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國立交通大學  電子工程學系  電子研究所 

 

摘要 

 
本篇論文主要著重於利用蒙地卡羅模擬在應變矽晶面上之電洞傳輸特

性。目前，利用由製程所造成的單軸應力(uniaxial stress)來改善元件效能已

經被廣泛地使用。在第一章中，將簡單的介紹外加應力於 P型及 N型通道

金氧半場效電晶體的應用。在第二章中，介紹一種用來計算矽價電帶結構

的鍵結軌域模型(bond orbital model)，其因為具有較可靠的高能量價電帶結

構，可以利用來模擬快閃式記憶元件操作在高壓下的之熱載子行為。 

第三章中，為了要考慮外加應力對價電帶結構的影響，又介紹了另一

種計算價電帶結構的方法，Luttenger-Kohn 模型，這方法也是主要利用來

探討矽和應變矽的電洞傳輸特性。在第四章中，根據前兩章所得到的價電

帶結構，使用蒙地卡羅(Monte Carlo)方法來模擬電洞的傳輸，其兩種模型

對電洞傳輸特性的影響可以由模擬結果得知。此外，並在不同通道方向及

加上不同應力大小的情況下，探討電洞傳輸特性的變化。而模擬結果顯

示，外加單軸壓縮應力時，會對電洞的遷移率有所提升。最後在第五章對

本論文做個總結。 
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Abstract 

 
This thesis will focus on the hole transport properties of bulk strained silicon by 

using a Monte Carlo simulation. For today’s technology, uniaxial–process induced 

stress is used to improve device performance. In chapter 1, the applications of 

uniaxial strain in pMOSFET and nMOSFET are described. The embedded 

silicon-germanium source and drain with uniaxial compressive strain is applied to 

pMOSFETs, while the contact etch stop layer with uniaxial tensile strain and strain 

memory technology (SMT) are used for nMOSFETs. In chapter 2, the valence band 

structures in bulk silicon are calculated by using a bond orbital model, which is 

appropriate for a high energy portion of valence band structures. This model can be 

used for hot carrier simulation in flash memory devices during channel hot electron 

(CHE) program. In chapter 3, another valence band structure calculation method, 

Luttinger-Kohn model, is used to take into account the strain effects and mainly focus 

on the mobility calculation. The simulation results also demonstrate the hole transport 

properties in unstrained and strained bulk silicon material, which will be shown in the 

next chapter. In chapter 4, a Monte Carlo method including a realistic valence band 



 iii

structure is developed to simulate hole transport properties. The differences of the 

transport properties calculated from the above two models are also shown. The 

channel orientation effect and strain effect on hole drift velocity and mobility are also 

evaluated. Our simulation results show that the hole mobility enhancement can be 

obtained with uniaxial compressive strain. Conclusions are finally given in chapter 5. 
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Chapter 1 

Introduction 

 

For the past decades, the scaling of silicon complementary metal-oxide 

semiconductor (CMOS) transistor has enabled not only an exponential increase in 

integration circuit density, but also a corresponding enhancement in the transistor 

performance. But as the transistor gate length shrinks down to 35nm [1-2], physical 

limitations, such as off-state leakage current and power density, make geometric 

scaling an increasingly challenging task. Therefore, new techniques are required to 

improve transistor performance. The key feature to enhance 90-, 65-, and 45-nm 

technology nodes is uniaxial-process induced stress [3-5]. For p-type MOSFETs, it 

was this embedded Si1-xGex in source and drain area promoted by Intel [6]. Moreover, 

a tensile silicon nitride-capping layer is used to introduce tensile strain into the n-type 

MOSFETs and enhance electron mobility [7]. In this study, we performed detailed 

calculations of transport properties of holes in strained bulk silicon by using a Monte 

Carlo simulation. 

The first principle of the hole transport theory is the Boltzmann transport 

equation (BTE) [8-9]. Once this equation is solved, the current can be obtained as a 

function of applied fields. In this way, the important transport parameters of a material 

can be obtained. However, an exact solution of the BTE [10-11] under a non-linear 

response condition in a high field domain seems to be a troublesome mathematical 

problem. The practical solutions for this problem should include analytical 

approximations and numerical techniques. Among those, the Monte Carlo method is 

commonly employed to solve the Boltzmann transport equation in high field transport 

condition. The quantities of physical interest such as drift velocity, hole energy 
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distribution can be evaluated. Despite its appreciable computational cost, its 

simplicity of implementation and relative description of physical mechanisms have 

rendered the Monte Carlo simulation appealing and successful. 

Our Monte Carlo simulation has two main components: band structures and 

scattering rates. Both of these two components are strongly related to the strain effect. 

In contrast to the conduction band, the valence band structure of silicon is very 

complicated. In the following chapters, two methods are introduced to calculate the 

valence band structures.  

In chapter 2, the valence band structures in bulk silicon are calculated by using a 

bond orbital model [12], which is appropriate for a high energy portion of valence 

band structures. This model can be employed for hot carrier simulation in flash 

memory devices during CHE program. 

In chapter 3, another valence band structure calculation method, Luttinger-Kohn 

model [13], is used to take into account the strain effects. The strain effects are 

considered with the Bir-Pikus deformation potentials. Moreover, the Luttinger-Kohn 

model is used to mainly focus on the mobility calculation. The simulation results also 

demonstrate the hole transport properties in unstrained and strained bulk silicon 

material, which will be shown in the next chapter. 

In chapter 4, a Monte Carlo method including a realistic valence band structure is 

developed to simulate hole transport properties. The differences of the transport 

properties calculated from the above two models are also shown. The channel 

orientation effect and strain effect on hole drift velocity and mobility are also 

evaluated. Our simulation results show that the hole mobility enhancement can be 

obtained with uniaxial compressive strain.  

Finally, a brief conclusion is given in chapter 5. 
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Chapter 2 

Valence Band Structure Calculation – 

Bond Orbital Model 

 

2.1 Introduction 

 Various methods have been developed to calculate a band structure in 

semiconductors. These methods can be grouped into four categories: the 

pseudopotential method [14,15], the envelope-function (k．p) method [16], the tight 

binding method [17], and the bond orbital model (BOM) method [12,18]. Among 

these methods, the pseudopotential approach is suitable for a conduction band 

structure and the k．p method is widely used to calculate a valence band structure. 

Although the k．p method can yield reliable results near valence band maxima, it is 

not appropriate for the high-energy portion of a valence band. As a contrast, although 

the tight binding method can take the effect of a full valence band structure into 

account, the main disadvantage of this method is that it requires many empirical 

parameters which are usually determined by tedious fitting procedures. 

 In order to consider the high energy portion of a valence band with an affordable 

computational effort, a bond orbital model is used in this work. This model can be 

used for hot carrier simulation in flash memory devices during CHE program. This 

method combines the advantages of the k．p method and the tight binding method. All 

of the interaction parameters used in this method are directly related to the parameters 

for describing bands near the zone center in the k．p method. The computational effort 

required for this method is comparable to the k．p method. In addition, this method 

contains many advantages of the tight binding method, while avoiding the tedious 
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fitting procedures. 

 For semiconductors, such as Si and Ge, there are three bands, heavy-hole (HH), 

light-hole (LH), and split-off (SO) bands in the valence band structure. Four bond 

orbits per unit cell (made of p-like states coupled with spin to form orbits with total 

angular momentum J=3/2) are used to obtain the heavy-hole and the light-hole bands, 

and two bond orbits per unit cell (made of p-like states coupled with spin to form 

orbits with total angular momentum J=1/2) are used from the split-off band. We can 

assume that all these bonds are sufficiently localized that the interaction between 

orbits separated farther than the nearest neighbor distance can be ignored. 

 

2.2 Bond Orbital Model 

 The diamond or zinc-blende structures are constructed by the sp3 hybridization 

bonds. In order to describe the valence bands, we need at least three p-like orbits per 

unit cell. We denote the p-like orbits as |R,s> where R is the site of an atom and 

s=x,y,z. If the spin coupling effect is not considered, the tight-binding formulation for 

nearest neighbors’ interaction |R,s> and |R’,s’> in a face-centered-cubic lattice is 

given by Slater[19] as 

xx xy xz

k xy yy yz

xz yz zz

H    H    H

H = H    H    H

H    H    H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

           (2.1) 

where 

ss p zz x y y z z x

xx zz s x y z s

ss' xy s s'

H  E +4E (cosk cosk +cosk cosk +cosk cosk )

                +4(E -E )cosk (cosk +cosk +cosk -cosk )

H 4E sink sink

s and s' =x,y,z

≡

≡ −
   (2.2) 

Here k is expressed in units of 2π/a. Here ‘a’ is a lattice constant. Ep, Exx, Ezz, Exy 
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are empirical parameters. By taking the Taylor expansion over k in the above matrix 

and omitting terms higher than the second order, the new Hamiltonian is 

2 2
v 1 x 2 3 x y 3 x z

2 2
k 3 x y v 1 y 2 3 y z

2 2
3 x z 3 y z v 1 z 2

E λ k λ k      λ k k            λ k k

H =      λ k k         E λ k -λ k      λ k k

     λ k k             λ k k         E λ k λ k

⎡ ⎤− − − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

   (2.3) 

where 

p xx zz

2
1 xx zz

2
2 xx zz

2
3 xy

Ev E +8E +4E

λ (E E )a /2

λ (E +E )a /2

λ E a

≡

≡ −

≡

≡

           (2.4) 

Since the above approximation is appropriate for a k near the zone center where 

the k．p method is suitable, we can compare the above matrix with the k．p matrix 

derived by Kane[20]： 

2 2 2
x y z x y x z

2 2 2
k x y y x z y z

2 2 2
x z y z z x y

Lk +M(k +k )      Nk k                   Nk k

H =          Nk k          Lk +M(k +k )       Nk k

         Nk k                    Nk k       Lk +M(k +k )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.5) 

where L, M, and N are the k．p model parameters defined in Ref 21. The Luttinger 

parameters, γ1, γ2, γ3 [22, 23], can be defined in terms of L, M, N,  

2

1
0

2

2
0

2

3
0

1γ (L+2M)
2m 3

1γ (L-M)
2m 6

1γ N
2m 6

= −

= −

= −

           (2.6) 

where m0 is free electron mass and L, M, N can be measured from the 

cyclotron-resonance experiment[24]. Obviously, the relationship between the BOM 

parameters and the k．p model parameters is obtained by as followed, 

1 2 3λ = (L-M)          λ = M             λ = N− − −       (2.7) 
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There is a one to one correspondence between the Luttinger parameters, γ1, γ2, γ3, 

and the BOM interaction parameters, Ep, Exx, Ezz, Exy . 

xx 1 0 2 0

zz 1 0 2 0

xy 3 0

p  v 1 0

2

0 2
0

E γ R +4γ R
E γ R 8γ R
E 6γ R

E E 12γ R

R
2m a

≡
≡ −

≡

≡ −

≡

           (2.8) 

where “a” is a lattice constant. In order to include the spin-orbital interaction, the 

spin-orbit coupled bond orbits can be written as  

J J σ
s,σ

J,M = C(sσ;JM ) R,s χ∑          (2.9) 

where J= 3/2, 1/2, M= J, (J-1), … －J,    donates the spinors and C(α,σ;J,MJ) are 

coupling coefficients. The k-independent spin orbit perturbation form [20] is 

so

 0   i   0  0   0  1
i  0  0  0   0     i

 0 0 0  1 i   0
H  = 

 0   0  1  0 i   03
 0   0   i   i    0   0

1  i   0   0   0   0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

− ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

         (2.10) 

where  is the spin orbit splitting. To diagonalize the spin orbit perturbation, the △

coupling coefficients can be obtained, and the bond orbits can be rewritten in terms of 

p-like orbits and spinors,  

3 3 1, = (x+iy)
2 2 2
3 1 1, = (x+iy) +2z
2 2 6
3 1 1, = (x iy) +2z
2 2 6
3 3 1, = (x iy)
2 2 2
1 1 1, = (x+iy) +z
2 2 3
1 1 1, = (x iy) z
2 2 3

− ↑

− ↓ ↑

− − ↑ ↓

− − ↓

↓ ↑

− − ↑ − ↓

          (2.11) 

σχ



 7

From the coupling coefficients, the JMJ unitary transformation matrix can be obtained 

as followed. 

1 1 1     0             0        0     
2 6 3
i i i     0          0        0         
2 6 3

2 1    0         0         0         0    
6 3U

1 1 1    0         0          0
6 2 3
i i i    0         0        
6 2 3

− −

− − −

− −
=

− − −

− − −  0    

2 1    0        0          0        0    
6 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦

        (2.12) 

And the tight-binding Hamiltonian becomes 

K-1
JM,J'M' unstr

K

H
H =U U=H

       H
⎡ ⎤
⎢ ⎥
⎣ ⎦

         (2.13) 

By solving the Hamiltonian, the valence band structures can be obtained. The 

bond orbital model parameters used in this calculation are listed in Table 2.1. 

 

2.3 Simulation Results 

 Fig. 2.1 shows the calculated valence band structures, heavy hole (HH) ,light 

hole (LH) ,and split off(SO) bands, in bulk silicon on (001) substrate from the bond 

orbital model. The heavy hole and light hole bands are degenerated at the zone center 

k=(0,0,0). Fig. 2.2 shows the constant energy contour of the heavy hole band on the 

plane of kz = 0. The strong warping of the heavy hole band is illustrated. The band is 

anisotropic, but highly symmetric. Fig. 2.3 shows the constant energy contour of the 

light hole band on the kz = 0 plane. It has more regular shape compared with the heavy 

hole band. The constant energy surfaces for the heavy hole and light hole bands are 

also plotted in Fig. 2.4 and Fig. 2.5, respectively. The energy is 50meV below the Γ 

point. 
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Fig. 2.1 Calculated valence band structures on Si (001) substrate from the bond 
orbital model.  
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Fig. 2.2 The constant energy contour on the kz = 0 plane of the heavy-hole 
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Fig. 2.3 The constant energy contour on the kz = 0 plane of the light-hole band. 
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Fig. 2.4 Constant energy surface for the heavy-hole band. The energy is 50meV 
below the Γ point. 
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Fig. 2.5 Constant energy surface for the light-hole band. The energy is 50meV 
below the Γ point. 
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Chapter 3 

Valence Band Structure Calculation – 

Luttinger-Kohn Model 

 

3.1 Introduction 

In chapter 2, a bond orbital model is employed to calculate the valence band 

structures of the bulk silicon. In order to take into account the effect of uniaxial   

compressive strain, a Luttinger-Kohn model is used. This model is similar to the k．p 

method. The strain effects can be included by the Bir-Pikus deformation potentials. 

The Luttinger-Kohn model is described as follows. 

 

3.2 Luttinger-Kohn Model 

 Based on the theory of Luttinger-Kohn [25] and Bir-Pikus [26], the valence band 

structure of strained semiconductor can be described by the following 6 × 6 

Hamiltonian  

+

+ +

+ + +

1 P+Q      S         R          0      S     2R
2

3 S      P Q       0          R      2Q      S
2

3   R           0       P Q      S         S      2Q
2H=

    0           R        S        P+Q   2R  

− −

− − −

−
−

− +

+

+ +

3 3,  
2 2
3 1,  
2 2
3 1,
2 2
3 31 ,S
2 22
1 11 3 ,  S  2Q   S   2R     P+ 0
2 22 2
1 13 1 , 2R     S   2Q    S       0          P+
2 22 2

      

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥

−−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥ −−
⎢ ⎥⎣ ⎦

    (3.1) 

Where 

k εP=P +P               (3.2) 



 15

k εQ=Q +Q  

k εR=R +R  

k εS=S +S  
2

2 2 2
k 1 x y z

0

P =( ) γ  (k +k +k )
2m
=  

2
2 2 2

k 2 x y z
0

Q =( ) γ  (k +k -2k )
2m
=  

2
2 2

k 2 x y 3 x y
0

R =( ) 3 [ γ  (k k )+2iγ k k ]
2m

− −
=  

2

k 3 x y z
0

S =( ) 2 3 γ  (k ik )k
2m

−
=  

ε v xx yy zzP = a (ε +ε +ε )−  

ε xx yy zz
bQ = (ε +ε 2ε )
2

− −  

ε xx yy xy
3R = b(ε ε ) idε

2
− − −  

ε zx yzS = d(ε iε )− −  

where  is the spin orbit splitting, γ△ 1, γ2, and γ3 are the Luttinger parameters, av, b, 

and d are the Bir-Pikus deformation potentials. The parameters used in this thesis are 

listed in Table 3.1[27]. Moreover, εij is the strain tensor and |j, m> is the Bloch wave 

function at zone center and can be written as 

3 3 1, = (x+iy)
2 2 2
3 1 1, = (x+iy) +2z
2 2 6
3 1 1, = (x iy) +2z
2 2 6
3 3 1, = (x iy)
2 2 2
1 1 1, = (x+iy) +z
2 2 3
1 1 1, = (x iy) z
2 2 3

− ↑

− ↓ ↑

− − ↑ ↓

− − ↓

↓ ↑

− − ↑ − ↓

         (3.3) 

The valence band structures can then be obtained by solving the 6×6 
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Hamiltonian. In order to obtain a proper six-order determinant equation, it is useful to 

work on a different basis set 
1 ( x + i y )

2
1 ( x i y )

2
z

1 ( x i y )
2

1 ( x + i y )
2

z

↑

− ↑

↑

− ↓

↓

↓

           (3.4) 

With this new basis set, the unitary transformation matrix U can be obtained.  

 

1     0       0     0      0       0

2 1 0      0       0     0
3 3

1 2 0        0     0      0     
3 3U

 0      0       0     1      0        0

1 2 0      0       0        0
3 3

2 1 0        0     0     0   
3 3

−⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢
⎢
⎢
⎢
⎢
⎢
⎢ −
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

       (3.5) 

The original Hamiltonian H needs to transform into a new Hamiltonian H’ 

-1H '   = U HU

3P+Q        3R          S         0              0                0
2

2 3 23     P+Q+      S         0             0            
3 2 3

2 2 2 S        S       P 2Q+       0         
3 3 3       = 

R+ +

+

−

− −

−
−

            0
3

3   0               0                0           P+Q       3         
2

2 2 3   0               0                   3     P+Q+ S
3 3 2

2 3   0                      0           S    
3 2

   

R S

R

+ +−

−

−

 

3   S       P 2Q+
2 3

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

  (3.6) 

Then, with the help of a mathematical identity,  
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1 1 1 2 1 3   

22 1 2 2 2 3
1 1 1 2 1 3

3 1 3 2 3 3 2
2 1 2 2 2 3 1 1

1 1 2 1 3 1
3 1 3 2 3 3

1 2 2 2 3 2

1 3 2 3 3 3

a  a  a 0     0    0
a  a  a  0     0    x

a  a  a
a  a  a  0    - x    0

= a  a  a a x
 0     0    0   a  a  a

a  a  a
 0     0   - x   a  a  a
 0     x    0   a  a  a

⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.7) 

the six-order determinant equation can be simplified to a square of a cubic equation as 

followed. 

3 2 2
ij ijdet(H' δ E) {ε ε 3λε [µ λ]} 0− = + − − + =       (3.8) 

where  
2 2 2

3 2 2 2 + +2

ε=E+P,λ=Q +|S| +|R| ,

3 3µ=2Q +3Q|S | 6Q|R | (S R +S R)
2

− +
 

The valence band structures can then be obtained by solving the cubic eigen-equation 

analytically. 

 

3.3 Simulation Results 

 For the unstrained case, Fig. 3.1 shows the valence band structures in bulk 

silicon from the bond orbital model (BOM, solid lines) and from the Luttinger-Kohn 

model (dash lines). Apparently, those two models have a significant deviation in the 

high energy portion. For the heavy hole band along [100] direction, the energy from 

the Luttinger-Kohn model is 10% larger than that from the bond orbital model at 

wave vector k=0.3*(2π/a).  

 For the strained case, Fig. 3.2 and Fig. 3.3 show the valence band structures 

under uniaxial compressive strain along [100] and [110] directions with ε= -0.5%, 

which ε is defined as 0

0

a a
a
− ,where a is the lattice constant with strain, and a0 is the 

silicon lattice constant, 5.431Å. As shown in Fig. 3.2 and Fig. 3.3, the energy levels 
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for the top band and second band are splited due the applied uniaxial compressive. 

This energy splitting is important for the reduction of the interband phonon scattering 

[28]. The presence of anti-crossings are found, which are defined as the lowest lying 

hole band/highest lying valence band [29]. In Fig. 3.4 and Fig. 3.5, the constant 

energy surfaces of top band on the kz = 0 plane under uniaxial compressive strain 

along [100] and [110] directions with ε= -0.5% are plotted. The symmetry of the top 

band is broken, which results in a redistribution of holes in k-space. On the other hand, 

the conduction effective masses alone the strain directions become smaller, which 

gives rise to the mobility enhancement. The mobility calculation is based on a Monte 

Carlo simulation and will be given in detail in chapter 4. The constant energy surfaces 

for the top band under uniaxial compressive strain along [100] and [110] directions 

with ε= -0.5% are also plotted in Fig. 3.6 and Fig. 3.7. The energy is 30meV below 

the Γ point. 
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Fig. 3.1 Calculated valence band structures on Si (001) substrate from the bond 
orbital model (BOM, solid lines) and from the Luttinger-Kohn model 
(dash lines). 
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Fig. 3.2 Valence band structures, top band (E1), second band (E2) ,and split-off 
band(E3), under uniaxial compressive strain along [100] channel 
direction at ε= -0.5%. 
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Fig. 3.3 Valence band structures, top band (E1), second band (E2) ,and split-off 
band(E3), under uniaxial compressive strain along [110] channel 
direction at ε= -0.5%. 
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Fig. 3.4 Constant energy contour on the kz=0 plane of the top band under 
uniaxial stress along [100] channel direction at ε= -0.5%. 
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Fig. 3.5 Constant energy contour on the kz=0 plane of the top band under 
uniaxial stress along [110] channel direction at ε= -0.5%. 
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Fig. 3.6 Constant energy surface for top band under uniaxial stress along [100] 
channel direction at ε= -0.5%. The energy is 30meV below the Γ point. 
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Fig. 3.7 Constant energy surface for top band under uniaxial stress along [110] 
channel direction at ε= -0.5%. The energy is 30meV below the Γ point. 
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Chapter 4 

Hole Transport Properties in Strained Silicon 

 

4.1 Introduction 

Due to a strong coupling of the heavy hole, light hole, and split off bands in 

silicon, leading to a warping of the constant energy surface, the usual analytical 

approximations of the valence bands are not suitable for simulating carrier transport. 

A realistic band structure including the heavy hole, light hole, and split off bands must 

be adopted. However, the inclusion of the band structure in the Boltzmann transport 

equation is impractical. The Monte Carlo (MC) method provides an alternative 

approach to the Boltzmann transport equation [30]. The Monte Carlo method could 

take into account realistic band structures and a large variety of scattering 

mechanisms. In this chapter, the hole mobility at low electric fields and the hole 

velocity at high electric fields will be evaluated with a Monte Carlo simulation. 

In order to properly include the high field and high energy transport effects, a 

bond orbital model is used to calculate the bulk silicon valence band structure, as 

described in chapter 2, in the Monte Carlo simulation. Moreover, the Luttinger-Kohn 

model, as described in chapter 3, is also employed to take into account the strain 

effect. Hole scattering mechanisms in the Monte Carlo simulation include 

acoustic-phonon, nonpolar optical phonon scattering, and impact ionization. The hole 

drift velocity is simulated at T=300K.  

 

4.2 Physical Model and Simulation Technique 

The scattering rate is calculated according to the Fermi-Golden rule [31]. The 
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first step is to identify the scattering potential Us(r) and then to evaluate the matrix 

element, 

ik   r ik  r
kk

1M = e Us(r)e
Ω

′− −
′ ∫ i i

        (4.1) 

where Ω is the volume of a unit cell. From the matrix element, we find the transition 

rate as: 

2
kk kk

2πW = |M | δ(E(k )-E(k)-∆E)′ ′ ′
=

        (4.2) 

where E is the change in energy caused by collision. The transition rate W△ kk’ 

represents the probability per unit time that a carrier with momentum k=  scatters to 

a state with momentum k ′= . In other words, the transition rate is the rate at which 

carriers are scattered from a specific initial state k to a specific final state k’. The 

major hole scattering mechanism are acoustic phonon scattering, nonpolar optical 

phonon scattering, and impact ionization. The scattering rates of the mechanism are 

described below [32]. The acoustic phonon scattering rate is given by 

2
b 0 eff

ac 2
1

πk T ES = D(E)
ρu=

           (4.3) 

where Eeff is the effective deformation potential, ρ is the material density, u1 is the 

velocity of sound in the material, T0 is lattice temperature and D(E) is the density of 

hole states obtained from the realistic valence band structure. The optical phonon 

scattering rate is 

2
t

op w b ph
b ph

πD (i) 1 1S (i)= [N + ]D(E k T (i))
2ρk T (i) 2 2

±
= ∓       (4.4) 

w
ph 0

1N =
exp(T (i)/T ) 1−

 

where Dt(i) is the optical phonon coupling constant in the i-th band (i =1,2,3 denote 

the heavy hole, light hole, split off bands respectively), Tph(i) is the corresponding 
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optical phonon temperature, and Nww  is the Bose-Einstein distribution. The + and – 

represents the absorption and emission rates. Finally, the impact ionization rate is 

obtained from the Keldysh formula [33], 

2th
impact op

th

E ES =S (E)p( )
E
−

          (4.5) 

In the simulation, the scattering parameters used to fit experimental results are Eeff, 

Tph(i), Dt(i), Eth and p. Two methods are used in our fitting procedure, the conjugate 

gradient method and surface response methods [34]. First, the conjugate gradient 

method is used, in which the results are assumed to be linearly proportional to the 

parameters, to give rough values of the parameters. Then, the optimized value can be 

obtained by using the surface response method, in which, both the simulation and 

objective function iteratively solved until a self consistent solution is achieved. In 

above methods, we need to define an objective function: 

2

i i

i i

ˆ(x -x (p))f(p)=
x̂

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑            (4.6) 

where ix̂  represents the experimental values, ix is the simulation values, and p 

represents a set of fitting parameters. The values of the scattering parameters are 

shown in Table 4.1. 

In the numerical implementation of the valence band structure obtained from the 

bond orbital model and Luttinger-Kohn method, tabular forms of the E-k relationship 

[35] for the lowest three valence bands are established in the simulation. The smallest 

mesh size in k-space is 0.01(2π/a) in a region near the Γ point. Fig. 4.1 shows a 

flowchart of a simple Monte Carlo simulation [36]. In the Monte Carlo simulation, a 

carrier hole is simulated under an external electric field. It travels freely between two 

successive scatterings. The free-flight time is determined by using a fixed time 

technique. During the free flight, the hole is accelerated by the field and its 
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momentum and energy are updated according to the tabular form of the E-k 

relationship. If a scattering happens, a random number is generated to decide the 

responsible scattering mechanism and the new hole state is chosen according to the 

tabular form of the E-k relationship. This procedure is continued until the fluctuation 

due to the statistical uncertainty is less than 1%. 

 

4.3 Results and Discussions 

4.3.1 Unstrained Silicon 

  Fig. 4.2 shows the density of states obtained from the bond orbital model (solid 

line) and Luttinger-Kohn method (dash line). The density of states obtained from 

bond orbital model and Luttinger-Kohn model is different for the high energy. Fig. 4.3 

shows the hole optical phonon and acoustic phonon scattering rates as a function of 

hole energy obtained from the bond orbital model (solid line) and Luttinger-Kohn 

method (dash line). As can be seen clearly, optical phonon scattering is dominant in 

the high energy region for both models. 

  Fig. 4.4 shows the simulated hole energy distribution at electric field of 

200kV/cm with the bond orbital model (square) and with the Luttinger-Kohn method 

(circle). Fig. 4.5 shows the hole drift velocities versus electric field for bulk Si ,Ge 

and Si0.8Ge0.2. Fig. 4.6, demonstrates the hole drift velocities along [100] and [110] 

directions. The drift velocity at electric field of 200kV/cm along the [100] direction is 

about 10% larger. Moreover, a weak anisotropic behavior of the drift velocity is also 

observed, similar to [37]. 

4.3.2 Strained Silicon 

In the following part, the strain effect on the mobility is evaluated with the 

Luttinger-Kohn model. As indicated in [28], to have a good strain induced hole 
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mobility enhancement, there are four key parameters for valence band structure 

characteristics, (1) low effective mass along the channel direction to increase mobility, 

(2) high density of states effective mass to increase the top band occupation 

probability, (3) high hole energy splitting to reduce the interband phonon scattering 

and (4) high out-of-plane effective mass. Table 4.2 shows the calculated effective 

mass and energy splitting levels in different stressors, -0.5% compressive strain in 

[100] and [110] directions, compared to [100] direction without applied strain. As can 

be seen clearly, compressive strain induced effective mass reduction in channel 

direction and energy splitting can be observed. In addition, compared to [100] 

direction, effective mass in [110] direction is moderately decreased, which is 

consistent with the piezoresistance concept [38]. From the piezoresistance concept, on 

(001) wafer, the value of π|| in [110] direction is larger than in [100] direction. 

Fig. 4.7 shows phonon scattering rate for the unstrained and strained case with 

ε= -0.5% along different directions, [100] (dash line) and [110] (dot line). The strain 

effect on hole transport is manifested in a slight reduction of the optical phonon 

scattering rate, which is attributed to the splitting of the heavy hole and light hole 

bands. Moreover, the phonon scattering rate in [110] direction is smaller than in [100] 

direction with applied uniaxial compressive strain due to larger energy splitting. In 

Fig. 4.8, hole drift velocity as a function of the electric field applied along the [100] 

direction for two unaixial compressive strain cases, ε= 0,  and -0.5%, is shown, 

respectively. One point is worth mentioning. The uniaxial compressive stress direction 

is along channel direction. In Fig. 4.8, the low field mobility is extracted in the inset. 

Finally, Fig. 4.9 shows the extracted low field mobility along [100] and [110] 

directions with different stressors. And the simulation results show that the hole 

mobility enhancement is increased with larger uniaxial compressive strain, which 

consists with the experiment results as published in [39]. Furthermore, the strain 
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induced mobility enhancement in [110] channel direction is larger than in [100] 

direction. 
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mx (m0)

ε= 0 
[100] 0.29 0.29

0.19 0.23ε= -0.5%
[100]

ε= -0.5%
[110] 0.13 0.38

stressors mDOS (m0) ∆ (meV)

0.0

28.1

33.8

mz (m0)

0.29

0.28

0.28
 

 

 

 Table 4.2 Calculated effective mass and energy splitting levels in different  

   stressors, -0.5% compressive strain in [100] and [110] directions, and 

   [100] direction without applied strain. 
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 Fig. 4.1  Flowchart of a typical Monte Carlo program. 
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Fig. 4.2  Density of states in bulk silicon from the bond orbital model (solid line) 
and from the Luttinger-Kohn model (dash line). 
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Fig. 4.3  Scattering rates of hole scattering mechanisms in bulk silicon from the 
bond orbital model (solid line) and from the Luttinger-Kohn model 
(dash line). 
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Fig. 4.4 Hole energy distributions calculated from the bond orbital model 
(square) and from the Luttinger-Kohn model (circle) at the electric 
field of 200 kV/cm. 
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Fig. 4.5 Calculated hole drift velocity as a function of electric field for bulk Si,  

Ge and Si0.8Ge0.2. 
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Fig. 4.6 Hole drift velocity as a function of the electric field along [100] and 

[110] directions. 
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Fig. 4.7  Optical phonon scattering rate for uniaxial compressive strain with ε= 

-0.5% in the [100] (dash line) and [110] (dot line) directions, compared 
with unstrained case (solid line). 
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Fig. 4.8 Hole drift velocity as a function of the electric field applied along [100] 
direction for two uniaxial compressive strain cases, ε= 0, and -0.5%. 
The uniaxial compressive strain direction is the channel direction. The 
low field mobility is extracted in the inset. 
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Fig. 4.9 Calculated hole mobility versus uniaxial compressive stress along [100] 

and [110] directions. 
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Chapter 5 

Conclusions 

 

Two kinds of valence band structure models are studied. A Monte Carlo 

simulation is developed to calculate hole transport properties, such as hole mobility 

and drift velocity. Moreover, the difference of the simulation results with the bond 

orbital model and with the Luttinger-Kohn model is also examined. Furthermore, the 

hole drift velocities along [100] and [110] channel directions are also calculated, and 

the simulation results show the weak anisotropy of the drift velocity.  

The strain effect on hole mobility is also evaluated with the Luttinger-Kohn 

model. And our simulation results show that the hole mobility enhancement can be 

obtained with uniaxial compressive strain. And it draws a lot of interest to apply 

compressive strain in [110] direction due to its larger mobility enhancement. 

Finally, a Monte Carlo program is established to simulate the carrier transport 

properties. The strain effect on the device performance, such as mobility and 

saturation velocity can be examined by a Monte Carlo program, which will becomes a 

powerful simulation tool for device simulation in the next generation. 
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