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摘 要       

本論文主要是設計及製造一個可應用於細胞圖形化和成長控制之磁場平

台。在矽基材上製造 5.5 圈的螺旋電感，通上 60Hz 的 AC 電流，可以產生

mT 等級的區域性磁場。磁場的強度及分布，還有可能的焦耳熱效應皆加以

計算、模擬及量測。當加上熱電致冷片時，可以有效消除升溫，並將整個

平台維持在攝氏 37 度。根據磁場可以增加細胞效應的研究[14-17]，加上

細胞成長速率的增加和磁場強度成正比的關係，我們相信將細胞置於平台

上時，電感的不同區域產生的不同的磁場強度會導致細胞有不同的成長效

率，因而產生細胞圖形化的結果。 
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ABSTRACT 

 
This thesis presents a magnetic microplatform design using localized 

magnetic field for cell patterning and growth controlling application.  A 

5.5-turns spiral inductor is designed and fabricated on a silicon substrate to 

generate the localized field with a mT-order magnitude while being loaded with 

60Hz, >0.1A, AC current source. The magnetic field strength, field distribution 

on the spiral inductor is calculated, simulated using Ansoft Maxewell and 

measured.  The possible joule heating effect is calculated, simulated using 

Ansoft-ePhysics and measured as well. In order to avoid temperature rise, a 

thermoelectric cooler is attached at the bottom of the device to control the whole 

platform at 37C. The magnetic field distribution of the inductor could make cell 

proliferation rate difference on cells different positions so cell patterning could 

be realized. 
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Chapter 1 Introduction 

The loss or failure of an organ or tissue caused by diseases, accidents or 

aging is a great threat to human health. The major goal of tissue engineering is 

to provide therapies to repair or replace parts or whole damaged organs or tissue 

using artificial tissues.  Functional tissues require cells to be placed at precise 

positions with precise orientations therefore cell patterning is the crucial step to 

fabricate artificial tissues. Table 1-1 introduces some cell patterning approaches. 

Nowadays, cellular patterns can be constructed using various lithographic 

methods such as soft lithography [1,2], laser-directed cell-writing [3], and inkjet 

printing [4]. Another widely studied approach is using scaffolds to induce the 

formation of new functional tissue from the originally dissociated mass of cells. 

Because of the 3-D morphology characteristic, scaffold can define and guide the 

formation of new tissues with appropriate function [5]. It is potential to be 

applied to the repair of various tissues such as smooth muscle [5], bone [6,7], 

cartilage [6,8,9], skin [10], and blood vessels [11]. In addition to the 

aforementioned conventional methods, some research groups have provided 

unique ideas such as adding thermal or electrical field to realize cell patterning. 

For example, Cheng et al. [12] controlled the polymer property to do cell 

patterning by modulating temperature of the polymer using a microheater array. 

Yang et al. [13] successfully constructed a cardiac myocyte tissue-like structure 

using combined dielectrophoresis and electro-orientation methods. In this thesis, 

a novel approach for cell patterning is proposed based on the modulation of cell 

growth rate under localized magnetic field. Previously, researches have shown 

that cells’ behavior was altered under magnetic field exposure.   For instance, 

Heredia-Rojas et al. [14] reported that 60Hz magnetic field has lead to 
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stimulation of lymphocytes proliferation. Katsir et al.[15] showed increase in 

proliferation of chicken embryo fibroblasts after 24hr exposure under 60Hz, 

0.7mT magnetic field. De Mattei et al.[16] reported that cell proliferation 

increase of human normal osteoblasts is observed after 6hr or longer exposure 

by pulsed electromagnetic field. Kwee and Velizarov [17] found a linear 

correlation between field strength and exposure time needed to reach maximum 

proliferation rate of transformed human epithelial amnion cells.   

In the aforementioned researches, a uniform magnetic field was generally 

applied to observe possible effects on the cells’ behavior.  Thus, in this thesis, a 

localized magnetic field will be introduced by designated on-chip spiral 

inductors which can easily concentrate magnetic field in themselves and 

modulate the field strength by different electrical current inputs.  Cells at 

different regions are exposed under different magnetic field strengths. As a 

result, cell patterning could be achieved due to different proliferation rate at 

different locations. The magnetic microplatform design and fabrication 

including magnetic field and temperature control and the fabrication of on-chip 

spiral inductor are described as follows.   
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Table1-1. The introduction of some cell patterning approaches. 
Approaches Setup 

 
Results 
 

Reference 

Soft-lithography 

 

[1] 

Inkjet Printing Modified commercial printer 
with different solutions 

 

[4] 

Scaffold 

  

[11] 

Microheater- 
controlled 
thermo-responsive 
plasma films 
 

 [12] 

Microfluidic 
dielectrophroesis 
chip 

 [13] 

 
 



 

Chapter 2 Concept Design 

2.1 Introduction 

The localized magnetic field is generated by spiral inductors. A spiral 

inductors has several advantages: （1）It is compatible to CMOS post-process. 

（2）It can be miniaturized to fit dimensions of cells. （3）It can concentrate 

magnetic field efficiently. （4）The distribution of magnetic field is able to make 

cells at different region of inductor be exposed under different strength. （5）The 

magnetic field strength is proportional to input current thus it can be modulated 

by input current. The frequency we choose is 60Hz, the same as it of the 

household power supply. Many researches [14, 18-20] have done at this 

frequency due to the interest in biological effects between magnetic field 

generated by household power with organisms. We also use this frequency in 

order to compare our result with others. From previous study [21], field strength 

larger than 1.0mT can induce significant proliferation of fibroblasts therefore 

our device should be able to generate magnetic field larger than 1.0mT. 

 

2.2Dimensions of a Spiral Inductor 

The line width of a spiral inductor is chosen to be 75um, the same order of 

dimensions of cells but larger therefore cells can experience different field 

strength on each turn. That is, the magnetic field distribution is apparent to cells. 

The spacing is 25μm and the thickness is 5um. The outmost diameter is 1500μm. 
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The air bridge is 10um above the coil and its thickness is also 5um. The 

exposure system consists of 12 spiral inductors equally divided into 3 groups. 

The spacing between each inductor in the same group and that between each 

group is 2.5mm and 13mm, respectively. Figure 2-1 shows the dimensions of the 

inductor and the layout of the whole platform. In order to make sure that cells’ 

response is due to magnetic field exposure, not all inductors in the platform are 

can be turned on. Only one inductor in the first group can be turned on. All 

inductors are not functional in the second groups. In the third group, all 

inductors are connected to both pads and are able to produce magnetic field.      

(b) 

(c) (a) 

Figure 2-1.  (a) Dimensions of inductor. (b) Side view of air bridge. (c)Layout of inductors.  
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2.3 Determination of Magnetic Field 

The magnitude and distribution of the localized magnetic field are evaluated 

using the analytical model proposed by Ibrahim and Kuhn [22]. Although the 

model was developed for the prediction of DC magnetic field the frequency we 

will use is 60Hz, which is low enough to be approximated using model for DC.  

In this model, the spiral is treated as a collection of segments, partitioned as 

those inside the turn of interest, those outside the turn, and those for the turn 

itself.  A closed-form of magnetic field at any point inside the spiral is derived 

based on the sum of superpositioned fields from each segment [22].  Fig 2-2 

indicates parameters used in calculating magentic field. While turn j is outside of 

turn k, flux density on a point Pk on turn k induced by turn j are: 
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Figure 2-2. Calculation of the magnetic field at Pk on turn k 

due to current I flowing through an external turn j.[22] 

Where s represents the spacing between each turn, w represents the width of the 

coil, Dj、Dk are the side length of turn j and k, and x0 is the distance between Pk 

and the y-axis. The angles are calculated as follows:  
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And the summmation of the magnetic field at point Pk is  

j4j3j2j1
k
j B-B-B--BB =  （3） 

    Magnetic flux densities induced by turns inside turn k are calculated using 

the same approach with some parameters modified. Magnetic field generated by 

the same turn is negeleted in counting it in z- direction since only the y 

components exists. The magnetic fied distribution was obtained by writing a 

MATLAB code.  

     From the calculation, the chacracterestics of mangetic field distribution are 

found. Magnetic field is larger at inner turns and turn corners.  Extreme values 

occur at inner edges and outer edges of each turn. The maximum value occurs at 

the inner edge of the inmost turn and it decays towards the center of the inductor. 

Fig. 2-3 shows the magnetic field distribution on a segment of the inmost turn 

and a section. We also use electromagnetic simulation software Ansoft-Maxwell 

to calculate magnetic field distribution. Fig. 2-4 shows the simulation result of 

magetic field distribution on a spiral inductor at 0.2A.  Fig. 2-5 shows the 

comparison of magnetic field strength between the Ansoft simulation and the 

analytical calculation.  The field induced by the analytical model with DC 

current input is close to the value calculated by the simulator.  It indicates that 

the our assumption for field strnegth calculation using the anlytical  model is 

reasonable.  It is noted that the magetic field calculated by the simulator is 

slightly larger than that derived by the model. The underestimation is mainly 

due to only 5 closed loops are used for the calculation for simplicity while in 

reality it has 5.5 turns.  
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Figure 2-3. Calculated magnetic field distribution. (a)The section chosen to 

demonstrate magneitc field distribution in (c). (b) Magnetic field distribution at the 

inmost turn at 0.2A. (c) Magnetic field distribution on the chosen section at 0.2A.  
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 2-4. Simulation result of magnetic field distrib
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Figure 2-5. Comparison of calculation and simulation results. 

 

 

 

 

 

 
   



 

2.4 Determination of Temperature 

Cell proliferation rate is very sensitive to environmental temperature. Many 

researches [14-20] related to cell culture, incubation systems have kept the 

temperature precisely at 37℃, which has been found to be the most suitable 

temperature for mammalian cells to survive. As a result, when we applied the 

device on cells, the ambient temperature must be kept at 37℃ as well. Thus, the 

temperature control on the spiral inductor is very critical. In addition, according 

to the previous study [21], about 1mT magnetic field is required to have 

significant increase in cell proliferation rate. Thus, based on the analysis, at least 

0.1A input current should be chosen for realize our goal and the joule heating 

effect resulted by such a current input should be considered in the platform 

design.      

  In the platform design, the temperature rise of inductors is evaluated using 

the model proposed by Lin et al. [23]. The model is used to count temperature 

rise on a microheater with a current input. Variables ε and  Tref are defined as 

follows: 

ε
ρ
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ε

cu

cu
2

ref

cu

cucu
2

sicucu

si

k
J

TT

k
J

-
zzk

Fk

+=

=

∞

 
（4） 

where k, z, J, ρ, and ξ represents thermal conductivity, thickness, current density, 

and temperature coefficient of resistivity. Subscript cu and si represents copper 

and silicon. Values of these properties are listed in Table 2-1.  
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Table 2-1.Values of Properies Used for Temperature Calculation 

ksi kcu zsi zcu ρcu ξcu 

148 401 5.25E-4 5E-6 1.6E-8 3.93E-4 

W/m℃ W/m℃ m m Ωm 1/℃ 

 

The maximum steady state occurs at the middle of a turn: 

)2
Lcosh(

)T-(TTT ref
refmax

ε
∞+=  （5）

Formulas are modified to fit our situation. Firstly, the line width of designed 

spiral inductor is much larger than that of microheater [23], therefore the shape 

factor, F, is reduced to 1.  Secondly, the temperature of whole silicon substrate 

in this model is set at ambient temperature. Only the heating zone is confined 

within the isolation layer underneath the microheater. In comparison with our 

microplatform, a silicon substrate with spiral inductor on top of itself mounted 

on a PCB, the bottom temperature of the silicon substrate should be set at the 

temperature we measured right at the back side of PCB because the poor thermal 

conductivity of PCB that would lead to temperature rise at the bottom of the 

silicon substrate. Finally, we ignore silicon nitride isolation layer due to its 

thickness (1000Å) is relatively small by comparing with that of silicon substrate 

(550μm). 

    Meanwhile, the temperature distribution of the spiral inductor is simulated 

using Ansoft-ePhysics. Fig. 2-6 shows the simulation result of the spiral inductor 

with 0.2A current input. The hot spot is at the air bridge of the inductor due to 

the poor thermal conductivity of the air underneath the bridge. Although the 

 12



 

 13

Figure 2-6. Temperautre Simulation Result when input 

current is 0.2A. The hot spot is at the air bridge. 

temperature is slightly lower in the rest part of the inductor, the temperature of 

the whole inductor as well as that of surrounding air are still risen above the 

ambient temperature. While the ambient temperature is 25℃ and the whole 

device is put in air, the temperature rise of the spiral inductor with the input 

current of 0.1, 0.2, and 0.3A are 1.58℃、6.16℃、13.8℃ respectively. The result 

indicates that the temperature of whole device increases dramatically with the 

increase of electric current. When input current is larger than 0.4A, the 

temperature rise is high enough to damage the device and cause fatal effect to 

cells.  In addition, in comparison with the calculation from the aforementioned 

microheater model as shown in Fig. 2-7. The temperature rise calculated by 

Ansoft simulator is slightly larger. The reason is that the spiral inductor should 

be treated as a group of microheaters arranged side by side therefore the 

temperature should be higher than the calculation result for a single resistor. 

    In reality, the surrounding environment of the platform is changed to water 

instead of air in order to make the whole simulation closer to the experimental 



 

setup for cell culturing.  Fig. 2-8 shows the hot spot temperature under different 

current input.  It is obvious to see the reduction of the temperature rise because 

of the additional heat capacity by the introduction of water.  Nevertheless, since 

the whole system including our microplatform will be kept at 37℃ as mentioned, 

the boundary temperature should be set at 37℃ instead of 25℃.  Both from the 

aforementioned model calculation and simulation, the temperature rise of 

platform is inevitable and the interface between the inductor and incubated cells 

will be higher than 37℃ while the inductor is loaded with a current input.  

Especially, when the input current increases up to 0.5A, temperature rise about 

7℃ will cause heat-induced cell death.  Thus, a thermoelectric cooler is used to 

keep the bottom of the device with a steady and lower temperature to keep the 

device at 37℃.  For example, when applying 0.2A, without the cooler, the 

highest temperature is 31.16℃. If a cooler is attached to the bottom of the 

device keeping the bottom of the device at 1℃ lower than ambient temperature, 

the hot spot temperature will be lower to 25.017℃.  
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Figure 2-7. Comparison of calculation and simlation results. 
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Chapter 3 Fabrication Process  

Figure 3-1. Fabrication process of a spiral inductor. 

The inductors are fabricated starting with 1000A LPCVD nitride on silicon 

substrate and then Ti/Cu (300A /900A) adhesion/seed layer is sputtered onto 

isolation layer shown in figure 3-1(a). Figure 3-1(b) shows that a patterned 7μm 

thick AZ 4620 photo-resist to define the region of the coil part of the spiral 

inductor then coils are fabricated by copper electroplating. After plated the first 

layer of copper, a 10μm AZ4620 layer is spin-coated, patterned to define the via 

hole in figure 3-1(c), and sputtered with another 100nm copper seed layer in 



 

figure 3-1(d) for the air-bridge copper via filling. Figure 3-1(e) illustrates that, 

after the seed layer of the via filling, another 10μm AZ4620 is spun onto the 

plated structure, patterned to define the air-bridge beam, and plated with 5μm 

copper to form the air bridge as showed in figure 3-1(f). Finally, the fabrication 

of the spiral inductor is done after lift off the underneath copper seed layer and 

chemically etch away the first seed/adhesion layer using CR-7T and BOE as 

shown in figure 3-1(g). 

After completing the fabrication of spiral inductors, the chip is bonded to a 

printed circuit board（PCB）in order to connect to power source. Conducting 

paths between chip and PCB are gold wires. In order to confine cells and culture 

solutions in the inductor region, quartz tubes are used to bond with chip using 

silica gel to form a cell container-like structure. The device setup is shown in Fig. 

3-2. 

After the device is fabricated, a biocompatible layer is coated on the surface 

of the device in order to enhance the adhesion of cells. The material used for 

coating can be collagen, fibronectine, or poly-L-lysine, based on cell type. Then 

the device is immersed in the alcohol for 30 min to do sterilization. After 

sterilization, it can be used for cell culture. The experimental setup is shown in 

Fig. 3-3. 
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Figure 3-2. Device Setup 
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Chapter 4 Result and Discussion  

The magnetic field of each inductor has been measured using a Gaussmeter 

(TM601, Kanetec, Japan) with a transverse probe. Measurement is done by 

applying both DC and AC current. Figure 4-1 compares the results for 

simulation and measurement. It is clear to see that magnetic fields generated by 

DC and AC current have no much difference. AC measured value is only 24% 

and 22% of calculated and simulation values. The possible reasons is that 

measurement is the most accurate when the probe perfectly contacts the device. 

The air bridge part may make the probe not contact the device and the reading 

would be smaller than real value due to a distance between the probe and the 

device.  Besides, the probe is held by hand therefore we cannot precisely 

control the distance between the probe and the device. In order to determine the 

distance, we placed pads with a known thickness which is 0.525mm next to the 

device to keep the probe at certain heights. Since measured values in DC and 

AC have no much difference, Biot-Savart law is applicable to evaluate AC 

magnetic field decay with height, then fit the decay trend with measurement 

ones. The original distance between the probe and the device is 0.25mm, Fig. 

4-2 shows the decay trend from measurement and that of 0.25mm above the 

device. From Biot-Savart law, the magnetic field above the device of 0.25mm is 

59% of that on the device. After modulating the measured values to eliminate 

the distance effect, they are still smaller than calculated and simulated values by 

59% and 63%. The modulated values are also shown in Table 4-1. Table 4-1 

shows the magnetic field strength obtained by calculation, AC simulation, and 

AC measurement. After eliminating the distance effect, the modified results still 

have great difference with simulation and calculation ones. Another possible  
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Figure 4-2. Decay trend of measurement and 0.25mm from calculation. 

Table 4-1. AC Magnetic Field Strength 
 Input Current (A) 

Magnetic Field(mT) 0.1 0.2 0.3 0.4 0.5 
Simulation 0.96 1.75 2.5 3.5 4.3 
Calculation  0.79 1.58 2.37 3.16 3.94 
Measurement 0.190 0.326 0.540 0.834 1.034 
Measurement-modified 0.324 0.556 0.921 1.423 1.764 

 

 

 



 

reason is that the probe of the Gaussmeter measures magnetic field strength 

using the Hall Effect. It is usually used to measure uniform magnetic field. 

However, in our case the magnetic field is not uniform in its active area. the 

nominal diameter of the sensing area of the probe is 2mm×2mm, which is even 

larger than the dimension of the inductor（1.5mm×1.5mm） therefore our 

measurement has its restrictions.  

       Measurement of temperature is done by using thermocouple. The 

measurement in air was done using thermocouple type K connected to a 

thermometer（YS-822R, YSC, Taiwan）. The thermocouple was attached the 

substrate at a fixed point. The temperature difference between the measure point 

and the hot spot is derived from simulation. The results of temperature over time 

were plotted in Figure 4-3, with temperature modified to it at the hot spot. The 

ambient temperature was 25℃ when we did measurement. If temperature rose 

above 42℃, the measurement was terminated. The first reason is that the highest 

tolerable temperature of mammalian cells is 42℃. If the device is higher than 

this temperature, it will kill cells. Another reason is to avoid the device damaged 

by high temperature. It is clear from the figure that when applied current is 

above 0.4A, it rose above 42℃ quickly. For currents under 0.3A, the highest 

temperatures are lower than 40℃, and it reaches steady state within 10 minutes 

with only small oscillation.   

     Fig. 4-4 compares the results from simulation and measurement from 

0.1A~0.3A..The results have no much difference. Simulated values are slightly 

lower due to ideal parameters and perfect conduction. We apply a thermoelectric  
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Figure 4-3. Temperature versus time 
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cooler attached to the bottom of the device in order to keep the device from 

temperature rising. When input current is larger than 0.3A, the temperature rise 

is smaller when applied cooler, but it still cannot stop temperature rise when 

input current of cooler is 1A. Although the larger the input current of 

thermoelectric cooler, the better the cooling is, the input current also generates 

magnetic field, in order not to interfere the field generated by inductors, the 

input current of the cooler cannot be too large. When input current of an 

inductor is 0.2A, it has no temperature rise when input current of the cooler is 

0.4A, and the DC magnetic field generated by the cooler is 0.1mT. Input total 

current of 1.0A（each inductor is 0.2A）is the most suitable value of an 

acceptable trade-off between magnetic field and temperature based on the results 

of the simulations and measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23



 

Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

The magnetic microplatform with spiral inductors has been successfully 

designed and fabricated.  The magnetic and temperature field on the spiral 

inductor are calculated, simulated, and measured. Localized magnetic field of 

1.75mT is generated by input current 0.2A. The magnetic field measurement 

result has apparent difference with simulation and calculation due to the 

dimensions difference between the probe and the inductor. Temperature rise can 

be eliminated after applying a thermoelectric cooler. It is now can be used for 

cell patterning. 

5.2 Future Work 

After quantization of magnetic field and temperature, the next step is to 

applying the device on cells, testifying the magnetic field effect on them.  

    It can be utilized on different kind of cells. 

    The width, spacing, turns of the inductor can be modified to reach better 

centralization of magnetic field. Temperature rise should be able to be avoided 

by improving the design. 
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