
 

國 立 交 通 大 學 
 

電機學院 IC 設計產業研發碩士班 
 

碩 士 論 文 
 

 

 

 

多重影像標準應用之反向離散餘弦轉換設計 

 

Design of an Inverse Discrete Cosine Transform Core for 

Multiple Video Standards Applications 
 

 

 

研 究 生：洪 岳 琪 

指導教授：李 鎮 宜  教授 

 

 

 

中 華 民 國 九 十 六 年 元 月



 

多重影像標準應用之反向離散餘弦轉換設計 

Design of an Inverse Discrete Cosine Transform Core for 

Multiple Video Standards Applications 
 

研 究 生：洪岳琪          Student：Yueh-Chi Hung 

指導教授：李鎮宜 教授     Advisor：Prof. Chen-Yi Lee 

 

國 立 交 通 大 學 

電機學院 IC 設計產業研發碩士班 

碩 士 論 文 

 
A Thesis 

Submitted to College of Electrical and Computer Engineering 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

Industrial Technology R & D Master Program on  
IC Design 

January 2007 
Hsinchu, Taiwan, Republic of China 

 

中 華 民 國 九 十 六 年 元 月



 

多重影像標準應用之反向離散餘弦轉換設計 

 

研究生：洪岳琪                  指導教授：李鎮宜 教授 

 

國立交通大學 

電機學院產業研發碩士班 

 

摘要 

在本論文中，提出一組硬體共用之反向離散餘弦轉換的架構，包含了三種不

同影像壓縮的標準：MPEG-2 與 H.264/AVC High Profile 與 H.264/AVC Baseline。

並且提出一套演算法來計算反向離散餘弦轉換的矩陣，以及資料流的配置，我們

的提案由 MPEG-2 為基礎，來推導出 H.264/AVC 的資料流配置，並且以心臟收縮

陣列的方法及加法器與移位器計算矩陣乘法，並且提出一套演算法化簡乘法器的

數量，已達到減少硬體面積的目標，我們所提出來的架構基於 0.18 微米聯華電子

(UMC)互補式金氧半導體製程， 我們的硬體共用之反向離散餘弦轉換的硬體設計

需要包含 72800 個邏輯閘，可運作在 100MHz 的時脈以上。 

 



 

Design of an Inverse Discrete Cosine Transform Core 

for Multiple Video Standards Applications 

 

Student：Yueh-Chi Hung          Advisor：Prof. Chen-Yi Lee 

 

Industrial Technology R & D Master Program of 

Electrical and Computer Engineering College 

National Chiao Tung University 

 

ABSTRACT 

In this thesis, we propose a hardware-shared architecture for inverse discrete 

cosine transform (IDCT). It includes three different video compression standards: 

MPEG-2, H.264/AVC baseline and H.264/AVC high profile. Then offer an algorithm 

to calculate IDCT matrix and assign the data flow. Our proposal based on MPEG-2 to 

decide the data flow of H.264/AVC. Uses one dimension systolic array method, 

additions and subtractions to calculate matrix multiplication to perform the hardware 

area reduction.  

The proposed architecture based on 0.18µm UMC CMOS Process, our IDCT 

design needs 72800 gate counts and operates over 100MHz. 



 誌     謝  

首先感謝恩師 李鎮宜教授在交通大學研究所求學兩年的細心指導，建

立且加深了積體電路設計需要由系統角度設計的觀念，在每次的會議報告

及討論中，給予寶貴且實際的意見，使得研究能順利的完成，並且在Si2 

(System Integration and Silicon Implementation Group；http://si2lab.org/)實驗

室中提供了充裕的積體電路設計環境及資源，可以安心無餘地從事研究工

作。 

 

再來是感謝交通大學機械系 蔡忠杓教授的協助與引薦，以及康正、毅

宏、俊彥、皆賢、秉昌、堉棋、大嘉、名威、文平、韋磬、昱德，及其他

Si2 實驗室學長、同學們的指導幫助，彥欽、思慧、紹航及華鼎等 IC 設計

產業研發碩士班同學的相互鼓勵、產業研發碩士班助理 佩瑾、義隆電子 魏

誠文主任及摯友 盈成的協助。 

 

最後更要感謝我的 父母、 岳父母、妹妹 一菁的關心與協助，尤其是

摯愛的妻子 惠雯全力的支持，讓我在婚後能無後顧之憂地一圓唸書的夢

想。 

 

謹將此論文獻給關心及愛護我的家人與朋友們。 

 

http://si2lab.org/


 

Contents 

Chapter 1  Introduction........................................................................................... 1 

1.1 Motivation............................................................................................... 1 

1.2 Organization of this thesis ..................................................................... 2 

Chapter 2  Overview of Inverse Discrete Cosine Transform (IDCT).................. 3 

2.1 IDCT in Decoder for Different Standards ........................................... 3 

2.2 Overview of MPEG Compression Algorithm ...................................... 4 

2.2.1 Temporal Redundancy Reduction ............................................... 4 

2.2.2 Spatial Redundancy Reduction.................................................... 5 

2.2.3 The Process of Decoding for MPEG-2......................................... 6 

2.3 Algorithms of Inverse Discrete Cosine Transform.............................. 7 

2.3.1 Direct Computation of Two Dimension DCT ............................. 8 

2.3.2 Parallel Implementations ............................................................. 9 

2.4 Paper Reference.................................................................................... 13 

2.5 The Proposed Algorithm...................................................................... 16 

2.5.1 IDCT of MPEG-2 ........................................................................ 18 

2.5.2 IDCT of H.264 High Profile ....................................................... 20 

2.5.3 IDCT of H.264 Baseline .............................................................. 22 

 i



 

Chapter 3  Architecture Overview........................................................................ 23 

3.1 Propose System Architecture of IDCT ............................................... 23 

3.2 Overview of One Dimension Systolic Array ...................................... 26 

3.3 Refinement of Matrix Multiplication ................................................. 31 

3.3.1 Canonical Signed Digit (CSD) and Modified Canonical Signed 

Digit (Modified CSD) ................................................................... 31 

3.3.2 Zero Skip and DC Value Skip .................................................... 35 

Chapter 4  Simulation and Implementation Results........................................... 38 

4.1 Simulation Results................................................................................ 38 

4.2 Implementation Results ....................................................................... 41 

Chapter 5  Conclusions.......................................................................................... 46 

Bibliography ............................................................................................................. 47 

About the Author ..................................................................................................... 49 

 

 

 ii



 

List of Figures

Fig.2.1    IDCT in MPEG-2 Decoder .................................................................... 3 

Fig.2.2    IDCT in H.264 Decoder.......................................................................... 4 

Fig.2.3    The Temporal Picture Structure........................................................... 5 

Fig.2.4    MPEG-2 Decoding Process .................................................................... 6 

Fig.2.5    Zig-zag Scan Order ................................................................................ 7 

Fig.2.6    Signal Flow Graph of Direct Computation Algorithm for N=8 ......... 9 

Fig.2.7    The Example of Bayoumi’s [10] Architecture for 5 Point DFT........ 10 

Fig.2.8    The Function of Each PE ..................................................................... 10 

Fig.2.9    The Modified Systolic Architecture for 5 Point DFT ........................ 12 

Fig.2.10   Systolic Architecture for 5 Point DFT ................................................ 12 

Fig.2.11   Processing Element for IDCT Even and Odd Matrix from D.W Kim 

[14] ......................................................................................................... 14 

Fig.2.12   A. Madisetti’s [15] Process Architecture ............................................ 14 

Fig.2.13   Data Recorder Unit (DRU) from [15] ................................................. 15 

Fig.2.14   ACF Matrix-Vector Multiply Unit from [15] ..................................... 15

Fig.2.15   BDEG Matrix-Vector Multiply Unit from [15] .................................. 15

Fig.2.16   J.I Guo’s [16] Architecture .................................................................. 16 

Fig.2.17   The Flow Graph of FCT for N=8 ........................................................ 18 

Fig.2.18   The 8×8 Matrix of MPEG-2 IDCT...................................................... 19 

 iii



 

Fig.2.19   The Transport for 8×8 Matrix ............................................................. 19 

Fig.2.20   Separate 8×8 MPEG-2 IDCT into 4×4 Matrix................................... 20 

Fig.2.21   The Original 8×8 Matrix of H.264 High Profile IDCT ..................... 21 

Fig.2.22   The Modified Column #5~#8 in Multiplicand Matrix and Row 

#5~#8 in Multiplicator Ones of H.264 High Profile IDCT ............... 21 

Fig.2.23   Separate 8×8 H.264 High Profile IDCT into 4×4 Matrix.................. 21 

Fig.2.24   The 4×4 Matrix of H.264 Baseline IDCT............................................ 22 

Fig.3.1    IDCT Operating Procedure ................................................................. 24 

Fig.3.2    IDCT Block Input Interface ................................................................ 24 

Fig.3.3    Block Diagram of Prototype IDCT Architecture............................... 25 

Fig.3.4    One-D Systolic Array Data Flow for Motion Estimation [11] .......... 26 

Fig.3.5    One-D Systolic Array Data Flow for 4×4 Matrix Multiplication ..... 27 

Fig.3.6    One-D Systolic Array Architecture for Matrix Multiplication......... 28 

Fig.3.7    One-D Systolic Array Architecture Refinement for Matrix 

Multiplication ....................................................................................... 29 

Fig.3.8    The Operation Cycles and Latency of Two-D 4×4 Matrix added 

more PE’s .............................................................................................. 30 

Fig.3.9    The Operation Cycles and Latency of Two-D 8×8 Matrix added 

more PE’s .............................................................................................. 30 

Fig.3.10   The CSD Conversion Algorithm ......................................................... 32 

Fig.3.11   New Version IDCT Architecture Using Replaced Multiplication..... 35 

Fig.3.12   DC Value Skip ....................................................................................... 36 

 iv



 

Fig.3.13   Zero Value Skip..................................................................................... 36 

Fig.3.14   Zero/DC Value Method ........................................................................ 37 

Fig.3.15   A Variable-Length FIFO for the Synchronization after IDCT 

Output Interface................................................................................... 37 

Fig.4.1    PMSE Value .......................................................................................... 40 

Fig.4.2    PME Value............................................................................................. 40 

Fig.4.3    OMSE Value.......................................................................................... 40 

Fig.4.4    OME Value ............................................................................................ 41

Fig.4.5    The Bar Graph of Gate Counts Reduction in Different Methods.... 42

Fig.4.6    The Percentage Distribution of Gate Counts for Each Part............. 43 

Fig.4.7    Layout of This Work ............................................................................ 45 

 

 

 v



 

List of Tables 

Table 3.1  Estimation Worst Cycle Counts .......................................................... 28 

Table 3.2  An Example of Results For The Standard CSD And Modified CSD 

Conversions [12] ................................................................................... 33 

Table 3.3  The Binary, CSD, and Modified CSD Values of MPEG-2 Standard 33 

Table 3.4  The Binary, CSD, and Modified CSD Values of H.264 Standard..... 34 

Table 3.5  Estimate Operators for 4×4 Matrix Multiplication Architecture .... 34 

Table 4.1  Estimate Bit Amount to Describe Floating Point of MPEG-2 

Coefficients ........................................................................................... 39 

Table 4.2  Gate Counts Reduction in Matrix Calculation .................................. 42

Table 4.3  Gate Counts of Each Part and Comparison....................................... 43

Table 4.4  Operators List and Compare with State-of-the-Art Works.............. 44 

Table 4.5  Compare with Other Approaches ....................................................... 44

 

 vi



 

Chapter 1  
Introduction 

1.1 Motivation 

Science and technology evolve with each passing day, and people enjoy the 

convenience brought about by the development in technology. Many electronic 

products, such as VCD players, DVD players, Digital Cameras, and Digital Video 

Camcorders have been widely used in our daily life. Nowadays, many mobile products 

even include video playback capability, many and different video coding standards 

have frequently been proposed. Scheme one architecture provides more different 

standards can reduce the cost and use in a wider range of different products. 

The MPEG-2 standard was defined by Motion Pictures Experts Group (MPEG). It 

is the most popular video format used for recoding and transmitting video data. In one 

specific area, the MPEG technology is used for the encoding and decoding of motion 

color pictures on TV. The MPEG-2 technology extends the application spectrum to 

include broadband Integrated Services Digital Network (ISDN), Direct Broadcast 

Satellite (DBS), and is used today in different applications such as DVD and High 

Definition Television (HDTV). 

H.264/AVC was developed by the ITU-T Video Coding Experts Group and the 

ISO/IEC Moving Picture Experts Group (MPEG), and it is the newest video coding 

 1



 

standard. It achieves high coding efficiency by employing a number of new 

technologies. The main benefits are the compression performance in existing 

applications and capability to offer quality video over the internet. In addition, this 

technology is used in High Definition Television (HDTV), DVD, and mobile products 

that include video playback functionality. 

Different video coding standards have frequently been proposed. However, these 

different standards are mostly not compatible with each other, and new standards are 

not backward compatible with older products that use technologies of the past most of 

the time. Based on Inverse Discrete Cosine Transform (IDCT), if we find a set of rules 

that incorporate the different standards, especially those more popular (e.g. MPEG-2) 

and newer (e.g. H.264 high profile and baseline) ones, one hardware architecture can 

then be employed to include the different standards. In addition, flexibility in the 

multimedia chips to incorporate new standards in the future will reduce the cost while 

providing more functions. This chip can be designed more easily and used in a wider 

range of applications. 

1.2 Organization of this thesis 

This thesis is organized as follows. In Chapter 2, we present the IDCT algorithm. 

It contains the IDCT basics and the previous work. In addition, we also present the 

algorithm. Chapter 3 shows the proposed architecture of IDCT design, the matrix 

calculation algorithm, architecture and optimization. The verification method and 

simulation result will be shown in Chapter 4. We make a brief conclusion and future 

work in the last chapter. 

 2



 

Chapter 2  
Overview of Inverse Discrete Cosine 
Transform (IDCT) 

In 1974[1], DCT/IDCT is widely used in many video compression applications 

and standards; the goal of compression is to reduce redundancy. Many different 

algorithms have been proposed. Among the algorithms, they can be briefly as 

following: computing DCT directly, fast cosine transform, Memory-based designs 

[2~3], Adder-based designs [4]. In this chapter, we first introduce the definition of 

DCT/IDCT and other methods, our algorithm and the method for different matrix type. 

2.1 IDCT in Decoder for Different Standards  

The IDCT in the decoder for different standards, Fig.2.1 is the IDCT in MPEG-2 

standards and Fig.2.2 is in H.264 standards. 

Run-Length
Decoder

Input
Bit-Stream

Inverse
Quantization

Inverse
DCT

Motion
Compensation

Output
Video

Frame Stores

 

Fig.2.1   IDCT in MPEG-2 Decoder 

 3



 

Entropy
Decoding

Input
Bit- Stream

Inverse
Quantization

Inverse
DCT

Motion
Compensation

Intra/
Inter

De-
blocking

Filter

Intra Frame
Prediction

Output
Video

Frame
Storage

 

Fig.2.2   IDCT in H.264 Decoder 

2.2 Overview of MPEG Compression Algorithm 

The Moving Picture Experts Group (MPEG) standards determine two algorithms 

in implementing the video compression, First, Block based motion compression is the 

temporal redundancy for reduce. Second, DCT compression is applied for spatial 

domain information. 

2.2.1 Temporal Redundancy Reduction 

The MPEG standard defines three types of pictures for motion compensation, they 

are, intra coded picture (I-Picture), predictive coded picture (P-Picture), and 

bi-directional predictive picture (B-Picture). The brief descriptions are listed below and 

the figure is in Fig.2.3. 

I-Picture：Intra coded picture is without refer to other pictures, and it supposes an 

access points to the random access. And then, I-Picture offers moderate compression.  

 4



 

P-Picture：Predictive coded picture use the past I-Picture or P-Picture for motion 

compensation. The compression efficiency of P-Picture is better then I-Picture, form 

[5], I-Picture is three times longer then P-Picture. 

B-Picture：Bi-directional predictive picture use the past I-Picture and future 

P-Picture for motion compression, The compression efficiency is the highest than 

I-Picture and P-Picture. 

I B

Forward Prediction

B P B B

TIME

P

Bidirectional
Prediction  

Fig.2.3   The Temporal Picture Structure 

2.2.2 Spatial Redundancy Reduction 

Both the still-image and prediction-error signals have a very high degree of spatial 

redundancy. The redundancy reductions techniques usable to this effect are many, but 

because of the block-based nature of the motion compression process, block based 

techniques are preferred. A frame is first divided into 8×8 blocks of pixels, and the two 

dimensional DCT is then applied independently on each block. This operation results 

in an 8×8 block of DCT coefficients in which most of the energy in the original block 

is typically concentrated in a few low frequency coefficients. A quantizer is applied to 

each DCT coefficients that sets many of them to zero. This quantization is responsible 

 5



 

for a lossy nature of the compression. Compression is achieved by transmitting only 

the coefficients that survive the quantization operation and by entropy coding their 

locations and amplitudes. 

2.2.3 The Process of Decoding for MPEG-2 

The MPEG-2 standard [6] defines the decoding process, and the mean is not the 

decoder, the designers and manufacturers can develop their own architecture and apply 

different algorithms to achieve such decoding process. The decoding process defined 

in MPEG-2 standards is showed in Fig.2.4. The input data is the first variable-length 

decoded. Since the data from VLD is zig-zag (Fig.2.5) scanned by the encoder, so the 

inverse scan module will reconstruct the one-dimension data stream into 

two-dimension matrix. This two-dimension matrix is then inversed quantized to obtain 

DCT coefficients. Note that the intra and inter block data will need different inverse 

quantization processes. The IDCT module transforms the coefficients into image data. 

The motion compensation module processes these image data together with motion 

vectors form VLD to form the decoded data. After proper filtering and transform, the 

image data are sent to display on the monitor or television. 

Veriable
Length

Decoding

Coded
Data

Inverse
Scan

Inverse
Quantization

Decoded
Data

IDCT Motion
Compensation

Frame-Store
Memory

 

Fig.2.4   MPEG-2 Decoding Process 

 6



 

 

Fig.2.5   Zig-zag Scan Order 

2.3 Algorithms of Inverse Discrete Cosine Transform  

The N×N 2-D DCT is defined as following: 
1 1

0 0

2 (2 1)( , ) ( ) ( ) ( , ) cos cos
2 2

1
, 0    

( ), ( ) 2
, 1, 2... -1

1

N N

x y

(2 1)x u yF u v C u C v f x y
N N

u v
C u C v

u v N

v
N

π π− −

= =

+ +⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

⎧ =⎪= ⎨ =⎪⎩

∑ ∑
⎦

     (2.1) 

Where ( , )f x y  is the pixel data,  is the transform coefficients, and ( , )F x y

, , , 0,1, 2.. -1x y u v N=   

The N×N 2-D IDCT is defined as following: 
1 1

0 0

2 (2 1)( , ) ( ) ( ) ( , ) cos cos
2 2

N N

u v

(2 1)x u yf x y C u C v F u v
N N

v
N

π π− −

= =

+ +⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

∑ ∑
⎦

     (2.2) 

Where 1( )
2

C u =  and ( ) 1C v =  for 0k ≠  and , , , 0,1, 2.. -1x y u v N=  

For 2-D N×N IDCT, N4 multipliers and N4 adders are needed. That means that 2-D 

IDCT of an 8×8 block needs 2×84 = 4096 multiplications and additions to complete this 

IDCT transform. It is not feasible to implement IDCT using so much multiplications 

and additions, because it is very expensive. Until now, many algorithms have been 

 7



 

finding the method to reduce the amount of multiplications and additions, especially 

the multiplication. It needs large area and computation time in the chip. 

2.3.1 Direct Computation of Two Dimension DCT 

The algorithm to compute DCT directly was proposed by Chen, Smith and Tralick 

[7] the algorithm is explained listed below. 

The DCT of an N×1 matrix form is 

1
22

NF
N

⎛ ⎞= ⎜ ⎟
⎝ ⎠

A f                                                (2.3) 

Where  is an N×N transform matrix for DCT, and it can be represented in a 

recursive form. 

NA

2

2

2 2

2 2

0

0

N

N N
N

N N

N

N N

A
A B

R

I I
B

I I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎣ ⎦

                                             (2.4) 

 

where (2 1)(2 1)( )cos      , 0,1, 2... 1
2N

j kR c k j k N
N

π+ +
= = −  

The below diagram (Fig.2.6) signal flow graph for N=8 using sparse matrix direct 

computation algorithm. 

 8



 

x0 X0

X4

X5

X6

X7

x1

x2

x3

x4

x5

x6

x7

X1

X2

X3

 

Fig.2.6   Signal Flow Graph of Direct Computation Algorithm for N=8 

sin

cos

i i
N

i i
N

iPS
N
iPC
N

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                             (2.5) 

The algorithm requires  

( )2

2

3 log 1 2      
2

3log 4    
2

N real additions

NN N real multiplications

− +

− +
                             (2.6) 

If , this algorithm needs 16 multiplications, base on cost down target, it still 

needs more multiplications for implementation. 

8N =

2.3.2 Parallel Implementations 

Cho and Lee [9] introduced the architecture that can be executed on the modified 

DFT architecture with ( PE's. The relationship developed in this algorithm will be 

used later in the derivation of the prime factor DCT algorithm. 

)

1
4C 1

4C

1
4C

1N +

−
1
8S

3
8C

1
4C 3

8S−

1
16S

5
16S

1
16C

3
16C

7
16C

5
16C 3

16S−

7
16S−

1−

1−

1−

1−

1−

1−

1−
1−

 9



 

Bayoumi et al. [10] proposed a systolic array for computing the DFT based on the 

RNS (residue number system). Fig.2.7 depicts the architecture for 5-point DFT. From 

Fig.2.7, one can see that ( )1N − basic PE's are required to compute N-point DFT. Each 

PE of the array performs the function shown in Fig.2.8. 

PE PE PE PE

X(3)

X(4)

0 0 0
X(2) 0 0

X(1) 0
X(0)

y(k)

 

-2 -1 0  W W WN N N．．

Fig.2.7   The Example of Bayoumi’s [10] Architecture for 5 Point DFT 

PE
a+jb
c+jd

e+jf

(ac-bd+e)+j(ad+bc+f)
c+jd

 

Fig.2.8   The Function of Each PE 

N-point DCT can also be executed on this systolic array. Let the input data 

sequence be ( ){ },  0,1,  ... , 1X n n N= − , and the DFT of ( )X n be 

( ){ } , 0,1,  ... , 1Y k k N= − . Then the DFT is given by the following relation： 

( ) ( )
1

0

N
nk

N
n

Y k X n W
−

=

= ∑                                             (2.7) 

where 

2j
N

nW e
π

−
= ,  0,  1,  ... ,  1k N= −

 10



 

In EQ.2.7, skip a scale factor 1
N

 for convenience. The architecture proposed in 

[10], but it requires reverse input order. In most cases, natural order input is preferred 

since otherwise unnecessary delay and memory are required. In order to have 

architecture for natural order input, simple modification is needed. Let us denote 

as the output when input data sequence to this architecture is in natural order and 

the kernel input is conjugated, i.e., the input is 

( )A k

( ){ }10 1 2,  ,  ,  ... , N
N N N NW W W W − −− − , Then 

instead of ( ){ }10 1 2,  ,  ,  ... , N
N N N NW W W W − . Then ( )A k  can be expressed as  

( ) ( )
1

0
1

N
nk

N
n

A k X N n W
−

−

=

= − −∑                                        (2.8) 

It is shown that the relationship between ( )A k and ( )Y k  is 

( ) ( )k
NA k W Y k=                                                (2.9) 

Thus, by connecting one additional basic PE to the N-point systolic array, as 

shown in Fig.2.10, we can obtain ( )k
NW A k− at the output. Fig.2.10 depicts the 

modified DFT architecture for natural order input. Now we shall focus on N-point 

DCT, which can be executed on this modified DFT architecture for input in natural 

order. The DCT relationship is given in EQ.2.10. 

( ) ( ) ( ) ( )1

0

2 1
cos

2

N

n

n k
Y k c k X n

N
π−

=

+⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑                              (2.10) 

 where 

( )
1  ; 0
2

 1   ;

k
c k

otherwise

⎧ =⎪= ⎨
⎪⎩

 

Here we also neglect the scale factor 1
N

until the end for clarity. 

Instead of computing EQ.2.10 directly, one can see that the DCT can also be 

obtained by the indirect computations of EQ.2.11 and EQ.2.12. 

 11



 

( ) ( )
1

0

N
nk
N

n
T k X n U

−

=

= ∑                                             (2.11) 

where 

,            0,  1,  ...,  1
j
N

NU e k N
π

= = −  

Then ( )Y k can be expressed as 

( ) ( ) ( )2Re
kj
NY k c k e T k
π⎧ ⎫

= ⎨
⎩ ⎭

⎬                                       (2.12) 

On the systolic architecture of Fig.2.10, if we input 

( ){ }10 1 2,  ,  ,  ... , N
N N N NU U U U − −− − instead of ( ){ }10 1 2,  ,  ,  ... , N

N N N NW W W W − −− − , then the output at 

the right end of the architecture is 

( ) ( )
1

0
1

N
k n

N
n

B k U X N n U
−

−

=

= − −∑ k
N
−                                   (2.13) 

PE PE PE PE PE

X(1)

X(0)

0 0 0 0
X(2) 0 0

X(3) 0
X(4)

y(k)

 

Fig.2.9   The Modified Systolic Architecture for 5 Point DFT 

PE PE PE PE PE PE

X(1)

X(0)

0 0 0 0 0
X(2) 0 0

X(3) 0
X(4)

y(k)
-2 -1 0  U U UN N N．．

( )
 

Fig.2.10   Systolic Architecture for 5 Point DFT 

( )21

jk
K Ne c k

π

− ． ．

-2 -1 0  W W WN N N．．

 12



 

which is equivalent to 

( ) ( )Nk
NB k U T k−=                                               (2.14) 

Since , the output of the system is equal to if k is even; and it 

is equal to

( )1 kNk
NU − = − ( )T k

( )T k−  if k is odd. 

Thus, if we connect a processor that multiplies ( ) ( )21
kjk Ne c k
π

−  to ( )B k , then 

DCT is finally obtained. 

The architecture for the case of 5-point DCT is shown in Fig.2.10. Thus, the total 

number of PE's required for N-point DCT is (N + 1), if one prefers to arrange the input 

data in reverse order, the number of PE's for N-point DCT would be N. Since DST 

(discrete sine transform) is similarly defined as DCT, we can also obtain the DST on 

this architecture with slight modifications. 

2.4 Paper Reference 

This section will introduce the DCT/ICDT architecture and methods in the 

state-of-art-works, lists the main methods and show the architecture diagram of them. 

In D.W Kim [14] proposal, the architecture uses hardwired DA method, radix-2 

multi-bit coding methods, Fig.2.11 shows the processing element for IDCT even and 

odd matrix. 

 13



 

5=>2
5=>2

4=>2

MUX

4=>2

MUX

4=>2

MUX

4=>2

MUX

4=>2

5=>2
5=>2

F/F

F/F

F/F

F/F

4=>2

MUX

4=>2

MUX

4=>2

MUX

4=>2

MUX

4=>2

F/F

F/F

F/F

F/F

5=>2

5=>2

F/F F/F

Adder

Rouding

X6 X4 X2 X0 X0'

F/F F/F

Adder

Rouding
X7'

X7 X5 X3 X1

 

Fig.2.11   Processing Element for IDCT Even and Odd Matrix from D.W Kim 

[14] 

In A. Madisetti [15] design, it uses hardware multiplications and signed digit 

representation (12bits cosine coefficients) to implement. Fig.2.12 shows this 

architecture.  

BDEG Matrix Vector Multiplier

DRU Transpose
Memory IDRU

ACF Matrix Vector Multiplier

X Z

Y

 

Fig.2.12   A. Madisetti’s [15] Process Architecture 

This architecture of the chip consists data recorder unit (DRU), two matrix-vector 

 14



 

multiplier units, inverse data recorder unit (IDRU), and transpose memory. Fig.2.13 to 

Fig.2.15 show the details of the [15] process architecture. 

MUXB

MUXA LIFO ADD ADD MUXC MUXD

INSEL

Y

X

 

Fig.2.13   Data Recorder Unit (DRU) from [15] 

MULT
a

MULT
c

MULT
f

ACC
0

ACC
1

ACC
2

ACC
3

MUX
4:1

Timing and Control

Xe

Ye

 

Fig.2.14   ACF Matrix-Vector Multiply Unit from [15] 

MULT
d

MULT
e

MULT
g

ACC
0

ACC
1

ACC
2

ACC
3

MUX
4:1

Timing and Control

Xo

Yo
MULT

d

Xo

  

Fig.2.15   BDEG Matrix-Vector Multiply Unit from [15] 

J.I Guo’s [16] design uses hardwired multiplications, cyclic convolution,signed 

 15



 

digit representation (14bits cosine coefficients), and common sub-expression sharing 

methods, the architecture is shown in Fig.2.16. 

MUX

Pre-processing
Stage

PUO PUE

Post-processing
Stage

DEMUX

Traspose
memory

even_in odd_in

even_row odd_row

even row
output

odd row
output

phase 1

phase 2

even row data
odd row data

 

Fig.2.16   J.I Guo’s [16] Architecture 

2.5 The Proposed Algorithm 

From [8], an algorithm is described as follows: 

The IDCT ( ) ( ) ( ) ( )1

0

2 1
cos

2

N

n

k n
x k C n X n

N
π−

=

+⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑                     (2.15) 

Where ( )C n  is 
1

0    
2

1,2... -1
1

n
n N

⎧ =⎪
⎨ =⎪⎩

 

 16



 

Let ( ) ( )2 1
2

2 1
cos

2
k n

N

K n
C

N
π+ +

=                                      (2.16) 

and the IDCT can be expressed as 

( ) ( ) ( )
1

2 1
2

0
  0,1, 2..... 1

N
k n

N
n

x k X n C k N
−

+

=

= =∑ −                           (2.17) 

Where ( ) ( ) ( )X n e n X n=                                        (2.18) 

If N is even, ( )x k separates even and odd values, the formulas are listed below: 

( ) ( ) (' )x k g k h k= +                                             (2.19) 

( ) ( ) ( )1 'x N k g k h− − = − k                                       (2.20) 

Where ( ) ( ) ( )
1

2
2 1 2

2
0

2

N

k n
N

n
g k X n C

−

+

=

= ∑  and ( ) ( ) ( )( )
1

2
2 1 2 1

2
0

' 2 1

N

k n
N

n
h k X n C

−

+ +

=

= +∑   (2.21) 

Then ( ) , 0,1, 2... 1
2
Ng k k = −  makes a 

2
N point IDCT. Rewrite ： ( )'h k

( ) ( ) ( )
1

2
2 1 2

20 2

' 2 1

N

k n
N

n
h k X n C

−

+
⎛ ⎞
⎜ ⎟= ⎝ ⎠

= +∑                                      (2.22) 

is another 
2
N point IDCT, and 

( ) ( )( ) ( ) ( )2 1 2 1 2 1 2 1 2 2 1 2
2 2 2

2
2

2 k k n k n k
N N N NC C C C+ + + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

= + n                               (2.23) 

Form EQ.2.22 and EQ.2.23 the equation becomes 

( ) ( ) ( ) ( ) ( ) ( ) (
1 1

2 2
2 1 2 1 2 2 1 2 1

2 2
0 0

2 ' 2 1 2 1

N N

k k n
N N

n n
C h k X n C X n C

− −
+ +

= =

= + + +∑ ∑ )
2

k n
N
+ +

0

          (2.24) 

if  ,( )1X − = ( ) ( ) ( ) ( ) ( )
1 1

2 2
2 1 2 1 2 1 2

2 2
0 0

2 1 2 1

N N

k n k
N N

n n
X n C X n C

− −
+ + +

= =

+ = +∑ ∑ n         (2.25) 

EQ.2.25 rewrite to ( ) ( ) ( ) ( )( ) ( )
1

2
2 1 2 1 2

2 2
0

2 ' 2 1 2 1

N

k k
N N

n
C h k X n X n C

−
+ +

=

= + + −∑ n     (2.26) 

Then define 

 17



 

( ) ( )2G n X n= , ( ) ( ) ( )2 1 2 1    0,1, 2,... 1
2
NH n X n X n n= + + − = −        (2.27) 

( ) ( ) ( )
1

2
2 1

20 2

  0,1, 2... 1
2

N

k n
N

n

Nh k G n C k
−

+
⎛ ⎞
⎜ ⎟= ⎝ ⎠

= = −∑ ( ) ( ), and ( )
1

2
2 1

20 2

N

k n
N

n
g k G n C

−

+
⎛ ⎞
⎜ ⎟= ⎝ ⎠

= ∑    (2.28) 

Finally the formulas are 

( ) ( ) ( ) ( )2 1
2

1
2 k

N

x k g k h k
C +

= +                                       (2.29) 

( ) ( ) ( ) ( )2 1
2

11              0,1, 2... 1
22 k

N

Nx N k g k h k k
C +

− − = − = −             (2.30) 

From the upper process, we can use two 
2
N  points IDCT to calculate N-point 

IDCT. Fig.2.17 is the 8-point IDCT flow graph. 

 

( )0X ( )0x

1−

( )2X

( )4X

( )6X

( )1X

( )3X

( )5X

( )7X

( )0G

( )2G

( )1G

( )3G

( )0H

( )2H

( )1H

( )3H

1
4

1
2G

1
4

1
2G

1
4

1
2G

1
4

1
2G

1−

1−

1−

1−

1−

1−

1− 1−

1−

1−

1−

Fig.2.17   The Flow Graph of FCT for N=8 

2.5.1 IDCT of MPEG-2 

The one dimension 8-point IDCT formula is listed in EQ.2.31 and it is expressed 

by 8×8 matrix shown in Fig.2.18. The coefficients are listed below. 

( )1x

( )3x

( )2x

( )7x

( )6x

( )4x

x

( )0g

( )1g

( )3g

( )2g

( )0h

( )1h

( )3h

( )2h

1
16

1
2G

3
16

1
2G

7
16

1
2G

5
16

1
2G

( )5

 18



 

7

0

1 (2( ) ( ) ( ) cos
2 1

1
=0    

( ) 2
=1~7

1

n

k nx k C n X n

n
C n

n

1)
6

π
=

+⎡ ⎤= ⎢ ⎥⎣ ⎦
⎧
⎪= ⎨
⎪⎩

∑
                            (2.31) 

00 03 05 06 0701 02 04

10 13 15 16 1711 12 14

20 23 25 26 2721 22 24

30 33 35 36 3731 32 34

40 43 45 46 4741 42 44

51 52 5450 53 55 56 57

61 62 6460 63 65 66 67

71 72 7470 73 75 76 77

x x x x xx x x
x x x x xx x x
x x x x xx x x
x x x x xx x x
x x x x xx x x

x x xx x x x x
x x xx x x x x
x x xx x x x x

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

00 01 02

10 11 12

20 21 22

31 3230

4140

5150

6160

7170

1
2

X X XA B C D A E F G
X X XA D F G A B C E
X X XA E F B A G C D

X XXA G C E A D F B
X XA G C E A D F B X

A E F B A G C D XX
A D F G A B C E XX
A B C D A E F G XX

⎤ ⎡ ⎤
⎥ ⎢ ⎥− − − − −⎥ ⎢ ⎥
⎥ ⎢ ⎥− − −
⎥ ⎢ ⎥− − − −⎥ ⎢ ⎥=⎥ ⎢ ⎥− − − −

⎢ ⎥ ⎢ ⎥
− − − − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
− − − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎦

03 05 06 0704

13 15 16 1714

23 25 26 2724

3433 35 36 37

42 4443 45 46 47

52 5453 55 56 57

62 6463 65 66 67

72 7473 75 76 77

X X X XX
X X X XX
X X X XX

XX X X X
XX X X X

X XX X X X
X XX X X X
X XX X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5 3cos ; cos ; cos ; cos ; cos ; cos ; cos
4 16 8 16 16 8

A B C D E F G 7
16

π π π π π π
= = = = = = =

π

 

Fig.2.18   The 8×8 Matrix of MPEG-2 IDCT  

Because the proposed architecture supports different standards, and they have 8×8 

and 4×4 matrix, to use one architecture includes these different matrix, 8×8 matrix 

need transport to 4×4 architecture, and this transport algorithm is showed in Fig.2.19. 

4x4
Output

4x4
Coefficient

4x4
Input

4x4
Coefficient

4x4
Input

4x4
Output

4x4
Coefficient

4x4
Input

4x4
Coefficient

4x4
Input

4x4
Output

4x4
Coefficient

4x4
Input

4x4
Coefficient

4x4
Input

4x4
Output

4x4
Coefficient

4x4
Input

4x4
Coefficient

4x4
Input

8x8 Matrix Multiplication
4x4 Matrix Multiplication

 

Fig.2.19   The Transport for 8×8 Matrix 

 19



 

From Fig.2.19, because the coefficient matrix is symmetrical, it can be separated 

into two matrix-vectors (an 8×8 matrix into two 4×4 matrices) as shown in Fig.2.20. 

00 01 02 03 00 01 02 03 10 11 1

10 11 12 13 20 21 22 23

20 21 22 23 40 41 42 43

30 31 32 33 60 61 62 63

1
2

x x x x X X X X X X XA C A F A D E G
x x x x X X X XA F A C D G B E
x x x x X X X XA F A C E B G D
x x x x X X X XA C A F G E D B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

2 13

30 31 32 33

50 51 52 53

70 71 72 73

70 71 72 73 00 01 02 03

60 61 62 63 20 21 22 23

50 51 52 53 40 41 42 43

40 41 42 43

1
2

X
X X X X
X X X X
X X X X

x x x x X X X XA C A F
x x x x X X X XA F A C
x x x x X X X XA F A C
x x x x XA C A F

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

10 11 12 13

30 31 32 33

50 51 52 53

60 61 62 63 70 71 72 73

04 05 06 07

14 15 16 17

24 25 26 27

34 35 36 37

1
2

X X X XA D E G
X X X XD G B E
X X X XE B G D

X X X X X X XG E D B

x x x x A C A F
x x x x A
x x x x
x x x x

⎛ ⎞⎡ ⎤ ⎡⎡ ⎤
⎜ ⎟

⎤
⎢ ⎥ ⎢⎢ ⎥− − −⎜ ⎟

⎥
⎢ ⎥ ⎢⎢ ⎥−⎜ ⎟

⎥
⎢ ⎥ ⎢⎢ ⎥−

⎜ ⎟
⎥

⎢ ⎥ ⎢⎢ ⎥⎜ ⎟− −⎣ ⎦
⎥

⎣ ⎦ ⎣⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

04 05 06 07 14 15 16 17

24 25 26 27 34 35 36 37

44 45 46 47 54 55 56 57

64 65 66 67 74 75 76 77

7

X X X X X X X XA D E G
X X X X X X X XF A C D G B E
X X X X X X X XA F A C E B G D
X X X X X X X XA C A F G E D B

x

⎛ ⎞

⎦

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
⎜ ⎟

⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥− − − − −⎜ ⎟

⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥+⎜ ⎟

⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥− − −

⎜ ⎟
⎥

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎜ ⎟− − − −⎣ ⎦ ⎣ ⎦
⎥

⎣ ⎦ ⎣⎝ ⎠⎦

4 75 76 77 04 05 06 07 14 15 16

64 65 66 67 24 25 26 27

54 55 56 57 44 45 46 47

44 45 46 47 64 65 66 67

1
2

x x x X X X X X X X XA C A F A D E G
x x x x X X X XA F A C D G B E
x x x x X X X XA F A C E B G D
x x x x X X X XA C A F G E D B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

17

34 35 36 37

54 55 56 57

74 75 76 77

X X X X
X X X X
X X X X

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 

Fig.2.20   Separate 8×8 MPEG-2 IDCT into 4×4 Matrix 

2.5.2 IDCT of H.264 High Profile 

The 8×8 matrix of H.264 high profile IDCT is shown in Fig.2.21. In order to carry 

out the matching separation of an 8×8 matrix into two 4×4 matrices of MPEG-2 IDCT, 

the column placement of multiplicand and multiplicator need to be exchanged. 

Specifically, columns #5 and #8, #6 and #7 in multiplicand matrix and rows #5 and #8, 

#6 and #7 in multiplicator matrix each needs to be exchanged (the changed result is 

shown in Fig.2.22), the separated matrix is shown in Fig.2.23 

 20



 

00 03 05 06 0701 02 04

10 13 15 16 1711 12 14

20 23 25 26 2721 22 24

30 33 35 36 3731 32 34

40 43 45 46 4741 42 44

51 52 5450 53 55 56 57

61 62 6460 63 65 66 67

71 72 7470 73 75 76 77

x x x x xx x x
x x x x xx x x
x x x x xx x x
x x x x xx x x
x x x x xx x x

x x xx x x x x
x x xx x x x x
x x xx x x x x

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

00 01

10 11

20 21

3130

4140

5150

6160

70

6 3 -3 -6 -10 -12
-4 -8 -8 -4 4 8
-12 -6 6 12 3 -10

8 -8 8 8 -8 -8 8
3 10 -10 -3 12 -6
8 -4 -4 8 -8 4

10 -12 12 -10 6 -3

X X
X X

XX
XX
XX
XX

X

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

03 05 06 0702 04

13 15 16 1712 14

23 25 26 2722 24

32 3433 35 36 37

42 4443 45 46 47

52 5453 55 56 57

62 6463 65 66 67

71 72 7473 75 76 77

X X X XX X
X X X XX X

X XX X X X
X XX X X X
X XX X X X
X XX X X X

X X XX X X X

8 8 8 8 8 8 8 8
12 10
8 4

10 -31
8 -8
6 -12
4 -8
3 -6

X X⎤ ⎡ ⎤
⎥
⎥
⎥
⎥
⎥ =⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

X X X XX X⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fig.2.21   The Original 8×8 Matrix of H.264 High Profile IDCT 

00 03 05 06 0701 02 04

10 13 15 16 1711 12 14

20 23 25 26 2721 22 24

30 33 35 36 3731 32 34

40 43 45 46 4741 42 44

51 52 5450 53 55 56 57

61 62 6460 63 65 66 67

71 72 7470 73 75 76 77

x x x x xx x x
x x x x xx x x
x x x x xx x x
x x x x xx x x

x x xx x x x x
x x xx x x x x
x x xx x x x x

⎢
⎢
⎢
⎢
⎢
⎢

⎣

x x x x xx x x⎡ 00 01

10 11

20 21

3130

7170

6160

550

40

-4 -8  8  4 -4 -8
-12 -6 -10 3 12 6

8 -8 8 8 -8 -8 8
3 10 -6 12 -3 10

8 8 -4 4 -8 8 -4
10 -12 -3 6 -10 12

X X
XX
XX
XX
XX

X

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

23 25 26 2722 24

32 3433 35 36 37

72 7473 75 76 77

62 6463 65 66 67

1 52 5453 55 56 57

41 42 4443 45 46 47

X X X XX X
X XX X X X
X XX X X X
X XX X X X
X XX X X X

X X XX X X X

8 8 8 8 8 8 8 8
12 10 6 3 -12 -10 -6 -3
8 4

10 -31
8 -8
6 -12
4 -
3 -6

X X
X X

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥
⎥
⎥ =⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

03 05 06 0702 04

13 15 16 1712 14

X X X XX X
X X X XX X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fig.2.22   The Modified Column #5~#8 in Multiplicand Matrix and Row #5~#8 

in Multiplicator Ones of H.264 High Profile IDCT 

00 01 02 03 00 01 02 03

20 21 22 23 10 11 12 13

40 41 42 43 20 21 22 23

60 61 62 63 30 31 32 33

  8   8   8   8   8   8   8   
  8   4   -4   81
  8   -8   -8   88
  4   -8   8   -4

x x x x X X X X
x x x x X X X X
x x x x X X X X

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

x x x x X X X X 70 71 72 73

60 61 62 63

50 51 52 53

40 41 42 43

10 11 12 13

30 31 32 33

50 51 52 53

70 71 72 73

 8
  8   -4   -4    8
  8   -8   -8    8
  4   -8   8   -4

12 10 6
1
8

X X X X
X X X X
X X X X

x x x x
x x x x
x x x x
x x x x

⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

00 01 02 03 70 71 72 73

10 11 12 13 60 61 62 63

20 21 22 23 50 51 52 53

30 31 32 33 40 41 42 43

3 12 10 6 3
10 -3 -12 -6 10 -3 -12 -6
6 -12 3 10 6 -12 3 10
3 -6 10 -12 3 -6 10 -12

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

X X X X⎛ ⎞

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎥

⎣ ⎦ ⎣ ⎦

04 05 06 07 04 05 06 07

24 25 26 27 14 15 16 17

44 45 46 47 24 25 26 27

64 65 66 67 34 35 36 37

  8   8   8   8
  8   4   -4   81
  8   -8   -8   88
  4   -8   8   -4

x x x x X X X X
x x x x X X X X
x x x x X X X X
x x x x X X X X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎥
⎜ ⎟⎥⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥=
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

74 75 76 77

64 65 66 67

54 55 56 57

44 45 46 47

14 15 16 17

34 35 36 37

54 55 56 57

74 75 76 77

  8   8   8   8
  8   4   -4   8
  8   -8   -8   8
  4   -8   8   -4

X X X X
X X X X
X X X X
X X X X

x x x x
x x x x
x x x x
x x x x

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎥ ⎢ ⎥⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥⎢ ⎥+⎜ ⎟⎥ ⎢ ⎥⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤
⎢
⎢
⎢
⎢
⎣ ⎦

  

04 05 06 07 74 75 76 77

14 15 16 17 64 65 66 67

24 25 26 27 54 55 56 57

34 35 36 37 44 45 46

12 10 6 3 12 10 6 3
10 -3 -12 -6 10 -3 -12 -61
6 -12 3 10 6 -12 3 108
3 -6 10 -12 3 -6 10 -12

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −
⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ 47

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 

Fig.2.23   Separate 8×8 H.264 High Profile IDCT into 4×4 Matrix 

Col 
#8

Col 
#7

Col 
#6

Col 
#5

Row#5

Row#6

Row#7

Row#8

Col 
#5

Col 
#6

Col 
#7

Col 
#8

Row#8

Row#7

Row#5

Row#6

 21



 

2.5.3 IDCT of H.264 Baseline 

The H.264 baseline IDCT is a 4×4 matrix as shown in Fig.2.24, and it can be 

calculated by the 4×4 architecture directly. In other words, it does not need to undergo 

any modification. 

00 01 02 03 00 01 02 03

10 11 12 13 10 11 12 13

20 21 22 23 20 21 22 23

30 31 32 33 30 31 32 33

2 2 2 1
2 1 2 21
2 1 2 22
2 1 2 1

x x x x X X X X
x x x x X X X X
x x x x X X X X
x x x x X X X X

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥− − ⎥
⎢ ⎥ ⎢⎢ ⎥= ⎥
⎢ ⎥ ⎢⎢ ⎥− − ⎥
⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦

⎥
⎣ ⎦ ⎣ ⎦

 

Fig.2.24   The 4×4 Matrix of H.264 Baseline IDCT  

 

 22



 

Chapter 3  
Architecture Overview 

In this chapter, we will propose the IDCT architecture, input and output interface. 

In matrix multiplication calculation block, one dimension systolic array and 

re-arranging input data flow to the matrix multiplication will be introduced. To match 

the system requirement and the replacing of multiplication, we introduce some 

methods to optimize this architecture. 

This chapter is organized as follows. In section 3.1, the proposed prototype 

architecture will be introduced. In section 3.2, we present the overview of one 

dimension systolic array and modified the dataflow to calculate matrix multiplication. 

In section 3.3, consider the system requirement and motion compression, we modify 

the prototype architecture to match the system request, and the method to optimize the 

addition amount, then new architecture will be given. 

3.1 Propose System Architecture of IDCT 

The IDCT operating procedure is shown in Fig.3.1. It consists of two individual 

one dimension IDCT and one transpose process which is used to combines this two 

one dimension IDCT. 

 23



 

1-D IDCT
DCT

Coeff.
Input

Transpose

1-D IDCT
Output

Data

2-D IDCT
Results

 

Fig.3.1   IDCT Operating Procedure 

About the input interface connecting from inverse quantization, an input buffer is 

inserted after inverse quantization. It saves the DCT coefficients calculated by inverse 

quantization, in 4 × 4 matrix calculation case, this buffer transfers four 16-bit 

coefficients and output to IDCT. Another four 16-bit coefficients output controlled by 

MODE control signal of IDCT block and is enable in 8×8 matrix calculation. The input 

interface is shown in Fig.3.2. 

MODE Selection

Output
Buffer Inverse DCT

for 8x8

16
16

16
16

16

16

16

16

Inverse
Quantization

 

Fig.3.2   IDCT Block Input Interface  

 24



 

The block diagram of the prototype of IDCT architecture is shown in Fig.3.3. 

Four 16-bit coefficients output from inverse quantization as an input of IDCT.  

If the case in 8×8 standard, they will be divided into two 4×4 matrix blocks. 

Because this architecture supports three multimedia video standards namely MPEG-2, 

H.264 high profile, and H.264 baseline, the coefficient matrix (multiplicand matrix) is 

defined by the two bits signal named “MODE”. The selected MODE outputs the 

suitable coefficients matrix using in matrix multiplication calculation, then the addition 

and the subtraction processes are executed to obtain the 4×4 matrix multiplication 

solutions. Finally, the obtained four 4×4 results are combined to generate the 8×8 

matrix. About matrix multiplication calculation block, next section will introduce this 

method. 

Matrix
Multiplication

#1

Matrix
Multiplication

#2

Separate Input Data

Input
#2

(4x4)

Separate
Coefficient

Matrix
(A Matrix)

Mode Selection: MPEG2,H.264 high profile and H.264 baseline

4x4 systolic arrays

4x4 systolic arrays Transpose

DCT
Coeff.
Input

Output
Data

Yes

(8x4)

Matrix Calculation

MPEG2  (8x8)
H.264 high profile (8x8)
H.264 baseline (4x4)

A1
(4x4)

A2
(4x4)

Transpose
BufferCombine

Separation Combination

No 16Add
or

Subtraction

D

2D

3D

16

16

16

16

Input
#1

(4x4)

D

2D

3D

16

16

16

16

 

Fig.3.3   Block Diagram of Prototype IDCT Architecture 

 

 25



 

3.2 Overview of One Dimension Systolic Array 

For matrix multiplication calculation, one dimension systolic array is used to 

perform matrix multiplication after it has been modified by input data flow. One 

dimension systolic has the characteristics of ”regularity” and “inherent parallelism” in 

input and output data flow. Besides, it also provides easier architecture design and 

layout. Because the result of IDCT needs to add the result of the motion compensation 

where the latter is always the bottleneck of the multimedia calculation process. As a 

result, the IDCT design sacrifices some throughput to reduce the cost. So the method 

of one dimension systolic array is adopted. In [11], the one dimension systolic array 

used in the motion estimation; the data flow of the motion estimation is shown in 

Fig.3.4. 

11A.D 21 31 11 21 31 11 21 31

12 22 32 12 22 32 12 22 32

13 23 33 13 23 33 13 23 33

A.D

A.D

A

31 21 11 31 21 11 31 21 11

32 22 12 32 22 12 32 22 12

33 23 13 33 23 13 33 23 13

Reference DataSearch Data
0

M Displacement
Vector

 

Fig.3.4   One-D Systolic Array Data Flow for Motion Estimation [11] 

As Fig.3.5 shows, it can modify the multiplicand and multiplier data flow to 

perform matrix multiplication calculation, four processing elements (PE’s) in it. 

Processing element #1 is a multiplier, and processing elements #2~#4 include 

 26



 

multiplier and adder. The data flow with example also listed in Fig.3.5. 

11PE1 121314121314111314111214111213

21222324222324212324212224212223

31323334323334313334313234313233

41424344424344414344414244414243

PE2

PE3

PE4

41312111413121114131211141312111

42322212423222124232221242322212

43332313433323134333231343332313

44342414443424144434241444342414

T=1
T=2

T=1
T=2

........

data location of multiplicatordata location of multiplicand

T= 1 2 3 4 ….
11 21 31 41

12 22 32
13 23

14

11 12 13 14
21 22 23

31 32
41

PE1 11*11 21*12 31*13 ….

11*11 21*12
 +  +

12*21 22*22

…
.

…
.

…
.

….

….

….

Multiplicand

Multiplicator

PE2

 

Fig.3.5   One-D Systolic Array Data Flow for 4×4 Matrix Multiplication 

The estimated cycle counts of one dimension systolic array for performing 4×4 

matrix multiplication is ( ) 20N N N+ × = cycles ( )4N = . The architecture is shown in 

Fig.3.6. Accessing addition and subtraction processes needs 2 cycles; therefore the 

two-D 8 × 8 matrix in the worst case of MPEG-2 needs 

( ){ }2 2 1 84N N N× × + × + =⎡⎣ ⎤⎦ cycles. However, the cycle counts of motion 

compensation and system requirement need under 400 cycles per microblock in 4:2:0 

standards, the two-D 8×8 matrix needs 84 cycles required by MPEG-2 is too slow for 

the system requirements and motion compensation produces the result. 

 27



 

 

Fig.3.6   One-D Systolic Array Architecture for Matrix Multiplication 

Regarding the throughput issue, the one dimension systolic array offers the 

elasticity required to solve this problem. It is able to add more hardware to increase the 

throughput, the worst case in IDCT is able to meet the system and motion 

compensation requirements. The data is listed in Table 3.1. 

Table 3.1   Estimation Worst Cycle Counts 

Cycle Count
(worst case)

four PE's

4x4 Matrix N+N2

2-D 8x8 Matrix
(for 4:2:0 system) 2x{2x[(N+N2+1)]}

Standard Size

MPEG-2

 

If the architecture increases more hardware, and need adjust the input data flow, 

the data flow is shown in Fig.3.7. 

 28



 

cycle # 1 2 3 4 5 6 7 8 9 10 11 12

a11 a21 a31 a41 a11 a21 a31 a41
a11 a21 a31 a41 a11 a21 a31 a41

a12 a22 a32 a42 a12 a22 a32 a42
a12 a22 a32 a42 a12 a22 a32 a42

a13 a23 a33 a43 a13 a23 a33 a43
a13 a23 a33 a43 a13 a23 a33 a43

a14 a24 a34 a44 a14 a24 a34 a44
a14 a24 a34 a44 a14 a24 a34 a44

i11 i12 i13 i14 i13 i14 i11 i12
i12 i13 i14 i11 i14 i11 i12 i13

i21 i22 i23 i24 i23 i24 i21 i22
i22 i23 i24 i21 i24 i21 i22 i23

i31 i32 i33 i34 i33 i34 i31 i32
i32 i33 i34 i31 i34 i31 i32 i33

i41 i42 i43 i44 i43 i44 i41 i32
i42 i43 i44 i41 i44 i41 i42 i43

PE1-1 a11*i11 a21*i12 a31*i13 a41*i14 a11*i13 a21*i14 a31*i11 a41*i12
PE1-2 a11*i12 a21*i13 a31*i14 a41*i11 a11*i14 a21*i11 a31*i12 a41*i13

a11*i11 a21*i12 a31*i13 a41*i14 a11*i13 a21*i14 a31*i11 a41*i12
a12*i21 a22*i22 a32*i23 a42*i24 a12*i23 a22*i24 a32*i21 a42*i22
a11*i12 a21*i13 a31*i14 a41*i11 a11*i14 a21*i11 a31*i12 a41*i13
a12*i22 a22*i23 a32*i24 a42*i21 a12*i24 a22*i21 a32*i22 a42*i23

a11*i11 a21*i12 a31*i13 a41*i14 a11*i13 a21*i14 a31*i11 a41*i12
a12*i21 a22*i22 a32*i23 a42*i24 a12*i23 a22*i24 a32*i21 a42*i22
a13*i31 a23*i32 a33*i33 a43*i34 a13*i33 a23*i34 a33*i31 a43*i32
a11*i12 a21*i13 a31*i14 a41*i11 a11*i14 a21*i11 a31*i12 a41*i13
a12*i22 a22*i23 a32*i24 a42*i21 a12*i24 a22*i21 a32*i22 a42*i23
a13*i32 a22*i23 a33*i34 a43*i31 a13*i34 a23*i31 a33*i32 a43*i33

a11*i11 a21*i12 a31*i13 a41*i14 a11*i13 a21*i14 a31*i11 a41*i12
a12*i21 a22*i22 a32*i23 a42*i24 a12*i23 a22*i24 a32*i21 a42*i22
a13*i31 a23*i32 a33*i33 a43*i34 a13*i33 a23*i34 a33*i31 a43*i32
a14*i41 a24*i42 a34*i43 a44*i44 a14*i43 a24*i44 a34*i41 a44*i42
a11*i12 a21*i13 a31*i14 a41*i11 a11*i14 a21*i11 a31*i12 a41*i13
a12*i22 a22*i23 a32*i24 a42*i21 a12*i24 a22*i21 a32*i22 a42*i23
a13*i32 a22*i23 a33*i34 a43*i31 a13*i34 a23*i31 a33*i32 a43*i33
a14*i42 a24*i43 a34*i44 a44*i41 a14*i44 a24*i41 a34*i42 a44*i43

c11 c22 c33 c44 c13 c24 c31 c42
c12 c23 c34 c41 c14 c21 c32 c43

value

Multipli
cand

Multipli
cator

PE4-1

PE4-2

PE2-1

PE2-2

PE3-1

PE3-2

 

Fig.3.7   One-D Systolic Array Architecture Refinement for Matrix 

Multiplication 

In 4 × 4 matrix calculation, the cycle counts will be decreased to 

cycles ( , 4×4 matrix calculation will decrease 8 cycles. The 16 

results of two-D 4 × 4 matrix needs 

2 1N N+ = 2 )4N =

( )2 2N N 24× + = cycles, the latency is 

cycles, it is scheme in Fig.3.5. Because the architecture has two 4×4 

matrix multiplication blocks, when last 4×4 matrix access transpose function, next 4×4 

matrix can calculate in the other matrix multiplication blocks, it can promote the 

throughput. 

( )2N N N+ + =16

 29



 

Latency

Operation Cycles

(N+2N)+N
cycles

2x(N+2N)
cycles

16th 24th

 

Fig.3.8   The Operation Cycles and Latency of Two-D 4×4 Matrix added more 

PE’s 

The 64 results of MPEG-2 two-D 8 × 8 matrix needs 

( ){ }2 2 2 1 52N N× × + + =⎡ ⎤⎣ ⎦ cycles, and the latency is 

cycles and produces 32 results. The scheme is 

listed in Fig.3.9. 

( ) ( )2 2 1 2 1N N N N× + + + + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ 39

Latency

Operation Cycles

3x(N+2N+1)
cycles

Produce 32 results

2x2x(N+2N+1)
cycles

Produce 32 results

39th 52th

 

Fig.3.9   The Operation Cycles and Latency of Two-D 8×8 Matrix added more 

PE’s 

 30



 

3.3   Refinement of Matrix Multiplication 

The matrix multiplication of the prototype IDCT architecture uses multipliers to 

calculate the result. However, the multipliers take up more space on the chip and hence 

a method needs to be established to reduce the required chip area by eliminating the 

multipliers used. In section 3.3.1 canonical signed digit (CSD) and modified canonical 

signed digit (Modified CSD) will be introduced. In section 3.3.2, both the zero value 

skip and CD value skip are considered to optimize the architecture. 

3.3.1   Canonical Signed Digit (CSD) and Modified 

Canonical Signed Digit (Modified CSD) 

The multipliers transfer two’s complement and use shifters and additions based on 

the multiplied values or use CSD (Canonical Signed Digit) to transfer multipliers. In 

general, the conversion of two’s complement number 1 2, ,...,n n 0B b b b− −=  to the CSD 

from can be described in Fig.3.10. The benefit of CSD is that it 

optimizes the least 1’s amount. 

1 2, ,...,n nD d d d− −= 0

 31



 

Start

i=0,c0=0,bn=bn-1

i<n

Ci+1=bn-1bi^bici^bn+1ci
di=bi+ci-2ci+1

i=i+1

End

N Y

 

Fig.3.10   The CSD Conversion Algorithm 

The standard algorithm of the conversion from the two’s complement to the CSD 

representation does not consider the above conclusion, i.e. treats an addition and 

subtraction as the same cost operations. The modified CSD [12] has a modified 

conversion algorithm so that the conversion to the –1 (or 1) symbol (negative one, the 

subtraction) takes place only if the total number of operations (non-zero symbols) 

decreases. 

The example of results for the two’s complement, CSD and modified CSD from 

[12] are listed in Table 3.2. When coefficients are three and eleven, the 1’s amounts of 

three methods are equal, but CSD method includes one addition and subtraction 

respectively, modified CSD does not have any subtraction. The coefficient is seven, 

modified CSD has one subtraction, but the number of 1’s is less than two’s 

complement. When coefficient is twenty-three, CSD includes two subtractions, but 

modified CSD has one subtraction, and the 1’s amount is also less than two’s 

 32



 

complement. 

Table 3.2   An Example of Results For The Standard CSD And Modified CSD 

Conversions [12]  

components
addition addition subtraction addition subtraction

3 11 2 101 1 1 11 2 0
7 111 3 1001 1 1 1001 1 1
11 1011 3 10101 2 1 1011 3 0
23 10111 4 101001 1 2 11001 2 1

(Canonical Signed Digit) (Modified CSD)(Two's complement)Coeff.
Value Value components componentsValue

CSD MCSDBinary

 

In the proposed architecture, MPEG-2 and H.264 use CSD and modified CSD 

method, In MPEG-2, cos(π/4) and cos(π/16) include five and seven +1’s respectively. 

In CSD, they contain three and two +1’s, two –1’s respectively. In modified CSD, the 

amount of +1’s and –1’s of cos(π/4) is same as binary (two’s complement), cos(π/16) 

is less than binary (two’s complement), the details are listed in Table 3.3. 

Table 3.3   The Binary, CSD, and Modified CSD Values of MPEG-2 Standard 

Coefficient  Binary (Two's complement)
Value Value (14bits)  +1's  -1's Total 1's

cos(π/4)  0 1_ 0 1 1 0_ 1 0 1 0_ 0 0 0 0 5 0 5
cos(7π/16)  0 0_ 0 1 1 0_ 0 0 1 1_ 1 1 1 0 7 0 7

Coefficient
Value Value  +1's  -1's Total 1's

cos(π/4)  1 0_ 1 0 1 0_ 1 0 1 0_ 0 0 0 0 3 2 5
cos(7π/16)  0 0_ 1 0 1 0_ 0 1 0 0_ 0 0 1 0 2 2 4

Coefficient
Value Value  +1's  -1's Total 1's

cos(π/4)  0 1_ 0 1 1 0_ 1 0 1 0_ 0 0 0 0 5 0 5
cos(7π/16)  0 0_ 0 1 1 0_ 0 1 0 0_ 0 0 1 0 3 1 4

MCSD (Modified CSD)

CSD

 

 33



 

The coefficients in H.264 standard, twelve, six and three include two +1’s, 

respectively. In CSD, they contain one and two +1’s, one –1, respectively. In modified 

CSD, the amount of +1 and –1’s of twelve, six and three is same as binary (two’s 

complement); the details are listed in Table 3.4. 

Table 3.4   The Binary, CSD, and Modified CSD Values of H.264 Standard 

Coefficient
Value Value (14bits)  +1's  -1's Total 1's

12 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 1 1 0 0 2 0 2
6 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 0 1 1 0 2 0 2
3 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 0 0 1 1 2 0 2

Coefficient
Value Value  +1's  -1's Total 1's

12 0 0 _ 0 0 0 0 _ 0 0 0 1 _ 0 1 0 0 1 1 2
6 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 1 0 1 0 1 1 2
3 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 0 1 0 1 1 1 2

Coefficient
Value Value  +1's  -1's Total 1's

12 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 1 1 0 0 2 0 2
6 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 0 1 1 0 2 0 2
3 0 0 _ 0 0 0 0 _ 0 0 0 0 _ 0 0 1 1 2 0 2

 Binary (Two's complement)

MCSD (Modified CSD)

CSD

 

Table 3.5 lists the operators used for different types. If CSD or Modified CSD is 

used to do the calculation, the architecture needs approximately 108 

additions/subtractions. The operators are less than using binary method. 

Table 3.5   Estimate Operators for 4×4 Matrix Multiplication Architecture 

Binary
(Two's complement) CSD Modified CSD

(MCSD)

Operators 172 108 108
 

 34



 

The new version of the architecture shows in Fig.3.11. This version does not offer 

the multiplied matrix to calculate matrix multiplication and replaced by CSD and 

modified CSD methods, the matrix multiplication calculation has been replaced by 

additions and subtractions. 

Matrix
Multiplication

#1

Matrix
Multiplication

#2

Separate Input Data

Input
#2

(4x4)

4x4 systolic arrays

4x4 systolic arrays Transpose

DCT
Coeff.
Input

Output
Data

Yes

(8x4)

Matrix CalculationSeparation Combination

Transpose
BufferCombine

No 16
D

2D

3D

16

16

16

16

Input
#1

(4x4)

D

2D

3D

16

16

16

16

Mode Selection: MPEG2,H.264 high profile and H.264 baseline

MPEG2  (8x8)
H.264 high profile (8x8)
H.264 baseline (4x4)

shifter selection

Add
or

Subtraction

 

Fig.3.11   New Version IDCT Architecture Using Replaced Multiplication 

3.3.2 Zero Skip and DC Value Skip 

When input value includes only DC value or all zero, do not access the 

multiplication process and generate the result directly. 

 35



 

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

i i ii ii

i i i

j j j j

j j j

j j j

j j j

n n
n n
n n
n n

j

j

j

j

i

i i i i

i i i i

n nn
n n
n n

n n n nn
n n n n

n

n n n n
n

n

n n n

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⇒  ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Fig.3.12   DC Value Skip 

As Fig.3.12 shows, if the values of the input matrix data are zero, or include DC 

values only as represented in Fig.3.13, matrix multiplication can be skipped. 

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0 0
0

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⇒⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0

0 0
 

Fig.3.13   Zero Value Skip 

In Fig.3.14 shows, when zero/DC value detection signal detects all zero value or 

DC value, it does not access the multiplication process. Besides, it also has a 

synchronization problem. 

 36



 

Output

Matrix
Multiplication
Calculation

0

1
Zero/DC

Value
Generation

Zero/DC Value
Decection  

Fig.3.14   Zero/DC Value Method 

The synchronization problem exists in different processing paths, our system offer 

a synchronizer. As Fig.3.15 shows, a Variable-Length FIFO is a synchronizer, it is for 

the synchronization after IDCT output interface to solve this problem. 

Motion
Compensation

Inverse
DCT

Variable-Length
FIFO

To Filter  

Fig.3.15   A Variable-Length FIFO for the Synchronization after IDCT Output 

Interface 

 37



 

Chapter 4  
Simulation and Implementation 
Results 

From chapter 3, we scheme one architecture includes different standards, if more 

standards are published in the future or many standards include different matrix type, 

find the different coefficients relationship and re-arrangement, one architecture can 

cover more standards and it can reduce the use cost, more widely used in different 

products. Base on one architecture, find the method to reduce the adder used and the 

+1’s and –1’s ratio. It also can reduce the required area on the chip. 

In this chapter, we scheme the verification curves of simulation results and the 

data of implementation result. Now the architecture uses three standards (MPEG-2, 

H.264 high profile and H.264 baseline) to simulate the result. In section 4.1 we 

estimate the bit amount to describe MPEG-2 floating coefficients by table and curve 

analysis. In section 4.2, the implementation result will show the gate counts reduction 

in different methods due to architecture optimization, comparison with other related 

solutions will be down then. 

4.1 Simulation Results 

The MPEG-2 coefficient matrix is composed by cosine function, and incorporates 

 38



 

motion compensation and motion estimation, and so it needs to refer to the prior image 

in the calculation. However, if the error range is too big, the image processing will 

have the “Drift” problem. Therefore, IEEE has defined the accurate values [13] for 

peak mean square error (PMSE), peak mean error (PME), peak error (PE), overall 

mean square error (OMSE), and overall mean error (OME) coefficients. Table 4.1 is 

the block diagram of the process [13] offers 10000 patterns to test the value, and the 

results are listed in Table 4.1. 

From Table 4.1, the two’s complement value uses 14 bits to describe the MPEG-2 

floating number. 

Table 4.1   Estimate Bit Amount to Describe Floating Point of MPEG-2 

Coefficients 

Item Standard Spec. L= - 300
H=   300

L= - 5
H=   5

L= - 256
H=   255

PMSE
(peak mean square error)

<0.06
(For every pixel) 0.0145 0.0115 0.0176

PME
(peak mean error)

<0.015
(For every pixel) 0.0023 0.0031 0.0023

PE
(peak error) ≦1 1 1 1

OMSE
(overall mean square error) <0.02 0.011825 0.00905 0.01462

OME
(overall mean error) <0.0015 0.000134 0.000122 0.000189

 

Figures from 4.1 to 4.3 are the input pixel range of PMSE, PME, OMSE and 

OME curve diagrams. 

 39



 

0
0.05
0.1

0.15
0.2

0.25
0.3

8 10 12 14 16

Word Length (bits)
PM

SE
 V

al
ue

PMSE Value
PMSE Spec.

 

Fig.4.1   PMSE Value 

0

0.005

0.01

0.015

0.02

0.025

8 10 12 14 16

Word Length (bits)

PM
E 

Va
lu

e

PME Value
PME Spec.

 

Fig.4.2   PME Value  

0
0.05
0.1

0.15
0.2

0.25
0.3

8 10 12 14 16

Word Length (bits)

O
M

SE
 V

al
ue

OMSE Value
OMSE Spec.

 

Fig.4.3   OMSE Value 

 40



 

0

0.0005

0.001

0.0015

0.002

8 10 12 14 16

Word Length (bits)
O

M
E 

Va
lu

e

OME Value
OME Spec.

 

Fig.4.4   OME Value 

4.2 Implementation Results 

In the proposed architecture, we use some methods to optimize the matrix 

multiplication calculation. In section 3.3.1, the canonical signed digit (CSD) and 

modified canonical signed digit (Modified CSD) are described. The comparison of 

these methods for hardware sharing is listed in Table 4.2. 

The original method uses binary (two’s complement), the total gate counts are 

71.73k, if we replace to CSD method, the total gate counts need becomes 46.4k, which 

is reduced by 35.31% in matrix calculations. On the other hand, if modified CSD is 

used modified CSD method is used, the total is 42.65k, it reduced 40.54% gate counts 

from binary and reduced 8.08% ones from CSD. The bar graph is shown in Fig.4.5.

 41



 

Table 4.2   Gate Counts Reduction in Matrix Calculation 

 Binary
(Two's complement)

CSD
(Canonical Signed

Digit)

MCSD
(Modified CSD)

Sub-
Module#1 33.97 23.59 20.79

Sub-
Module#2 37.76 22.81 21.86

Total 71.73 46.4 42.65
% of

Reducion 35.31% 40.54%

% of
Reducion 8.08%

Gate Counts
(k)

Sub-Module
(for Matrix

Calculation)

 

33.97

37.76

23.59

22.81

20.79

21.86

0

10

20

30

40

50

60

70

80

Gate
Counts

(k)

 Binary 
(Two's complement)

CSD
(Canonical Signed

Digit)

MCSD
(Modified CSD)

Sub-Module#2
Sub-Module#1

71.73

46.4

35.31% 40.54%

8.08%

42.65

 

Fig.4.5   The Bar Graph of Gate Counts Reduction in Different Methods 

Table 4.3 lists the gate counts of each module. Note that our proposed architecture 

can separate three parts, which is shown in Fig.3.6. The separation part is to separate 8

×8 matrix into 4×4 of MPEG-2 and H.264 high profile. It possesses 15.91% of the 

overall system. The calculation part is calculate to matrix multiplication calculation, it 

 42



 

owns over half gate counts of overall system, is 58.59%. The combination part is to 

combine 4×4 matrix into 8×8 of MPEG-2 and H.264 high profile. It possesses 25.51% 

of the overall system. The percentage distribution for each part is shown in Fig.4.6. 

Table 4.3   Gate Counts of Each Part and Comparison 

Parts Gate Counts (k) % of Overall System

Separation 11.58 15.91%

Calculation 42.65 58.59%

Combinaton 18.57 25.51%

Total 72.8 100.00%
 

Separation
15.91%

Calculation
58.59%

Combination
25.51%

 

Fig.4.6   The Percentage Distribution of Gate Counts for Each Part 

Table 4.4 and Table 4.5 list the comparison in state-of-art-works. Table 4.5 lists 

D.W Kim [14] A. Madisetti [15], and J.I Guo [16] use operators in architecture. In 

these existing solutions, they use two one-dimension procedures to calculate. About the 

operator category, the three designs use additions and the proposed architecture 

includes additions and subtractions by CSD and modified CSD methods. 

 

 43



 

Table 4.4   Operators List and Compare with State-of-the-Art Works 

Designs of 8x8 Matrix Remarks

D.W Kim [14] 144
1-D calculation

Hardwired DA method,
Radix-2 multibit coding

A.Madisetti [15] 136
1-D calculation

Hardwired multiplications,
Signed digit representation

J.I Guo [16] 132

1-D calculation
Hardwired multiplications,

Cyclic convolution,
Signed digit representation,

Common sub-expression sharing

Proposed 108
1-D calculation
Systolic arrays,

CSD/Modified CSD

Operators amount

 

Table 4.5 lists the comparison between the proposed design and some existing 

solutions in literatures. J.I Guo [16] is for 8×8 matrix calculation, and J D Bruguera [17] 

is for H.264 standard. The proposed design includes MPEG-2 and H.264 high profile 8

×8 matrix and H.264 baseline 4×4 matrix. 

Table 4.5   Compare with Other Approaches 

J.I Guo [16] [17] Proposed

Supporting
Standards 8x8 cosine coeff. H.264 MPEG-2

H.264

Technology 0.35μm

J.D Bruguera

AMS
0.35μm

UMC
0.18μm

Frequency
(MHz) 97MHz 67MHz 125MHz

Operators 132 N/A 108

Gate Counts 62.037k 23.8k 72.8k
 

Based on Table 4.5, because the proposed architecture can support more standards, 

but about in more gate counts, a single architecture that includes multiple video 

 44



 

standards, the worst case scenario of each standard needs to be taken into account as 

different standards have different characteristics and advantages/disadvantages. Given 

the nature of the hardware-sharing architecture, it is not easy to fully utilize all the 

benefits offered by each standard. For example, different standards have their own 

matrix coefficients. H.264 standard has the integral coefficients, but the coefficient 

matrix of MPEG-2 is floating coefficients, it need more word length to describe. 

Consider the input data, MPEG-2 has 12bits word length for input data, but the data 

length of H.264 is 16bits, they need the extra overheads (e.g. needs more gate counts) 

in hardware sharing architecture design and implementation. 

In our work, we implemented an IDCT hardware sharing architecture. Fig.4.7 

shows the layout of the proposal architecture. The total gate count is about 72800 in 

0.18μm UMC technology. 

 

Calculation Submodule#2

Calculation Submodule#1

Separation Combination 

Fig.4.7   Layout of This Work 

 45



 

Chapter 5  
Conclusions 

The proposed hardware-sharing architecture for inverse discrete cosine transform 

(IDCT) includes three different video compression standards, namely MPEG-2, 

H.264/AVC high profile, and H.264/AVC baseline. With regards to reducing the 

required area on the chip, in matrix multiplication, the canonical signed digit (CSD) 

method will minimize the number of 1's, while the modified canonical signed digit 

(Modified CSD) method will provide the least number of -1's. As a result, a total of 

only 108 additions/subtractions are required to perform matrix calculation operations. 

The required chip area is further reduced by about 8.1%. 

We have described one IDCT architectural proposal covering different standards. 

However many and different video coding standards will be proposed in the near future, 

where different matrix types (e.g. 4×4 or 8×8) and coefficients matrix will be involved. 

Exploration on IDCT coefficients relationship and re-arrangement will be needed to 

drive a more flexible solution for multi-mode multi-standard applications. 

 46



 

Bibliography 

[1] N. Ahmed, T. Natarajan, K. R Rao, “Discrete Cosine Transform,” IEEE 

Transactions Computer, vol. COM-23 pp.88-93 Jan.1974. 

[2] M. T Sun, T. C Chen A.M Gottileb, “VLSI implementation of a 16×16 discrete 

cosine transform,” IEEE Trans. On Circuits and Systems-II, vol.36, no.4, 

pp.610-616, 1989. 

[3] D. Slwecki and W. Li, “DCT/IDCT professor design for high data rate image 

coding,” IEEE Trans. On Circuits and Systems for Video Technology, vol.2 no.2, 

pp.135-146, 1992. 

[4] T. S Chang, C. S Kung, and C. W Jen, “A simple professor core design for 

DCT/IDCT,” IEEE Trans. On Circuits and Systems for Video Technology, vol. 

10,No. 3 pp.439-447, April 2000. 

[5] P. N Tudor “Tutorial MPEG-2 Video Compression,”Electric and 

Communication Engineering Journal Dec. 1995 pp. 257–264. 

[6] ISO/MPEG “Generic Coding of Moving Pictures and Associated Audio 

Committee Draft,”Nov. 1993. 

[7] W. H Chen, C.H Smith S.C Fralick, “A Fast computatuinal algorithm for the 

Discrete Cosine Transform,” IEEE Trans. On Communications vol.COM-25, 

vol. 9, pp.1004-1009, Sep. 1977. 

[8] B. G Lee “A new Algorithm to compute the Discrete Cosine Transform,” IEEE 

Transactions on ASSP,Vol. ASSP-32,No.6, pp.1243-1245, Dec.1984. 

[9] N. I Cho, S.U Lee “DCT algorithms for VLSI parallel implementation,” IEEE 

Trans. On Acoustics, Speech, and Signal Processing, col.38, no.1, pp.121-127, 

 47



 

1990. 

[10] M. A Bayoumi, G. A Jullien, and W .C Miller “A VLSI Array for Computing 

the DFT Based on RNS,” in Proc. ICASSP 86’ Tokyo, pp. 2147-2150. 

[11] T. Komarek, P. Pirsch “Array architectures for block matching algorithms,” 

IEEE Transactions On Circuits And Systems, Vol. 36, No. 10, October 1989. 

[12] K. Wiatr, E. Jamro “Constant Coefficient Multiplication in FPGA Structures,” 

Euromicro Conference, 2000. Proceedings of the 26th Vol. 1,5-7 Sept. 2000 pp. 

252-259. 

[13] “IEEE Standard Specifications for the Implementation of 8x8 Inverse 

Discrete Cosine Transform,” IEEE standard, 1180-1990, Mar 1991. 

[14] D.W Kim, et Al., “A Compatible DCT/IDCT Architecture Using Hardwired 

Distributed Arithmetic,” ISCAS Proc.,pp.II457-II460, 2001. 

[15] A. Madisetti and A.N Willson Jr., “A 100MHz 2-D 8×8 DCT/IDCT Processor 

for HDTV Applications,” IEEE Trans. on circuits and systems for video 

technology, vol.2, no.2, pp.135-146, 1995. 

[16] J. I Guo, R. C Ju, and J. W Chen, “An Efficient 2-D DCT/IDCT Core Design 

Using Cyclic Convolution and Adder-Based Realization,” IEEE Trans.on 

circuits and systems for video technology, under revision, 2003. 

[17] J. D Bruguera and R. R Osorio, “A Unified Architecture for H.264 Multiple 

Block-Size DCT with Fast and Low Cost Quantization,” Digital System 

Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th Euromicro 

Conference on, pp.407-414, Aug 2006.

 48



 

About the Author 

 

姓    名：洪岳琪 Yueh-Chi Hung 

出 生 地：台灣省雲林縣 

出生日期：1974. 12. 22 

 

學    歷： 

1981. 9 ~ 1987. 6     台北市立士林國民小學 

1987. 9 ~ 1990. 6     台北市立士林國民中學 

1990. 9 ~ 1995. 6     新埔工業專科學校 電機工程科 

1995. 9 ~ 1998. 6     中國文化大學 電機工程學系 學士 

2005. 2 ~ 2007. 1     國立交通大學 電機學院 

IC 設計產業研發碩士班 碩士 

 

經    歷： 

2000. 7 ~ 2001. 2     台朔光電股份有限公司 實習工程師 

2001. 3 ~ 2004. 6    明基電通股份有限公司 影存事業群 

SPC 事業部 研發一部 工程師 

 

 49



 

發表專利： 

z 洪岳琪，應用預覽掃描來提昇掃描影像品質的方法與裝置。 

Method and Apparatus for Improving Quality of a Scanned Image 

Through a Preview Operation. 

申請號碼：93107271，申請日：2004/03/18 

z 洪岳琪、李俊仁，影像處理裝置及其控制馬達系統之方法。 

Image Processing Device and Method for Controlling a Motor System. 

申請號碼：93107010，申請日：2004/03/16 

得  獎  事  績 

2006. 5    94 學年度積體電路設計競賽 

標準單元設計 佳作獎 

發  表  論  文 

z Yi-Hong Huang, Ping-Chang Lin, Kang-Cheng Hou, Yueh-Chi Hung, 

Tsu-Ming Liu, Chen-Yi Lee,” A High-Throughput SRAM-Based Context 

Adaptive Binary Arithmetic Decoder (CABAD) for H.264/AVC”, in 

Proceedings of the 17th VLSI/CAD Symposium, August 2006. 

 50


	Design of an Inverse Discrete Cosine Transform Core for Multiple Video Standards Applications 
	Design of an Inverse Discrete Cosine Transform Core for Multiple Video Standards Applications 
	摘要 
	ABSTRACT 

