max Max component Min
number| macroblock | frame decoded video CPB size range compression| Max number of
processing size picture |bit rate MaxBR MaxCPB MaxVmvR ratio motion vectors
rate MaxF§S | buffer size (1000 bits/s, (1000 bits, (luma frame MinCR per two
MaxWIBFS | (MBs) | MMaxDFB 1200 hits/s, 1200 bits, samples) consecutive MBs
(MB/s) (1024 bytes |cpbBrVcIFactor | cpbBrVelFactor MaxMvsPer2Mb
for 4:2:0) bits/s, or bits, or
cpbBrNalFactor| cpbBrNalFactor
hits/s) hits)
1 1485 99 148.5 64 175 [-64,+63.75] 2 -
1b 1485 99 148.5 128 350 [-64 +63.75] 2 -
1.1 3000 396 33715 192 500 [-128+127.95] 2 -
12 5000 396 891.0 334 1000 [-128,+127.95] 2 -
13 11880 396 891.0 768 2 000 [-128+127.95] 2 -
2 11880 396 891.0 2000 2 000 [-128+127.95] 2 -
21 19 800 792 1732.0 4 000 4 000 [-256,+255.75] 2 -
22 20250 1620 30375 4 000 4 000 [-256,+255.75] 2 -
3 40500 1620 30375 10000 10000 [-256,+255.75] 2 32
3.1 108 000 3600 67500 14000 14000 [-512,+511.95] 4 16
3.2 216 000 5120 7 630.0 20000 20000 [-512,4+511.75] 4 16
25000 [-512,+511.95] 4 16
4.1 245 760 3192 12283.0 50000 62500 [-512,+511.95] 2 16
4.2/Lo 491 520 3192 122830 50000 62500 [-512,+511.95] 2 16
4.2/Hi 522240 3704 13056.0 50000 62500 [-512,+511.95] 2 16
5 589 824 22080 | 414000 135 000 135 000 [-512,4511.75] 2 16
51 983 040 36864 69120.0 240 000 240 000 [-512,+511.95] 2 16
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5.2 Simulation and implementation result

We take two 1080HD video sequences to simulate their characteristic curves

shown as follows.

Throughput (MB/s) Station PSNR_Y (dB)
6000000 50

* 1 45
5000000 @ o
1 40
V/( |
4000000 #
\ 1 30
3000000 25
\\ 120
2000000
\\ 4 15
1 10
1000000 —
\o\_’_\ 1.

0 I I I I I 0
0 10 20 30 40 50 60 70 80

Bit - Rate (Mbps)

Level 4.0

|—+—110 MHz 245760 (MB/s) Level 4.1 ——PSNR_Y |

Figure 43 The characteristic curves of station video sequence (QP: 42 ~ 16)

Figure 43 shows the characteristic curves of ‘station video sequence under the
maximum operating frequency (110MHz) of our CABAC encoder, and the
quantization parameter is modified from 42 to 16 whose interval is 2. According to
these two characteristic curves of station video sequence, the proposed CABAC
encoder can achieve 245760MB/s under 50Mbps; namely, it supports the specification
of level 4.1. Besides, the PSNR of Y (luminance) is about 45 dB under the limits of

level 4.1.
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Throughput (MB/s) Riverbed PSNR_Y (dB)
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The characteristic curves of riverbed video sequence (QP: 42 ~ 16)

Figure 44 shows the characteristic. curves of riverbed video sequence under

110MHz, and the quantization parameter is also'modified from 42 to 16 whose interval

is 2. The riverbed video can be regarded asworst case due to its fast motion (the bigger

motion vector) causing massive data:

According to these' two characteristic curves of ‘riverbed video sequence, the

proposed CABAC encoder also can achieve 245760MB/s under 50Mbps; namely, it

also supports the specification of level 4.1. Besides, the PSNR of Y (luminance) is

about 40 dB under the limits of level 4.1.
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Table 24 The proposed arithmetic encoder comparing with the existing designs

proposed Ha’[7] Shojaina’[8] | Nuiez’[9] | Osorio’[10] | Osorio’[11]
Spec. H.264 H.264 H.264 H.264 H.264 H.264
Functi Arithmetic | Arithmetic Arithmetic Arithmetic | Arithmetic | Arithmetic
unction
Encoder Encoder Encoder Encoder Encoder Encoder
0.18 um Xilinx 0.18 yum 0.13 yum 0.35 um
Technology . na
UMC Virtex-11 TSMC UMC AMS
Frequency
167 30 155 330 na 186
(MH2)
Encoding
Throughput 0.7866 0.2 1 1 0.91 1.9t02.3
(symbol/cycle)

Table 25 The proposed”CABAC codec comparing with the existing CABAC

designs
proposed Shojania’[12]
Spec. H.264@MP H.264@MP
Function codec encoder
Technol O18 pm 0.18
echnolo . m
gy ONiC u
Frequency (MHz) 110 263
Processing cycle
241 (QP=18) na
(cycles/MB)
' Encoding rate (Mbps) 91.79 (QP=18) 87
Encoding
Bit-rate (Mbps) 49.4 (QP=18) na
PSNR Y 44.778 (QP=18) na
Gate count
) 38436 na
(without Memory)
Gate count area: 0.423 mm’
. 84873
(with Memory 1) (~43k)
Gate count
) 173303 na
(with Memory 1+2)
Encoding 1080 HD@301ps
na
target H.264 spec. (Level 4.1)
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proposed Chen’[13] Yang’[14] Yu’[15]
S H.264 H.264 H.264 H.264
ec.
P @MP @MP @MP @MP
Function codec decoder decoder decoder
0.18 yum | 0.13 ym 0.18 pum
Technology 0.18 um
UMC TSMC TSMC
150
Frequency (MHz) 110 200 120
(6.7ns)
I (cycles/MB) 524 (QP26) 1661 463 (QP36) na
P (cycles/MB) 269 (QP26) 328 308 (QP26) na
_ B (cycles/MB) 141 (QP26) 576 254 (QP26) na
Decoding
AVG (cyclessMB) | 208 (QP26) 570 na 500
Bit-rate (Mbps) 22.113 na na na
PSNR ¥ 38.487 na na na
Gate count area:0.3
] 38436 na na 5
(without Memory) mm-” (~30k)
Gate count
) 84873 138226 83157 na
(with Memory 1)
Gate count
) 173303 na na na
(with Memory 1+2)
_ 1080 HD 720 HD 10801 HD
Decoding @308 @308 @308 4Mbps
s S ]
target H.264 spec. P f P (Level 2.2)
(Level 4.0).-|-(Level'3.1) | (Level 4.0)

ps: QP: quantization parameter

Memory 1: context model SRAM

Memory 2: row storage SRAM (RS SRAM)

Table 24 shows the comparison of the proposed arithmetic encoder and the other

state-of-the-art designs. Table 25 shows the comparison of the proposed CABAC

codec for encoding and decoding respectively. The choice of the quantization

parameter (QP) is based on the maximum bit-rate of level defined by H.264/AVC

standard. The maximum video bit-rate of level 4.1 is 50Mbps, so the selected QP
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approximating the target bit-rate is 18 due to that the level 4.1 is the target
specification of the proposed CABAC encoding. The maximum video bit-rate of level
4.0 is 20 Mbps, so the selected QP approximating the target bit-rate is 26 due to that
the level 4.0 is the target specification of the proposed CABAC decoding.

The gate count of the context model dual-port SRAM is 46437 and of the row
storage single-port SRAM is 88430. Besides, the RS SRAM is usually regarded as

system level memory, so it isn’t counted into CABAC memory size.

Table 26 Percentage of the cycle reduction for the proposed three throughput
promoting methods

Percentage of the cycle
Proposed method Target encoding mode
reduction (%o)

Multi-Symbol Architecturé Bypass 20.7 %

Normal, Bypass, Terminal
Pipeline Organization 50.6%
(mainly for Normal)

Normal, Terminal
Case Efficiency Architecture 47.5%
(mainly for Normal)

Table 26 shows the percentage of the cycle reduction for the proposed three
throughput promoting methods. The detail estimations of executing cycle for these

three throughput promoting methods are shown as follows respectively.
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1.
For the Multi-Symbol Architecture (MSA) method:
Before adopting MSA:
84.21% bypass issue: 1 cycle
15.79% bypass issue: 3.776 cycles
Average 1.438 cycles
After adopting MSA:
94.04% bypass issue: 1 cycle
5.96% bypass issue: 3.36 cycles

Average 1.14 cycles

2.

For Pipeline Organization (PO) method:

Before adopting PO (under Normal enceding mode):
Average 3.99 cycles

After adopting PO (under Normal encoding mode):

Average 1.97 cycles

3.

For Case Efficiency Architecture (CEA) method

(The result is under having adopted PO method):

Before adopting CEA (under Normal encoding mode):
Average 1.97 cycles

After adopting CEA (under Normal encoding mode):

Average 1.04 cycles
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

We propose three high thfeughput methods suc¢h.as multi-symbol architecture,
pipeline organization and:-case efficiency.architecture to improve the process efficiency
of our CABAC encoder. Besides, we also propose ‘the hardware sharing methods to
reduce the cost of CABAC codec. The CABAC decoding ofl our CABAC codec
continues using [2] which we proposed.in. August 2006. Its throughput can achieve the
specification of level+4.0; namely, it supports-to-decode ;the 1080HD H.264 video
sequence at 30 fps. The maximum video bit rate which it'supports is 20 Mbps. The
detail of it is shown in [5].

In our work, we implement a H.264@main profile CABAC codec under UMC
0.18um CMOS Process. The total gate count is about 38436 without embedded SRAM
and about 173303 with embedded SRAM. The maximum operating frequency is 110
MHz. Both CABAC encoding and CABAC decoding of our CABAC codec supports
to encode/decode 1080HD H.264 video, and they achieve the different levels of H.264
specification. For decoding is level 4.0, and for encoding is level 4.1; namely, it can
encode 1080 HD video at 30 fps. The maximum video bit rate which the encoder
supports is 50Mbps, and its PSNR of Y (luminance) is about 44.8 dB. It achieves the
throughput of 241 cycles per macroblock under the sequence type of

100



“IBBBPBBBP...".

6.2 Future work

Our CABAC codec can support the encoding and decoding for 1080HD at 30 fps,
but it will be insufficient to satisfy the requirement of the future digital TV. In order to
achieve the high quality video, the frame rate of 30fps doesn’t correspond to the
requirement of our digital TV market. The high resolution and high frame rate becomes
the target of the human life. Hence, the large frame and high speed video playing is
essentially for the digital TV application. To play the ¥ideos of 1080HD at 60fps is the
basic requirement for the point view of CABAC. Thus, CABAC has to achieve the
1080HD of 60fps under the maximum bit-rate of 50,000,000 bit-per-second, which
means the specification of| level 4.2 for H.264/AVC is the future work for CABAC.
Comparing to the level 4.0 and the level 4:1, it has to accelerate CABAC for 5 times.

Hence, the acceleration'of CABAC i1s the essential work in the advanced application.

6.3 Discussion from H.264/AVC system view

In this section, we discuss the proposed CABAC codec system from the whole
H.264/AVC system view. The CABAC system is the sub-system of H.264/AVC system.
This discussion focuses on the interface issue between the CABAC sub-system and the
next sub-system, and we divided the discussion into the CABAC encoder and the
CABAC decoder these two aspects.

For CABAC encoder, its last sub-system is DCT and Quantization. The CABAC
encoder receives the syntax element from Quantization sub-system to encode to be
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bit-stream. Under considering the throughput matching issue, we design the syntax
element buffer storage shown in Figure 41 to buffer the throughput mismatch. The
CABAC encoder is the termination of the whole H.264/AVC encoding flow, and next
to it is the forward error correction (FEC) which belongs to channel coding. We design
two levels buffer storage between CABAC encoder and FEC, and the purpose of it is
accumulating variable length bit-stream. Besides, the throughput mismatch buffer

storage is design in FEC system.

AMBA AHB Bus

Stream

Input
Syntax L Memory
Parser - Controller
x T
Intra HE Predicted Data :-------------: cDispIellr
Prediction _,|_> x - : ontroller
H De-blocking
: E Memory [ Filter
Inter :l » LI .
Prediction | _} :
H ~ Residual Data :
Rescaling]—»[ IDCT/IH i
A A
‘ Slice Memory I

Figure 45 System block diagram of H:264/AVC decoding for main profile

For CABAC decoder (CABAD), the syntax parser dominates that which scheme
(CABAD, UVLD, or CAVLD) is selected for current entropy decoding. Figure 45
shows the system block diagram of H.264/AVC for main profile. The syntax parser
belongs to the system level control signal, and it employs in decoding the bit-stream on
NAL layer, picture layer, and slice layer, shown as Figure 46. The syntax parser is also
the top module to control all sub-system such as CABAD, VLD, intra-prediction,
inter-prediction, IDCT, and so on. Hence, CABAD is the passive unit and is requested
by the syntax parser and decodes the bit-stream of the macroblock layer in Figure 46.

The bit-stream is also fetched through the syntax parser.
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NAL ) NAL ) NAL . NAL
NAL Layer Syntax NAL unit Syntax NAL unit Syntax NAL unit Syax | —— —— — — —
Element Element Element Element
= y ——
/ N Tt
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Unit SPS-RBSP Unit | SPS-RBSP Unit Slice Layer-RBSP
Header Header Header
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Figure 46 Bit-stream structure of H.264/AVC
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