致謝

這篇論文能夠完成,必須感謝許多在背後給予我支持鼓勵的人們以及教授和 學長們的指導。首先我必須向黃調元教授、林鴻志博士以及簡昭欣博士致上最大 的敬意。在這三年來,他們不僅傳授了許多課業上的知識給我。更讓我在日常生 活裡由他們的言行之中獲益良多。是為良師,是為益友。

再來,我必須感謝實驗室裡的學長同學們,在這三年裡,陪我渡過了許許多 多快樂的時光。幸而有這群夥伴的協助和幫忙,實驗才能如此順利的完成。

另外,也感謝台積電的工程師們在我工讀的那一段時間,給予我最大的協助,並讓我認識到工業界的點點滴滴,也讓我更清楚未來的方向。

最後,我必須感謝我的父母。你們的支持鼓勵以及生活上的協助是我完成論 文最大的動力。在這裡再一次的感謝他們對我的體諒和付出,讓我可以專注在課 業上全力衝刺。謝謝你們。

僅以本篇論文獻給我所感謝的每一個人。

Contents

Abstract Chinese)	I
Abstract (English)	II
Acknowledgment	III
Contents	IV
Table Captions	V
Figure Captions	VI

Chapter 1. Introduction

1.1 Research Motivation	1
1.2 Reliability Issues on Oxynitride Gate Dielectrics	2
1.3 Charge Pumping Measurement Technique	3
1.4 Thesis Organization	4
Chapter 2. Device Structure and Basic Electrical Characteristics	
2.1 Device Structure	6
2.2 Basic Electrical Properties of Devices	7
2.3 Influences of Electrical Properties on Reliability Tests	8
Chapter 3. NBTI and HCI Experiments BBG	
3.1 Measurement Setup	11
3.2 Nitrogen Profile Engineering.	11
3.3 Differences Between Two Kinds of HCI Stress Conditions	13
3.4 Results and Discussion of NBTI Experiments	16
3.5 Results and Discussion of HCI Experiments	18
3.6 Worst-Case of Device Reliability	21
Chapter 4. Charge Pumping Experiments	
4.1 Measurement Setup of Charge Pumping	22
4.2 Experiment	22
4.3 Results and Discussion	24
Chapter 5. Conclusions and Future Work	
5.1 Conclusions	28
5.2 Future Work	29

References	
Appendix	34

Table Captions

Table. 2-1. Threshold voltage, subthreshold swing, and DIBL of N/O stack, NO

annealing oxide, and thermal oxide.

- Table. 3-1. Comparison of Vg=2.2 and Vg=Vd=2.2V stress conditions.
- Table. 3-2. Device lifetime of NBTI and HCI for 1V operation voltage.

Figure Captions

Fig. 1-1.	Basic experimental setup of charge pumping measurement.
Fig. 2-1.	Gate leakage current of three kinds of samples.
Fig. 2-2.	Drain current vs. drain voltage at steps of Vg-Vt = $0.25, 0.5, 0.75, 0.75$
	and1V.
Fig. 2-3.	Transconductance (Gm) vs. Vg-Vt at linear (Vd = 0.05 V) and
	saturation (Vd = 1 V).
Fig. 2-4.	Drain current vs. Vg-Vt at linear (Vd = 0.05V) and saturation (Vd
	=1V).
Fig. 2-5(a).	C-V curves of nMOSFETs.
Fig. 2-5(b).	C-V curves of pMOSFETs.
Fig. 3-1(a).	Measurement setup of NBTI experiment.
Fig. 3-1(b).	Measurement setup of HCI experiment.
Fig. 3-2(a).	Isub vs. gate voltage for N/O stack.
Fig. 3-2(b).	Isub vs. gate voltage for NO anneal.
Fig. 3-2(c).	Isub vs. gate voltage for oxide.

Fig. 3-3. General HCI lifetime projection of Vg = Vd and Vg @ Isubmax stress conditions.

- Fig. 3-4. Position of carriers at Vg=Vd and Vg @ Isubmax bias conditions.
- Fig. 3-5(a). NBTI lifetime projection at 25°C and 100°C of N/O stack.
- Fig. 3-5(b). NBTI lifetime projection at 25°C and 100°C of NO anneal.
- Fig. 3-5(c). NBTI lifetime projection at 25°C and 100°C of oxide.
- Fig. 3-6(a). NBTI lifetime projection at 25°C of three kinds of samples.
- Fig. 3-6(b). NBTI lifetime projection at 100°C of three kinds of samples.
- Fig. 3-7. NBTI lifetime projection slope.
- Fig. 3-8(a). HCI lifetime projection at 25° C and 100° C under Vg = Vd stress

condition of N/O stack.

- Fig. 3-8(b). HCI lifetime projection at 25° C and 100° C under Vg = Vd stress condition of NO anneal.
- Fig. 3-8(c). HCI lifetime projection at 25° C and 100° C under Vg = Vd stress condition of oxide.
- Fig. 3-9(a). HCI lifetime projection at 25°C and 100°C under Vg @ Isubmax stress condition of N/O stack.
- Fig. 3-9(b). HCI lifetime projection at 25 °C and 100°C under Vg @ Isubmax stress condition of NO anneal.
- Fig. 3-9(c). HCI lifetime projection at 25°C and 100°C under Vg @ Isubmax stress condition of oxide.

- Fig. 3-10(a). HCI lifetime projection at 25° C under Vg = Vd stress condition of three kinds of samples.
- Fig. 3-10(b). HCI lifetime projection at 100° C under Vg = Vd stress condition of three kinds of samples.
- Fig. 3-11(a). HCI lifetime projection at 25°C under Vg @ Isubmax stress condition of three kinds of samples.
- Fig. 3-11(b). HCI lifetime projection at 100°C under Vg @ Isubmax stress condi-

tion of three kinds of samples.

- Fig. 3-12. HCI lifetime projection slope at 25° C and 100° C under Vg = Vd and Vg @ Isubmax stress conditions.
- Fig. 3-13. Lifetime projection slope change from 25°C to 100°C of NBTI and

two stress conditions of HCI.

- Fig. 3-14. HCI lifetime projection slope change from Vg = Vd to Vg @ Isubmax at 25°C and 100°C.
- Fig. 4-1. Measurement setup in our charge pumping experiment.
- Fig. 4-2(a). Vt shift of pure oxide.
- Fig. 4-2(b). Icp shift of pure oxide.
- Fig. 4-3(a). Vt shift of NH₃ anneal.
- Fig. 4-3(b). Icp shift of NH₃ anneal.

- Fig. 4-4. Vt recovery ratio of pure oxide and NH₃ anneal.
- Fig. 4-5. Icp recovery ratio of pure oxide and NH₃ anneal.

