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摘要 

在本論文中，我們對算數編碼器提出三個提升生產率的方法以提高整個背景

適應性二元算數(CABAC)編碼器的產率，此外我們也對 CABAC 編解碼器提出硬

體共享的方法以降低其硬體成本。關於我們的解碼器部份，我們沿用我們在 2006

年 8 月份所發表的高產率 CABAC 解碼器 [2]。我們所提出的提高產率的方法主

要是以所統計的資料分布特性來設計，這可以改善資料相依特性所產生的產率受

限制情形。我們所提出的架構可以達到平均每秒處裡 245760 個巨方塊，在編碼時

可以滿足層次 4.1，而在解碼時可以滿足層次 4.0。因此，這足以對 1080HD 格式

每秒三十張畫面的影像做即時編解碼。基於 0.18 微米聯華電子互補式金氧半導體

製程，我們的 CABAC 編解碼器設計需要 173303 個邏輯閘(含 SRAM)，其操作時

脈為 110MHz。
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ABSTRACT 

In this thesis, we propose three high throughput methods for arithmetic encoder to 

promote the throughput of CABAC encoder and some hardware sharing methods for 

CABAC codec to lower its cost. About the decoder of our CABAC codec, we continue 

using the high throughput CABAC decoder [2] which we presented in August 2006. 

The proposed high throughput methods are based on the results of data statistic, they 

can improve the restriction in throughput caused by data dependence. Our proposed 

architecture can achieve 245760 macroblocks per second in average for level 4.1 in 

encoding and for level 4.0 in decoding. Therefore, it is sufficient to support 1080HD 

for real-time encoding/decoding at 30fps. Based on 0.18 μm UMC CMOS Process, our 

CABAC codec design needs 173303 gates with SRAM and clock rate at 110MHz. 
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Chapter 1  
Introduction 

1.1 Motivation 

H.264/AVC is the state-of-the-art video coding standard developed by ITU-T 

Video Coding Experts Group and ISO/IEC Moving Picture Experts Group (MPEG). 

The new standard provides gains in compression efficiency of up to 50% over a wide 

range of bit rates and video resolutions compared with the former standards such as 

H.263 and MPEG-4 by employing many innovative technologies such as multiple 

reference frame, variable block size motion estimation, in-loop de-blocking filter and 

context-based adaptive binary arithmetic coding (CABAC). Because of its outstanding 

performance in quality and compression gain, the H.264/AVC is adopted to be video 

standard in more and more consumer application products such as digital video 

recorder / player, portable video device…etc.  

H.264/AVC contains two alternative entropy coding schemes which are 

context-based adaptive variable length coding (CAVLC) and context-based adaptive 

binary arithmetic coding (CABAC). The simpler entropy coding method is CAVLC for 

simple profile. It can save about 10% for the execution time under increasing about 

7% bit-rate compared with CABAC. Because of bit-rate saving, CABAC is the 

superior scheme for massive capacity demand of the newest video application.  

The compression efficiency improvement in CABAC is obtained at the cost of an 



 

 2

inevitable complexity overhead. The results of the software-based complexity analysis 

are presented in [3], which claims that switching from CAVLC to CABAC usually 

leads to complexity increasing by 25% ~ 30% for encoding and 12% for decoding, in 

terms of access frequency (total number of memory transfers per second); therefore, 

both the coding acceleration and the cost efficiency promoting of CABAC are 

required.  

We propose three throughput promoting methods to make CABAC encoder 

achieve the specification of 1080HD in level 4.1 stipulated in H.264/AVC standard [1]. 

For CABAC decoder, we continue using the high throughput CABAC decoder [2] 

which we presented in August 2006. It can achieve the specification of 1080HD in 

level 4.0. So our CABAC codec is sufficient to support 1080 HD video for real-time 

encoding and decoding at 30 fps. Besides, we also introduces some low cost methods 

such as finite state machine sharing, table reuse…etc to make the CABAC codec be 

better cost efficiency.  

1.2 Organization of this thesis 

This thesis is organized as follows. In Chapter 2, we present the algorithm of 

CABAC. It contains two levels coding procedure. For encoding, the first level is 

binarization engine, and the second level is arithmetic encoder. For decoding, the order 

of the two levels procedure is just opposite to encoding. Chapter 3 focuses on 

throughput promoting. We introduce three arithmetic encoding modes, and showing 

the proposed three high throughput methods. Chapter 4 focuses on cost efficiency 

designing. We present the proposed low cost methods and the memory requirement. In 

the end of this chapter, we show the proposed CABAC codec system architecture 

which has adopted the proposed low cost methods. At the final, the results of 
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simulation and chip implementation will be shown in Chapter 5. We make a brief 

conclusion and future work in the last chapter.  
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Chapter 2  
Algorithm of CABAC for 
H.264/AVC  

In this chapter, we introduce the algorithm of CABAC encoding and decoding 

respectively. Both CABAC encoding and CABAC decoding are composed of three 

parts: the binarization process, the arithmetic coding process and the context model. 

For CABAC encoding, the binarization process reads syntax elements (SE), then 

computing the bin to offer the arithmetic encoding process for encoding the 

corresponding bit-streams. For CABAC decoding, the arithmetic decoding process 

reads the input bit-streams generated by H.264 encoder, and computing the bin to offer 

the binarization process for decoding the suitable SE. Both arithmetic encoding and 

arithmetic decoding have to look up context model which records the historical 

probability to compute the corresponding bit-streams in encoding and the bin value in 

decoding.  

About the description of CABAC algorithm in this chapter, it is based on the 

content of [1] and [5], where the latter only focuses on decoding aspect, and the 

encoding aspect is introduced in addition in this chapter.  

This chapter is organized as follows. In Section 2.1, we present the overviews of 

the CABAC encoding and decoding flow respectively, and show the two levels coding 

processe. In Section 2.2, we introduce all kinds of the binarization process such as the 

unary, the truncated unary, the fixed-length, Exp-Golomb and the defined code 
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organization. In Section 2.3, the algorithm of basic binary arithmetic coding will be 

introduced briefly. We introduce it in terms of encoding and decoding respectively in 

the section 2.3.1 and the section 2.3.2. In Section 2.4, we present the advanced binary 

arithmetic coding for H.264/AVC, and relating it to arithmetic coding process. Section 

2.5 shows the context model related to the different SEs. In final section, what we 

show is that how to get the neighbor SE to index the suitable context model allocation.  

2.1 Overview of CABAC encoding/decoding flow 

Intra Frame 
PredictionFrame 

Storage

Motion 
Compensation

Motion 
Estimation

De-blocking 
Filter +

-

+

Quantization

DCT

Inverse 
Quantization

IDCT

Entropy 
Encoding
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Bitstream

Video Input 
( Y U V )H.264 Encoder
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IDCT
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Decoding
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De-blocking 
Filter
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Inter
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/ 

Inter

Motion 
Compensation

Intra Frame 
Prediction

Frame 
Storage

Video Output 
( Y U V )

H.264 Decoder

+

Figure 1  H.264/AVC encoder/decoder system block diagram 

Figure 1 shows the system block diagram of H.264/AVC encoder and decoder. 

Both entropy encoder and entropy decoder contain three entropy coding strategies such 

as universal variable length coding (UVLC), context-based adaptive variable length 

coding (CAVLC) and context adaptive binary arithmetic coding (CABAC).  
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For H.264/AVC baseline profile, it only adopts UVLC and CAVLC two variable 

length coding (VLC) strategies to code the macroblock (MB) information and the 

pixels coefficients. UVLC is one of VLC in baseline profile, it codes not only the MB 

information such as the mb_type, coded_block_pattern, intra_prediction_mode, and so 

on, but also the MB coefficient such as mvd. Because the residual data coding occupies 

over 50% of the entire execution time, the residual coefficients are computed by the 

CAVLC architecture for more efficiency.  

For H.264/AVC main profile, it has an advance choice except VLC. CABAC can 

be used in place of UVLC and CAVLC. Thus, H.264 system just needs CABAC to 

code all MB information and pixel data if entropy coding flag is assigned to CABAC.  

In this section, we introduce the block diagram of CABAC encoder and decoder. 

Then, the execution flow of them will be introduced respectively meanwhile.  

Binarization Context         
Modeler

Normal       
Coding      
Engine

Bypass       
Coding      
Engine

bin

bin

normal

bypass
bypass

normal

bin value for context model update

bit stream

coded bits

coded bits

Binary Arithmetic Coder

loop over 
binsbin 

string

binary valued
syntax element

non-binary valued 
syntax element

syntax 
element

bin,
Context 
modeler

Figure 2  CABAC encoder flow chart [4] 

Figure 2 shows the block diagram of CABAC encoder. We first see the left side of 

this figure. All syntax elements (SEs) of the H.264/AVC will be transferred into the 

binary code “bin” when entering the CABAC encoding process. Besides the SE of 

fixed-length coding type, all SEs have to be encoded by the binarization process which 

will be defined in Section 2.2. The transferred bin string is encoded to be the bit-stream 
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by the binary arithmetic encoder. The binary arithmetic encoder has three different 

encoding types such as normal, bypass and terminal encoding processes. The terminal 

encoding process is seldom applied in CABAC system, which is only executed one 

time per macroblock (MB) encoding flow when the current MB is complete. So we 

ignore its influence due to its seldom applying opportunities. The normal and bypass 

encoding process are two main binary arithmetic coding modes. If it performs the 

bypass encoding process, there is no need to refer to the context model because the 

probability of bit-stream value is equal (probability = 0.5) between logical “1” and “0”. 

If it applies the normal encoding process, it has to refer the associated context model 

depending on the SE type and the bin index.  

Binarization
Normal       

Decoding      
Engine

Bypass       
Decoding      

Engine

bypass

normal
bit stream

Binary Arithmetic Deoder

loop over 
bins

bin 
string

syntax 
element

Context         
Modeler

bin

bin

bin 
string

Figure 3  CABAC decoder flow chart 

Figure 3 shows the block diagram of CABAC decoder. In H.264/AVC decoder, 

the decoding flow is contrary to CABAC encoder. At first, the binary arithmetic 

decoder reads the bit-stream and transfers it to be bin string. The binarization process 

reads the bin string and decodes it to be SE by five kinds of decoding flows. The 

execution sequences between CABAC encoder and decoder are just reverse. But the 

context modeler is still determined by binarization and SE for both CABAC encoder 
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and CABAC decoder.  

2.2 Binarization process  

In Section 2.2, we focus on the binarization process. In CABAC encoder, it reads 

the syntax element and transfers it to be bin string. In CABAC decoder, it reads the bin 

string to look up the suitable syntax element. For H.264/AVC, both CABAC encoder 

and CABAC decoder adopt five kinds of the binarization methods to encode/decode 

the syntax element/bin string respectively. This section is organized as follows. In 

Section 2.2.1, the flow of the unary code is shown at first. The unary code is the basic 

coding method. Section 2.2.2 shows the truncated unary code which is the advanced 

unary coding method. In Section 2.2.3, we introduce the fixed-length coding flow. It is 

the typical binary integer method. Section 2.2.4 is the Exp-Golomb coding flow. The 

Exp-Golomb coding flow is only used for the residual data and the motion vector 

difference (mvd). Section 2.2.5 is the special definition which is by means of the table 

method. Specifically, we focus on the binary tree of the macroblock type (mb_type) 

and the sub-macroblock type (sub_mb_type).  

2.2.1 Unary (U) binarization process 

Input to this process is a request for a U binarization for a syntax element. Output 

of this process is the U binarization of the syntax element.  

The bin string of a syntax element having value synElVal is a bit string of length 

synElVal + 1 indexed by binIdx. The bins for binIdx less than synElVal are equal to “1”. 

The bin with binIdx equal to synElVal is equal to “0”. 

Table 1 illustrates the bin strings of the unary binarization for a syntax element. If 
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the syntax element is equal to “0”, the bin outputs single bit “0”. Except the syntax 

element “0”, the bin string sends numSE “1” and one “0” in the end of the binary value. 

The value of numSE is equal to the syntax element. Therefore, we find that the bin 

string length of current syntax element is numSE + 1.  

Table 1 bin string of the unary binarization [1] 

Syntax 
element 

bin string 

0 0      

1 1 0     

2 1 1 0    

3 1 1 1 0   

4 1 1 1 1 0  

5 1 1 1 1 1 0 

… …… 

binIdx 0 1 2 3 4 5 

According to the unary bin string format shown above, we arrange the encoding 

and decoding algorithm in Eq. 1 and Eq. 2. These two equations represent the pseudo 

code of the unary encoding/decoding flow.  

For unary encoding, it gets the binIdx which is the index of the bin string in Table 

1 from the value of the input syntax element (SEVal). The for loop in Eq. 1 generates 

the bin string according to the binIdx. When finishing the for loop, it will generate one 

bit “0” as the end bit of the corresponding bin string. Namely, the unary binarization 

process arrives at the end of encoding step.  

For unary decoding, it sets binIdx to zero at the initial step. The while loop in Eq. 

2 checks the current bin assigned by binIdx from the bin string and binIdx counts if the 

current bin is equal to “1”. If the current bin is equal to “0”, the unary binarization 
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process arrives at the end of decoding step. binIdx sends to SEVal which is defined as 

the value of the syntax element.  

 

Start unary (U) encoding process 

binIdx = SEVal; 
for (i == 0; i < binIdx; i ++ ){ 
 bin = 1; 
} 
bin = 0;               (Eq. 1) 
 

Start unary (U) decoding process 

binIdx = 0; 
while (bin[binIdx] == 1){ 
binIdx = binIdx + 1; 
} 
SEVal = binIdx;             (Eq. 2) 

2.2.2 Truncated unary (TU) binarization process 

Input to this process is a request for a TU binarization for a syntax element and 

cMax. Output of this process is the TU binarization of the syntax element.  

For syntax element values less than cMax, the U binarization process mentioned 

in Section 2.2.1 is invoked. For the syntax element value equal to cMax the bin string 

is a bit string of length cMax with all bins being equal to “1”. TU binarization is 

always invoked with a cMax value equal to the largest possible value of the syntax 

element.  

The truncated unary binarization process is based on the unary one and has an 

additional factor of cMax which is defined as the maximum length of the current bin 

string. If the value of syntax element (SEVal) is less than cMax, the truncated unary 

and the typical unary binarization process are the same. If SEVal is equal to cMax, the 
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number “1” of the bin string is equal to cMax and there is no “0” bit in the end of the 

current string. For example, SEVal(=“4”) is assumed. If the value of cMax is “5”, the 

result of bin string is equal to “11110”. If the value of cMax is also “4”, the result of 

the bin string is equal to “1111” where the end bit of “0” is truncated in this case.  

Eq. 3 is the truncated unary encoding flow which is modified from Eq. 1. Besides 

checking the value of syntax element (SEVal), it also takes cMax into consideration. If 

SEVal is less than cMax, it works as the unary encoding process. If binIdx isn’t less 

than cMax, it doesn’t generate “0” in the end of bin string when completing the 

encoding of current syntax element.  

 

Start truncated unary (TU) encoding process 

binIdx = SEVal; 
for (i == 0; i < binIdx; i ++ ){ 
 bin = 1; 
} 
If (SEVal < cMax) bin = 0;           (Eq. 3) 

 

Eq. 4 is the truncated unary decoding flow which is modified from Eq. 2. Besides 

checking the bin value, it takes cMax as a factor, additionally. It works as the unary 

decoding process when binsIdx is less than cMax. If binIdx isn’t less than cMax, it 

doesn’t complete the decoding action until reading the end bit “0” in the end of the bin 

string.  

 

Start truncated unary (TU) decoding process 

binIdx = 0; 
while (bin[binIdx] == 1 && (binIdx < cMax)){ 
binIdx = binIdx + 1; 
} 
SEVal = binIdx;             (Eq. 4) 
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2.2.3  Fixed-length (FL) binarization process 

Input to this process is a request for a FL binarization for a syntax element and 

cMax. Output of this process is the FL binarization of the syntax element.  

FL binarization is constructed by using an fixedLength-bit unsigned integer bin 

string of the syntax element value. The indexing of bins for the FL binarization is such 

that the binIdx = 0 relates to the least significant bit with increasing values of binIdx 

towards the most significant bit.  

The fixed-length code is the simple-defined format of the binarization coding 

process which is defined as the typical unsigned integer. The coding rule is represented 

by means of the typical binary number. For example, the value of “510” is equal to 

“1012”. The value of “510” is defined as the decimal style and the value of “1012” is the 

binary format which is the required fixed-length code. Table 2 shows the fixed-length 

code definition. 

Table 2 bin string of the fixed-length code 

Syntax 
element bin string 

0 0 0 0 0 0 0 
1 0 0 0 0 0 1 
2 0 0 0 0 1 0 
3 0 0 0 0 1 1 
4 0 0 0 1 0 0 
5 0 0 0 1 0 1 
…       

binIdx 0 1 2 3 4 5 

For fixed-length encoding process, the value of input syntax element defines the 

binIdx. The value of (binIdx + 1) is just the required bit numbers for the corresponding 

bin string of the current syntax element.  

For fixed-length decoding process, it has to refer to the value of cMax which 

defines the number size of the current syntax element. In Table 2, the cMax equals five 
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because the maximum value of binIdx is five. All syntax elements which are decoded 

by the fixed-length format are always represented with six binary bits.  

2.2.4  Unary/k-th order Exp_Golomb (UEGk) 

binarization process 

Input to this process is a request for a UEGk binarization for a syntax element, 

signedValFlag and uCoff. Output of this process is the UEGk binarization of the syntax 

element.  

A UEGk bin string is a concatenation of a prefix bit string and a suffix bit string. 

The prefix of the binarization is specified by invoking the TU binarization process for 

the prefix part [ Min( uCoff, Abs( synElVal ) ) ] of a syntax element value synElVal as 

specified in Section 2.2.2 with cMax = uCoff, where uCoff > 0. Namely, the prefix part 

is dominated by cMax. The suffix part of this code doesn’t always apply because it 

isn’t adopted by two cases.  

 

The UEGk bin string is derived as follows:  

 If one of the following is true, the bin string of a syntax element having value 

synElVal consists only of a prefix bit string. Namely, the UEGk doesn’t enter the 

suffix coding step. 

1. If signedValFlag is equal to 1 and the prefix bin contains only one 0 bit, the 

value of syntax element is just decided by prefix bin string with truncated 

unary (TU) code.  

2. If signedValFlag is equal to 0 and the prefix bin string isn’t equal to the bit 

string which is composed of the string length cMax of bit 1.  
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 Otherwise, the bin string of the UEGk suffix part of a syntax element value 

synElVal is specified by a process equivalent to the following pseudo-code:  

 
If( Abs( synE1Val) >= uCoff){ 
 sufS = Abs( synElVal) – uCoff 
 stopLoop = 0 
 do{  
  if( sufS >= ( 1<<k)){  
   put( 1 ) 
   sufS = sufS – ( 1<<k) 
   k++ 
  }else{  
   put( 0 ) 
   while( k--) 
    put(( sufS >> k) & 0x01) 
   stopLoop = 1 
  } 
 } while( !stopLoop) 
} 
If( signedValFlag && synElVal != 0) 
 If( synElVal > 0)  
  put( 0 ) 
 else 
  put( 1 )             (Eq. 5) 

 

The initial value of k is defined as the order of the unary Exp-Golomb coding 

which are named as UEGk. In the binarization decoding of CABAC, it only applies 

two decoding flows such as UEG0 and UEG3. UEG0 is used by the residual data 

decoding process and UEG3 is used by the motion vector difference one.  

 

 

 



 

 15

2.2.5 Special binarization process 

Input to this process is a request for a binarization for syntax element mb_type or 

sub_mb_type. Output of this process is the binarization of these two syntax elements.  

All formats of the binarization coding process are introduced above. But there is 

still a special coding flow which we don’t describe yet. In order to perform the higher 

video quality, the macroblock and sub-macroblock are divided into many kinds of 

types such as I, P, B, and SI slices. In the four basic types, they are also sorted by 

variable block sizes. These two syntax elements are difficult to define by means of the 

aforementioned coding flows. In H.264/AVC, it adopts the table-based method to 

define the macro and sub-macroblock types. The binarization engine reads the bin 

string and checks if the bin string is mapped the specified location in these tables. If 

the assigned bin string is found in these tables, it can look up the current macroblock 

type.  

The binarization scheme for coding of macroblock type in I slice is specified in 

Table 3 [1]. For example, if the value of bin string is equal to “1001011” in I slice, the 

mapped macroblock type is equal to “8” by look up Table 3. We observe that the 

probability of the macroblock type appearance is large and its corresponding bin string 

is shorter.  

For macroblock types in SI slices, the binarization consists of bin strings specified 

as a concatenation of a prefix and a suffix bit string as follows.  

The prefix bit string consists of a single bit, which is specified by b0 = ( ( mb_type 

= = SI)? 0 : 1 ). For the syntax element value for which b0 is equal to 1, the 

binarization is given by concatenating the prefix b0 and the suffix bit string as specified 

in Table 3 for macroblock type in I slices indexed by subtracting 1 from the value of 

mb_type in SI slices.  
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Table 3 Binarization for macroblock types in I slice 

Value (name) of mb_type Bin string 

0 (I_4x4) 0       

1 (I_16x16_0_0_0) 1 0 0 0 0 0  

2 (I_16x16_1_0_0) 1 0 0 0 0 1  

3 (I_16x16_2_0_0) 1 0 0 0 1 0  

4 (I_16x16_3_0_0) 1 0 0 0 1 1  

5 (I_16x16_0_1_0) 1 0 0 1 0 0 0 

6 (I_16x16_1_1_0) 1 0 0 1 0 0 1 

7 (I_16x16_2_1_0) 1 0 0 1 0 1 0 

8 (I_16x16_3_1_0) 1 0 0 1 0 1 1 

9 (I_16x16_0_2_0) 1 0 0 1 1 0 0 

10 (I_16x16_1_2_0) 1 0 0 1 1 0 1 

11 (I_16x16_2_2_0) 1 0 0 1 1 1 0 

12 (I_16x16_3_2_0) 1 0 0 1 1 1 1 

13 (I_16x16_0_0_1) 1 0 1 0 0 0  

14 (I_16x16_1_0_1) 1 0 1 0 0 1  

15 (I_16x16_2_0_1) 1 0 1 0 1 0  

16 (I_16x16_3_0_1) 1 0 1 0 1 1  

17 (I_16x16_0_1_1) 1 0 1 1 0 0 0 

18 (I_16x16_1_1_1) 1 0 1 1 0 0 1 

19 (I_16x16_2_1_1) 1 0 1 1 0 1 0 

20 (I_16x16_3_1_1) 1 0 1 1 0 1 1 

21 (I_16x16_0_2_1) 1 0 1 1 1 0 0 

22 (I_16x16_1_2_1) 1 0 1 1 1 0 1 

23 (I_16x16_2_2_1) 1 0 1 1 1 1 0 

24 (I_16x16_3_2_1) 1 0 1 1 1 1 1 

25 (I_PCM) 1 1      

binIdx 0 1 2 3 4 5 6 

In other words, the macroblock in SI slice is the enhanced format of the 

macroblock type in I slice. The bin string of SI slice macroblock type is composed of 

two parts: prefix bit and the suffix part. If the prefix bit is equal to 0, it doesn’t need the 
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suffix part and the syntax element is equal to 0. If the prefix bit is equal to 1, the suffix 

part is defined in Table 3 and the mapped value of macroblock types has to be added 

by 1 in SI slice.  

Besides the macroblock type in SI slice, there are still two cases that they generate 

the bin value through the suffix process. The binarization schemes for P macroblock 

types in P and SP slices and B macroblocks in B slices are specified in Table 4 [1]. 

Table 4 is the prefix definitions of mb_type. The suffix parts are decided by the formats 

in Table 3 because these fields are the intra macroblock type in P, SP, and B slice. But 

the value of the macroblock type in the last fields in P and B slice have to be added by 

offset value.  

The bin string for I macroblock types in P and SP slices corresponding to mb_type 

value 5 to 30 consists of a concatenation of a prefix, which consists of a single bit with 

value equal to 1 as specified in Table 4 and a suffix as specified in Table 3, indexed by 

subtracting 5 from the value of my_type. Namely in the P and SP slices, the value of 

mb_type is equal to the summation of the offset value “5” and the corresponding value 

of mb_type for current bin string in Table 3 if the prefix bit of the current bin string is 

equal to “1”.  

The bin string for I macroblock types in B slices (mb_type values 23 to 48) the 

binarization consists of bin strings specified as a concatenation of a prefis bit string as 

specified in Table 4 and the suffix bit strings as specified in Table 3, indexed by 

subtracting 23 from the value of mb_type. Namely in the B slices, the value of 

mb_type is equal to the summation of the offset value “23” and the corresponding 

value of mb_type for current bin string in Table 3 if the prefix bits of the current bin 

string is equal to “111101”.  
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Table 4 Binarization for macroblock types in P, SP, and B slices 

Slice type Value (name) of mb_type Bin string 

0 (P_L0_16x16) 0 0 0     

1 (P_L0_L0_16x8) 0 1 1     

2 (P_L0_L0_8x16) 0 1 0     

3 (P_8x8) 0 0 1     

4 (P_8x8ref0) na 

P, SP slice

5 to 30 (Intra, prefix only) 1       

0 (B_Direct_16x16) 0       

1 (B_L0_16x16) 1 0 0     

2 (B_L1_16x16) 1 0 1     

3 (B_Bi_16x16) 1 1 0 0 0 0  

4 (B_L0_L0_16x8) 1 1 0 0 0 1  

5 (B_L0_L0_8x16) 1 1 0 0 1 0  

6 (B_L1_L1_16x8) 1 1 0 0 1 1  

7 (B_L1_L1_8x16) 1 1 0 1 0 0  

8 (B_L0_L1_16x8) 1 1 0 1 0 1  

9 (B_L0_L1_8x16) 1 1 0 1 1 0  

10 (B_L1_L0_16x8) 1 1 0 1 1 1  

11 (B_L1_L0_8x16) 1 1 1 1 1 0  

12 (B_L0_Bi_16x8) 1 1 1 0 0 0 0

13 (B_L0_Bi_8x16) 1 1 1 0 0 0 1

14 (B_L1_Bi_16x8) 1 1 1 0 0 1 0

15 (B_L1_Bi_8x16) 1 1 1 0 0 1 1

16 (B_Bi_L0_16x8) 1 1 1 0 1 0 0

17 (B_Bi_L0_8x16) 1 1 1 0 1 0 1

18 (B_Bi_L1_16x8) 1 1 1 0 1 1 0

19 (B_Bi_L1_8x16) 1 1 1 0 1 1 1

20 (B_Bi_Bi_16x8) 1 1 1 1 0 0 0

21 (B_Bi_Bi_8x16) 1 1 1 1 0 0 1

22 (B_8x8) 1 1 1 1 1 1  

B slice 

23 to 48 (Intra, prefix only) 1 1 1 1 0 1  

binIdx 0 1 2 3 4 5 6
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Table 5 Binarization for sub-macroblock types in P, SP, and B slices 

Slice type Value (name) of sub_mb_type Bin string 

0 (P_L0_8x8) 1      

1 (P_L0_8x4) 0 0     

2 (P_L0_4x8) 0 1 1    
P, SP slice 

3 (P_L0_4x4) 0 1 0    

0 (B_Direct_8x8) 0      

1 (B_L0_8x8) 1 0 0    

2 (B_L1_8x8) 1 0 1    

3 (B_Bi_8x8) 1 1 0 0 0  

4 (B_L0_8x4) 1 1 0 0 1  

5 (B_L0_4x8) 1 1 0 1 0  

6 (B_L1_8x4) 1 1 0 1 1  

7 (B_L1_4x8) 1 1 1 0 0 0 

8 (B_Bi_8x4) 1 1 1 0 0 1 

9 (B_Bi_4x8) 1 1 1 0 1 0 

10 (B_L0_4x4) 1 1 1 0 1 1 

11 (B_L1_4x4) 1 1 1 1 0  

B slice 

12 (B_Bi_4x4) 1 1 1 1 1  

binIdx 0 1 2 3 4 5

For P, SP, and B slices the specification of the binarization for sub_mb_type is 

given in Table 5. Instead of looking up the prefix part in one table and looking up the 

suffix part in other table, it only takes Table 5 to process the binarization of 

sub-macroblock types in P, SP, and B slices.  

2.3 Algorithm of basic binary arithmetic coding 

In this section, we introduce the basic arithmetic encoding and decoding 

algorithm to understand the organization of the arithmetic code. It is the basic concept 

to the advanced binary arithmetic algorithm in Section 2.4.  
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2.3.1 Basic binary arithmetic encoding algorithm 

This section introduces the basic arithmetic encoding algorithm to understand the 

binary arithmetic coding algorithm and know how to decode the bit-stream which is 

generated by encoder. According to the probability, the binary arithmetic encode 

defines two sub-intervals in the current range. The two sub-intervals are named as 

MPS (Most Probable Symbol) and LPS (Least Probable Symbol). Figure 4(a) shows 

the definition of the sub-intervals. The lower part is MPS and the upper one is LPS. 

The range value of MPS is defined as rMPS and the one of LPS is defined as rLPS. 

The ranges of the current MPS and LPS are defined in Eq. 6. In this equation, MPSρ  

and LPSρ  are the probability of MPS and LPS. The summation of LPS and MPS is 

equal to one because the probability of the current interval is one.  

Figure 4   (a) Definition of MPS and LPS and 

     (b) Sub-divided interval of MPS and 

   (c) Sub-divided interval of LPS 
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(1 )
MPS

LPS MPS

rMPS range
rLPS range range

ρ
ρ ρ

= ×
= × = × −

          

:MPSρ  The probability of MPS             

:LPSρ  The probability of LPS             (Eq. 6) 

Depending on the bin decision, it identifies as either MPS or LPS. If bin is equal 

to “1”, the next interval belongs to MPS. Figure 4(b) shows the MPS sub-interval 

condition and the lower part of the current interval is the next one. The range of the 

next interval is re-defined as rMPS and MPSρ is increased. On the contrary, the next 

current interval belongs to LPS when bin is equal to “0”. Figure 4(c) shows the LPS 

sub-interval condition and the upper part of the current interval is the next one. The 

range of the next interval is re-defined as rLPS and MPSρ is decreased.  

We arrange the algorithm in the following Eq. 7 and Eq. 8. 

 

Most probable symbol (MPS) condition: 

The MPS probability of the next interval: _MPS NEXT MPS Incρ ρ ρ= +  

The range of the next interval: NEXTrange rMPS=  

The value of the next interval: _NEXT MPS NEXTcodlOffset rMPS ρ= ×  

Incρ : The increment of MPSρ .             (Eq. 7) 

 

Least probable symbol (LPS) condition: 

The MPS probability of the next interval: _ρ ρ ρMPS NEXT MPS Dec= −  

The range of the next interval: NEXTrange rLPS=  

The value of the next interval: _NEXT MPS NEXTcodlOffset codlOffset rLPS ρ= + ×  

Decρ : The decrement of MPSρ .             (Eq. 8) 
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codlOffset is allocated at the intersection between the current MPS and LPS range. 

Depending on codlOffset, the arithmetic encoder produces the bit-stream in order to 

achieve the compression effect.  

2.3.2 Basic binary arithmetic decoding algorithm 

In the binary arithmetic decoder, it decompresses the bit-stream to the bin value 

which offers the binarization to restore the syntax elements. The decoding process is 

similar to the encoding one. Both of them are executed by means of the recursive 

interval subdivision. But they still have some different coding flow, which is described 

as follows.  

It is needed to define the initial range and the MPS probability MPSρ  when 

starting the binary arithmetic decode. The value of codlOffset is composed of the 

bit-stream and compared with rMPS. The MPS and LPS conditions are unlike the 

definitions of the encoder. Figure 5 illustrates the subdivision of the MPS and LPS 

condition. If codlOffset is less than rMPS, the condition belongs to MPS. The range of 

the next interval is equal to rMPS.  The probability of MPS ( MPSρ ) is increased and 

the bin value outputs “1”. The next value of codlOffset remains the current one. Figure 

5(a) illustrates the MPS condition. If codlOffset is great than or equal to rMPS, the next 

interval turns into LPS. The range of the next interval is defined as rLPS.  The 

probability of MPS ( MPSρ ) is decreased and the bin value outputs “0”.  The meaning 

of the next value of codlOffset is to subtract the rMPS from the current codlOffset. 

Figure 5(b) illustrates the MPS condition.  
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Figure 5   (a) Result of MPS subdivision and 

    (b) Result of LPS subdivision 

We arrange the algorithm in the following Eq. 9 and Eq. 10. 

 

Most probable symbol (MPS) condition: If ( codlOffset < rMPS ) 

The bin Value = “1” 

The value of the next codlOffset: NEXTcodlOffset codlOffset=  

The MPS probability of the next interval: _MPS NEXT MPS Incρ ρ ρ= +  

The range of the next interval: NEXTrange rMPS=  

Incρ : The increment of MPSρ .             (Eq. 9) 

 

Least probable symbol (LPS) condition: If( codlOffset >= rMPS ) 

The value of the next codlOffset: NEXTcodlOffset codlOffset rMPS= −  

The MPS probability of the next interval: _ρ ρ ρMPS NEXT MPS Dec= −  

The range of the next interval: NEXTrange rLPS=  

Decρ : The decrement of MPSρ .            (Eq. 10) 



 

 24

2.4 Advanced binary arithmetic coding for 

H.264/AVC 

According to the H.264/AVC standard [1], we introduce the advanced binary 

arithmetic algorithm adopted by CABAC in this section. It makes more efficient with 

the integer operation for range computation by means of multiplication-free and 

table-based probability architecture.  

2.4.1 Advanced binary arithmetic encoding algorithm 

In Section 2.3.1, we introduce the basic algorithm of the binary arithmetic encode. 

Although it can achieve the high compression gain, the algorithm works under the 

floating-point operation. The hardware complexity becomes the problem when we 

implement the binary arithmetic encoder. In Eq. 6, it has to compute the values of 

rMPS and rLPS with two multipliers and processes the next value of codlOffset, range, 

and the probability by means of the floating adders and comparators. It consumes the 

lots hardware cost because the multipliers and floating operations make the complex 

circuit. According to H.264/AVC standard [1], we adopt the low complexity algorithm 

to implement the CABAD circuit. 

In order to improve the coding efficiency, there are three kinds of the binary 

arithmetic decoders in H.264/AVC system such as the normal, bypass, and termination 

encoding flow. We will show whole algorithms as follows.  

The first algorithm is the normal encoding process which is shown in Figure 6. 

There are two main factors to dominate the hardware efficiency. One is the multiplier 

of ρLPSrange×  defined as rLPS and the other is the probability calculation defined 
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as LPSρ . In Eq. 6, it applies one multiplier to find the range of LPS (rLPS). According 

to the H.264/AVC standard, the table-based method is used in place of the 

multiplication operation. In the normal decoding flowchart, codlRangeLPS looks up 

the table, rangeTabLPS, depending on two indexes such as pStateIdx and 

qCodlRangeIdx. pStateIdx is defined as the probability of MPS ( MPSρ ) which gets 

from the context model. qCodlRangeIdx is the quantized value of the current range 

(codlRange) which is separated to four parts in this table. The second factor of the 

improved method is to estimate the value of MPSρ . In Section 2.3.1, we know that the 

value of MPSρ  is increased when MPS condition happened and is decreased when 

LPS condition happened. But we can’t find the rule how much the value has to be 

increased or decreased.  

 

Figure 6  Flowchart of the normal encoding flow [1] 
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The flowchart of Figure 6 also shows the table-based method to process the 

probability estimation. It divides into two sub-intervals such as MPS and LPS 

conditions. Depending on the sub-interval, it computes the next probability by the 

transIdxLPS table when the interval division is LPS and by the transIdxMPS table 

when the interval is MPS. These two probability tables are approximated by sixty-four 

quantized values indexed by the probability of the current interval. 

 

Figure 7  Flowchart of renormalization in the encoder [1] 

In the basic binary arithmetic encoding, the interval subdivision is operated under 

the floating-point operation. In practical implementation, this method causes the 

complexity of the circuit to be increased. The advanced algorithm adopts the integer 

operation for H.264/AVC. The value of the next range becomes smaller than the 

current interval. So we use the renormalization method to keep the scales of codlRange 
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and codlLow. Figure 7 shows the flowchart of renormalization in the encoder. The 

MSB of codlRange always keeps “1” in order to realize the integer operation. If the 

MSB of codlRagne is equal to “0”, the value of codlRagne has to be shifted left until 

the current bit is equal to “1”. The codlLow follows the codlRange to shift left 

synchronously. Depending on the shifted number of codlRagne, it dominates the 

number of iteration for codlLow compute directly and affects the PutBit procedure 

indirectly.  

 

Figure 8  Flowchart of PutBit(B) [1] 

Figure 8 shows the flowchart of PutBit procedure. It is dominated by the codlLow 

decision branch and the bitsOutstanding accumulated in renormalization procedure. 

The codlLow decision branch dominates its leading bit of one piece bit-stream for 

current codlLow. Besides dominating the leading bit, the codlLow decision branch also 

controls if the bitsOutstanding should be accumulated. The accumulated 

bitsOutstanding dominates the number of bit will be generated in one piece bit-stream 

for current codlLow. For example, if the current codlLow is 01_xxxx_xxxx, and the 

current accumulated bitsOutstanding is 5, the bit-stream will not be generated. Instead 
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of generating bit-stream, the bitsOutstanding will be added 1. So the next 

bitsOutstanding is 6. If the current codlLow is 11_xxxx_xxxx, and the current 

accumulated bitsOutstanding is 5, the generated bit-stream in PutBit procedure is 

10_0000. The length of the generated bit-stream is variable decided by the 

accumulated value of bitsOutstanding. The accumulation of bitsOutstanding restricts 

the throughput of the whole arithmetic encoder. The proposed method of lowering its 

affection in throughput will be introduced in Chapter 3. Besides, the accumulation of 

bitsOutstanding also leads to the large range in the length of generated variable 

bit-stream. It causes the cost issue in output interface design. The proposed method of 

cost efficiency in output interface will also be introduced in Chapter 3.  

 

Figure 9  Flowchart of encoding bypass [1] 
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The second algorithm is the bypass encoding process which is applied by the 

specified syntax elements such as abs_mvd, significant_coeff_flag, 

last_significant_coeff_flag, and coeff_abs_level_minus1. The probabilities of MPS and 

LPS are fair; therefore, both probabilities are 0.5. It is unnecessary to refer to the 

context model during decoding. Figure 9 shows the flowchart of the bypass encoding 

flow. Compared with Figure 6, the bypass encoding process doesn’t estimate the 

probability of the next interval. So we don’t see the probability computation in the 

bypass encoding. The computed codlRange doesn’t change which means that it has no 

renormalization in the bypass decoding. But the codlLow decision branch in bypass 

encoding is similar to the one in renormalization, so we can modify it to be hardware 

sharing with renormalization in hardware implementation. Besides, it just uses one 

adder and one no iteration renormalization to implement the encoding process. So we 

will adopt the multi-symbol architecture based on the result of statistic in several 

image test sequences to speed up the throughput of the CABAC system due to its 

simple process. The proposed multi-symbol architecture will be shown in Chapter 3.  

 

Figure 10 Flowchart of the terminal encoding flow [1] 
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The third algorithm is the termination encoding process. Figure 10 shows the 

flowchart of the terminal encoding flow. The terminal encoding process is simple as 

well, but it has the more encoding procedure compared to the bypass encoding process. 

It doesn’t need the context model to refer to the probability. No matter the subdivision 

condition belongs to MPS or LPS, the value of the next codlRange is always to 

subtract two from the current codlRange at first. When the subdivision condition is 

LPS, the EncodeFlush process shown at figure 11 has to be executed. The purpose of 

EncodeFlush is stuffing several bits to divide the bit-stream of current macroblock and 

the bit-stream of next macroblock. In the EncodeFlush process, the codlRange is 

always assigned to be the constant value which is two at first. For whole termination 

process, both MPS process and LPS process have to execute renormalization process. 

In the MPS process, it only executes the renormalization process. In the LPS process, it 

has to perform two steps process. The first step is to update the codlLow value by 

taking original codlLow to add the initial codlRange which has been subtracted two.  

 

Figure 11 Flowchart of flushing at termination [1] 
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The termination process occurs one time per macroblock encoding process, it is 

seldom used during all encoding processes. Therefore, it affects slightly in the 

throughput of whole CABAC encoding system. So we will focus on the first two 

algorithms in this section.  

2.4.2 Advanced binary arithmetic decoding algorithm 

In Section 2.3.2, we introduce the basic algorithm of the binary arithmetic decode. 

The drawbacks of it is the same as the basic algorithm of the binary arithmetic encode, 

it also leads to more complexity in hardware implementation due to the multipliers and 

floating-point operations. As arithmetic algorithm used in CABAC encoding, the 

arithmetic decoding also adopts three kinds of decoding modes such as the normal, 

bypass, and termination decoding flow to lower its complexity in circuit 

implementation. We will show these three decoding algorithms as follows.   

The first algorithm is the normal decoding process which is shown in Figure 12. 

As advanced binary arithmetic encoding algorithm, there are also two main factors to 

dominate the hardware efficiency for the advanced binary arithmetic decoding 

algorithm. One is the multiplier of ρLPSrange×  defined as rLPS and the other is the 

probability calculation defined as LPSρ . In Eq. 6, it applies one multiplier to find the 

range of LPS (rLPS). According to the H.264/AVC standard, the table-based method is 

used in place of the multiplication operation. In the normal decoding flowchart, 

codlRangeLPS looks up the table, rangeTabLPS, depending on two indexes such as 

pStateIdx and qCodlRangeIdx. pStateIdx is defined as the probability of MPS ( MPSρ ) 

which gets from the context model. qCodlRangeIdx is the quantized value of the 

current range (codlRange) which is separated to four parts in this table. The second 

factor of the improved method is to estimate the value of MPSρ . In Section 2.3.2, we 
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know that the value of MPSρ  is increased when MPS condition happened and is 

decreased when LPS condition happened. But we can’t find the rule how much the 

value has to be increased or decreased. The flowchart of Figure 12 also shows the 

table-based method to process the probability estimation. It divides into two 

sub-intervals such as MPS and LPS conditions. Depending on the sub-interval, it 

computes the next probability by the transIdxLPS table when the interval division is 

LPS and by the transIdxMPS table when the interval is MPS. These two probability 

tables are approximated by sixty-four quantized values indexed by the probability of 

the current interval. 

 

codIOffset >= codIRange

binVal = !valMPS
codIOffset = codIOffset - codIRange

codIRange = codIRangeLPS

binVal = valMPS
pStateIdx = transIdxMPS[pStateIdx]

Yes No

RenormD

Done

DecodeDecision (ctxIdx)

qCodIRangeIdx = (codIRange>>6) & 3
codIRangeLPS = rangeTabLPS[pStateIdx][qCodIRangeIdx]

codIRange = codIRange - codIRangeLPS

pStateIdx == 0?

valMPS = 1 - valMPS

pStateIdx = transIdxLPS[pStateIdx]

Yes

No

 

Figure 12 Flowchart of the normal decoding flow [1] 

 In the basic binary arithmetic decoder, the interval subdivision is operated under 
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the floating-point operation. In practical implementation, this method causes the 

complexity of the circuit to be increased. The advanced algorithm adopts the integer 

operation for H.264/AVC. The value of the next range becomes smaller than the 

current interval. So we use the renormalization method to keep the scales of codlRange 

and codlOffset. Figure 13 shows the flowchart of renormalization. The MSB of 

codlRange always keeps “1” in order to realize the integer operation. If the MSB of 

codlRagne is equal to “0”, the value of codlRagne has to be shifted left until the 

current bit is equal to “1”. Depending on the shifted number of codlRagne, codlOffset 

fill the bit-stream in the LSB. 

 

 

Figure 13 Flowchart of renormalization in the decoder [1] 

The second algorithm is the bypass decoding process which is applied by the 

specified syntax elements such as abs_mvd, significant_coeff_flag, 

last_significant_coeff_flag, and coeff_abs_level_minus1. The probabilities of MPS and 

LPS are fair, that is, both probabilities are 0.5. It is unnecessary to refer to the context 

model during decoding. Figure 14 shows the flowchart of the bypass decoding flow. 



 

 34

Compared with Figure 12, the bypass decoding process doesn’t estimate the 

probability of the next interval. So we can’t see the probability computation in the 

bypass decoding. The computed codlRange doesn’t change which means that it has no 

renormalization in the bypass decoding. It just uses one subtraction to implement this 

decoding process. This algorithm is very simple, so we will use the architecture to 

speed up the CABAD system.  

 

Figure 14 Flowchart of the bypass decoding flow [1] 

codIOffset >= codIRange

binVal = 1 binVal = 0

Yes No

Done

DecodeTerminate

RenormD

codIRange = codIRange-2

 

Figure 15 Flowchart of the terminal decoding flow [1] 

The third algorithm is the termination decoding process. Figure 15 show the 

flowchart of the terminal decoding flow. The terminal decoding process is very simple 
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as well, but it has the more decoding procedure compared to the bypass decoding 

process. It doesn’t need the context model to refer to the probability. The value of the 

next codlRange is always to subtract two from the current codlRange depending on 

whether the subdivision condition belongs to MPS or not. The final values of 

codlRange and codlOffset are required to renormalize through the RenormD in this 

figure when it branches to the situation that codlOffset is smaller than codlRange (MPS 

condition). The architecture of this flowchart is composed of one constant subtraction, 

one comparator, and one renormalization. The termination decoding process is used to 

trace if the current slice is ended. It occurs one time per macroblock process which is 

seldom used during all decoding processes.  

2.5 Context model organization 

The values of the context model offer the probability value of MPS (pStateIdx) 

and the historical value of bin (MPS) in order to achieve the adaptive performance. The 

number of the context model is 399 for baseline profile and 701 for main profile. Here 

we take the baseline profile context model to introduce the operation of the context 

model briefly. In the normal encoding/decoding process of the arithmetic 

encoder/decoder, we have to prepare the 399 locations of the context model to record 

all encoding/decoding results.  

context model index = ctxIdxOffset+ctxIdxInc         (Eq. 11) 

context model index = ctxIdxOffset+ ctxIdxBlockCatOffset+ ctxIdxInc    (Eq. 12) 

We divide into two kinds of the context model index methods to allocate the 

context model. Eq. 11 is one of the index methods. Except residual data 

encoding/decoding, the context model index is equal to the sum of ctxIdxOffset and 

ctxIdxInc. Depending on the syntax element and the slice type, we can find the value of 
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ctxIdxOffset in Table 6. The value of ctxIdxInc is looked up in Table 9 by referring to 

the syntax element and binIdx. In table 9, the alphabet of “na” denotes the never 

happened issue and the word of “Terminate” means that the encoding/decoding flow 

enters the terminal encoding/decoding process. If the generated bin is equal to “1”, the 

slice has to be stopped and encodes/decodes the next slice. Table 10 shows the value of 

ctxIdxInc referring to the required neighbor syntax elements of top and left blocks 

which will be explained in Section 2.6. Table 11 shows the value of ctxIdxInc in special 

binIdx when encoding/decoding mb_type in Table 9.  

Eq. 12 is the index method for the residual data encoding/decoding which focuses 

on the syntax element of the residual data encoding/decoding flow such as 

coded_block_flag, significant_coeff_flag, last_significant_coeff_flag, and 

coeff_abs_level_minus1. The value of the context model index is the sum of 

ctxIdxOffset, ctxIdxBlockCatOffset, and ctxIdxInc. The assignment of ctxIdxOffset is 

also shown in Table 6. The value of ctxIdxBlockCatOffset is defined as Table 8 which 

is dominated by the parameters of syntax elements and ctxBlockCat. The value of 

ctxBlockCat is the block categories for the different coefficient presentations. 

maxNumCoeff means the required coefficient number of the current ctxBlockCat. 

ctxBlockCat sorts five block categories which are luma_DC for 4x4 blocks, luma_AC 

for 4x4 blocks, luma_4x4, chroma_DC, and chroma_AC in Table 7. The value of 

ctxIdxInc in residual data is defined as the scanning position that ranges from 0 to 

“maxNumCoeff – 2” in Table 7. The scanning position of the residual data process has 

two scanning orders. One is scanned for frame coded blocks with zig-zag scan and the 

other is scanned for field coded blocks with field scan.  
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Table 6 Value of ctxIdxOffset definition [1] 

slice type image layer syntax element 
SI I P,SP B 

mb_skip_flag ─ ─ 11 24 slice data 
mb_field_decoding_flag 70 70 70 70 
mb_type 3 ─ ─ ─ 
mb_type(prefix) 0 ─ 14 27 
mb_type(suffix) 3 ─ 17 32 
coded_block_pattern(prefix) 73 73 73 73 
coded_block_pattern(suffix) 77 77 77 77 

macroblock layer 

mb_qp_delta 60 60 60 60 
Prev_intra4x4_pre_mode_flag 68 68 68 68 
rem_intra4x4_pred_mode 69 69 69 69 

MB prediction 
(intra) 

Intra_chroma_pred_mode 64 64 64 64 
ref_idx_l0 ─ ─ 54 54 
ref_idx_l1 ─ ─ ─ 54 
Mvd_l0_x ─ ─ 40 40 
Mvd_l1_x ─ ─  ─ 40 
Mvd_l0_y ─ ─ 47 47 

MB prediction and  
sub-MB prediction 

(inter) 

Mvd_l1_y ─ ─ ─ 47 
sub-MB prediction sub_mb_type ─ ─ 21 36 

coded_block_flag 85 85 85 85 
Significant_coeff_flag(field) 105 105 105 105 
Significant_coeff_flag(frame) 277 277 277 277 
last_significant_coeff_flag(field) 166 166 166 166 
last_significant_coeff_flag(frame) 338 338 338 338 

residual data 

Coeff_abs_level_minus1 227 227 227 227 

 

 

Table 7 Assignment of ctxBlockCat due to coefficient type [1] 

coefficient  type maxNumCoeff ctxBlockCat 
luma DC 16 0 
luma AC 15 1 

Luma coefficient 16 2 
chroma DC 4 3 
chroma AC 15 4 
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Table 8 Assignment of ctxIdxBlockCatOffset due to ctxBlockCat and syntax 
elements of the residual data [1] 

ctxBlockCat Syntax element 
of the residualdata 0 1 2 3 4 

coded_block_flag 0 4 8 12 16 

Significant_coeff_flag 0 15 29 44 47 

last_significant_coeff_flag 0 15 29 44 47 

coeff_abs_level_minus1 0 10 20 30 39 

 

Table 9 Definition of the ctxIdxInc value for context model index [1] 

binIdx Syntax element 
0 1 2 3 4  5 >=6

mbType_SI(prefix)  na na na na na na 

mbType_SI(suffix)  
mbType_I 

Terminate 3 4 5,6 6,7 7 

Mb_skip_flag_P 

0,1,2 

na na na na na na 

mbType_P(prefix) 0 1 2,3 na na na na 

mbType_P(suffix) 0 Terminate 1 2 2,3 3 3 

sub_mb_type_P 0 1 2 na na na na 

Mb_skip_flag_B na na na na na na 
mbType_B(prefix) 

0,1,2 
3 4,5 5 5 5 5 

mbType_B(suffix) 0 Terminate 1 2 2,3 3 3 
sub_mbType_B 0 1 2,3 3 3 3 na 
mvdl0_x, mvdl1_x 3 4 5 6 6 6 
mvdl0_y, mvdl1_y 

0,1,2 
3 4 5 6 6 6 

Ref_idx_l0 , ref_idx_l1 0,1,2,3 4 5 5 5 5 5 
Mb_qp_delta 0,1 2 3 3 3 3 3 
intra_chroma_pred_mode 0,1,2 3 3 na na na na 
prev_intra4x4_pre_mode_fl 0 na na na na na na 
rem_intra4x4_pred_mode 0 0 0 na na na na 
Mb_field_decoding_flag 0,1,2 na na na na na na 
coded_block_pattern(prefix) 0,1,2,3 0,1,2,3 0,1,2,3 na na na 
coded_block_pattern(suffix)

0,1,2,3
4,5,6,7 na na na na na 

end_of_slice 0 na na na na na na 
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Table 10 Required syntax elements of the left and top neighbor blocks and the 
computation for ctxIdxInc  

Syntax element A (left block) B (top block) ctxIdxInc 

mbType  

 
mbType 
mb_skip_flag 

mbType 
mb_skip_flag A + B 

mb_skip_flag Mb_skip_flag mb_skip_flag A + B 

Mvdl0_x, mvdl0_y 
Sub_mb_type 
mb_skip_flag 
ref_idx_l0 

sub_mb_type 
mb_skip_flag 
ref_idx_l0 

Mvdl1_x, mvdl1_y 
Sub_mb_type 
mb_skip_flag 
ref_idx_l1 

sub_mb_type 
mb_skip_flag 
ref_idx_l1 

(Eq. 11) 

ref_idx_l0 , ref_idx_l1 
Sub_mb_type 
mb_skip_flag 
ref_idx_l0 ref_idx_l1 

sub_mb_type 
mb_skip_flag 
ref_idx_l0 ref_idx_l1 

{B , A} 

mb_qp_delta Na Na 
(mb_qp_delta != 0 && 
coded_block_pattern != 

0) 

Intra_chroma_pred_mode intra_chroma_pred_mode
mbType 

intra_chroma_pred_mode 
mbType A + B 

mb_field_decoding_flag Mb_field_decoding_flag mb_field_decoding_flag A + B 
coded_block_pattern(prefix) {B , A} 

binIdx == 
0 {B , A} 

coded_block_pattern(suffix)

coded_block_pattern 
 
mbType 

Coded_block_pattern 
 
mbType binIdx == 

1 {B , A}+4

coded_block_flag coded_block_flag 
coded_block_pattern 
mbType 

coded_block_flag 
coded_block_pattern 
mbType 

{B , A} 

 

Table 11 Assignment of ctxIdx for syntax element mbType 

Syntax  element current 
binIdx 

index of  
the read bin 

value of the 
read bin 

ctxIdxInc

0 6 
4 3 1 5 

0 7 mbType_SI(suffix)  
5 3 1 6 

0 3 
mbType__P(prefix) 2 1 1 2 

0 3 
mbType__P(suffix) 4 3 1 2 

0 5 
mbType__B(prefix) 2 1 1 4 

0 3 
mbType__B(suffix) 4 3 1 2 

0 3 
sub_mbtype_B 2 1 1 2 
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In addition, ctxIdxInc related to the syntax element of mvd has the special 
definition. Eq. 13 shows the ctxIdxInc definition of mvd. It checks the sum of the 
absolute mvd values in left and top sub-macroblocks. If the summation is less than “3”, 
the value ctxIdxInc is defined as “0”. If the summation is greater than “32”, the value 
ctxIdxInc is defined as “2”. Otherwise, the value ctxIdxInc is defined as “1”. 
 

sum_A_B = abs(mvd[A])+ abs(mvd[B]) 

If ( sum_A_B < 3)  

 ctxIdxInc = 0 ; 

else if( sum_A_B > 32)  

 ctxIdxInc = 2 ; 

else 

 ctxIdxInc = 1 ;                 (Eq. 13) 

2.6 Syntax elements for the neighbor blocks 

In the previous section, we have explained the methods to compute the context 

model index to offer the arithmetic decoder to produce the bin value. In both the 

residual data and the general encoding/decoding, the context model index is dominated 

by two factors such as ctxIdxOffset and ctxIdxInc. ctxIdxInc is the only one factor 

related with the syntax elements of the neighbor blocks. In Table 10, we observe the 

variable syntax elements referring to the left and top blocks to define the ctxIdxInc of 

the first binIdx such as mb_Type, mb_skip_flag, ref_idx, mb_qp_delta, 

intra_chroma_pred_mode, mb_field_decoding_flag, and coded_block_pattern. In this 

section, we introduce how to refer to syntax elements of the left and top neighbor 

blocks.  

In CABAC system, it has two side syntax elements to be required such as the left 

and top ones. The referred position is based on the current block which can treat as not 
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only the macroblock but also the sub-macroblock. So we have two methods to allocate 

the required blocks in two levels as follows. 

The first method is to get neighbor in macroblock level. Figure 16 illustrates the 

left and top macroblocks of the current one. “N” denotes the number of the macroblock 

in the current slice. The black block is the current encoding/decoding macroblock 

which is the N-th encoded/decoded macroblock coordinated as (MB_x , MB_y) in this 

slice. The macroblock “N-1” is the left macroblock and “N-w” is the top block where 

“w” is the width of this frame and means that the frame has “w” macroblocks in every 

row. In the method of Figure 16, the syntax elements are described for one parameter 

each macroblock except mvd, ref_idx, and residual data. 

 

Figure 16 Illustration of the neighbor location in macroblock level 

The second method is to get neighbor in sub-macroblock level. Figure 17 

illustrates the sub-macroblocks in the current, left and top side macroblocks. The 

coordinate of the current sub-macroblock is defined as (sub_MB_x , sub_MB_y). The 

neighbor location is like the allocation in macroblock level. If sub_MB_x is not equal 

to “0”, the left sub_macroblock is in the left side of the current macroblock. If 
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sub_MB_x is equal to “0”, the left sub_macroblock can’t be found in the current 

macroblock and has to refer to the left side of the macroblock A. The gray circles in the 

macroblock A are the required sub-macroblocks which mean the syntax elements of the 

sub-macroblock 3, 7, 11, 15 have to be stored in order to record the left 

sub-macroblock. If sub_MB_y is not equal to “0”, the top sub_macroblock is in the 

upper side of the current macroblock. If sub_MB_y is equal to “0”, the top 

sub_macroblock can’t be found in the current macroblock and has to refer to the upper 

side of the macroblock B. The gray circles in the macroblock B are the required 

sub-macroblocks which mean the syntax elements of the sub-macroblock 12, 13, 14, 

15 have to be stored in order to record the top sub-macroblock.  

 

Figure 17 Illustration of the neighbor location for sub-macroblock level 
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2.7 Paper survey for state-of-the-art CABAC designs 

In this section, we will introduce some of the state-of-the-art CABAC encoding 

designs which have been published recently (2004~ 2006). Instead of introducing the 

CABAC encoding and decoding designs, we only introduce the state-of-the-art 

CABAC encoding designs due to that the proposed three high throughput methods are 

all for encoder.  

The main differences of all of these CABAC encoding are almost in arithmetic 

encoder due to that the arithmetic encoder is the main dominator of throughput for the 

whole CABAC system, so we mainly introduce the arithmetic encoders of each 

state-of the-art designs here. The state-of-the-art CABAC encoder designs are 

introduced as follows.  

1. For the CABAC design of [7] proposed by V. H. Ha, W.–S. Shim, and J.–W. 

Kim, the initial design without optimization takes 14 clock cycles per bin. The 

optimization strategies are shown as follows.  

(1) Algorithm: optimize computations in each step  

(2) Merging: merge multiple steps into one  

(3) Pre-fetching: pre-fetch and pre-process data as early as possible  

(4) Parallelism: perform independent steps in parallel.  

After adopting the four strategies, the processing time is reduced to 5 clock cycles 

per bin.  

2. Figure 18 shows the arithmetic encoder architecture proposed by Roberto R. 

Osorio [11]. For normal encoding mode of arithmetic coding, it combines two sets of 

range updating modules and two sets of pre-computing modules for low updating to 

achieve the purpose of dual-symbol encoding.  
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Figure 18 Arithmetic coding interval update. (a) Complete iteration.  

(b) range updating. (c) Pre-computations for low updating. [11]  

3. Figure 19 shows the simplified (pseudo-code) description of the MZ-coder 

algorithm (right) proposed by J. Núňez and V. Chouliaras [9] and the original CABAC 

algorithm (left). The MZ-coder evolves from the Z-coder software algorithm presented 

in [16] as a generalization of the well known GolombiRice coder for lossless coding of 

bi-level images. The variables of coding state for the CABAC algorithm are range and 

low, and for the MZ-coder are range and subend. The renormalization process in the 

MZ-coder does not include internal dependencies. As a result it can be readily 

accomplished with a single shift left operation. On the other hand the pseudo-code for 
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the CABAC algorithm shows the internal dependencies of low inside the while loop. 

This dependency means that a variable number of cycles (from 0 up to a maximum of 

6) are required to maintain the state variables in the required range.  

 

Figure 19 CABAC & MZ pseudo-code description [9] 

4. The CABAC encoder design of [12] is proposed by Hassan Shojania and 

Subramania Sudharsanan. Due to the subtraction operations on codILow in 1 and 1+ 

branches of renormalization, a simple barrel shifter can not be used directly to mimic 

the cumulative effect of the iterations for codILow update and output bits generation. 

However, since each subtraction only affects a single bit of value at positions 8 or 9, an 

iter-size left shift of codILow still preserves all the necessary information to retrieve 

the updated codILow value. A few special rules are required to derive the updated 

value:  

(1) The shifted-out bits and the top bit of codILow (bit 9) form an iter+1-bit 



 

 46

parsing area to be interpreted from left to right. Figure 20 shows an example 

with iter = 5.  

(2) Only the leading 1’s in the parsing area are proper output bits which won’t 

need further processing. The other 1’s are outstanding bits which need to be 

resolved either by a following zero in the current parsing area or other 

deterministic 1 or 0 of the subsequent parsing areas resulting from encoding 

of next symbols.  

(3) The first encountered zero bit is to be always ignored.  

(4) The updated codILow receives bits 0 to 8 of the shifted codILow. If the 

shifted-out bits (top iter bits) are all 1, bit 9 is copied over too; otherwise bit 9 

must be set to 0.  

These rules help constructing a parser using combinational logic to obtain updated 

codILow and a bit-string of length iter. This combinational logic effectively replaces 

the 4K entry ROM discussed earlier. If no outstanding bits are present, the string will 

correspond to output bits. To speed up update of codILow, the combinational circuit is 

split into two stages corresponding to update of codILow (Low Renormalizer) and 

generation of the output bits (Parser). Since codILow is updated at the end of the first 

stage, encoding next symbol can start right after this update.  

 

Figure 20 Sample update of codlLow [12] 



 

 47

Chapter 3  
Binary Arithmetic Encoding Engine 

In this chapter, we propose three methods to promote the throughput of CABAC 

encoder, and the corresponding architectures of these methods will be also introduced. 

About the high throughput CABAC decoder, we continue using [2] which we 

presented in August 2006. So we don’t mention it any more here.  

The motivation of improving the throughput of binary arithmetic encoder engine 

is due to the following reasons. The arithmetic encoding engine is the operating center, 

it dominates the throughput of the whole CABAC encoding system. So the throughput 

improving methods which focus on it will be more efficient.  

There are two main bottlenecks in arithmetic encoding engine, they lead to 

serious restriction in throughput aspect. One is that the sub-interval algorithm causes 

the highly data dependence between the current interval and the next ones due to its 

characteristic of high compression gain. Both the arithmetic encoder and the arithmetic 

decoder have such a drawback caused by their algorithm intrinsic. The other one is 

caused by bitsOutstanding accumulation, it appears only in the arithmetic encoder. The 

detail of bitsOutstanding accumulation will be introduced in Section 3.2.1.  

In H.264/AVC system, the entropy coding includes the variable length codes 

(UVLC and CAVLC) and CABAC. In baseline profile, UVLC and CAVLC are the 

main coders to compress the macroblock information related to the parameter and the 

pixel coefficients. In main profile, CABAC substitutes for UVLC and CAVLC to 

process the video data. CABAC applies two levels hierarchical coding flow. One is the 
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binarization coding flow, it is similar to the process of the variable length coders such 

as UVLC and CAVLC. Except searching for the context model index, the algorithm of 

the binarization is easy to realize. The other one is the arithmetic coding flow, it is also 

the focus of our research.  

This chapter is organized as follows. In section 3.1, we present the overview of 

CABAC for H.264/AVC. In Section 3.2, the proposed three throughput promoting 

methods will be introduced. We show these three methods in the three sub-sections 

such as Section 3.2.1, Section 3.2.2, and Section 3.2.3 for more detailed description.  

 

3.1 Overview of CABAC 

Figure 21 is the proposed system architecture of CABAC encoder, it consists of 

three main modules namely the binarization engine, the arithmetic encoder (AE), and 

the SRAM module. This architecture is based on the design [2] which we proposed in 

August 2006. The arithmetic encoder is the operating center of the whole CABAC 

encoding system, so we focus on promoting its efficiency.  
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Figure 21 System architecture of CABAC encoder 
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The entire CABAC encoding procedure is described as follows. When starting to 

encode, it has to initialize the context model SRAM by looking up the initial table 

which we implement only by means of the combinational circuit. Besides, the context 

model also has to be re-initialized when every new slice starts. The adopted context 

model SRAM is (701x7 bits) dual port SRAM. After the initializing step, the 

binarization engine has to read the syntax element by syntax element buffer at first. 

Meanwhile, the binarization engine also controls the row-storage SRAM to backup the 

essential syntax elements from the syntax element buffer. The adopted row-storage 

SRAM is (120x208 bits) single port SRAM. The chosen size of the row-storage SRAM 

is in order to support the encoding of 1080HD video sequence (1920x1088). The detail 

of memory requirement will be shown in Section 4.2. Besides, the essential syntax 

elements mean the neighbor information which belongs to the neighbor macroblocks 

of the current macroblock or the next few macroblocks. The neighbor macroblocks 

mean the top macroblock and the left macroblock of the current macroblock or the top 

sub-macroblock and the left sub-macroblock of the current sub-macroblock. The 

detailed definition of neighbor macroblock and neighbor sub-macroblock are 

illustrated in Section 2.6. After binarization process, it generates the corresponding bin 

string of the current syntax element to provide for arithmetic encoder. When the 

arithmetic encoder encoding the bin string, it refers to the current probability from the 

context model SRAM to find the sub-range of MPS and LPS, then it updates the 

probability to the location of the current context model index (ctxIdx). After arithmetic 

encoding process, the corresponding bit-stream will be generated.  

AG1 generates the address of the row-storage SRAM. AG2generates the address 

of the context model SRAM, its organization has been defined in Section 2.5.  

Figure 22 is the system architecture of CABAC decoder. As CABAC encoder, it 

also consists of three main modules namely the arithmetic encoder (AD), the 
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binarization engine, and the SRAM module. This architecture is what we proposed in 

August 2006 [2]. The arithmetic decoder also dominates the throughput of the whole 

CABAC decoding system.  

The entire decoding procedure is described as follows. When starting to decode, it 

also has to initialize the context model SRAM as the encoding initial step. Namely, the 

entire probabilities of the context model SRAM have to be initialized by the context 

model initial table. After the initializing step, arithmetic decoder read bit-stream to 

produce the bin value depended on the current range (codlRange) and the current value 

(codlOffset). Then, the binarization engine read the bin values to judge if the bin string 

forms the meaningful data. If negative, the binarization engine requests the arithmetic 

decoder to decode one bin again and re-judges the bin string until the value of the 

current syntax element can be identified. Namely, the binarization engine reads bin 

string until matching the bin definition of the standard [1] and transfers it into the 

mapped syntax element such as the macroblock parameter, mvd, residual data, and so 

on. If completing the current slice, codlRange is assigned to “51210” and codlOffset is 

refilled in 9-bit bit-stream from the syntax parser.  

Figure 22 System architecture of CABAC decoder 
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3.2 Three throughput promoting methods 

The proposed three throughput promoting methods are all for arithmetic encoder 

(AE) in CABAC encoding system. This is because the arithmetic encoder is the 

operating center of the whole CABAC encoding system, and it dominates the 

throughput of the CABAC encoding system. So the throughput promoting methods 

focus on the arithmetic encoder will be more efficient.  

Besides, about the CABAC decoding system aspect, we continue using the design 

[2] which we proposed in August 2006, and it has been introduced in detail in [5]. 

Besides, instead of providing any advanced improving methods for decoder, we only 

focus on the improving of encoder in the thesis.  

The arithmetic encoder is the second level encoding flow. It compresses the bin 

string which is generated by binarization engine (the fist level encoding flow) to be 

bit-stream. The arithmetic encoder has three kinds of the encoding flows such as 

normal encoding mode, bypass encoding mode, and terminal encoding mode.  

 

Figure 23 Percentage of the usage of the three encoding modes in AE 
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The pie chart (Figure 23) shows the usage rate of the three encoding modes in the 

arithmetic encoder. The normal encoding mode occupies about 84.44% usage rate to 

the entire times of arithmetic encoding demand. It is the highest usage rate for these 

three arithmetic encoding modes, so the process efficiency promoting methods which 

aim at normal encoding mode are more efficient. The methods will be introduced 

mainly in Section 3.2.3. The bypass encoding mode occupies about 14.93%. We 

propose multi-symbol architecture which is based on the statistic result of the bypass 

concatenate distribution to promoting the process efficiency of the bypass encoding 

mode. The detail of multi-symbol architecture will be introduced in Section 3.2.1. The 

terminal encoding mode occupies about 0.62%, it is the lowest usage rate for these 

three arithmetic encoding modes. This is because the terminal encoding mode is only 

used to judge if the current slice is completion, it works one or two times per 

macroblock. Thus, the terminal encoding mode is seldom used in CABAC encoding 

system. So we don’t provide any efficiency improving method due to its usage rate 

occupies approximately 0%.  

3.2.1 Multi-symbol architecture 

In this section we introduce the proposed first method, it is the multi-symbol 

architecture. The proposed multi-symbol architecture is only for the bypass encoding 

mode, it is based on the statistic result of bypass concatenate times per bypass 

encoding issue. Besides, the multi-symbol architecture is available due to the low 

complexity of the bypass encoding mode. 

Figure 24 shows the statistic of the number and the percentage of the concatenate 

bypass encoding under executing the six typical video test sequences.  
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the number of 

concatenate bypass 
1 2 3 4 5 6 7 8 > 8 

times 500285 94267 26821 4211 15740 152 9763 56 6927
% 76.01 14.32 4.07 0.64 2.39 0.02 1.48 0.01 1.05

 (a) foreman 

 

the number of 

concatenate bypass 
1 2 3 4 5 6 7 8 > 8

times 163588 27424 4913 487 990 65 301 0 205
% 82.63 13.85 2.48 0.25 0.50 0.03 0.15 0.00 0.10

 (b) akiyo 
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the number of 

concatenate bypass 
1 2 3 4 5 6 7 8 > 8 

times 1283650 239361 33932 1540 42726 144 38174 144 41654

% 76.35 14.24 2.02 0.09 2.54 0.01 2.27 0.01 2.48

 (c) football 

 

the number of 

concatenate bypass 
1 2 3 4 5 6 7 8 > 8 

times 1705034 353327 77297 11550 40022 1632 41545 1644 69149

% 74.09 15.35 3.36 0.50 1.74 0.07 1.81 0.07 3.00

 (d) Stefan 

Figure 24 Percentage of the number of the concatenate bypass encoding per 
bypass demand under executing CIF frames for four typical video sequences 
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the number of 

concatenate bypass 
1 2 3 4 5 6 7 8 > 8

times 503679 49280 5319 3378 3596 2138 3861 2328 5764

% 86.94 8.51 0.92 0.58 0.62 0.37 0.67 0.40 0.99

 (a) station 

 

the number of 

concatenate bypass 
1 2 3 4 5 6 7 8 > 8 

times 1229837 168489 8971 2859 20346 6761 23183 8206 40857

% 81.47 11.16 0.59 0.19 1.35 0.45 1.54 0.54 2.71

 (b) riverbed 

Figure 25 Percentage of the number of the concatenate bypass encoding per 
bypass demand under executing 1080HD frames for two typical video sequences 



 

 56

Figure 24 shows the percentage of the number of the concatenate bypass encoding 

per bypass demand under executing CIF frames for four typical video sequences. The 

first two typical video sequences which are the foreman (a) and the akiyo (b) belong to 

the data characteristic of the low complexity and slow motion. For the foreman 

sequence, its maximum number of the concatenate bypass is 16, and the average 

number of the concatenate bypass is 1.517 per bypass demand. For the akiyo sequence, 

its maximum number of the concatenate bypass is 11, and the average number of the 

concatenate bypass is 1.235 per bypass demand. The last two typical video sequences 

which are the football (c) and the Stefan (d) belong to the data characteristic of the 

high complexity and fast motion. For the football sequence, its maximum number of 

the concatenate bypass is 22, and the average number of the concatenate bypass is 

1.633 per bypass demand. For the Stefan sequence, its maximum number of the 

concatenate bypass is 31, and the average number of the concatenate bypass is 1.710 

per bypass demand.  

In Figure 25, it shows the percentage of the number of the concatenate bypass 

encoding per bypass demand under executing 13 1080HD frames for two typical video 

sequences. The fist typical video sequence which is the station (a) belongs to the data 

characteristic of the high complexity but slow motion. The second typical video 

sequence which is the riverbed (a) belongs to the data characteristic of the low 

complexity but fast motion. For the station sequence, its maximum number of the 

concatenate bypass is 20, and the average number of the concatenate bypass is 1.316 

per bypass demand. For the riverbed sequence, its maximum number of the 

concatenate bypass is 24, and the average number of the concatenate bypass is 1.581 

per bypass demand.  

According to the statistic result of the six typical video sequences shown in Figure 

24 and Figure 25, we can find that the percentage of the concatenating two bypass 
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encoding per bypass demand is almost 15% and 10% for CIF video and 1080HD video 

respectively, and the average concatenate number of bypass encoding which is greater 

than or equal to two occupies about 20.42% for these six video sequences. Besides, we 

find the video sequences which are higher complexity or faster motion cause bigger 

maximum number and bigger average number of the concatenate bypass encoding. 

This phenomenon is due to higher complexity causing more data in I frame and faster 

motion causing more data in P and B frame. The average number of concatenate 

bypass encoding got from the six video sequences is about 1.5, and the number 

increasing with the accelerating of motion or the increasing of complexity but never 

being in excess of 2. So we design the multi-symbol architecture consisted of 

concatenating two bypass encoding units as cascade form. For the video which has 

higher complexity or faster motion, the performance of our multi-symbol architecture 

is more efficient.  

 

Figure 26 Bypass encoding unit 

The multi-symbol architecture is available due to the low complexity of bypass 

encoding unit. According to the algorithm of bypass encoding introduced in Section 

2.4.1, we know that bypass encoding process is quite simple due to it needn’t refer 
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context model and no iterant renormalization process. Figure 26 shows the architecture 

of bypass encoding unit, it mainly consists of one adder, one 2 to 1 multiplexer, and 

one no iterant renormalization process. The bypass encoding needn’t execute 

renormalization, but the back of its process is similar to renormalization process which 

is no iterant operation controlled by codlRange. The no iterant renormalization process 

is much simpler than the renormalization process, the detail of this complexity 

comparison can be found in Section 2.4.1. So we modify the back process of bypass 

encoding to be hardware sharing with renormalization process, and it is named as one 

time renormalization namely the no iterant renormalization mentioned above. Besides, 

the whole bypass encoding unit is implemented only with the combinational circuit.  

 Figure 27 Architecture of the multi-symbol bypass encoding 

Figure 27 shows the architecture of multi-symbol bypass encoding. It can improve 

the concatenate bypass encoding efficiency, and generating the two corresponding 
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bit-streams every one cycle. The whole encoding flow of the multi-symbol architecture 

is described as follows. If the bypass flag is concatenate distribution namely the 

concatenate number is great than or equal to two, the multi-symbol architecture reads 

two bin value from the bin string every time, but it reads one bin value in the last time 

when its concatenate bypass number is odd. If it reads two bin value, it also generate 

two corresponding bit-stream meanwhile due to the whole bypass encoding unit is 

implemented only with the combinational circuit. These two generated bit-streams are 

combined into one bit-stream in the bit-stream combination process by referring the 

control signals of each bit-stream length. This bit-stream combination process is also 

implemented only with the combinational circuit. Then, the combined bit-stream is 

delivered to the arithmetic encoder (AE) output interface namely the AE 2-level 

bit-stream output buffer. Finally, the 8 bit bit-stream is outputted from the AE output 

interface. The detail of the AE output interface will be introduced in Section 3.2.3.4.  

The multi-symbol architecture almost generates two bypass encoded bit-streams 

per cycle when the concatenate number of bypass encoding is greater then or equal to 

two. According to the statistic results of Figure 24 and Figure 25, the concatenate 

number which is greater than or equal to two occupies about 20.42%. The 20.42% 

concatenate bypass can be speeded up in encoding by the multi-symbol bypass 

architecture. The speeding up formula is shown in Eq. 14.  

 

The speeding up formula of multi-symbol architecture:  

Multiple of speeding up= {concatenate number/[ceil(concatenate number/2)]} (Eq. 14) 

 

For example, if the concatenate number is 23, it originally needs 23 cycles at least 

to finish the 23 bypass encodings, but it only needs 12 cycles to encode the 23 bypass 

after applying the proposed multi-symbol architecture. Therefore, if the concatenate 



 

 60

number is two, it only takes one cycle to finish these two bypass encoding. According 

to the statistic results shown in Figure 24 and Figure 25, they shows that there are 

about 92.487% concatenate bypass encoding can be finished in one cycle.  

3.2.2 Pipeline organization 

In this Section we introduce the proposed second method, it is the pipeline 

organization of arithmetic encoder. The proposed pipeline organization is mainly for 

normal encoding mode, because it must take extra cycles to refer the context model 

SRAM. The purpose of the pipeline organization is to make the reading and storing of 

context model SRAM more efficient.  

 Figure 28 Timing diagram of the pipeline comparison 

Figure 28 shows the timing diagram of no pipelining and pipelining for normal 

encoding in arithmetic encoder. We divide the normal encoding of arithmetic encoder 

into two stages. The first stage is to read the context model SRAM. The second stage is 
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to encode the bin string into bit-stream and to write the probability back to the context 

model SRAM. We apply these two stages to schedule the pipeline organization.  

The bottleneck of the pipeline organization is the variable executing cycle of the 

normal encoding caused by the bitsOutstanding accumulating in the renormalization 

process, and its maximum executing cycle is 31. The variable executing cycle leads to 

the cycle spending of each pipeline stage is not the same, so the pipeline organization 

is not efficient due to it is not balanced. If the normal encoding takes more than one 

cycle, the pipeline organization will be inefficient due to it only save one cycle every 

accessing context model SRAM but the fist access.  

We propose a method which will be introduced in Section 3.2.3 to reduce the 

variable executing cycle to be one cycle in most situations. It not only makes the 

normal encoding more efficient but also makes the pipeline organization more 

balanced.  

When the normal encoding only takes one cycle, the reading and writing of the 

context model SRAM will act at the same time. Such a situation leads to the resource 

conflict of reading and writing in the context model SRAM. Therefore, for the context 

model SRAM, we adopt dual port SRAM model to implement it. Applying such a dual 

port SRAM model can make the reading and writing actions of the context model 

SRAM act in the same cycle.  

 

Figure 29 Timing diagram of bypass encoding just after normal encoding 
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Figure 29 shows the timing diagram of the bypass encoding just after the normal 

encoding when the concatenate bypass number is bigger than or equal to two. The 

multi-symbol bypass encoding only take one cycle, so it is efficient in the pipeline 

organization.  

(a) normal encoding 

 

(b) bypass encoding just after normal encoding 

Figure 30 Timing diagram after taking the method shown in Section 3.2.3  
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Figure 30 shows the timing diagram of normal encoding and bypass encoding 

after adopting the method shown in Section 3.2.3 in most situations. The method 

makes the normal encoding take only one cycle in most situations, so the pipeline 

organization shown in Figure 30 is more efficient due to its balance in each stage.  

3.2.3 Case Efficiency Architecture 

In this section we introduce the proposed third method which is named as Case 

Efficiency Architecture, it is only for normal encoding and terminal encoding due to 

they need the renormalization process. The design of Case Efficiency Architecture is 

based on the statistic result for bitsOutstanding. Namely, according to the probability 

distribution of the cases of the bitsOutstanding accumulating, it can make the normal 

encoding more efficient.  

Case Efficiency Architecture can improve the efficiency of pipeline organization 

mentioned in Section 3.2.2 due to it makes the most situations of normal encoding can 

be finished in only one cycle. So the more balanced pipeline stages make the pipeline 

organization more efficient after adopting.   

This section is divided into four sub-sections. In Section 3.2.3.1, we draw the 

outline of the bottleneck of the throughput promoting in arithmetic encoding. Section 

3.2.3.2 shows the proposed design to improve the throughput bottleneck. In Section 

3.2.3.3, the cost issue of interface design risen due to the large variable range of the 

variable length bit-stream which is caused by the large variable number in 

bitsOutstanding accumulating (0~31) will be introduced. Section 3.2.3.4 shows the 

proposed interface design which is based on the statistic result of bitsOutstanding.  
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3.2.3.1 Throughput bottleneck of arithmetic 

encoding engine 

The arithmetic encoder is the operating center of the CABAC encoder, it 

dominate the throughput of the whole CABAC encoding process. Besides, The 

probability of normal encoding is the highest for the three encoding mode of the 

arithmetic encoding, it is shown in Figure 23 of Section 3.2. The renormalization 

process takes the most time of normal encoding due to the bitsOutstanding 

accumulating. So improving the renormalization process is more efficient in 

throughput promoting of the CABAC encoder.  

The bottlenecks of arithmetic encoding engine is the bitsOutstanding 

accumulating in renormalization process. The bitsOutstanding leads to the following 

two bottlenecks:  

(1) the data dependence between successive symbols.  

(2) the variable executing cycles of the renormalization process.  

The first throughput bottleneck causes the multi-symbol architecture of normal 

encoding to be difficult to implement due to its data dependence. It is the intrinsic 

drawback of the arithmetic encoding algorithm. The second throughput bottleneck is 

caused by the bitsOutstanding accumulating. The range of the number of 

bitsOutstanding accumulating is from 0 to 31, it means that it have to take 0~31 cycles 

to accumulate the bitsOutstanding for one symbol. These two throughput bottlenecks 

can be illustrated in Figure 7 and Figure 8 of Section 2.4.1. We give an example shown 

as follows:  
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If the initial state of the renormalization process is:  

The current codlRange is: 0_0000_01xx  => it means that the shift = 6 

The current codlLow is:  11_0110_1110 

The initial bitsOutstanding = 0 

 

The corresponding renormalization process:  

(step 0): 11_0110_1110 =>  PutBit(1)  => 1 

(step 1): 10_1101_1100 =>  PutBit(1)  => 1 

(step 2): 01_1011_1000 =>  bitsOutstanding  =  1 

(step 3): 01_0111_0000 =>  bitsOutstanding  =  2 

(step 4): 00_1110_0000 =>  PutBit(0)  => 011 

(step 5): 01_1100_0000 =>  bitsOutstanding  =  1 

 

=> The bit-stream of current symbol is 1_1011 

 The remainder bitsOutstanding =1 

(PS: The remainder bitsOutstanding carry on being used by the next symbol.)  

                 (Eq. 15) 

 

The remainder bitsOutstanding is the fist throughput bottleneck mentioned above, 

it leads to the multi-symbol architecture for normal encoding is difficult to be designed. 

The second throughput bottleneck is the bitsOutstanding accumulating. Namely, the 

normal encoding may take too many cycles in some situations due to it accumulates 

the bitsOutstanding cycle by cycle. In next section, we propose the Case Efficiency 

Architecture to improve the inefficiency caused by the second bottleneck.  
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3.2.3.2 Throughput efficiency design 

The bitsOutstanding accumulating restricts the throughput of the whole arithmetic 

encoder, so we analyze the data characteristic of bitsOutstanding to look for an 

improving method. We get the statistic results of the following five pie charts 

corresponding to five different video test sequences which are the same as those shown 

in Figure 24 and Figure 25 of Section3.2.1.  

 

 

Figure 31 Statistic of bitsOutstanding for the low complexity and slow motion 

video sequence 
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Figure 32 Statistic of bitsOutstanding for the high complexity and fast motion 

video sequence 
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Figure 33 Statistic of bitsOutstanding for 1080HD video sequence 

 

Figure 31, Figure 32, and Figure 33 have similar probability distribution for 

bitsOutstanding . We can find that the probabilities of bitsOutstanding become great 

with the getting small of the accumulating number of bitsOutstanding, so we will take 

the data characteristic of bitsOutstanding to divide the whole renormalization process 

into cases.  

Figure 34 shows the tree map of renormalization process which is corresponding 

to the flowchart shown in Figure 7 of Section 2.4.1. In Figure 34, the PB(1) and the 

PB(0) mean the putting bit “1” process and the putting bit “0” process, and the (bs+1) 

means bitsOutstanding +1. The (9,8) means the bit 9 and the bit 8 of codlLow, and 7, 6, 

5, 4…, and 0 means the bit 7, 6, 5, 4, …, and 0 of codlLow.  
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Figure 34 Tree map of the renormalization process 
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We divide the iterant renormalization process into several cases and estimate the 

corresponding bit-stream and remainder bitsOutstanding of these cases by the tree 

maps shown in Figure 34. The example of it is shown in (Eq. 15) of Section 3.2.3.1. 

The dividing of these cases is based on the codlLow of current symbol and the 

remainder bitsOutstanding of last symbol. The codlLow is 10 bit, and the maximum 

shift dominated by codlRange is 7, so the maximum bitsOutstanding number of one 

symbol is 7. The building of cases which are based on the accumulating number of 

bitsOutstanding is shown as following tables, and we only show several situation such 

those shown in Table 12, Table13, and Table14 here due to too many cases in smaller 

bisOutstanding. The cases shown in Table 12 and Table13 are the cases when their last 

remainder bitsOutstanding equal to zero, and the cases shown in Table 14 are the cases 

when their last remainder bitsOutstanding equal to 1.  

 

 

Table 12 The cases corresponding to its accumulating number of 
bitsOutstanding=7  (It is under last remainder bitsOutstanding=0) ( 4 cases ) 

 The corresponding 

codlLow 

Remainder 

bitsOutstanding

The generated 

bit-stream 

bit-stream 

length 

shift = 6 01_1111_11xx 7 x 0 

shift = 7 00_1111_111x 7 0 1 

 01_1111_110x 0 0111_1111 8 

 10_1111_111x 7 1 1 
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Table 13 The cases corresponding to its accumulating number of 
bitsOutstanding=6  (It is under last remainder bitsOutstanding=0) ( 12 cases ) 

 The corresponding 

codlLow 

Remainder 

bitsOutstanding

The generated 

bit-stream 

bit-stream 

length 

shift = 5 01_1111_1xxx 6 x 0 

shift = 6 00_1111_11xx 6 0 1 

 01_1111_10xx 0 011_1111 7 

 10_1111_11xx 6 1 1 

shift = 7 00_0111_111x 6 00 2 

 00_1111_110x 0 0011_1111 8 

 01_0111_111x 6 01 2 

 01_1111_100x 0 0111_1110 8 

 01_1111_101x 1 011_1111 7 

 10_0111_111x 6 10 2 

 10_1111_110x 0 1011_1111 8 

 11_0111_111x 6 11 2 

 

Table 14 The cases corresponding to its accumulating number of 
bitsOutstanding=5  (It is under last remainder bitsOutstanding=1) ( 32 cases ) 

 The corresponding 

codlLow 

Remainder 

bitsOutstanding

The generated 

bit-stream 

bit-stream 

length 

shift = 4 01_1111_xxxx 5 x 0 

shift = 5 00_1111_1xxx 5 01 2 

 01_1111_0xxx 0 011_1111 7 

 10_1111_1xxx 5 10 2 
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shift = 6 00_0111_11xx 5 010 3 

 00_1111_10xx 0 0101_1111 8 

 01_0111_11xx 5 011 3 

 01_1111_00xx 0 0111_1110 8 

 01_1111_01xx 1 011_1111 7 

 10_0111_11xx 5 100 3 

 10_1111_10xx 0 1001_1111 8 

 11_0111_11xx 5 101 3 

shift = 7 00_0011_111x 5 0100 4 

 00_0111_110x 0 0_1001_1111 9 

 00_1011_111x 5 0101 4 

 00_1111_100x 5 0_1011_1110 9 

 00_1111_101x 1 0101_1111 8 

 01_0011_111x 5 0110 4 

 01_0111_110x 0 0_1101_1111 9 

 01_1011_111x 5 0111 4 

 01_1111_000x 0 0_1111_1100 9 

 01_1111_001x 1 0111_1110 8 

 01_1111_010x 0 0_1111_1101 9 

 01_1111_011x 2 011_1111 7 

 10_0011_111x 5 1000 4 

 10_0111_110x 0 1_0001_1111 9 

 10_1011_111x 5 1001 4 

 10_1111_100x 0 1_0011_1110 9 

 10_1111_101x 1 1001_1111 8 
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 11_0011_111x 5 1010 4 

 11_0111_110x 0 1_0101_1111 9 

 11_1011_111x 5 1011 4 

 

Table 15 The number of the corresponding cases for the accumulating number of 
bitsOutstanding of one symbol  

(It is suitable for all kinds of last remainder bitsOutstanding) 

The accumulating number 

of bitsOutstanding 
The number of the corresponding cases 

7 4 

6 12 

5 32 

4 80 

3 187 

2 298 

1 355 

0 52 

Table 15 shows the number of the corresponding cases for the accumulating 

number of bitsOutstanding when encoding one symbol, and these cases are 1020.  

 

Verify the number of cases is 1020:  

The range of shift which is decided by codlRange is: 0~7  

(The detail of the relationship is shown in Table 17) 
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The codlLow is 10 bit, but the range of shift is 0~7, so we only consider the 9 bit 

codlLow[9:1]. It is illustrated in Figure 35. 

Figure 35 Illustration of the shifting left of codlLow 

So the total cases can be estimated as follows:  

 

Total cases  

=  29 +   28 +  27 +  26 +  25 +  24 +  23 +  22

 (shift=7) (shift=6) (shift=5) (shift=4) (shift=3) (shift=2) (shift=1) (shift=0) 

 

= 1020 cases 

              (Eq. 16) 

Besides the 1020 cases, the last remainder bitsOutstanding has to be considered. 

The range of remainder bitsOutstanding is 0 ~ 31, so there are 32 kinds of remainder 

bitsOutstanding. Therefore, the total number of the cases for renormalization process is 

1020 x 32 = 32640 cases.  

It is inefficient to build all of these cases due to too many cases causing the 

critical path too long. We analyze the utility rate of these cases based on the probability 

distribution of bitsOutstanding for typical video test sequence.  
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Table 16 The utility rate of each case for one symbol 
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%

6.05
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%
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Table 16 shows the analysis of utility rate for each case in one symbol, it is the 

same for all kinds of remainder bitsOutstanding. According to the utility rate of cases, 

we rank it in order. The cases whose utility rate is smaller than 0.041% are 

implemented with sequential circuit; namely, the bitsOutstanding accumulates itself 

one by one per cycle, and the generated bit-stream for one symbol is produced not only 

one cycle. The cases whose utility rate is greater than 0.041% to implement only with 

combinational circuit; namely, the generated bit-stream for one symbol is produced in 

only one cycle. The probability of these cases which are one executing cycle is about 

78.41%.  

Then, we have to consider the occupied probabilities of remainder 

bitsOutstanding. We only analyze the bigger probabilities of remainder bitsOutstanding; 

namely, the number of it is smaller than or equal to 7.  
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Table 17 The number of cases and the probabilities of the different containing 
range of remainder bitsOutstanding 

the different containing 

range of remainder 

bitsOutstanding 

the number 

of cases 
Probability 

case 

utility 

rate 

(< 1) 0 455x 1= 455 78.41%x 51.37%= 40.28% 0.0885% 

(< 2) 0+1 455x 2= 910 78.41%x 75.78%= 59.42% 0.0652% 

(< 3) 0+1+2 455x 3= 1365 78.41%x 87.88%= 68.91% 0.0505% 

(< 4) 0+1+2+3 455x 4= 1820 78.41%x 93.93%= 73.65% 0.0405% 

(< 5) 0+1+2+3+4 455x 5= 2275 78.41%x 96.95%= 76.01% 0.0334% 

(< 6) 0+1+2+3+4+5 455x 6= 2730 78.41%x 98.46%= 77.20% 0.0283% 

(< 7) 0+1+2+3+4+5+6 455x 7= 3184 78.41%x 99.22%= 77.80% 0.0244% 

(< 8) 0+1+2+3+4+5+6+7 455x 8= 3640 78.41%x99.60%=78.10% 0.0215% 

 

 

Figure 36 Probabilities of the different containing range of remainder 

bitsOutstaning based on Table 17 
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Table 17 shows the number of cases and the final probabilities of the different 

containing range of remainder bitsOutstanding. Figure 36 is the probability curve of it 

based on Table 17. The curve shows the probabilities will be saturation with the 

increasing of the range of remainder bitsOutstanding. So the containing range of 

remainder bitsOutstanding which is 3 is adopted by our design; namely, it supports the 

remainder bitsOutstanding equaling to 0, 1, and 2. The cases of it are 455 x 3 = 1365 

cases, and these cases are implemented only with combinational circuit; namely, there 

are 68.91% renormalization process can be executed taking only one cycle.  

Besides, the other cases are 32640 – 1365 = 31275 cases. These cases are not 

implemented only with combinational circuit due to too many and too inefficient for 

these cases. So these cases are implemented with sequential circuit.  

According to the analysis of renormalization process mentioned above, we 

propose Case Efficiency Architecture shown in Figure 37 to promote the efficiency of 

the renormalization process.  

Figure 37 Case Efficiency Architecture for renormalization process 
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Figure 37 shows the Case Efficiency Architecture for renormalization process. 

The upper blue block is the high probability cases which are implemented only with 

combinational circuit. It can produce the bit-stream of current symbol in only one cycle. 

The generated bit-stream is variable length, so we design the control signal which is 

bit-stream length to put the bit-stream into the bit-stream output buffer. The bit-stream 

length is decided in lower blue block of Figure 37, and it is implemented only with 

combinational circuit, too. The red block is the low utility rate cases which are 

implemented with sequential circuit. Its bitsOutstanding accumulates itself one by one 

cycle, so generating the corresponding bit-stream for one symbol takes several cycles 

which is dominated by the shift number. The shift number is decided by current 

codlRange (9 bits), the relationship of them is shown in Table 18. The implementation 

of the Shift Judgement block shown in Figure 37 is based on the relationship. The 

relationship is decided by the codlRange decision branch shown in Figure 7 of Section 

2.4.1. If the current colRange is smaller than 25610, it has to be shift left until that it is 

not smaller than 25610 anymore. We simplify the process to be the rule shown in Table 

18. According to the rule, the shift can be estimated in only one cycle by implementing 

it only with combinational circuit shown in the shift judgment block of Figure 37. For 

Table 18, the number of zero before the first “1” in MSB of the codlRange is the shift 

number. For example, if the current codlRange is 0_0010_1101, the corresponding 

shift is 3.  

The conclusion of this section is that the proposed Case Efficiency Architecture 

can make almost 70% normal encoding process take only one cycle due to the 

efficiency of renormalization process is improved by Case Efficiency Architecture.  
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Table 18 The relationship between shift and codlRange 

 

3.2.3.3 Cost issue in output interface 

Each symbol (bin string) processed by arithmetic encoder will produce variable 

length bit-stream, and the variable length is mainly dominated by the number of last 

remainder bitsOutstanding. The value range of remainder bitsOutstanding which has 

been mentioned in Section 3.2.3.2 is 0 ~ 31. The variable length bit-stream causes the 

cost issue in bit-stream output buffer due to its large variable range in the length of 

bit-stream.  

If we design two levels 32 bit bit-stream output buffer, the advantage of it is that 

all kinds of different length bit-stream can be written into it taking only one cycle. The 

drawback of it is leading to higher cost due to the 32 kinds of bit-stream lengths and 

the 32 kinds of position indexes. It causes 32 x 32 = 1024 cases for the bit-stream 

output buffer.  
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3.2.3.4 Cost efficiency design 

According to the statistic of the remainder bitsOutstanding for the five video test 

sequences shown in Section 3.2.3.2, we find that the probability distribution of it is not 

uniform. So we can design the bit-stream output buffer which is cost efficiency based 

on the characteristic of probability distribution of the remainder bitsOutstanding. 

Table 19 Probability of bitsOutstanding being greater than 7 

0.3912%99.6088%Riverbed
(1080HD)

0.3814%99.6186%Stefan
(CIF)

0.3896%99.6104%Football
(CIF)

High 
complexity 
and 
Fast 
motion

0.4097%99.5903%Akiyo
(CIF)

0.3880%99.6120%Foreman
(CIF)

Low 
complexity 
and 
Slow 
motion

>7<=7bitsOutstanding

0.3912%99.6088%Riverbed
(1080HD)

0.3814%99.6186%Stefan
(CIF)

0.3896%99.6104%Football
(CIF)

High 
complexity 
and 
Fast 
motion

0.4097%99.5903%Akiyo
(CIF)

0.3880%99.6120%Foreman
(CIF)

Low 
complexity 
and 
Slow 
motion

>7<=7bitsOutstanding

 

Table 19 shows the statistic result of the five video test sequences, it is divided by 

the remainder bitsOutstanding being greater than 7. We can find that the probability of 

it being smaller than or equaling to 7 occupies about 99.6% for this five video test 

sequences. So we design the two levels 8 bit buffer as bit-stream output buffer for our 

CABAC encoder system.  
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Figure 38 The proposed bit-stream output interface 

Figure 38 is the proposed bit-stream output interface based on the analysis of the 

remainder bitsOutstanding shown in Table 19. The proposed bit-stream output buffer is 

composed of two levels 8 bit buffer. The reason of 8 bit is that the maximum reminder 

bitsOutstanding of 99.6% shown in Table 19 is 7, and the first bit of put bit procedure 

is 1 bit. The reason of the two levels is to ensure that it can receive any bit-stream 

whose length is smaller than or equal to 8 in only one cycle. Figure 38 shows an 

example, and the detailed description is shown as follows.  

 

 

The operation of the bit-stream output buffer:  

 

If the current situation is:  

The current position index is: 2  

The current generating bit-stream length is: 5 bit  
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(It is the situation of the position index being smaller than the bit-stream length, so the 

level 1 buffer is not sufficient to receive all the bit-stream, and the partial bit-stream 

has to be written to the level 2 buffer.) 

 

The position index update: ( 2 – 5 ) = ( 0010 + 0011 ) = 0101 

(Ignoring the MSB, and the remainder 3 bit is the next position index.) 

 

Table 20 Required buffer slot for the different length bit-stream 

L1 buffer(bit) L2 buffer(bit) Index of 
L1 cache 

bit-stream 
length 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

 0                

1 V               

2 V V              

3 V V V             

4 V V V V            

5 V V V V V           

6 V V V V V V          

7 V V V V V V V         

7 

8 V V V V V V V V        

1  V              

2  V V             

3  V V V            

4  V V V V           

5  V V V V V          

6  V V V V V V         

7  V V V V V V V        

6 

8  V V V V V V V V       

1   V             

2   V V            

3   V V V           

4   V V V V          

5   V V V V V         

6   V V V V V V        

7   V V V V V V V       

5 

8   V V V V V V V V      



 

 83

1    V            

2    V V           

3    V V V          

4    V V V V         

5    V V V V V        

6    V V V V V V       

7    V V V V V V V      

4 

8    V V V V V V V V     

1     V           

2     V V          

3     V V V         

4     V V V V        

5     V V V V V       

6     V V V V V V      

7     V V V V V V V     

3 

8     V V V V V V V V    

1      V          

2      V V         

3      V V V        

4      V V V V       

5      V V V V V      

6      V V V V V V     

7      V V V V V V V    

2 

8      V V V V V V V V   

1       V         

2       V V        

3       V V V       

4       V V V V      

5       V V V V V     

6       V V V V V V    

7       V V V V V V V   

1 

8       V V V V V V V V  

1        V        

2        V V       

3        V V V      

4        V V V V     

5        V V V V V    

6        V V V V V V   

7        V V V V V V V  

0 

8        V V V V V V V V

“V” denotes the required buffer slot  
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Table 20 shows all kinds of situations for the different bit-stream length and the 

different position index. The gray rows denote that the level 2 buffer needs to be used. 

If the level 1 buffer is full, its control signal is (position index < bit-stream length), and 

the bit-stream output interface outputs one 8 bit bit-stream to decoder meanwhile. At 

the same time, the level 2 buffer is duplicated to level 1 buffer. The position index 

needn’t any modification due to the level 1 buffer and the level 2 buffer use the same 

position index.  

For the bit-stream length being greater than 8, it will be divided by 8. For example, 

if the current bit-stream length is 28 bits, it will be divided by 8. Then we get (28 bits) 

=  (8 bits) + (8 bits) + (8 bits) + (4 bits), taking these four set of sub-bit-stream into 

the bit-stream output buffer will take four cycle due to the maximum receiving bits of 

the bit-stream output buffer is 8 bits.  

According to Table 19, the proposed bit-stream output interface can receive about 

99.6% bit-stream in only one cycle.  
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Chapter 4  
CABAC Codec System Architecture 

This chapter focuses on the cost efficiency of the whole CABAC codec system. 

We propose some hardware sharing methods to reduce the cost of the CABAC codec. 

Besides, we also estimate the required memory which can support to 1080HD of our 

CABAC System.  

The CABAC decoding process is contrary to the CABAC encoding process, the 

detail of it shown in Chapter 2. Because of it, there are many sub-modules can be 

hardware shared to reduce the cost of the CABAC codec.  

The required memory of our CABAC codec system is mainly dominated by the 

encoded/decoded frame size. The bigger the frame size is, the more the memory 

requires. So the frame size and the required memory are direct proportion.  

This chapter is organized as follows. In Section 4.1, we introduce the proposed 

hardware sharing methods and the CABAC codec system architecture after adopting 

these hardware sharing methods. Section 4.2 shows the required memory of our 

CABAC codec system.  

4.1 Hardware Sharing Methods 

The CABAC encoder is a table-based encoder, it has many tables to look up. All 

of these tables are the same as the CABAC decoder. The proposed strategies for it are 



 

 86

shown as follows.  

(1) The probability table (rangeTabLPS) and the probability index table   

  (transIdxLPS and transIdxMPS) can be table reuse for arithmetic   

  encoding/decoding.  

(2) The context model can be reused.  

Besides, the binary tree of binarization in the CABAC encoder is the same as the 

CABAC decoder. The proposed strategy for it is finite state machine (FSM) sharing for 

the binarization in encoder and the debinarization in decoder.  

 

Table 21 The states of FSM which are similar procedures between binarization 
and debinarization 

encode the motion vector data of a 
B-frame MB

writeMVD_CABACmode_mvd

mode_EOS

mode_b8

encode macroblock skip flagwriteMB_skip_flagInfo_CABACmode_mbSkip

mode_residual

mode_ACStart

writeCBP_Chromamode_CBPChroma

encode the coded block pattern of a 
macroblock

writeCBP_Lumamode_CBPLuma

encode the field mode info of a 
given MB

writeFieldModeInfo_CABACmode_readField

encode the reference parameter of 
a given MB

writeRefFrame_CABACmode_readRefFrame

mode_readDquant

encode the chroma intra prediction 
mode of an 8X8 block

writeCIPredMode_CABACmode_IntraCpred

mode_IntraPre

mode_mbType

States Description 
(Binarization)

States of Binarization similar to 
Debinarization

States of 
Debinarization

encode the motion vector data of a 
B-frame MB

writeMVD_CABACmode_mvd

mode_EOS

mode_b8

encode macroblock skip flagwriteMB_skip_flagInfo_CABACmode_mbSkip

mode_residual

mode_ACStart

writeCBP_Chromamode_CBPChroma

encode the coded block pattern of a 
macroblock

writeCBP_Lumamode_CBPLuma

encode the field mode info of a 
given MB

writeFieldModeInfo_CABACmode_readField

encode the reference parameter of 
a given MB

writeRefFrame_CABACmode_readRefFrame

mode_readDquant

encode the chroma intra prediction 
mode of an 8X8 block

writeCIPredMode_CABACmode_IntraCpred

mode_IntraPre

mode_mbType

States Description 
(Binarization)

States of Binarization similar to 
Debinarization

States of 
Debinarization
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The middle column of Table 21 shows the states of FSM which are similar 

procedure between binarization and debinarization, and we take these states to be FSM 

sharing.  

We divide the whole CABAC encoding process shown as Figure 2 of Section 2.1 

into three main parts. Figure 39 shows the three main parts of CABAC encoder.  

Figure 39 Three main parts of CABAC encoder 

We take these three main parts to illustrate the hardware sharing. Figure 40 shows 

what can be hardware sharing between the CABAC encoder and the CABAC decoder 

for the three main parts.  

Figure 40 Illustration of hardware sharing for CABAC encoder and decoder 
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Figure 41 Architecture of the hardware sharing CABAC codec system  

Figure 41 shows the CABAC codec system architecture after adopting the 

proposed hardware sharing methods. Comparing with the CABAC encoding system 

architecture in Figure 21 and the CABAC decoding system architecture Figure 22 of 

Section 3.1, we fine that the syntax element buffer, row storage SRAM, context model 

initial table and Context Model SRAM are hardware sharing. The red lines of it are the 

encoding procedure, and the blue lines mean the decoding procedure. The green lines 

denote the procedure executed in both the encoding and the decoding.  

The hardware sharing CABAC codec system architecture not only combines the 

encoder and the decoder into CABAC codec but also it adopts some hardware sharing 

methods to reduce the cost of CABAC codec.  
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4.2 Memory Requirement 

There are two SRAM modules in our CABAC codec system, one is context model 

dual ports SRAM, the other is row storage (RS) single port SRAM. The required 

memory of CABAC system is mainly dominated by the encoded/decoded frame size.  

 

Figure 42 The required memory size of our CABAC codec system 

Figure 42 shows the required memory size of our CABAC codec system at main 

profile encoding/decoding. For context model SRAM, its required memory size is 

fixed for different frame types. It always needs ( 399 x 7 bits ) / 8 = 349.1 bytes for 

baseline profile and ( 701 x 7 bits ) / 8 = 613.4 bytes for main profile. The required 

context model SRAM size which we choose is 613.4 bytes due to the target 

specification of our CABAC codec is for 1080 HD encoding/decoding belongs to main 

profile of H.264/AVC standard. For row storage (RS) SRAM, the required memory 

size is dominated by frame size. We find that the required memory size increases with 
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the getting large frame size. For our CABAC codec system, we focus on 

encoding/decoding the video of 1080HD frame size, so the required memory size of 

our row storage SRAM is ( 120 x 208 bits) / 8 = 3120 bytes.  
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Chapter 5  
Simulation and Implementation 
Result for Digital TV Applications 

In this chapter, we show the simulation result by presenting the characteristic 

curves of our CABAC encoder. The characteristic curves of CABAC decoding are not 

shown here due to two reasons. One is that the CABAC decoding of our CABAC 

codec continues using [2] which we presented in August 2006. Its throughput can 

achieve the level 4.0; namely, it can decode the 1080HD@30fps at maximum bit-rate 

being 20Mbps. The detail of it is shown in [5]. We don’t propose any additional high 

throughput method to promote the process efficiency of CABAC decoding in the thesis. 

The other is that the proposed three high throughput methods which are introduced in 

Chapter 3 are all for CABAC encoding process.  

Our CABAC encoding system focuses on supporting the encoding of 1080HD, so 

we only take the 1080HD (1920x1088) video sequences as our simulation input. There 

are two characteristic curves of our CABAC encoding for each different video 

sequence. One is the throughput curve whose throughput unit is macroblock per 

second (MB/s), and the other is PSNR curve for Y (luminance). These two 

characteristic curves are obtained by modifying different quantization parameter (QP) 

under the maximum operating frequency (110MHz) of our CABAC encoder. 

This chapter is organized as follows. In section 5.1, we introduce the specification 

of H.264 for the different levels. We take the maximum frame rates and the maximum 
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bit rate to explain the differences for different levels. Section 5.2 shows the simulation 

and implementation result. We take two 1080HD video sequences to simulate the 

characteristic curves of our CABAC encoder.  

5.1 Specification of different levels 

Table 22 Maximum frame rates (fps) for some different frame types [1] 

 

Table 22 shows the maximum frame rates whose unit is frames per second (fps) 

for different frame types. The target of our CABAC encoder is designed to support the 

1080HD, so we only consider the 1080HD row which is highlighted by the red block. 
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In the 1080HD row we find that the maximum frame rates of the level 4.0 and the level 

4.1 are the same, both of they are 30fps.  

The difference of the level 4.0 and the level 4.1 can be observed in level limits 

shown in Table 23. The maximum macroblock processing rate (MB/s) of the level 4.0 

and the level 4.1 are also the same, they are 245760 MB/s. The main difference of 

them is the maximum video bit rate. For the level 4.0, its maximum video bit rate is 

20Mbps, and the level 4.1 is 50Mbps.  

Table 23 level limits [1] 
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5.2 Simulation and implementation result 

We take two 1080HD video sequences to simulate their characteristic curves 

shown as follows.  

Figure 43 The characteristic curves of station video sequence (QP: 42 ~ 16) 

Figure 43 shows the characteristic curves of station video sequence under the 

maximum operating frequency (110MHz) of our CABAC encoder, and the 

quantization parameter is modified from 42 to 16 whose interval is 2. According to 

these two characteristic curves of station video sequence, the proposed CABAC 

encoder can achieve 245760MB/s under 50Mbps; namely, it supports the specification 

of level 4.1. Besides, the PSNR of Y (luminance) is about 45 dB under the limits of 

level 4.1.  
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 Figure 44 The characteristic curves of riverbed video sequence (QP: 42 ~ 16) 

Figure 44 shows the characteristic curves of riverbed video sequence under 

110MHz, and the quantization parameter is also modified from 42 to 16 whose interval 

is 2. The riverbed video can be regarded as worst case due to its fast motion (the bigger 

motion vector) causing massive data.  

According to these two characteristic curves of riverbed video sequence, the 

proposed CABAC encoder also can achieve 245760MB/s under 50Mbps; namely, it 

also supports the specification of level 4.1. Besides, the PSNR of Y (luminance) is 

about 40 dB under the limits of level 4.1.  
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Table 24 The proposed arithmetic encoder comparing with the existing designs 

 proposed Ha’[7] Shojaina’[8] Núňez’[9] Osorio’[10] Osorio’[11]

Spec. H.264 H.264 H.264 H.264 H.264 H.264 

Function 
Arithmetic 
Encoder 

Arithmetic 
Encoder 

Arithmetic 
Encoder 

Arithmetic 
Encoder 

Arithmetic 
Encoder 

Arithmetic 
Encoder 

Technology 
0.18 μm 

UMC 
Xilinx 

Virtex-II 

0.18 μm 

TSMC 

0.13 μm 

UMC 
na 

0.35 μm 

AMS 

Frequency 
(MHz) 

167 30 155 330 na 186 

Encoding 
Throughput 

(symbol/cycle) 

0.7866 0.2 1 1 0.91 1.9 to 2.3 

 

Table 25 The proposed CABAC codec comparing with the existing CABAC 
designs 

 proposed Shojania’[12] 
Spec. H.264@MP H.264@MP 

Function codec encoder 

Technology 
0.18 μm 

UMC 
0.18 μm 

Frequency (MHz) 110 263 
Processing cycle 

(cycles/MB) 
241 (QP=18) na 

Encoding rate (Mbps) 91.79 (QP=18) 87 

Bit-rate (Mbps) 49.4 (QP=18) na 
Encoding  

PSNR_Y  44.778 (QP=18) na 

Gate count 
(without Memory) 

38436 na 

Gate count  
(with Memory 1) 

84873 
area: 0.423 mm2 

(~43k) 
Gate count  

(with Memory 1+2) 
173303 na 

Encoding  
target H.264 spec. 

1080 HD@30fps 
(Level 4.1) 

na 
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 proposed Chen’[13] Yang’[14] Yu’[15] 

Spec. 
H.264 
@MP 

H.264 
@MP 

H.264 
@MP 

H.264 
@MP 

Function codec decoder decoder decoder 

Technology 
0.18 μm 

UMC 

0.13 μm 

TSMC 

0.18 μm 

TSMC 
0.18 μm 

Frequency (MHz) 110 200 120 
150 

(6.7ns) 

I (cycles/MB) 524 (QP26) 1661 463 (QP36) na 

P (cycles/MB) 269 (QP26) 328 308 (QP26) na 

B (cycles/MB) 141 (QP26) 576 254 (QP26) na 

AVG (cycles/MB) 208 (QP26) 570 na 500 

Bit-rate (Mbps) 22.113 na na na 

Decoding  

PSNR_Y  38.487 na na na 

Gate count 
(without Memory) 

38436 na na 
area:0.3 

mm2 (~30k)

Gate count  
(with Memory 1) 

84873 138226 83157 na 

Gate count  
(with Memory 1+2) 

173303 na na na 

Decoding  
target H.264 spec. 

1080 HD 
@30fps 

(Level 4.0)

720 HD 
@30fps 

(Level 3.1)

1080i HD 
@30fps 

(Level 4.0) 

4Mbps 
(Level 2.2)

ps:  QP: quantization parameter 

Memory 1: context model SRAM 

Memory 2: row storage SRAM (RS SRAM) 

 

Table 24 shows the comparison of the proposed arithmetic encoder and the other 

state-of-the-art designs. Table 25 shows the comparison of the proposed CABAC 

codec for encoding and decoding respectively. The choice of the quantization 

parameter (QP) is based on the maximum bit-rate of level defined by H.264/AVC 

standard. The maximum video bit-rate of level 4.1 is 50Mbps, so the selected QP 
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approximating the target bit-rate is 18 due to that the level 4.1 is the target 

specification of the proposed CABAC encoding. The maximum video bit-rate of level 

4.0 is 20 Mbps, so the selected QP approximating the target bit-rate is 26 due to that 

the level 4.0 is the target specification of the proposed CABAC decoding.  

The gate count of the context model dual-port SRAM is 46437 and of the row 

storage single-port SRAM is 88430. Besides, the RS SRAM is usually regarded as 

system level memory, so it isn’t counted into CABAC memory size.  

 

Table 26 Percentage of the cycle reduction for the proposed three throughput 
promoting methods 

Proposed method Target encoding mode 
Percentage of the cycle 

reduction (%) 

Multi-Symbol Architecture Bypass  20.7 % 

Pipeline Organization 
Normal, Bypass, Terminal

(mainly for Normal) 
50.6% 

Case Efficiency Architecture 
Normal, Terminal 

(mainly for Normal) 
47.5% 

 

Table 26 shows the percentage of the cycle reduction for the proposed three 

throughput promoting methods. The detail estimations of executing cycle for these 

three throughput promoting methods are shown as follows respectively.  
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1.  

For the Multi-Symbol Architecture (MSA) method:  

Before adopting MSA:  

 84.21% bypass issue: 1 cycle 

 15.79% bypass issue: 3.776 cycles 

 Average 1.438 cycles 

After adopting MSA:  

 94.04% bypass issue: 1 cycle 

 5.96% bypass issue: 3.36 cycles 

 Average 1.14 cycles 

 

2.  

For Pipeline Organization (PO) method:  

Before adopting PO (under Normal encoding mode):  

 Average 3.99 cycles 

After adopting PO (under Normal encoding mode):  

 Average 1.97 cycles 

 

3. 

For Case Efficiency Architecture (CEA) method  

(The result is under having adopted PO method):  

Before adopting CEA (under Normal encoding mode):  

 Average 1.97 cycles 

After adopting CEA (under Normal encoding mode):  

 Average 1.04 cycles 
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Chapter 6  
Conclusion and Future Work  

6.1 Conclusion 

We propose three high throughput methods such as multi-symbol architecture, 

pipeline organization and case efficiency architecture to improve the process efficiency 

of our CABAC encoder. Besides, we also propose the hardware sharing methods to 

reduce the cost of CABAC codec. The CABAC decoding of our CABAC codec 

continues using [2] which we proposed in August 2006. Its throughput can achieve the 

specification of level 4.0; namely, it supports to decode the 1080HD H.264 video 

sequence at 30 fps. The maximum video bit rate which it supports is 20 Mbps. The 

detail of it is shown in [5].  

In our work, we implement a H.264@main profile CABAC codec under UMC 

0.18µm CMOS Process. The total gate count is about 38436 without embedded SRAM 

and about 173303 with embedded SRAM. The maximum operating frequency is 110 

MHz. Both CABAC encoding and CABAC decoding of our CABAC codec supports 

to encode/decode 1080HD H.264 video, and they achieve the different levels of H.264 

specification. For decoding is level 4.0, and for encoding is level 4.1; namely, it can 

encode 1080 HD video at 30 fps. The maximum video bit rate which the encoder 

supports is 50Mbps, and its PSNR of Y (luminance) is about 44.8 dB. It achieves the 

throughput of 241 cycles per macroblock under the sequence type of 
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“IBBBPBBBP…”.  

6.2 Future work 

Our CABAC codec can support the encoding and decoding for 1080HD at 30 fps, 

but it will be insufficient to satisfy the requirement of the future digital TV. In order to 

achieve the high quality video, the frame rate of 30fps doesn’t correspond to the 

requirement of our digital TV market. The high resolution and high frame rate becomes 

the target of the human life. Hence, the large frame and high speed video playing is 

essentially for the digital TV application. To play the videos of 1080HD at 60fps is the 

basic requirement for the point view of CABAC. Thus, CABAC has to achieve the 

1080HD of 60fps under the maximum bit-rate of 50,000,000 bit-per-second, which 

means the specification of level 4.2 for H.264/AVC is the future work for CABAC. 

Comparing to the level 4.0 and the level 4.1, it has to accelerate CABAC for 5 times. 

Hence, the acceleration of CABAC is the essential work in the advanced application.  

 

6.3 Discussion from H.264/AVC system view 

In this section, we discuss the proposed CABAC codec system from the whole 

H.264/AVC system view. The CABAC system is the sub-system of H.264/AVC system. 

This discussion focuses on the interface issue between the CABAC sub-system and the 

next sub-system, and we divided the discussion into the CABAC encoder and the 

CABAC decoder these two aspects.  

For CABAC encoder, its last sub-system is DCT and Quantization. The CABAC 

encoder receives the syntax element from Quantization sub-system to encode to be 
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bit-stream. Under considering the throughput matching issue, we design the syntax 

element buffer storage shown in Figure 41 to buffer the throughput mismatch. The 

CABAC encoder is the termination of the whole H.264/AVC encoding flow, and next 

to it is the forward error correction (FEC) which belongs to channel coding. We design 

two levels buffer storage between CABAC encoder and FEC, and the purpose of it is 

accumulating variable length bit-stream. Besides, the throughput mismatch buffer 

storage is design in FEC system.  

 

Figure 45 System block diagram of H.264/AVC decoding for main profile 

For CABAC decoder (CABAD), the syntax parser dominates that which scheme 

(CABAD, UVLD, or CAVLD) is selected for current entropy decoding. Figure 45 

shows the system block diagram of H.264/AVC for main profile. The syntax parser 

belongs to the system level control signal, and it employs in decoding the bit-stream on 

NAL layer, picture layer, and slice layer, shown as Figure 46. The syntax parser is also 

the top module to control all sub-system such as CABAD, VLD, intra-prediction, 

inter-prediction, IDCT, and so on. Hence, CABAD is the passive unit and is requested 

by the syntax parser and decodes the bit-stream of the macroblock layer in Figure 46. 

The bit-stream is also fetched through the syntax parser.  
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Figure 46 Bit-stream structure of H.264/AVC  

The CABAC decoder is the first sub-system of the whole H.264/AVC decoding 

flow. As CABAC encoder, the syntax element buffer storage is also designed between 

the CABAC decoder and the next sub-system. Between the CABAC decoder and 

channel decoder (FEC), we design two levels buffer storage to buffer the interacting 

throughput mismatch.  
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