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摘要 

 

H.264/AVC 是最新的視訊壓縮標準，與 MPEG-2，H.261 及 H.263 相比 H.264 提

供了更好的壓縮效率與壓縮品質。而在這些視訊編碼中最重要的可變長度編碼是一種

無失真的高效率編碼，其原理是給比較常發生的資訊較短的編碼長度，反之就給較長

的編碼長度，因此在長度不定的狀況下要相對應到固定長度之記憶體位址勢必要花費

許多不必要的記憶體空間，以及現今多種視訊標準中都採用了霍夫曼可變長度編碼，

其中若要符合多種視訊標準，其多個霍夫曼編碼表將是浪費記憶的瓶頸。 

 

從系統設計的角度，這篇論文提出了用記憶體程式化的方法來符合 MPEG-2 與

H.264 之雙模的視訊標準。在演算法方面，我們從霍夫曼編碼方法中著手，採用了霍

夫曼編碼中自已本身就有分群組的資訊，來分每一張霍夫曼表的群組，以降低所需記

憶體的需求量，再採用在霍夫曼樹叢中反向提供定址位址的概念來把浪費的符號記憶

v 



體需求量最小化。在硬體架構設計方面，為了符合多種視訊標準與使用單一 SRAM 記

憶體來降低多張霍夫曼表要分多塊記憶體的額外負擔，我們採用了在記憶體位址中分

群組之方法來達成僅使用單一 SRAM 記憶體即可代表多張霍夫曼表的方法。 

最後本論文利用 C++語言証實了此演算法可使 MPEG-2 與 H.264 所有的可變長度

編碼其所有的符號記憶體可達到 90.22%的平均利用率，而且利用了 UMC 0.18 製程合

成 MPEG-2 與 H.264 雙模的可變長度解碼器在操作頻率 200MHz 下，邏輯閘與記憶體

總數 31.12K，不僅可以滿足大部份的應用需求，而且此演算法與主要的硬體架構也可

以應用於未來的可變長度解碼器系統之中。 
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ABSTRACT 
 

H.264/AVC is the newest video coding standard. Compared to MPEG-2, H.261 and 

H.263, it provides more efficient compression ratio and quality. However, one of the most 

important variable length coding is the high efficient lossless coding. The principle is to 

assign high frequency information to shorter coding length, and vice versa. Therefore, in the 

situation of uncertain length, it must waste more unnecessary memory space for assigning to 

fixed length memory address. Furthermore, in the existing various video coding standards, 

they all adopt Huffman variable length code. It will be a bottleneck in memory consuming 

to conform to various video standards.   

In the system point of view, this thesis provides a programmable method to conform 

MPEG-2 and H.264 dual mode video standards. In the aspect of algorithm, we undertake 

the method of Huffman coding and adopt the grouping information that naturally exists in 

its Huffman coding. It groups every Huffman coding tables and reduces the memory 

requirement. Moreover, a reversed addressing concept in the Huffman cluster is adopted to 

minimize the wasted symbol memory. Furthermore, in the aspect of architecture design, a 
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single SRAM memory is used to reduce the overhead of memories. A memory address 

grouping method is adopted to achieve that using single memory represents many Huffman 

tables. 

Finally, this thesis proves that the proposed algorithm can achieve 90.22% symbol 

memory utilization of MPEG-2 and H.264 via C++ tools. Moreover, the MPEG-2 and 

H.264 dual mode design is synthesized using UMC 0.18 process under operation frequency 

of 200 MHz. The logic and memory gate counts are 31.12K. The algorithm and main 

architecture not only satisfies the most of requirements and can be adopted for advanced 

applications. 
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Chapter 1  
Introduction 
 

1.1 Motivation 
    In recent years, various video standards appear in the world, such as MPEG-1/2/4, 

H.261, H.263, H.264 etc. Therefore, the integration is more and more important to conform 

to various standards. It is fortunate that entropy coding is always used in the various 

different standards. Furthermore, the Huffman coding skill is widely used in the entropy 

coding. Hence, how to conform different video standards without redesigning the original 

architecture by the Huffman coding properties is an important issue.  

 

 

Fig.1.1 System view of programmable VLD 
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    In the system point of view in Fig 1.1, this thesis will focus on the entropy decoding 

system in various video standards, such as VLC and CAVLC for MPEG-2 and H.264. We 

hope to design an architecture that can decode the bit streams from baseband receiver and 

conform to two video standards by the programmable the VLC tables existing in MPEG-2 

and H.264. Further, the hardware overhead also hopes to be reduced. 

    For the purposes, some algorithms are developed to conform to different video entropy 

coding standards. Besides the algorithms can reduce the hardware overhead, the proposed 

architecture design also can simplify the decoding flow, and increase the memory utilization 

efficiency.  

 

1.2 Overview of VLC and CAVLC 
Huffman encoding skill is a well known lossless coding algorithm, whose principle is 

to assign the shorter codeword to more frequency information, and vice versa. Its coding 

efficiency is to be close to the entropy coding. The probability of the formula is described in 

equation (1).  

1)(
max

min

L

Ln

=∑
=

nP   , for n∈N, Lmin≤  n≤  Lmax

          , and )( maxLP ≤ )(nP ≤ )( minLP                  (1) 

)(nP ：Using probability in codeword length n. 

 

Therefore, it is used in many video standards, such as VLC and CAVLC in MPEG-2 

and H.264. This section will introduce the principles of VLC and CAVLC. 
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1.2.1 The VLC algorithm of MPEG-2 standard 

In the MPEG-2 standard, the entropy function block i.e. variable length coding is 

designed by the Huffman coding. There are fifteen tables, and are divided into two main 

parts. 

The first part is used in macroblock header, it includes macroblock addressing, 

microblock type I-picture, microblock type P-picture, microblock type B-picture, 

microblock pattern and motion code. The second part is used in Run/Level symbols, intra 

DC luminance, intra DC chrominance, intra AC and non-intra AC is included. 

In the tables of MPEG-2 mentioned in above, they are all established according to the 

statistics theory and use Huffman coding algorithm to reduce the redundant information. 

However, the decoding processes look up the table combined with source symbols and 

variable length codewords. 

For example, Table 1.1 is a part of MPEG-2 table B-15, the decoding processes of 

VLC are that if received bitstream is 00111, it will map to the run and level with 5 and 1 

respectively. Therefore, the decoding result is 5 and 1 [1]. 

 

Table 1.1: A part of MPEG-2 table B-15 

160000 110
220000 111
700001 00
600001 01

170000 100
180000 101 

140001 10
150001 11

levelrunVariable length code 

160000 110
220000 111
700001 00
600001 01

170000 100
180000 101 

140001 10
150001 11

levelrunVariable length code 
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1.2.2 The CAVLC algorithm of H.264 standard 

    In the H.264 standard, the entropy decoding process is different from the VLC of 

MPEG-2. It is not purely to look up tables. Further, it uses adaptive concept, and hence the 

entropy coding is named CAVLC (Context Adaptive Variable Length Coding). The CAVLC 

is mainly composed of five functions: coeff_token decoder, TrailingOnes decoder, level 

decoder, total_zero decoder and run_before decoder. The basic concept of coeff_token, 

total_zero and tun_before functions are to look up VLC tables. The meaning of every 

module and derivatives are described as follows: 

1. Coeff_token: getting the coefficients of 4X4 macroblock, it includes the TotalCoeff and 

TrailingOnes. 

2. TotalCoeff: the total coefficients of 4X4 residual macroblock, zeros are excluded. 

3. TrailingOnes: the tail remainder of positive or negative one in 4X4 residual 

macroblock after zigzag scanning.  

4. Total_zero: the number of total zeros in 4X4 macroblock. 

5. Run_before: the number of zeros before every coefficient. 

 

    The decoding flow of CAVLC mainly includes several parts and is introduced by the 

Fig. 1.2: 

1. Decoding the TotalCoeff and TrailingOnes: TotalCoeff = 5, TrailingOnes = 3 

2. Decoding the sign of TrailingOnes: TrailingOnes sign = -1, -1, 1 

3. Decoding the levels of the remaining non-zero coefficients: level = 3,1 

4. Decoding the total number of zeros before the last coefficient: total_zeros = 3 

5. Decoding each run_before of zeros: 3,0,1,-1,-1,0,1 
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Fig.1.2 4X4 residual macroblock of H.264 

 

 

The decoding flows of 1, 4 and 5 processes look up the Huffman coding-based tables such 

as Table 1.2. For example, if the received bitstream is 001111, the decoded symbol values 

TrailingOnes and TotalCoeff are 0 and 1 [2], respectively. 

 

Table 1.2: A part of H.264 table 9-5 

0011 0093

0011 0162

0011 1061

0011 1110

4<=nC<8TotalCoeff(coeff_token)TrailingOnes(coeff_token)

0011 0093

0011 0162

0011 1061

0011 1110

4<=nC<8TotalCoeff(coeff_token)TrailingOnes(coeff_token)
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1.3 Review of Prior Works 
In this section, some literatures are discussed and divided into three parts. The first is 

to review the VLC buffer and existing codeword prediction algorithm. The second is to 

introduce existing memory-based VLC algorithm and architectures. Furthermore, the 

newest memory-based CAVLC is introduced in the third part.  

1.3.1 Codeword Boundary Prediction and Buffer 

In the existing parallel decoding algorithms and architectures, the boundary of variable 

length code is difficult to divide because it doesn’t have clear and defined demarcation line. 

But determining the variable length code boundary is a key point to increase the decoding 

speed. In Fig.1.2, the traditional methods are that the boundary of codeword is identified 

after the symbol is decoded but the traditional method is not suitable for high speed 

application because there is a feedback loop to align the next bitstream [3][4]. 

 

Fig.1.2 Traditional parallel variable length decoding buffer 

 

Instead of feedback loop, Rudberg and Wanhammar replaced the barrel shifter with a 

shift register, where the decoder resembles parallel pipelined decoders [5]-[7]. It is 

illustrated in Fig. 1.3. The architecture makes it possible for the loop-free VLC decoder. It 

can send the bounded bitstream in parallel fashion to the symbol look-up unit. The principle 
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is that pipelined length decoder decodes the input bitstream length before sending bitstream 

to the symbol look-up unit. 

 

 

Fig.1.3 The loop-free architecture for VLC input buffer 

Besides the above architecture and method, Shieh et al. propose codeword boundary 

prediction algorithm, where the input codeword boundary can be predicted before decoding 

the final symbol [8]-[10]. The principle is to develop branch models to prediction as shown 

in Fig.1.4. 
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Fig.1.4 The traditional branch models and the proposal of Shieh et al. 

 

1.3.2 Prior Works for VLC 

In existing designs, several categories of VLC decoders have been proposed, such as 

CAM-, RAM-based designs [11]-[17]. However, the CAM-based designs require high cost 

to store all possible patterns while the RAM-based design is suitable for programmability. 

Shieh at al. propose memory-based VLC to decode and encode the bitstream and symbol. 

Moreover, the decoding flow is described as follows based on Fig 1.5: 
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Fig.1.5 An example of prior works [17] 

 

1. Received bitstream : 0011_1100 

2. Do group search: G1 

3. Get minicode: 0011_0000, codelength: 6, base address: 4 

4. Calculate codeoffset=0011_1100-0011_0000=0000_1100  00_0011  

(because codelength:6) 

5. Calculate symbol address: base address + codeoffset = 4 + 3 = 7 

 

Besides, Chien et al. propose an improved grouping algorithm, and is described and 

summarized as follows based on Fig 1.6 [18]: 
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Fig.1.6 An example of prior works [18] 

 

1. Received bitstream: 0_1011 

2. Do group search: LUT2 

3. Get m: 10, S: 5, minicode: 0_0100 

4. Calculate symbol address: 0101_1xxx_xx >> 5 – 4 = 0101_1- 0010_0 = 0_0111 = 

7(10) 

 

1.3.3 Prior Works for CAVLC 

In existing CAVLC design, it is rarely designed for programmable applications. The 

existent designs almost adopt hardwire method by the table property [19]-[22]. Yanmmei 

Qu and Yun use memory-based design method, but the memory is designed to fit the 

properties of tables in CAVLC. The other properties of VLC tables are not included, such as 

the VLC and CAVLC of MPEG-2 and H.264. Therefore it is not suitable for 

programmability applications [23]. The method of Qu et al. is introduced by the example of 

coeff_token module: 
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For the FLC table, the equation (2) is used. 

 

(0,0),   [5 : 0] 3
( 1, _ )

( [1: 0], [5 : 2]),  
when data

T TotalCoeff t
data data otherwise

=⎧
= ⎨
⎩

      (2) 

 

The equation (2) is based on the table of FLC properties and is hardwired architecture. 

For the other VLC tables, GSGEM algorithm is proposed to use the main leading zero 

property of VLC tables and the following is the grouping rules: 

 

1. If the length of the codewords with same leading zeros is the same, they are 

assigned to the same group. The group number is the number of leading zeros. 

2. If the length of the codewords with same leading zeros is different, the codewords 

are grouped according their prefixes and the codewords with same length are 

assigned to the same group. 

3. To reduce the symbol memory, they merge the symbols based on the range of 

TrailingOnes which is 0~3. 

4. Because TotalCoeff ranging from 0 to 16 and few states of TotalCoeff equal to 0, 

they use a flag to show these states and store TotalCoeff_t of 4 bits instead of 

TotalCoeff of 5 bits to reduce one bit per memory unit of the symbol memory. 

 

1.4 Thesis Organization 
This thesis is organized as follows. At first, the Self-grouping and Reversed Cluster 

addressing algorithms are described in Chapter 2. Furthermore, the architectures of 

Self-grouping and Reversed Cluster algorithm are proposed in Chapter 3. Chapter 4 exhibits 

the simulation results to prove that the algorithms are efficient. Some comparison and 
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implementation results are shown in Chapter 5. Finally, the contributions of this thesis and 

other issues for further research are highlighted in Chapter 6. 
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Chapter 2  
Self-Grouping and Reversed Cluster 
Addressing Algorithm 
 

To improve the efficiency of prior works, some algorithms and architectures are 

developed. In this chapter, the Self-grouping and Reversed Cluster Addressing algorithm are 

proposed. Before introducing the algorithms, some terminologies are introduced first. 

Furthermore, an example including Self-grouping and Reversed Cluster addressing is 

described in the last section. 

 

2.1 Define Terminologies of Proposed Algorithm 
In this section, three terminologies of variable length code are defined [24][25]. As 

shown in Fig. 1.7, (a) are variable length code and (b) is the corresponding Huffman tree 

structure. Moreover, the terminologies are defined using leading 0’s case. The leading 1’s 

case is similar to the leading 0. They are defined as follows: 

 

1. Root: 

1) Root is the starting point of the Huffman tree as shown in Fig. 1.7 (b). 

2. Trunk: 

1) Trunk is the group information or the stop signal.  

2) In Fig. 1.7 (a), Trunk is the front zeros or one of variable length code. 

3) In Fig. 1.7 (b), Trunk is the thick line. 

13 



 

3. Cluster: 

1) Cluster is the set behind Trunk, i.e. Cluster 0, Cluster 1, Cluster 2 and Cluster 

3. 

4. Null Cluster: 

1) The Cluster 4 is the Null Cluster because that behind the Trunk, there is null 

set.  

5. Group: 

1) In the Trunk of the variable length code, the same group means have the same 

zero numbers in front of Cluster such as group 0, group 1, group 2, group 3 

and group 4 in Fig1.7. 

2) Group number and Cluster number are the same in the identify Huffman tree 

system, i.e. Group 0 = Cluster 0, Group 1= Cluster 1, Group 2= Cluster 2, 

Group 3= Cluster 3 and Group 4= Null Cluster.  

 

 

Fig.2.1 (a) Variable length code and (b) The Huffman tree of variable length code 
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2.1.1 The table and corresponding Huffman tree of MPEG-2 

In the Fig. 2.2, it is a part of table B-15 of MPEG-1 and the expanded Huffman tree. 

The terminologies of the Fig. 2.2 are the same as previous introduction. Further, every 

symbol, run and level are corresponding to unique variable length code (codeword). That is 

to say the codeword is one to one and mapping in the same table of MPEG-2. 

In the Fig. 2.2 (b), the Trunk is thick line and there are two Clusters drawn by the 

dotted line i.e. Cluster 0 and Cluster 1 that they are corresponding to group 2 and 3 

respectively. 

 

 

Fig.2.2 (a) A part of table B-15 in MPEG-2 standard and (b) Its Huffman tree 

 

2.1.2 The table and corresponding Huffman tree of H.264 

 As shown in Fig 2.3, there is a part of table 9-5 of H.264. Similarly, every variable 

length code (codeword) is corresponding to unique symbol that is TrailingOnes and 

TotalCoeff. Fig 2.3 (b) is the expanded Huffman tree. The Trunk and Cluster are 
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corresponding to Fig 2.3 (a). 

     The principle of CAVLC is also based on looking up table. Hence it must be one 

to one and mapping. Every leaves of the Huffman tree in Fig 2.3 are corresponding to one 

symbol. 

 

 

Fig.2.3 (a) A part of table 9-5 in H.264 standard and (b) Its Huffman tree 

 

2.1.3 The leading 0 and leading 1 topology of Huffman tree  

 Fig. 2.4 is the Huffman tree of leading 1 and leading 0. The prior introduction is 

focusing on leading 0. However, the Huffman tree of leading 1 is shown in Fig.2.4 (a) 

existing widely in every table of VLC and CAVLC.  

The difference between leading 0 and leading 1 is the Trunk. The Trunk begins in “1” 

for leading 1’s codeword and stop in 0. The leading 0’s Huffman tree is opposite. However, 

the Cluster have not the above property, the property of leading 1 and leading 0 codewords 

are the same.   
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0
0
1

01

1

1 0

0

Root Trunk

0

Group 2
(Cluster 1)

0
1

01

1

1 0

0

Root

Trunk

Group 1
(Cluster 0)

1

(a)                                       (b)  

Fig.2.4 (a) A leading 1 Huffman tree (b) A leading 0 Huffman tree 

 

2.2 Self-grouping Algorithm 
In this section, Self-grouping algorithm is introduced. The meaning of Self-grouping is 

that the grouping information exists naturally in the Huffman tree and the grouping method 

is that using self-information and it results the name of algorithm is Self-grouping algorithm. 

As shown in Fig.2.5, there is information. The first is Cluster information, the second is stop 

signal information and the third is grouping information. In this section, the grouping 

information is discussed. 

From the Fig. 2.5, we define the numbers of zero as groups. For example, if there is 

one zero in the front of codeword, the group 0 is allocated and if there are seven zeros, the 

group 6 is allocated and so on. 

After allocating the group, there is a signal opposite to the front group information and 

the signal is named as stop signal that needn’t to store the information. Hence, after 

grouping the codeword there is not needed to store any information in the decoder. The need 

is to identify theses information.  

In the Fig. 2.5, the original bit needed to be stored is 76 bits, but after applying 

Self-grouping algorithm, there are only 23 bits needed to be stored for example. Hence, 
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69.74 % codeword size is reduced by applying the Self-grouping algorithm. 

. 

0000 0000 0001 1011
0000 0000 0011 001
0000 0000 0100 11
0000 0001 1111
0000 0001 1110
0110 
010
Variable length code 

0000 0000 0001 1011
0000 0000 0011 001
0000 0000 0100 11
0000 0001 1111
0000 0001 1110
0110 
010
Variable length code 

group0

Cluster information
group0
group6
group6
group8
group9

group10

stop signal

 

Fig.2.5 The variable length code and its self-grouping information 

 

2.3 Reversed Cluster Addressing Algorithm 
In this section, Reversed Cluster addressing algorithm is described and some issues are 

discussed for memory applications. 

The meaning of Reversed Cluster addressing is that the addressing method is to use 

reversed Cluster bitstream. In the Fig.2.6, there are some differences between reversed and 

non-reversed Cluster addressing. If Cluster information is used to address the memory 

location, the reversed Cluster information is better than non-reversed one because the 

needed least memory space is less than non-reversed Cluster addressing. 
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Fig.2.6 (a) Normal Cluster addressing (b) Reversed Cluster addressing 

 

For example, in Fig. 2.6 (a), if the non-reversed Cluster is used, the corresponding 

symbol memory utilization is shown as follows by equation (3): 
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The group0_utilization is 12% and group1_utilization is 20% but the table utilization is 

16% calculated by the equation (3).  

If the Reversed-Cluster algorithm is used, the addressing mode will follow the formula 

(4). 
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If Reversed Cluster addressing is used, 64% symbol memory utilization can be 

improved for the case of Fig.2.6. 

 

2.4 An example of the Proposed Algorithm 
In Fig.2.7, an example of proposed algorithm is introduced and is simplified several 

steps shown as follows: 

1. Received the bitstream of table 0: 0000_0110 

2. Group detect: group 4 

3. Codeword address: 4(10)+{Table_select=0, Bitstream [15], 4’d 0}=00_0100 

4. Cluster: 10_000: reversed Cluster: 000_01 

5. Symbol address:  
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base_address [codeword_address]+reversed Cluster=0000_0100+000_01=5(10) 

 

 

Fig.2.7 An example of the proposed algorithm 
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Chapter 3  
Proposed Architecture Of 
Self-Grouping and Reversed Cluster 
Addressing Algorithm 

 

In this Chapter, the proposed architectures are presented. Moreover, the hardware 

block diagram of VLC and CAVLC is shown in Fig.3.1. The input bit_stream through the 

CAVLC & VLC control unit and Zeros/Ones counter, the Zeros/Ones Counter extracts 

codeword_address and reversed_basic_cluster signals to the addressing unit.  

Furthermore, if it is in the VLC decoding action, the decoding symbol is sent to other 

function block such as inverse quantization or motion compensation. However, if it is in the 

CAVLC decoding flow, there is a feedback to the control logic to fit the CAVLC FSM 

decoding action. 

Hence, in this Chapter, two main parts are classified and introduced. The first is the 

implementation of Self-grouping algorithm i.e. Zeros/Ones Counter and introduced in 

section 3.1. The second is addressing unit, it is the main part to address the symbol memory 

and composed of memories and introduced in section 3.2. Finally, some examples of the 

hardware action are described in section 3.3. 
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. 

Fig. 3.1 The implementation hardware block diagram of VLC and CAVLC 

 

3.1 The Architecture of Self-grouping Algorithm 
The Architecture of Self-grouping algorithm is described in HDL code, as shown in 

Fig.3.2. Although the name is Zeros/Ones counter, it is implemented using parallel detector 

skill. The principle of the hardware is described as follows: 

 

1. The line 1 and line N identify the leading 0 or leading 1 

2. The line 5 and line 10 extract the codeword address and bit stream cluster to the 

addressing unit. 

     

    The codeword address is composed of Table_select, bitstream [15] and group. The 

bitstream[15] is the location of symbol base address memory, its intervals are 16. Therefore, 

it must be in the front of group and behind the Table_select. Moreover, to integrate symbol 

base address memory to single memory in different tables in VLC and CAVLC, the 
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Table_select is in the location of MSB of codeword_addr. Hence, it means the interval of 

every table in symbol base address memory is 32. Although there is some waste of symbol 

base address memory, it is worth doing this arrangement instead of many symbol base 

address memories having larger overheard.  

  

 

Fig. 3.2 The HDL code of parallel detector of Zeros/Ones counter 

 
3.2 The Architecture of Reversed Cluster Addressing 

Algorithm 
The architecture of reversed Cluster addressing is addressing unit in Fig. 3.1, it is 

composed of two memories. The first is symbol base address memory and the second is 

symbol memory. 

Symbol address memory stores the base address of symbol, and the stored information 

is an addressing accumulation by the dispersed sequence equation (5) as shown in follows: 
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Fig. 3.3 shows the addressing unit, first the codeword address sends address to symbol 

base address memory from Zeros/Ones counter to get the base address of symbol. 

Meanwhile, the reversed Cluster addressing signal is sent to the adder shown in Fig.3.3, the 

sum of symbol base address and {3’b0, bit_stream_cluster [0:4]} is the correct symbol 

address. 

 

 
Fig. 3.3 The architecture of addressing unit 

 

    The design concept of bit_stream_cluster is five bits width because the highest Cluster 

existing in VLC and CAVLC is five bits high as shown in Fig.3.4. 
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Fig. 3.4 The highest in Basic Cluster of leading0 and 1’s case 

 

3.3 Some examples of hardware decoding flow 
Based on Fig. 3.5, some decoding flows are presented to help understand the hardware 

action.  

 

Example 1, if the bitstream 0110 of Table 0 is received: 

1. 0110 through Zeros/Ones counter and extract the codeword address 

Ex: 

1) codeword_addr 

= group + {Table_select, bitstream [15], 4’b0} 

= 0(10) + {00, 0, 0000} 

= 000_0000 

= 0 

 

2. The symbol base address is obtained as follows 

Ex: 

1) symbol_base_addr [codeword_addr]  
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= symbol_base_addr [0] 

= 8’b0000_0000 

3. At the same time, the reversed Cluster is also extracted 

Ex: 

1) reversed_cluster 

= {3’b0, bit_stream_cluster [0:4]} 

= 8’b0000_0001 

 

4. The sum of symbol_base_addr and reversed_cluster is the symbol address 

Ex: 

1) symbol_addr 

= symbol_base_addr + reversed_cluster 

= 8’b0000_0000 + 8’b0000_0001 

= 8’b0000_0001 

= 1(10) 

2) {run, level} 

= programmable symbol memory [symbol_addr] 

= programmable symbol memory [1] 

 

Example 2, if the bitstream 1111_1010 of Table 0 is received: 

1. 1111_1010 through Zeros/Ones counter and extract the codeword address 

Ex: 

1) codeword_addr 

= group + {Table_select, bitstream [15], 4’b0} 

= 4(10) + {00, 1, 0000} 

= 001_0100 
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= 20(10)

 

2. The symbol base address is obtained as follows 

Ex: 

1) symbol_base_addr [codeword_addr]  

= symbol_base_addr [20] 

= 8’b0110_0100 

 

3. At the same time, the reversed Cluster is also extracted 

Ex: 

1) reversed_cluster 

= {3’b0, bit_stream_cluster [0:4]} 

= 8’b0000_0001 

 

4. The sum of symbol_base_addr and reversed_cluster is the symbol address 

Ex: 

1) symbol_addr 

= symbol_base_addr + reversed_cluster 

= 8’b0110_0100 + 8’b0000_0001 

= 8’b0110_0101 

= 101(10) 

2) {run, level}  

= programmable symbol memory [symbol_addr] 

= programmable symbol memory [101] 

 

 

28 



 

 

Example 3, if the bitstream 0001_00 of Table 3 received: 

1. 1111_1010 through Zeros/Ones counter and extract the codeword address 

Ex: 

1) codeword_addr 

= group + {Table_select, bitstream [15], 4’b0} 

= 2(10) + {11, 0, 0000} 

= 110_0010 

= 98(10)

 

2. The symbol base address is obtained as follows 

Ex: 

1) symbol_base_addr [codeword_addr]  

= symbol_base_addr [98] 

= 8’b1111_0100 

 

3. At the same time, the reversed Cluster is also extracted 

Ex: 

1) reversed_cluster 

= {3’b0, bit_stream_cluster [0:4]} 

= 8’b0000_0000 

 

4. The sum of symbol_base_addr and reversed_cluster is the symbol address 

Ex: 

1) symbol_addr 

= symbol_base_addr + reversed_cluster 
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= 8’b1111_0100 + 8’b0000_0000 

= 8’b1111_0100 

= 244(10) 

2) {run, level}  

= programmable symbol memory [symbol_addr] 

= programmable symbol memory [244] 

 

 

Fig. 3.5 Some examples of decoding flow 
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Chapter 4  
Simulation Results 

 
In this chapter the simulation results are presented, it includes the symbol memory 

utilization in fix length code and variable length code. Furthermore, the simulation results 

prove the proposed algorithm is efficient. 

 

4.1 Variable Length Code Simulation Results 
Fig. 4.1 is the needed entries of symbol memory in non-reversed Cluster addressing, 

reversed Cluster addressing and the original symbol number. Moreover, the table number is 

assigned to sequence number. Table 0~ 10 are MPEG-2 non-scalable and Tables 50~53 are 

for scalable application. Further, Tables 11~49 are CAVLC tables 9-5~ 9-10. 

We can find the least needed entries number of reversed Cluster addressing drawn in 

tetragon is less than the non-reversed Cluster addressing drawn in rhombus in Fig 4.1. 

Further, the reversed Cluster addressing is closely to the original symbol number drawn in 

triangle. That is why a reversed Cluster addressing algorithm is adopted. 

There are several important tables that are worth to discuss. Table 9 and Table 10 of 

Fig 4.1 are the tables 14 and 15 in MPEG-2 that is the maximum table size in VLC and 

CAVLC. If non-reversed Cluster addressing algorithm is adopted, it needs 279 and 369 

entries at least but reversed Cluster addressing is adopted, 131 and 144 entries is needed. 

The 133 and 144 is closely to the 114 and 113 of original symbol number.  

Moreover, the symbol memory utilization that excludes VLC of MPEG-2 from the Fig. 
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4.1 is almost 100%. Furthermore, there don’t have any non-reversed Cluster addressing that 

is larger than reversed Cluster addressing symbol memory utilization.   

 

Fig. 4.1 The needed entries of symbol memory (MPEG2 (TB0~10, 50~53) and H.264 

(TB11~49)) 

 

To be more clear that Fig. 4.2 is presented to show the symbol memory utilization. 

Although there are also 100% symbol memory utilization, the non-reversed symbol memory 

utilization is about 20%. However, if reversed Cluster addressing is used, the utilization lies 

in 80% ~ 100%. In Fig. 4.2, it is easily to understand the advantage of reversed Cluster 

addressing. 

 

 
Fig. 4.2 The symbol memory utilization (MPEG2 (TB0~10, 50~53) and H.264 (TB11~49)) 
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Fig. 4.3 is the whole comparison of VLC and CAVLC. The total entries of symbol 

memories are 1084 if reversed Cluster addressing algorithm is used. However, there are 

3563 entries needed to store the total symbols if non-reversed Cluster addressing algorithm 

is used. The range is 67.40% when using two different algorithms. Further, the original 

symbol numbers are 978 entries, it is closely to 1084 and that only 106 entries are wasted. 

But the wasted entries are suitable for various programmable applications. 

 

Fig. 4.2 The entries of needed symbol memory 
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Fig. 4.3 uses another point of view to understand the advantage of using reversed 

Cluster addressing. In the total simulation of VLC and CAVLC, if non-reversed Cluster 

addressing is used, only 27.42% symbol memory is utilized. The wasting of symbol 

memory is very huge. Hence, not only power consumption but also area is suffered very 

huge challenge. However, if reversed Cluster addressing algorithm is used, the challenge 

promotes to 90.22% and that 62.80% is improved. 

 

 

 Fig. 4.3 The symbol utilization (MPEG2 and H.264) 
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4.2 Fixed Length Code Simulation Results 
This section provides a very interesting phenomenon as shown in Fig 4.4. It contains 

different data: the first is the original symbol number, and the second is using fix length 

code to addressing symbol memory and finally the proposal is using Self-grouping and 

reversed Cluster addressing algorithm to address the symbol memory.  

Because CAVLC table 9-5, 8<=nC is a fixed length codeword, we adopt it to have a 

experiment. We can find the original symbol numbers are 62 entries. If using fix length 

addressing the symbol memory, there must have 63 entries symbol memory to fit the all 

symbol memory for table 9-5, 8<=nC. However, if proposed algorithm is used to address 

the total symbol memory, it also needs 63 entries to addressing all symbol memory. The 

efficiency of fix length addressing and the proposed algorithm remains the same. Thus it 

can be seen the proposed algorithm not only suit variable length code but also fixed length 

code. 

There are advantages of the results mentioned in above. First, that means not only 

fixed length but also variable length code can share the same hardware. The second is that 

the implementation is more easy because it doesn’t need other logic to process fixed length 

code and variable length code. 

Beside the results of above, there are sequence codewords i.e. 0000, 0001, 0010, … 

1111. The simulation results show that the symbol memory utilization is 100% that is also 

the same as fixed length code addressing. 
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Fig. 4.4 The symbol utilization of fix length code and proposal 
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Chapter 5  
Comparison of Implementation 
Results 

 

5.1 Comparison of VLC 
The comparison of VLC is shown in Table 5.1. References [17] and [18] are some 

comparisons by using MPEG-2 standard. However, our proposal is using merged 

MPEG-2@MP and H.264@BP to have a comparison. Further, the codeword memories of 

[17] are 928 bit registers but [18] and our proposal use SRAM. Furthermore, under 0.6 um 

and 0.18 um process, the gate counts are 110K, 7.8K and 16.34K. 

Comparing to [17] and [18] and our proposal, both references [17] and [18] must have 

two groups to be codeword memory, but our proposal can be merged as single SRAM to be 

a codeword memory. The “VLC TB14 & TB15 (non-merge)” means that the tables B-14 

and B-15 of MPEG-2 have the same codeword and symbol and that we don’t merge them. 

However, our algorithm and architecture can merge the codewords that has same symbols, 

but [17] can’t do it. Further, if we merge both tables B-14 and B-15 by the same codewords 

having the same symbols, reference [18] needs 4096 bits for two tables, and 2264 bits are 

needed for our proposal under the same merged method. 

 

There is something worth having a comparison that the grouping method of reference 

[17] and [18] are searching method but our proposal uses detection method. It reduces the 

overhead of grouping too many groups by using SRAM.  
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Table 5.1 Comparison of VLC 

Design [17] [18] Proposal 
Standard MPEG2 MPEG2 (MPEG2@MP

／H.264@BP) 

Leading 0/1 constraint No No No 
Codeword memory 
(VLC TB14 & TB15) 

928 bit Registers
(Group information X 2 ) 

 
(LUT memory X2) 

320 bits SRAM
(Base address 
memory X 1) 

VLC TB14 & TB15 
(non-merge) 

4000 bits NA 3668 bits 

VLC TB14 & TB15 
(codeword & symbol 
merging) 

Can’t 4096 bits 2264 bits 

Process 0.6 um 0.18um 0.18 um 
Grouping algorithm Search Search Detect 
Clock rate 100MHz 125MHz 125MHz 

(Max: 200MHz) 

Gate Counts 110K 
(enc/dec) 

(with mem.) 

7.8K 
(decoder) 

(with mem.)

16.34K 
(decoder) 

(with mem.) 

 

 

5.2 Comparison of CAVLC 
Table 5.2 is the comparison of CAVLC. The design of reference [11] is for VLC 0, 

VLC 1 and VLC 2 tables i.e. table 9-5 0 <= nC < 8. Hence, the needed codewords and 

symbol memory are about 69 and 121 bytes. Because the design is to consider the properties 

of VLC 0, VLC 1 and VLC 2, it is not programmable. However, if we also design the 

hardware module by the properties of VLC 0, VLC 1 and VLC 2 and the proposed 

algorithms also are used i.e. (35+7) X 8 for codeword memory and (62+64+62) X 6 for 

symbol memory. The symbol memory of 6 bits is used because we use a flag for the 

TotalCoeff is zero instead of 5 bits TotalCoeff. It results the TotalCoeff is 4 bits. Hence, the 

TrailingOnes and TotalCoeff are totally 6 bits width. Moreover, the total memory size is 

1464 bits and it is smaller than reference [11]. 
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Table 5.2 Comparison of CAVLC 

Design [11] Proposal 
 

Standard H.264 
(VLC0, VLC1, VLC2)

H.264 
(VLC0, VLC1, VLC2) 

Leading 0/1 constraint No No 

Codeword memory  
(VLC0, VLC1, VLC2) 

about 69 bytes 
(552 bits) 

336 bits SRAM 
(Base address memory X 1)

Symbol memory about 121 bytes 
(968 bits) 

1128 bits 

Total memory 1520 bits 1464 bits 

Programmable? No No 
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Chapter 6  
Conclusion and Future Work 
 
6.1 Conclusion and contribution 

In this thesis, we propose an efficient and programmable VLC decoder to reduce the 

complexity of hardware and the needed memory size. 

In general, the VLC decoder grouping method is to use search method, but we use 

detection method to increase the decoding speed because we use the skill that grouping 

information existing naturally in the Huffman tree. Specially, we simplify the memory 

addressing algorithm by reversed Cluster addressing action to achieve 90.22% symbol 

memory utilization. Further, 62.80% symbol memory utilization is increased compared to 

non-reversed Cluster addressing. Hence, the memory size of 43.40% and 44.73% are 

reduced for MPEG-2 table B-14 and table B-15 compared to reference [17] and [18], 

respectively. However, if non-programmable architecture is used, 3.69 % memory size is 

reduced compared to [11] for VLC 0, VLC 1 and VLC 2 of CAVLC. To reduce the 

architecture overhead, the single memory architecture is designed. That means our proposal 

becomes possible to merge different tables used in the same standard or different standards. 

It can reduce the overhead of too many symbol or codeword memories. 

 

6.2 Future Work 
In the implementation results, several improvements can be done to integrate this 

design into the system. First, the input buffer should be implemented according to 

references [5]-[10] to achieve high speed decoding in parallel. Beside, the memory should 
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be initialized by external memory or software to be integrated and can work in the system. 

In this thesis, the initialization of memory is in the verilog HDL code by reading 

programmed text file. 
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Appendix A  The Huffman Tree of 
MPEG-2 VLC Tables 
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