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A Memory-Efficient VLC Decoder Design

Student: Shao-Ming Sun Advisor: Dr. Chen-Yi Lee

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College
National Chiao Tung University

ABSTRACT

H.264/AVC is the newest video coding standard. Compared to MPEG-2, H.261 and
H.263, it provides more efficient compression ratio and quality. However, one of the most
important variable length coding is the high efficient lossless coding. The principle is to
assign high frequency information to shorter coding length, and vice versa. Therefore, in the
situation of uncertain length, it must waste more unnecessary memory space for assigning to
fixed length memory address. Furthermore, in the existing various video coding standards,
they all adopt Huffman variable length code. It will be a bottleneck in memory consuming
to conform to various video standards.

In the system point of view, this thesis provides a programmable method to conform
MPEG-2 and H.264 dual mode video standards. In the aspect of algorithm, we undertake
the method of Huffman coding and adopt the grouping information that naturally exists in
its Huffman coding. It groups every Huffman coding tables and reduces the memory
requirement. Moreover, a reversed addressing concept in the Huffman cluster is adopted to

minimize the wasted symbol memory. Furthermore, in the aspect of architecture design, a

vii



single SRAM memory is used to reduce the overhead of memories. A memory address
grouping method is adopted to achieve that using single memory represents many Huffman
tables.

Finally, this thesis proves that the proposed algorithm can achieve 90.22% symbol
memory utilization of MPEG-2 and H.264 via C++ tools. Moreover, the MPEG-2 and
H.264 dual mode design is synthesized using UMC 0.18 process under operation frequency
of 200 MHz. The logic and memory gate counts are 31.12K. The algorithm and main
architecture not only satisfies the most of requirements and can be adopted for advanced

applications.
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Chapter 1
Introduction

1.1 Motivation

In recent years, various video standards appear in the world, such as MPEG-1/2/4,
H.261, H.263, H.264 etc. Therefore, the integration is more and more important to conform
to various standards. It is fortunate that entropy coding is always used in the various
different standards. Furthermore, the Huffman coding skill is widely used in the entropy
coding. Hence, how to conform different video standards without redesigning the original

architecture by the Huffman coding properties is-an important issue.

: :
: MPEG-2 Motion — Frame :
: | Compensation Storage :
; : :
Tuner - : E I I | g > ]13:;5;12;,
)
ntenna b nverse N nverse L ;
v | Quantization DCT :
oo e neaeeene e e emeennne E
_ T i yow
Baseband EPtrogralIl;maI;l.e Motion Frame 1 [CCIR656
i » Entropy Decoding Compensation Storage :
Receiver (VLC & CAVLC) p g E
| Intra Frame :
| H.264 Prediction :
N .
: E
: '
: '
1 Inverse N Inverse L Filter E
V| Quantization DCT oop kilte ;
: :

Fig.1.1 System view of programmable VLD



In the system point of view in Fig 1.1, this thesis will focus on the entropy decoding
system in various video standards, such as VLC and CAVLC for MPEG-2 and H.264. We
hope to design an architecture that can decode the bit streams from baseband receiver and
conform to two video standards by the programmable the VLC tables existing in MPEG-2
and H.264. Further, the hardware overhead also hopes to be reduced.

For the purposes, some algorithms are developed to conform to different video entropy
coding standards. Besides the algorithms can reduce the hardware overhead, the proposed
architecture design also can simplify the decoding flow, and increase the memory utilization

efficiency.

1.2 Overview of VLC and CAVLC

Huffman encoding skill is a well known lossless.coding algorithm, whose principle is
to assign the shorter codeword to mare' frequency information, and vice versa. Its coding
efficiency is to be close to the entropy coding..The-probability of the formula is described in

equation (1).

Lmax
D PM=1 forn€N, Lpyn< N< Loy

N=L i

y and P(Lmax) S P(n) S P(Lmin) (1)

P(n) : Using probability in codeword length n.

Therefore, it is used in many video standards, such as VLC and CAVLC in MPEG-2

and H.264. This section will introduce the principles of VLC and CAVLC.



1.2.1 The VLC algorithm of MPEG-2 standard

In the MPEG-2 standard, the entropy function block i.e. variable length coding is
designed by the Huffman coding. There are fifteen tables, and are divided into two main
parts.

The first part is used in macroblock header, it includes macroblock addressing,
microblock type I-picture, microblock type P-picture, microblock type B-picture,
microblock pattern and motion code. The second part is used in Run/Level symbols, intra
DC luminance, intra DC chrominance, intra AC and non-intra AC is included.

In the tables of MPEG-2 mentioned in above, they are all established according to the
statistics theory and use Huffman coding algorithm to reduce the redundant information.
However, the decoding processes look up. the table combined with source symbols and
variable length codewords.

For example, Table 1.1 is:a part of MPEG-2 table B-15, the decoding processes of
VLC are that if received bitstream is-00111; it-will map to the run and level with 5 and 1

respectively. Therefore, the decoding resultiis 5'and 1 [1].

Table 1.1: A part of MPEG-2 table B-15

Variable length code level
0001 11
0001 10
0001 01
0001 00
0000 111
0000 110
0000 101

0000 100

_,
[
>

N|jo oMo |ol~ O
R R R, NN O




1.2.2 The CAVLC algorithm of H.264 standard

In the H.264 standard, the entropy decoding process is different from the VLC of
MPEG-2. It is not purely to look up tables. Further, it uses adaptive concept, and hence the
entropy coding is named CAVLC (Context Adaptive Variable Length Coding). The CAVLC
is mainly composed of five functions: coeff_token decoder, TrailingOnes decoder, level
decoder, total zero decoder and run_before decoder. The basic concept of coeff token,
total_zero and tun_before functions are to look up VLC tables. The meaning of every
module and derivatives are described as follows:

1. Coeff_token: getting the coefficients of 4X4 macroblock, it includes the TotalCoeff and
TrailingOnes.

2. TotalCoeff: the total coefficients of 4X4 residual macroblock, zeros are excluded.

3. TrailingOnes: the tail remainder:of positive: or *negative one in 4X4 residual
macroblock after zigzag scanning.

4. Total_zero: the number of total zeros in-4X4.macroblock.

5. Run_before: the number of zeros before every coefficient.

The decoding flow of CAVLC mainly includes several parts and is introduced by the
Fig. 1.2:
1. Decoding the TotalCoeff and TrailingOnes: TotalCoeff = 5, TrailingOnes = 3
2. Decoding the sign of TrailingOnes: TrailingOnes sign =-1, -1, 1
3. Decoding the levels of the remaining non-zero coefficients: level = 3,1
4. Decoding the total number of zeros before the last coefficient: total _zeros = 3

5. Decoding each run_before of zeros: 3,0,1,-1,-1,0,1



Fig.1.2 4X4 residual macroblock of H.264

The decoding flows of 1, 4 and 5-processes-look-up the Huffman coding-based tables such

as Table 1.2. For example, if the received bitstreamis 001111, the decoded symbol values

TrailingOnes and TotalCoeff are 0 and 1 [2], respectively.

Table 1.2: A part of H.264 table 9-5

TrailingOnes(coeff_token) TotalCoeff(coeff_token) 4<=nC<8
0 1 0011 11
1 6 0011 10
2 6 0011 01
3 9 0011 00




1.3 Review of Prior Works

In this section, some literatures are discussed and divided into three parts. The first is
to review the VLC buffer and existing codeword prediction algorithm. The second is to
introduce existing memory-based VLC algorithm and architectures. Furthermore, the

newest memory-based CAVLC is introduced in the third part.

1.3.1 Codeword Boundary Prediction and Buffer

In the existing parallel decoding algorithms and architectures, the boundary of variable
length code is difficult to divide because it doesn’t have clear and defined demarcation line.
But determining the variable length code boundary is a key point to increase the decoding
speed. In Fig.1.2, the traditional methods are that the boundary of codeword is identified
after the symbol is decoded but the traditional method is not suitable for high speed

application because there is a feedback4oop to align the.next bitstream [3][4].

} Variable Length
N

alignment information Coded Data
Buffer
Accumulator )
i Symbol
Look-up
length l Symbol

Fig.1.2 Traditional parallel variable length decoding buffer

Instead of feedback loop, Rudberg and Wanhammar replaced the barrel shifter with a
shift register, where the decoder resembles parallel pipelined decoders [5]-[7]. It is
illustrated in Fig. 1.3. The architecture makes it possible for the loop-free VLC decoder. It

can send the bounded bitstream in parallel fashion to the symbol look-up unit. The principle
6



is that pipelined length decoder decodes the input bitstream length before sending bitstream

to the symbol look-up unit.

. 2 5
Vanable Length 1 [¢; . Register 5
Coded Data | D
[, 4
¥ ‘T'
Pipelined Symbol _}Symbol
Length Counter —> Look-up
Decoder reset  |start
FIEEE11]

Counter
reset

Fig.1.3 The loop-free architecture for VLC input buffer

Besides the above architecture and'method, Shieh et al. propose codeword boundary
prediction algorithm, where the input codeword-boundary can be predicted before decoding

the final symbol [8]-[10]. The principle.is to develop branch models to prediction as shown

in Fig.1.4.



{ACT, T, 50, S1 Traditional {ACT, T, 50, S1} ACT

& Function Branch Models & Function Branch Meodels
£0,0,0,0} Tcent {1,0,0,0}
Regular: all 2-bit child; P Regular: all 2-bit child; parent
All Child-nodes ate not .,/’/7\ All Child-nodes are ,—m
Terminals; 00 o1 10 11 Tenninals; 00 01 10 1
No Special terminal; A A NN No Special terminals;
£0,0,1,0} ¢ 11,0,1,0}
Spccial: one l‘blt 0 M par&n Special: one ].b]t 0; patent
All Child-nodes are not m All Child-nedes are m
lemfs; . 0 10 1 Terminals; 0 10 11
Special recanal; AN, Specialterminal;
{0,0,0,1} “.Q,U.l} .
Special: one 1-bit 1 ; parent Special: one 1-bit 1; parent
All Child-nodes ate not 27 "~ —— are — 7 T
Terminals; 00 01 1 .I:mrﬁaﬂs. 00 01 1
Special termuinal; P AN
{0,0,1,1} {1,1,0,1} parent
Speclai two 1-bit ; parent Group: 8 symbols ; e S ——
All Child-nodes are — T~ 2 bits remain to decode 00 M 10 11
Terminals; 0 1 after parent-node; NN AN A
All Terminals
{ } , {1,1,1,0}
0,1,0,0 . Group: 16 symbols ; parent
Terminal node ; No Child nodes 4b EPEE g[}u to decode ____—7“:1—____\
(0,1,1,1} _ after parent-node; 01 10 11
_ No Child nodes W

Nonuse node ;
All Terminals

Fig.1.4 The traditional branch models and-the proposal of Shieh et al.

1.3.2 Prior Works for VLC

In existing designs, several categories of VLC decoders have been proposed, such as
CAM-, RAM-based designs [11]-[17]. However, the CAM-based designs require high cost
to store all possible patterns while the RAM-based design is suitable for programmability.
Shieh at al. propose memory-based VLC to decode and encode the bitstream and symbol.

Moreover, the decoding flow is described as follows based on Fig 1.5:



PCLC PCLC symbot VLC

group  symbol _codeword _codenum address _codeoffset
S00 00100100 36 0 0
S01 00100101 37 1 1
G0 502 00100110} 38 2 2
S03 0010011 1! 39 3 3
S10 0011 ooi’g"g 48 4 0
b 5
G1 i 6
S11 001111100 56 7 3

Fig.1.5 An example of prior works [17]

1. Received bitstream : 0011_1100

2. Do group search: G1

3. Get minicode: 0011_0000, codelength: 6, base address: 4

4. Calculate codeoffset=0011.11100-0011 "0000=0000_ 1100 - 00 _0011
(because codelength:6)

5. Calculate symbol address: base-address.+ codeoffset =4 +3 =7

Besides, Chien et al. propose an improved grouping algorithm, and is described and

summarized as follows based on Fig 1.6 [18]:



15 LUT Codeword Symbol

14 [ IXXXXXXXX  s0
:; LUT3 | OLI],xxxxxxx s
¥ 2 011 jxxxxxx  s2
10 s2 0101xxxxxX s3
9 LUT2 00110 kxxxx s
j 3 00T00KXXXX s5
6 3 00011 1xxxx  s6

0001010xxx 87

: 00001 10xxx  s8
3 |

. 0000101 1jxx 9
| 7 LUTI 00000101xx  sl0
0 s 0000010001, sl

Fig.1.6 An example of prior works [18]

1. Received bitstream: 0_1011
2. Do group search: LUT2
3. Getm: 10, S: 5, minicode: 0_0100

4. Calculate symbol address: 0101 1xxx_xx.>>5 -4 = 0101 1- 0010 0 =0 0111 =

7(10)

1.3.3 Prior Works for CAVLC

In existing CAVLC design, it is rarely designed for programmable applications. The
existent designs almost adopt hardwire method by the table property [19]-[22]. Yanmmei
Qu and Yun use memory-based design method, but the memory is designed to fit the
properties of tables in CAVLC. The other properties of VLC tables are not included, such as
the VLC and CAVLC of MPEG-2 and H.264. Therefore it is not suitable for
programmability applications [23]. The method of Qu et al. is introduced by the example of

coeff_token module:

10



For the FLC table, the equation (2) is used.

0,0), when data[5:0]=3
(TLTotalCoeff _t) = (0.0), when data3: 0] ) (2)
(data[1: 0], data[5: 2]), otherwise

The equation (2) is based on the table of FLC properties and is hardwired architecture.
For the other VLC tables, GSGEM algorithm is proposed to use the main leading zero

property of VLC tables and the following is the grouping rules:

1. If the length of the codewords with same leading zeros is the same, they are
assigned to the same group. The group number is the number of leading zeros.

2. If the length of the codewords with samedeading zeros is different, the codewords
are grouped according-their prefixes- and ‘the codewords with same length are
assigned to the same group.

3. To reduce the symbol memory, they-merge the symbols based on the range of
TrailingOnes which is 0~3.

4. Because TotalCoeff ranging from 0 to 16 and few states of TotalCoeff equal to 0,
they use a flag to show these states and store TotalCoeff_t of 4 bits instead of

TotalCoeff of 5 bits to reduce one bit per memory unit of the symbol memory.

1.4  Thesis Organization

This thesis is organized as follows. At first, the Self-grouping and Reversed Cluster
addressing algorithms are described in Chapter 2. Furthermore, the architectures of
Self-grouping and Reversed Cluster algorithm are proposed in Chapter 3. Chapter 4 exhibits

the simulation results to prove that the algorithms are efficient. Some comparison and

11



implementation results are shown in Chapter 5. Finally, the contributions of this thesis and

other issues for further research are highlighted in Chapter 6.

12



Chapter 2
Self-Grouping and Reversed Cluster
Addressing Algorithm

To improve the efficiency of prior works, some algorithms and architectures are
developed. In this chapter, the Self-grouping and Reversed Cluster Addressing algorithm are
proposed. Before introducing the algorithms, some terminologies are introduced first.
Furthermore, an example including Self-grouping and Reversed Cluster addressing is

described in the last section.

2.1 Define Terminolagies of Proposed Algorithm

In this section, three terminologies of variable length code are defined [24][25]. As
shown in Fig. 1.7, (a) are variable length code and (b) is the corresponding Huffman tree
structure. Moreover, the terminologies are defined using leading 0’s case. The leading 1’s

case is similar to the leading 0. They are defined as follows:

1. Root:

1) Root is the starting point of the Huffman tree as shown in Fig. 1.7 (b).
2. Trunk:

1) Trunk is the group information or the stop signal.

2) InFig. 1.7 (a), Trunk is the front zeros or one of variable length code.

3) InFig. 1.7 (b), Trunk is the thick line.

13



3. Cluster:
1) Cluster is the set behind Trunk, i.e. Cluster 0, Cluster 1, Cluster 2 and Cluster
3.
4. Null Cluster:
1) The Cluster 4 is the Null Cluster because that behind the Trunk, there is null
set.
5. Group:
1) In the Trunk of the variable length code, the same group means have the same
zero numbers in front of Cluster such as group 0, group 1, group 2, group 3
and group 4 in Figl.7.
2) Group number and Cluster number are the same in the identify Huffman tree
system, i.e. Group 0 = Cluster 0, Group 1= Cluster 1, Group 2= Cluster 2,

Group 3= Cluster 3 and Group 4= Null.Cluster.

Group | Variable length code
0 01]1 i Cluster 0
0 ofp Trunk
1 0offt _ LA
p 001|1|0 i Cluster 1 Groupo | ¢ | A
lI (Cluster 0): 0: A a |
2 00011 i Cluster 2 === /! 1A
2 | ooofp i Group 110 _ 0
3 0000]I11 i (Cluster 1) :'1 | _1_--' ~
: |
: 1 3
3 0000]]10 i Cluster 3 Group2 0 _ 9 4 I ==
3 0000]'01 (Cluster 2) 11/ \0 1/ \o ! j Null |
3| 000010 ; 16 06 o) !
4 Jooooor] i Null Group 3 Group 4
Trunk| Cluster (Cluster 3) (Null)
(a) (b)

Fig.2.1 (a) Variable length code and (b) The Huffman tree of variable length code
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2.1.1 The table and corresponding Huffman tree of MPEG-2

In the Fig. 2.2, it is a part of table B-15 of MPEG-1 and the expanded Huffman tree.
The terminologies of the Fig. 2.2 are the same as previous introduction. Further, every
symbol, run and level are corresponding to unique variable length code (codeword). That is
to say the codeword is one to one and mapping in the same table of MPEG-2.

In the Fig. 2.2 (b), the Trunk is thick line and there are two Clusters drawn by the
dotted line i.e. Cluster 0 and Cluster 1 that they are corresponding to group 2 and 3

respectively.

Variable length code level

000111 !
000110 !
0001]o1
0001]oo

00001] 11

00001|10 ;
00001]01
00001/ 00

Trunk Cluster (Cluster 0) (Cluster 1)

(a) (b)

ﬂ
=
=

Root Trunk

Cluster 0

Cluster 1

N (00N IS A
[ | (D[~ | O\ |

Fig.2.2 (a) A part of table B-15 in MPEG-2 standard and (b) Its Huffman tree

2.1.2 The table and corresponding Huffman tree of H.264

As shown in Fig 2.3, there is a part of table 9-5 of H.264. Similarly, every variable
length code (codeword) is corresponding to unique symbol that is TrailingOnes and

TotalCoeff. Fig 2.3 (b) is the expanded Huffman tree. The Trunk and Cluster are

15



corresponding to Fig 2.3 (a).
The principle of CAVLC is also based on looking up table. Hence it must be one

to one and mapping. Every leaves of the Huffman tree in Fig 2.3 are corresponding to one

symbol.
TrailingOnes(coeff_token) TotalCoeff(coeff_token) 2<=nC<4
0 2 000111
]
(]
1 4 0001{103
iCluster 0
2 4 0001 01:
(]
3 7 0001 ooi
Trunk| Cluster Group 2
(Cluster 0)
(a) (b)

Fig.2.3 (a) A part of table 9-5"in.H.264 standard and (b) Its Huffman tree

2.1.3 The leading 0 and leading 1 topology of Huffman tree

Fig. 2.4 is the Huffman tree of leading 1 and leading 0. The prior introduction is
focusing on leading 0. However, the Huffman tree of leading 1 is shown in Fig.2.4 (a)
existing widely in every table of VLC and CAVLC.

The difference between leading 0 and leading 1 is the Trunk. The Trunk begins in “1”
for leading 1’s codeword and stop in 0. The leading 0’s Huffman tree is opposite. However,
the Cluster have not the above property, the property of leading 1 and leading 0 codewords

are the same.
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(Cluster 0) (Cluster 1)

(@) (b)

Fig.2.4 (a) A leading 1 Huffman tree (b) A leading 0 Huffman tree

2.2 Self-grouping Algorithm

In this section, Self-grouping algerithm-is’introduced. The meaning of Self-grouping is
that the grouping information exists naturally, in the Huffman tree and the grouping method
is that using self-information and it results-the name of-algorithm is Self-grouping algorithm.
As shown in Fig.2.5, there is information. The firstiis Cluster information, the second is stop
signal information and the third is grouping information. In this section, the grouping
information is discussed.

From the Fig. 2.5, we define the numbers of zero as groups. For example, if there is
one zero in the front of codeword, the group 0 is allocated and if there are seven zeros, the
group 6 is allocated and so on.

After allocating the group, there is a signal opposite to the front group information and
the signal is named as stop signal that needn’t to store the information. Hence, after
grouping the codeword there is not needed to store any information in the decoder. The need
is to identify theses information.

In the Fig. 2.5, the original bit needed to be stored is 76 bits, but after applying

Self-grouping algorithm, there are only 23 bits needed to be stored for example. Hence,

17



69.74 % codeword size is reduced by applying the Self-grouping algorithm.

Variable length code

group0 —q1p [

groupd —[ 0110 |

group6 +—1/.0000 00011110] [ Cluster information

group6 «<—| 0000 0001 [1111]/ ... v|_stop signal

group8 .—1]'0000 0000 01P0 1T

group9 ~——1| 0000 0000 00/}1 001

group10 5000 0000 OO0} 1011 |

Fig.2.5 The variable length code and its self-grouping information

2.3 Reversed Cluster Addressing Algorithm

In this section, Reversed Cluster addressing algorithm is described and some issues are
discussed for memory applications.

The meaning of Reversed Cluster addressing is that the addressing method is to use
reversed Cluster bitstream. In the Fig.2.6, there are some differences between reversed and
non-reversed Cluster addressing. If Cluster information is used to address the memory
location, the reversed Cluster information is better than non-reversed one because the

needed least memory space is less than non-reversed Cluster addressing.
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Group 0 Group 0
(Cluster 0) (Cluster 0)

Max value:11_000=24 Group 1 M.ax value:000_1 1_=3 Group 1
Min value:0_0000= 0 (Cluster 1) “Sl}:.va}“e-_"g?f—_";s f; (Cluster 1)
Utilizaion=(3/25)=12% tilizaion=(3/4)=75%

Max value:11_000=24 Max value:00_101=5

Min value:00 _000= 0 Min value:000 00=0

Utilizaion=(5/25)=20% Utilizaion=(5/6)=83.33%

(a) (b)

Fig.2.6 (a) Normal Cluster addressing (b) Reversed Cluster addressing

For example, in Fig. 2.6 (a), ifithe -non-reversed Cluster is used, the corresponding

symbol memory utilization is shown asfollows-by-equation (3):

(Group(0)_ Symbol _number) _ 3 _ .,

(Group(0) _Max _value+1) 25
(Group(1) _ Symbol _number) :i _20%
(Group(l) _Max _value+1) 25

GroupO _ Utilization =

Groupl_ Utilization =

TableN _Utilization

Zl‘,i(Leading (i) _Group(j) _Symbol _number) (3)

=14 -5 _16%
i{i(Leading(i)_Group(j)_ Max _ value) + |i}

i=0 | j=0

Where N is the table of VLC and CAVLC,
|, is the maximum group number of tableN in leading O or leading 1
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The groupO_utilization is 12% and groupl_utilization is 20% but the table utilization is

16% calculated by the equation (3).

If the Reversed-Cluster algorithm is used, the addressing mode will follow the formula

(4).
GroupO _ Utilization = (Group(0) _ Symbol _ number) = 3 =75%
- (Reversed _Group(0) Max _value+1) 4
Groupl _Utilization = (Group(l) _ Symbol _ number) —§=83.33%

(Reversed _Group(l) _Max _value+1) 6

TableN _Utilization

lei(l-eading(i)_Gmup(j)_Symbol_number) (4)

{Z(Reversed _Leading(i) _Group(j). Max _value)+ Ii}
=0

j=0

Where N is the table of VLC and CAVLC,
I, is the maximum group number of tableN inleading O or leading 1

If Reversed Cluster addressing is used, 64% symbol memory utilization can be

improved for the case of Fig.2.6.

2.4 An example of the Proposed Algorithm

In Fig.2.7, an example of proposed algorithm is introduced and is simplified several
steps shown as follows:

1. Received the bitstream of table 0: 0000_0110

2. Group detect: group 4

3. Codeword address: 4(10)+{Table_select=0, Bitstream [15], 4’d 0}=00_0100

4. Cluster: 10 _000: reversed Cluster: 000_01

5. Symbol address:
20



base_address [codeword_address]+reversed Cluster=0000_0100+000_01=510)

Symbol base address memory Programmable Symbol Memory
0 0
1 1
2 2
3 3
4] 8'b0000 0100 4
5] {run, level}

group+{Table_select, bitstream[16] ,4'b0} base_addr+reversed Cluster

Fig.2.7 An example of the proposed algorithm
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Chapter 3

Proposed Architecture Of
Self-Grouping and Reversed Cluster
Addressing Algorithm

In this Chapter, the proposed architectures are presented. Moreover, the hardware
block diagram of VLC and CAVLC is shown in Fig.3.1. The input bit_stream through the
CAVLC & VLC control unit and Zeros/Ones counter, the Zeros/Ones Counter extracts
codeword_address and reversed_basic_cluster signals to the addressing unit.

Furthermore, if it is in the VLC decoding.action;. the decoding symbol is sent to other
function block such as inverse quantization or motion compensation. However, if it is in the
CAVLC decoding flow, there is a fe€dback to the“control logic to fit the CAVLC FSM
decoding action.

Hence, in this Chapter, two main parts are classified and introduced. The first is the
implementation of Self-grouping algorithm i.e. Zeros/Ones Counter and introduced in
section 3.1. The second is addressing unit, it is the main part to address the symbol memory
and composed of memories and introduced in section 3.2. Finally, some examples of the

hardware action are described in section 3.3.
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MacroBlock

codeword_addr >
. Zeros/Ones .
d_b lust .
blt_‘stream. CAVLC & VLC Counter reversec_pasic_¢ ;s; Addressing Decoding Symbol .
16 control unit ;1? (Parallel 75 unit
Detector)

table select T

CAVLC Symbol

Fig. 3.1 The implementation hardware block diagram of VLC and CAVLC

3.1 The Architecture of Self-grouping Algorithm

The Architecture of Self-grouping algorithm’is described in HDL code, as shown in
Fig.3.2. Although the name is Zeros/Ones counter, it is implemented using parallel detector

skill. The principle of the hardware is described as follows:

1. The line 1 and line N identify the leading O or leading 1
2. The line 5 and line 10 extract the codeword address and bit stream cluster to the

addressing unit.

The codeword address is composed of Table_select, bitstream [15] and group. The
bitstream[15] is the location of symbol base address memory, its intervals are 16. Therefore,
it must be in the front of group and behind the Table_select. Moreover, to integrate symbol

base address memory to single memory in different tables in VLC and CAVLC, the
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Table_select is in the location of MSB of codeword_addr. Hence, it means the interval of
every table in symbol base address memory is 32. Although there is some waste of symbol
base address memory, it is worth doing this arrangement instead of many symbol base

address memories having larger overheard.

1 casex (bit_stream)
2 16'b0xxx_XXXX_XXXX_XXXX:
3 begin
4 casex(bit_stream)
5 16'bx1xx_XXXX_XXXX_XXXX:
6 begin
7 codeword_addr<=#1 6'd0+{Table_select ,bit_stream[15] ,4'b0};
Zeros/Ones 8 bit_stream_cluster[4:0]<= #1 bit_stream[13:9];
Counter 9 end
(Parallel
Detector) 10 16'bxx1x_XXXX_XXXX_XXXX:
11 begin
12 codeword_addr<= #1 6'd1+{Table_select ,bit_stream[15] ,4'b0};
13 bit_stream_cluster[4:0]<= #1 bit_stream[12:8];

14 end

N  16'b1xxx_XXXX_XXXX_XXXX:

Fig. 3.2 The HDL code of parallel detector of Zeros/Ones counter

3.2 The Architecture of Reversed Cluster Addressing

Algorithm

The architecture of reversed Cluster addressing is addressing unit in Fig. 3.1, it is
composed of two memories. The first is symbol base address memory and the second is
symbol memory.

Symbol address memory stores the base address of symbol, and the stored information

is an addressing accumulation by the dispersed sequence equation (5) as shown in follows:
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1 s-1 I
{Leading (i) _Reversed _Group(j)_ Max _value+ Z Leading(i) _ Reversed _Group(j) _ I\/Iax_value}
i=0 j=0 j=0

(5)

I, is the maximum group number of tableN in leading 0 and leading 1

s is the (present group number -1)

Fig. 3.3 shows the addressing unit, first the codeword address sends address to symbol
base address memory from Zeros/Ones counter to get the base address of symbol.
Meanwhile, the reversed Cluster addressing signal is sent to the adder shown in Fig.3.3, the

sum of symbol base address and {3’b0, bit_stream_cluster [0:4]} is the correct symbol

address.
Symbol Programmable
codeword_addra base address symbol_addr Symbol
memory a ; al Memory
[7:0] (256-entry)

{3'b0,bit_stream_cluster[0:4]}

(loquh(s Surpodo(q|

Fig. 3.3 The architecture of addressing unit

The design concept of bit_stream_cluster is five bits width because the highest Cluster
existing in VLC and CAVLC is five bits high as shown in Fig.3.4.
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After applying self-grouping, the highest bit stream of Cluster
are 5 bits

Fig. 3.4 The highest in Basic Cluster of leading0 and 1’s case

3.3 Some examples of hardware decoding flow

Based on Fig. 3.5, some decoding flows are presented to help understand the hardware

action.

Example 1, if the bitstream 0110 of“Table O Is received:
1. 0110 through Zeros/Ones counter and extract the codeword address
Ex:
1) codeword_addr
= group + {Table_select, bitstream [15], 4’b0}
= 0o+ {00, 0, 0000}
=000_0000

=0

2. The symbol base address is obtained as follows

Ex:

1) symbol_base_addr [codeword_addr]
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= symbol_base_addr [0]
= 8’b0000_0000
3. At the same time, the reversed Cluster is also extracted
Ex:
1) reversed_cluster
= {3°b0, bit_stream_cluster [0:4]}

= 8’b0000_0001

4. The sum of symbol_base _addr and reversed_cluster is the symbol address
Ex:

1) symbol_addr
= symbol_base_addr treversed_cluster
= 8’b0000_0000 +-8'b0000 0001
= 8’h0000_0001
= Lao)

2) {run, level}
= programmable symbol memory [symbol_addr]

= programmable symbol memory [1]

Example 2, if the bitstream 1111 1010 of Table O is received:
1. 1111 1010 through Zeros/Ones counter and extract the codeword address
Ex:
1) codeword_addr
= group + {Table_select, bitstream [15], 4’b0}
=40 + {00, 1, 0000}

= 001_0100
27



= 20(10)

2. The symbol base address is obtained as follows
Ex:
1) symbol_base_addr [codeword_addr]
= symbol_base_addr [20]

=8’b0110_0100

3. At the same time, the reversed Cluster is also extracted
EX:
1) reversed_cluster
= {3°b0, bit_stream_cluster [0:4]}

= 8’b0000_0001

4. The sum of symbol_base_addr and reversed.cluster is the symbol address
Ex:

1) symbol_addr
= symbol_base_addr + reversed_cluster
= 8’b0110_0100 + 8’b0000_0001
= 8’0110 0101
= 10110

2) {run, level}
= programmable symbol memory [symbol_addr]

= programmable symbol memory [101]
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Example 3, if the bitstream 0001_00 of Table 3 received:
1. 1111 1010 through Zeros/Ones counter and extract the codeword address
Ex:
1) codeword_addr
= group + {Table_select, bitstream [15], 4’b0}
= 2u0)+ {11, 0, 0000}
=110_0010

= 98(10)

2. The symbol base address is obtained as follows
Ex:
1) symbol_base_addr-Jcodeword addr]
= symbol_base_addr [98]

=8’b1111 0100

3. At the same time, the reversed Cluster is also extracted
Ex:
1) reversed_cluster
= {3°b0, bit_stream_cluster [0:4]}

= 8’b0000_0000

4. The sum of symbol_base _addr and reversed_cluster is the symbol address
Ex:
1) symbol_addr

= symbol_base_addr + reversed_cluster
29



=8’b1111 0100 + 8’b0000_0000
=8’b1111_0100
= 244,10,
2) {run, level}
= programmable symbol memory [symbol_addr]

= programmable symbol memory [244]

Symbol base address memory Programmable Symbol Memory

[0]_8'50000_0000 ]

1] {run, level}

TB3 TBO0 [20] 8'b0110_0100

s37'\m bol_base_addr |[101] {run, level}

/

0001_00 0110 Zeros/Ones |gr0up+{Table_select,bitstream[15],4'b0§

! symbol_addr
1111 1013‘ Counter codeword_addr QQ—_’

98] 8'b1111_0100

[244] {run, level}

-~
g
{3'b0,bit_stream_cluster[0:4]}, 00000000 0000_0001 E-
- - 7
0000_0001 >reversed_cluster 2
8
=
=2

Fig. 3.5 Some examples of decoding flow
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Chapter 4
Simulation Results

In this chapter the simulation results are presented, it includes the symbol memory
utilization in fix length code and variable length code. Furthermore, the simulation results

prove the proposed algorithm is efficient.

4.1 Variable Length Code Simulation Results

Fig. 4.1 is the needed entries of symbol memory in non-reversed Cluster addressing,
reversed Cluster addressing and-the“original symbol number. Moreover, the table number is
assigned to sequence number. Table 0~:10“are*MPEG-2 non-scalable and Tables 50~53 are
for scalable application. Further, Tables 11~49are CAVLC tables 9-5~ 9-10.

We can find the least needed entries number of reversed Cluster addressing drawn in
tetragon is less than the non-reversed Cluster addressing drawn in rhombus in Fig 4.1.
Further, the reversed Cluster addressing is closely to the original symbol number drawn in
triangle. That is why a reversed Cluster addressing algorithm is adopted.

There are several important tables that are worth to discuss. Table 9 and Table 10 of
Fig 4.1 are the tables 14 and 15 in MPEG-2 that is the maximum table size in VLC and
CAVLC. If non-reversed Cluster addressing algorithm is adopted, it needs 279 and 369
entries at least but reversed Cluster addressing is adopted, 131 and 144 entries is needed.
The 133 and 144 is closely to the 114 and 113 of original symbol number.

Moreover, the symbol memory utilization that excludes VLC of MPEG-2 from the Fig.
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4.1 is almost 100%. Furthermore, there don’t have any non-reversed Cluster addressing that

is larger than reversed Cluster addressing symbol memory utilization.

-+ non-reversed Cluster addressing = reversed Cluster addressing syrnbol num,
400
g 350 /3\
£ 300
g 250 F ;\
ol
‘f 150 *
sof Iy P A e -
L M PI/ R ATASN [
E 0 m 1 " (ﬁ\f‘ "/"\M Aok ":}g\" F‘fa?yuuuuuu&?‘ﬂ;uuuuuuJ J",ﬂﬂﬂ‘.

DL ZE 34 3 6aTEY DIUEDREEBITEBLNDZZDADHTEDNIU EDME G W EWA G 4D & 43 40 47 4549 30 31 52 57

Table

Fig. 4.1 The needed entries of symbol memory (MPEG2 (TB0~10, 50~53) and H.264

(TB11~49))

To be more clear that Fig. 4.2 is presented to show the symbol memory utilization.
Although there are also 100% symbol memory, utilization, the non-reversed symbol memory
utilization is about 20%. However, if reversed Cluster addressing is used, the utilization lies
in 80% ~ 100%. In Fig. 4.2, it is easily to understand the advantage of reversed Cluster

addressing.

120%

~+ non-reversed Cluster utilization = reversed Cluster ntilization ‘

|
S A 1 A o At W/

) W ]
RN I A . N

20% Y ¥ W A

0o e e e
01234567 8 91011121314 151617 18192031 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 3040 41 42 43 44 45 46 47 48 49 50 51 52 53

Table

Symbal memaory utilization

Fig. 4.2 The symbol memory utilization (MPEG2 (TB0~10, 50~53) and H.264 (TB11~49))
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Fig. 4.3 is the whole comparison of VLC and CAVLC. The total entries of symbol
memories are 1084 if reversed Cluster addressing algorithm is used. However, there are
3563 entries needed to store the total symbols if non-reversed Cluster addressing algorithm
is used. The range is 67.40% when using two different algorithms. Further, the original
symbol numbers are 978 entries, it is closely to 1084 and that only 106 entries are wasted.

But the wasted entries are suitable for various programmable applications.

The needed
symbol memory 3563
(entries t
2250 —4—
67.40%
VLC &
1500 —— CAVLC
1084
750 ——
VLC &
CAVLC

Non-reversed Cluster Reversed Cluster>
addressing addressing

Fig. 4.2 The entries of needed symbol memory
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Fig. 4.3 uses another point of view to understand the advantage of using reversed
Cluster addressing. In the total simulation of VLC and CAVLC, if non-reversed Cluster
addressing is used, only 27.42% symbol memory is utilized. The wasting of symbol
memory is very huge. Hence, not only power consumption but also area is suffered very
huge challenge. However, if reversed Cluster addressing algorithm is used, the challenge

promotes to 90.22% and that 62.80% is improved.

Total symbol
memory utilization

A
100%——
90.22 %
A
62.80%
o —— VLC &
>0% CAVLC
, 27.42 %
VLC &
CAVLC

Non-reversed Cluster Reversed Cluster
addressing addressing

Fig. 4.3 The symbol utilization (MPEG2 and H.264)
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4.2 Fixed Length Code Simulation Results

This section provides a very interesting phenomenon as shown in Fig 4.4. It contains
different data: the first is the original symbol number, and the second is using fix length
code to addressing symbol memory and finally the proposal is using Self-grouping and
reversed Cluster addressing algorithm to address the symbol memory.

Because CAVLC table 9-5, 8<=nC is a fixed length codeword, we adopt it to have a
experiment. We can find the original symbol numbers are 62 entries. If using fix length
addressing the symbol memory, there must have 63 entries symbol memory to fit the all
symbol memory for table 9-5, 8<=nC. However, if proposed algorithm is used to address
the total symbol memory, it also needs 63 entries to addressing all symbol memory. The
efficiency of fix length addressing and the proposed algorithm remains the same. Thus it
can be seen the proposed algorithm not only:-suit variable length code but also fixed length
code.

There are advantages of the results mentioned. in above. First, that means not only
fixed length but also variable length code can share the same hardware. The second is that
the implementation is more easy because it doesn’t need other logic to process fixed length
code and variable length code.

Beside the results of above, there are sequence codewords i.e. 0000, 0001, 0010, ...
1111. The simulation results show that the symbol memory utilization is 100% that is also

the same as fixed length code addressing.
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The needed
symbol memory

(entries)
62 63 63
CAVLC CAVLC CAVLC
30— | TB9s TB9-5 TB9-5
(8<=nC) (8<=nC) (8<=nC)
‘Original symbol  Fix length Proposal
num. addressing

Fig. 4.4 The symbol utilization of fix length code and proposal
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Chapter 5
Comparison of Implementation
Results

5.1 Comparison of VLC

The comparison of VLC is shown in Table 5.1. References [17] and [18] are some
comparisons by using MPEG-2 standard. However, our proposal is using merged
MPEG-2@MP and H.264@BP to have a comparison. Further, the codeword memories of
[17] are 928 bit registers but [18] and our-propesal’use SRAM. Furthermore, under 0.6 um
and 0.18 um process, the gate counts are 110K; 7.8K and 16.34K.

Comparing to [17] and [18]-and our propasal, both references [17] and [18] must have
two groups to be codeword memory, but our proposal can be merged as single SRAM to be
a codeword memory. The “VLC TB14 & TB15 (non-merge)” means that the tables B-14
and B-15 of MPEG-2 have the same codeword and symbol and that we don’t merge them.
However, our algorithm and architecture can merge the codewords that has same symbols,
but [17] can’t do it. Further, if we merge both tables B-14 and B-15 by the same codewords
having the same symbols, reference [18] needs 4096 bits for two tables, and 2264 bits are

needed for our proposal under the same merged method.

There is something worth having a comparison that the grouping method of reference
[17] and [18] are searching method but our proposal uses detection method. It reduces the

overhead of grouping too many groups by using SRAM.
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Table 5.1 Comparison of VLC

Design [17] [18] Proposal

Standard MPEG2 MPEG2 (MPEG2@MP
/H.264@BP)

Leading 0/1 constraint No No No

Codeword memory
(VLC TB14 & TB15)

928 bit Registers

(Group information X 2)

(LUT memory X2)

320 bits SRAM

(Base address
memory X 1)

VLC TB14 & TB15 4000 bits NA 3668 bits

(non-merge)

VLC TB14 & TB15 Can’t 4096 bits 2264 bits

(codeword & symbol

merging)

Process 0.6 um 0.18um 0.18 um

Grouping algorithm Search Search Detect

Clock rate 100MHz 125MHz 125MHz

(Max: 200MHz)

Gate Counts 110K 7.8K 16.34K

(enc/dec) (decoder) (decoder)
(with mem.) A(with mem.) | (with mem.)

5.2 Comparison of CAVLC

Table 5.2 is the comparison of CAVLC. The design of reference [11] is for VLC 0,

VLC 1 and VLC 2 tables i.e. table 9-5 0 <= nC < 8. Hence, the needed codewords and

symbol memory are about 69 and 121 bytes. Because the design is to consider the properties

of VLC 0, VLC 1 and VLC 2, it is not programmable. However, if we also design the

hardware module by the properties of VLC 0, VLC 1 and VLC 2 and the proposed

algorithms also are used i.e. (35+7) X 8 for codeword memory and (62+64+62) X 6 for

symbol memory. The symbol memory of 6 bits is used because we use a flag for the

TotalCoeff is zero instead of 5 bits TotalCoeff. It results the TotalCoeff is 4 bits. Hence, the

TrailingOnes and TotalCoeff are totally 6 bits width. Moreover, the total memory size is

1464 bits and it is smaller than reference [11].
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Table 5.2 Comparison of CAVLC

Design

[11]

Proposal

Standard

H.264
(VLCO, VLC1, VLC2)

H.264
(VLCO, VLC1, VLC2)

Leading 0/1 constraint

No

No

Codeword memory

about 69 bytes

336 bits SRAM

(VLCO, VLC1, VLC2) (552 bits) (Base address memory X 1)
Symbol memory about 121 bytes 1128 bits

(968 bits)
Total memory 1520 bits 1464 bits
Programmable? No No
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Chapter 6
Conclusion and Future Work

6.1 Conclusion and contribution

In this thesis, we propose an efficient and programmable VLC decoder to reduce the
complexity of hardware and the needed memory size.

In general, the VLC decoder grouping method is to use search method, but we use
detection method to increase the decoding speed because we use the skill that grouping
information existing naturally in the Huffman tree. Specially, we simplify the memory
addressing algorithm by reversed Cluster addressing:action to achieve 90.22% symbol
memory utilization. Further, 62.80% symbol memory utilization is increased compared to
non-reversed Cluster addressing. Hence, the memory size of 43.40% and 44.73% are
reduced for MPEG-2 table B-14 and table B-15 compared to reference [17] and [18],
respectively. However, if non-programmable architecture is used, 3.69 % memory size is
reduced compared to [11] for VLC 0, VLC 1 and VLC 2 of CAVLC. To reduce the
architecture overhead, the single memory architecture is designed. That means our proposal
becomes possible to merge different tables used in the same standard or different standards.

It can reduce the overhead of too many symbol or codeword memories.

6.2 Future Work

In the implementation results, several improvements can be done to integrate this
design into the system. First, the input buffer should be implemented according to

references [5]-[10] to achieve high speed decoding in parallel. Beside, the memory should
40



be initialized by external memory or software to be integrated and can work in the system.
In this thesis, the initialization of memory is in the verilog HDL code by reading

programmed text file.
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Appendix A The Huffman Tree of
MPEG-2 VLC Tables
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48



Root Table B-5 of MPEG-2

Table 50 of re-assigned.-number for scalable

49



ROOt | Table B-6 of MPEG-2
Table 51 of re-assigned number for scalable

50
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Appendix B The Huffman Tree of
H.264 CAVLC Tables
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Table 9-5 2<=nC<4 of H.264
Table 12 of re-assigned number
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Table 9-5 nC== -1 of H.264
Table 15 of re-assigned number
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Root

Table 9-5 nC=-2 of H.264

Table 16 of re-assigned number for high profile
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Table 9-6 of H.264

Table 17 of re-assigned number for combination design
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Table 9-7 of H.264 ,TotalCoeff=4
Table 21 of re-assigned number
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Table 28 of re-assigned number
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Table 29 of re-assigned number
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Table 33 of re-assigned number
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Table 34 of re-assigned number
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Table 9-9b of H.264 ,TotalCoeff=1
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Table 9-9b of H.264 ,TotalCoeff=2
Table 37 of re-assigned number
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Table 38 of re-assigned number
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Table 9-9b of H.264 ,TotalCoeff=4
Table 39 of re-assigned number

89



Table 9-9b of H.264 ,TotalCoeff=5
Table 40 of re-assigned number
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Table 9-9b of H.264 ,TotalCoeff=6
Table 41 of re-assigned number
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Table 42 of re-assigned number
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Table 9-10 of H.264 ,zeroLeft=1
Table 43 of re-assigned number
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Table 9-10 of H.264 ,zerolLeft=2
Table44 of re-assigned number
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Table'9-10 of H.264 ,zeroLeft=3
Table 45 of re-assigned number
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Table 9-10/of H.264 ,zerolLeft=4
Table 46 of re-assigned number
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Table 9-10 of H.264 ,zeroLeft=5
Table 47 of re-assigned number
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Table 9-10 of H.264 .zeroLeft=6
Table 48 of re-assigned number
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Table 9-10 of H.264 ,zeroLeft>6
Table 49 of re-assigned number
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