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Abstract

This thesis will focus on the hole transport properties of bulk strained silicon by
using a Monte Carlo simulation:*For today’s.technology, uniaxial-process induced
stress is used to improve deviceé performance. In-chapter 1, the applications of
uniaxial strain in pMOSFET: and AMOSFET' are described. The embedded
silicon-germanium source and drain ‘with-uniaxial compressive strain is applied to
pMOSFETs, while the contact etch stop layer with uniaxial tensile strain and strain
memory technology (SMT) are used for nMOSFETs. In chapter 2, the valence band
structures in bulk silicon are calculated by using a bond orbital model, which is
appropriate for a high energy portion of valence band structures. This model can be
used for hot carrier simulation in flash memory devices during channel hot electron
(CHE) program. In chapter 3, another valence band structure calculation method,
Luttinger-Kohn model, is used to take into account the strain effects and mainly focus
on the mobility calculation. The simulation results also demonstrate the hole transport
properties in unstrained and strained bulk silicon material, which will be shown in the

next chapter. In chapter 4, a Monte Carlo method including a realistic valence band
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structure is developed to simulate hole transport properties. The differences of the
transport properties calculated from the above two models are also shown. The
channel orientation effect and strain effect on hole drift velocity and mobility are also
evaluated. Our simulation results show that the hole mobility enhancement can be

obtained with uniaxial compressive strain. Conclusions are finally given in chapter 5.
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orbital model.

The constant energy contour on the kz = 0 plane of the heavy-hole band.
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below the I point.

Constant energy surface for the light-hole band. The energy is 50meV
below the I point.

Calculated valence band structures on Si (001) substrate from the bond

orbital model (BOM, solid lines) and from the Luttinger-Kohn model (dash

lines).

Valence band structures, top band(E1), second band (E2) ,and split-off
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channel direction at &= -0.5%. The energy is 30meV below the I" point.
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Chapter 1

Introduction

For the past decades, the scaling of silicon complementary metal-oxide
semiconductor (CMOS) transistor has enabled not only an exponential increase in
integration circuit density, but also a corresponding enhancement in the transistor
performance. But as the transistor gate length shrinks down to 35nm [1-2], physical
limitations, such as off-state leakage current and power density, make geometric
scaling an increasingly challenging task. Therefore, new techniques are required to
improve transistor performance. The key feature to enhance 90-, 65-, and 45-nm
technology nodes is uniaxial-process induced stress [3-5]. For p-type MOSFETs, it
was this embedded Si; <Gey in source and drain area promoted by Intel [6]. Moreover,
a tensile silicon nitride-cappingdayeriis used-to.introduce tensile strain into the n-type
MOSFETs and enhance electron mobility [7]; In this study, we performed detailed
calculations of transport properties of holes in strained bulk silicon by using a Monte
Carlo simulation.

The first principle of the hole transport theory is the Boltzmann transport
equation (BTE) [8-9]. Once this equation is solved, the current can be obtained as a
function of applied fields. In this way, the important transport parameters of a material
can be obtained. However, an exact solution of the BTE [10-11] under a non-linear
response condition in a high field domain seems to be a troublesome mathematical
problem. The practical solutions for this problem should include analytical
approximations and numerical techniques. Among those, the Monte Carlo method is
commonly employed to solve the Boltzmann transport equation in high field transport

condition. The quantities of physical interest such as drift velocity, hole energy
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distribution can be evaluated. Despite its appreciable computational cost, its
simplicity of implementation and relative description of physical mechanisms have
rendered the Monte Carlo simulation appealing and successful.

Our Monte Carlo simulation has two main components: band structures and
scattering rates. Both of these two components are strongly related to the strain effect.
In contrast to the conduction band, the valence band structure of silicon is very
complicated. In the following chapters, two methods are introduced to calculate the
valence band structures.

In chapter 2, the valence band structures in bulk silicon are calculated by using a
bond orbital model [12], which is appropriate for a high energy portion of valence
band structures. This model can be employed for hot carrier simulation in flash
memory devices during CHE program.

In chapter 3, another valence band structure caleulation method, Luttinger-Kohn
model [13], is used to take into ac¢count-the strain effects. The strain effects are
considered with the Bir-Pikus deformation petentials. Moreover, the Luttinger-Kohn
model is used to mainly focus on the mobility calculation. The simulation results also
demonstrate the hole transport properties in unstrained and strained bulk silicon
material, which will be shown in the next chapter.

In chapter 4, a Monte Carlo method including a realistic valence band structure is
developed to simulate hole transport properties. The differences of the transport
properties calculated from the above two models are also shown. The channel
orientation effect and strain effect on hole drift velocity and mobility are also
evaluated. Our simulation results show that the hole mobility enhancement can be
obtained with uniaxial compressive strain.

Finally, a brief conclusion is given in chapter 5.



Chapter 2
Valence Band Structure Calculation —
Bond Orbital Model

2.1 Introduction

Various methods have been developed to calculate a band structure in
semiconductors. These methods can be grouped into four categories: the
pseudopotential method [14,15], the envelope-function (k - p) method [16], the tight
binding method [17], and the bond orbital model (BOM) method [12,18]. Among
these methods, the pseudopotential*approach:.is suitable for a conduction band
structure and the k - p method jis widely-used to calculate a valence band structure.
Although the k - p method canyield reliable results near valence band maxima, it is
not appropriate for the high-energy portion of a valence band. As a contrast, although
the tight binding method can take the effect of a full valence band structure into
account, the main disadvantage of this method is that it requires many empirical
parameters which are usually determined by tedious fitting procedures.

In order to consider the high energy portion of a valence band with an affordable
computational effort, a bond orbital model is used in this work. This model can be
used for hot carrier simulation in flash memory devices during CHE program. This
method combines the advantages of the k - p method and the tight binding method. All
of the interaction parameters used in this method are directly related to the parameters
for describing bands near the zone center in the k - p method. The computational effort
required for this method is comparable to the k - p method. In addition, this method

contains many advantages of the tight binding method, while avoiding the tedious



fitting procedures.

For semiconductors, such as Si and Ge, there are three bands, heavy-hole (HH),
light-hole (LH), and split-off (SO) bands in the valence band structure. Four bond
orbits per unit cell (made of p-like states coupled with spin to form orbits with total
angular momentum J=3/2) are used to obtain the heavy-hole and the light-hole bands,
and two bond orbits per unit cell (made of p-like states coupled with spin to form
orbits with total angular momentum J=1/2) are used from the split-off band. We can
assume that all these bonds are sufficiently localized that the interaction between

orbits separated farther than the nearest neighbor distance can be ignored.

2.2 Bond Orbital Model

The diamond or zinc-blendé structuresrate constructed by the sp® hybridization
bonds. In order to describe the valence bands, we need at least three p-like orbits per
unit cell. We denote the p-like“orbits.as-|R;s> where R is the site of an atom and
s=x,y,z. If the spin coupling effect is not considered, the tight-binding formulation for
nearest neighbors’ interaction |[R,s> and |[R’,s’> in a face-centered-cubic lattice is

given by Slater[19] as

Hxx ny sz
H=H,6 H  H, (2.1)
sz Hyz sz

where
H = E +4E  (cosk, cosk +tcosk cosk,+cosk,cosk, )
+4(E,, -E,, )cosk (cosk  +cosk, +cosk,-cosk,)

H, =-4E_ sink sink,

(2.2)

s and s' =x,y,z

Here k is expressed in units of 2m/a. Here ‘a’ is a lattice constant. E,,, Ey, E,,, Exy



are empirical parameters. By taking the Taylor expansion over k in the above matrix

and omitting terms higher than the second order, the new Hamiltonian is

E, -k -MK  —Akk, ~hk Kk,
He=| -Akk, — E Ak Ak —Akk, (23)
~hk Kk, ~nkk,  E,-Ak-Ak?

where

Ev=E, +8E_+4E,
A =(E, ~E,,)a’2
A= (B, +E, a2
A= Exya2

(2.4)

Since the above approximation is appropriate for a k near the zone center where

the k - p method is suitable, we can compare the above matrix with the k - p matrix

derived by Kane[20] :
Lsz+M(ky2 +k22) Nk ko Nk k,
H, = Nk.k, Bk +M(K +k,’) =Nk Kk, (2.5)
Nk k., Nk k, Lk’ +M(kx2+ky2)

where L, M, and N are the k - p model parameters defined in Ref 21. The Luttinger

parameters, y1, Y2, V3 [22, 23], can be defined in terms of L, M, N,

h? 1
m Vi :_E(L+2M)
0
h? 1 2.6
1, = (L-M) 29
0
h’? 1
=—-N
2m, =%

where mq is free electron mass and L, M, N can be measured from the

cyclotron-resonance experiment[24]. Obviously, the relationship between the BOM

parameters and the k - p model parameters is obtained by as followed,

A,=—(L-M) A=—M A=-N 2.7)



There is a one to one correspondence between the Luttinger parameters, v, Y2, V3,

and the BOM interaction parameters, E,, Exy, E,, Exy .

E. =7 R H4y,R,
Ezz = YIRO - 8Y2R0

Exy - 6Y3R0
Ep = v _lzleO
hZ
R, = 5
2mga
where “a”

spin-orbit coupled bond orbits can be written as

J,MJ>=ZC(SG;JMJ)|R,S>XG

(2.8)

a” is a lattice constant. In order to include the spin-orbital interaction, the

(2.9)

where J= 3/2, 1/2, M=, (J-1), ... —J, X, donates the spinors and C(a,0;J,M)) are

coupling coefficients. The k-independent spin orbit perturbation form [20] is

[0i 00 0 =1
-i000 0

Al OO O —i
* 3]0 010-i
00ii O

S O Oa

11000

(2.10)

where /\ is the spin orbit splitting. To diagonalize the spin orbit perturbation, the

coupling coefficients can be obtained, and the bond orbits can be rewritten in terms of

p-like orbits and spinors,

3

\9}

2

R — N — P[w oW

, j>= -l )

, 1>—\/1€—(x+iy) l+2z T>

> ! ‘(x—iy)T+2z~L>

NS}

B

6

(2.11)



From the coupling coefficients, the JMj unitary transformation matrix can be obtained

as followed.

1 1 1
50 7 ° 0 %
_ i 0 ——— o o L
NCRRN S i
o2 o L, (2.12)
U- V6 B
- 1 [ S
BN AN
i i i
0 -7 0 -75-F ©
2 1
I 0 0 % 0 0 _ﬁ
And the tight-binding Hamiltonian becomes
H
HJM,J‘M':U_1|: ¢ H :|U=Hunstr (2.13)
K

By solving the Hamiltonian; the valence band structures can be obtained. The

bond orbital model parameters used in this calculation are listed in Table 2.1.

2.3 Simulation Results

Fig. 2.1 shows the calculated valence band structures, heavy hole (HH) ,light
hole (LH) ,and split off(SO) bands, in bulk silicon on (001) substrate from the bond
orbital model. The heavy hole and light hole bands are degenerated at the zone center
k=(0,0,0). Fig. 2.2 shows the constant energy contour of the heavy hole band on the
plane of k,= 0. The strong warping of the heavy hole band is illustrated. The band is
anisotropic, but highly symmetric. Fig. 2.3 shows the constant energy contour of the
light hole band on the k, = 0 plane. It has more regular shape compared with the heavy
hole band. The constant energy surfaces for the heavy hole and light hole bands are
also plotted in Fig. 2.4 and Fig. 2.5, respectively. The energy is 50meV below the I

point.
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Fig. 2.1 Calculated valence band structures on Si (001) substrate from the bond
orbital model.
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Fig. 2.3 The constant energy contour on the kz = 0 plane of the light-hole band.
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Fig. 2.4 Constant energy surface for the heavy-hole band. The energy is 50meV
below the I point.
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Fig. 2.5 Constant energy surface for the light-hole band. The energy is 50meV
below the I point.
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Chapter 3
Valence Band Structure Calculation —

Luttinger-Kohn Model

3.1 Introduction

In chapter 2, a bond orbital model is employed to calculate the valence band
structures of the bulk silicon. In order to take into account the effect of uniaxial

compressive strain, a Luttinger-Kohn model is used. This model is similar to the k - p
method. The strain effects can be included by the Bir-Pikus deformation potentials.

The Luttinger-Kohn model is described as follows.

3.2 Luttinger-Kohn Model

Based on the theory of Luttinger-Kohn [25] and Bir-Pikus [26], the valence band

structure of strained semiconductor can be described by the following 6 x 6

Hamiltonian
i 1 113 3
P+ -S R 0 -—S 2R ||2, 2
Q 2 2’ 2>
. 3 3]
st p- 0 R -2 °s {12, =
Q V2Q \E > 2>
+ _ 3¢ 31 3.1
N R 0 P-Q S S V2Q > 2> (3.1
+ + + 1 + é _E
R'" 8 P+Q -2R —\Es > 2>
\f -2Q \[ R pea 0 ||L 1>
27 2
3. 1 .1
_ﬁR 8 20 - S 0 P+A S 2>
Where
P=P, +P, (3.2)
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Q:Qk +Qa

R=R,+R,
S=S, +S.
hZ
Pk =( 2 ) Yl (kxz—'_ky2 +k22)
0
hz
Qk =( ) YZ (kxz—‘r_ky2 -21(22)
2m,
hz 2 2 .
R=(5 ) V3 [-7, (k=K )2irk K, ]
0

n* .
S, =(-—) 23 v, (k, =ik, )k,
2m,

PS == aV (SXX +8yy +8ZZ)

b
Qs: _E(Sxx +8yy - 2822)

B3

= —Tb(sXX —g,)—ide

S,=—d(e, - isyz)

where /\ is the spin orbit splitting,y;, y», and ys are the Luttinger parameters, ay, b,
and d are the Bir-Pikus deformation potentials. The parameters used in this thesis are
listed in Table 3.1[27]. Moreover, &; is the strain tensor and |j, m> is the Bloch wave

function at zone center and can be written as

3 3>= —%|(x+iy) ™

272 2

%, %>=%|—(x+iy)i«+2z 1)

%,_%>=L6|(x—iy)T+2z {) (3.3)
-2 e

%, %>:%|(x+iy) Lz 1)

%,—%>=%|(x—iy) T zd)

The wvalence band structures can then be obtained by solving the 6x6

15



Hamiltonian. In order to obtain a proper six-order determinant equation, it is useful to

work on a different basis set

N2 (3.4)

Sl i L)

%|(x+iy) v
2 v

With this new basis set, the unitary transformation matrix U can be obtained.

-1 0 0 0 0 0 |
0 0o /2— 0o -, /1— 0
3 3
0 J- o o0 o 2 (3.5)
U = 3 3
0 0 0 1 0 0
0 0 \/I 0 . ,1 0
3 3
0 el 0 0 0 = \/I
RRA'E 18
The original Hamiltonian H needs to transform into a new Hamiltonian H’
H' =U'HU
P+Q  -3R %s 0 0 0
—J3R* P+Q+% 3g+ 0 0 _@
3 2 3
e \Fs P-20+2 o 24 0 (3.6)
_ | V3 3 3 3
0 0 0 P+Q  —+3R* \Es*
0 0 ‘EA -B3R P+Q+% %s
S A R
L 3 2 2 3

Then, with the help of a mathematical identity,
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a,, a,, a;; 0 0 O

a, a,, a,; 0 0 x 4 a . 2
11 12 13

a3, a3, ds; 0 -X 0 _ 2

T (@21 822 @y T @X (3.7

a31 a32 a33

0 0 0 a,, a,, a,,

0 0 -x a,, a,, a,,

0 x 0 a,; a,;, a;,

the six-order determinant equation can be simplified to a square of a cubic equation as

followed.
det(H', —8,E) = {&’ +A&e” —=3he —[u+AA]}* =0 (3.8)

where
e=E+P,A=Q*HS[*+R[’,

p=2Q +3QIS[* ~6QIR +¥(32R++SHR)
The valence band structures can then be obtained’by solving the cubic eigen-equation

analytically.

3.3 Simulation Results

For the unstrained case, Fig. 3.1 shows the valence band structures in bulk
silicon from the bond orbital model (BOM, solid lines) and from the Luttinger-Kohn
model (dash lines). Apparently, those two models have a significant deviation in the
high energy portion. For the heavy hole band along [100] direction, the energy from
the Luttinger-Kohn model is 10% larger than that from the bond orbital model at
wave vector k=0.3*(2m/a).

For the strained case, Fig. 3.2 and Fig. 3.3 show the valence band structures

under uniaxial compressive strain along [100] and [110] directions with ¢ = -0.5%,

_aO

which ¢ is defined as a ,where a is the lattice constant with strain, and ay is the
silicon lattice constant, 5.431A. As shown in Fig. 3.2 and Fig. 3.3, the energy levels

17



for the top band and second band are splited due the applied uniaxial compressive.
This energy splitting is important for the reduction of the interband phonon scattering
[28]. The presence of anti-crossings are found, which are defined as the lowest lying
hole band/highest lying valence band [29]. In Fig. 3.4 and Fig. 3.5, the constant
energy surfaces of top band on the k, = 0 plane under uniaxial compressive strain
along [100] and [110] directions with &= -0.5% are plotted. The symmetry of the top
band is broken, which results in a redistribution of holes in k-space. On the other hand,
the conduction effective masses alone the strain directions become smaller, which
gives rise to the mobility enhancement. The mobility calculation is based on a Monte
Carlo simulation and will be given in detail in chapter 4. The constant energy surfaces
for the top band under uniaxial compressive strain along [100] and [110] directions
with e= -0.5% are also plotted in.Fig. 3.6 and Fig. 3.7. The energy is 30meV below

the I point.
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Wave vector, k(2n/a)

Fig. 3.1 Calculated valence band structures on Si (001) substrate from the bond
orbital model (BOM, solid lines) and from the Luttinger-Kohn model
(dash lines).
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Fig. 3.2 Valence band structures, top band (E1), second band (E2) ,and split-off
band(E3), under uniaxial compressive strain along [100] channel
direction at e= -0.5%.
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Fig. 3.3 Valence band structures, top band (E1), second band (E2) ,and split-off
band(E3), under uniaxial compressive strain along [110] channel

direction at e= -0.5%.

22



0.0
K« (2 7Z/a)

Fig. 3.4 Constant energy contour on the k,=0 plane of the top band under

uniaxial stress along [100] channel direction at e= -0.5%.
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Fig. 3.5 Constant energy contour on the k,=0 plane of the top band under

uniaxial stress along [110] channel direction at &= -0.5%.
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Fig. 3.6 Constant energy surface for top band under uniaxial stress along [100]

channel direction at €= -0.5%. The energy is 30meV below the I point.
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Fig. 3.7 Constant energy surface for top band under uniaxial stress along [110]

channel direction at €= -0.5%. The energy is 30meV below the I point.
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Chapter 4

Hole Transport Properties in Strained Silicon

4.1 Introduction

Due to a strong coupling of the heavy hole, light hole, and split off bands in
silicon, leading to a warping of the constant energy surface, the usual analytical
approximations of the valence bands are not suitable for simulating carrier transport.
A realistic band structure including the heavy hole, light hole, and split off bands must
be adopted. However, the inclusion of the band structure in the Boltzmann transport
equation is impractical. The Monte Catlo. (MC) method provides an alternative
approach to the Boltzmann transport equation:[30]: The Monte Carlo method could
take into account realistic band structures and -a large variety of scattering
mechanisms. In this chapter, the hole mobility at-low electric fields and the hole
velocity at high electric fields will be evaluated with a Monte Carlo simulation.

In order to properly include the high field and high energy transport effects, a
bond orbital model is used to calculate the bulk silicon valence band structure, as
described in chapter 2, in the Monte Carlo simulation. Moreover, the Luttinger-Kohn
model, as described in chapter 3, is also employed to take into account the strain
effect. Hole scattering mechanisms in the Monte Carlo simulation include
acoustic-phonon, nonpolar optical phonon scattering, and impact ionization. The hole

drift velocity is simulated at T=300K.

4.2 Physical Model and Simulation Technique

The scattering rate is calculated according to the Fermi-Golden rule [31]. The
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first step is to identify the scattering potential Us(r) and then to evaluate the matrix

element,

_ 1 —ik' e r —ik ot
Mkk’_ﬁ_’-e Us(r)e 4.1)

where Q is the volume of a unit cell. From the matrix element, we find the transition

rate as:
21 ) ,
Wkk,=?|Mkk,| O(E(k")-E(k)-AE) 4.2)

where A\E is the change in energy caused by collision. The transition rate Wiy
represents the probability per unit time that a carrier with momentum 7k scatters to
a state with momentum 7Kk’. In other words, the transition rate is the rate at which
carriers are scattered from a specific initial state k to a specific final state k’. The
major hole scattering mechanisth are acoustic phonon scattering, nonpolar optical
phonon scattering, and impact donization. The scattering rates of the mechanism are
described below [32]. The acousti¢c phonon-scattering rate is given by

_ nkaOEeffz

D(E
— (E) 4.3)

ac

where Ee is the effective deformation potential, p is the material density, u; is the
velocity of sound in the material, Ty is lattice temperature and D(E) is the density of
hole states obtained from the realistic valence band structure. The optical phonon

scattering rate is

. wD,(i)’h 1
S, (1) t—[NW+5+

kT ID(E £k, T, (i) (4.4)

1
2
N, = !

exp(T,, ()/T,) -1

where Dy(1) is the optical phonon coupling constant in the i-th band (i =1,2,3 denote

the heavy hole, light hole, split off bands respectively), Tyn(1) is the corresponding
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optical phonon temperature, and Ny, is the Bose-Einstein distribution. The + and —
represents the absorption and emission rates. Finally, the impact ionization rate is

obtained from the Keldysh formula [33],

E-E
Simpact :Sop (E)p( E . )2 (45)

th

In the simulation, the scattering parameters used to fit experimental results are E.,
Tpn(1), Di(i), Emand p. Two methods are used in our fitting procedure, the conjugate
gradient method and surface response methods [34]. First, the conjugate gradient
method is used, in which the results are assumed to be linearly proportional to the
parameters, to give rough values of the parameters. Then, the optimized value can be
obtained by using the surface response method, in which, both the simulation and
objective function iteratively solved until a self consistent solution is achieved. In
above methods, we need to definé:an objective function:

f(p)zz{o%i <! (p))} 46

1

where X; represents the experimental values, X,is the simulation values, and p

represents a set of fitting parameters. The values of the scattering parameters are
shown in Table 4.1.

In the numerical implementation of the valence band structure obtained from the
bond orbital model and Luttinger-Kohn method, tabular forms of the E-k relationship
[35] for the lowest three valence bands are established in the simulation. The smallest
mesh size in k-space is 0.01(2n/a) in a region near the I' point. Fig. 4.1 shows a
flowchart of a simple Monte Carlo simulation [36]. In the Monte Carlo simulation, a
carrier hole is simulated under an external electric field. It travels freely between two
successive scatterings. The free-flight time is determined by using a fixed time

technique. During the free flight, the hole is accelerated by the field and its
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momentum and energy are updated according to the tabular form of the E-k
relationship. If a scattering happens, a random number is generated to decide the
responsible scattering mechanism and the new hole state is chosen according to the
tabular form of the E-k relationship. This procedure is continued until the fluctuation

due to the statistical uncertainty is less than 1%.

4.3 Results and Discussions

4.3.1 Unstrained Silicon

Fig. 4.2 shows the density of states obtained from the bond orbital model (solid
line) and Luttinger-Kohn method (dash line). The density of states obtained from
bond orbital model and Luttinger-Kohn medel is different for the high energy. Fig. 4.3
shows the hole optical phonon ahd acoustic phonon scattering rates as a function of
hole energy obtained from the-bond orbital model (solid line) and Luttinger-Kohn
method (dash line). As can be seen clearly; optical phonon scattering is dominant in
the high energy region for both models:

Fig. 4.4 shows the simulated hole energy distribution at electric field of
200kV/cm with the bond orbital model (square) and with the Luttinger-Kohn method
(circle). Fig. 4.5 shows the hole drift velocities versus electric field for bulk Si ,Ge
and SipgGeo,. Fig. 4.6, demonstrates the hole drift velocities along [100] and [110]
directions. The drift velocity at electric field of 200kV/cm along the [100] direction is
about 10% larger. Moreover, a weak anisotropic behavior of the drift velocity is also
observed, similar to [37].

4.3.2 Strained Silicon
In the following part, the strain effect on the mobility is evaluated with the

Luttinger-Kohn model. As indicated in [28], to have a good strain induced hole
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mobility enhancement, there are four key parameters for valence band structure
characteristics, (1) low effective mass along the channel direction to increase mobility,
(2) high density of states effective mass to increase the top band occupation
probability, (3) high hole energy splitting to reduce the interband phonon scattering
and (4) high out-of-plane effective mass. Table 4.2 shows the calculated effective
mass and energy splitting levels in different stressors, -0.5% compressive strain in
[100] and [110] directions, compared to [100] direction without applied strain. As can
be seen clearly, compressive strain induced effective mass reduction in channel
direction and energy splitting can be observed. In addition, compared to [100]
direction, effective mass in [110] direction is moderately decreased, which is
consistent with the piezoresistance concept [38]. From the piezoresistance concept, on
(001) wafer, the value of m in [110]-direction 1s-latger than in [100] direction.

Fig. 4.7 shows phonon scattering rate for the unstrained and strained case with
e= -0.5% along different directions, [100}.tdash line) and [110] (dot line). The strain
effect on hole transport is manifested. in a slight reduction of the optical phonon
scattering rate, which is attributed to the splitting of the heavy hole and light hole
bands. Moreover, the phonon scattering rate in [110] direction is smaller than in [100]
direction with applied uniaxial compressive strain due to larger energy splitting. In
Fig. 4.8, hole drift velocity as a function of the electric field applied along the [100]
direction for two unaixial compressive strain cases, e= 0, and -0.5%, is shown,
respectively. One point is worth mentioning. The uniaxial compressive stress direction
is along channel direction. In Fig. 4.8, the low field mobility is extracted in the inset.
Finally, Fig. 4.9 shows the extracted low field mobility along [100] and [110]
directions with different stressors. And the simulation results show that the hole
mobility enhancement is increased with larger uniaxial compressive strain, which

consists with the experiment results as published in [39]. Furthermore, the strain
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induced mobility enhancement in [110] channel direction is larger than in [100]

direction.

32



‘A19Anoadsal a9 pue

IS 10} UoIe|NWIS 0]4eD 31UOA 8yl Ul pasn siaa1sweaed Bulia)edss Ty ajgel

000 91 | 08C | OvEs| . Obv.l0vT | OTT| 88 | 801 | @D
2000 LT | oy | o6%2 [ OFPSH| LS | 88|68 | ¥v | IS
(A9) D (Wwo/A9501) (A9)

d | wg [(QudL | (Qudy [(Dudy, [ (era | (oa |(Ira | 3ed

sIgjoweled SULId}BIS

33



stressors m, (M) | Mpes (Mg) | M, (My) | A(meV)
foo | 029 | 029 | 029 | 00
ooy | 019 | 023 | 028 | 2811
o0 | 0137 7038 028 | 338

Table 4.2 Calculated effective mass and energy splitting levels in different
stressors, -0.5% compressive strain in [100] and [110] directions, and

[100] direction without applied strain.
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Fig. 4.1 Flowchart of a typical Monte Carlo program.
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Fig. 4.2 Density of states in bulk silicon from the bond orbital model (solid line)
and from the Luttinger-Kohn model (dash line).
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Fig. 4.3 Scattering rates of hole scattering mechanisms in bulk silicon from the
bond orbital model (solid line) and from the Luttinger-Kohn model
(dash line).
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low field mobility is extracted in the inset.
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Chapter 5

Conclusions

Two kinds of valence band structure models are studied. A Monte Carlo
simulation is developed to calculate hole transport properties, such as hole mobility
and drift velocity. Moreover, the difference of the simulation results with the bond
orbital model and with the Luttinger-Kohn model is also examined. Furthermore, the
hole drift velocities along [100] and [110] channel directions are also calculated, and
the simulation results show the weak anisotropy of the drift velocity.

The strain effect on hole mobility is also evaluated with the Luttinger-Kohn
model. And our simulation results'show that the:hole mobility enhancement can be
obtained with uniaxial compressive strain. And it draws a lot of interest to apply
compressive strain in [110] direetiondue-to-its-largermobility enhancement.

Finally, a Monte Carlo program is.established to simulate the carrier transport
properties. The strain effect on the device performance, such as mobility and
saturation velocity can be examined by a Monte Carlo program, which will becomes a

powerful simulation tool for device simulation in the next generation.
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