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ABSTRACT

With the advances to nanemeter technoelogies and SOC, the process variation plays
a more important in the future. Traditional corner value timing analysis becomes less
effective and grossly conservative. Statistical timing models and simulation methods
are required to capture these variation effects. The methodology of statistical timing
analysis that characterizes time variables as statistical random variables offers a better
approach for more accurate timing predictions. SSTA enable designer to setup and hold
Timing Margins to optimize and improve the performance and reliability. The thesis
considers real process variations and fabrication implementation designs a practical test
chips and presents the implementation of a novel path-based learning methodology

with Balanced Bootstrap re-sampling that accounts for process variations and their



spatial correlations. It doesn’t need timing model hypothesis and make the accurate
timing spatial correlation inference from fabrication measurement data. By
constructing the confidence interval of the spatial correlation, we can get correlations
and predictions for path delay and path distances. By this, we can know how many path
distance changes will cause how many path delay correlation changes. It can be applied
for two purposes. First, the bootstrap re-sampling can be used to produce a fast and
approximated simulator for statistical timing simulations in the advanced production
phase. Secondly, this path-based learning can be used as a vehicle to derive statistical
static timing analysis (SSTA) based on observed measured data from the test chips in

mature production phase.
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Chapter 1
Introduction

1.1 Introduction

In today's fabrication processes, there are many process parameters including doping, gate
oxidation thickness, gate length, etc. Our research focus here, gate length variation is the dominant
source of delay variation. This is due to the fact that gate length variation affects the device at
different steps throughout the fabrication process, such as lithography dose variation, focus variation,
etch rate variation, etc. These accumulated variations result in the electrical function far away from
the target. For example, gate length variation canginduce threshold voltage shift, current change and
timing delay. The gate length hasthigh correlation to its neighboring so the spatial correlation is our
main research purpose. \We" give -an innovated learning base .SSTA modeling with bootstrap
re-sampling to discuss spatially correlated timing delay caused by gate length variations.

As we know, most of the sources of gate length variation are systematic in nature, and it is
possible to remove these systematic-variations. By our modeling, we cansdo it well and give a good
perdition for it.

Although many researchers have dealt with process variations, most ofithem have ignored spatial
correlations by simply assumingszero.correlation among-devices on -the chip. The difficulty in
considering spatial carrelations between parameters [is that it can fesult in complicated path
correlation structures whigh-are hard ta-deal with. The authors in.[1] cempute path correlations on the
basis of pair-wise gate delay covariance and use an analytic methodto derive lower and upper bounds
of circuit delay. The authors of [2] manipulate'the'complicated correlation structure with the Principal
Component Analysis (PCA) technique to transform the sets of correlated parameters into sets of
uncorrelated variables. The statistical timing computation is then performed with a PERTIike circuit
graph traversal. The statistical timing analyzer in [3] imposes upper bounds and lower bounds on the
delay correlations. These bounds can then be refined through learning the actual delay correlations
from the path delay testing on silicon. Most of them have the strong hypothesis about path delay
modeling and don’t add process variation conditions into the modeling. Authors of [16], [20] propose
a practical implementation to measure spatial correlation from test chips. It is good for huge silicon
data but may be trouble in small data. In advanced technology, the process is not stable and silicon
data are precious. How to use the limited silicon data to get the useful reference for spatial correlation

modeling and how to validate the modeling with the silicon data is a hard topic



1.2 Motivation

SSTA is attractive because traditional worst-case corner timing analysis has become overly
conservative due to the process variations. To take the advantage of SSTA technology in practice, the
immediate challenge would be how to obtain an accurate and efficient statistical timing model. Many
methodologies have been proposed [4], [5] to get a reliable timing model. There are many sources of
pessimism in statistical timing model analysis and many of them are dependent on the method used
for analysis. How to model and handle spatial correlations in SSTA is also an important research topic.
Various spatial correlation models have been introduced. In [6], the authors use PCA to handle spatial
correlations. They assume all delay distributions to be Gaussians, and approximate the MAX
operation of 2 or more Gaussian distributions to be Gaussian as well. In [7], they propose a canonical
first-order delay model and use an incremental block based timing analyzer to propagate arrival times.
Considering process variations into SSTA modeling are more important when the feature size of MOS
transistor scales down to nanometers. Wnder process variations, parameters such as the gate length,
the gate width and the metal line height are random variables: Among so many types of variation
parameters, spatial correlations are recognized to have significant impact on timing of design [9], [10],
and the accuracy of SSTA analysis [11].-Our primary goal Is.to demonstrate that path-based learning
is indeed feasible, and.shows how-it-can be applied Iin test and diagnosis applications. Many papers
describe the process variation-modeling but lack to account for it into spatial correlations. A learning
procedure from fabrication silicon data to study.SSTA is practical and useful. We can design test
chips to investigate electrical device parameters‘and use inverter trend to Simulate path delays. After
getting the precious silicon data, we, use methodologies.to.model spatial correlation matrix and apply

it into statistical static timing.analysis (SSTA) modeling.



1.3 Contributions

In this work, we propose a novel path-based learning methodology with Balanced Bootstrap
re-sampling that accounts for within-die process variations. By designing a test chip with the inverter
trend array, we add gate length variations to the test chip and investigate the spatial correlation for the
path delay. After running HSPICE to the test chip, we get the path delay and apply the Balanced
Bootstrap confidence interval to estimate the spatial correlation. When the feature size of MOS
transistor scales down to nanometers, the fabrication production cost is expensive and experiment
silicon data is small. The Balanced Bootstrap can be applied for the small samples and doesn’t need
any timing model hypothesis like normal path delay distributions. We demonstrate the Bootstrap
confidence interval has a good coverage rate for the true spatial path delay correlation. We also
provide a prediction bound of the path spatial correlation for different distances



Chapter 2
Preliminaries

2.1 Process Variation

As the feature size of silicon is scaling down and the wafer size is getting larger, process
variation is increasingly difficult to model and analysis. The variation is due to two factors:
environmental and physical. Environmental factors occur at run-time and physical factors occur
during the manufacturing of the circuit. Environmental process variation can decompose into lot to lot,
wafer to wafer and die to die. Our research focuses on intra-die variation and the channel length (Let )
variation is the emphasis. The reason is that MOSFETs are very critical to this type of variation and

have large impacts on timing delay.

2.2 Gate Length Variation

For many processwvariation sources, gate length variation is the.dominant source of the delay
variation [8]. The gate lengthvariation come throughout the fabrication process like focus variation,
etch rate variation, scanner variation, etc. Gate length variations are pattern dependences. Close gates
are higher similar length than far ones..In‘our thesis, we model gate lengthwvariation and put it into

spatial correlations for path delays.

2.3 Process Variation Decomposition

We denote V as the measured gate length process parameter and model it as a random variable.
Its overall variation can be decomposed into three distinct components: the inter-chip global variation
X, the intra-chip spatial variation Y, and the purely uncorrelated random variation Z, i.e.,

V=v+X+Y+Z Q)

where vy is the mean value of V, and X, Y and Z are random variables. How to extract the systematic
variation has been studied in many papers [12], [13]. Our focus is on the zero-mean random variation
components X, Y and Z. The inter-chip global variation X models the variation due to global variation
effects. It is the same within the chip but different for different chips. The intra chip spatial variation
Y models location-dependent variations within the chip. It is different at different locations within the
same chip. The random variation Z models the purely uncorrelated random component that is not

explainable by either the inter chip global variation X or intra-chip spatial variation Y. We assume



that X, Y and Z have mutually independent distributions. Hence, the variance of V can be given by

G\f :ai +G\f +G§ (2

Where ox’, ov?, ando;” are the variances of X, Y , and Z respectively. The o\ is total variance.

2.4 Modeling of Spatial Correlation

In below 65nm technology, lithography of gate length CD has high correlated on neighboring
patterns in the layout (proximity effect), the location in the layout (lens aberrations), and the density
of features on the mask (flare). This implies that devices are more likely to have similar
characteristics in close area than devices that are far apart. It means that correlation function p(xi, X;,
Yi, ¥j ) between any two points (i, yi) and (X; , y;j ) depends only on the distance v between them, i.e.,

P04 X, ¥ V) = PO =X+ (= ¥,)) = p(V) )

Suppose there are M chosen points on._the chip and their joint 'spatial variation variable Y = (Y4,
Ya, ..., Yv)' forms a multivariate Gaussian process with respect to'théir locations on the chip [19].
Any two points correlation function p can be calculated: by (3) and henee the correlation matrix of

spatial variation variable S is:formed in (4):

L RN .. .. D |
A Loz Pub
0P 4 P l- . gy (4)

| Pu1 Pu2 Pugs:: 1

For any two points V; and V, of measured gate length process parameters,
covV,,V;)=coUX +Y, +Z, X +Y; + Z)]

=E[(X+Y;+Z)-E(X+Y,+Z)[(X +Y,+Z)-E(X +Y,+Z)
=E[X +(Y; = E(Y,)) + ZI[ X +(Y; — E(Y;) + Z]
= oy +covY,,Y,) +o;

=oy +p(V, ))oio; +0; (5)

where p(Vij) is the spatial correlation coefficient between two locations that are v;; distance apart. The
same distance vij always corresponds to the same p(Vi;), regardless of their locations.
Those M chosen gate length process parameters form the joint distribution variable V = (V1, Vo, ...,

Vm)' and its mean and variance are



m=EM)=Vy=| . ©)

Vo

oy =Var(V)=E((V -E(V)(V -E(V)")

FcovV,,V,)  cov(V,V,)  covV,,V,) .. cov(V,Vy) |
covV,,V,) cowV,,V,) covV,V;) .. covwV,V,)
= covV,,V;)  covV,,V,)  covV,, V) L. cov(Vs,VYy,) (7

_COV(VM V1) covVy ;) covVy V) . comVy,Vy )_
The cov(V;,V)) is defined in (5). From (1), we know that X, Y, Z are normal random variable so V is a

. . . . 2
multivariate Gaussian process with mean py and.oy'. 4. )

2.5 Gate Length Spatial Correlation | e, f P

| ] - - _7 I ..
The final p=px Xpy . The result is shown in EI?UI‘G =Y W
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Figure 1. Spatial Correlation Simulation



There are other three commonly used spatial correlation function types: Linear, Exponential, and

Gaussian
r(h) = max{0,1 - &*|[} - Linear
r(h) =exp(-c*|h|) - Exponential (10)
r(h) = exp(-a*|h[) - Gaussian

where h is (dx, dy) pair distance between two measure points and a is a fitting parameter.
In the exponential spatial correlation function, the distance can be separated into x distance dx
and y distance dy. We can rewrite the equation to

r(h) = exp(—c?|h[) = exp(—a*|dx| — & |dy]) = exp(—*|dx]) e exp(—a*|dy]) (11)
Let p;to be the correlation between samples separated by one unit, p2 to be the correlation between

samples separated by two units, and so on.

Inverter Array

Figure 2. Inverter trend array;
Suppose we have n by n inverter arrays as Figure 2. The distance between any two neighboring

inverters have the same one unit distance. From this hypothesis, (10) can be expressed as

__dx+dy

r(h) = eXp(—a2||dX||) o exp(—a2||dy||) =Pux ® pdy = pdx+dy =p (12)
where p is defined to pi-p* and p,-p’. The gate length spatial correlation matrix for n by n inverter
arrays is

[NV,

Piy,,, = p(NV, ) = o( : )




P(INV,, INV,) P(INV; INV,) P(INV, INV,) P(INV,INV,, ) i
P(INV,,INV,)  p(INV,,INV,)  p(INV,,INV,) P(INV,,INV_,.)
= p p(INV,,INV,)  p(INV,,INV,)  p(INV,, INV,) P(INV,, INV,,)
L p(INVn*m INVl) p(INVn*n’ INVZ) p(INVn*n’ INVS) p(INVn*n’ INVn*n)_
1 Pro P20 Pn-1)+(n-1) ]
Pro 1 Pro Pn-2)+(n-1)
= P20 Pro 1 Pn-3)+(n-1)
| Pn-3)+(n-1)  Pn-3yrn-) Pn-gye(n-ny o+ 1 |
B 1 p pz pznfz'
e, 1 p .. p
_ ,02 p 1 p2n—4 (13)
_pZn—Z pZn—3 pZn—4 1 —

From this analysis, we see_that the correlation between Inverters cloSer together is weighted more

strongly.

2.6 Path-Base Spatial Correlation
Given a n-stage‘path,'the delay of each stage I can be characterized as'a normal distribution d; ~
N(u;, oi? ) for 1 <i < n:The path delayPq is the summation of these n narmal distributions: Py ~ N(z,
o”) where i = Xu; and'o” = So*+23%pioio;. The i denotes the corfelation between the delay d; and
delay dj, where pjj = 1 for i = j and"p; for i #. If p; = O.for all T # j, i.e. delays are mutually
independent. More generally speaking;. given n delay random variables d; . . . d,, their correlations can
be specified with a symmetric positive semi-definite nx n correlation matrix p =[pi; ].
Given two paths, Py and Py, and their gate delays, x; and y;, i=1, ..., n. We can derive their
correlation as below.
Corr(Px, Py) = 2 X CoVv(Xi,Y;) / opxopy
Cov(xi,y)) = p[Xi,Yil oxi oy
oprx = 2 p[Xi, Xj] oxi Oxj (14)
opy = Z plyiYil oyi oyj
Cex, py = Corr(Px, Py) = C (p, ox, Oy )
If ox’s, oy’s are known, we have a function in terms of correlations C(p). The Figure 3 illustrates the

two delay path spatial correlation in the inverter array.
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Figure 3. Path spatial correlation

2.7 The Path-Base Spatial

Each rap is @ measureg e ] axim ikel estimation [17]. If all path
delays form a multivariz I ay to find out the spatial



Chapter 3
Bootstrap Confidence Intervals for the Correlation

Coefficient

3.1 Bootstrap Concept

Bootstrap is a data based simulation method for statistical inference. The basic idea of bootstrap
is to use the sample data to compute a statistic and to estimate its sampling distribution, without any
model assumption. The usual confidence interval, based on Student’s t distribution, is not appropriate
due to the bias and skewness. The maximum likelihood estimators are dependent on an asymptotic
distribution and may not be suitable for small samples. Most sampling distribution is unknown. The
bootstrap uses the data and re-sampling to. estimate that unknown sampling distribution.

Given a set of independent and identically distributed (iid) observations X;, i=1... n. A parameter
is defined as the function:of the values in the-pepulation 6= T(X), a statistic is defined as the function
of the observations 6 ,= T(x), and the bootstrap estimates the sampling distribution Fe(x) of that
function. The data are‘used to estimate the-unknown cumulative distribution function Fy(x) of values
in the population. Bootstrap samples are repeatedly drawn from the estimated population and give a
set of bootstrap values éi* i=1,..., m. The empirical distribution of those bootstrap values lfb (x)
estimates the theoretical sampling distribution Fe(X).

The bootstrap distribution Ifb (x) 1s'used to estimate bias, estimate a standard error (SE) and
construct a confidence interval for the statistic of interest. The By, is the'bootstrap bias estimation, and

Sp Is the bootstrap SE from m bootstrap values:

B A
- @20

B (16)
1/2
| X -0)

= B (17)
The procedure of Bootstrap is
1) Given X = (X1, X,..., Xn) the (original-)sample.
2 Draw B independent samples x1*, xo* ,..., Xg*, all containing n data-values of x based on

drawing with replacement
3 Calculate to each bootstrap-sample statistic of interest:
6 = T(x%) i=1,2, .., B

(4) Calculate (10) and (11)

10



3.2 Balanced Bootstrap

The balanced bootstrap is a selecting sampling method that can increase the precision of the
bootstrap bias and SE. Under balanced bootstrap sampling, samples are generated in such a way that
each original data point is present exactly B times in the entire collection of nB samples. Balanced
bootstrap samples can be generated by constructing a population with B copies of each of the n
observations, then randomly permuting that population. The first n permuted values are the first
bootstrap sample, the second n permuted values are the second sample, and so on. The procedure of

Balanced Bootstrap is

(1) Given x = (X1,X2,...,xn) the (original-)sample.

(2) Draw B independent samples x;*, x2*,..., Xg*, all containing n data-values of x based on drawing
with replacement. n copies this. Then, we have total nB samples. Randomly permute nB samples.
The first n permuted values are the first bootstrap sample, the second n permuted values are the
second sample, and so on.

(3) Calculate to each bootstrap-sample your statistic of interest:

6 =T Oy T+ e i=1,2,..,B

(4) Calculate (10) andi(11)

11



3.3 Bootstrap Confidence interval
Many methods have been proposed for constructing bootstrap confidence intervals [18]. We will
discuss the most popular tree: the so-called percentile method, bias-corrected and accelerated method

and normal method

3.3.1 The Percentile Method

We can define a 1 — a confidence interval for 6 (For example, o= .05 denotes 95% confidence.) The
interval between the 2.5% and 97.5% percentiles of the bootstrap distribution of a statistic is a 95%
bootstrap percentile confidence interval for the lfb (x). That is, we sort the B values of éi* and throw
out lowest (B+1)a/2 values, as well as the highest (B+1)a/2 values. The flowchart is shown in the

Figure 4.

Bootstrap Percentile Confidence Interval

LCL=26-8,,,,UCL=26-8,,

given x=(x,,X,,...,X,) :é:T(x)

l resample B times

X X, Xp

get resample statistics §"=7(x") and then sort them

A

* #* ok

6’(1) < 6’(2) < e < 19(3)

l

¢, =(B+al/2,c;=(B+1)(1-a/2)

l 100(1-a)% confidence interval

LCB =6, ,UCB=G,,,

Figure 4. Flowchart of Bootstrap percentile confidence interval
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3.3.2 The Bias-Corrected and Accelerated Method

The percentile bootstrap endpoints are easy to get and can work well, especially if the sampling
distribution is symmetrical. The percentile bootstrap confidence intervals may have bad coverage
when the sampling distribution is skewed. Efron (1987) proposed the bias-corrected and accelerated
(BCA) bootstrap method to correct for the percentile bootstrap. The BCA method allows for the
distribution to be with around an unknown constant (i.c., “biased”) and with non-constant variance
(i.e., the variance tends to “accelerate” across values in the sampling distribution). This method
adjusts the endpoints of the bootstrap distribution for bias and non-constant variance. The flowchart is

shown in the Figure 5.

Bootstrap Bias-Corrected and Accelerated
Confidence Interval

given X=(x,%,,...,x,) = 6=T(x)

l resample B times

X: X; ................ X;
get resample statistics 9" =7(x) and sort them
Y
9(1) < 8(2) TR < 6(33

5 . — ]. 5 oty g
estimate z, | estimate z; by @ I[EZI {@ < 9}]
=1

l

0 =P2z)— 2 43).0, = D2z, — z4,) O () = I

l 100(1-a)% confidence interval

LCB = 6z 1)1y, UCB = Gz, 1yey

Figure 5. Flowchart of Bias-Corrected and Accelerated confidence interval
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3.3.3 The Normal Method
When the distribution of @ is asymptotically normal, we can get a confidence interval from the
familiar normal distribution. The estimation @ is the estimated from the original data and the

estimate, é{" , Is from each bootstrap sample. The 1 - a/2 and a/2 quantile confidence interval is

[é -B, - Z(l—a/Z)Sb’é_ By = Z(012S0] (18)

The By, is the bootstrap bias estimation, and sy, is the bootstrap SE from (16) and (17). The flowchart is
shown in the Figure 6.

Bootstrap Normal Confidence Interval

gNen x:(xpxza"'axyg) jé - T(x)

l resample B times

X, X, X,
get resample statistics " =7(x) and sort them
6 6; é:

|

Estimate B, and s,

m

172
AL F,Ja -0 )]

I 100(1-@)% confidence interval

LCB =6 - B, =z _4/3)5,-UCB =0 =B, — 2,5,

Figure 6. Flowchart of Bias-Corrected and Accelerated confidence interval
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3.4 Botstrap Confidence Intervals for the Correlation Coefficient

Pearson’s correlation coefficient, ryy, IS often used to measure the association between two
sampled (data size n) variables, x and y. For binormally distributed data, Fisher’s (1921)
. 1+, : : . L . .
transformation z:0.5log(1 2) yields z being asymptotically distributed with variance 1/(n-3).

r
However, most cases are nonnormal data distributions and make normal-theory-based intervals

questionable. The bootstrap is a good candidate to solve these problems. There are no distributionary
assumptions because it uses the data to simulate the distribution. We can use it to find a confidence
interval for the correlation coefficient of two path delays.

Population

|

B AE A 8F aF A aF aF aF S s A aF aF ae s

AP AP A A AP AP AP AP aF A AP AP o AP

Figure 7. Flow of silicon data bootstrap

From Figure 7, we measurer two path delays and use bootstrap re-sampling. We can get an
approximation of the population distribution. If the/path delay is approximated normal, we can use
Bootstrap normal confidence interval to estimate spatial path delay correlations. If the path delay is
skewed, we can use Bootstrap Bias-Corrected and Accelerated confidence interval to estimate delay
correlations. If we know nothing about path delay, we can use Bootstrap percentile confidence

interval to estimate delay correlations.

15



Chapter 4

Experimental Results

4.1 Experiment Setup

We design a novel test chip to run HSPICE to simulate path delay spatial correlations. Many
papers propose the Ring Oscillator (RO) to find spatial process variation [14]. To get an efficient
experiment result, we use the multiplexor with a 5 by 5 inverter trend in an inverter array. Each
inverter trend has 900 inverters and the inverter trend array is 1640 um by 1640 um. The layout is
shown in Figure 8. The inverter trend array can reduce process variations including photo impact, etch

impact, CMP impact and micro loading impact. We simulate the 5 by 5 inverter trend delay with

HSPICE simulations.
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Figure 8. Test Chip layout with multiplexor
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4.2 Spatial Path Correlations with Multivariate Normal Gate Length Variations
To detail understanding the correlation of CD variation and delays, we first simulate the single

inverter delay with gate length CD variations. Suppose the gate length variation is normal and its

histogram is shown in Figure 9. Its delay after Hspice simulation is shown in Figure 10 and is high

correlated to CD variations

G 8B 8 8 4 & & 8

]
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Figure 9. Gate length histogram
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Figure 10. A single inverter delay simulation with gate CD variations

For the 5 by 5 inverter trend, the gate CD variation is multivariate normal distribution with

correlation matrix

1 D ,02 p2(n—1) 7
P 1 D p(n—2)+(n—1)
pz ) 1 . p(n—3)+(n—1) (19)
_pZ(n—l) p(n—2)+(n—l) p(n—3)+(n—1) 1 |

The correlation matrix is from (15) where n=25 & p=0.98.
To validate the accuracy of path base spatial correlation, we run Monte Carlo to generate 100000

patterns and set it as a golden set. The path delay distribution of the golden set is shown in Figure 11.
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It shows inverter trend 1 and 2 has higher correlation than inverter trend of 1 and 3 due to the spatial
distance. Close path distance has higher correlations.
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Figure'Il. Path delay correlation distributions of inverter trend 1, 2 and 3

We select 100 samples from.the golden set and run-2000 bootstrap re-sampling for the 5 by 5
inverter trend. The delay spatial correlation of this is in-Figure 12.
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Figure 12. The Histograms of correlation coefficient of Bootstrap of 5 by 5 inverter trend
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The histogram is approximated as normal distribution. Inverter trend 1 and 6 (in Figure 8) are most
close and have the highest correlation distribution. The correlation of inverter trend 1 and 5 is lower
due to the distance of them is far. The histogram variation of them is wide.

Confidence interval coverage rate is the probability that the confidence interval includes the true
parameter from the population. If the coverage rate is the same as the stated size of the confidence
interval, the intervals are accurate. We simulate 5 kinds of bootstrap confidence interval: Percentile
method, Bias-Corrected and Accelerated method, Normal method, Normal method with outlier filter
and Fisher Z. The normal with outlier filter is normal method excluding outlier with 3 standard
variations.

The coverage rates are listed in Figure 13 with population size 100000, sample size 3000 and

confidence 0=95%

Coverage Rate for different Bootstrap times

—— BCA_Percentile

—=— Normal
Normal_Z_Filter

—*—Percentile

—— Fisher_Z

Coverage Rate

0.94 : !
1000 2000 3000

Bootstrap time

Figure 13. Coverage rate.for BCA, Percentile, Normal, Normal with filter and Fisher Z

The coverage rate is around 95% under confidence 0=95%. The Bootstrap normal confidence
interval is better than other bootstrap ones due to normal distributions of gate length variations. The
Fisher Z confidence interval has the same performance with Bootstrap methods. This is also because
normal gate length variations. From Figure 12, we investigate the coverage rate is better as bootstrap
times increase.

The correlations of path delays to delta x direction distance and delta y direction distance are
listed in the Figure 14 and 15. The delta x distance is two inverter trend distance in the x direction and
the delta y distance is two inverter trend distance in the y direction. The path delay correlation
decrease as the path distance increase. When the trends are closer, the bound is smaller. This is

because long distances have low correlations and cause more variations from them.
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Delta X distance vs Path correlation (Sample=3000)
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Figure 14. Confidence interval bound for delta x distance
Delta Y distance vs Path correlation (Sample=3000)
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Figure 15. Confidence linterval bound for delta Y distance
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4.3 Correlations with Multivariate Chi Square Gate Length Variations
Most path delays are not normal distributed. We demonstrate a gate length variation with chi square

distribution. The Figure 16 shows the histogram of a single gate length variation.
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Figure 16. The histogram of a single gate length variation with chi square distribution

For the invertertrend array, multi gate length.variations are multivariate chi square distribution
with the same correlation matrix (19) and p=0.98. We use Bootstrap methodology to resample the
correlation coefficient.of the path delay. The result is shown in Figurel7.The histogram shows the

correlation coefficient distributionris non-normal.
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Figure 17. The histogram of the correlation coefficient of Bootstrap of 1 and 2 inverter trend
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We simulate 5 kinds of Bootstrap confidence interval under the 95% confidence. The coverage
rate is shown in Figure 18. The Bootstrap confidence intervals have 94.5% coverage rate but Fisher Z
is lower about 93%. This is because the path delay is non-normal distribution and it is not suitable for

Fisher Z confidence interval.
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Figure 18. Coverage rate for BCA, Percentile;normal, normal'with filter and Fisher Z

The correlations of path delays to delta x direction distances and delta y direction distances are listed
in the Figure 19 and 20.

Delta X distance vs Path correlation (Sample=3000)
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Figure 19. Confidence interval bound for delta x distance
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Path Correlation

Delta Y distance vs Path correlation (Sample=3000)
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Figure 20. Confidence interval bound for delta Y distance

mal case. This is because the data are
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Chapter 5

Conclusion

In this thesis, we have applied bootstrap re-sampling algorithm and path-based learning
methodology to estimate the spatial correlation of the path delay on the test chip. From this way, we
can get a confidence interval for spatial correlation with a good coverage rate. It is also applied to
non-normal correlation distribution. The plot of the path distance and the path delay correlation give
us a predation way and give designer guidance for timing analysis. For the future work, we can select
an initial correlation matrix which fall into Bootstap confidence intervals and put the initial
correlation matrix to SSTA models. With the Bayesian theory or other learning methodologies, we
use new silicon data to adjust thevinitial correlation matrix. After repeating this, we can get a

converged correlation matrixawhich approximates to the true value:
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