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摘      要 

 

隨著製程的技術進步及系統單晶片的到來，深次微米中的時序問題已越顯重

要。傳統以 corner value 為基礎的時序分析將會導致預測的時序被過分低

估。統計型靜態時序分析 ( Statistical Static Timing Analysis - SSTA) 

就是利用統計的方式去描述這些製程偏差,把他們視為一些統計的隨機變數,

然後利用他們去預測時序並且得到更準確的結果。SSTA 使晶片設計者能得以

將時間餘裕(timing margin)及良率(yield)做最佳化以提升晶片效能和可靠

度。不同於其它論文之模型探討，本文考量實際製程變異及晶圓應用的可行

性，提出一個實用且新穎的路徑學習重複取樣的方法論(path-based 

learning methodology with Balanced Bootstrap re-sampling ) 。此方法

不須作任何timing model的假設，只須從現有寶貴的晶圓量測資料中，重覆

作re-sampling  learning的動作，即可得到準確path delay的空間相關性



 

(spatial correlations)之推論。同時藉由建立信賴區間的方式，可得到path 

delay correlation 和 path distance兩者之間的關係和趨勢，由此推論path 

distance變化時，會有多少path delay的變化。此方法在晶圓廠有兩個方面

可應用:(1)在先進晶圓製程階段，使用re-sampling 方法，可對有限的晶圓

量測資料，快速建立近似的統計型時序模擬器。 (2)在成熟晶圓製作階段，

使用路徑學習方法，觀察測試晶片的量測資料，可取得統計型靜態時序分析

(SSTA)之建模(modeling)。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

BOOTSTRAP CONFIDENCE INTERVALS AS AN APPROACH 

to MODEL WITHIN-DIE SPATIAL CORRELATION UNDER 

PROCESS VARIATIONS 

 

 

student：Bing-Hsing Su Advisors：Dr. Yu-Min Lee

 

 

Industrial Technology R & D Master Program of  

Electrical and Computer Engineering College 

National Chiao Tung University 

ABSTRACT 

With the advances to nanometer technologies and SOC, the process variation plays 

a more important in the future. Traditional corner value timing analysis becomes less 

effective and grossly conservative. Statistical timing models and simulation methods 

are required to capture these variation effects. The methodology of statistical timing 

analysis that characterizes time variables as statistical random variables offers a better 

approach for more accurate timing predictions. SSTA enable designer to setup and hold 

Timing Margins to optimize and improve the performance and reliability. The thesis 

considers real process variations and fabrication implementation designs a practical test 

chips and presents the implementation of a novel path-based learning methodology 

with Balanced Bootstrap re-sampling that accounts for process variations and their 
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spatial correlations. It doesn’t need timing model hypothesis and make the accurate 

timing spatial correlation inference from fabrication measurement data. By 

constructing the confidence interval of the spatial correlation, we can get correlations 

and predictions for path delay and path distances. By this, we can know how many path 

distance changes will cause how many path delay correlation changes. It can be applied 

for two purposes. First, the bootstrap re-sampling can be used to produce a fast and 

approximated simulator for statistical timing simulations in the advanced production 

phase. Secondly, this path-based learning can be used as a vehicle to derive statistical 

static timing analysis (SSTA) based on observed measured data from the test chips in 

mature production phase. 
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Chapter 1 

 

Introduction 

 

1.1 Introduction 

In today's fabrication processes, there are many process parameters including doping, gate 

oxidation thickness, gate length, etc. Our research focus here, gate length variation is the dominant 

source of delay variation. This is due to the fact that gate length variation affects the device at 

different steps throughout the fabrication process, such as lithography dose variation, focus variation, 

etch rate variation, etc. These accumulated variations result in the electrical function far away from 

the target. For example, gate length variation can induce threshold voltage shift, current change and 

timing delay. The gate length has high correlation to its neighboring so the spatial correlation is our 

main research purpose. We give an innovated learning base SSTA modeling with bootstrap 

re-sampling to discuss spatially correlated timing delay caused by gate length variations. 

As we know, most of the sources of gate length variation are systematic in nature, and it is 

possible to remove these systematic variations. By our modeling, we can do it well and give a good 

perdition for it. 

Although many researchers have dealt with process variations, most of them have ignored spatial 

correlations by simply assuming zero correlation among devices on the chip. The difficulty in 

considering spatial correlations between parameters is that it can result in complicated path 

correlation structures which are hard to deal with. The authors in [1] compute path correlations on the 

basis of pair-wise gate delay covariance and use an analytic method to derive lower and upper bounds 

of circuit delay. The authors of [2] manipulate the complicated correlation structure with the Principal 

Component Analysis (PCA) technique to transform the sets of correlated parameters into sets of 

uncorrelated variables. The statistical timing computation is then performed with a PERTlike circuit 

graph traversal. The statistical timing analyzer in [3] imposes upper bounds and lower bounds on the 

delay correlations. These bounds can then be refined through learning the actual delay correlations 

from the path delay testing on silicon. Most of them have the strong hypothesis about path delay 

modeling and don’t add process variation conditions into the modeling. Authors of [16], [20] propose 

a practical implementation to measure spatial correlation from test chips. It is good for huge silicon 

data but may be trouble in small data. In advanced technology, the process is not stable and silicon 

data are precious. How to use the limited silicon data to get the useful reference for spatial correlation 

modeling and how to validate the modeling with the silicon data is a hard topic 
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1.2 Motivation 

SSTA is attractive because traditional worst-case corner timing analysis has become overly 

conservative due to the process variations. To take the advantage of SSTA technology in practice, the 

immediate challenge would be how to obtain an accurate and efficient statistical timing model. Many 

methodologies have been proposed [4], [5] to get a reliable timing model. There are many sources of 

pessimism in statistical timing model analysis and many of them are dependent on the method used 

for analysis. How to model and handle spatial correlations in SSTA is also an important research topic. 

Various spatial correlation models have been introduced. In [6], the authors use PCA to handle spatial 

correlations. They assume all delay distributions to be Gaussians, and approximate the MAX 

operation of 2 or more Gaussian distributions to be Gaussian as well. In [7], they propose a canonical 

first-order delay model and use an incremental block based timing analyzer to propagate arrival times.  

Considering process variations into SSTA modeling are more important when the feature size of MOS 

transistor scales down to nanometers. Under process variations, parameters such as the gate length, 

the gate width and the metal line height are random variables. Among so many types of variation 

parameters, spatial correlations are recognized to have significant impact on timing of design [9], [10], 

and the accuracy of SSTA analysis [11]. Our primary goal is to demonstrate that path-based learning 

is indeed feasible, and shows how it can be applied in test and diagnosis applications. Many papers 

describe the process variation modeling but lack to account for it into spatial correlations. A learning 

procedure from fabrication silicon data to study SSTA is practical and useful. We can design test 

chips to investigate electrical device parameters and use inverter trend to simulate path delays. After 

getting the precious silicon data, we use methodologies to model spatial correlation matrix and apply 

it into statistical static timing analysis (SSTA) modeling. 
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1.3 Contributions 

In this work, we propose a novel path-based learning methodology with Balanced Bootstrap 

re-sampling that accounts for within-die process variations. By designing a test chip with the inverter 

trend array, we add gate length variations to the test chip and investigate the spatial correlation for the 

path delay. After running HSPICE to the test chip, we get the path delay and apply the Balanced 

Bootstrap confidence interval to estimate the spatial correlation. When the feature size of MOS 

transistor scales down to nanometers, the fabrication production cost is expensive and experiment 

silicon data is small. The Balanced Bootstrap can be applied for the small samples and doesn’t need 

any timing model hypothesis like normal path delay distributions. We demonstrate the Bootstrap 

confidence interval has a good coverage rate for the true spatial path delay correlation. We also 

provide a prediction bound of the path spatial correlation for different distances  

.  
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Chapter 2 

 

Preliminaries 

 

2.1 Process Variation 

As the feature size of silicon is scaling down and the wafer size is getting larger, process 

variation is increasingly difficult to model and analysis. The variation is due to two factors: 

environmental and physical. Environmental factors occur at run-time and physical factors occur 

during the manufacturing of the circuit. Environmental process variation can decompose into lot to lot, 

wafer to wafer and die to die. Our research focuses on intra-die variation and the channel length (Leff ) 

variation is the emphasis. The reason is that MOSFETs are very critical to this type of variation and 

have large impacts on timing delay. 

 

 

2.2 Gate Length Variation 

For many process variation sources, gate length variation is the dominant source of the delay 

variation [8]. The gate length variation come throughout the fabrication process like focus variation, 

etch rate variation, scanner variation, etc. Gate length variations are pattern dependences. Close gates 

are higher similar length than far ones. In our thesis, we model gate length variation and put it into 

spatial correlations for path delays.  

 

 

2.3 Process Variation Decomposition 

We denote V as the measured gate length process parameter and model it as a random variable. 

Its overall variation can be decomposed into three distinct components: the inter-chip global variation 

X, the intra-chip spatial variation Y, and the purely uncorrelated random variation Z, i.e., 

                         V = v0 + X + Y + Z;                     (1)  

where v0 is the mean value of V, and X, Y and Z are random variables. How to extract the systematic 

variation has been studied in many papers [12], [13]. Our focus is on the zero-mean random variation 

components X, Y and Z. The inter-chip global variation X models the variation due to global variation 

effects. It is the same within the chip but different for different chips. The intra chip spatial variation 

Y models location-dependent variations within the chip. It is different at different locations within the 

same chip. The random variation Z models the purely uncorrelated random component that is not 

explainable by either the inter chip global variation X or intra-chip spatial variation Y. We assume 
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that X, Y and Z have mutually independent distributions. Hence, the variance of V can be given by 

                           2222

ZYXV                         (2) 

Where σX
2
, σY

2
, andσZ

2
 are the variances of X, Y , and Z respectively. The σV

2
 is total variance. 

 

 

2.4 Modeling of Spatial Correlation 

In below 65nm technology, lithography of gate length CD has high correlated on neighboring 

patterns in the layout (proximity effect), the location in the layout (lens aberrations), and the density 

of features on the mask (flare). This implies that devices are more likely to have similar 

characteristics in close area than devices that are far apart. It means that correlation function ρ(xi , xj , 

yi , yj ) between any two points (xi , yi) and (xj , yj ) depends only on the distance v between them, i.e., 

 

            2 2( , , , ) ( ( ) ( ) ) ( )i j i j i j i jx x y y x x y y v                 (3) 

 

Suppose there are M chosen points on the chip and their joint spatial variation variable Y = (Y1, 

Y2, …, YM)
T
 forms a multivariate Gaussian process with respect to their locations on the chip [19]. 

Any two points correlation function ρ can be calculated by (3) and hence the correlation matrix of 

spatial variation variable S is formed in (4): 

                    

1 , 2 1 , 3 1 ,

2 , 1 2 , 3 2 ,

3 , 1 3 , 2 3 ,

, 1 , 2 , 3

1 . . .
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1 . . .
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               (4) 

For any two points V1 and V2 of measured gate length process parameters, 

)],cov(),cov( ZYXZYXVV jiji   

)())][(()[( ZYXEZYXZYXEZYXE iiii   

])((][)(([ ZYEYXZYEYXE jjii   

22 ),cov( ZjiX YY    

2

,

2 )( ZjijiX V                               (5) 

 

where ρ(vi,j) is the spatial correlation coefficient between two locations that are vi,j distance apart. The 

same distance vi,j always corresponds to the same ρ(vi,j), regardless of their locations. 

Those M chosen gate length process parameters form the joint distribution variable V = (V1, V2, …, 

VM)
T
 and its mean and variance are 
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The cov(Vi,Vj) is defined in (5). From (1), we know that X, Y, Z are normal random variable so V is a 

multivariate Gaussian process with mean μV and σV
2
. 

 

 

2.5 Gate Length Spatial Correlation 

The final ρ=ρx ×ρy . The result is shown in Figure 1. 

 

Figure 1. Spatial Correlation Simulation 
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There are other three commonly used spatial correlation function types: Linear, Exponential, and 

Gaussian 

}1,0max{)( 2 hhr        - Linear 

)exp()( 2 hhr           - Exponential            (10) 

)exp()(
22 hhr          - Gaussian 

where h is (dx, dy) pair distance between two measure points and a is a fitting parameter. 

In the exponential spatial correlation function, the distance can be separated into x distance dx 

and y distance dy. We can rewrite the equation to  

 

)exp()exp()exp()exp()( 22222 dydxdydxhhr       (11) 

Let ρ1 to be the correlation between samples separated by one unit, ρ2 to be the correlation between 

samples separated by two units, and so on.  

 

     Figure 2. Inverter trend array 

Suppose we have n by n inverter arrays as Figure 2. The distance between any two neighboring 

inverters have the same one unit distance. From this hypothesis, (10) can be expressed as  

dydx

dydxdydxdydxhr 

   )exp()exp()( 22
       (12) 

where ρ is defined to ρ1=ρ
1
 and ρ2=ρ

2
. The gate length spatial correlation matrix for n by n inverter 

arrays is 
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                                    (13) 

From this analysis, we see that the correlation between Inverters closer together is weighted more 

strongly.  

 

 

2.6 Path-Base Spatial Correlation 

Given a n-stage path, the delay of each stage i can be characterized as a normal distribution di ~ 

N(μi, σi
2
 ) for 1 ≤ i ≤ n. The path delay Pd is the summation of these n normal distributions: Pd ~ N(μ, 

σ
2
) where μ = Σμi and σ

2
 = Σσi

2
+2ΣΣρijσiσj. The ρij denotes the correlation between the delay di and 

delay dj, where ρij = 1 for i = j and ρij for i ≠j. If ρij = 0 for all i ≠ j, i.e. delays are mutually 

independent. More generally speaking, given n delay random variables d1 . . . dn, their correlations can 

be specified with a symmetric positive semi-definite n× n correlation matrix ρ =[ρij ].  

Given two paths, Px and Py, and their gate delays, xi and yi, i=1, …, n. We can derive their 

correlation as below. 

Corr(Px, Py) =   Cov(xi,yj) / PxPy 

Cov(xi,yj) = [xi,yj] xi yj  

Px =  [xi, xj] xi xj                              (14) 

Py =  [yi,yj] yi yj 

CPx, Py = Corr(Px, Py) = C (, x, y )                 

If x’s, y’s are known, we have a function in terms of correlations C(). The Figure 3 illustrates the 

two delay path spatial correlation in the inverter array. 
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Figure 3. Path spatial correlation 

 

 

2.7 The Path-Base Spatial Correlation Coefficient 

In the path learning step, we select two paths Pa and Pb, on the chip and measure their path 

delays. Suppose we get Da = [x1,. . ., xm] and Db = [y1, . . . , ym] on m silicon data. If path delays of Pa 

and Pb form the bivariate normal distribution, we can apply the Pearson’s correlation coefficient as 

 

 

(15) 

 

Each rab is a measured path correlation and rab is maximum likelihood estimation [17]. If all path 

delays form a multivariate normal distribution, we can apply this way to find out the spatial 

correlation matrix. One may want to know three things: (1) how confident is the Pearson’s correlation 

coefficient? (2) How many samples the Pearson’s correlation coefficient need? (3) How to do if the 

path delay distribution is not a normal distribution? We will discuss them in next chapter 
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Chapter 3 

Bootstrap Confidence Intervals for the Correlation 

Coefficient 

 

3.1 Bootstrap Concept 

Bootstrap is a data based simulation method for statistical inference. The basic idea of bootstrap 

is to use the sample data to compute a statistic and to estimate its sampling distribution, without any 

model assumption. The usual confidence interval, based on Student’s t distribution, is not appropriate 

due to the bias and skewness. The maximum likelihood estimators are dependent on an asymptotic 

distribution and may not be suitable for small samples. Most sampling distribution is unknown. The 

bootstrap uses the data and re-sampling to estimate that unknown sampling distribution. 

Given a set of independent and identically distributed (iid) observations Xi, i=1… n. A parameter 

is defined as the function of the values in the population θ = T(x), a statistic is defined as the function 

of the observations   = T(x), and the bootstrap estimates the sampling distribution Fθ(x) of that 

function. The data are used to estimate the unknown cumulative distribution function Fθ(x) of values 

in the population. Bootstrap samples are repeatedly drawn from the estimated population and give a 

set of bootstrap values    i=1,…, m. The empirical distribution of those bootstrap values   (x) 

estimates the theoretical sampling distribution Fθ(x).  

The bootstrap distribution   (x) is used to estimate bias, estimate a standard error (SE) and 

construct a confidence interval for the statistic of interest. The Bb is the bootstrap bias estimation, and 

sb is the bootstrap SE from m bootstrap values: 

 

                                                                 (16) 

 

 

                                                                 (17) 

 

The procedure of Bootstrap is 

(1) Given x = (x1, x2,…, xn) the (original-)sample. 

(2) Draw B independent samples x1*, x2* ,..., xB*, all containing n data-values of x based on     

drawing with replacement 

(3) Calculate to each bootstrap-sample statistic of interest:           

                          = T(xi*)           i= 1, 2, ..., B 

(4)    Calculate (10) and (11) 
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3.2 Balanced Bootstrap 

The balanced bootstrap is a selecting sampling method that can increase the precision of the 

bootstrap bias and SE. Under balanced bootstrap sampling, samples are generated in such a way that 

each original data point is present exactly B times in the entire collection of nB samples. Balanced 

bootstrap samples can be generated by constructing a population with B copies of each of the n 

observations, then randomly permuting that population. The first n permuted values are the first 

bootstrap sample, the second n permuted values are the second sample, and so on. The procedure of 

Balanced Bootstrap is 

 

(1) Given x = (x1,x2,…,xn) the (original-)sample. 

(2) Draw B independent samples x1*, x2*,..., xB*, all containing n data-values of x based on drawing 

with replacement. n copies this. Then, we have total nB samples. Randomly permute nB samples. 

The first n permuted values are the first bootstrap sample, the second n permuted values are the 

second sample, and so on. 

(3) Calculate to each bootstrap-sample your statistic of interest:           

                          = T (xi*
 (random permutation) 

)           i= 1, 2, ..., B 

(4) Calculate (10) and (11) 
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3.3 Bootstrap Confidence interval 

Many methods have been proposed for constructing bootstrap confidence intervals [18]. We will 

discuss the most popular tree: the so-called percentile method, bias-corrected and accelerated method 

and normal method 

 

 

3.3.1 The Percentile Method 

We can define a 1 − α confidence interval for θ (For example, α= .05 denotes 95% confidence.) The 

interval between the 2.5% and 97.5% percentiles of the bootstrap distribution of a statistic is a 95% 

bootstrap percentile confidence interval for the   (x). That is, we sort the B values of    and throw 

out lowest (B+1)α/2 values, as well as the highest (B+1)α/2 values. The flowchart is shown in the 

Figure 4. 

 

 

Figure 4. Flowchart of Bootstrap percentile confidence interval  
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3.3.2 The Bias-Corrected and Accelerated Method 

The percentile bootstrap endpoints are easy to get and can work well, especially if the sampling 

distribution is symmetrical. The percentile bootstrap confidence intervals may have bad coverage 

when the sampling distribution is skewed. Efron (1987) proposed the bias-corrected and accelerated 

(BCA) bootstrap method to correct for the percentile bootstrap. The BCA method allows for the 

distribution to be with around an unknown constant (i.e., “biased”) and with non-constant variance 

(i.e., the variance tends to “accelerate” across values in the sampling distribution). This method 

adjusts the endpoints of the bootstrap distribution for bias and non-constant variance. The flowchart is 

shown in the Figure 5. 

 

Figure 5. Flowchart of Bias-Corrected and Accelerated confidence interval 
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3.3.3 The Normal Method 

When the distribution of   is asymptotically normal, we can get a confidence interval from the 

familiar normal distribution. The estimation   is the estimated from the original data and the 

estimate,    , is from each bootstrap sample. The 1 - α/2 and α/2 quantile confidence interval is 

 

                                                             (18) 

 

The Bb is the bootstrap bias estimation, and sb is the bootstrap SE from (16) and (17). The flowchart is 

shown in the Figure 6. 

 

Figure 6. Flowchart of Bias-Corrected and Accelerated confidence interval 
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3.4 Botstrap Confidence Intervals for the Correlation Coefficient 

Pearson’s correlation coefficient, rxy, is often used to measure the association between two 

sampled (data size n) variables, x and y. For binormally distributed data, Fisher’s (1921) 

transformation             yields z being asymptotically distributed with variance 1/(n-3). 

However, most cases are nonnormal data distributions and make normal-theory-based intervals 

questionable. The bootstrap is a good candidate to solve these problems. There are no distributionary 

assumptions because it uses the data to simulate the distribution. We can use it to find a confidence 

interval for the correlation coefficient of two path delays.  

 
Figure 7. Flow of silicon data bootstrap  

 

From Figure 7, we measurer two path delays and use bootstrap re-sampling. We can get an 

approximation of the population distribution. If the path delay is approximated normal, we can use 

Bootstrap normal confidence interval to estimate spatial path delay correlations. If the path delay is 

skewed, we can use Bootstrap Bias-Corrected and Accelerated confidence interval to estimate delay 

correlations. If we know nothing about path delay, we can use Bootstrap percentile confidence 

interval to estimate delay correlations. 
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Chapter 4 

 

Experimental Results 

 

4.1 Experiment Setup 

We design a novel test chip to run HSPICE to simulate path delay spatial correlations. Many 

papers propose the Ring Oscillator (RO) to find spatial process variation [14]. To get an efficient 

experiment result, we use the multiplexor with a 5 by 5 inverter trend in an inverter array. Each 

inverter trend has 900 inverters and the inverter trend array is 1640 um by 1640 um. The layout is 

shown in Figure 8. The inverter trend array can reduce process variations including photo impact, etch 

impact, CMP impact and micro loading impact. We simulate the 5 by 5 inverter trend delay with 

HSPICE simulations. 

 

Figure 8. Test Chip layout with multiplexor 
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4.2 Spatial Path Correlations with Multivariate Normal Gate Length Variations  

To detail understanding the correlation of CD variation and delays, we first simulate the single 

inverter delay with gate length CD variations. Suppose the gate length variation is normal and its 

histogram is shown in Figure 9. Its delay after Hspice simulation is shown in Figure 10 and is high 

correlated to CD variations 

 

Figure 9. Gate length histogram 
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Figure 10. A single inverter delay simulation with gate CD variations 

 

For the 5 by 5 inverter trend, the gate CD variation is multivariate normal distribution with 

correlation matrix  
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              (19) 

The correlation matrix is from (15) where n=25 & ρ=0.98.   

To validate the accuracy of path base spatial correlation, we run Monte Carlo to generate 100000 

patterns and set it as a golden set. The path delay distribution of the golden set is shown in Figure 11. 
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It shows inverter trend 1 and 2 has higher correlation than inverter trend of 1 and 3 due to the spatial 

distance. Close path distance has higher correlations.  

 

 

Figure 11. Path delay correlation distributions of inverter trend 1, 2 and 3 

 

We select 100 samples from the golden set and run 2000 bootstrap re-sampling for the 5 by 5 

inverter trend. The delay spatial correlation of this is in Figure 12.  

 

Figure 12. The Histograms of correlation coefficient of Bootstrap of 5 by 5 inverter trend 
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The histogram is approximated as normal distribution. Inverter trend 1 and 6 (in Figure 8) are most 

close and have the highest correlation distribution. The correlation of inverter trend 1 and 5 is lower 

due to the distance of them is far. The histogram variation of them is wide.  

Confidence interval coverage rate is the probability that the confidence interval includes the true 

parameter from the population. If the coverage rate is the same as the stated size of the confidence 

interval, the intervals are accurate. We simulate 5 kinds of bootstrap confidence interval: Percentile 

method, Bias-Corrected and Accelerated method, Normal method, Normal method with outlier filter 

and Fisher Z. The normal with outlier filter is normal method excluding outlier with 3 standard 

variations. 

The coverage rates are listed in Figure 13 with population size 100000, sample size 3000 and 

confidence α=95% 
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Figure 13. Coverage rate for BCA, Percentile, Normal, Normal with filter and Fisher Z 

 

The coverage rate is around 95% under confidence α=95%. The Bootstrap normal confidence 

interval is better than other bootstrap ones due to normal distributions of gate length variations. The 

Fisher Z confidence interval has the same performance with Bootstrap methods. This is also because 

normal gate length variations. From Figure 12, we investigate the coverage rate is better as bootstrap 

times increase.  

The correlations of path delays to delta x direction distance and delta y direction distance are 

listed in the Figure 14 and 15. The delta x distance is two inverter trend distance in the x direction and 

the delta y distance is two inverter trend distance in the y direction. The path delay correlation 

decrease as the path distance increase. When the trends are closer, the bound is smaller. This is 

because long distances have low correlations and cause more variations from them. 
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Delta X distance vs Path correlation (Sample=3000)
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Figure 14. Confidence interval bound for delta x distance 

 

Delta Y distance vs Path correlation (Sample=3000)
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Figure 15. Confidence interval bound for delta Y distance 
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4.3 Correlations with Multivariate Chi Square Gate Length Variations  

Most path delays are not normal distributed. We demonstrate a gate length variation with chi square 

distribution. The Figure 16 shows the histogram of a single gate length variation. 

 

Figure 16. The histogram of a single gate length variation with chi square distribution 

 

For the inverter trend array, multi gate length variations are multivariate chi square distribution 

with the same correlation matrix (19) and ρ=0.98. We use Bootstrap methodology to resample the 

correlation coefficient of the path delay. The result is shown in Figure17. The histogram shows the 

correlation coefficient distribution is non-normal. 

 

Figure 17. The histogram of the correlation coefficient of Bootstrap of 1 and 2 inverter trend   
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We simulate 5 kinds of Bootstrap confidence interval under the 95% confidence. The coverage 

rate is shown in Figure 18. The Bootstrap confidence intervals have 94.5% coverage rate but Fisher Z 

is lower about 93%. This is because the path delay is non-normal distribution and it is not suitable for 

Fisher Z confidence interval. 

 

Figure 18. Coverage rate for BCA, Percentile, normal, normal with filter and Fisher Z 

 

The correlations of path delays to delta x direction distances and delta y direction distances are listed 

in the Figure 19 and 20. 
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Figure 19. Confidence interval bound for delta x distance 
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Delta Y distance vs Path correlation (Sample=3000)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Delta Y distance (normalized)

P
at

h
 C

o
rr

el
at

io
n B=1000 Upper Bound

B=1000 Lower Bound

B=100 Upper Bound

B=100 Lower Bound

Real

 

Figure 20. Confidence interval bound for delta Y distance 

 

The gap of the upper bound and the lower bound is big than normal case. This is because the data are 

skewed seriously.  
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Chapter 5 

 

Conclusion 

 

In this thesis, we have applied bootstrap re-sampling algorithm and path-based learning 

methodology to estimate the spatial correlation of the path delay on the test chip. From this way, we 

can get a confidence interval for spatial correlation with a good coverage rate. It is also applied to 

non-normal correlation distribution. The plot of the path distance and the path delay correlation give 

us a predation way and give designer guidance for timing analysis. For the future work, we can select 

an initial correlation matrix which fall into Bootstap confidence intervals and put the initial 

correlation matrix to SSTA models. With the Bayesian theory or other learning methodologies, we 

use new silicon data to adjust the initial correlation matrix. After repeating this, we can get a 

converged correlation matrix which approximates to the true value.  
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