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CHANNEL DECODER DESIGN AND IMPLEMENTATION

by
Chien-Ching Lin,
Department of Electronics Engineering
National Chiao Tung University, 2006
Chen-Yi Lee and Hsie-Chia Chang, Adviser

This dissertation investigates the channel decoders figanithms to architecture designs and
circuit implementation. Three different decoding schearesstudied, including the algebraic, the
probabilistic, and the iterative decoding algorithms.

The Reed-Solomon code based on the algebraic decodingl@tero many system specifi-
cations. We apply the Montgomery multiplication algoritbarthe universal finite field multiplier;
as a result, the arithmetic units are capable of differeitefiireld definitions. The Reed-Solomon
decoder is constructed based on the proposed arithmetratapes and modified for less com-
plexity. Hence the decoder can be applied to.many systeniutitcircuit modification. The
chip implementation results show:that the.overhead duectomiiversality is no more than 100%.
Moreover, the decoding speed fromthe measurement can nosetuarrent or future applications.

The maximum-likelihood decading, Viterbi-decoding alglom, for the convolutional code
is widely used in many digital communications. The low podesign techniques for the Viterbi
decoder are proposed for the dynamically survivor memargscand the datapath transformation.
The survivor memory unit with the path merging and the pa#djmtion algorithms can adaptively
adjust the truncation length according to the channel ¢mmdi. Combining a cache buffer, we
can avoid many read operations in the memory, leading lesgmpoonsumption. On the other
hand, we also transform the add-compare-select (ACS) tipeta compare-select-add (CSA) for
less computations resulting in lower cost as well as lowergyalissipation. The implementation
results indicate about 30%10% power reduction is accomplished with the proposed &ercthire.
The high speed and area efficient Viterbi decoder is als@pted with the two-dimensional ACS
structure. The decoder on the radix-16 trellis is impleraérand shown to achieve over 1Gb/s

data throughput.
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We further conduct the research into the iterative decodasgd turbo codes and low-density
parity-check (LDPC) codes. The turbo decoder is considierdte mobile communication system
with large interleaver size. The simple decoder architecsiutilized for cost consideration, and
the memory is optimized for power consumption. The unifiathauand Viterbi decoder chip is
also shown to achieve better energy efficiency. The LDPC afecis designed for high speed
applications for its highly parallelizable decoding al¢fum. Because of the irregular parity check
matrix and the large number of processing elements, thetezgixchange memory is introduced
to accommodate the large message passing in the decoderegsltathe circuit implementation
leads to a high decoding speed, which is 5.92Gb/s, and afiegef decoder chip whose chip
density is larger than 70%.

In this dissertation, the research includes different aeadecoding schemes as well as their
implementation for applications. Exploring the systemuiegments, we provide various design
methods and analysis for the decoders.,Finally, the cs@ug realized for measurement or analy-

sis, and the results reveal the positive consequence, astegpe
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Chapter 1

Introduction

A communication system conveys a information source to a destination through a channel.
The channel can be microwave links, wireline cables, or storage mediums. Fig. 1.1 illustrates
a traditional digital communication system. The information data is first processed by the
source encoder for more compactness. The data is compressed by assigning short descriptions

to the frequent symbols and longer descriptions to the less frequent symbols [1,2]. The

Information Source Channel
» > » Modulator

source encoder encoder

Y

Channel

\4

Information Source Channel
L < < Demodulator

destination decoder decoder

Figure 1.1: Block diagram of a digital communication system

channel encoder then transforms the source encoded data into longer sequence where some
redundant symbols are introduced, also termed parity symbols. Afterward, the modulator
will convert the channel coded symbols to analog signals transmitted through the channel and
corrupted by noise, distortion, and interference. In the receiver, the demodulator estimates
the received symbols from the channel outputs and produces the continuous or quantized
symbols. The received symbols may contain errors because the demodulator processes the
channel outputs including noise. If so, the channel decoder will use the coded data with

parity symbols to recover the whole transmitted information. An ideal channel decoder would



correct all the errors and generate the data sequence matching the compressed information.
Finally, the source decoder reproduces the information source according to the channel
decoder outputs.

The development of the channel encoder and the decoder, referred to channel coding or
error control coding, begins with the remarkable papers by C. E. Shannon in 1948 [3, 4].
Shannon indicated that any reliable transmission is achievable if the information rate R in

bits per channel is less than the channel capacity C for the channel.

u vV | Channel r

—— > Encoder Decoder —
P(y|x)

Y

Figure 1.2: A communication channel

Fig. 1.2 presents a simplified communication system that focuses on the the channel
coding. Assume two finite sets X and Y are the channel input and output alphabets, we
can denote a discrete channel by the transition prebability P(y|z) for v € X and y € Y.

The coding scheme is first defined to.be an (n,%) code with the encoding function
fXF e X (1.1)

and the decoding function

g:Y"— X", (1.2)

The information sequence u € X* is encoded to a codeword v € X" with the rate R = k/n.
For the discrete memoryless channel, we can transmit the codeword with the following

probability

n

P(rlv) =[] Pla = rily = v), (1.3)

i=1
where r; € X and v; € Y. The channel decoder will estimate the information sequence
that maximizes P(v|r). The decoding error occurs when @ # u, and the error probability

is P, = P{a # u}. The channel coding theorem [3,4] by Shannon states that for all rates

2



R < C, there exists a (n, k) code that can achieve P, — 0.

The first class of codes, block codes, has an algebraic coding structure [5]. The first block
code, discovered by R. E. Hamming [6] in 1950, is a class of single error correction codes and
termed Hamming codes. Another class of multiple random error correcting block code is the
Reed-Muller code that first introduced by D. E. Muller in 1954 [7] and completed by I. S.
Reed [8] for error correction and detection in communication and data storage systems. The
breakthrough in 1960 was due to Bose and Ray-Chaudhuri [9], and Hocquenghem [10] who
found a large class of multiple error correcting codes, referred to BCH codes. The important
non-binary Reed-Solomon codes are proposed by I. S. Reed and G. Solomon in 1960 [11],
and have been classified into non-binary BCH codes [12].

The second class is the convolutional code that has the probabilistic decoding features.
The convolutional code was first introduced by P. Elias in 1955 [13], and the efficient se-
quential decoding method was then propesed by J. M. Wozencraft and B. Reiffen [14]. The
Viterbi algorithm proposed by A4 Viterbizin 1967 [15] is a much simple algorithm for
implementation, leading to the widespread applications of the convolutional code. The op-
timal symbol by symbol detection algerithm-that estimates the a posterior: probabilities
of information symbols were provided by Bahl;Cocke, Jelinek, and Raviv in 1974 [16] and
termed BCJR decoding algorithm. This algorithm also led to the invention of the turbo code
in 1993 [17,18]. In 1989, J. Hagenauer introduced the sub-optimal algorithm, soft-output
Viterbi algorithm (SOVA) [19], that also calculates the a posteriori probability for each
information symbol.

In 1993, there is a significant advance in channel coding because of the advent of turbo
codes, discovered by C. Berrou, A. Glavieux and P. Thitimajshima [18]. The soft iterative
decoding of turbo codes based on either the BCJR or the SOVA algorithms results in the
performance near the Shannon limit and still has the reasonable complexity for practical
implementation. These attractive features make the turbo code popular in the modern

digital communication systems. The other capacity approaching code, low-density parity-



check (LDPC) code, was first proposed by R. G. Gallager in 1962 [20,21], but was nearly
forgotten until its rediscovery in the late 1990s. The graphical representation for the LDPC
code was presented by R. M. Tanner [22] in 1981. MacKay and Neal rediscovered the LDPC
code and investigated its graph based iterative decoding algorithm [23,24]. It has been shown
in [25] that long LDPC codes based on the belief propagation algorithm [26] can achieve
an error performance very closing to the Shannon limit. Furthermore, the turbo decoding
can also be interpreted as the the belief propagation algorithm on graphs. [27,28]. The
LDPC code has many benefits, including its good error performance, and more high speed
communication systems have considered employing LDPC code to enhance performance.

Based on a specific decoding algorithm, the channel decoder implementation depends on
the system requirements or the constraints; it also relays on the target circuit technology.
Generally, the cost and the power consumption are always the optimization objectives. In
the channel coding design, it should be a trade-off between the error performance and the
design cost, or the power consumption. Therdécoder design starts from the algorithm and
the performance analysis in the system level where the design parameters are determined
according to the system specifications."Fhe-architecture design connects the decoding al-
gorithm, the circuit technology, and ‘the target-application. A channel decoder with better
quality would require a close link from the algorithm and the system to the circuit imple-
mentation. For different code types and system definitions, we will investigate the design
methodology from coding basics to circuit implementation.

In the design of algebraic block codes, we consider the Reed-Solomon decoders for general
purposes; they have been extensively applied to many applications, but often have different
specifications, even in a system. Because of the relatively simple arithmetic units and decod-
ing algorithm, the Reed-Solomon decoders include the high speed design approach [29-31],
the the low complexity architecture [32-34], the low power design [35,36], and the recon-
figurable decoders [36-38]. The advance in VLSI technology facilitates the decoding speed

and reduces the circuit cost as well as power dissipation. Therefore, the need for time to



market motivates the design of universal RS decoders. The throughput and the overhead
for universality will be the major consideration in our study.

For the convolutional code, the Viterbi decoding algorithm as well as its implementation
will be covered, including the low power design and high speed structures. The Viterbi
decoder in wireless communications would have the constraints in power consumption and
cost, especially for the mobile devices. The low power techniques can be in the circuit
level [39,40] and in the architecture level [41-44], including the algorithm modifications. For
the Viterbi decoding algorithm, the adaptive approximations for low power are also reported
in [45,46]. In our research, the low power Viterbi decoder is investigated in terms of the
adaptive memory access and the low complexity datapath architecture. The present adaptive
approach, without any performance loss, can remove most redundant memory access in the
decoder [47].

High speed Viterbi decoders are alsgsimportant because of the demand for high data
transmission rate in wireless applicationsp[d8-50]." “The Viterbi decoders in [51-53] break
down the critical path delay by means of bit-level pipeline and accomplish high throughput
with very high clock frequenciesy Furthermore; the dynamic circuit techniques are also
exploited to accelerate the critical path. The architectures using high radix trellis in [49,
50,54,55] achieve parallel processing that enhances the throughput. The four states Viterbi
decoder based on sliding block approach that performs decoding concurrently in forward
and backward directions is also reported in [56]. However, as the constraint length or the
parallelism increases, the complexity of trellis based decoding grows rapidly for the parallel
architectures. Hence we consider a more aggressive parallel architecture and explore the
possible structure for implementation [57].

Furthermore, the soft iterative decoder for the turbo decoding is studied while considering
the low power mobile communication system. The turbo decoder in [58] reports a design for
the 3GPP system [59] whose interleaver size is 5114. The high throughput decoders [60-62]

mainly focus on the parallelism and speed optimization of computational units. We refer



to the 3GPP2 communication system [63] where the turbo code is defined to have a larger
interleaver size 20730. The memory required to realize interleaver function will occupy a
large circuit area and cause significant power consumption. For the mobile communication
system, we concentrate on the minimization of memory area as well as power dissipation [64].

The LDPC decoder based on the message passing decoding is also exploited for multiple
Gb/s communications. We will discuss the design issues of parallel architectures and circuit
implementation difficulty. The parallel LDPC decoder will cause a large number of signals
that convey messages between a large number of processing elements, leading to much com-
plicated interconnections [65]. This will degrade the decoding throughput and enlarge the
circuit area. In the dissertation, we conduct the research on the efficient memory manage-
ment strategy for high speed parallel processing [66]. The low complexity architectures for
the processing elements are also presented.

The Reed-Solomon coding is first intreduced,in Chapter 2, including the universal decoder
architecture. Chapter 3 discusses the convolutienal code, and the Viterbi decoding algorithm
as well as the decoder architectures for the low power and the high speed considerations.
The BCJR algorithm is also presented in-therfinal part of Chapter 3. The soft iterative
decoding algorithms and decoder designs for the turbo code and the LDPC code are given

in Chapter 4. Finally, we conclude the dissertation in Chapter 6.



Chapter 2

Reed-Solomon Codes

Reed-Solomon (RS) codes were first constructed by Reed and Solomon in 1960 [11]. In
general, RS codes can be categorized into the non-binary BCH codes [9,10] whose symbols
are taken from the field GF'(2™). The block length of a (n, k) RS code is n symbols consisting

of k message symbols in GF'(2"). The minimum distance of (n—k+1) leads to the correcting

capability of ¢t = L"T_kj random errors With the erasure information of p symbols, the

n—k—p
2

number of correctable errors becomes | |. Because of the effective error correction, the
applications of RS codes include data steragessystems and digital communications, either
wireless or wireline systems.

Before the presentation of RS codes, the finite field and the BCH code are reviewed in
sections 2.1 and 2.2. The following sections2:37and 2.4 describe the encoding and decoding

procedures, and the decoder designs.

2.1 Finite Field

A field F' is a set of at least two elements where two binary operations, addition “4” and

W

multiplication “.”, are defined to satisfy the following conditions.

1. F'is an Abelian group under “+” with identity element denoted by 0.

13k

2. The set of nonzero elements in F' is an Abelian group under with identity element

denoted by 1.



(132

3. The multiplication is distributive and therefore

a-(b+c¢)=a-b+a-c Ya,byc e F

The number of elements in a field, or the order of the field, can be infinite or finite. The
well-known examples of infinite fields include the set of all real numbers and the set of all
rational numbers. However, the interested fields are those with finite numbers of elements
that are termed finite field or Galois field (GF).

For a prime number p, a finite field GF(p) with p elements can be constructed based on
the modulo p arithmetic [67] and has the elements {0,1,...,p — 1}. Furthermore, for any
positive integer m, the field GF(p™) which is referred to the extension field of GF'(p) can also
be built with p™ elements , and p is called its characteristic. Actually, as proved in [67], the
order of any finite field is a power of a prime, The finite field GF(p™) is regarded as a vector
space over GF'(p) with the dimension m, and.each element in GF'(p™) can be represented by
m tuples a = (ag,ay,...,a,_1). Inaddition, the elements in GF'(p™) can also be denoted
by the polynomials over GF(p) with the degrees less than or equal to m — 1. Therefore, a is
also expressed by ag + a1z + - - - + dpmeiaz™ ', The addition is defined component-wise, and
the multiplication should be based on the modulo f(z) operation. Notice that f(x) must be
an irreducible m-th degree polynomial over GF'(p), meaning no polynomials over GF'(p) of
degrees less than m but larger than 0 divide f(x). Thus, for a, b,c € GF (p™), the addition

and multiplication can be proceeded as follows.

¢ = a+b=(ag+b)+ (a1 +b)x+ -+ (@my + bp1)z™ (2.1)

i-b=1[(ao+ax+ -+ am 12" (o + brx + -+ by_12™ )] mod f(x)2.2)

>
I

Consider an element  in GF(p™), the monic polynomial mg(x) of the least degree with

coefficients in GF'(p) such that mg(5) = 0 is referred to the minimum polynomial of 3. The



polynomial mg(z) is irreducible and has a degree less than or equal to m [68]. Because (3 is
a zero of mg(x), the conjugates of 3 that are distinct elements (3, 37, B, ..., are also zeros
of mg(x) [67,69]. The smallest integer k such that 37" = 3 is the degree of (3, and k is a

divisor of m. Although mg(x) is irreducible over GF(p), it can be factored over GF(p™)

ma(a) = (x — B)(x — ) - (x — g7), (2.3)

where the degree is exactly k.

If f(z) is any polynomial over GF(p) satisfying f(3) = 0, it is easy to verify that
mg(z)|f(z). Furthermore, since GF(p™) has p™ — 1 nonzero elements, 3* has at most p™ — 1
distinct values for all integers 4, and therefore there exists an integer ¢, with 1 <¢ < p™ —1,
that results in B = 3" or 3' = 1. The smallest positive integer t such that 5% = 1 is
termed the order of 3. The nonzero element o in GF(p™) is said to be primitive if its order
is p™ — 1. Thus, the powers of the primitive element o generate all the nonzero elements of
GF(p™). That is

GF(p™) = 40,4, a,0?,. /= a2},

Hence every element in GF(p™) is a rootef.a?” 1 = 0; alternatively, (a?)?" = (o?™)! = o
fori =0,1,...,p™ — 2, and 0" = 0. The root number of 27" — x = 0 is at most p™ which

is the order of GF(p™). It follows that

M —r= ] @-5) (2.4)

BEGF (p™)
The definition of minimum polynomial also deduces that mg(z)|(x?" —z) for all 3 in GF (p™).
On the other hand, the minimum polynomial of « is called the primitive polynomial p(z),
and the degree of p(z) is m determined by the degree of a. Furthermore, due to the order
of o, we found that p(x) divides 27" ~! — 1, but does not divide any 2™ — 1 with n < p™ — 1.

Note that not all irreducible polynomials are primitive. Nevertheless, it is convenient to use



Table 2.1: Representation of the elements in GF(2*)

Power Polynomial 4-tuple
0 0 0000
1 1 0001
« « 0010
a? a? 0100
a? a? 1000
a? a + 1 0011
ab > + o« 0110
al o 4+ a? 1100
a’ a® 4 a + 1 1011
a® a? 4+ 1 0101
o a® « 1010
al® > + a + 1 0111
all o 4+ o + o« 1110
al? o 4+ a? + a + 1 1110
ald o 4+ a? + 1 1101
alt a® 4 1 1001

primitive polynomials to construct finite' fields:

Table 2.1 shows an example of:G F(2%) that iis an extension filed of GF(2) and is built
with the primitive polynomial p(#) =% + 2+ 1. The primitive element « is a root of p(z)
and therefore p(a) = a* + o+ 1 =0. The nonzero elements of GF(21) comprise powers of «,
or can be represented as polynomials withrdegrées < 3 according to the equation a* = a+1.
Alternatively, the other useful representation for the elements in GF(2?) is 4-tuple where
the four components are the coefficients in the polynomial representation. In Table 2.1, we
can find that the power representation is useful for multiplication, while the polynomial or
4-tuple format is more practical for addition.

Additionally, with the primitive polynomial p(z) = 2% + = + 2 over GF(3), the elements
of GF(3?%) are also presented in Table 2.2. The primitive element «a in GF(3?%) satisfies
pla) = a? + a + 2 = 0, meaning that a? = 2a + 1. According to these facts, the power, the
polynomial, and the 2-tuple representations can be formed as shown in Table 2.2.

The most widely applied finite fields are the prime field GF'(2) and its extension GF'(2™)

for the binary arithmetic operations that are well suited for digital circuit design.
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Table 2.2: Representation of the elements in GF(3?)

Power Polynomial 2-tuple
0 0 00
1 1 01
« o' 10
a? 200 + 1 21
a? 20 + 2 22
at 2 02
o’ 2c0 20
af a + 2 12
af a + 1 11

2.2 BCH code

BCH code is a large class of multiple-error-correcting codes, a generalization of the Hamming
codes; furthermore, and it is best expressed as cyclic code [70]. For any positive m and ¢,
more than a primitive binary BCH code can be constructed to correct ¢ errors while the block
length is 2 — 1 with no more than ¢ redundant digits. The generator polynomial g(x)

is defined by the least common nultiple (LEM) of the minimum polynomials over GF(2)

my(x), ma(z), ..., and my () corresponding to «, @2, ..., and o where « is primitive in
GF(2™).

g(x) = LCM{ml(‘r)>m2($)> >m2t(x)} (25)
Therefore, o' for i = 1,2,-- -, 2t as well as their conjugates are zeros of g(x). Since (a/)? is

a conjugate of ', they have the same minimum polynomial m;(z). As a result, m;(z) =

m;(x) for each positive integer j and 1 <27 < 2¢; hence g(z) will be reduced to

g(x) = LCM{my(x), ms(x), ms(x), -+, mo_1(x)}, (2.6)

and each m;(z) has degree at most m. Consequently, the degree of g(z) is no more than mt
and results in at most mt parity check digits for the code. If ¢(z) is a codeword polynomial,

it must be a multiple of g(z), that is g(z)|C(z). From the definition of g(x), we can find

11



that c(a') = 0 for 1 < i < 2t. The encoding of a message polynomial u(x) = ug + ux +

k—1

Upx? + -+ + up_1 2%t is multiplying u(x) by g(z),

c(x) = u(x) - g(z) (2.7)

9 91 92 - g 0 0 0 --- 0
0O 9 1 g2 -+ ¢ 0 0 --- 0
00 0 0 9 ¢ 9 - - g |

Obviously, this encoding procedure is not .in systematic form. The systematic encoding
proceeds as follows: multiplying w(®) by-a2 %, dividing 2" *u(z) by g(z) to obtain the

remainder polynomial r(x), and adding #(x) toa™ *u(z). The systematic code c¢(z) becomes
cla)= " u(x) (). (2.9)

Fu(x) = q(z)g(z) + r(z) where g(x) is the quotient polynomial, we find that

Since x"~
c(x) = 2" Fu(x) + r(z) = q(z)g(x)

which is a multiple of g(z). Because o' for 1 < i < 2t are roots of ¢(z),

(@) = co+ 1 + e 4 A cpaV = 0, (2.10)

12



Based on (2.10), we can construct the parity check matrix

1 IeY a2 ag e a(n_l)
1 a2 a2 2 a2 3 ... a2 (n—1)

o @ (@ @ | -
1 Oé2t (a2t)2 (a2t)3 (a2t>(n—1)

where ¢ = (¢g, ¢4, ..., ¢p_1) is the codeword vector.
The codeword c¢(x) is transmitted and corrupted by noise. In the recover, the received
vector r(x) will be

r(z) = c(x) + e(x),
and e(z) is the error pattern. The,syidiomie of s (z) is defined by the 2t-tuple S =
(Sl, SQ, 53, ceey Sgt) in which

S; = r(a') = clad)+e(a’)=e(a'), for 1 <i <2t (2.12)

The result in (2.12) follows from the fact that o’ is a root of c¢(z). Assume e(z) has v (< t)
errors in the positions ji, ja, -+, J, with 0 < j; < jo < -+ < j, < m — 1, then e(x) can be
expressed as

e(z) =2/ + 2P + - 4 2t (2.13)

According to (2.12) and (2.13), the syndrome equations with ¢ = 1 ~ 2¢ will be

S; = () + (o) + -+ () (2.14)

= Bt B+t
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if we define 8, = a/* for x = 1,2,...,v. Additionally, the error location polynomial is

defined as
o(x) = (1—fa)(1—Box)--(1— foz) (2.15)
= ogtox+---+o,2°
The roots of o(x) = 0 are B; !, 351, -+ -, and B;'!; the coefficients of o(x) satisfy the following
equations:

g = 1
or = Pit+fat 40

oy = Bifo+ Bz + -+ Bu1By (2.16)

0y =a30y0¢ 8By

Furthermore, the expression in (2:16) is‘telated-to the syndromes S; ~ S, be the following

Newton’s identities [70]:

Si+o0 = 0

So+0151+209 = 0

S+ 0155+ 0951 +30, = 0
(2.17)

Sv +015v—1 + -+ UU—ISI +wvo, = 0

Sot + 01891 + 025%_o2+ -+ 0,59, = 0

14



If the syndromes Si,Ss, -+, S, are calculated according to (2.12), the coefficients of o(x)
can be obtained from (2.17). The error location information (31, s, - - - , 3, can then be found
through solving the roots of o(z) = 0. Since the number of elements in GF(2™) is finite,
o(z) = 0 is able to be efficiently solved by substituting each nonzero element of GF(2™)

into the equation, a process known as Chien search [71].

2.3 Reed-Solomon code

A Reed-Solomon code [11] over GF(q) is an important subclass of non-binary BCH codes
and has a length of n = ¢ — 1. From the definition of generator polynomial in (2.5), the
g(x) of a RS code that corrects t or fewer errors is described by the minimum polynomials
of a, a?, o, ---, and o, and « is a primitive element in GF(q). Besides, the minimum

polynomial m;(x) over GF(q) of each element o' is m;(x) = x — a'. Therefore, the generator

polynomial of this code should be

g(z) = (v —a)@=a?) - (z — a*). (2.18)

This polynomial always has the degree 2¢ ;and thus an (n, k) RS code satisfies n—k = 2t, the
number of parity check digits. The minimum distance is shown to be n — k +1 =2t + 1 [5]
that can correct at most t errors. Notice that g(x) can also be characterized by the minimum

h+1

polynomials of o, a*1... and o*2~!. The express in (2.5) is generalized to

g(z) = (x —a™)(z — ") (2 — oM. (2.19)

The encoding of RS codes is similar to the binary BCH codes and can be either in the
multiplication operation of (2.7) or in the systematic form of (2.9). Both encoding schemes
make the codeword ¢(x) be a multiple of g(x); as a result, all roots of g(x) are also zeros of

c(z), or c(a*) = 0 for 0 <i < 2t — 1. The number of parity check symbols are 2¢, and the

15



resulting codewords has the minimum distance of 2t 4+ 1 that corresponds to correct at most
t errors. Moreover, if there are v erasures, referred to errors with , the RS code can correct
at moat |25~ | errors.

The decoding of RS code is quite similar to binary BCH codes except that error values
should be calculated as well. We also define the received data r(z) as the codeword polyno-
mial ¢(z) corrupted by the error polynomial e(x); that is r(x) = ¢(x) + e(z). The syndromes
will be

S; =r(a’) =e(a'), forl<i<2t (2.20)

h+i—1

where « are all roots of the generator polynomial in (2.19). Since RS code is nonbinary,

the error pattern e(x) should be
6(1’) — 61Ij1 + 62Ij2 + .+ evxj“’ (221)

indicating that there are v error values, €1, s, .. .,Jand e,, in the locations j;, jo, ..., and

Ju- Therefore, S; in (2.20) can besexpressed by
Si =it eafpds - + 03, (2.22)

and 3, = o’ forx = 1,2, -+ ,v. Furthermore, we also define the syndrome polynomial S(x)

as [72]

S(z) = isixi—l (2.23)

o v

= > O e

i=1 k=1
oo

= Y B> By

i=1

—~ e[
=y . (2.24)

k=1
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In (2.24), we apply the following equation

oo

1 .
s - B

1=1

The error location polynomial o(z) is also defined as shown in (2.15). The relation of S(z)

and o(x) can be constructed from

S(x)o(x) = () f_“%*;x) X H(1 —Bir) = exfs | [T 0 -8i) 2w (2.25)

k=1

The result of S(z)o(z) is defined by the polynomial w(z) with degree v —1. During decoding,
only the coefficients S ~ Sy; in S(x) are known, or we can obtain only S(x) mod z*. Hence

the key equation is defined as follows [72]:
S(r)afz)=w(), mod z* (2.26)

The decoding problem is to solve o(z) and «(Z) from the syndrome information S(z) ac-
cording to the key equation (2.26). The errorloeations will be identified by applying Chien
search [71] on o(z), and the error values ean-be calculated from w(x) according to Forney’s

algorithm [73]:
o (B
A

Notice that o’(z) indicates the derivative of o(x) and therefore

for 1 <k <w. (2.27)

o'(z) = di’lg” =3 5. [ - 8a) (2.28)

i=1,i#k

We note from (2.25) that the degree of w(z) is v — 1; as a result, in S(z)o(x), the

coefficients of the terms with powers large than v — 1 must be zero. The following Newton’s

17



identity can be derived [72]

S1 So
S Ss
Ss S4

| S2t—v S2—vt1

SU+1

Sv+2

Sv+3

Sat

Ov—1

0o

(2.29)

It is inefficient to directly solve (2.29) for moderate or large v. The efficient iterative algo-

rithm to solve key equation (2.26) was developed by Berlekamp [72,74] and independently

by Massey [75,76] and is referred to Berlekamp-Massey algorithm. This algorithm is an

approximation procedure for finding o(x) that satisfies (2.29) and has the smallest degree.

The detailed procedure is given as follows.

e Initial conditions:

cW2) =0 7@@)=1, Dy=0

AO — Slv

e Iteration from 7 = 1 to 2t:

oW(z) =

Ai:

If Ai—l =0or Di—l Z 1 — Di—h

< o1

T(Z) (l’) = T(i_l) (x) . l’,

Di - Di—l-

18
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(2.31)



Otherwise,
rO(a) = (),

Di=1—D; 4, 60=0A

After 2t iterations, we obtain the error location polynomial o(x) = ¢®9(z). In (2.30), the
operation tends to make o satisfy the discrepancy A,_; = 0. The new discrepancy A,
in (2.31) continues to measure the correctness of dummy error location polynomial o (x)
whose coefficients are a](-i). On the other hand, D; is a control variable that indicates the
degree of 0@ (z) [5].

The evaluation of error value polynomial w®(z) can use the key equation [77]. We
determine

w(T) = wy +wiz + -+ wy_1z!

after Berlekamp-Massey algorithm when o(z) is well defined. From the key equation (2.26),

the coefficients of w(z) will be calculated by
wi = ¥, 0;9mgn dor 0 i <v—1. (2.32)
=0

This equation is identical to the discrepaney‘computation in (2.31).
In addition to the Berlekamp-Massey algorithm, the Euclidean algorithm [78,79] is the

other efficient solution for solving key equation. The key equation (2.26) is first rewritten as
S(z)o(z) + Q(z)z* = w(x). (2.33)

Notice that Q(x) is the quotient polynomial and w(x) is the remainder polynomial while
S(x)o(x) is divided by z*. Hence according to Euclidean algorithm, w(z) can be acquired
through the procedure that derives the greatest common divisor (GCD) polynomial of S(z)

and 2%. The algorithm proceeds as follows.
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e Initial conditions

e Iterations from 7 = 1:

w(2) = ¢V (@)W V() +wi D (2) (2.34)

c@(z) = ¢D(x)o" V() + oD (z) (2.35)

The iteration is terminated when degree of ¢ (z) is larger than that of w®(z). Oth-

erwise, the iteration continues, and ¢ is increased by one, or i =1 + 1.

If the iteration is terminated, we set error location polynomial o(z) = 0@ (z) and error
value polynomial w(z) = w(x). The operation in (2.34) is polynomial division that divides
w2 (x) by wV(2); ¢;(z) and w® (z)éorrespond to quotient and remainder polynomials.
The quotient ¢;(z) is then used in{(2.35) for calculating new ¢ (x). What should be noted
is that the degree of w(x) decreases with i ‘whereas o) (x) has an increasing degree. The
stopping criterion comes from (2.25) where'w(a) has the degree at most v — 1 with the o(x)
of degree v.

In summary, RS decoding starts from syndrome calculation (2.20) and then solves key
equation (2.26) with either Berlekamp-Massey algorithm or Euclidean algorithm. Finally, we
apply Chien search to error location polynomial o(z) for finding error locations; moreover,
error values can be evaluated with Forney’s algorithm (2.27).

The erasure and error decoding is quite similar to the above mentioned error only decod-
ing procedure. If there are v errors and u erasures in the received vector r(z), 2v + u < 2t,
the syndrome calculation is as (2.20), but the erasure symbols are replaced with arbitrary

values, for example, zeros. The erasure location polynomial is also defined as

Mz) = (1 —a"2)(1 —a22) - (1 - aluz) (2.36)
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where [q,1s,...,[, are erasure positions. The key equation should be modified by

S\ (z)o(z) = w(z) mod z*. (2.37)

The errata location polynomial A(z) = A(x)o(x) identifies both error and erasure locations.

We can denote the known polynomials S(x) and A(z) with Forney syndrome polynomial [73]

T(x) £ S(z)A(r) mod z* (2.38)

= T+ Tow + Ty + - - + Tyur® ™

and the key equation (2.37) will become

T(x)o(r) =w(z) mod 2. (2.39)

Similar to (2.25), it can be deduced that @) will have the maximum degree of (v +u — 1)

for the degree of A\(x)o(x) is (v +=u); as a result, the following equation is derived:

Tu—l—l Tu+2 - Tu+v+1 Oy 0
T, T, oo Toas Op— 0
+2 +3 +o+2 L (2.40)
| Too Totvir -+ T || 00 | | 0]

Applying Berlekamp-Massey algorithm, we can compute o(x) iteratively [77] as follows.

e Initial conditions:
cW(z)=1, t™W(z)=1, D, =0

Au — Ly+1, 5 - 1,
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e Iteration from i = (u + 1) to 2t:

. . Ay o
oW(z) = ol V(x)+ TlT(Z_l)(a:) X (2.41)
=1
=0

If Ai—l =0or Di—l 2 1—U— Di—la

7—(7') (I) = T(i_l) (x) . l’,

Di = Di—1~

Otherwise,
T(Z) (:(;) — O'(i_l) (x)7

Di=1i—u—Di_1, 6=20;,

When i = 2t, we obtain the error lecation polynotnial o(z) = 0% (x) and error value poly-
nomial w(z) from (2.39).

On the other hand, Euclidean-algorithm is also applicable for solving (2.39).

e Initial conditions

e Iterations from 7 = 1:

Ww(z) = ¢V V(@) +u(2) (2.43)

o(z) = ¢W(2)o" V(@) + 0" () (2.44)

The iteration is terminated when degree of ¢ (x) plus u is larger than that of w®(z).

Otherwise, the iteration continues, and i is increased by one, or ¢ = ¢ + 1.

The error location and error value polynomials are accomplished with o(z) = ¢®(z) and
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w(z) = w?(z) after the termination of Euclidean algorithm.
The roots of o(z) = 0 determining error locations are found by Chien search. Further-

more, according to Forney’s algorithm, the error values should be

—w(Br) _ —w(a™)

e, = N~ Mo for 1 <k <w, (2.45)
and the erasure values are
o —w(a™h)
é, = o) for 1 <p<u. (2.46)

In error and erasure decoding algorithm, the major difference is the Forney syndrome
polynomial 7T'(x) in (2.38) and key equation (2.39). Additionally, there are corresponding
modifications in both Berlekamp-Massey and Euclidean algorithms for the known erasure
location polynomial A\(x) and T'(x).

In addition to the presented decoding approach;-RS codes can also be decoded in the
frequency domain [80]. The time domain algorithm that eliminate syndrome calculations are
also studied in [5], [81], and [82]. Although time domain approaches dispense with syndromes,

the computation in solving key equation may require more computing complexity.

2.4 Design of Reed-Solomon decoder

RS decoders usually consist of a syndrome calculator, a key equation solver, a Chein search
module, and a error value evaluator. Moreover, a Forney syndrome calculator and a polyno-
mial multiplier are also included for erasure decoding. Fig. 2.1 illustrates the RS decoding
flow with error and erasure. The syndrome calculator generates 2t syndromes from the re-
ceived vector r(x). If there are erasure symbols, the Forney syndrome calculator evaluates
T'(z) based on (2.38) and A(x) based on (2.36). According to S(x) or T'(x), the key equa-

tion solver delivers o(z) and w(z) with either Berlekamp-Massey or Euclidean algorithm.
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Figure 2.1: RS error and erasure decoding flow chart

Additionally, the errata location polynomial A(x) needs to be calculated when A(x) exists.
The error locations are found by Chien search block; besides, error value evaluator computes
error values using (2.27) or both error and erasure values using (2.45) and (2.46). The first-in
and first-out (FIFO) memory stores the received vector r(z) that has to be corrected after
decoding procedure.

The high-speed RS decoders ate investigated i [29,31,83]. The low complexity ap-
proaches using inversionless Berlekamp-Massey algorithm are also presented in [32,33,84,85].
Furthermore, the efficient decomposed arehitecture for key equation solver is also reported
in [31,33,77]. However, most designs are application specific solutions without configurabil-
ity or programmability. A universal RS codec that can manipulate different code rates and
block lengths has to support various finite fields. The difficulty for the universal RS codec
is the dedicated hardware providing finite field operations for variable field degree m and
irreducible polynomials, or primitive polynomials. Hence the software approach is proposed
in [37] by using programmable digital signal processor (DSP) with optimized datapaths.

In the follow-up sections, a universal finite field datapath for GF(2™) is presented for
both dedicated hardware and processor arithmetic unit [86]. As shown in (2.1), finite field
addition (FFA) over GF'(2™) is a component-wise operation over GF(2) ans is simple to
implement with different degree m. Nevertheless, in (2.2), finite field multiplication (FFM)

is much complex due to the polynomial modulo operation. The present universal FFM will
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efficiently accommodate different irreducible polynomials and eliminate the effect of the field

degree m.

2.4.1 Universal finite field multiplier

The universal FFM is based on the Montgomery multiplication algorithm [87] that improves
the modular multiplications. With polynomial representation, multiplication of a and b in
GF(p™) can be expressed as (2.2), which is a modular multiplication. Note that ¢ is also an
element of GF(p™) and f(z) is an irreducible polynomial over GF(p) with degree m. The

Montgomery product is defined as

év=a-b-p* mod f(z), (2.47)

where p* = =™ mod f(z) is a constant,element in GF(p™), and p* - p = 1 mod f(x)
while g = 2. Furthermore, we canfind thatyf(x)and u are relatively prime because f(z)

is irreducible; as a result, there exists-a polynomial f*(Z) that satisfies the following property

pepe At f(x) - for) = 1. (2.48)
With (2.48), the Montgomery product in (2.47) can be determined by

G = a-b-f () modpu (2.49)

ey = (a-b+q-f@)/u. (2.50)

The polynomial f*(z) can be obtained from (2.48) by using Euclidean algorithm [67]. The
modular and division operations in (2.49) and (2.50) becomes much simple as compared
with the modulo f(z) operation in (2.48) because of p = 2. The computation can be

further partitioned into a series of simpler operations for less complexity. We use p* = =™

25



m—1

mod f(z) and polynomial representation of @ = ag + a1 + - -- + a™ 2™ to decompose

(2.47):

Y [am_ﬂ;x_l mod f(z)] + [am_2(3x_2 mod f(z)]+--- [aOI;x_m mod f(z)]. (2.51)

This equation can be rearranged to the following iterative form:

éat = [am_1b+ [am_2b+---[aght™" mod f(x)]---]z~" mod f(z)]z~" mod f(z). (2.52)

Similar to (2.49) and (2.50), we can use the Montgomery product (a;bz~' mod f(z)) and

rewrite (2.52) as

e Initial conditions

AO =
e Iterations from i = 0 to m —=1
g = @A 0,0 f*(x)] mod z (2.53)
AWD  ZADE D + G f(x)/x (2.54)

After m iterations, we will obtain ¢); = A,,. Notice that f*(x) in (2.53) is the multiplicative
inverse of f(z) under modulo x operation, which is f(x)f*(z) =1 mod z, or f*(z) = f~(z)
mod z.

In GF(2™), the elements are often represented in binary digits, and the coefficients in the
polynomial representation are either zero or one. Hence f*(x) = f~'(z) mod x is always
one for f(x) is irreducible, and the term f*(z) in (2.53) can be eliminated. The result ¢ of
(2.53) is the constant term of (A; + a;b). The iteration number varies with the field degree

m. Therefore, we define a constant integer d such that m < d and let u* = x=¢ mod f(x)

in (2.47). The corresponding iterative computation will become as follows:
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e Initial conditions

A =
e Iterations fromi=0tod— 1
a; = 0, for i>m (2.55)
T = A9 fab (2.56)
AT = (T + tof(2)) /2 (2.57)
The final result is
iy =AY =a.b-27 mod f(x) (2.58)

Note that we force a; = 0 when ¢ > m to ensure correct operation, and t, in (2.54) is the
constant term of 7. For any m < d and irreducible polynomial f(x), we can compute the
Montgomery product (2.58) with @ iterations of (2.55)~(2.54) without modular operations.
We also find that pu* = =% mod- f () is a Constant element in a given GF(2™). However,
for the normal FFM, there is still afactor p*involyed in the product ¢,,. In order to remove

this factor, we apply another Montgomery: multiplication to correct the product ¢,
¢=¢éy-0-27% mod f(z) (2.59)

and let 6 = 2 mod f(z); as a result, the normal FFM product ¢ is obtained. In many
applications, it is unnecessary to perform the product correction each time we apply Mont-
gomery multiplication because d is a constant, and the correction is needed only after a

series of multiplications. We will show this approach in the decoder design.
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Fig. 2.2 illustrates an example of Montgomery multiplier structure for d = 4. This

multiplier has three inputs a, b, and f (x), represented by

a = a3x3 + a2m2 + a1z + ag
b = bgl’g + 621’2 + bll’ + b(]

flx) = fax' + fs2® + for + frz + fo.
As derived in (2.58), the result ¢, will be
AW = Agl)x?’ + Agl)xz + A§4)x + A((]4).

Note that f, always equals to one that can be eliminated for simplicity. The multiplier in

Fig. 2.2 can operate over any GF(2™) with m < 4.

0 f:t b40 f3 b3 0 f2 bZO f; blO bO Ain bin a,, =a,
bout = in
out
a =
n Zout in ainbin
out.
bout
Ain flt” bi” aout = am
baut = bm
aout ain t =t
out in
out in _
f;mt - f;n

-foutb Aout Aout = in + ainbin + tinf;

out

Figure 2.2: Montgomery multiplier structure for GF'(2™) and m < 4

2.4.2 Universal finite field divider

The finite field division

>
Il
>
~
Q>
|
[y bd
Q>
L

(2.60)
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can be proceeded with two steps where the first one is finding the multiplicative inverse a=*

1

for a, and the second one is multiplying b by a~'. The process in finding a~! is referred

to finite field inversion (FFT). There are possible solutions for FFI: table look-up approach
and Fermat’s algorithm [88]. The former constructs a a~! table indexed by a; additional
memory is required for storing the table, but the operation is as simple as memory access.

The latter uses the Fermat’s identity
m—1 _
al=a2""2 = H a% (2.61)
i=1

which can be completely implemented with multipliers. However, with Montgomery multi-

plication, we will achieve the following result

iyl = a'-of (2.62)

0 = 7B mod fz) = 2% mod f(z) (2.63)

In (2.63), we also use the Fermat’s identity’a ' = 2% =2 mod f(x). Hence the finite field

division in (2.60) can be rewritten‘as
e=b-(at -2 -27? mod f(x)=b-ay'-2~¢ mod f(x) (2.64)

which is also a Montgomery multiplication. It is unnecessary to adjust the quotient ¢ with

any factor.

Q)

R b R

A B

Square function

Figure 2.3: Montgomery division structure for GF(2™)
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The finite field divider using Fermat’s algorithm is shown in Fig. 2.3. Initially, register
Ry is loaded with b. The multiplier on the left side performs the finite field square function
generating a sequence of a2, at,..., and a2" ' the other multiplier serially multiplies b by

this sequence. After m — 1 cycles, the result b-a~! is obtained without correction factor.

2.4.3 Syndrome Calculator

The syndrome calculator computes 2t syndromes according to (2.20) which can be expressed

as

i
L

Si = T’jOéi-j (265)

[e=]

J
= (- ((ramr + rasa)al + ragat o)l 47y (2:66)

According to (2.66), we can constructa'syndreme calculator for S; as shown in Fig. 2.4,
consisting of a register, a finite field adder,-and a, constant finite field multiplier which mul-
tiplies by . The received data are serially inputted from r,_; to ro. After 7y is calculated,

the final result S; will be in the register,. The 'constant FFM is simpler than the standard

xXq'

Figure 2.4: Syndrome calculator for 5;

O’I/'I’FZ"'W n-1

FFM in terms of complexity and critical path timing. Nevertheless, if we want to design
a universal syndrome calculator, the constant FFM should be replaced with Montgomery
multiplication where the multiplier is a*?. Notice that o/t varies with the irreducible poly-
nomial f(z), limiting the simplication of Montgomery multiplication. Hence the modified

syndrome computation is proposed [38] to reduce the Montgomery multiplication. We first
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rewrite (2.65) as follows:

n—1 n—1 n—1
=S rjat = 3 a0 = $7 (10t )i (2.67)
=0 =0 =0

The new received symbol 77 is defined to be ria®J and (2.67) can also be expand into
iterative form:

Si= (- (r a4 ) ) a T (2.68)

d

Therefore, because of the term o'~%, we can use Montgomery multiplication with constant

multiplier o if i < d. Since d is the maximum value of m, b = o/ with i < d in (2.58) can
be represented as a constant, regardless of different f(x). Furthermore, when i = d, o'~¢ =
a® becomes one and the constant multiplier can also be eliminated. The corresponding

Montgomery multiplier will be simplified due to the constant b = of. On the other had,

once i is larger or equal than d, we cammodified’(2.67) to achieve the similar results; that is

Z;:&(Tjad'j)a(i_d)'j, for 0<1<d
S 70 (rjo ) o =T for d<i<2d
Si = Z;L:_ol(Tjasd'j)oé((i_zd)_d)'j, for 2d <1i<3d (2.69)

\ Z;.L:_Ol(rja”d'j)a((i_(”_l)d)_d)'j, for (m—1)d<i<md

We can find that (¢ — (7 — 1)d) is still between 0 and d as (7 — 1)d < ¢ < 7d, and therefore
a group of constant multipliers can be defined for o’ with 0 < i < d. It is also convenient to
deliver S; = aS; which will facilitate the key equation solver implementation. A syndrome
calculator with d = 8 and ¢ < 8 is presented in Fig. 2.5. There are at most 16 syndromes
that should be computed from S; = a®r(a) for i = 1 ~ 16. For d = 8, we construct eight

syndrome cells, SC; ~ SCg, as shown in Fig. 2.5; besides, SCg is a special cell without
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constant multipliers. Based on (2.69), we can express S; as follows:

n=l¢ . 8(j+2),~8), (i—8) for 0 <i <8
) —Lra a8 ) or U<1=<
S; =abS; = 2ol ) 210

S (rat @089 for 8 < i < 16

As 0 < 7 < 8 and 8 < 7 < 16, the received symbol r; should respectively multiply
by factors a®U*D and o®*@*D, or of0+? and o¥*+?) in Montgomery multiplication. In
Fig. 2.5, two factor generators, FG; and FGy, are allocated to produce the scaling factors

with Montgomery multipliers. The register in FG, initially contains o®™+Y) and serially

Tg'z f§3 15'4
SC,| [|SC;| |SCy
A A A

y A 4 A 4 xai_g
SCe¢| |SC;| |SCg l
g& §# gé /f
B WA 52 () S0, fori=1~7

SC,|" |SCsfz [SCy

v v v
SCs[[SCy| [SCy ‘
RSN SR SECH %
(a) Syndrome calculator (c) SCs

Figure 2.5: Syndrome calculator with d =8 and t < 8

multiplies by B; = 1; as a result, a®9*?) in which j counts from n — 1 to 0 will be generated.
Similarly, to create a®®%2 for j = (n — 1) ~ 0 in FG,, the register sequentially multiplies
by By = o~ ® with initial value o®?". We then multiply r; and the factors from FG; and
FGy with Montgomery multipliers.

Although the syndrome calculator in Fig. 2.5 supports only ¢ < 8, it can be extended

to handle ¢ < 16 syndrome calculation which has at most 32 syndromes S; = r(a') with
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i =1~ 32. The first 16 syndromes S; ~ Sis can be computed by using the configuration
in Fig. 2.5. The calculation of other syndromes needs some modifications for FG; and FGs.
We first represent 517 ~ 532 in the following form:

ZT.L_S (r;a86i+2) q=8)q (i-16):7 for 16 <i < 24

S; =abs; = = (2.71)

S0 (raB o 8) =293 - for 24 < i < 32.

In (2.71), the constant multiplications remain the same as compared to (2.70). The difference
is the factors by which r; multiplies; consequently, as j counts from (n — 1) to 0, FG; and
FG, will generate a®®+2) and o®®+2) The initial value becomes "~ and the B; input
a~1% in FG;. On the other hand, we configure FG, with the initial value o®*"~2) and the
input B, = a~2?*. Because there are 16 computation cells in Fig. 2.5, it will require double
time to complete 32 syndrome calculations in contrast to t < 8 case.

Generally, according to (2.69), the.atchitectute, (see Fig. 2.5) is possible to be extended to
more syndromes, but the computation time also increases. The present approach provides the
feasibility for different syndrome calculations; nevertheless, the trade-off between the number
of syndrome cells and the the computation time-should depend on system specifications and

requirements.

2.4.4 Key Equation Solver

The algorithm in solving key equation (2.26) or (2.37) can be either Berlekamp-Massey
algorithm or Euclidean algorithm. As indicated in section 2.3, Berlekamp-Massey algorithm
has the fixed iteration number 2¢, which is much regular for different RS codes and therefore
is selected for universal RS decoder. For error and erasure decoding, we combine the Forney
syndrome calculator and the polynomial multiplier for A(x) in Fig. 2.1 with the key equation
solver. Th inversionless algorithm is also applied [32,33,84,85] to avoid finite field division,

leading to less complexity. The inversionless Berlekamp-Massey algorithm is presented as
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follows:

e Initial conditions:

Au = Lutl o= ]-7

e Iteration from i = (u + 1) to 2t:

O'(i)(llf) = 5a(i_1)(a:) + Ai_lT(i_l)(a:) T (2.72)
t—1

A, = ZUJ(-Z)Tz’H—j (2.73)
j=0

If Ai—l =0or Di—l 2 1—U— Di—la

7—(7') (I) frd T(i_l) (x) . l’,

Ei==-B

{1 l

Otherwise, the erasure information a‘t ~ "™

AP g

Dy =1"~u~+"D;_1, 6=20;_

The final result ¢ (z) will be (n - o(x)) that includes a element n € GF(2™). Note that
n will be ineffective for the roots of o(x) = 0 and the error evaluation in (2.45) and (2.46)
because error evaluation polynomial will also be (- w(z)) [77].

Before we start to solve key equation, the erasure information o/t ~ a'* in (2.36) should be
generated. Similarly, we generate a/tT¢ ~ a!“*? for the simplification in key equation solver.

1

The erasure information generator is illustrated in Fig. 2.6 with a constant o™ multiplier,

where we let a™' = {91~ and assign the constant multiplier input to be a?~!. As what we
had discussed previously, a?~! can be represented as a constant element. The register initially

1

contains "D+ and serially multiplies by a~!, corresponding to the received sequence Tj.
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a(n—l)+d /&

Figure 2.6: Erasure information generator

The contents of the register are captured whenever the erasure appears in the received data.
After receiving all r;, we obtain the the erasure information a/**¢ ~ ql«*4,

With the syndrome polynomial

2t
S(z) = Z Szt = ZozdSixi_l, (2.74)
; i=1

the key equation can be solved as follows:

e Initial conditions:

0O (apE (Wi (2) = S(2)

At BT 6 =al
o [teration from ¢ =1 to w:
o (z) = 5o V(@)Y ¥ A 7V (z) -z (mod z*) (2.75)
A; = abirtd 20(g) = o0 (x)

e When i = u, we set the following conditions for further computation.
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e Iteration from i = (u + 1) to 2t:

oW (z) = 60" V(@) + A7 V(@) w (2.76)
t—1

Ai = O'j(-i),_fi+1_j (277)
7=0

If Ai—l =0or Di—l Z 1 —Uu— Di—h

7—(7') (I) frd T(i_l) (x) . l’,

Di - Di—l-

Otherwise,
r0(r) = o (a),

Di=i—u—D;y, 6=2A;

When all 2t iterations are finished, wé will attainfthe error location polynomial
5(z)= o (@) =qlc(z) = Z G’ (2.78)
i=0

with with ' = a®. The iteration from/4 &#t6 « intends to estimate the Forney syndrome
polynomial T'(z) = oT(x); the inversionless Berlekamp-Massey algorithm proceeds from
i = (u+1) to 2t. Since we apply the Montgomery multiplication to all FFM computations,
each quantity will contains an additional factor a?. Subsequently, we can establish the error

value polynomial

utv—1
o) =nw(@) = Y @a' (2.79)
i=0
by the following property '
&= 6T, (2.80)
=0

which is quite similar to the discrepancy evaluation in (2.77). On the other hand, we can

derive the errata location polynomial A(z) with the process of T'(z) construction. The
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procedure is described as follows:

e Initial conditions:

o (z) =5(x), 7% (2) =5(x)

Agp = ahtd, 5 =ad

e Iteration from ¢ = 2t + 1 to 2t + w:

a(i)(:c) — 50,@'—1)(@ + Ai_lT(i—l)(x) - (2.81)

Ai = ali+1+d’ T(Z) (ZE) = 0'(7')

The errata polynomial will be A(z) = 0@ (z) = 1/A(x). Notice that the uniformity of
(2.75), (2.76), and (2.81) lead to the simple key equation solver architecture. Moreover,
the calculations of discrepancy and error value polynomial calculations can use identical
computational structures.

The above mentioned algorithm zrequires the computations of Forney syndrome polyno-
mial and errata location polynomial; nevertheless, those computations can be combined with

Berlekamp-Massey algorithm as reported in [89].The modified flow is as follows:

e Initial conditions:

cO(z) =ad, 7O(z) =a?

Ay =ahtd  §=qa

e Iteration from 7 =1 to u:

O'(i)(llf) = 5a(i_1)(a:) + Ai_lf(i_l)(a:) T (2.82)

Ai — ali+1+d’ T(Z) (:(;) — 0’(2) (x)
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e When i = u, we initialize Berlekamp-Massey algorithm with ¢(*)(z) = a?\(z).

T(u) (QU) = O'(U)(x>’ Au — ~u+17 Du — O

e Iteration from i = (u + 1) to 2¢:

a(i)(:c) — 50,@'—1)(@ +Ai_1r(i_1)(x)-$€ (2.83)
t—1

Ai = O'J(»Z) ~i+1—j (284)
7=0

If Ai—l =0or Di—l Z 1 —Uu— Di—h

T(Z) (QU) = T(i_l) (:1;) . x7

Di == Di—l-
Otherwise,

T(Z) (x) = U(i_l) (.’L'),

A MaErrrm s 0 = A1
The errata location polynomial will be finally obtained as

u+v

Az) = 0@ (z) =) A, (2.85)

J=0

Additionally, the coefficients of error value polynomial can be derived according to the key

equation (2.37). That is

CNUZ' = Z]\jgi-i-l—h for i=0~u+v—1. (286)

J=0

The operations from ¢ = 1 to u are erasure location polynomial expansion that recursively

computes a?)(z) by (2.82). The Berlekamp-Massey algorithm, which is from i = u + 1
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to 2t, starts with both o™ (z) and 7™ (z) equal to a?A(z), and therefore the final result
will be (/o (z)A(x)) = A(z). Furthermore, to achieve less decoding latency, the polynomial
expansion in (2.82) can work in parallel with syndrome calculator because it is independent
of the syndromes S;.

Based on the decomposed architecture in [77], the key equation solver is demonstrated
in Fig. 2.7. Only three Montgomery multipliers are required due to the serial operations,
leading to the modest complexity. There are two buffer memory, buffer-o and buffer-7, for
storing oY (x) and 70~ (x). We configure this architecture for erasure location polyno-
mial, Berlekamp-Massey algorithm, and error value polynomial. When ¢ = 1 ~ u, Fig. 2.7 is
in polynomial expansion mode (2.82) with A; = a/i+174 and § = o, and the result o (z) is

then saved to both buffer-o and buffer-r. After u iterations, we have a®(x) in both buffers

buffer-c
—> 0™ (x)

¢ D (%)
buffer-t

Figure 2:7: Key equation solver

which are ready for the next Berlekamp-Massey algorithm. As the syndrome polynomial

S(z) is available, the solver will perform (2.83) and (2.84) from i = u + 1 to 2t and finally

generate A(z) (see (2.85)) in buffer-o. The error value polynomial can also obtained with
Fig. 2.7 according to (2.86). We let A;_; = 0 and § = a?; consequently, the coefficient ]\j

from buffer-o will multiply by §i+1_j, and the product will be accumulated to be @;.

2.4.5 Chein Search

The key equation solver will provide errata location polynomial [\(:c) for Chien search op-

0 1 —(n-1)

eration that repeatedly check ]\(:c) =0 when z = o’,a™ ..., « . We can represent
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Chien search as the following equation
Aa™) = Z Aja=9, (2.87)

which is similar the syndrome calculation (2.65). In order to reduce the multiplier complexity,

(2.87) is also transformed to

u+v
A=) = A0y, (2.88)
j=0
B Tm d 5
=Ko+ (a7 Y Argr (a7 (2.89)

where 7, = [*+*], and Arar; = 0 when wd + j > u 4 v. We divide the coefficients of A(z)
in (2.89) into (m,, + 1) groups and let Argy; multiply by a{@)-97 with 1 < j < d. As
a result, a?7 can be represented ass eonstantlinput for Montgomery multiplier because
0<d—j<d-1. With d = 8 dand ¢ < 16 including erasures, the Chien search structure
is presented in Fig. 2.8. Since the maximurm degree of A(x) is 16, this architecture should
have 16 Chien search cells (CC). The j-th Chien search cell (CC;) use a constant multiplier
in which one of the inputs is forced to @®¥." Based on (2.89), there is a factor generator
producing % for i = 1 ~ (n —1). Additionally, the values A’(a*) in (2.45) and A’(a )
in (2.46) are determined when A(a~7%) or A(a~7) equals to zero [77]. However, the outputs

of Fig. 2.8 are A'(a*) - a9 or A'(a/») - a~J because of the following conditions:

dp da
]\'(x) = Z ./~\2j+1$€2j = ZL’_l : Z [\2j+1l’2j+1 = SL’_l . Aodd(l’) (290)
=0 =0
in which dy = %% — 1 as (u+v) is even, or dy = “==L as (u+ v) is odd. We also define

a polynomial A,gq(z) to be A(z) with zero coefficients in the even degree terms; that is,

Ay; = 0. Consequently, the structure in Fig. 2.8 can also generate Aygq(a™?) = a*A’(a™)
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Figure 2.8: Chien search module with d =8 and t < 16

during Chien search operation. When Chien search identifies the error or erasure locations,

the results a“A’(a~") will be delivered for error or erasure value evaluation.

2.4.6 FError Value Evaluator

In the error and erasure value computations with (2.45) and (2.46), not only the inversions

of A'(a7*) and A'(a), but also @(a7*) and &(a7») need to be determined. In order to
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comply the data from Chien search, we modify the error and erasure values to be

—ao(ar)

ain N (or=ix)

—a e —Jp

€p = w, (2.92)
a~Ie N (a=Ir)

(2.91)

meaning that x - ©(x) should be used in both (2.91) and (2.92). Fig. 2.9 shows the corre-
sponding architecture for both error and erasure values. The cell CC; is identical to the j-th

Chien search cell in Fig. 2.8, and the evaluation of a~*@(a™") is based on the equation:

u+v Tm d
(o) = Z&j_l(a(d—j))—d)i _ Z —md)i Z@ a1 (adI)=d)i (2.93)
j=1 =0 Jj=1

For d = 8 and t < 16, the computation of (2.93) can be divided into two groups corresponding

—8¢ generator to adjust the

tom =0 and 7 = 1. In the 7 = 1 group, we.need an additional «
result. Finally, the divider performs finitesfield-division to complete (2.91) and (2.92). The
divider can be either a look-up table:combined“with a=multiplier or the structure in Fig. 2.3
using Fermat’s identity (2.61). The look-tip-tablexequires multiple contents to satisfy various
GF(2™); accordingly, we use a dynamie.look-up-table updated on-the-fly for different finite
field definitions. The inversion table is presented in Fig. 2.10. A random access memory
(RAM) with the size of 2¢ x d is implemented to store the inversion contents that create
i+d

by a~*¢ generator. We let each a~"*¢ be indexed by o'’ to compensate the a~? factor in

Montgomery multiplication completing the division operation. The inversion contents can
i+d

be generated during the syndrome calculation. The registers in =% and o' generators are

initialized with the constants a? and a® = 1. As i counts from 0 to n — 1, each value o="+¢
will be written to the address o’. Notice that a~**¢ generator uses a constant Montgomery
multiplier, however, the constant a multiplier in o’ generator is a direct implementation
without Montgomery algorithm because a'*? is unable to be a constant multiplier input.

As compared with the divider in Fig. 2.3, the look-up table based architecture provides much

42



Gx)—>

&G (DT

a -y
Eoul el el ol M
Y
a N
or > Divider —> e, ore,
a PN

Figure 2.9: Error yalue evaluater with d =8 and t < 16

faster computation although a memory is required.

4 o Gxgw) or a—/pwa—/,,)
o generator
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|
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o' generator

Figure 2.10: Finite field divider
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Chapter 3

Convolutional codes

Convolutional codes first proposed by Elias [13] in 1955 have been widely exploited in com-
munication systems to provide a superior error correction capacity. Compared with block
codes, convolutional encoder contains memory, or the codeword symbols depends not only on
the current information symbols, but also on some previous information symbols. Therefore,
an (n, k, m) convolutional code can be defined as follows: the information stream or block is
divided to frames of k symbols, and current information frame as well as m previous ones are
encoded into codeword frame of length,m:iThe error correction performance is determined
by the code rate R = k/n and the.memory ordeéx m:

The decoding of convolutional:codes includes sequential decoding [14], threshold decod-
ing [90], and Viterbi algorithm [15].. Mereover;the maximum a posteriori (MAP) decoding
algorithm [16] and the soft output Viterbi algorithm (SOVA) [19] are also utilized for soft
iterative decoding. Sequential decoding is the first practical decoding algorithm whose com-
plexity is independent of the memory order m. The Fano algorithm [91] and the stake
algorithm [92,93] are also of this type. Considering simple implementation, the threshold
decoding [94], or majority-logic decoding, is proposed in [90], however, the performance is
sub-optimum. The Viterbi algorithm is a maximum likelihood (ML) decoding that optimally
minimizes the block error probability. Because of the parallel computation, the decoder us-
ing Viterbi algorithm is quite suitable for high speed applications. Hence, the requirement
for high speed data transmission has conducted many researches in algorithm transforma-
tions and VLSI implementation. The MAP algorithm, or referred to BCJR algorithm, and

the sub-optimum SOVA are symbol by symbol detection algorithm that minimizes the sym-
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bol error probability. They are much popular due to the iterative decoding of the parallel
concatenated convolutional codes (PCCC), named turbo code [17,18].

This section will focus on the Viterbi decoding algorithm as well as the architecture
design after the introduction of convolutional codes. The MAP algorithm and the SOVA

are also presented finally.

3.1 Convolutional codes and encoders

An (n, k) convolution code over F' = GF(q) can be defined as a k-dimensional subspace of
n-dimensional vector space F™((D)) [94,95]. The set F'((D)) of Laurent series in D over

F' is the set of sequences a(D) = Z a;D" in which a; € F, and r is an arbitrary integer.

i=r
Furthermore, we can express the information stream as the sequence

u(D) = Zu,-pi (3.1)

where u; = (u(l) u? u(k)) is i-th |k-tuple information frame, and therefore u(D) €

F¥((D)). The codeword stream is also the sequencé v (D) in F"((D)) and can be represented

with the n-tuple codeword frame v; = (’U-(l) o ,vl-(")):

v(D) =) vD' (3.2)

The (n, k) convolutional encoder can then have the following definition [95,96]:

Definition 3.1. An encoder is a k& X n convolutional encoder over F' if the mapping
F*((D)) — F™((D)) realized by the encoder can be represented by v(D) = u(D)G(D)
where G(D) is a k x n matrix of rank & with entries in the subset F'(D) of F((D)).

We represent the set of finite degree polynomials in D over F' by F[D]; moreover, F'(D)
denotes the set of rational functions a(D)/b(D) with both a(D) and b(D) in F[D]. Clearly,
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F[D] and F(D) are subsets of F'((D)). The generator matrix G(D), also termed encoder, in
the definition 3.1 results in the codewords of length n and coding rate R = k/n. Generally,

G(D) is often expressed as a generator matrix:

a"(D) ¢?(D) -+ ¢"(D)
) 2) ™)
G(D): s (D) D) (D) s (D) (33)
| 0'(D) g?(D) -+ g"(D)

where g(j)(D) € F(D) foralli =1,2,...,kand j = 1,2,--- ,n. We express the rational

function as g(j)(D) = al(-j)(D)/bEj)(D) with the polynomials agj)(D) and bgj)(D). Accordingly,

)

the memory order m is the maximum degree among all agj (D) in G(D).

m = _,shlax deg[agj)(D)] (3.4)

g e—,y,l>J >

In the graphical representation, we can use the‘controller canonical form for the linear system

with the input u(D) € F((D)):

v(D) = u(D)a(D)/b(D), (3.5)
where a(D),b(D) € F[D] and
a(D) = Z a; D"
MD):1+55@D2

As shown in Fig. 3.1, the delay elements denoted by D construct a single input shift register.
The m delay elements are memory units that store the previous m shift register inputs. We

can find that a(D)/b(D) is a rational transfer function for the input u(D), and the output
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Figure 3.1: The controller canonical form of (3.5)

v(D) is also in F((D)). Alternatively, if (3.5) is rewritten as

v(D) = u(D)a(D) + U(D)(Z b; DY), (3.6)

the observer canonical form of the system is illustrated in Fig. 3.2, which is another real-

ization of Fig. 3.1 for the same transfer functiof:  The generator matrix in (3.3) with the

Uu.

1

G~ D B D PP D P F D PP

Figure 3.2: The observer canonical form of (3.6)

entries in F'(D) is referred to a rational transfer function matrix.

The above mentioned encoder (3.3) leads to the constraint length definitions [94] listed

below:

1. The constraint length for i-th information sequence is the maximum degree within i-th
row of G(D).

v; = max dega)(D)] (3.7)

1<j<n
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Note that agj )(D) is the numerator of the rational function gV )(D).

i

2. The overall constraint length is the summation of (3.7) for all information sequence.

k
V= Zl/i (3.8)

3. The input constraint length is the number of information symbols that affect each
codeword frame.

K=v+k (3.9)

4. The output constraint length is the number of codeword symbols that related to a
single information frame.

N = n(m + 1) (3.10)

The required number of memory eléments in the'controller canonical form (see Fig. 3.1)
is equal to the overall constraint length #."“ Notice that many literatures define a single
constraint length for an encoder with one-of the above:four statements. For example, in [97]
the overall constraint length v in (3.8)is defined tohe the constraint length of a convolutional
encoder.

There are infinite number of generator matrices that produce the same set of codewords.

Thus we can define the equivalence of two encoders as:

Definition 3.2 (Forney [98] ). Two encoders G(D) and G'(D) are equivalent if they generate

the same code.

Furthermore, two equivalent encoders G(D) and G'(D) can be related by G(D) =

T(D)G'(D) if and only if T(D) is a k x k nonsingular matrix over F(D) [96]. For two
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codeword sets {v(D)} and {v/(D)} corresponding to G(D) and G'(D), or

v(D) = u(D)G(D) = u(D)T(D)G' (D) = v'(D)G'(D)

we can find that {u/(D) = u(D)T(D)} and {u(D)} are identical sets because T(D) is
invertible. It can also be verified that T'(D) is nonsingular if G(D) and G'(D) are equivalent.
The encoder in definition 3.1 is required to perform one-to-one mapping for correctly

decoding. Therefore, these exists a G~!(D) such that

for all u(D). We use the equation G(D)G~Y(D) = I where I} is the k x k identity matrix,
and G(D)™! is the right inverse of G(D). The bdsic encoder is defined as follows:

Definition 3.3 (Forney [98] ). Asgenerator matrix-G(D) is basic if it is polynomial and has

a polynomial right inverse.

It follows that every rational encoder isiequivalent to a basic convolutional encoder [96,
98]. Generally, basic encoders are not unique, and therefore, two basic encoders G(D) and
G'(D) are equivalent if and only if G'(D) = T'(D)G(D) where T'(D) is a k x k polynomial
matrix with determinant 1 [95,96]. Because T'(D) is nonsingular, G'(D) = T(D)G(D)
indicates the equivalence of G'(D) and G(D). Conversely, if G(D) and G’(D) are equivalent,
there exist a k x k matrix T'(D) over F(D) such that G'(D) = T(D)G(D), and T(D) ™" exists.
Furthermore, since G(D) is basic and thus has a polynomial right inverse G=!(D), we can
find that T'(D) = G'(D)G~Y(D) is also polynomial; besides, T'(D)~! should be polynomial.
As a result, G'(D) = T(D)T~YD)G'(D) and T(D)T~'(D) = I;. Since both T(D) and
T—1(D) are polynomials, T'(D) must have determinant 1, or det(7(D)) = 1.

Among all equivalent basic encoders, there is one that requires a minimal number of
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memory elements. Accordingly, such encoder is defined by

Definition 3.4 (Johannesson [96]). A minimal basic encoding matrix is a basic genera-
tor matrix whose overall constraint length v is minimal over all equivalent basic encoding

matrices.

Let G(D) be a basic encoder, and it can be decomposed into three parts:

D

D2
G(D) = Go(D) + | -Gy (3.11)

Dvx

Notice that G}, is a k x n matrix over F and has nonzero entries in the positions (i, j) where
deg g/ (D) = v;. As a result, Go(D) contains the enteritis in G(D) where the highest degree
terms in each row are removed. For«&G(D) with the 6verall constraint length v, we can obtain

the following equivalent statements [96,97]:

1. G(D) is a minimal basic encoder.
2. The maximum degree of all k x k sub-determinants of G(D) equals to v.

3. G}, is of full rank.

According to (3.11), the second and the third statements are equivalent. The proof about
the equivalence of the first and the second statements can be found in [96] and [97]. The
above three statements characterize the minimal basic encoder in definition 3.4 and provide
the rules for constructing a minimal basic encoder. Moreover, a minimal basic encoder for
a convolutional code is unnecessarily unique, and every encoding matrix is equivalent to a
minimal basic encoding matrix [98].

The physical state of a rational encoder G(D) at some time instance is defined to be the

contents of the memory elements in its realization, which can be either the controller or the
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observer canonical form. On the other hand, the abstract state is the output sequence at time
0 and later if the input sequence u(D) occurs up to time —1 and becomes all zero thereafter.
Hence, the abstract state depends only on G(D) instead of its realization [96]. Different
abstract states must correspond to different output sequences and different physical states.
However, different physical states may correspond to the same abstract state [95]. Let P be
the projection operator that forces the sequences to all zero for non-negative time instants,
and ) be the projection operator that truncates the sequences at negative time instants.

For example, assume r < 0,

u(D)P = _Zu,-D" (3.12)
u(D)Q = ZuiDi. (3.13)

Therefore, the abstract state vg(D) can be formially written by
vs(D) = u(D)PG(D)Q. (3.14)

Accordingly, the minimal basic encoder in definition'3.4 will have the following properties [96,

97,99]:

1. If G(D) is minimal basic and
_ 7 — (O @) (k) ryi
u(D) = E w; D' = (u;” u;” ... u; ) D (3.15)

u(D)G(D)Q = 0 will deduce that u(D) = 0.
2. The abstract state number of a minimal basic encoder equals the physical state number.

3. The abstract state number of an encoder is always larger than or equal to that of an

equivalent minimal basic encoder.
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The first property can be verified with (3.11), and

D”
D
v(D) = u(D)Gy(D) + u(D) | G (3.16)

Dvx

must have zero coefficients v; for ¢ > 0. Without loss of generality, we may assume that

M=V =V = =V >V > >V (3.17)

Consequently, the coefficient vy, of D" in v(D) will be

(u® w® . u0,...,0)G, =0. (3.18)

Since G, has full rank, we can obtain u%o) | = uq(zl) = = ug) = (0. The coefficient v; for

i < m+n can also be examined in such<method, and we will find that u(D) = 0. For

example, if (m — 1) = 41 > vy, the coefficient vy,4,,—1 becomes

(u1(10_)17 uizllb cee aug)—h ug+1)> Oa tety O)Gh = 0’ (319)
and therefore u,(fﬂ) = uﬁf_’l = unl_)l == ug)—l = 0.

The second property of a minimal basic encoder G(D) ensures the minimum realization
of its controller canonical form. Because the basic encoder is polynomial, the following input

sequence
—V1 —v2 —Vi

uD)= "W’ D > WD W DY (3.20)

i=—1 i=—1 i=—1

will be the physical state in the controller canonical form at time instant 0. According
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to (3.14), the abstract state of G(D) can be written as

vs(D) = u(D)G(D)Q. (3.21)

If there are two different physical states u; (D) and uy(D) in the form of (3.20) correspond

to the the same abstract state, we will have

vs(D) = w (D)G(D)Q = us(D)G(D)Q, (3.22)

or

(w1 (D) —uy(D))G(D)Q = 0. (3.23)

Directly from the first property, we can conclude that (u;(D)—uy(D)) must be zero, resulting
in u1(D) = uy(D). Hence the abstract state number should equal to the physical state
number for a minimal basic encoder:

The third property shows the-minimum of-a minimal basic encoder. We consider two
equivalent encoders G(D) and GXD) swhose abstract: states are vg(D) and vi(D) respec-

tively. From the abstract state definition, vs(D).¢an be obtained

vs(D) =u(D)PG(D)Q
— u(D)PT(D)G'(D)Q
=u(D)PT(D)(P + Q)G'(D)Q

— u(D)PT(D)PG'(D)Q + u(D)PT(D)QG(D)Q. (3.24)

Note that
vs(D) = [u(D)PT(D)P|G'(D)Q (3.25)
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is an abstract state of G'(D); moreover,

v'(D) = [u(D)PT(D)Q]G'(D)Q = [u(D)PT(D)QIG'(D) (3.26)

is a codeword generated by G'(D) and the input sequence u(D)PT(D)Q. Therefore, the
abstract state of G(D) can be expressed by the sum of an abstract state and a codeword

corresponding to G'(D). That is

vs(D) =vy(D) +v'(D) (3.27)

If G'(D) is minimal basic, the relation in (3.27) is unique. This uniqueness can be verified

by the contrary assumption:

vs(D) = Ve (D) #NG(D), = Vigy (D) + v5(D) (3.28)

where v, (D) and vy, (D) are different abstract states of G'(D); vi(D) and vi(D) are

codewords by G'(D). Rearranging (3/28)-we-have

Vs(D) = Vi1 (D) = vy (D) = vy(D) = vi(D) = v'(D). (3.29)

Notice that vZ(D) is also an abstract state, and v”(D) is a codeword. Hence they should be

vi¢(D) = u§(D)PG'(D)Q (3.30)

v'(D) = u"(D)G'(D)Q. (3.31)

The input sequence u(D) has the degree > —m, which is sufficient to produce an abstract

state. The operator @) in (3.31) comes from (3.26), where we can also find that u”(D) must
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be polynomial. Furthermore, the combination of (3.29), (3.30), and (3.31) leads to

ug(D)PG'(D)Q —u"(D)G'(D)Q = [ug(D)P —u"(D)]G'(D)Q = 0. (3.32)

Based on the first property, we will obtain

w/(D)P —u"(D) =0, (3.33)

and therefore u§(D)P = u”(D) = 0 since u”(D) is polynomial. As a result, vi, (D) =
Vigo(D) and vi(D) = v/ (D), resulting in the uniqueness of (3.27) if G’(D) is minimal basic.
In other words, for any abstract state viy(D) of G'(D), there exists an abstract state vg(D)
of G(D) such that (3.27) holds; in addition, vi(D) can be a sum of an abstract state and
a codeword of G(D). Therefore, the map vg(D) — v'(D) is surjective, and the abstract
state number of G(D) must be larger, than oreéqual to that of the equivalent minimal basic
encoder G'(D).

An encoder with the minimal abstract state number is of interest because the minimality
also effects the complexity of encoders-and-deecoders- The more general minimal encoder is

then defined as follows:

Definition 3.5. [Johannesson [96]] An encoder G(D) is minimal if its abstract state number

is minimal over all equivalent encoders.

Clearly, a minimal basic encoder is a minimal encoder. Moreover, for an encoder G(D)
whose equivalent minimal basic encoder is G,,,(D), the following statements are equiva-

lent [96,98]:
1. G(D) is a minimal encoder.
2. The abstract state number of G(D) equals to that of G,,,(D).

3. For G(D), only the abstract state of zero can be a codeword.
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4. G(D) has a polynomial right inverse in D and a polynomial right inverse in D!,

The second statement comes directly form the definition 3.5 and the second property of a
minimal basic encoder. As mentioned above, the map vg(D) — vgp(D) from the abstract
state of G(D) to that of G,,,(D) has been shown to be surjective. From the second statement,

we can find the unique relation that

VSmb(D) = Vs(D) + V(D) (334)

with v(D) being a codeword. With the similar derivation from (3.29) to (3.33), it can be
correspondingly verified that only zero abstract state of G(D) can be a codeword. Hence
the map vg(D) — vgmp(D) should be bijective from the second and the third statements.
The equivalence about the fourth statement is detailed in [96]. Notice that the minimal
encoder is defined to be the one that cambemealized with a minimum number of memory
units, and the realization may be in'neithef ¢ontrollet: canonical nor observer canonical form.
Therefore, as indicated in [96], somé encoders are mimimal, but are not minimal basic.

If we consider the 2 x 3 encoder over G#(2)

1+D+D?> D? 1
D) = , (3.35)
1+ D 1 D

the information stream

u(D) = (1,0) + (1,1)D + (0,0)D* + (0,1)D* = (1+ D, D + D?) (3.36)

can be encoded to be

v(D) = u(D)G(D) (3.37)

=(1+D?*+D* D+ D*1+ D+ D*>+ D% (3.38)
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Furthermore, in Fig. 3.3, we illustrate the encoder (3.35) in controller canonical form with
three delay elements. This is a rate R = 2/3 encoder with memory order m = 2, meaning
that each codeword frame v; will depend on u; as well as two previous frames u;_; and u;_s.

Therefore, we also refer Fig. 3.3 to be the (3,2,2) convolutional encoder. With (3.7)~(3.9),

1)
P
(1) @)
u, » D > D + v,
N
) > 3)

Figure 3.3: A (3,2) convolutional encoder with memory order m = 2

the constraint lengths of the encoder G(D)in (3:35) are v; =2, 1, =1, v =3, n,, = 9, and
K = 5. Moreover, we can easily check that G(£) is.a minimal basic encoder having eight
(23) physical states or abstract states, and the realizasion in Fig. 3.3 is minimal.
Alternatively, the convolutional: encoder with a. polynomial generator matrix can be
expressed by the analytical representation={94,100]. We first denote the i-th informa-

tion sequence with u® = (u(()i),ugi),ug), ...) and the j-th codeword sequence with v() =

(v(()j), vy) véj), ...). For j =1,2,...,n, the encoding function will be written as the discrete

convolution of ©) and the generator sequence gi(j ); that is

k
o) — Zu(i) % gi(j), (3.39)
i=1
and g7 = (gz%), gff‘l), e gl(]n)l) This convolution operation in (3.39) can also be in matrix
multiplication form. The information stream should be u = (ug, u1,us,...) with u; =
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W u®

) I i

). On the other hand, the generator matrix G becomes semi-infinite:

Gy Gy Gy - G
_ Gy Gy -+ Guo1 Gp
G = , (3.40)
GO e Gm—2 Gm—l Gm
and the k& x n sub-matrix is
gia ge o gve
(1 (2) (n)
922 Y22 " G2z
G, = > » » , forz=0,1,...,m. (3.41)
gl 9 gl |
Hence, the convolutional encoding of ar'is given by
v=1u-G (3.42)

Note that the codeword v = (vg, v1, V34 5. is alifiedr combination of the rows in G. With the

analytical representation, we can write the the following generator matrix for the information
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stream in 3.36 and the (3,2,2) encoder in Fig. 3.3:

101 100 110
100 101 000
101 100 110
100 101 000

QD
Il

(3.43)
101 100 110

100 101 000
101 100 110
100 101 000

According to (3.42), the information u = (10, 11,00, 01) will be encoded to be

v = (10,11,00,01) - G==1(101, 011, 111,000, 101, 000),

which is equivalent to (3.38).
Convolution encoders can bein either systematie form or non-systematic form. In a
systematic encoder, the information sequence is.a part of the codeword sequence; therefore,

the generator matrix can be in the following form:

Gy{(D)=[1(D) G'(D) ] (3.44)

Notice that I(D) is a k x k identity matrix, and G'(D) is a k x (n — k) matrix

d" Dy ¢ (D) - ¢M(D)
(k+1) (k+2) (n)
g D g D g D
co - | * (D) ¢ (D) (D) | 5.15)
| o (D) g (D) - g(D) |
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The encoder in (3.44) will generate the codeword frame where the first k£ symbols are in-
formation frame, and the remaining (n — k) symbols are called the parity-check sequences.
The encoders without systematic features are termed non-systematic. The systematic form

of (3.44) has the following right inverse

G.;HD) = (3.46)

where 0 is an (n — k) X k zero matrix. We will observe that G;!(D) is polynomial in D
and D~!, and thus it is a minimal encoder. Therefore, all systematic encoders are minimal
encoders [98].

Form [101], we know that every encoder is equivalent to a systematic rational en-
coder. Consequently, the systematic encoder G4(D) can be obtained from an equivalent

non-systematic encoder G(D). We first'find a k'x. k submatrix 7'(D) of G(D) and compute

Gi(D) =T D)G(D). (3.47)

For instance, the equivalent systemati¢ encoderGs(D) of the encoder in (3.35) can be com-

puted by letting

1+D+D?> D?
T(D) = . (3.48)
1+D 1
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As a result,

1 1 D? 1+D+D? D? 1
T s R
1+D+D* 1 1\ p 14D+ D2 1+D 1 D
10 14+ D3
_ 1+D+D3 (3.49)
0 1 1+D2+D}
1+D+D3

The corresponding observer canonical realization of (3.49) is illustrated in Fig. 3.4. The

u® >y

u® . . A
Y

D D D O

Figure 3.4: A (3,2) systematic convolutional encoder in observer canonical form

memory unit number is three which is equal to that of Fig. 3.3, resulting in the minimal
realization of (3.49).

There is a encoder G(D) that generates finite weight codewords v(D) for the infinite
weight input sequence u(D) [98,102]. Such encoder is referred to catastrophic because a
finite number of errors in v(D) may cause an infinite number of errors in u(D) [97]. We

consider the (2,1,2) encoder

GID)=[1+D 1+ D?]
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and the infinite weight data stream

1 N
=0

After encoding, the codeword sequence becomes v(D) = (1,1 + D), which has a Hamming
weight of 3. A small number of errors may cause the decoder to estimate an all zero codeword,
leading to infinite decoding errors. According to [98], a non-catastrophic encoder should have
a right pseudo-inverse G~'(D) without feedback, or the polynomial right inverse G~*(D) such
that

G(D)G~Y(D) = D'I(D) (3.50)

for some [ > 0, and k x k identity matrix I(D). Consequently, all minimal encoders are

non-catastrophic. The sufficient condition [102] for an (n, 1) convolutional encoder
G(D) = | g’ (DymgPDY - - ¢"(D) (3.51)
having right pseudo-inverse is the:greatest-common divisor (ged) of the entries equals D'
gedlgt’ (D), (D), gt (D)] = D" (3.52)
Moreover, for an (n, k) encoder in (3.3), the sufficient condition becomes

ged[Ai(D),i =1,2, -, (Z)] =D, (3.53)

where A;(D) for i = 1,2,---, (%) denote the determinants of distinct k x k submatrices of
G(D).

The behavior of an encoder can be described graphically. All possible physical states, or
directly termed states, as well as the input data frame that may cause the state transitions

can be represented by a state diagram. Accordingly, a state diagram consists of all states
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Figure 3.5: The (2,1,2) convolutional encoder

and branches that indicate transitions caused by the input data. Generally, each state has

2% incoming branches and 2* outgoing branches. We use the (2,1,2) encoder over GF(2)
GD)=[1+D+D* 1+ D?] (3.54)

as an example. The controller canonical realization is illustrated in Fig. 3.5, and the cor-

responding state diagram is shown iniFig. 3.6.7The state .S; is the memory unit contents

Figure 3.6: The state diagram of the (2,1,2) convolutional encoder

(ul(-l_)l, ugg) in Fig. 3.5. Since the overall constraint length v = 2 results in total 22 = 4 states,

we have Sy = (0,0), S; = (0,1), S5 = (1,0), and S3 = (1,1). The branches labeled with
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(

ugl) / vgl)vi(z) show the state transitions according to the input uil), and one codeword frame

(0D ,®

., v;) will be generated within each state transition. Therefore, the encoding operation
is a series of state transitions form a known state, for example Sj.

The other useful graphical representation is the tree diagram where states at different
time instants will correspond to different nodes. Starting at a known root node (or state),
the tree expands one of 2% branch candidates based on the input data. The example in
Fig. 3.6 is also illustrated in the tree diagram Fig. 3.7. Each node has two possible outgoing
branches, the upper branch relates to the input ulY = 0, and the lower one to ugl) = 1. The

output codeword ’UZ-(I)U-@) is also marked on the branches. The tree expands from left to right

(3
as the input ugl) enters the encoder, and each path corresponds to a distinct input sequence.
We can also find that though the possible node number increases while the tree expands,
there are at most four states, Sy ~ S3, in the diagram.

00

So

00 5
A

00 o 11

>? 10
Si

W =0 T S,
r 5

01

— >0 S,

| 11 <
0

W =1 —»{10 S,
00 52

L >e5,

11 01
S|
01 5 g
10 3

Figure 3.7: Tree diagram of the (2,1,2) convolutional encoder

The third graphical representation is the trellis diagram. We first note from the tree
diagram in Fig. 3.7 that the four possible states appear at the time instant ¢t = 2, and

the eight nodes at ¢ = 3 can be represented by the four states. Hence we can reduce
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the tree diagram to the trellis diagram with four states at each time instant, avoiding the
exponentially increasing branches. For a minimal basic (n, k) encoder over GF'(2) with
overall constraint length v, there are 2” states at each time instant, and each state has 2F
incoming and 2* outgoing branches. Fig. 3.8 shows the trellis diagram associated with the
tree diagram in Fig. 3.7; the solid branches indicate the input ulV = 1, and the dash branches

u® )

7 .

= 0. The labels on the branches also reveal the input and the output ugl) / vEl)v

t=0

Figure 3.8: Trellis diagram ofithe,(2,1,2) convolutional encoder

The distance property of the eonvolutional ‘¢ode ean be described with weight enumer-
ating function (WEF) [103], or the transfer function of a signal flow graph [94,100]. If
we assume the encoding starts from S5 and termimates at Sy with arbitrary lengths, the
state diagram in Fig. 3.6 can be modified to"be the signal flow graph in Fig. 3.9. To avoid
ambiguity, S{, denotes the terminated state Sy at some time instant. We first consider the

input-output weight enumerating function (IOWEF)

AW,D,L) = Apa W"DL! (3.55)

w,d,l
where A, 4; is the number of weight d codewords encoded from weight w information se-
quences whose length is [ branches. Therefore, we label each branch in Fig. 3.9 with a
gain W¥D?L! according to the input and output weight information in Fig. 3.6. Note that
Fig. 3.9 is a signal flow graph with source node Sy and sink node Sj. Since A(W,D, L)

can be regarded as the transfer function of the signal flow graph, (3.55) is obtained through
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Figure 3.9: State diagram with weighted branches of the (2,1,2) convolutional encoder

solving the following equations:

Vg, = WD?L-Vg +WL- Vg, (3.56)
Vg, = WDL - Vg, + WDL - Ug, (3.57)
Vg, = DL - Vg, + DL - Vg, (3.58)
Vg = ALy, (3.59)

Finally, we achieve the rational function

sy WDSL?
AW, D, LY &g = . .
WD, L S e WDL( T L) (3.60)
Generally, the function (3.60) can be expanded to be
A(W,D,L)=WD°L*Y [WDL(1+ L)' (3.61)
i=0
=WDL* + W2DCLY(1 + L)+ W3D"L*(1 + L)* + ... (3.62)

For the encoder (3.54), we can learn from (3.61) that there is a weight five codeword as-

sociated with the input sequence of weight one and length three. A simple IOWEF will
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eliminate L in (3.55), and therefore

AW, D) =" AyaW"D? = AW, D, L)| (3.63)
w,d
W D>
_ .64
1-2WD (3.64)

The value A, 4 counts the number of weight d codewords generated from weight w input

sequences, and A, 4 = Y ; Ay.q;. Furthermore, the WEF is just

AD) =Y " AgD? = AW, X, L)|w—r-1 (3.65)
d
D5
= =D%+2D% +4D7 + ... ,
1-2D DT A (3.66)

that enumerates the codewords of all possible weights, and A; = ZwJ Ay .4y Form (3.66),
the code contains a non-zero codeword with therminimum weight five, and thus the free

distance (dyree) of the code is five!

3.2 Viterbi algorithm

The Viterbi algorithm, proposed in 1967 [15], is a maximum likelihood (ML) decoding tech-
nique for convolutional codes [104]. Assuming that the codeword v is transmitted through
a discrete memoryless channel, the received sequence r is observed from the channel output.
The ML decoder will find a codeword v, the estimation of v, for which the a posteriori

probability P(v|r) is maximum. With Bayes’ rule, the probability can be written as

P(v|r) = %, (3.67)

and the maximization of P(¥|r) is equivalent to maximizing P(r|v)P(¥). Note that each v

corresponds to a distinct state sequence of length N denoted by (zg, z1,...,2y), assuming
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xo and xy are known. The sequence, also a path in the trellis diagram, is a finite-state
discrete-time Markov process [104]. Therefore, the probability of being in state z;,; at time

t+ 1, given all states up to time ¢, depends only on the state x; at time ¢. That is

P(xipi|mo, x1, ..., 2) = P(Beqa|e), (3.68)
and
P(‘A/) = P(l’o,l’l,llfg, 7$N)
N-1
= H P(xt-l-l‘xtu 7I0)
t=0
N-1
= P(,’L’t+1‘$t) (369)
t=0

For a discrete memoryless channel, we'can also-write
N—1
P(rdov:), (3.70)

t=0

and the decoder will maximize the probability

N-1
P(r,v) = P(r P(r|vy) P(z411|xt) (3.71)
t=0
For convenience, we assign a metric
N-1
I'=—logP(r,v) = > —log P(r,|d,) — log P(x+1|z,) (3.72)
t=0

to the path; thus, the decoder need to find a path such that I' is minimum. Note that
P(x441|xy) depends on the t-th encoder input u; and is zero if there is no branch between

2441 and zy. If the data sequence u is an equally probable source, P(x;1|x;) is a constant
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equal to 1/2% for a binary (n,k,m) convolutional code. Consequently, we can reduce the

metric to
N-1
D= —log P(rt) (3.73)
t=0
We first consider the path (xg, z1, ..., z;) terminating in z; at time ¢ and its path metric
t—1
D(z) =) —log P(rild;). (3.74)
=0

Although there are many possible paths that terminate in z;,1, the one with the smallest
path metric is of interest and is denoted by x(x;41), the survivor corresponding to the state
Zyr1. The set of all physical states is defined to be S. The Viterbi decoding algorithm is

proceeded as follows:

e Initialization:

t=0
)A((ZL'Q) = Ty F(.CL'()) =0

x(x) is arbitrary.. T(x)i= oo for x € S and x # xg

e Jterations until t = N:

For each x;y; in S, we compute

D(@e1) = H}Eitn(r(fft) + (@11, 7)), (3.75)

and

’}/(.fll't+1, It) = — log P(’f’t‘@(flft_;,_l, J}'t)) (376)

Notice that v(x;41, ;) is the codeword sequence that corresponds to the branch be-
tween z;,q and x;. Among the paths entering x;,;, only the one with the minimum

metric is stored to be X(z;41), and the others are discarded; moreover, the path metric
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['(x441) is saved for the next iteration. If t = N, the operation is completed; otherwise,

t is increased by one to resume the next iteration.

Finally, we can obtain the survivor x(xy) as well as the estimated data sequence @ on
the survivor. Some decoding examples can be found in [104], [94], and [105]. The term

¥(x441, ) in (3.76) is called branch metric. If the n-tuple codeword is

Uy = ,ﬁ(xt-i-l? %) = (@151)’ @§2)> e »f’t(n))’

and the received sequence is also n-tuple

we can rewrite the branch metric as
n . .
(g vy =120y og Piri” o). (3.77)
Pl

For a code over GF(2) and a binary symmetric channel (BSC) with transition probability

p < 0.5, the branch metric will be

1—p

. 1
Y(zpy1, ) = d(ry, 04) log + nlog T (3.78)

where d(r,0;) is the Hamming distance between r, and ¢;. Additionally, since nlog ﬁ is

constant and log 1%‘” > (), the branch metric in (3.78) can be reduced to

V(@eq1, ) = d(re, 0r) (3.79)

without any effect on finding the least metric path in (3.75). On the other hand, if the code
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is transmitted over an AWGN channel with BPSK signals, the probability is expressed

S 1 (r{V —5{))2
P(r{lof") = = (3.80)

Notice that ﬁfi) has been mapped with 0 — —1 and 1 — +1, and 202 = Ny/E, in which N
is the one sided power spectra density of noise, and E is the energy per signal. Moreover,

E, /Ny is often termed the signal to noise ratio (SNR). As a result, the branch metric becomes
n 1 D) A
V@1, ) = B} In(270?) + 202 Z(Tg ) — Ug ))2 (3.81)

that can also be simplified to

n n

Ywnz) =y () = o) = 1" = 287 + (87 (3.82)
i=1 i=1
for n and o2 are constant. Noticesthat Z(rt(i) )2.is the same for all survivors, and (ﬁfi))2 is

constant in BPSK modulation. Therefore, the metri¢is further reduced to

n,

V(@) == i o) (3.83)

i=1

which is the negative inner product between the received r; and the codeword 2.

Based on the Viterbi decoding algorithm, the decoding error probability can be evalu-
ated [94,100,106]. We first assume an all zero data sequence u over GF(2) is encoded (v = 0)
and transmitted through a binary symmetric channel. Any 1s in the decoded sequence 11 are
decoding errors. In the trellis diagram Fig. 3.8, for instance, the correct state sequences are
all Sy. If some errors occur, the decoder will trace the path that diverges from the correct
one. We consider the first event error that an incorrect path first diverges from the correct

path at time ¢ and remerges to it after some time instants. Assuming the incorrect path has
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codewords of weight d, the first event error probability is

( d

Z (Zl)Pe(l —p), for odd d
1 d d/2 d/2 : d e d—e
2 d/2 p7 (1 —p)= + Z . p“(1—p)* ¢, for even d.
\ e=d/2+1

Based on (3.65), the first error event probability caused by all incorrect paths at time ¢ is

overbounded by

Pf(E) < f: Ade. (385)

d=dfrce
Notice that the error event probabilities at any time instants must be (3.85) because of the
independence of t. There may be many error events after the first error event. As shown in
Fig. 3.10, the first error event cause the decoded path to be v; instead of the correct v at
time t;. Moreover, the decoder eliminates!vjfat time ¢, due to the second error event, the

the survivor becomes vy. As a result, we;have the following path metrics for v, vy, and v,

Figure 3.10: Illustration of error events in the trellis diagram

at time to:

I'(v) > T'(v1) 2 I'(vz) (3.86)

We can find that if the path selection at time 5 is between v and vs, the survivor will also

be va. Hence the error event probability is still bounded by (3.85), and we can conclude

72



that the error event probability at any time instant is

i APy (3.87)

d:dfr'ee
The probability P; in (3.84) can be upper bounded by

fa< ((djlﬂ)p P-p T Z (f)p“’(l —p)*

d/2]+1

= ([dc/lzw) A=) %m (Z)pd/2(1—p)d/2
gl

e=

= 2'p"2(1 — ) (3.88)

Consequently, we can upper bound 2(FE) in (3.87):with the WEF in (3.65); that is

> ACVIE=D) AD) L, iy (3.59)

d:dfree

If p is small, the small degree terms will dominate the bound, and we can approximate (3.89)

as

P(E) = Ay, (2V/p(1 = p))Vre = Ag,, (2y/D)V7 (3.90)

Furthermore, the bit error probability P,(F) for the source sequence u can be upper bounded
by
1
B(E) < E(UJAw,d)Pd, (3.91)

where w and A, 4 are defined in IOWEF (3.55), and k is the information bit number per

branch; thus, wA,, 4 is the total number of non-zero information bits on all weight d paths.

73



Similarly, based on (3.88) and (3.55), we can further bound P,(FE) as

1OA(W, D)
Pb(E) < EW|D:2\/M7WZI (392)

In the AWGN channel with binary inputs and continuous outputs, the error probability
can be derived similarly according to the above mentioned approach [100,106]. The all zero
sequence is assumed to be transmitted with BPSK modulation, where 1 is mapped to +1,
and 0 to —1. The correct path v is a codeword of all —1s. As shown in Fig. 3.10, if the
error event vy containing d +1 codeword symbols merges v at time ¢;, the path metric of

v must be smaller, and therefore

DO = (=022 Y (9 — (1)), (3.93)

where 7(¢) denote the received symbols eerresponding to which v; has +1 codeword symbols.

Moreover, we can write

DI = (=1 =G = 4) 9 >0, (3.94)

and the event error probability becomes
d
Py=Pr{¢=> r9 >0} (3.95)

e=1

We further note that (¢ are independent Gaussian random variables with mean —1 and

variance 02 = Ny/2E,; as a result, £ is also Gaussian with mean —d and variance do?.
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Hence, the probability in (3.95) will be

& 1 _ (e (=a)?

e 2t dE

0
1 e [d [2dE,

Qz) & — e 7dr = —erfe(—), (3.97)

and the complementary error function (erfc) is defined in [107]. According to (3.87), the

event error probability for the AWGN channel can be represented by

2dE
P(E A %). .
(B)< 3, AQL/ ) (3.98)
d:dfree
With the following bound [108,109],
k) < 56_7 e 7, (3.99)

we will have

P(E) < A(D)|pep-5s/n50 (3.100)
as well as the bit error probability

19A(W, D)

Py(E) < (3.101)

T Aarrr I D=e Es/N =
k aW ‘D e 0,W=1

The upper bounds of (3.100) and (3.101) are derived from the weaker bound in (3.99). The
tighter versions can be found in [106] and [100]. Moreover, the more accurate approximations

for Q(x) are discussed in [109], [110], and [111].
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The same ensemble average error bound for time-varying convolutional codes is shown in
theorem 3.1, assuming the maximum likelihood decoding. The time-varying convolutional
codes are counterparts of fixed, or time-invariant, convolutional codes in which the gener-
ator polynomials are invariant over different time instants. Consequently, in time-varying
convolutional codes, the generator matrix (see (3.40)) may have different sum-matrices G,

at distinct rows, leading to the following encoder:

¢ ¢¥ Gf .. GY
] e e, Gl
G = (3.102)
GY - G, G, GY

The sub-matrices GY and Ggl) for t £ t',x = 0 ~ m may be unequal. The convolutional

channel coding theorem for binary codés'is deseribed as follows [100, 106].

Theorem 3.1 (Viterbi [100]). For.any discrete input memoryless channel with capacity
C, there ezists a time-varying convolutional ecode of eonstraint length K, rate k/n bits per
channel symbol, and arbitrary block length, whose"bit error probability P,, resulting from

mazimum likelihood decoding, is bounded by

9~ KkE«(R)/R

k

P, < (2% - 1)(1 — AR for small e > 0 (3.103)

where
E.(R) = Ry = max Ey(1,p) for 0 < R < Ry(1l—¢) (3.104)

P
and
E.(R) =max Ey(p,p) 0<p<1 (3.105)
P

for R=(1 —e)mgx@, and Ry(1 —€) < R<C(1—¢).



The Gallager function [112,113] is defined as follows:
1 Lp
Ba(p.p) & 10 0| alplole) | (3.106)
y T

For the set of all possible channel input alphabets X, the arbitrary set p = {p(z)|z € X}
satisfies p(x) > 0,Vx € X and ) p(x) = 1. The transition probability p(y|z) for y € Y
and x € X indicates a discrete memoryless channel, and Y denotes the channel output

alphabets. The code rate R in theorem 3.1 is nats per channel symbol; that is, R = k1In2/n.

3.2.1 Path truncation

As was indicated in the Viterbi decoding algorithm, the paths, or survivors, terminated at
each state should be stored up to the last received codeword, meaning that the entire received
sequence are analyzed before any decodingoutput. In real applications, the information
sequence length N may be very large that eause ‘massive storage requirement. Due to
the practical storage constraint, the survivor for each state should be truncated to a finite
length as shown in Fig. 3.11. The, correspondingstrellis diagram with state number M = 2¥
is truncated to finite time instants 7', and there ‘are M paths terminating at time ¢ 4 7.
With the truncation length of 7', the decoder is required to output data on the branch at

depth t according to the path metrics at time ¢ + 7' [100, 114]. If all surviving paths have a

5@ o

t
Sl( ). SI(HT)
(1) (t+T)
S)'@ N
() (t+T)
SM—I SM—]
t t+1 t+2 t+T

Figure 3.11: Trellis diagram truncated to 7" instants
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common node at time ¢, the unique branch is chosen. Otherwise the branch corresponding
to the best metric value at time ¢ + 1" will be selected. This truncation technique can result
in an additional error if an incorrect path diverges from the correct path at depth ¢, and
remains unmerged from it before time ¢ +T". Therefore, T" must be larger enough such that
the truncation error is comparable to or less than the maximum-likelihood decoding [115].
We also assume an all zero information sequence over GF(2) is encoded and transmitted
through a memoryless channel. In the truncated trellis diagram of length T, the truncation
error will be caused by the incorrect paths that diverge from the correct path before time

t and extend to S; # Sy at time ¢t + T" without going through Sy. Therefore, the WEF for

correct path

> > >
< >@ ([ >@ < J

0 1 2 B Bl t el t+T

Figure 3.12: Incorrect pathswith lengths larger than T°

those incorrect paths connecting Sy and .S; can be defined as

AG (D L) =Y AgD'L' (3.107)

d>T
that enumerates the weights for all the paths between Sy and S; of lengths at least 741 [115].
Notice that (3.107) can be derived from the transfer function of Sy and S; in the signal flow

graph. For example, considering the state diagram in Fig. 3.9, we first obtain

g D3L?
A D L p— 1 _ pry
S(),Sl( Y ) \IISO |W—1 1 _ DL(l + L)
=D)L*+ D*LP(01+ L)+ D°L*(1 + L) + - - -, (3.108)
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and ASO s, (D, L) will be derived by discarding the terms with the degrees of L being less
than or equal to 7" in (3.108). As a result, the error probability arising from truncation

should be
ZA (D, L)|p=py,1=1, (3.109)

where Dy = 2,/p(1 — p) for the BSC, and Dy = e~F+/No for the AWGN channel. Note that
P(T) is the probability that the decoder makes an error decoding at time ¢. From (3.109)

and (3.101), the overall bit error probability including truncation error is upper bounded by

M-1

1 OA(W, D) WD
By(E.T) < ZA (D, L) p=py,w=1,121- (3.110)

The determination of 7" should make the second term in (3.110) become eliminable. For small
channel noise (small p or large FE,;/Ny), the upper bound of bit error probability is dominated
by the least degree term according t048:90). In(3.110), let dr denote the smallest degree
of D in the second term, the mimmum 7' (7;,4,)is Tequired to achieve dp > dj... because
the smallest degree is dy,.. for the first term: Continiing the example in Fig. 3.9, we can
generate (3.107) for S; = Sy, Ss, and "Sg Since d e = 5, the value dr should be at least
six, and therefore T is larger than seven: (T, = 7).

Alternatively, in [100], the ensemble average probability P(T) corresponds to an error
path which is unmerged from the correct path for exactly T" time instants, and there are no

2kT

more than such error paths for a binary code. As a result, the error probability can be

bounded by

m < kTP o=TnEo(p,p)

= 2 KT (Eolpp)=pR)/R o 0 < p < 1

— 2 FTE(R)/R (3.111)
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where R is in nats per symbol, and
Ey(R) = max|Ey(p, p) — ph] (3.112)

according to [112]. Furthermore, we can deduce that

Ey(R) =max Ey(l,p) — R for0< R< (maxM ) : (3.113)
P P o =
and
E
Eu(R) = max(Eo(p.p) ~ p7 90PN for 0. p < (3.114)
P
when
P dp P o |,=

Note that C' is the channel capacity [1j113}17As a result, from the exponents of (3.103)
and (3.111), the criterion of truncatiomn length T" selection is shown to be TEy(R) > KE.(R),

or

(3.115)

where K is the input constraint length in (3.9), and R = kIn2/n is the code rate.
The more intuitive formulation of (3.115) can be derived with the very noisy channel,
which is assumed to be discrete and memoryless [100]. The conditional probability of re-

ceiving y € Y, given that x € X is transmitted, is expressed by

p(ylz) = p(y)(1 + €zy), (3.116)

where |e,,| < 1 for all  and y, and Zp(y)exy = 0 for all z. The condition in (3.115) can
yeY
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then be reduced to

1—21R/C 0<R<§

T 1 c c

=29 gmer §SR<S (3.117)
1++4/R/C C
—/R/o 5 <R<C.

\

For different coding rate R, the truncation length ranges from K to infinite as R approaches
channel capacity C. Of different R/C ratios, Fig. 3.13 shows the valid truncation length in

gray region. In real applications, truncation length 7" must vary with respect to R and C.

TK 18

N

Figure 3.13: Truncation length versus coding rate.

From Fig. 3.13, we can find that the truncation length increases with the ratio R/C. This
trend also appears in the results of (3.110). For larger channel noise, the degree dr must be
enlarged to reduce the truncation error, and we have to increase T,,in accordingly. The T,,;,
is based on the best path metric decoding. The research in [116] further indicates that the
truncation length about 27,,;, can lead to negligible truncation error if the decoder select any
survivor at time ¢+ 27,,,;, without considering the path metrics. This approach, termed fized
state decoding, eliminates the search for the best path metric among all survivors, however,

more storage is required.
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3.2.2 Punctured convolutional codes

The rate k/n code can be encoded by a k x n generator matrix; alternatively, it can also
be obtained by periodically deleting some codeword symbols form rate 1/n codewords [117].
The complexity of Viterbi decoding algorithm is proportional to the number of branch en-
tering to each state, and the branch number increases exponentially with k. In a punctured
convolutional code, the decoder complexity is comparable with the original rate 1/n code,
referred to the mother code. A single mother code can be used to generated different rates
through puncturing. We define an n X p; puncturing matrix P with elements in GF'(2), and
the zero elements in P will indicate which codeword symbols within the puncturing period

p; should be deleted. For example, in the matrix
P = (3.118)

for a rate 1/2 mother code whose:codeword sequenceis represented by

=y ol o 1
u(D) =Y b | DR T DEE ) (3.119)
— (2) (2)

=0\ | Ug; U2it+1

the codeword symbol ugll is deleted before transmission, resulting in the rate 2/3 punctured
code. More puncturing matrices for rate 1/2 codes can be found in [118].

The Viterbi decoding algorithm for punctured codes operates quite similar to that for
decoding the rate 1/n mother code, except that the removed symbols are not considered in
the branch metric calculation. Hence we can use one decoder to decode various punctured
codes from the same mother code.

The rate (n — 1)/n punctured encoder can also be characterized with the equivalent

ordinary (n — 1) x n encoder without puncturing [119]. Therefore, it is possible to discuss

the minimal and the catastrophic properties of a punctured encoder [120,121]

82



3.3 Viterbi decoder architecture

The Viterbi decoder consists of four main units [122]: branch metric unit (BMU), add-
compare-select unit (ACSU), path metric (PM) memory, and survivor memory unit (SMU).

As illustrated in Fig. 3.14, BMU calculates the branch metrics from the input data based

PM
Memory

B

] gy * ACSU * SMU Ot

Figure 3.14: Block diagram of Viterbi decoder

on either (3.79) or (3.82). The ACSU recursively accumulates branch metrics (BM) as
path metrics stored in the PM memory, and makes decisions to select the most likely state
sequence. The add-compare-select (ACS)-operation:is formulated in (3.75). Finally, the
SMU traces the decisions to extract this sequence i the survivor memory that keeps all
survivors terminating at each state.

The nonlinear and recursive nature of ACSU" limits the maximum achievable through-
put rate. Furthermore, as the overall constraint length v rises, the large number (2”) of
ACS operations are required to determine 2¥ survivors. The hardware complexity increases
exponentially, and so does the power consumption, leading to many researches on the the
optimization for ACSU.

On the other hand, the SMU is also an area and power consuming blocks in Viterbi
decoders. There are two mainly solutions for the SMU: the register-exchange and the mem-
ory traceback architectures [123-126]. As compared with the register-exchange approach,
the traceback based SMU has a limited memory bandwidth in nature, and thus limits the
decoding speed. However, the traceback approach with memory is more area efficient for

large constraint lengths; it is also considerably more power efficient without data movement
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in the memory.
Each component in the Viterbi decoder of Fig. 3.14 will be addressed in the following

sections.

3.3.1 Branch metric unit

The BMU evaluates the metric, or distance, between the received samples and the codewords
on branches. In the hard decision decoding scheme, the channel is assumed to be BSC where
the received signals have been decided to be the alphabets during transmission. In binary
cases, the received symbols are either one or zero. Therefore, the branch metric (BM) is the
Hamming distance between the received data and the codewords as expressed in (3.78).

Alternatively, the soft decision decoding scheme can be applied to improve the decoding
performance [94,127]. The BM evaluation is shown in (3.82). Due to the finite precision
in practical implementation, it is necessary to guantize the channel symbols, but this will
cause additional quantization noisé. Such moise may increase the required SNR, (FE;/Ny) to
achieve a specific bit error rate (BER). The hardware complexity increases linearly with the
quantization bit number in the demodulated-syambols; therefore, the objective is to find the
sufficient quantization levels that minimize the effect of quantization loss on the decoding
performance.

For a o bits quantizer, we consider the uniform quantization because nonuniform ones
can achieve only slight improvement when ¢ > 3 [128]. The stepsize A is also defined to be
the spacing between any two quantized values. For the received BPSK signal r,gi) , Fig. 3.15
illustrates a p = 3 example, and rt(f; is the quantization results between —2°~1 and 2°7! — 1.

We can write the quantization function q)(r,gi)) as
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Figure 3.15: Block diagram of Viterbi decoder
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The quantization bits p and the stepsize A vary with modulation types and channel condi-

tions. Moreover, for each p, there is a optimal A that minimize the BER. We consider the

-2

10

BER

10"

SNR=-+0.5dB

0.4 0.5 0.6 0.7
A

(a) SNR=0.5dB

0.1 0.2 0.3 0.8 0

Figure 3.16: Different quantization schemes in BPSK modulation and their BER perfor-

mance

(2,1,6) convolutional encoder

GD)=[14+D?*+D3+ D"+ D% 1+ D+ D>+ D3+ DS ]

(3.121)

in the IEEE 802.11a wireless LAN (WLAN) system [129]. With the BPSK modulation, the

85



performance figures in AWGN channel are shown in Fig. 3.16, where the input codewords
are quantized to be different bit number and step sizes. In Fig. 3.16(b) with the fixed
SNR=0.5dB, the step size A significantly affects the bit error rate, and the performance
degrades rapidly for smaller A. The optimal step size that minimizes BER decreases as p
increases. However, it may be better to apply the A larger than the optimal value to avoid
serious performance degradation [128]. If p is determined to be four, Fig. 3.16 also shows
that the optimal A is almost independent of the channel SNRs; such property avoids the
necessity of dynamically adjusting A according channel conditions, which are quite difficult
to be estimated in real applications. Additionally, the results in the 64 quadrature amplitude

N ‘ , A : : : : 10"

& 5 10
w w SNR=12.50B
107}
107}
'SNR=13.5dB
1075 i 1 1 1 i i i 1075 i 1 1 1 i i i
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
A A
(a) SNR=13.5dB (b) p=14

Figure 3.17: Different quantization schemes in 64-QAM and their BER performance

modulation (64-QAM) is presented in Fig. 3.17. The quantization is slightly different from
Fig. 3.15 because of the amplitude modulation. Referring to the 64-QAM constellation

in [129], we use the following quantizer scheme to demap the first three bits:

by = ®(I) (3.122)
by = &4 — |I]) (3.123)
by = ®(2 — |4 —|1]]) (3.124)
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where [ is the in-phase component (carrier) in the received signal. The other three bits can
also be obtained from (3.122)~ (3.124) with I being replaced by the quadrature component
Q. The performance in Fig. 3.17(a) indicates a significant improvement from p = 3 to p = 4,
meaning that more resolution is requited as compared to the BPSK modulation.

-1 -1

10 T T T T T T T 10

R=2/3
1"SNR=2.2dB

w 10 w 10
107} 107}
1075 i i 1 1 1 i i 1075 i i 1 1 1 i i
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
A A
(a) BPSK (b) 64-QAM

Figure 3.18: Rate effect on the step size inrBPSK modulation and 64-QAM

Applying different puncturing=matrices [129] to the encoder (3.121), we obtain the per-
formance figures in Fig. 3.18. Notice thattheoptimal step size decreases with the increasing
rate especially in 64-QAM. in Fig. 3.18(b), the lower rate convolutional code with more
redundant information seems much flexible over a wide range of step sizes, whereas the
punctured codes with rates R = 3/4 and R = 2/3 become sensitive to the step size varia-

tion.

3.3.2 Add-compare-select unit

The ACSU is the major arithmetic unit in the Viterbi decoder, and it also dominates the
computational complexity. The most common solution to develop a high throughput Viterbi
decoder is fully parallel approach where ACS units are assigned to each state. Nevertheless,
the throughput is also limited by the recursive operation. Fig. 3.19(a) shows a subset of

the trellis diagram in Fig. 3.8, where Si(t) denotes state S; at time ¢, and ﬁi(t) represents
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t+1) .
)1

the branch connecting SZ-(t) and Sé”l). We can construct the ACS unit for state S(() n

Fig. 3.19(b) according to the following operation:
D(s§*Y) = min[r(s™) +1(5)) (3.125)

(2
)

The branch metric v(ﬁi(t)) can be based on either (3.83) for soft decision decoding or (3.79)
for hard decision decoding. The two-way comparator (cmp) finds the best path metric

associated with the survivor.

V(B

cmp

T A

s

2l

TS

Y

Sét) S S, ”S(()H'l) r(Sl(l))

Y U

y(B")
(a) trellis diagram (b) ACS unit

Figure 3.19: ACS unit structure and the corresponding trellis diagram

Moreover, the critical path delay and the"cost of the ACSU is also determined by the
word length of fixed-point path metric I'. With a finite word length, metric normalization is
necessary to rescale I for the accumulation in (3.125) may cause overflow. Note that different
normalization schemes will lead to different word lengths. Among various normalization
approaches, the modulo normalization can simplify the circuit implementation [130, 131]
since it exploits the nature of two’s complement arithmetic and dispenses with extra control
circuits. From the discussion of path truncation, we know that all survivors at time ¢t + T
would very likely originate from the same state at time ¢ for sufficient large truncation length

T'; otherwise, there would be a significant truncation error. After input symbol quantization,
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Figure 3.20: Illustration of two survivors at time t 4+ T

we can bounded the branch metric by
lv| < nB. (3.126)

The value of B depends on the quantization scheme and the branch metric evaluation. For

instance, B should be 2°~! if the input symbol is quantized to p bits, and v is calculated

with (3.83). Therefore, as shown in Figi3.20, thedifference of any two path metrics F(Sl(IHT))

and F(SISHT)) at time ¢ + 7" will be bounded by
ID(SHD) — TS| < (TaB + TSN (=TnB +T(5")) = 2TnB. (3.127)
Additionally, the compare operation in (3.125) can be written as the path metric difference:

AT = [D(S1)) +v(8)] — [0(S$) + 7 (8]
= [0(8”) = T(S)] + [v(B) — v(B)]

< (2TnB)+2nB = (2T + 1)nB, (3.128)

and the sign of AT will be the compare result. In two’s complement arithmetic with ¢ bits,

the addition is defined by modulo 2¢, and AT is reduced to

AT mod 2° (3.129)
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The reduced metric difference in (3.129) equals to the true AT if the following condition is
satisfied [130]:
(2T + 1)nB < 2°°%, (3.130)

Hence the bit number ¢ required to represent the path metrics depends on the truncation
length 7" and the branch metric bound nB. In real applications, the number c¢ is lower
than the bound in (3.130) because the equality in (3.126) holds occasionally. In the modulo
normalization scheme, the comparator has to be implemented with two’s complement sub
tractors instead of comparators. The modified comparison rule for efficient implementation
is reported in [131].

The decoders using high radix trellis in [42,49,50,54,55] achieve high-speed with 7 steps
of lookahead where the throughput will be enhanced by 7. Nevertheless, the ideal speedup is
difficult to achieve due to the exponentially increasing number of branches compared within
each ACS unit, restricting 7 to be at,most two inmost designs. Fig. 3.21 illustrates a 7 = 2
example from the encoder (3.54); the radix-4 frellis diagram in Fig. 3.21(b) is obtained
form the original radix-2 diagram in Fig.-3.21(a) that the branches between t and ¢ + 2
are merged. There are four entering branches in each state, and thus the ACS unit has to
perform the comparison among four path metrics, which is double as compared with radix-2
trellis diagram. The decoding throughput is also doubled because each branch in Fig. 3.21(b)

contains two information symbols. Accordingly, the radix-4 ACS structure is also illustrates

t t+2
(b) radix-4

Figure 3.21: Radix-2 and radix-4 trellis diagrams

90



in Fig. 3.22. The number of adders becomes four, and there are four path metrics that should
be compared. Generally, the radix-4 ACS unit can achieve a better compromise between
cost and throughput [54]. In a radix-8 trellis diagram with eight states, for example, the
ACS unit requires eight adders which is four times as many as the radix-2 ACS unit, but

the decoding speed can only be enhanced up to three times.

r—-—— T T I
VB cmp — |
! T YY) [
rs)— > !
YB)— :
| |
F(Sf”)—_'_>(: ) "
VB > T (S0)
| |
I'(Sz(”)—_|_>(: ) » |
VB !
| |
r(sy)— > |
t t+2 T |
(a) trellis diagram (b) ACS unit

Figure 3.22: ACS unit strueturé and the corresponding radix-4 trellis diagram

The Viterbi decoders in [51-53] break'down the ¢ritical path delay by means of bit-level
pipeline and accomplish high throughput with very'high clock frequencies. Furthermore, the
dynamic circuit techniques are also exploited to reduce the critical path. The four states
Viterbi decoder based on sliding block approach that performs decoding concurrently in
forward and backward directions is also reported in [56]. However, as the constraint length
increases, the complexity grows rapidly because of the highly parallel ACSU as well as large
skew buffers on signal wires.

For different applications and design constraints, the implementation approach ranges
from fully parallel computing array to sharing the computational resources through multi-
plexing. As for the WLAN category, the fully parallel approach is preferred because the
demanded data rate may reach decades of Mb/s or even hundreds of Mb/s. A further

improvement is the parallel architecture [132] where path metrics and decisions are calcu-
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lated concurrently with an expense of carry-save-adders. The transformations of ACS unit
n [133], [134], and [43] result in a compare-select-add (CSA) structure, leading to lower
computational complexity. S ' connects to S% through 8}, and S 2, attaches to Si ' v

2y 0 0,
i 7. The recursion in (3.137) is an ACS operation shown in Fig. 3.19(b) that iteratively
updates the path metrics in each time instance. It is the serial operations within ACSU that
However, the longer critical path delay will result in a slower decoding speed. A modified
CSA (MCSA) is presented to improve the data-path delay in original CSA architectures
while preserving lower complexity [47].

Referring to the trellis diagram in Fig. 3.19(a), we can obtain the comparison results for

t+1) t4+1
S(+ ndS§+):

D(S$™Y) = sgn[D(S§7) = T(S17) +7(BY) — (8] = sgn[AT{) + Ay)] (3.131)

D(SS™V) = sgn[l(S§7) — T(S1”) + By — 7(BY)] = sgn[ATY) + Ay, (3.132)
where

AT = T(Sy) #P(s) (3.133)

Ay =A(3") = (3 (3.134)

Ay =~(Bf) = v(BY). (3.135)

Generally, D(S}Hl)) is referred to the decision of state S; at time ¢ + 1. For the encoder
n (3.54), we will find that
Ay = —AyY & Ay (3.136)

The identical term A~ indicates that the computations of D(S(()tJrl ) and D(S (t+1) ) can share
the same arithmetic unit.  The reconstructed CSA unit is shown in Fig. 3.23. Notice
that the AI' calculation can be shared by many CSA units. The resource sharing of AF(()f)l

for D(SSHD) and D(S(()t+1)) reduces one subtractor as compared to the conventional ACS.
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Figure 3.23: The CSA architecture
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Figure 3.24: The modified comparator unit

Furthermore, a modified comparator unit is proposed in Fig. 3.24 to enhance the adder and
the subtractor in the compare operation of Fig. 3.23, assuming Af‘g)l is a + 1 bits, A~ is
b+ 1 bits, and a > b. In (3.131) and (3.132), the signs of AF(S&) + Ay and AF(()f)l — Ay
are expected results and can be obtained by comparing the magnitudes of Al“g;)l and A,
and by checking their difference in signs. The improvement in Fig. 3.24 comes from a > b,
and therefore only the b+ 1 bits adder as well as the carry propagation circuit are required,
resulting in the lookahead architecture that speeds up the compare operations. As a result,
the circuit in Fig. 3.24 implements both (3.131) and (3.132) with a lower critical path delay

and lower complexity.
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Table 3.1: Comparison of different types of 64-state ACSU

Conventional ACS Parallel ACS [132] CSA MCSA

Gate count ! 17.3k 32k 19.6k 14.7k
Critical path report ! 6.21ns 5.75ns 8.28ns 8.06ns
Power dissipation 2 28mW 31mW 43mW 24mW

I Timing constraints: 8.5ns in the worst operating condition.
2 Simulated with 100MHz frequency and 1.8V supply.

Based on the 0.18-um standard cell library [135], Table 3.1 summarizes a design example
where the state number is 64 and the word lengths are set to be a = 12 and b = 6.
Considering the gate level design, we investigate the gate count and the power dissipation
of different ACSUs, including the parallel ACS structure in [132]. In the modified CSA
(MCSA) scheme, the area reduction from the conventional ACS structure is about 15%, and
an average 14.3% power saving is observed through simulation.

Su gy Sishumgs, S

(t+1)
Sd

ﬁ“)

1
(1)

B,

t—2 t—1 t t+1

Figure 3.25: Trellis representation for the recursive path metric calculation

For high-speed applications [136,137], the data rate is required to achieve hundreds MB/s
oreven 1 Gb/s, and thus the ACSU may need to have more parallelism. Therefore, we present
the ACS unit for radix-27 trellis with 7 > 2 [57]. an highly parallel ACS design [57]. Since

path metrics are the recursive ACS operations, from Fig. 3.25 can the metric F(Sc(ltﬂ)) be
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iteratively obtained with

L(SY) = min[[(SY) + (8, )] (3.137)
y=1,2 ) ’
L(Sy, ") = min[D(SE52) + (85, 2)]

Note that S connects to arbitrary state S((;+1) at time ¢ + 1 through ﬁg(f), Sg(f; Yo g
through @Ef; Y and Sg(cf;i) to Sg;l) through ﬁg;? The recursion in (3.137) is the ACS
operation shown in Fig. 3.19(b) that iteratively updates the path metrics at each time

instance. It is the serial operations within ACSU that causes the critical path bottleneck.

TS

(a) Radix-27 trellis diagram (b) Radix-27 ACS unit

Figure 3.26: The radix-27 ACS operation

With 7 steps of lookahead, the trellis structure becomes radix-27 in Fig. 3.26(a), and the

F(Sét+7)) at time instance ¢ + 7 can be expressed by

D(SY*™) = min[D(SY) +~(80))], (3.138)

zeC

and C = {1,2,...,27} is the set of indexes indicating S connects to SétJFT) through ﬁg(ct).
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The equivalent radix-27 ACS unit in Fig. 3.26(b) achieves 7 times speedup as compared
to the radix-2 ACSU in Fig. 3.19(b). Nevertheless, the number of branches in (3.138)The
radix-2™ PM updating and the corresponding ACS structure will be 27! times of that in
radix-2 trellis, leading to the exponentially increasing complexity. The high radix approach
that accelerates Viterbi decoding can also cause large critical path delay due to exponentially
increasing branches. As shown in Fig. 3.26, the adders can be proceeded simultaneously,
but the speed of the comparator will be degraded as the number of branches increases.
Therefore, the comparator should be optimized to acquire the corresponding enhancement
contributed by the high radix trellis. The retiming technique is then presented to speedup

the ACS operations.

min(A(B))  +y(B”)

x=1,2

S(‘H) ’Bu—n S(Z) Igm S;Hl)
1,1 1

—

/

) /
ﬂz/

Figure 3.27: "The trellis diagram after retiming

The retiming approacher tends to parallelize the computations within ACS unit. The

pre-path metric (pre-PM), denoted by A, is first defined by
ABY) £ T(SP) +~4(8Y), (3.139)

From the recursion in (3.137), we know that F(Sg(ct)) is function of the information coming

from ﬁfcfl—l) and ﬁg(ct; Y. Therefore, (3.139) can be rewritten as

A(B) & minABE)] + 5 (5), VB connect to S (3.140)
= min [A(5 V) +~(89)], (3.141)
y=1,2 ’
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leading to a new recursion for A. Notice that (3.140) contains a compare-select (CS) function
for A(ﬁg;l)) and an addition of fy(ﬂg(ct)). Fig. 3.27 illustrates the operation (3.140) in the
trellis diagram when x = 1. The final addition is independent of the compare function and
can be performed concurrently with the compare function, resulting in better critical path
delay. Since the recursion has been changed from I'(.S, C(ltﬂ)) to A( ft)) and A(%), the number

of adders and multiplexers is doubled in contrast to the original ACS unit in Fig. 3.19(b).

7 ~\ |
| 1 N I
- /| cmp I cmp .
res™ vigad oL s A X | T(SY™)
| v | ! > |
% l @_/\(/ﬁ‘;’”) g J_,% : '@" ANBY [ J_,%
| N | | N |
. +A(ﬁ.‘;’”> 1T | N> 1T
resy”

Figure 3.28: The retiming among differént timesinstances for a two states trellis diagram

The transformation is a retiming lof registers stofing path metrics and adders among
different time instances. Fig. 3.28 demonstrates.the retiming procedure for a two state
trellis diagram. The registers at ¢ are moved to the branches between ¢ and ¢t — 1 to keep
the pre-path metric A, and the registers number becomes double. Furthermore, the adders
are also relocated to be in parallel with the compare operations. The result after retiming
is presented in Fig. 3.29 in which the registers, the adders, and the multiplexers are double
as many as the structure before retiming. Actually, the architecture in Fig. 3.29 is identical
to the double state approach presented in [138-140].

Based on the retiming technique, the critical path due to exponentially increasing branches
in high-radix (7 > 2) ACS unit can be improved. The comparator of a radix-27 ACS unit
is to search for the minimum pre-path metrics among 27 candidates. One of the solutions

to simplify the searching algorithm is the decomposition of the candidates that need to be
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Figure 3.29: After retiming

compared. The ACS operation in (3.138),can,be re-written as

(t+7) i = Bl Q) ()
T(Sa™ I iS4 + 7(5: )

—
[—

: (3.142)

where X, = {1,2,...,27}, Y, = ‘{1,2, . ‘..,2”}“,‘ and’'T = p+ ¢. The minimum function is
decomposed into two levels, and the 27 candidates are partitioned into 2¢ subsets. The first
level is 2P-way CS (CS-2P) operations that finds the minimum within each subset containing
2P candidates. Similarly, with a 2%-way CS (CS-2?) function, the outputs from the first
level are compared consecutively to produce the final result. Fig. 3.30 demonstrates the
architecture of a radix-27 ACS unit. The critical path in Fig. 3.30 will be the adder as well
as the two levels of comparator and multiplexer. We also define A(@ff)) as the result in the
first level comparison (see Fig.3.30); consequently,

A(BY) = min[D(SL),) + 7 (BL),)]. (3.143)

yeYp
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Figure 3.30: Radix-27 ACS unit with two levels of compare-select functions

The original ACS recursion in (3.142) can _then be transformed to

[(S"7)=min [A(ﬁg))]. (3.144)

mqu

Substituting A(3Y52) for T'(SY)) in (3.143), e can deduce the recursion of A(3Y") :

A(BY) = min[min[A(BL, )] + (55, (3.145)

YEY, 2€X4 L.Y:2

where 8,7 is the z-th branch entering S\,

Fig. 3.31 shows the corresponding radix-27 trellis diagram for (3.145). With two level
computations, the first CS-2¢ finds the minimum A(3".) for all z € X, and the second
ACS-2P completes the remaining ACS operation in (3.145). Note that (%)) is constant for
different z, the first CS-27 and the additions in ACS-2P can be proceeded simultaneously,
achieving less datapath delay.

Fig. 3.32 shows the retiming process (RT-1) for radix-27 ACS unit according to (3.145)
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Figure 3.31: Radix-2" trellis diagram with retiming

and Fig. 3.31. In Fig. 3.32, the registers are moved to the branch 3, , . to store A(ﬁg(f,;;)) for
z € X,, and the register number becomes 2% times. Furthermore, the adders are changed to
the inputs of 29-to-1 multiplexer, and their-amount also increases 27 — 1 times. The number
of multiplexers in the second levél operation should be 27 times because each state has 27
leaving branches. Fig. 3.33 shows:the structure-of the retimed radix-2" ACS unit where the
comparisons in the first level coincide with the additions.

The datapath delay is shown in Fig. 3.34 where Tog_o9», Tos_24, and Tacs_op correspond
to the delay times of the CS-2P, the CS-27, and the ACS-2P operations. The longest delay
path is reduced to the two levels of CS operations, assuming comparators have larger delay
time than adders. Consequently, the processing speed can be enhanced through retiming
the radix-2" ACS unit.

Although the datapath delay can be reduced through the retiming approach, the expo-
nentially increasing complexity of high radix Viterbi decoders causes the difficulty in VLSI
implementation. The number of branch metrics (27") generated by the BMU also increases
exponentially. Therefore, we introduce a radix-2P x 27 structure that achieves the through-

put equivalent to radix-27 approach where 7 = p 4+ ¢ and p,q > 0. With the retiming
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Figure 3.32: Retiming of the radix2” ACS structure
technique, the radix-2P x 2¢ strucbure éan a‘cﬂ'ieve‘“more area efficiency than the radix-27
architecture [57].
Fig. 3.35 shows the radix-27 x 29 ACSU consisting of two levels of consecutive radix-2?
and radix-2? ACS units. The path metrics at time ¢ + p are obtained from the first level
(t471)

ACS units and directly passed to the second level that computes I'(S;""’). The successive

ACS operations result in an equivalent radix-27 ACS operation; that is,

D(SY*7) = min[D(SEP) + 4 (BE+))]

T€Xy
— min[min[0(S® 0 (t+9)
min[min[(S,5) +7(8:)] + (6] (3.146)

As compared with the radix-27 ACS unit, the radix-2P x 29 ACS unit in Fig. 3.36, termed
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Figure 3.33: 'Fhe radix-2T/ACS unit after retiming

two-dimensional (2-D) structure,-requires only. smaller radix-27 ACS (ACS-2P) units and
radix-29 ACS (ACS-29) units. The exponentiélly increasing hardware cost is decomposed
into smaller ACS units; as a result, the Viterbi decoder based on radix-2P x 29 architecture
is more area efficient than that based on the radix-27 trellis. Nevertheless, the critical path
of the 2-D structure is through two levels of ACS units, inducing one more adder delay as
compared with the radix-27 ACS unit in Fig. 3.30. We will improve the 2-D ACS unit to
achieve higher speed with acceptable cost through the retiming approach. There are two
possible solutions based on (3.146).

The first solution comes from the independence of (35?) and the function min[I’ (Sg;) +

yE€Yp

v(B))]. We can rewrite (3.146) as

:Biy

D(SY) = min |min[[(SY) + y(59) + (8P| (3.147)

zeXy [yeY)
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Figure 3.34: Comparison of critical path delay for the original and the retimed ACS units
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Figure 3.35: The structure of ACS-2P x 29 unit

The branch metric v(S85P) is moved to the multiplexer inputs in the first level of Fig. 3.36.
This retiming procedure (RT-2) as shown in Fig. 3.37 results in a ACS unit in Fig. 3.39(a).
Note that the critical path is almost the same as the radix-27 ACS unit in Fig. 3.30. The
overhead to attain this acceleration is 2” — 1 times more adders and multiplexers in the first
level.

The other retiming technique for the radix-27 x 27 ACS unit first define A(ﬁgﬂ) )) to be

A(BYP) = min[T(SY) + 7(B0)] + v(B1H7), (3.148)

yEYp
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Figure 3.36: ACS-2P x 27 unit

and thus (3.146) will become

(S = min [A(4E)]. (3.149)

rEXy

Accordingly, I'(S)) can be extended ‘as arfunction of A(5Y,2) where 8,9 is the incoming

branch of state S\, and we can rewrite (3.148) to be

A(B") = min [rg(n [A(BL, D] + v(ﬂ;’i;)} + (B0 (3.150)
= min [ggg [ABL,D) + (8] + v(ﬁ;’f*“)] : (3.151)

Fig. 3.38 illustrates the corresponding operation on the radix-2? x 29 trellis for (3.150) with

x = 1. The computation contains CS-2¢ operations, ACS-2P calculations, and a final addi-

tion (Add). Note that the additions can also be retimed for less datapath delay as shown
(t+p)

in (3.151); however, the addition numbers for 7(6:%) and (8 ) will be increased respec-

tively by 29 and 2P times.
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Figure 3.37: Retiming pf the“‘radix—2p x 29 ACS unit

We demonstrate this retlmlng procedure (RT 3) in Fig. 3.37 where both registers and
adders are reallocated; the the ﬁnal archltecture is:shown in Fig. 3.39(b). The registers in
Fig. 3.39(b) stores the results A(3{”) on branches, and therefore the registers become 29
times as many as the original ACS-27 x 27, In the radix-2P x 27 trellis, each multiplexer
in the first level connects to 27 adders, and the multiplexer in the second level connects to
2P adders. As a result, there will require 27 times 2P-to-1 multiplexers and 2P times 29-to-1
multiplexers after retiming.

The optimization methods as mentioned above tend to break the critical path through
parallelizing the serial operations; thus, more hardware resources should be allocated. In-
stead of storing path metrics, the radix-2" and radix-2P x 2?9 ACS units with RT-1 and RT-3
save the pre-path metrics on branches, leading to more memory requirement. Moreover, to

achieve parallel processing, the retiming of adders in RT-1, RT-2, and RT-3 causes more
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Figure 3.38: Radix-2P x 29 trellis

adders and multiplexers.

Fig. 3.40 compares the datapath delays of different ACS configurations. The delay times
of CS-2P, CS-29, ACS-2P, and ACS-2¢ funetions are defined to be Tog_op, Tos_2a, Tacs—_or,
and Tycs_2:. Additionally, we also assume that the, compare-select operation has larger
delays, Tos_2» and Teg 24, than those of additions {Add). What should be noted is that
the major enhancement is the elimination of datapath delay of additions on the critical
path. Both ACS-27 with RT-1 and ACS-2? x 2¢ with RT-3 can achieve the lowest delay time
Tes—_or + Tos_2q because of the parallel additions and comparisons. Furthermore, Fig. 3.40
also shows that ACS-2P x 27 with RT-2 can acquire a comparable performance to the high
radix ACS-27 structure.

We summarize the complexity of different ACS architectures, mentioned above, in Ta-
ble 3.2. The cost of ACS-2P x 27 is smaller than that of ACS-27 because 27 > 2P + 29 for
T = p+ q. The minimum adder number required in the ACS-2P x 27 can be achieved when
p=[%]and ¢ = 7—[7]. Considering the ACS-2" with RT1 and the ACS-2” x 27 with RT-3,

the adder number in the former is larger than that in the latter while ¢ > 1. Moreover,
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Figure 3.39: 2-D3ACS.unit after retiming

the ACS-27 with RT-1 has 27 times as many 2P-way comparators as the ACS-2P x 27 with
RT-3. The original ACS-27 structure has the delay time similar to ACS-2P x 29 with RT-2,
but has (29— 1) times more 2P-way comparators, which are considerably more complex than
adders. According to the the summary in Table 3.2, the 2-D ACS-2P x 27 structure is more

cost efficient with retiming for the high speed requirement.

Table 3.2: Comparison of complexity among different ACS configurations

. 2P-way 29-way 2P to 1 29to 1
registers adders
comparator | comparator | multiplexer | multiplexer
ACS-27 M 2T -M 29- M M 29- M M
ACS-2P x 24 M (2P +29) - M M M M M
ACS-27 (RT-1) 29- M 29.27 - M 29- M M 29- M 2M . M
ACS-27 x 29 (RT-2) M (2P 2P . 29) - M M M 29- M M
ACS-2? x 29 (RT-3) 29 M | (22-2P4+2P.29)- M M M 29- M 2P - M

I The number of states is M = 2.
‘r=p+tq
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Figure 3.40: Comparison of critical path delay for original and retimed ACS units

3.3.3 Survivor memory unit

The survivor memory stores the path history, or the survivors, within the truncation length

T. For different management strategies, the survivor memory unit can be categorized into

the register exchange (RE) architecture and the #raceback (TB) architecture [123-126].
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Figure 3.41: The SMU based on the register exchange approach

The register exchange is a direct implementation of the Viterbi decoding algorithm over

the trellis diagram. Furthermore, any survivor, or the state sequence, also corresponds to a

distinct branch sequence or information sequence. For example, the incoming branches of
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Sp in Fig. 3.8 are generated by the information bit “0”. To save the survivor memory, we
keep the branch information rather than the entire state sequence. Fig. 3.41 illustrates a
design example for the trellis diagram Fig. 3.8. The decisions D(Si(tJrl)) for i = 0 ~ 3 come
form the ACS units, and the path metrics F(Sft)) are stored in the PM memory. There are
2% decisions at each state for an (n, k) code. The survivors are shifted in the register array
from the left to the right. In the leftmost size, the register inputs are “0”, “0”, “1”, and “17,
corresponding to the information symbols on the entering branches of Sy, Sy, S, and S3.
The output data will be obtained through finding the survivor with the best path metric.
For a non-punctured code, the truncation length 7" is often chosen to be 4v ~ 5v [100] where
v is the overall constraint length. On the other hand, if the truncation length 7" is extended
to 10v [116], the output data can be selected form any register in the final stage with slight

performance loss.

t t+1 t+2 1+3 t+4 t+5

Figure 3.42: The traceback operation

The traceback approach proceeds after all survivors are stored in the memory. Fig. 3.42
is an example that the decoder tends to decode the information at time ¢ according to the
best metric F(Sft%)) at time ¢ 4+ 5. The traceback operation starts form S; at time ¢ + 5
and sequentially reads the branches to trace the survivor form time t + 4 to t. Finally, we
can find the state Sy at time ¢ and the information symbol associated with the branch ﬂ(()t).
Since only the branch is necessary to pinpoint the previous state, the memory will contain
the branch information. Note that the decisions are used to identify the branches entering

each state. In Fig. 3.43, for example, the upper branch coming into each state is marked
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with “0”, and the other is “1”. Hence the decisions will provide the branch information that

should be stored into survivor memory.

So

S

S3

Figure 3.43: The branches are labeled with either 0 or 1

According to the trellis diagram Fig. 3.8, the SMU using traceback architecture is shown
in Fig. 3.44. Fig. 3.44(a) is the memory update procedure in which the decisions are written

to the survivor memory from the address 0 up to 7'—1, corresponding to the 7" time instances

of ty +1 to t; + T. Fig. 3.44(b) is the traceback operation starting from the state Si(tlJrT)
Survivor memory. Survivor memory
D(S{™)—> N
D(S")— Y ,E'('t_])
D(S;"™")—» —>
D(Sy™)—» —>
0 1 0 -1 Sy
—> - Memory read
Memory write . State
operation operation index [€
(a) Write operation (b) Read operation

Figure 3.44: The SMU based on the traceback approach

with the best path metric at time ¢, +7". The state SZ-(“JFT) is first used to index the branches

gh+T-1 G(ta+T)

read form the address T'— 1; the previous state ) will be obtained from and

its incoming branch ﬁi(,tlJrT_l). The state SZ-(tlJrT) as well as the branch ﬁi(,tlJrT_l) is termed

t1+7T—1
st

the pointer for the state ), Referring to the example in Fig. 3.42, we will find that

the branch ﬁ§t+4), labeled with 1, will be indexed by Sft%) and is utilized to identify S§t+4).
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Since S; = 01 in the binary representation, we could get S3 = 11 through left shifting S; by

one bit and concatenating 1 to the least significant bit (LSB); that is,

S3=251+1 mod 4.

As the branches are serially read form address T'— 1 to 0, we can subsequently find the state
at time ¢; and decode the corresponding information symbol.

In the register-exchange or the traceback based architecture, the memory for a binary
(n, k) code with the overall constraint length v is required to store k x T x 2¥ bits and
can be organized to T" words where each word stores 2” decisions. As compared with the
register-exchange approach, the traceback operation avoids the data movement within the
survivor memory, and therefore has less dynamic power consumption. Nevertheless, the
implementation of a high speed traceback unit would be more difficult because of the limited
data bandwidth in the embedded memory.

The traceback algorithm, or k=pointer algorithm, for the survivor memory management
has been proposed in [124] and [126]. It divides the memory into banks and accesses them
concurrently to achieve the demanded data bandwidth. In the k-pointer algorithm, three

operations are defined [125,126]:

1. Writing new data (WR): The decisions form ACSU are written into the survivor mem-
ory. The writing address increases as the ACS operations proceed to the next time

instance.

2. Traceback read (TB): This operation sequentially reads the branch from the survivor
memory to perform the traceback operation as shown in Fig. 3.44(b). However, only
the final state after all the branches are traced will be found without outputting any
information symbols. Ensuring all the survivors have converged, this state is treated

as the start point for the next traceback operation.
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3. Decode read (DC): This operation is also a traceback read except that the information
symbols will be decoded and outputted. Hence the decode read begins with the state
determined by the previous traceback read operation. The output information will be

in the reverse order because of the traceback operation.

Accordingly, the SMU based on the 3-pointer even algorithm can then be illustrated in

Fig. 3.45. The three traceback pointers consist of two TB operations and one DC producing

Time Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
A
WR
I _| vV
2 R
WR
T vV
A
WR
3T | vV V
2 TB A
€ ——=—= WR
2T / —
 TB__ B\ A
5T | / Vv
2
. DC  TB__ |\
37 / Y
A
WR < DC <__I]§__ 4__IB___
T vV V /
2
A
4__IB___ VWI\{/ < DC 4__I]§__
4T+ I
\j 2

Figure 3.45: The SMU using 3-pointer even algorithm

the decoded symbols. The SMU contains six banks, and each has T'/2 words. Before any
TB or DC operation, the memory banks need to be filled with decisions from the ACSU.
The first TB operation starts in the bank 2, and the subsequent TB operation proceeds in
the bank 1, leading to the traceback of T" time instances. As a result, we can initiate the
DC operation in the bank 0 because the beginning state is considered to be reliable after the
previous traceback. Finally, a first in and last out (FILO) buffer of length 7'/2 symbols can
be applied to reverse the output sequence. Note that the decoding throughput of Fig. 3.45
is similar to the register-exchange based SMU; however, the decoding latency of the former

is 37" which is three times as much as the later, assuming one memory address is read within
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one time instance.

Alternatively, the 3-pointer odd algorithm [126] combines the WR and the DC operations
into the same memory bank. As the DC reads out one data, the WR operation will write
new decisions to the address that is just read. Therefore, to achieve the corresponding
throughout that the 3-pointer even algorithm can have, each memory bank requires one
port for the data reading (DC), and the other port for the simultaneous data writing (WR).
Moreover, the 3-pointer odd algorithm reduces the memory bank number to five. In general,
the k-pointer even algorithm demands 2k memory banks having % words in each bank. In
the k-pointer odd algorithm, we require 2k — 1 memory banks with % words in each. For
higher k, we can accomplish more parallelism in the SMU, but requite more memory banks.

In the trellis diagram, Fig. 3.46 also summarizes the operations in the SMU based on the

the k-pointer algorithms. Because of the demand for high speed data transmission, both

DC TB WR
- - } >
A
M survivors
v
— 7\ )
g Y
Read Write
Region Region

Figure 3.46: SMU operations over the trellis diagram

methods would cause a large amount of memory access operations as well as large power
consumption.
As shown in (3.117), the truncation length determining the size of the survivor memory

and also the decoding latency, is a function of coding rates and channel capacity. The traced
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Figure 3.47: The proposed memory management of SMU

path will remerge to the correct path within the truncation length with a high probability.
In order to preserve the performance, the truncation length is conventionally set to the
maximum. Nevertheless, this will lead to many redundant operations during the traceback
for the operating condition is not always the worst. It is inappropriate to design the Viterbi
decoder works in the worst cases.

For a fixed T, SMU will trace the same path.that had been traced recently as the path
remerges to the correct one. This implies that the SMU tends to reuse the data which
have been used in previous traceback opeérations: Considering the data locality in survivor
memory, a dynamic traceback mechanismsean-bé implemented to reduce power consumption
caused by a great number of memory access [42,47].

According to the cache based SMU design in Fig. 3.47, the modified traceback algorithm,
path merging algorithm, is summarized in Fig. 3.48 The survivor memory initially contains
M survivors. Since the correct path is hard to be exactly known in the receiver system,
the buffer contents will be the path which is last traced. In the traceback operation, S,
is recursively updated according to the previous S, and the branch J; simultaneously, it
is compared with S, obtained form the buffer. While S, is different from S, the buffer
contents should be revised to the new branch ;. On the contrary, when the traced path
merges to the previous one, SMU can stop further traceback operations because the buffer

has contained the same survivor.
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Figure 3.48: "Thepath merging algorithm

Simulation results, shown in Table 3.3, reveal the effects of the modified traceback algo-
rithm, assuming the QPSK modulation over the AWGN channel. These results represent the
length required by the traced path to merge to the last one, and over 94% paths will merge
after tracing 3 time instances in different channel conditions. Therefore, many redundant
operations can be eliminated through the proposed SMU design.

The path merging algorithm can be successfully applied to the traceback operations
for the buffer contents are iteratively updated. However, in the WR operation where new
survivors from ACSU are written into memory, there is nothing to update the buffer, and

nothing can be read from it during the TB operation. Therefore, the path prediction algo-
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Table 3.3: Distribution of path convergence

SNR T(dB) 2 3 4 5

1 time instance | 90.82% | 95.16% | 97.58% | 98.91%
2 time instances || 93.33% | 97.02% | 98.81% | 99.60%
3 time instances || 94.03% | 97.47% | 99.05% | 99.70%

T QPSK modulation and AWGN channel

rithm accompanied with the WR is proposed and shown in Fig. 3.49 where WR is assumed
to process 7 time instances. While ACSU proceeds each new time instance in the trellis
diagram, the predicted state with the minimum path metric is also found and verified that
a valid transition exists. Once the sequence of states encounters an invalid transition, the
prediction process should be stopped to avoid improper path merging during TB operation.
In terms of different SNRs, the simulation results in Fig. 3.50 represent the prediction ac-

curacy, which is defined as the percentage of total predictable states in the WR operation.

Combined with the path merging algorithm. we conclude the buffer updating procedure
in Fig. 3.51. The predicted state sequence is stored 'during the WR operation while new
state sequence is rewritten during the T'B operationuntil the traced path merges to that in
the buffer. Even if incorrect states are predieted, they will be corrected in the TB operation,

leading to no performance loss with the path prediction algorithm.

3.4 The MAP algorithm

The maximum a posteriori probability (MAP) decoding algorithm for linear codes is devel-
oped by Bahl, Cocke, Jelinek, and Raviv in 1974 [16] and is termed BCJR algorithm, the
optimal symbol-by-symbol detection algorithm that minimizes the symbol error probability.
As compared to the Viterbi algorithm that minimize the codeword error probability (see
(3.67)), the BCJR algorithm estimates the a posteriori probabilities (APP) of the states as

well as their transitions from the received sequence r over a discrete memoryless channel.
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Figure 3.49% The path prediction algorithm

Therefore, for any state transition from S, at time ¢ to SUTL at time ¢+ 1, we can estimate

the joint probability

Pr{S,S?, S,(éﬂ), r} = Pr{Sg, S,(,fb“), ritr, I'i\_ffll}
= Pr{x IS, S x
X Pr{SED, r,|SY, rh ) (3.152)
x Pr{s) ri1}

— Pr{e] 1 [SEDY Pr{SED 1, [SU} Pr{sY) v}
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Figure 3.50: Prediction accuracy in AWGN channel. (a) QPSK and R = 1/2. (b) 64-QAM
and R =3/4

Notice that rj ' denotes the received sequence from time 0 to ¢ — 1, and ry};" the received
sequence from time ¢ + 1 to N — 1. The second equation of (3.152) comes form Bayes’ rule,
and the third equation is due to thé Markov process in the state transitions. We further

define three functions:

a(5) = Pr{giiri '} (3.153)
V(S SEEYEPr{SE ry S5} (3.154)
BSETY) = Pr{r 'S5V, (3.155)

and thus (3.152) can be rewritten as

Pr{S), S r} = a(Si)Y(S5), SET)B(SE) (3.156)
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Figure 3.51: The buffer updating operations

On the other hand, we extend the definition of (3.153) to be

a(SHTH) = Pr{SiHY rp}

Z Pr{S’@, S’,(,tfl)

5" es

1o}

ST A8, SED)a(SD),

sWes
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o Pr{SED (St Pr{St) rf '}
sWes ‘

> PrfSE g[S} Pr{S%) ri '}
s®Mes |

(3.157)



where S is the set of all states. Similarly, we have

By = 3 Pr{SE xSy

St Ves
- Z Pr{S{, r, rt+117S }/P{S }
siteg
= Z Pr{rﬁ11|5(t+l> ta }PI’{S(t+1 Tt|5(t} (3158)
s{ttYes
= Z Pr{rﬁ‘ll|57(,§+1)}Pr{ST(fLH),MSy(;)'}
siteg
= Y BSE)(SY, s,
st eg

and consequently the forward metric o in (3.153) and the backward metric § in (3.155)
will be computed recursively with (3.157) and (3.158). If the encoder starts from S(()O) and

terminates at S((]N), the following initial conditions.are satisfied:

a(SP) =1, a8y =0 for 5V € S\,

(3.159)
B(SM) =1y BESE=0 or S € S\ S,
Finally, the branch metric in (3.154) can also be
(t+1) o(t)
(S0, 5470) = TS
Pr{Sm,}
Pr{5g+1) S(t),} PI‘{S},EL—H S(t, t}
- O D) ’)
Pr{S,} Pr{S%, 511 (3.160)

= Pr{SEV SO} Pr{r| St 51}

m

= P(ug) P(r|oy),

(t41

where u; is the encoder input that causes the transition SS} — Sm ), and vy is the cor-

responding codeword. With the branch metric in (3.160), we can derive a and /3 for each
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state at different time instances; as a result, the joint probability (3.152) is available for all
SY U e Sandt =0~ N,
The a posteriori the information for the symbol u; is defined to be the log-likelihood

ratio (LLR)
Pr{u, = +1|r}
Pr{u, = —1|r}’

L(u;) £ In (3.161)

and the decoder can decide the output

+1 if L(u) > 0
iy = (3.162)

and the corresponding soft information L(u;). Combining with (3.152), we can express the

APP of u; as

1 Bl e Pr{s“,, o e}
Z(m m)EB;,” 1P1"{S S tH‘ }
Z(m T Pr{S(t,, S 1y
2( AP Sy, St r}

L(uy) =

(3.163)

Among all possible state transitions S,S? — S

, B/ is the set of all (m’,m) that indicate
the transitions are caused by u, = +1, and B; ', the set of (m’,m), denotes the transitions
are due to u; = —1. The MAP decoding algorithm not only decodes 1, , but also estimates

the APP for each u;

(3.164)

Alternatively, the MAP algorithm can be defined in the logarithmic domain for compu-
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tational efficiency. We first transfer the metrics to the logarithmic domain; that is

(S5, SUD) = ImAy(Sh), SEH), (3.165)
a(SUY) = na(sU) = Y ST, (3.166)
s"es
and
BSY) = BSY) =ln S eHen s st (3.167)
st eg

Finally, the APP information in (3.164) will become

oW L q(t) Gty 5 g(t+1)
L) =Tn | 3 eaSas st i)

m’,m B!
rm)EBe (3.168)
S GASINHA(S ) S +B(SETY)
(m’,m)eB;1
Considering the following Jacobian function [141]
In(e™ 4 ¢*2) £ max*(e™, )= max(@y, o) + In(1 + e o722l (3.169)
and its extension
In(e™ + €™ + -+ 4 e") & max*(e™, €™, ... e™), (3.170)
= max "(- - -max " (max *(r1, x2), x3) - -+, Tp), (3.171)
we can write (3.166) and (3.167) in more simple forms:
a(stitly = max*sges[ﬁ(Sg, SEDY 1 a(SY)] (3.172)
F(SY) = max® guen g [H(SED) +3(5Y, L), (3.173)
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and therefore,

L(ug) = max® . epii @ (S(Q) +7(S() (t+1)) 4 G0+

] (3.174)
—max*, ep-t [A(S5) + F(SD, SED) + B(SEH)].
The initial conditions become
_ (0 () (0)
a(Sy’) =0, a(Sz’)=—0c for Sy’ € S\Sy
(5" =0, a(si”) \ -

BSMy =0, BSM) =—00 for SV € 8\S,

Note that (3.169) can be implemented with a max function as well as a lookup table for the
term In(1 + e~1#1772]) ' leading to the much simple hardware design. Furthermore, according
to the recursion in (3.171), the evaluations in (3.172), (3.173), and (3.174) will also benefit
from the simplification of (3.169). The MAP decoding algorithm based on (3.172), (3.173),
and (3.174) is termed Log-MAP algorithm [142,143].

If the a prior: information is representecl by

L 1 3.176
the a prior: probability will be
e:I:La(ut) e—La(ut)/2 .
_ _ _ wt L (ut)/2 utLa(ut)/2
P(u; = £1) = 1 + etla(w) {1 + e—La(Ut)} € = Ae (3.177)

where A; is independent of u;. Furthermore, according to (3.80), the probability P(r:|0;) in
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the AWGN channel with 202 = Ny/FE, is

Pl 1\" _zie? ey
T+ e e 202
o V2mo?
n n ()32, (+(1)\2 n (4) ~(4)
> Ly )7+ ( )°] i :
_ {( 1 ) - i=1 ’t202 Yt e 1_1;"5 Yt (3178)
V2mo?

— BeXioi Leri)o("/2

Notice that B; is constant within each time instance since r,gi) is the same for all branches
and @f) = 41. Additionally, the channel reliability value L. is defined to be % for the
AWGN channel [144]. As a result, we will find that A; and B, will be canceled out in the
LLR of either (3.164) or (3.174). The branch metric can then be expressed with both A,

and B; being dropped;
(S, SUTDY = In P(uy) P(ry| )= lucLa(u) + S Lol (3.179)
i=1

The further simplification is ‘achieved thréugh' discarding In(1 + e~1*1722l) in (3.169).

Consequently, we have the following appreximations:

max *(e™!, e"?) &~ max(z, T2) (3.180)
max “(e", e", ..., ™) & max (x;). (3.181)

Applying (3.180) and (3.181), we can reduce the Log-MAP algorithm to the Max-Log-MAP
algorithm that contains only the additions and the max functions. However, the performance
would degrade because of the information loss in (3.180) and (3.181).

In Fig. 3.52, the trellis diagram for the encoder (3.54), we demonstrate the MAP decoding

in the the logarithmic domain. The dashed branches are generated by u; = —1, and the
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Figure 3.52: Trellis diagram for the MAP decoding algorithm

solid branches corresponds to u; = +1. Accordingly, we know that

B ={(0,2),(1,2),(2,3),(3,3)} (3.182)

B, ={(0,0),(1,0),(2,1),(3,1)}; (3.183)
the forward metric and the backwardsmetric for S(()t) should be

a(S§") = max*[a(S§ )= HSS L SE), a(sy ) + (s, 5] (3.184)

B(S$) = max *[B(SS™) FASESEY, FESY) + 35, s8], (3.185)

Generally, in the Max-Log-MAP decoding where the max* is simplified to the max function,

both (3.184) and (3.185) are ACS operations that is similar to the Viterbi decoding algorithm.

Furthermore, according to (3.80), the branch metric in the AWGN channel with L, = 42 is

0

1
WSy S5 = S (wnLa(ur) + o +rPo?), (3.186)

and L,(u;) = 0 if the information bits are assumed to be equally likely, or P(u; = +1) =
P(u; = —1). We can evaluate the APP of u; with (3.174) after evaluate & for each state at
time ¢, 3 for each state at time t + 1, and all branch metrics between ¢ and ¢ + 1.

In the MAP decoding algorithm,the whole codeword sequence as well as all the metrics
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Figure 3.53: The windowed MAP algorithm

should be kept to calculate all L(u;) with ¢ = 1 ~ N. It is impractical to implement a MAP
decoder with large N. To reduce the memory requirement, the sliding window algorithm [145,
146] is applied to avoid storing the metrics corresponding to the entire codeword sequence.
In Fig. 3.53, the codeword stream is divided into [N/Ty,| sub-blocks of length Ty,, and the
dummy backward recursion [, is employed to establish the initial conditions for the true
backward recursion 3. Note that (. ig-an operation that is similar to the traceback in the
Viterbi algorithm. Although the initial condition for, the (3; recursion is unknown except the

last sub-block, we set the equally:likely conditions for=3,; within the (j + 1)-th sub-block

1

Ba(SLGHD TNy it for all SUw) ¢ 8. (3.187)

After the [; process of Ty, time instances, the initial metrics 6(57(,{'T3b)) in the j-th sub-
block are available for the ( recursion. During the (j + 1)-th ; operation, the forward «
recursion proceeds concurrently in the j-th sub-block, and all the metric values are stored in
the memory. In the backward (3 recursion of the j-th sub-block, we can calculated the L(u;)
value with the a metrics in the memory, the § metrics in computing, and the corresponding
branches metrics in the j-the sub-block. The length T}, which is set to be 6v is sufficient to

ensure the reliable initialization for the 8 recursion [146].
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Chapter 4

Soft Iterative Decoding

4.1 Message passing algorithm

The soft iterative decoding algorithm relies on the message passing or belief propagation

algorithm [26,27]. We consider the following conditional probability
P(x = al|C) (4.1)

which is the a posteriori probability of z based on the knowledge of the constraint C.

According to the Bayes’ theoremwe _can'express (4.1) as

P(Clz =a)P(x = a)

Pz =alC) = PO

(4.2)

The term P(x = a) is the a priori probability and is also referred to the instrinsic probability
for x [147], denoted by P,:(x = a). On the other hand, P(C|z = a) is termed the extrinsic

probability with respect to C'. The extrinsic probability, defined by

Puy(z=a) = (Y P(Clz =d))"'P(Clz = a) = p.P(C|z = a) (4.3)
a’€eA
provides a new information for x according to the constraint C', assuming a takes values
from the alphabet set A. Consequently, the a posteriori probability in (4.2) can be written
as

Poosi(r = a) = P(x = a|C) = ppPeyi(x = a) Pyu(x = a), (4.4)
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where p, = (p.P(C))~!. If A = GF(2), the log-likelihood ratio representation for (4.4) will

be

Prost(z =1
Lpost(x) = In Bl = 1)
Tr =

Pext(l' = 1)
=1 1
Ppost( 0 Tr = +

n n Pznt(x - ]-)
Pewt( 0) Pmt(aj =

0) = Lemt(x) + Llnt(ﬂf) (45)

In the graph representation, we use an undirected graph, referred to the normal graph
[147,148], in which the constraints are denoted by vertices (nodes), state variables for message
passing are denoted by ordinary edges, and symbol variables are denoted by left edges (half
edges). Fig. 4.1 shows an example with three vertices; the edges connecting two vertices

are ordinary edges, and the edges connecting only one vertex are left edges.  Fig. 4.2

ordinary
edge

Figure 4.177An example of normal graph

Rnt (xl )

Figure 4.2: Graph representation of the extrinsic and the instrinsic probabilities
illustrates a graph consisting of a single vertex and d edges, which are all left edges. There
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are d symbols, x1,xs,..., and x4, that correspond to the constraint C'. We define a set
Sc which is a subspace of the d-dimensional vector space A? (S¢ C A9), and any d-tuple
X = (21, T9,...,x4) € S¢ will satisfy the constraint C'. Assume each edge has the instrinsic
probability P, (x;) associated with the symbol z; for j = 1 ~ d, the a posteriori probability
of a symbol x; with respect to C will be the combination of the intrinsic Pj,;(z;) and the
extrinsic P, (x;). Therefore, we have to evaluate P,.;(z;) based on the constraint C' and the

other instrinsic probabilities P, (z;) with j # i. The extrinsic probability is

Pext(xi) = pcP(C|$Z)

= e Z P(xy, ..., 1, %1, ..., 2q)
2j Vg7 (4.6)

XESc

= Pc Z Hpmt(x])

23 Vi1 j=1
XESc. JFi

where we assume the symbol variablesizij &, .. 424 @re independent, and p, is a normaliza-

tion constant.

Rnt (xl ) Pint ('xd )
J xd B}’ll‘ (xd—l )

(1) (2)
6).1 (x ) xi mt (‘x )

P(l)(x ) P<2>(x )

int ext

Pint ('xi—l ) ext (xl+1 )

Figure 4.3: Graph representation of the message passing between two vertices

Additionally, we consider the graph with two vertices (constraints), C; and Cs, as shown
in Fig. 4.3. The constraint C; has i — 1 left edges and one ordinary edge, corresponding to

the symbols x1 ~ ;1 and x;. On the other hand, x; ~ x4 are constrained by C5 where
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only z; is on the ordinary edges. We also define two constraint sets S¢, and S¢, such that
any X1 = (x1,%2,...,%;) € S¢, and xg = (x4, Tiy1, ..., Tq) € Sc, will respectively satisfy Cy
and C5. Similar to the single vertex graph in Fig. 4.2, we want to estimate the extrinsic
probability for the left edge based on both €} and C5. As shown in Fig. 4.3, the symbol
Z;41 is first considered. If we only consider the constraint Cs, the extrinsic probability can

be written as

d
Pet(wis1) = p2P(Colmigs) = Y P (i) [] Pou(ay) (4.7)
x2\Zit+1 J=i+2

x2€8 ¢y

according to the results in (4.6). However, the instrinsic probability Pl(m (x;) for Cy is on the

ordinary edge that is unable to be acquired form the inputs. In the following, we use both

Cy and (5 to evaluate

P.oi(zis3) = pcP(Cy, Co|zitq). (4.8)

The above conditional probabilityis.rewritten.as

P(01,C2|$i+1) = Z P(Chc%xi:xi—l—%--wafd‘xi—l—l)

X2\ 1
x2€S¢,

= Z P(Co|C1,x9) P(Ch, @i Tiyas - - - 5 Tal|Tis1)

x2\Ti41
x2€8¢,

= Z P(Claxi>$i+2>'"7$d|$i+l)a

x2\ @41
x2€8¢,

where the third equality comes from the fact that C;, x;, and C5 in Fig. 4.3 from a Markov
chain [147], and
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Therefore, we can write

P(02|01,X2) = P(02|X2) = 1, for Xo € 502 (411)

because X contains ;. Continuing form (4.9), we can further derive the following factor-

ization:

P(Cl, Lijy Lj42y - - ,[L’d|l’i+1) = P(CﬂXg)P(ZL’,’, Lty - - - ,l'd|l’i+1)
= P(Cl|$i)P($i)P($i+2) e 'P(fd) (4'12)
d
= (p1) " PL (@) P(x5) [ Pone(;).
j=i+2
Notice that
PU)(x;) = pi P(Ch ;) (4.13)

is the extrinsic probability of z; avith respect to €, P (x;) are instrinsic probabilities
for the left edges connecting Cy,-and P (;) 18 the instrinsic probability for the ordinary
edge variable x;. Since the ordinary edge conmects/C and Cy without external input, the
probability Pj,:(x;) can be initialized forbe a-constant; that is, Py, (z;) = ITI\ for x; € A.

After the above derivation, the extrinsic probability in (4.9) can be expressed as

d
Pewt $z+1 = Pc Z Pe(g:clt H Pmt(%‘), (4-14)
x2\Zit+1 J=it+2
x2€S¢,

and p = pc/(p1|Al]). Referring to (4.8) , we can find if the extrinsic probability pl )( i)

ext

from C is available, and

P (z;) = PL)(x,), (4.15)

only the constraint Cy is necessary for estimating P.,.(2;4+1). Correspondingly, P.,.(x;) for

j = (i+2) ~ d can also be calculated. For P, (x;) with [ =1 ~ (i — 1), the extrinsic prob-
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ability P

ext

(x;) with respect to Cy should be first computed, and the instrinsic probability
for (7 is set to be
Pl (@) = PG} (). (4.16)

The process of (4.15) or (4.16) is the message passing between vertices C; and Cy. With
the message passing algorithm, the problem of solving both € and C is decomposed into
solving the single vertex graph, which is much simpler than the two vertices case. The

message passed on the edge x; can be represented by

Her—Co (Il) Pe(;t Z HPmt 1'] (417)

x1\z; J=1
x1€S¢,

ficy—cy (%) = Pe(it = Z H Pint(5) (4.18)

xo\z; Jj=t+1
x2€S¢,

Moreover, the operation in calculatitg jic,=s@g(@;) OF tio,—c, (2;) is the sum of products, and
thus the message passing algorithm ds also termed the. sum-product algorithm [149].

In a graph with vertices, Cy, €}, #-4-and Cy, the vertex Cy has d ordinary edges that
respectively connect to C4, Cy,- -+, Cgawith symbol variables xq, zo, -+, x4. Assume the

messages [ic;—c,(7;) with j = 1 ~ d have been obtained from C; ~ Cg4, we can calculate

HCo—C; by
HCy—C; IZ Z HMC’ —C x] (419)
x\xl Jj=1,
x€ES¢, J?ﬁl
where S¢, is the constraint set for Cy, and x = (1, x9,...,24). For i = 1 ~ d, the messages

teo—c; (z;) can be found and become the instrinsic probability inputs for the vertices C} ~
Cy.

The above discussion of the message passing algorithm is based on the graph without
cycles. In the graph with cycles [150], the message passing algorithm will be somewhat

different from that in the graph without cycles. In Fig. 4.4, the graph has four vertices that
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Figure 4.4: Graph with cycles

form a cycle and and two left edges having probability inputs. The message calculation form
Cy to Cs will need pe,—c,, the message form Cy. Nevertheless, pc, .o, also requires the
messages from Cy as well as C3 that depends on pe,—.c,. It is impossible to derive pe,—.c,
with only the probabilities on the left edges. Hence we have to directly initialize pc,—c,
to a constant probability, and the méssage passifig algorithm can proceed as in the graph

without cycles. If the variables x~€& A -forlalliz, the initial value of pc, ¢, can be set to be

1

AT’ where |A| denotes the order of A. Furthermore, the independency assumption among all

edge variables would no longer hold; and the extrinsic probability based on the sum-product
computation becomes an approximation.

The message passing schedule determines the computation order for a graph and also
effects the computational complexity as well as the final results. The detailed discussion can
be found in [147], [149], and [28]. Generally, some stopping criteria should be defined to

terminate the message passing algorithm. Each block will be detailed in the following.

4.2 Turbo code

The parallel concatenated convolutional codes (PCCC), named turbo code [17,18], has been
widely adopted in wireless communication systems [59,63,151,152]. Turbo code can achieve

an excellent coding performance with simple constituent codes concatenated by a interleaver
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whose length is V.

4.2.1 Turbo encoder

Fig. 4.5 is a turbo encoder with two recursive systematic convolutional (RSC) encoders and
an interleaver. It is shown in [153] that the constituent encoder must be recursive for better
performance. In the first encoder, the information symbols are encoded to the systematic
part vo(D) and the parity v;(D); thus, vo(D) = u(D). The second encoder encodes u(D),
the information sequence u(D) after interleaving. However, the systematic part which is also
u(D) will be discarded during transmission because v has carried the information sequence.
The two constituent encoders are typically identical; nevertheless, they can be different and

have been shown to achieve better performance [154,155]. If the code rates of encoder 1 and

u(D) >V, (D)

¢— Encoderl [——>V,(D)

Interleaver

(D) L Encoder2 ——>»v,(D)

Figure 4.5: Turbo encoder

encoder 2 are Ry and R, respectively, the overall code rate R in Fig. 4.5 will satisfy

1 1 1
—=—+—=——-1 4.20
R R1+R2 ( )

The interleaver permutes the information sequence u(D) to a new one a(D). The size and
the permutation will considerably affect the turbo code performance. At low SNRs, the

interleaver size has the most important effect, whereas the permutation would dominate
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the error performance at high SNRs. Conceptually, the interleaver is used to generate the
code with a long block length from smaller constituent codes, and it decorrelates the two
smaller encoders, or u(D) and a(D), to improve the decoding quality based on the iterative
message passing algorithm. If we assume the interleaver performs random permutation, the
error probability can be reduced by a factor of 1/N [103,153], which is also referred to the

interleaver gain. The graph model for the turbo encoder in Fig. 4.5 is also illustrated in

0999 g
Q—O——0 ~ —0O Ty
0 9 ¢ 9

u(D) =v,(D)

Interleaver

| state sequence
| in encoder 2

00 - —0
O O Dk o

Figure 4.6: Graph representation of the turbo encoder

Fig. 4.6 [27,28,156]. The graph is separated by the interleaver. The upper part comprise the
vertices for the information bits u(D), the state sequence of the first encoder, and the parity
symbols vi(D). In the lower part, the permuted information u(D) is used as the inputs to
produce the state sequence in the second encoder as well as the parity symbols vo(D).

Due to the iterative decoding algorithm using soft-in/soft-out (SISO) decoders [144], an
excellent coding performance can be achieved with simple constituent decoders concatenated
by interleavers. The coding gain of turbo codes is better than that of convolutional codes
on the basis of comparable complexity. Therefore, turbo codes are used in many mobile
communication devices due to their outstanding performance and moderate complexity.

However, the iterative decoding in turbo decoders limits the decoding speed and increases
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the decoding latency.

4.2.2 TIterative decoding of turbo codes

The decoder iteratively decodes the PCCC with the MAP algorithm that calculates a posteriori

probability of each information bit u; [16]. For a rate 1/n RSC encoder, each codeword frame

consists of one systematic bit and (n — 1) parity bits. In the receiver, the received codeword
) (-1

has the systematic symbol 7o, and the parity symbols r,g ~ 1, ", ans then the branch

metric in logarithmic domain should be

n—1
. 1 i) i
(S, SUHDY = In Puy) P(r,|;) = 5 (ueLa(ur) + Leugro, + S Lo (4.21)
i=1

which is from (3.179). As a result, the APP information from the SISO decoder can be

derived as follows:

Z(m’,m)GBZfl €
L Ut ) = In =
() ea(sﬁ?)w@fﬁ,s,€2+”>+ﬁ<sfyi“>>}

oc(Sf,?)H(Sfﬁ?,Sﬁé“))JrB(Sﬁi“))]

Z(m’,m)EB;1

Z( g e;((+1)La(ut)+(+1)Lcr,0t)} {6(1(322)4-%2?_11 Lcrgi)@gi)+ﬁ(s7(£+1)):|
m',m)eB/

=1In S

)1 e%((—1)La(ut)+(—1)LcT’o,t)] [e@wfﬁnéZ?_fLcri”ﬁi”w‘(sii*”)} (4.22)

Z( /m)eB;! [66‘(522)"'%27—11 Lcrii)f’ii)‘l'ﬁ(sa(ﬁﬂ))}
m'm)eBy

= La(ut) + LCT(M + In

>t m)eB; ! {6“@23)%2;:; Lcr§i>ﬁ§”+ﬁ<355+l))]
m’,m)eB;

= La(ut) ‘l— LCTOJ ‘l— Le(ut).
The term L.(u;) is the extrinsic information corresponding to the information bit u, [17,18].
In the decoder, we receive the systematic sequence ro(D) as well as the parity sequences

r1(D) and ry(D) from encoder 1 and encoder 2. In the decoding flow shown in Fig. 4.7,

there are two SISO decoders for the two constituent encoders in Fig. 4.5. Initially, we set the
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0.4 decoder-1 decoder-2 .
> L(u,) 7 = L,(u,)
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Figure 4.7: The turbo decoding flow

a priori information L, (u,) for the first decoder to zero and apply the BCJR algorithm to
calculate the a posteriori information Lq(u;). From (4.22), the extrinsic information Lej (u;)
can be obtained

Lel(ut) = Ll(ut) v LcTO,t — La1 (Ut), (4-23)

where Ly (uy)i = 0 initially. In thé SISO-décoder-2, the inputs are ro(D) permuted from the
systematic part ro(D) and the parity sequenee ro(D), while the a priori information Lo ()
is the extrinsic output L;(u;) from de¢oder-1 after permutation. Consequently, we can
evaluate the a posteriori output Ls(1;) and the extrinsic information Lo () corresponding

to the second constituent code by

Le2(ﬂt) - L2(11t) - chO,t - Lag(at). (424)

As shown in Fig. 4.7, the information L.o(4;) can be regarded as the the a priori information
L1 (uy) for SISO decoder-1 after being reordered by the de-interleaver. The BCJR algorithm
proceeds again for the first constituent code based on the information L, (u;) from SISO
decoder-2. The turbo decoding proceeds iteratively with the extrinsic information passing
between the two SISO decoders. When the stopping criteria are reached, which may be the

maximum iteration number or a correctly decoded codeword, the APP information Lo (@) is
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Figure 4.8: Graph representation of the turbo decoding

exported for hard decision. Fig. 4.8 also presents the message passing on the graph when the
SISO decoder-1 computes the extrinsic information L.i(u;) with the a priori information
L1 (uy) from the SISO decoder-2.

The turbo encoder specified inthe 3GPP2 system: [63] is demonstrated in Fig. 4.9. The
constituent RSC encoder is

G(D) = TGS B2 (4.25)

whose rate is 1/3. Since the systematic symbol @y, in the second encoder is dropped during
the codeword transmission, the overall code rate of the turbo encoder is R = 1/5. The

maximum interleaver size in N = 20730, and thus each information sequence

D)=>) D' (4.26)

has 20730 bits. The codeword is composed of the systematic sequence

vo(D) = v, D' = u(D), (4.27)

t=1
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Figure 4.9: The turbo encoder specified in the 3GPP2 system

the first parity sequence

N
1) (2
vi(D) =Y (o) D', (4.28)
t=1
and the second parity sequence
N
1) (2
va(D) =Y (v, v D" (4.29)
t=1

After the encoding process, we charge the switch positions to B so that the states of both
constituent codes returns to zero states. Hence additional 18 tail bits should be transmit-
ted [63]; the first nine tail bits are generated from the first constituent encoder outputs
(vo.ts vft), vft)), while the last nine bits are from (g, vé}t), vé?t)) in the second constituent en-
coder. In the turbo decoder, we apply the iterative decoding based on the BCJR algorithm
as shown in Fig. 4.7. Assume the 16-QAM modulation and the AWGN channel, the BER

performance is presented in Fig. 4.10, including different iteration numbers. Notice that

both SISO decoders in Fig. 4.10 will complete once within each decoding iteration. We can
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Figure 4.10: The BER performancé based on the iterative decoding

find that the error performance will improve as the iteration number increases. The BER
curve can be divided into three regions, [157]; which are pointed out for the 8 iterations curve
in Fig. 4.10. The non-convergence tegion has an almost constant and high error probability.
In the waterfall region, the error probability sharply drops to a lower value. Moreover, the
error floor region reveals a slowly decreasing error probability. The waterfall region is deter-
mined by the interleaver gain, and the error floor region is by the minimum distance of the
code [158], which is also related to the interleaver. Therefore, there are two design criteria
for the interleaver [159]; the first one is the optimization of the weight distribution for the
code, and the second is the decorrelation between the constituent encoders. The former
tends to improve the minimum distance for lower error floor, while the latter increases the
convergence rate that dominates the curve slope in the waterfall region. Generally, the con-
vergence rate can be enhanced by increasing the interleaver size N. The interleaver designs

for the turbo code can be found in [143,159-164].
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4.2.3 Turbo decoder

In the Log-MAP algorithm, which is equivalent to the MAP algorithm, the channel reliabil-

ity value L. = 4]503 requires the SNR estimation for the AWGN channel [165]. Nevertheless,
the real channel condition is hard to be accurately judged. Furthermore, in the max* func-
tion (3.169), we need to implement a table for the nonlinear term In(1 + e~1*1772l) that also
depends on L.. Multiple tables are necessary for various SNRs, leading to a much complex
circuit design. Alternatively, we can apply the Max-Log-MAP algorithm where max* is
reduced to the maximum (max) function, revealed in (3.180). The value L. becomes ineffec-
tive in the Max-Log-MAP algorithm because of the maximum function [166]; however, the
performance loss will be encountered. In [167] and [168], the approach that scales the ex-
trinsic information is introduced to improve the turbo decoder based on the Max-Log-MAP
algorithm.

The number of bits to represent the quantities in decoding algorithms affects the per-
formance, memory size, and chip=area. In [169], the upper bounds of quantities in SISO
decoding is derived theoretically. ZThe fixed-point performance of turbo decoding in 3GPP2
is also presented in [170] by using Log-MAP-“algorithm. We analyze the Max-Log-MAP
algorithm to achieve the optimal performance after quantizing the quantities.

The internal precision of both SISO decoders in Fig. 4.7 are the same if we assume
only one SISO decoder is implemented. The width of symbols in SISO decoder is strongly
dependent on the range of input symbols as well as the fixed-point representation. The
notation n;.ny indicates the symbol is quantized to (n; + ny) bits where n; bits are integer
part, and ns bits are fractional part. After quantization, we first define the maximum
absolute value of the input symbols r¢; and rt(i) as A;n and that of the a priori input L, (u,)
as A,. For example, A;, = 2% 1 if ro,+ and r,gi) are represented by (n; + ny). The branch

metric is obtained by (4.21), and the maximum difference between any two branch metrics
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at time ¢

Ay = (SY, Sy — 5(8Y) S 4.30
7 (m/17m1)1:1(17’3/2>fm2)€Bt h/( my’ ) 7( my’ T2 )‘ ( )

is upper bounded by
AV < Ag + A, (4.31)

Note that B, = {B;, B; '} is the state index set of all branches between time ¢ and ¢ + 1,

and we also assume all the received symbols are equally quantized.

Figure 4.11:+A trellis diagram example

For a convolutional code withsmemory order m; the paths entering each state at time t
stem from all states at time ¢ — m. Fig.4.11 shows an example with m = 2. Therefore, we

can bound the difference of forward metrics a as‘follows:

AW <m- Ay +dpy - A, (4.32)
and
Aa) = max |a(ST(,?1) - a(S,S?z)L (4.33)

(t) g(t)
S5 .S es
The value d,,, < nm indicates the maximum Hamming distance between any two paths from

time t — m to t. Similarly, for the backward metric, we have

ABy < m- Ay + dy i (4.34)
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Form the calculation of L(u;) in (3.168), we can derive the following upper bound:

L(uy) gln[ S 6a%x+v5ﬁlx+ﬁ(55yf“))]_1n[ 3 6a$§n+vf§17l+ﬁ(5$+l))]

(m’,m)Ele (m’,m)EB;1
= (Ot + Voohe) = (Vi + Yinin) (4.35)
n <1n 3 €ﬁ<s,ﬁi“)>> _ <1n 3 eﬁ(SSﬁ*”))
(m’,m)Ele (m’,m)EB;1

We can also find that the two branches coming into a state at time ¢ + 1 will correspond to

the information bits u; = +1 and u; = —1. As a result,

In Z G Z eﬁ(sﬁ’ﬁl)), (4.36)

(m/;m)eB;! (m/;m)eB; !

and the bound in (4.35) is reduced to
L(ug) <869 Asy® (4.37)
Accordingly, the lower can also be‘ebtaimed as follows:
L(u) > —(Aa® 4+ Ay®), (4.38)
Combining the upper bound, we summarize the bound of L(u;) as
|L(ug)| < Ao + Ay < (m+ 1) (n - A + Ad), (4.39)
in which we use d,,, < nm. Since the extrinsic value is obtained by,

Le(ur) = L(ug) — Leroy — La(ue), (4.40)
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the bound for L.(u;) can be written as

| Le(ue)| < | L(ue) (4.41)

if L(ut), ro¢, and Ly (u;) are assumed to have the same sign.

From the above discussions, we have derive the differences for a and 3, and the modulo
normalization scheme [130,131] can be applied to avoid metric overflow. Furthermore, once
the received symbols have been quantized to fixed point values, we can acquire the data
width requirements for «, v, and 3 based on the modulo normalization; on the other hand,
L(u;) and L, (u;) can also be determined by the data widths of a and . Note that the upper
bound in (4.41) shows that |L.(u;)| is smaller than |L(u,), and we can use the representation
of L(uy) for L.(u). In turbo decoding, the a priori information L,(u;) comes from the
extrinsic information L (u;) of the other decoder. Generally, |L.(u;)| is smaller than |L(u;)
in real applications [170,171], and thus we may use.smaller widths for L.(u:) and Lg(u;).

The turbo decoder architecture is presented in Fig. 4.12, consisting of the single SISO
decoder, the interleaver/de-interleaver, for‘the extrinsic data L.(u;), the interleaver for the
systematic symbols ry;, and the cache buffer for'the BMUs. In the SISO decoder, there
are three ACS groups for a, 3, and (3; recursions in the sliding windowed MAP algorithm
(see Fig. 3.53). The SISO decoder processes three consecutive sub-blocks concurrently for
different strategies in the BCJR algorithm. ACSU-« carries out the forward recursion and
saves the results in the a-memory . ACSU-{ starts backward recursion from the initial
conditions determined by the ACSU-f3; previously. At the same time, the LLR calculator
determines L(u;) and L(u;), which is formulated in (3.174) and (4.40). Because of the
Max-Log-MAP algorithm, the ACSU is identical to that in the Viterbi decoder. The BMUs
compute branch metrics for ACSU-a, ACSU-3, and ACSU-f,; according to (4.21).

Since the modulo normalization is applied, the evaluation of L(u;) should be modified in
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Figure 4.12: The turbo decoder;architecture with a single SISO decoder

the LLR calculator. Considering the following operation

S = max(a; +41 4 P1, as + 72 + Pa), (4.42)

we have to determine the sign of

(1 +71+ 1) — (a2 + 72+ B2) = (a1 — a2) + (61 — B2) + (11 — 72)- (4.43)

If ay, g, B and (5 are modulo normalized, only the difference of them are useful during
calculations. As shown in (4.43), we should first find the difference in the left-hand side

instead of the summation first in the right-hand side. The operation is also illustrated in

Fig. 4.13.
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Figure 4.13: The comparator cell in the LLR calculator

In the L(u;) computation based on the Max-Log-MAP algorithm, we can write

(m/ m)EB:r1 mn mn
—  max *l[a(Sy(:)) FASY), 5Dy 4 g(SEHD))
(m’m)€B; (4.44)

= (afle) — O lhamy ) + (Brid — B5a).

For u =41 or u = —1, agﬁ,)w, %%Zx, and ﬁ,%x are selected from
{a(SI), 2S5, SUD), BSL)|(m',m) € By} (4.45)

according to the maximum function

max_ [a(SY) + (S8, SEVY 4 B(SEHDY). (4.46)

(m/,m)eB}

Consequently, we can derive L(u;) with sum of the difference between metrics. The extrinsic
information L.(u¢) is also computed by (4.40). Fig. 4.14 is the architecture of the LLR

calculator where the comparator (CMP) cell is similar to the comparator in Fig. 4.13, but
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has more inputs depending on B;! and B;'. The CMP cell will perform the function (4.46)
and generate the selection signals to identify aﬁ,ffc)m vy(,ffc)m, and ﬁ}ﬁfgw

In Fig. 3.53, each sub-block needs to be read by ACSU-G;, ACSU-a, and ACSU-3
separately. At the same time slot; from #; to°t,.1, thtee consecutive sub-blocks are read by
the BMUs. The minimum data bandwidth“o the external codeword memory should be 3 f.M
symbols per second (MS/s) , assuming.a f.MHz working frequency in the ACSUs. Therefore,
an input cache is implemented to reduce the repeated access of the external memory [171].
With the four banks memory model, the behavior of each bank can be expressed by Fig.
4.15 where each bank has Ty, words and should be connected to the three TMUs with
multiplexers. Codewords are written to the memory and read by the BMU-«, the BMU-£y,
and the BMU-$ for branch metric calculations. The data bandwidth of the cache is f.MS/s
for inputs and 3 f.MS/s for outputs. Accordingly, a multi-port memory or a higher working
frequency can be applied to reduce the interconnection between the cache and the BMUs.
However, both methods may lead to larger area or more power consumption. The reading

by BMU-G and the codeword writing is further combined by avoiding the write-after-read

(WAR) data hazard; as a result, the memory size can be reduced from 4Tgto 37Ty, words.
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Figure 4.15: The multi-bank cache model

The last-in/first-out (LIFO) buffer is included in Fig. 4.12 to reorder the output sequence
that is the inverse of the original data sequence because of the computational schedule in
the sliding windowed MAP algorithm.

The embedded interleaver/de-interleaver is designed to reduce the amount of time re-
quired to permute symbols. The-interleaver size N can achieve lower bit error rate (BER),
but requires larger memory size. "We usé a single meémory block for both interleaving and
de-interleaving functions, which is explainedsin Fig. 4.16. In SISO decoder-1, the extrin-
sic information is read and written in a sequential order, while the extrinsic information is
accessed in a permuted order in SISO decoder-2. Therefore, the data in the memory are
always in sequence regardless of the permutation. Note that the SISO decoder in Fig. 4.12
performs both SISO decoder-1 and SISO decoder-2 functions in different time slots, lead-
ing to no data hazard. The memory require one reading port and one writing port in this
configuration, and can be either a dual-port SRAM (DP-SRAM) or a single-port SRAM
(SP-SRAM) working at higher clock rates.

The permutation realized by address management operates on-the-fly with the SISO
decoder and induces no additional delay within each iteration. However, in some cases [63],

the address generator (AG) may produce invalid addresses and stall the SISO decoder. This
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Figure 4.17: The removal of invalid addresses with two AGs
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observed, the address from the other generator is adopted.

Low-density parity check code

can be solved by using two AGs as illustrated in Fig. 4.17. While an invalid address is

Low-density parity-check (LDPC) code, a linear block code defined by a very sparse parity-
check matrix, was first introduced by Gallager [20,21] and rediscovered by MacKay [23,24]. It
has engaged much research interest recently because the sparse property of parity check ma-
trix H makes the decoding algorithm simple and practical at good communication rates [24].

Similar to turbo code [17], LDPC code can achieve a capacity approaching performance as



the block length becomes large [25,172]; however, LDPC decoders, which are highly paral-

lelizable, have a much higher decoding speed [65] than turbo decoders [60]. LDPC decoders

based on sum-product algorithm (SPA) are capable of parallel implementation, leading to a

much higher decoding speed than turbo decoders. Such distinct dominance of LDPC code

can be employed to enhance system performances for high speed wireless communications.

Consequently, more high speed communication systems have considered employing LDPC

code to enhance performance.

An (N,K) LDPC code over GF'(2) is often represented by the bipartite graph [22, 150]

where N bit nodes and M (> N — K) check nodes are connected by edges according to a

M x N matrix H. In the following parity check matrix of a (10,5) LDPC code, for example,

000110O0T1O0T1
1100 010001
H=1040 10051 0 1 0f, (4.47)
0 0 1T-0~1.1-1-=0 0 O
1 0, L0700 01 1 0
and
[ZL’() T1 X9 T3 T4 Xy Tg Iy g l’g]XHT:[CQ C1 Cy C3 04]7 (448>
Fig. 4.18 represents the five parity check equations
Co . [L’3+ZL'4—|—[L’7—|—ZL'9:O
Cy - l’o+l’1+l’5+l’9=0
Co: X1+x3+Tg+ xg= 0 (449>
Cq . l’2+$4+l’5+l’620
Cs - l’o+$2+l’7+1’820
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in the bipartite graph with 10 bit nodes and 5 check nodes. The column weight of H
determines the number of edges (or degree) for each bit node connected to check nodes,
while the row weight of H determines the connections for each check node. A LDPC code
with equal weights for columns and rows is a regular code, as shown in (4.47), and otherwise
is termed irregular. It has been shown that irregular codes can outperform those based on

regular graphs [173].

check nodes

bit nodes

Figure 4.18: The hipartitesgraph for.the (10,5) LDPC code

4.3.1 LDPC decoding algorithm

The decoding of LDPC codes is based on sum-product algorithm (SPA) [24,26], or message
passing (MP) algorithm, which iteratively updates the a posteriori probabilities of the bit

nodes. We first consider the message passing for the check nodes. Fig. 4.19 is a check node

X X, X X,

1

Figure 4.19: The check node with degree d

with d edges, and each edge corresponds to a variable in GF(2). The constraint set for the
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node is

Scj :{(S(Zl,xg,...,ﬁd)‘l’l—|—$C2+"'—|—$Cd:0};

therefore, the output message on the edge x; should be
fej—a;(Ti) = Peat(2i) = P(x1+ - + iy + Tig1 + - + g = ;)

Before deriving (4.51), we begin with the two variables condition:

P(l’l + To = O) = Pint(xl = O)Pmt(IQ = 0) + Pint(xl = 1)Pmt(x2 = 1)

= (1= p1)(1 = p2) + p1po,

where p; = Py, (x; = 1). Moreover, the above equation can be expressed as
2P(x1 + @ 20)=T=0(1 — 2p1)(1 — 2p»)

If we assume
= (1 —2p1)(1 —2p2)--- (1 —2p;)

=[] - 2m)

=1

the following probability will be

Hj+1:P(l’1+LL’2+"'+SL’j+1:0)

=P +xa+-- 42, =01 —-pjp)+Pl@1+xe+- -+, =1)pjin

=1Li(1 = pjz1) + (1 = 1L)pja
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(4.53)
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As a result, we can obtain

j+1
2041 — 1= (200 — 1)(1 - 2p;11) = [[(1 — 2m) (4.56)
I=1
from (4.54). By induction, we conclude that
d
I, = Play + 25+ -+ 24 = 0) = 1+H1—2pl (4.57)
7j=1

for any d > 1. The probability in (4.51) can then be written as

1 d
o= 0) = 5 |1 TT (1= 2t = 1) (4.58)
1=1,1%i
1 d
o= 1) = 5|1 TT (1= 2y = 1) (4.59)

where we let p; = iy, —.c;(7; = 1), the message from ;.

Figure 4.20: The bit node with degree d

For the message passing at the bit node as shown in Fig. 4.20, the node x; will receive

messages from the check nodes connecting to itself. Since the constraint set for z; is

S., = {z; = ala € GF(2)}, (4.60)
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the output message from z; to ¢; will be

d
Parey (2 = 0) = py - Pt = 0) [ #1e1as(2: = 0) (4.61)
1=1,l#j5
d
,U:cz-—>cj- (zz - 1) =Py Pznt(zz = 1) H Hep—a; (zz - 1)> (462)
I=1,l#5

and

d
oo =Y Pus(ri) [] termai(@i). (4.63)

I=1,l#j
The instrinsic probability Pj,;(x;) comes from the received symbol r;, and P, (x;) = P(r;|x;).
In the logarithmic domain, we can use the log-likelihood ratio to represent the messages.

However, the ratio is redefined to be

Pz =0)
L(z)=1n Bao—1) (4.64)
and
1
Alternatively, we can write
el@ — 1 L(x)
in which the hyperbolic tangent is
x e’ —1
tanh(=) = | (4.67)
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According to the definition of (4.64), the messages from check node ¢; to bit node x; can be

d
N 1+ Hl:l,l;ﬁi(l = 2y ey (11 = 1))
d
1-TI= 11¢¢(1 — 2y —c; (11 = 1))
1+ Hz L l#tanh(iml% (xl))

Lcj-—mci (xz) =1

=In (4.68)
Ly —c; (z1)
Hz 1z¢ztanh(l7l)
L:c —cC; (Il)
— 2tanh™! Y ).
anh ( H 4tanh( 5 ))
I=1,1#i
Note that the inverse hyperbolic tangent
1.1
tanh'(y) = = In -ty (4.69)
2 11—y
is applied to the above equation. We further define another function for x > 0:
1 o
U(z) = @) = lng s ——= —In(tanh(2)), (4.70)
and decompose the following funetion
d d
L:cl—>cj- (Il)
T et 2 T 4,
I=1,1#i 1=1,1#i
d d
= ( H sgn(Al)) exp( Z 1n|Al|)
I=1,l#i I=1,I#i
d d
‘L:v —cj ($l>|
= ( H Loy, xz))) exp( Z lln[tanh(lf)]
I=1,1#1
(4.71)

Lxﬁc (@ ))

because the sign of A; = tanh( is consistent with Ly, .. (z;). Moreover, we also
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note that for any integer s

—1)°¥ N (z) =1 4.72
(D) = e (472
If we let
d
. |L$l—>0j(xl)‘
r=— ) 'ln[tanh(f)] (4.73)
I=1,1i
n (4.72), (4.68) can be then rewritten as
b = ( TT st )57 (= 3 a2 0200 )
v 1=1,l#14 e I=1,1#1 2 4.74
d d ( ° )
= ( H Sgn(Lml—wj(xz ) ( Z ‘;[] :pl—>cj .CL’[ |))7
I=1,1#i I=1,1£i
where we use the function ¥(z) = —In(tanh(%)) again. As compared with (4.68), the

multiplications has been converted.to the additions.in (4.74). The messages from bit node

x; to check node ¢; can also be expressed as

~—

pb . PZ’ﬂt( )Hl 1 l;ﬁ] II"LCl_>-'E7,( Z = 0
o * Bigilas=I1) Hl 1,1£j fe—z (T =1

Lgi—c;(7;) = In

~—

(4.75)

d
mt xz + E Lcl—ml xz
1=1,l#j

In the AWGN channel with variance 202 = Ny/Fj, the value L;,(z;), also termed channel
value, can be obtained by

() =In P(ri|z; = +1) e

= Ler,, (4.76)

assuming 1 is mapped to —1, and 0 to +1.
Fig. 4.21 shows a bipartite graph for decoding an (N,K) LDPC code,and M = N — K.

The messages on the ordinary edges between bit nodes and check nodes are initialized to
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Figure 4.21: Graph representation of LDPC decoding

zer0, Le . (x;) = 0 for all [ as well as ¢ = 0 ~ (N — 1). Moreover, the received sequence
r = (r9,71,...,7n_1) provides the channel values L.r; for the bit nodes. Beginning with

iteration number J = 1, we can summarize the iterative LDPC decoding as follows:

1. The messages from check nodegsto bit nodeés.is updated by

L (w:)'= Liw(ws) + Z Loy (1), (4.77)
le®(i)\{j}

where the set ®(i) denotes the indexesof all the check nodes connecting to x;.

2. For each check node, we calculate the messages conveyed to the bit notes with

Loto) = TT senlbue) )0 (Y 0Lagtol)). @79

1eB()\{i} 1eB(H)\{i}
The set B(j) comprises all the indexes of the bit nodes that involve the check node c;.

3. The a posteriori information for the codeword symbol z; is obtained by

Lpost(xi) = LGt(xz) + Lewt(xi> = LGt(xz) + Z Lcl—mvi (xz> (479>
le® (i)
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Notice that

Leat(1:) = Y Lopa, () (4.80)
)

led(i
is the extrinsic information from the LDPC decoder. Finally, we use Lyost(2;) to decide

the codeword symbols; that is,

1 if LpOSt(Ii) <0
£ = (4.81)

0 lf Lpost(xi) Z 0

4. If the parity check is satisfied

x-H' =0, (4.82)

or the iteration number J reaches the predefined value .J,,, the LDPC decoding is com-
pleted, and the estimated codeword X .= (Zg, Z1,...,Zy_1) is outputted. Otherwise,
the decoder repeats the steps.l~ 3 for.the next decoding iteration, and J is increased

by one.

The message passing algorithm ofi the bipartite graph Fig. 4.21 with cycles becomes sub-
optimal due to the loss of the independence criteria. Nevertheless, the message passing
algorithm in most practical designs can provide precisely decoding. Generally, the length of
the shortest cycle in a graph is referred to the girth [150] of the graph. The error performance
of the graph based iterative decoding is significantly affected by the girth, and a large girth
will improve the decoding quality [174-178]. The design of parity check matrices should
maximize the girth for better decoding performance.

The implementation of (4.78) is the most complicated part of the LDPC decoder and

often accomplished by the table look-up approach [65]. An alternative is the sub-optimal
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expression for (4.74) [144]:

L) % ( TT sty o)) _gpin (Lo, () (483)

e 1€BU)\ (i}

The approximation in (4.83) is based on the property of W(z) shown in Fig. 4.22. The

smaller | Ly, .., (z;)| will dominate the summation in (4.78). If

Lpin(z;)| = min  (|Ly . (7)), 4.84
Lial@)| = it (1Lae, (@) (4.89)

we can approximate the summation

> (| Ly, (@)]) = V(| Lynin (2:)]) + 6
1€B(j)\{i} (4.85)

and the residual § > 0.

Figure 4.22: Plot of the ¥(z) function

The decoding procedure based on (4.77) and (4.83), referred to min-sum algorithm [156],
is more practical for implementation because of its simplicity, although there is a perfor-

mance degradation at low SNR conditions. The more accurate approximations, including
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table look-up [179] and normalization [180-182] approaches, have been proposed to enhance
performance with an additional correction process. A further improvement using dynamic

normalization technique is reported in [183].

4.3.2 LDPC decoder

An LDPC decoder mainly consists of the message memory keeping messages on the edges,
the bit node unit (BNU) that computes (4.77), and the check node unit (CNU) that per-

forms (4.78). The management of the message memory depends on the structure of the parity

wal) LFC (%) L . (x)
BNU Message CNU
memory
L@ L .

Figure 4.23: The LDPC decoder architecture

check matrix H, the maximum decéding throughput, and the parallelism in the computa-
tional units. The implementation ranges from the partially parallel architectures [66, 184]
to the fully parallel ones [65]. Among the partially parallel designs, the serial implementa-
tion using a single processing element has a simple memory architecture, but the decoding
throughput is limited. More processing elements are necessary for higher decoding speed;
however, more memory bandwidth or access ports are required, leading to much critical
memory designs in terms of area, timing, and power consumption. Furthermore, the ran-
dom structure of parity check matrices also complicates the message processing schedule.
Th fully parallel design assigns N BNUs and M = N — K CNUs for parallel computation.
However, the randomness of bipartite graph causes complicated signal connections during

circuit implementation and requires more area for signal wires. The fully parallel implemen-

160



tation in [65] demands large area to accommodate interconnections, leading to only 50%
chip density. The partially parallel architecture with the high level parallelism also suffers
from the same complication. Moreover, the critical path delay induced by global routing
decreases the maximum achievable throughput.

Each component will be detailed in the follow-up descriptions. We first consider the

1L, ()] —] P (O w @ 1L, ()]

L, (5) | —] P | 2Ol W) L, ()]
—{ W(x) | | oY e—

1L, () —] 9@ [ XY@ [l L )

Figure 4.24: The CNU architecture based on the table look-up approach

CNU that implements the function (4.78)mpkFig. 4:24 shows the architecture that realizes
the message magnitude calculationsifor the bit nodes-, xs, ..., s connecting to the check
node ¢; with the degree d. The ¥ (z) andW—"{x)-blocks are look-up tables (LUT) that maps
their inputs to the ¥ function and itsinverse W= L" The resolution of LUTs determines the
decoding performance, but also the table sizes. Generally, more resolution can result in more
accurate messages, however, the table size increases exponentially with the resolution. The
sign operation in (4.78) can be implemented with exclusive-or function, which is illustrated
in Fig. 4.25.

Alternatively, the CNU can be designed by a sorter that search the minimum magnitude
according to the sub-optimal function (4.83). As shown in Fig. 4.26, the sorter searches

for the minimum (min) and the second minimum (min2) values among the magnitudes
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sgn(L, _, (x)

sen(Z,,_, (x,))

\
sgn(L,, . (x,)) %sgn@g L (5))
) o—
Syl

=

[

sen(Z, ., (x,)

sen(L,,_, (x,)

Figure 4.25: The sign operation in CNU

| )clﬂc/(xl)|_> _;l_' Lcjaxl(x1)|
1
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—
L, G)l— “2—% LG
min index — J
vk
Decoder 4

Figure 4.26: The CNU. architeeture based on the sorter

|Lg;—c;(7;)] for i =1 ~ d [66]. Assume 1 < k < d, we can also write

Linin = Ly (wr) | = min (| Ly, (2:)])

i=1~d

Lnin2 = z:lIrIvlilg#kﬂsz_)cJ (xl)D?

and the magnitude outputs for i = 1 ~ d will be

Lonin i i 4k
‘Lc]‘—nvi(xi” =
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It is considerably difficult to achieve the sorting function for many parallel inputs. Therefore,
we divide the inputs into groups of four, and search the minimum and the second minimum
among the four values. Fig. 4.27 is an example with 16 inputs. The CMP-4 cell will identify
the two smaller values from its four inputs. After the first compare operations, we have four
minimum values from which the CMP-4 can be applied to find the final minimum and the
candidates for the final second minimum. The output second minimum is finally picked out

with a two-input comparator (CMP-2).

iy iy Ly

CMP-4 || CMP-4 || CMP-4 || CMP-4

min min2 min min2 min min2 min min2
—tr
- Y v v v l Yy VvV V¥
CMP-4 || CMP-4
min min2 min
CMP-2
min
min min2

Figure 4.27: The sorter.architécture with 16 inputs

The message memory unit (MMU) structure depends the parallelism of processing ele-
ments as well as the decoding throughput. Fig. 4.28 is the parallel decoder architecture with
N BNUs and M CNUs that perform parallel processing for all the bit nodes and the check
nodes. Note that the number of data read or written from the memory equals to the edge
number of the bipartite graph or to the number of 1s in the parity check matrix H. For
better performance, the code is often designed to have large block length N; if H has a fixed
column degree d, the edge number during decoding will be NV x d. The huge interconnections
between the memory and the computational units cause the difficulty in signal routing.

Fig. 4.29 shows a partially parallel decoder where much less BNUs and CNUs are al-
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Figure 4.28: The fully parallel LDPC decoder

Message
memory

viy oy

crossbar switch

CNU

Figure 4.29: :The partially parallel LDPC decoder

located for computations, leading %0 less area and much less signal routing. Nevertheless,
the operations of the BNU and the CNU"have message dependency and therefore should
work separately. In each decoding iteration, most of the messages from the BNUs should
be written into the memory before the CNUs can proceed, leading to some throughput
degradation.

For the partially parallel design with high level parallelism, we may face the large signal
connections that enlarge the chip area and decrease the decoding throughput. We provide the
memory management approach as well as the architecture for the partially parallel decoder
with high decoding speed. The M x N parity check matrix H is divided into four % X %

sub-matrices: hqgg, ho1, h19, and hi;, which is shown in Fig. 4.30. The sequence of data

processed by CNUs are {hqo, ho1} and {hig, h11}, whereas the sequence of data in BNUs
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Figure 4.30: The sub-matrices of H

should be {hqo, h1o} and {hg1, hi1}. Fig. 4.31 illustrates the main structure of the LDPC
decoder, containing M /2 CNUs, N/2 BNUs, an input buffer connected to BNUs, and two

dedicated message memory units (MMU).

Input Buffer

| buro | buft | b2 | buf3 l‘ﬂ

.f
hor (p{ hoo "} i '
. ) Y

1

MMU-0

_________________

Figure 4.31: The partially parallel LDPC decoder with N/2 BNUs and M/2 CNUs

MMU is a storage unit that keeps message values in the bipartite graph. With two
MMUs, the decoder in Fig. 4.31 can achieve higher decoding speed due to less critical path
delay and parallel decoding of two distinct codewords. Each MMU that is divided into four
sub-blocks according to Fig. 4.30 receives data from one computational unit and delivers

them to another after reordering. As described below, the memory management strategies
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switching data sequence between BNU and CNU include multiplexers and register exchange

(RE) schemes, which have different level of routing complexity.

1. Multiplexer (MUX):

MMU-1 MMU-0
LA B C D A B C D
L hoo fL kot [ Buo Bl 2na | oo B hot f Ao | [ |
Lhoo 1] hor {l kot J{ Ay | [oo ) [ 1] o B ooy |
1 hoo || huo L ou | [ na | { koo f ao | Bor §| A |

\i;/ \ii/ . | oo || o | kot A i [oo | o F o |{ 7y |

iteration #i

1; B C D E: 100 [ o1 |1 o A | { oo [ hor F Fno | [ A |
I ————— 1 & Do ik} Droo) oo o f |
{} Y Ocodeword-0 [Jcodeword-1 ] output block

(a) MMU-0 and MMU-1 (b) Timing diagram

Figure 4.32: The architecturesdnd timing diagram of MUX-based MMU

MMUs capture data from datapath and.reorder them by multiplexers as shown in
Fig. 4.32(a). The detail operation-is‘also-illustrated in Fig. 4.32(b), where MMU-0
and MMU-1 interchange two eodewords iteratively without stalls. Hence the decoder
can achieve the maximum throughput based on the allocated computing resources.
What should be noted in Fig. 4.32(a) is the coherent interconnection and complicated
data bus between all four sub-blocks and datapaths. The data inputted B and C should
be switched since either hg; or Ay will get into these two sub-blocks. Furthermore, the
output of MMUs can be {A B}, {C,D}, {A,C}, or {B,D} at different time instance.
As a result, the data switching causes a large number of signal connections as well as

high routing complexity.

2. Four blocks register exchange (RE4):

Fig. 4.33(a) shows the organization of sub-blocks based on the proposed RE approach.

Since data movement is accomplished through register exchange, the multiplexers can
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Figure 4.33: The architecture and timing diagram of RE4-based MMU

be reduced by exchanging data among four sub-blocks. Fig. 4.33(b) also shows a detail
timing diagram about the data flowsin MMUs. The outputs of BNUs or CNUs will be
fed into sub-blocks B, C and D, whilé 8ub=blocks A and C export data after reordering.
It can be noticed that sub-block A receives data from either B or D instead of MMU
input. The output of MMU is { A,CFwithout any data switching. Consequently, many

multiplexers are eliminated to achieve a.much simpler signal wiring.

. Five blocks register exchange (RE5):

The register exchange scheme based on five sub-blocks is proposed in Fig. 4.34(a) to
achieve a multiplexer free data bus between MMUs and datapaths. The multiplexer in
Fig. 4.33(a) can be further reduced by inserting sub-block E to MMU. Note that hgg
and hy; in D of the RE4-based MMU (Fig. 4.33) have been dispatched to D and E of the
RE5-based MMU to avoid data switching. Therefore, the message values associated
with the four sub-matrices of H can be individually captured by different sub-blocks,
B, C, D, and E. Similarly only A and C serves as outputs of MMU. Fig. 4.34(b) also

illustrates the detail operation of RE5-based MMU. The connection of MMUs and
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Figure 4.34: The architecture and timing diagram of RE5-based MMU

datapaths becomes immediate and simple as a result of the removal of multiplexers on

data bus.

In summary, with MUX or RE approach, the proposed MMU architectures not only store

message values but reorder the data sequence as well. Moreover, to lower routing complexity,

DTE Lo 3 e b2 deie 2 12l
the RE4 or Lot
x 10°
—100%
I oate count 0
451 [ Tnumber of interconnection | |
416,298 [—Jrouting congestion overflow

4.05- 4

3.6 355,650

319,260

3.151 303,012 b

271 hl
2.25F - -50%

1.8F ~36.8% b
1351 130,572 i

108,012
091 hl
-10.57%
0.45+ i
-0%
0 i -0%
MUX RE4 RE5

Figure 4.35: The comparison of different MMU architectures

Fig. 4.35 shows a comparison among the three MMU architectures, assuming the mes-

sage value is 6 bits. The gate count and interconnection are measured only from MMU-0
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and MMU-1, whereas the routing congestion overflow is investigated through implementing
the decoder within a 25mm? 1P6M 0.18-um chip. The negative value in routing congestion
overflow indicates more chip area (> 25mm?) is demanded to accommodate more signal
wires. As compared with the MUX-based approach, the RE4 and RE5 based architectures
have a 15% ~ 23% decrease in gate count due to the elimination of multiplexers. Further-
more, there is a significant drop of interconnections in RE-based approaches; as a result,
the routing congestion can be dramatically improved. This enhancement will facilitate the
circuit implementation for the RE-based MMU. The solution to switch data sequence also
enables the decoder to process two codewords concurrently without stalls.

Input buffer is also a storage component that receives and keeps channel values for
iterative decoding. According to (4.77), the BNUs require channel values L;,;(x;) in every
iteration, and the input buffer in Fig. 4.31 connected to BNUs, will provide L;,;(z;).

Based on the matrix partition of H, four % X % sub-matrices, the codeword should be
separated into two parts of N/2 symbols; eomsequently, codeword-0 is divided into C00 and
C01, while codeword-1 is divided=into C10 and C11. Moreover, according to the codeword
segmentation, this buffer keeping two ‘codewords: shotld be partitioned into four segments,
buf-0, buf-1, buf-2, and buf-3. In: the propesed decoder architecture, C00, C01, C10,
and C11 should be delivered to BNUs at different time instance. The buffer management

strategies will be presented as follows.

1. Multiplexer:

Fig. 4.36 shows the MUX-based input buffer where each buffer segment contains 600
channel values. The channel values should be hold in the buffer during iterative de-
coding, and different segment is delivered to BNUs through four-to-one multiplexers.

Under this organization, there is a close link between all four buffer segments and

BUNSs.
2. Register exchange:
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Figure 4.36: The architecture of MUX-based input buffer

Fig. 4.37 shows the buffer structure of RE-based approach and the timing diagram of
data exchange. During the initialization, the codewords are serially shifted into bu f-0
and conveyed to the other buffer segments while bu f-0 is full. Each buffer segment will
exchange its contents with bu f-0 when the decoding proceeds. The exchange sequence
is always {E1,E2,E3,E1,E2 E3,...} where Ei is the exchange operation between bu f-i
and buf-0 . In this scheme, since only buf-0 is connected to BNUs, the multiplexers

can be removed to simplify the signal connection.
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(a) Input buffer (b) Timing diagram

Figure 4.37: The architecture and timing diagram of RE based input buffer

3. Register shifting:
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In order to reduce the interconnection of buf-0 in Fig. 4.37(a), a register shifting

(RS) based architecture is proposed in Fig. 4.38. buf-0 is a shift register that serially

receives the channel values and bu f-3 transports the associated channel values to BNUs.

Channel values of two different codewords are shifted within the four buffer segments

as shown in Fig. 4.38(b). Therefore, a much simpler signal connection is achieved.

buf-l || buf-0
Y )
buf-2 > buf3

(a) Input buffer

-
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Chanpel
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buf-0 buf-1 buf-2 buf-3
[co0]

[LCOT. [ Coo |G
[C10. ][ cot |[ Coo ]
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L Ci1 |[ c10 |[ col || €00

data shift-in [__] codeword-0
B [_] codeword-1

(b) Timing diagram

Figure 4.38: The architecture.and timing diagram of RS based input buffer

With the 0.18-um standard cell library [135], Fig. 4.39 compares the input buffer struc-

tures with N = 1200 and 5 bits channel values.

The RS-based architecture can achieve

about 20% gate count and 30% interconnection reduction as compared to the MUX-based

buffer.
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Figure 4.39: The comparison of different input buffer architectures
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Figure 4.40: The H with (x + 1)? sub-matrices

The register exchange (RE) approach for the H with four sub-matrices has been pre-
sented. When less parallelism is required, the RE methods can also be generalized for the H
with (z 4+ 1)? sub-matrices as shown in Fig. 4.40. The corresponding operation of the MMU
capturing data from the BNUs and delivering data to the CNUs is illustrated in Fig. 4.41.
The MMU is also partitioned into (x + 1)? sub-blocks labeled by M;; where ¢ and j are
integers, and 0 < 4,5 < x. In Fig. 4.41, the MMU keeps the messages of the codeword-0,
M,; = hy; for all ¢ and 7, and serially'shifts,eut. the messages in the vertical direction. At the
same time, the outputs of the BNUsare also shifted into the MMU in the diagonal direction.
In this scheme, only Mgy ~ My, are conhected-to the CNUs while all M;, and M,; should
be linked with the BNUs. Moreover; there are many multiplexers exist between the MMU
and the BNUs. For example, M,; needs a 2-to-1 multiplexer since two inputs, h_1)0 and
h,1 are possible. In general, for 1 <4, j < z, the sub-blocks M;, and M,; require (i + 1)-to-1
multiplexers and (j + 1)-to-1 multiplexers respectively.

Similar to the RE5 based approach, the multiplexers between the MMU and the BNUs
can be further removed by replicating the sub-blocks connecting to the BNUs. According to
the input number of multiplexers, each M, should replicate 7 copies, and each M,; needs to

have j replicas. Therefore, the extra number of sub-blocks to eliminate multiplexers is

A, = (2¢)+x+(ij) (4.89)
= 7? (4.90)
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Figure 4.41: The RE operation for the MMU with (z + 1)? sub-blocks
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Figure 4.42: The MMU operation for x = 2

Note that in (4.89) the first summation comes from the sub-blocks M,; ~ My_1), the x
from M,,, and the second summation from M_), ~ My,. Hence the overhead increases
with the growing x. In addition, we provide an example for x = 2 in Fig. 4.42 at different
time instances, t = 0 ~ 3. The MMU initially stores the information of codeword-0, and the
operation proceeds according to Fig. 4.41, At t = 3, the messages from the BNUs are all

shifted into the MMU.
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Chapter 5

Applications of Channel Decoders

5.1 Universal Reed-Solomon decoder

The Reed-Solomon code is well acceptable in many storage applications and digital com-
munication systems for its excellent burst error correction capability. Those systems have

different code specifications depending on the performance requirements. Table 5.1 lists

Table 5.1: RS code specifications in various applications

Application Code specification
DVB-T [185], DVB-S [186] (204,188)-RS code over GF(2%)
Annex-A; C | (204,188) RS code over GF(2°)
ITU-T J.83 [187] Annex'B | (128,122) extended RS code over GF'(2")
Annex D || (207,187) RS code over GF(28)
G.975 FEC [188] (255,239)/RS code over GF'(2 )
Flash memory (526,518) RS code over GF(2'0)
DVD row (182,172) RS code over GF(2%)
column (208,192) RS code over GF(2%)
Blu-ray Disc LDC (248,216) RS code over GF(2%)
BIS (62,30) RS code over GF(2%)

some applications for RS codes. We can find that the differences are not only in the code
rates, but in the finite field definitions as well. Therefore, based on the universal finite
field arithmetic, we investigate the cost efficient RS decoder that can meets various system
specifications.

In Table 5.1, since most RS codes are over GF(28), we define the universal (n,%k) RS
decoder that supports n < 255, t < 16 with or without erasures, and GF'(2™) with m < 8

as well as any irreducible polynomials.
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Fig. 5.1 is the universal RS decoder based on the Montgomery multiplication algorithm
and look-up table based divider [38]. The dual-bank static RAM (SRAM) of size 1k bytes

is embedded to buffer four received codewords waiting for being corrected. In the syndrome

FIFO
> 512x8 512x8 ‘/—I_—\ -
SRAM SRAM ” ”
error value
~ Error value
W(x) | evaluator
S,~8 Key
Syndrome 1T 4 2568
7 cglculator » equation SRAM
j X A _
J Solver A(x) a’_i/\'(a'_l)
T 7 Chien
Erasure fla Erasure u search
% 1,+8 /,+8
generator a _~a

Figure 5.1: The universal RS decoder architecture

calculator, there are 16 syndrome cells that concurrently compute syndrome values S; ~ Sig,
which is shown in Fig. 2.5. In the case of = 16 with erasures, the 16 syndrome cells are
sufficient, however, they can simultaneously-supports the ¢ = 8 error only decoding. Since
the key equation solver is designed to aceommodate the error location polynomial with degree
16, we can modified the syndrome calculator for decoding at most 16 errors without erasures
(t = 16). According to (2.71), only the FG; and the FGy need to be configured for calculating
517 ~ 532. Consequently, 51 ~ 516 are first calculated form the received codeword that is
also written into the FIFO memory, and Si; ~ Ss are subsequently obtained from the
same codeword read form the FIFO memory. The erasure generator produces the erasure
information a/'*® ~ al“*® according to the erasure location in the codeword. Generally, we
can use the cell in Fig. 2.6 to generate these erasure information delivered to the key equation
solver. Based on the Berlekamp-Massey algorithm, we implement the key equation solver to
determine the Forney syndrome polynomial T'(z), errata location polynomial A(z), and the

error value polynomial &(x). As shown in Fig. 2.7, the design is the inversionless decomposed
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architecture with only three universal finite field multipliers [33]. In the Chien search module,
we use the architecture in Fig. 2.8 that not only checks the roots of A(x) = 0, but also
generates o *A’(a™") for error value evaluation. Finally, according to (2.91) or (2.92), the
error value evaluator will estimate the error values e, and the erasure values e, with the
architecture in Fig. 2.9. In the present RS decoder, the divider in Fig. 2.9 is based on the
table look-up approach; therefore, we allocate a 256 x 8 SRAM for storing the inversion table
that is created by the a8 and the o' generators (see Fig. 2.10).

The universal RS decoder is implemented with the standard 0.18-pym 1P6M CMOS pro-
cess and measured to achieve the maximum 160MHz clock rate at the supply voltage 1.62V~

1.98V. The chip summary is also listed in Table 5.2. If the chip works in the GF(2®) mode,
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Figure 5.2: The 0.18-pm universal RS decoder microphoto

Table 5.2: The universal RS decoder chip summary

Technology 0.18-pm 1P6M CMOS
Chip size 2.25 mm?
Core size 1.21 mm?

Gate count 46.4k

8k bits (FIFO memor
Embedded SRAM 2k bits ((Inversion tabl?)
Supply voltage 1.62V~ 1.98V
Clock rate 160MHz
Power consumption || 68.1mW (1.8V and 160MHz)
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the maximum decoding throughput is 8bits x 160MHz = 1.28Gb/s.

We also conduct an experiment based on the 0.13-um 1P8M CMOS process. After static
timing analysis (STA), the universal RS decoder in this experiment can achieve the maximum
300MHz clock rate while considering the worst speed corner and the coupling noise among
signal wires at the 1.02V supply. The core area is about 0.36mm?, and the average power
consumption is 20.2mW, assuming 300MHz clock rate and the 1.2V supply voltage. We
also compare different RS decoder implementations in Table 5.3. Compared with other
approaches, the proposed design has more flexibility while still has high decoding speed.
The decoder in [36] applies the serial architecture to achieve the universality; hence, the
throughput is limited. Notice that the gate count of the present decoder is also comparable

with other single mode or multi-mode decoders.

Table 5.3: Comparison among RS decoders

Design [189] [190] [36] Proposed | Proposed
Technology 0.25-pm (20.35-pm | “0:25-um 0.13-pm 0.18-pm
(n, k) single .| variable | “variable variable variable
t 8 1~38 1~8 1~16 1~16
Erasure No No No 1~16 1~16

GF(2™) m =8 mE=8Tm=1~8m=1~8|m=1~38
p(z) single single variable variable variable

Max. throughput | 1.6Gb/s | 800Mb/s |~ 48Mb/s 2.4Gb/s | 1.28Gb/s

Gate count 21k 34k 44k 54k 46k

We present a universal architecture for the error and erasure decoder. The proposed

architecture can accommodate variable codeword length, correctable errors , different finite
field degrees, and different primitive polynomials. Furthermore, the proposed decoder can
support erasure correction without increasing any finite field multipliers. In summary, the

decoder is not only flexible but cost efficient as well.
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5.2 Low power Viterbi decoder for the IEEE 802.11a
WLAN

The present Viterbi decoder targets the WLAN system specified in IEEE 802.11a [129].
Based on the orthogonal frequency division multiplexing (OFDM) and the forward error
correction (FEC) coding, the system is able to transmit data with data rates up to 54Mb/s.
Both phase-shift keying (PSK) modulation and quadrature amplitude modulation (QAM)
are included to provide various data rates listed in Table 5.4. The FEC coding employs rate

1/2 convolutional encoder
GD)=[1+D24+D*+ D5+ D% 14D+ D?>+ D3+ DS | (5.1)

and derives higher rates from it by puncturing. The design signal-to-noise ratios (SNRs) for
FEC are the targets to achieve a packet error rate (PER) of 10% in additive white Gaussian

noise (AWGN) channel. As the réquirement-of data rates increase in wireless applications,

Table 5.4: Transmassion modeés of the' IEEE 802.11a WLAN

Data rate (Mb/s) | Modulation | Code rate{R) | Design SNR for FEC (dB)
6 BPSK 1/2 1~2
9 BPSK 3/4 3~ 4
12 QPSK 1/2 4~5
18 QPSK 3/4 6~ 7
24 16-QAM 1/2 9~ 10
36 16-QAM 3/4 13~ 14
48 64-QAM 2/3 17~ 18
54 64-QAM 3/4 18 ~'19

the power consumption becomes an obvious design issue in system-level integrated circuit.
Therefore, we explore the system level behavior to remove redundant operations and achieve
a better system architecture in terms of power dissipation and complexity.

Fig. 5.3 shows the architecture of the proposed design. The de-puncture unit can sup-
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Figure 5.3: Block diagram of the proposed Viterbi decoder

port various coding rates defined in [129]. The BMU calculates the distance between the
received symbols and codewords on the branchesz.As illustrated in Fig. 3.23 and Fig. 3.24
the 64 parallel simplified MCSAs perform lcomparison. among candidate paths to determine
survivors and compute the corresponding path metrics. The SMU based on the k-pointer
even algorithm with k=3 is constructed by the 6-bank memory architecture [126]. Each
memory bank equips a state buffer which retains the state sequence that would probably be
reused. The memory management unit (MMU) governs the operations of SMU, including
the path merging and path prediction operations. The comparator (CMP) computes the
minimum path metric and outputs the corresponding state to the prediction unit as well as
the TB unit. The prediction unit will generate a possible state sequence to increase buffer
reuse efficiency.

In the BMU, we have to minimize the quantization loss in terms of hardware cost,
increasing linearly with the quantization bit number. The quantization level and stepsize
vary with modulation types and channel conditions. For different quantization levels and

modulation types, Table 5.5 summarizes the performance improvement in terms of SNR
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over the hard decision decoding. All of the quantization schemes are set to be uniform

Table 5.5: Improvement of soft-decision Viterbi decoder compared to the hard decision
decoding

8-level | 16-level | 32-level
BPSK 1.7dB | 1.9dB 2dB
QPSK | 1.7dB | 1.9dB 2dB

16-QAM || 2.3dB | 2.87 dB | 2.96dB

64-QAM || 2.2dB | 2.6 dB | 2.75dB

quantization and optimal stepsize [128]. While considering the indoor multipath channel,
we use the Rayleigh fading with a root mean square (rms) delay spread of 50ns. Fig. 5.4
shows the simulation results of two extreme cases. Note that there are slight improvements
from 8-level to 16-level in BPSK case and from 16-level to 32-level in 64-QAM case. In order
to achieve a good compromise between performance and complexity, 16-level soft decision

will be our choice.
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Figure 5.4: Simulation results of the soft decision Viterbi decoder in multipath channel

The overhead that implements the buffer and additional control circuit in the SMU is
less than 6%. Since the maximum truncation length is set to T' = 64, each bank sized to

32 x 64 bits contains a 38 bits buffer that reduces a lot of memory read operations. The
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reduction of memory access in the 54Mb/s mode and the AWGN channel is presented in
Fig. 5.5. In the conventional SMU, the memory access number is constant. On the other
hand, in the proposed SMU the number of memory read operations degrades as the channel
condition becomes better. If the SNR is grater than 17dB, the average memory access will

be dominated by writing operations.
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Figure 5.5: Comparisen of the memory access operations

The decoder is implemented and fabricated in the 0.18-um 1P6M CMOS process. The
chip shown in Fig. 5.6 has been measured and summarized in Table 5.6. The core size
is 3.06mm? containing 49k gates and 12k bits embedded SRAM. With the 1.64V ~ 1.98V
supply, the chip is measured to work at the 100MHz clock rate, which is equivalent to the
75Mb/s decoding data rate when R = 3/4. Fig. 5.7 shows the measured power consumption
in terms of different data rates listed in Table 5.4. The conventional data in Fig. 5.7 is
obtained from this chip with the path merging and path prediction functions being turned
off. The more detailed information is illustrated in Fig. 5.8 where 54Mb/s data rate is
measured at SNR=19dB. The increased power dissipation in clock tree and CMP unit is

due to the additional buffer and the computation of the minimum path metric. The power
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Figure 5.6: Microphoto of the Viterbi decoder test chip

consumption which varies with the channel condition has a 30%~40% reduction as compared

to conventional designs.

Table 5.6: Th : ‘ der chip summary
Technology — 5 1P6M CMOS
Chip size ol = 5:62mm?
Core size A © 3.06mm?
Gate count P B EELAC 49k
Embedded SRAM = 12k bits
Supply voltage 1.64V ~ 1.98V
Clock rate 100MHz
Power consumption || 68mW at 1.8V (54Mb/s and SNR=19dB)

A high performance and power reduction Viterbi decoder is presented for the WLAN
applications. The modified CSA architecture reduces the hardware complexity as well as the
power dissipation. Furthermore, with the path merging and the path prediction features, the
memory access drops more than 70% on the average. As a result, the power consumption
decreases due to the reduced memory access operations. The proposed design not only
considers the error correction capacity, but also provides a high speed and power efficient

solution.
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5.3 A Turbo/Viterbi decoder for the 3GPP2 mobile
communication

In the third generation (3G) mobile wireless communication [63], both turbo and convolu-

tional codes are specified for high speed data and speech transmission. Higher data rates and
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larger block lengths in the turbo code indicate more design challenges due to large memory
size and bandwidth. On the other hand, the higher data rate requires much more memory
bandwidth, resulting in more design complexity and higher power dissipation.

The major concerns in building mobile wearable devices are the size and weight where
the battery is a large portion [191]. Thus, the key to reduce the battery size is the lower
power constraint. Low power designs of turbo decoders in [192-195] incorporate the early
termination of the iterative decoding for better channel conditions. In [196,197], the memory
blocks are optimized to achieve a significant power reduction. The sub-optimal approaches
that reduce the number of states or paths in trellis are also presented as power saving
techniques, but the performance becomes degraded. The turbo decoders with the block
length 5,114 are also reported in [58] and [60]. For 3G application, the integration of turbo
and Viterbi decoders is also reported in [58]. However, there is little research available on
the implementation of the large turbo codesdin 3GPP2 system [63].

We present a channel decoder that, integratés both the turbo and the Viterbi decodings
with the optimized memory organization as well as the low power dissipation. The decoder
is designed with a single SISO decoder architecture based on the Max-Log-MAP algorithm,
and the embedded interleaver is implemented with the modest memory size. It also features
a cache buffer to increase the bandwidth efficiency for the SISO decoder and reduce the
external memory access.

The trellis decoding structure of both decoder enables the resource sharing of the ACS
units and the memory units, leading to a area efficient architecture. In the Max-Log-MAP

algorithm, the forward metric and the backward metric computations in Fig. 3.52 should be

a(S") = maxfa(sy ) +3(S¢Y, S, ast Ty + (S8, 55 (5.2)

B(Sy”) = max[B(S5 ™) + 7S5, 557), B8y ™) + (5, 7)), (53)
which are ACS operations. Consequently, the Viterbi decoding algorithm that applies ACS
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computaitons to update path metrics can also utilize (5.2) or (5.3).

Fig. 5.9 shows the decoder architecture in the turbo decoding (TD) mode where the
active components are highlighted. The TD consists of three ACS groups for «, 3, and [y
recursions in Fig. 3.53, and each ACS group contains eight ACS units according to the turbo
encoder in (4.25). The SISO decoder processes three consecutive sub-blocks concurrently
for different strategies in the windowed MAP algorithm.

As shown in Fig. 4.15, the cache buffer require four data access ports for three read oper-
ations and one write operation. From the previous discussion, either the multi-port memory
or the high working frequency can provide sufficient memory bandwidth for the cache buffer.
However, the former has large area overhead while the latter would complicate circuit imple-
mentation. We use a hybrid cache solution where a dual-port memory works at the double
clock frequency to provide the quadruple-port function. Fig. 5.10 represents the cache ar-
chitecture where Since the data ports and BMUs are directly connected, the multiplexers
are eliminated, leading to less signal routingrecomplexity as well as power dissipation.

In the Viterbi decoding (VDJ mode, 256 states trellis decoding is implemented with
1/2,1/3, 1/4, and 1/6 coding rates. As'shown-in Fig. 5.11, The ACS-ov and ACS-f, that
contains 16 ACS units perform these' 256 ACS operations in 16 cycles. The memory for the
interleaver of TD is treated as the survivor memory. The traceback (TB) read operation is
performed separately from ACS operations due to the limited memory bandwidth and takes
additional two cycles based on the 3-point even algorithm [47,126]. The decode read follows
after the second traceback read and outputs a decoded bit. The decoding flow is illustrated
in Fig. 5.12. Averagely, to decode one data bit, it takes 19 cycles where the ACS units take
16 cycles to write new decisions, the TB read operation spends two cycles, and the decode
read operation needs one cycle. In a 100MHz clock rate, the Viterbi decoder can achieve the

maximum throughput of 5.26Mb/s.
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Table 5.7: Performance loss of fixed representations in turbo decoding

Format Input symbols Le(uy) a

R=1/2 | R=1/5 | R=1/5 | R=1/5
7.2 < 0.01dB | < 0.01dB | < 0.01dB | < 0.01dB
6.2 < 0.01dB | < 0.01dB | < 0.01dB | < 0.01dB
5.2 < 0.01dB | < 0.01dB | < 0.01dB | > 10dB
4.2 0.2dB 0.017dB 0.05dB > 10dB
3.3 < 0.01dB | 0.015dB 2dB > 10dB
3.2 0.2dB 0.02dB 4.3dB > 10dB

The fixed point representation of the quantities in the turbo decoder is determined from
the received symbols. We also use the notation n;.n; to denote the (n; + nys) bits quanti-
zation. Many different formats of input symbols were simulated in additive white Gaussian
noise (AWGN) channel and summarized in Table 5.7. The performance loss due to the
quantization is measured in terms of thesdighidlito noise ratio (SNR) at BER=2 x 107, and
the coding rate R = 1/2 is derived from R =.1/5:by puncturing [63]. In Table 5.7, we
first noticed that the 5.2 format s eptimal for both the R = 1/2 and the R = 1/5 cases.
Nevertheless, the 3.3 format is still suitable“for'the R = 1/2 code, but induces additional
0.005dB loss in the R = 1/5 code. In"erdertoreduce n; for L.(u;), o, and (3, we select the
3.3 scheme and deduced the other quantities form this format.

According to the upper bounds in (4.31) and (4.32), we know that both Aa; and A+, are
determined by L, (u;) which is the L, (u;) output from the other SISO decoder. The extrinsic
information L.(u;) also decides the memory size of interleaver and de-interleaver that occupy
a large chip area. Consequently, we first bound L. (u;) and optimize its range to reduce the
memory size. Table 5.7 shows the simulation results of different fixed representations for
Le(uy). Although the 5.2 format has the least loss, the 4.2 format will be chosen to save the
memory size due to the large block length (N=20,730). As a result, L.(u;) is bounded to
+8 and the input symbols are bounded to +4; in addition, the range of Aay and A~; can be

determined as 96 and 40, and |L(u;)| < 136 based on (4.35), indicating that o and v require
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Table 5.8: Summary of fixed representation in turbo decoding

quantities

Input symbols

L (uy)

«

s

Y

width

6(3.3)

6(4.2)

8(6.2)

8(6.2)

8(6.2)

n; = 7 and n; = 6 respectively. For «, as shown in Table 5.7, the 6.2 format is sufficient due

to the looser bound in the noisy channel [170]. The backward metric 3 can also be analyzed

and will obtain the same results as «. Table 5.8 summarizes the fixed representations of

quantities in the turbo decoder. As shown in Fig. 5.13, the performance loss is 0.06dB in

the waterfall region and 0.5dB when BER=2 x 1075,
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Figure 5.13: The BER performance of the channel decoder

The performance of the Viterbi decoder is determined by the precision of input symbols

and path metrics. For the quadrature amplitude modulation (QAM), four bits or more are

required to minimize the performance loss [47]. The word length of path metrics depends on

the code rate R, the precision of input symbols, and the trackback length T'. For the code

with constraint length K = 9, the value of T' should be 32 ~ 64, depending on the channel

condition [100]. Hence, with the modulo normalization scheme [131], the four bits soft input,
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Table 5.9: Performance loss of different path metric precisions
Number of bits 13 11 10 9

Loss(BER=2 x 107%) || ~ 0dB | ~ 0 dB | ~ 0dB | 0.4dB

R =1/6, and T = 64, the word length path metrics should be 13 bits. Nevertheless, the
simulation results in Table 5.9 show that 10 bits are sufficient in the AWGN channel. We
also provide the performance the fixed point Viterbi decoder in Fig. 5.13.

The decoder is implemented with the 0.18-um standard CMOS process. In the TD mode,
the sub-block length Ty, is set to 20, and two clock domains are used in the memory and
the datapath respectively. Since the double clock rate provides the memory with higher
bandwidth, the single-port memory is sufficient in the proposed design except the cache
memory.

The specification report shows the dual-port memory in Fig. 5.10is 0.103mm?, leading to
30% area reduction from Fig. 4.15 whese area’is 0:146mm?. Two SP-SRAMs of 20,730 words
are included in the decoder for the systematic symbols and the extrinsic information. The
input and the output ports are iniplemented by the timie division multiplexing approach that
avoids the use of multi-port memories™ As compared with DP-SRAM design, the proposed
SP-SRAM approach has only 1/3 area with the double clock rate.

In Fig. 5.14, the chip size is 11.56mm?, and the core size is 7.29mm?. The total gate count
is about 115k including the path metric memory for the Viterbi decoder. Three SP-SRAMs
and one DP-SRAM are embedded in the chip with the total size of 251.64k bits. Table 5.10
summaries the chip features where the maximum data rate is obtained from the post-layout
simulation and verified with the chip measurement. The chip has been tested at 100MHz
(50MHz in datapath) under the 1.60~1.98V supply and can provide the 4.52Mb/s turbo
decoding with six iterations and the 5.26Mb/s Viterbi decoding. In the 0.18-xm technology,
a 10% drop on the power grid voltage (IR-drop) will lead to 5% ~ 6% changes in timing [198].

For wearable device, the supply voltage will vary with the capacity of batteries. Therefore,
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Figure 5.14: The microphoto of the 0.18-pm decoder chip

Table 5.10: Summary of the decoder chip

Technology 0.18-pum 1P6M CMOS
Supply voltage 1.60V~ 1.98V
Chip size 11.56mm?
Core size 29mm?
Embedded SRA 4k bits
Supported = r the-turbo decoding
coding rate Ay 1/6 for Viterbi decoding
Maximum ‘ in the turbo decoder *
data rate 5.26Mb/s in the Viterbi decoder

L 6 iterations

the power integrity is also analyzed to insure functionality and timing with the non-ideal
battery property and IR-drop. Table 5.11 shows the analysis results, including IR drop and
electron-migration (EM) risk. The IR drop analysis make sure the transistors in this chip
will have proper supply voltage during operation. The worst operating voltage due to IR
drop is 1.603V while the supply is 1.62V. The EM risk is a reliability measure and defined as
the probability that chip will fail within ten years due to EM. The worst value is 1.35 x 107°
while the supply is 1.98V. The power distribution of the major blocks is also illustrated in

Fig. 5.15 where the TD is simulated with the N = 20, 730, six decoding iterations, the 16-
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Table 5.11: Power Integrity Analysis

Function | R | Type Supply Voltage
1.62V 1.8V 1.98V
Turbo . | IR drop 17mV 18.78mV 22.89mV
decoding ! 5 [ EM risk || 2.23 x 1076 | 4.46 x 107% | 1.35 x 1075
. | IR drop 5.39mV 5.97mV 7.59mV
S | EM risk || 1.99 x 1012 | 5.43 x 1012 | 5.67 x 10~
| IRdrop | 5.03mV 5.57TmV 7.15mV
Viterbi | * | EM risk || 1.12 x 1072 | 3.08 x 1012 | 4.38 x 10~
decoding?| | | IR drop 4.58mV 5.06mV 6.55mV
3 | EM risk || 3.10 x 1013 | 9.08 x 10~ | 3.03 x 10~
| IRdrop | 4.44mV 4.91mV 6.35mV
2 | EM risk | 1.97 x 1013 | 5.89 x 1013 | 2.46 x 10~
1 4.52Mb/s with 6 iterations
2 1Mb/s

QAM, and the input SNR of 1dB, while VD is simulated with the R = 1/6, the quadrature
phase-shift keying (QPSK) modulation, and the SNR=-2dB.

With 1.8V supply, Table 5.12-shows theé power consumption while decoding turbo and
convolutional codes, and table 5.13 summarizes the differences between the proposed de-
sign and other turbo decoder chips. The'energy efficiency is defined as the average energy
consumed per bit within each decoding iteration (nJ/b/iter.). For this decoder with six

iterations, the energy efficiency will be

83mW

6 3IMD/s — -A6nI/b/iter. .

In this section, we present a unified turbo and Viterbi decoder chip with less memory
usage and low power consumption. The memory size is reduced by data scheduling for the
interleaver and the single SISO decoder. Furthermore, the power consumption is improved

by the efficient memory design and the less data bandwidth for the codeword input. At the

194



50

4&
45 +
@ ™
40 [Jvp
35 -
SR
= 25.3
225 234
3
E 19.8
220
2 162
Z15 ¢
£
10 -
6.3 S
st 46 5
SISO Interleaver/  Cache h
Decoder SMU Buffer SRAM-a PMU TMU-VD Others
Figure 5.15: The power distribution of the major blocks
,-"'-F-u-' ""‘if“
3.1Mb/s data rate, the power consgﬁ:%ﬁo 83mW in decoding a turbo code with
o
the block length of 20,730. The ¢ Yé/li éﬂ%ﬁ& ni;d‘;.ﬁo work reliably with the wider supply
voltage range. 5:; ._.L’ - f-’.
1-* ’-“"'E?;J
Table 5.12: ia'% - mption of the de-
[ § | ]
coder chip

Mode || Data rate Power SNR
Turbo! || 4.52Mb/s | 121 mW | 1dB
mode || 3.1Mb/s 83 mW 1dB
1Mb/s 295 mW | 1dB
Viterbi?| 5.26Mb/s | 116.46 mW | 3dB
mode 1Mb/s 25.1 mW | 3dB

' R=1/5 and 16-QAM
2 R=1/2 and QPSK
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Table 5.13: Comparison of different turbo decoder chip

Proposed design [58] [60]
Coding rate (R) 1/5 1/3 1/3

Block length 20,730 5,114 5,114
Data rate (Mb/s) 4.52 2.048 24

6 iterations 10 iterations | 6 iterations
Technology 0.18-pm 0.18-pm 0.18-pum

Chip core size (mm?) 7.29 9 14.5

Energy efficiency (nJ/b/iter.) 4.46 14.25 10

' Without Viterbi decoder

5.4 High speed channel decoders for UWB

applications

Ultra-wideband (UWB) is an emerging wireless physical(PHY)-layer technology that uses a
very large bandwidth [199,200]. By its rule-making proposal in 2002, the Federal Communi-
cations Commission (FCC) unleashed 3:GHz%0:10.6GHz RF band for increasing high-speed
data transmission. The multi-bandsorthogonal frequency-division multiplexing (MB-OFDM)
PHY-layer proposal indicates the'coded OFDM based: baseband solution can provide up to
480Mb/s within 2m desired range for 528 MHz UW B system [136]. To enhance overall system

performance, the convolutional codes and-interleaving techniques are applied in the forward

error correction (FEC) mechanism, whose block diagram is shown in Fig. 5.16.

TX
Data

RX
Data

Baseband

\V4

[} Scrembler ﬂ/ COIé;Zl(;.I(;ie(:.nal Interleaver ﬂ/ 1\/?511))115\41\/1 :i/ DAC ﬂ/ RF
\V4

De-scrembler /\;: ];/ei (t:f)r;eir /\;: De-interleaver MO OF]]))EAM i | DAC <: RF —

Figure 5.16: Block diagram of MB-OFDM UWB systems.
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The convolutional encoder is based on the rate 1/3 mother encoder

GD)=[1+D*+D*+D°+D% 1+ D>+ D*+D*+ D% 1+ D+ D>+ D*+ DS ],
(5.4)
and also punctured to R =1/2,5/8,3/4.
Since the QPSK modulation is applied [136], we choose the 3 bits quantization for the
input symbols, referring to the results in Table 5.5. If the truncation length T' = 48 ~ 6K,
the bit number of path metrics should be 10 ~ 11 bits. Form the simulation results, we find

nine bits are sufficient to achieve 0.1dB~0.2dB performance loss in SNR. The parameters

Table 5.14: Parameters of the Viterbi decoder
State number 64

Coding rate (R) || 1/3,1/2,5/8, 3/4
Path Metric 9 bits
Branch Metric 5 bits
Input Symbol 3 bits

48 (R=1/3)
Truncation 64 (R=1/2)
length 80 (R=5/8)
96 (R=3/4)

of the Viterbi decoder are listed in Table 5:14,"and the performance figure in the AWGN
channel is also in Fig. 5.17.

The circuit implementation of Viterbi decoders are completed based on the proposed
high radix and 2-D ACS structures where M = 4 and p = ¢ = 2. Considering the high
throughput requirement, the register-exchange approach is applied to the SMU with quite
different structures in radix-16 and radix-4 x 4 designs. Within the ¢ ~ t+4 trellis, there are
64 16-to-1 multiplexers in the radix-16 SMU whereas only 4-to-1 multiplexers are necessary

in the radix-4 x 4 SMU, and their number is 128. If the 16-to-1 multiplexer is realized with

5x64

o8 = 2.5 times as

five 4-to-1 multiplexers, the multiplexer number in the radix-16 SMU is
many as that in the radix-4 x 4 SMU.

The Viterbi decoders have been implemented by using the 1.8V 0.18-ym 1P6M CMOS
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Figure 5.17: The Viterbi‘decoder petformance based on Table 5.14

technology and the 1.2V 0.13-unt 1P8M CMOS techniology. Data throughput is estimated
form the static timing analysis (STA) while-considering the 1.62V supply for 0.18-pm, 1.08V
supply for 0.13-um, the worst speed orner, and ‘the coupling noise due to the crosstalk
effect on signal wires. Table 5.15 and Table 5.16 summarize the results with tight timing
constraints. The gate count(Gy) is a measure of the total standard cell area after the layout

implementation, and AGy indicates the gate count increase before and after the physical

Table 5.15: Implementation results with timing critical constraints

0.18-pum 1P6M || Data rate (Mb/s) | Area (mm?) Na ANg | Density
ACS-16 513 9.30 740.0k | 151.1k | 0.79
ACS-16(RT-1) 623 15.21 1129.9k | 190.4k 0.74
ACS-4 x 41 427 4.41 310.4k | 76.4k 0.77
ACS-4 x 4(RT-2) 953 5.29 398.6k | 36.6k 0.75
ACS-4 x 4(RT-3) 731 6.76 533.1k | 114.6k 0.79

! This chip was fabricated, and the results showed the 500Mb/s data rate is
achieved under 1.8V supply.

198



Table 5.16: Implementation results of timing critical constraints

0.13-um 1P8M || Data rate (Mb/s) | Area (mm?) | Gy | AGx | Density
ACS-16 933 3.61 647.3k | 84.7k 0.92
ACS-16(RT-1) 1,038 5.36 945.7k | 212.3k | 0.90
ACS-4 x 4 923 1.28 239.2k | 29.1k 0.96
ACS-4 x 4(RT-2) 986 1.85 349.9k | 45.6k 0.97
ACS-4 x 4(RT-3) 1,105 1.96 358.0k | 43.9k 0.94

Table 5.17: Implementation results of 500Mb/s data rate

Area (mm?) | Ng | ANg | Density | Power(mW)?
ACS-16 2.66 491.7k | 66.1k 0.94 344
ACS-16(RT-1) 384 | 6855k | 82.0k | 0.2 533
ACS-4 x 4 0.90 165.5k | 5.2k 0.94 119
ACS4 x 4(RT-2) 138 | 247.7k | 84k | 0.04 169
ACS4 x 4(RT-3) 144 | 2632k ] 9.9k | 0.4 195

2 1.2V supply and 500Mb/s data rate
design. The density is measure from the chip implementation, and

sotal standardcell
Density =i Sggr:;r:; M 100% (5.5)

Both ACS-16 with RT-1 and ACS-4 x 4 with RT-3 are shown to achieve the higher data
rates, over 1Gb/s in the 0.13-um technology. Notice that the ACS-4 x 4 Viterbi decoder
is much smaller than the ACS-16 based one. Additionally, ACS-4 x 4 with RT-2 has the
throughput similar to ACS-16, but requires only half area. The ACS-4 x 4 based decoders
are more area efficient than the ACS-16 based ones because the less computational units and
the simple signal routing result in not only the smaller G and AGy, but also the higher
chip density. Table 5.17 also shows the results when the Viterbi decoders target 500Mb/s
data throughput. We can find that the ACS-4 x 4 based decoders have much smaller area
and AGy than the ACS-16 based ones. All these results confirm the analysis in Table 3.2,
and the ACS-2P x 29 structure is shown to be more cost efficient for the high radix Viterbi
decoders.

In Table 5.15, the ACS-4 x 4 Viterbi decoder chip fabricated with the 0.18-pm process

199



Figure 5.18: Microphoto of the 0.18-um ACS-4 x 4 Viterbi decoder

is shown in Fig. 5.18. The chip summary is also listed in Table 5.18.

Table 5.18: The Viterbi decoder chip summary

Technology 0.18-pum 1P6M CMOS
Chip size % ealiey, ,.‘.7.34mm2
Core sizg: ri 3 u:‘4.4lmm2
Gate count! _|: = 310.4k
Supply Vol:i_sage_‘ o — 162V ~ 1.98V
Clock rate. i .' S ...'.-100MHZ
Power consumption” || 300mW at 1.8V (400Mb/s)

The ACS-2P x 27 structure and the retiming mechanism facilitate the Viterbi decoder
implementation based on the high-radix trellis decoding. The chip area is reduced for less
branch number, and the retiming techniques reduce the critical path delay of the ACS units.
The results shows a significant area reduction for the designs with 2-D ACS unit and a
considerable improvement in throughput with the retiming technique. The 0.18-pm chip
design shows RT-3 can improve the throughput of ACS-4 x 4 by about 71%. In the 0.13-pm
technology, both the ACS-16 and the ACS-4 x 4 decoders with retiming can accomplish the
1Gb/s data rate; however, the later results in only 37% area as compared to the former.

Among the well-know error-correcting codes, the LDPC code, which can reach a capacity
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Figure 5.19: Block diagram of the proposed LDPC-COFDM UWB systems.

approaching performance by the iterative decoding algorithm [20,25], undoubtedly engage

the most research interest recently. For improving PHY-layer capacity, LDPC codes can

increase the throughput to over 500Mb/s in future WLAN applications [201]. Therefore,

we apply the (1200,720) LDPC code to the MB-OFDM UWB system [136] illustrated in

Fig. 5.19, where the original convolutional codes and the bit interleaver have been replaced.

For the relatively small block length, the irregular code is constructed by the progressive

edge-growth (PEG) algorithm [174]<0 deliver better performance.
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Figure 5.20: Performance of the (1200,720) LDPC code

Based on the referenced MB-OFDM system, the performance including the bit error

rate (BER) and the packet error rate (PER) is shown in Fig. 5.20 with the AWGN channel

model and 1024 bytes data in each packet. Assume the min-sum decoding algorithm, the
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system is required to achieve 8% PER specified in [136]. The required signal to noise ratio
(SNR) is reduced as the iteration (iter.) number increases, but the improvement tends to
be insignificant after 8 iterations. In Fig. 5.21, the performance is also compared to the con-
volutional code (5.4) [136] where two different rates R = 1/2 and R = 5/8 after puncturing
the R = 1/3 mother code are selected as the references. It shows that the (1200,720) LDPC
code can achieve the comparable performance to the punctured convolutional code with only
8 decoding iterations. The short block length and small decoding iterations will facilitate

the implementation of high speed LDPC decoders.

10°® @ ®
107
2 o
w
o &
107}
5 5 - —E— (1200,720) LDPC code with 8 iters.
10 —©— (1200,720) LDPC code with 8 iters. — 85— R=1/2 convolutional code
—+&— R=1/2 convolutional code —¥— R=5/8 convolutional code
10 —¥— R=5/8 convolutional code 5 PER=8%
: 10 : X
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7
SNR [dB] SNR [dB]
(a) BER (b) PER

Figure 5.21: Comparison of different codes

Fig. 5.22 presents the bit error rate (BER) performance in AWGN channel. The com-
parison in Fig. 5.22(a) reveals the required quantization level of message in the decoder. As
compared with theoretical curve, both 5 bits and 6 bits quantization schemes have less than
0.07dB loss of signal-to-noise ratios (SNR) after 64 decoding iterations (iters.). However,
there is a 0.3dB loss with 8 decoding iterations while quantizing message into 5 bits. There-
fore, six bits scheme is considerably the better choice for circuit implementation. Fig. 5.22(b)
also shows the performance of the proposed LDPC decoder, applying 6 bits quantization in
different decoding iterations.

The decoder architecture has been shown in Fig. 4.31. In order to reduce signal routing

202



y 10° ‘ : ‘ ;
-8 - flogtlng —*— 1 iter. (fixed)
y —+—6 b!ts — A —1iter. (floating)
10 "k —*—5 b|t§ —»— 8 iters. (fixed)
-0 —ﬂogtlng — B - 8iters. (floating)
102k ’ —%—6 b!ts —+— 64 iters. (fixed)
: \ —A— 5 hits — © — 64 iters. (floating)
: - <
i | i

i i i i L . i i L L
0 1 2 3 4 5 6 0 2 4 6 8 10

SNR[dB] SNR[dB]
(a) Different quantization level (b) Proposed decoder

Figure 5.22: The BER performance in the MB-OFDM UWB system

congestion, the RE5-based MMU and RS-based input buffer are adopted for circuit imple-
mentation. With the 0.18-pm cell library [135], the distributions of MMUs based on MUX
and RE5 approaches are demonstrated in Fig. 5.23 where the chip size constrained to 25mm?.
In addition, the routing congestionsprofilejisaneasuted in both horizontal and vertical axes.
The MUX-based MMU in Fig. 5.23(a) has serious signal routing difficulty almost within the
whole chip, whereas the RE5-based onen-Fig.-5.23(b) has not only uniform MMU distri-
bution but also zero congestion ovérflow in both axes. In short, the 25mm? chip area is
sufficient for the RE5-based approach, but is still inadequate for the MUX-based approach
due to a large amount of signal wires.

A test chip has been fabricated in the 1.8V, 0.18-um 1P6M CMOS technology. The chip
size is 25mm? while the core occupies 21.23mm?. The total gate count is 1.15M including two
MMUs while the chip core density is about 71.2%. After static timing analysis (STA) and
post-layout simulation, the decoder achieves 3.33Gb/s throughput with 8 decoding iterations
under 1.62V supply and worst speed corner. The estimation also includes crosstalk analysis
for signal wires that cause coupling noise.

A second test chip is implemented in a 1.2V, 0.13um 1P8M CMOS technology. The max-

imum decoding speed has been improved to 5.92Gb/s with 8 decoding iterations. Moreover,
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the chip size becomes 13.5mm? where the core area is 10.24mm?. The chip density grows to

chips in this paper and makes a oofanans}El

Table 5.19: Summ%.{f"__.

7".:‘1
about 75.4% because of two more meital 1@ ers.

= I\l.

-.'a;ble 5.19 summarizes the LDPC decoder

ﬂw t] iy the =fu11y parallel design in [65].

th .LDFC decoder chips

"‘ij @hlp 1 J *Ehlp 2 [65]
Block length YRR ~ 1200 1024
Technology 0.13-pm 0.18-pm | 0.16-pm
Data | 8iters. | 5.92Gb/s | 3.33Gb/s ?| N.A.
rate | 64 iters. | 820Mb/s '| 461Mb/s 2| 512Mb/s
Power 268mW 644mW | 690mW
consumption Q@1.2V @1.8V Q1.5V
Gate count 1.156M 1.15M 1.75M
Chip size 13.5mm? 25mm? | 52.5mm?
Core size 10.4mm? | 21.16mm? N.A.
Chip density 75.4% 71.2% 50%

11.02V supply
2 1.62V supply

We present the high speed and area efficient LDPC decoder architecture. The message

memories architecture permits parallel decoding of two codewords and diminishes the routing
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congestion issues. Additionally, the data rescheduling minimizes the signal routing between
datapaths and memory units. Consequently, the chip becomes smaller due to the the in-
creased chip density. After implementation in the 0.18-um technology, the chip can achieve
the 3.33Gb/s data rate with 8 decoding iterations. Furthermore, the 0.13-um chip reaches

the maximum 5.92Gb/s data rate with 13.5mm? area and 268mW power consumption.
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Chapter 6

Conclusion

The research on the channel decoder design and implementation is reported in this disser-
tation. We investigate the Reed-Solomon code with algebraic decoding, the convolutional
code with probabilistic decoding, and the iterative decoding based turbo code and LDPC

code.

6.1 Summary

The universal Reed-Solomon decoder architecture is proposed with the Montgomery algo-
rithm by which the multiplications ever any G (2"):are feasible for a predefined constant
d and 1 < m < d. Furthermorey theplow complexity constant multiplier based on Mont-
gomery algorithm is also introduced for the syndreme calculator and the Chien search for
less circuit area. The key equation solver is a decomposed architecture using only three
universal multipliers, and the finite field inversion in the error value evaluator can be either
the Fermat’s identity or the memory based look-up table, depending on the table size. An
(n, k) error and erasure decoder for n < 255 and ¢ < 16 is constructed and implemented
with the 0.18-um and the 0.13-um processes. As compared with the convectional designs,
the gate count increase due to the universal features is less than 50%. Additionally, this
decoder can fully support most communication and storage applications.

We provide two design strategies for the Viterbi decoding algorithm. The low power
Viterbi decoder with the path merge and the path prediction methods is optimized to achieve

the dynamic truncation length according to the channel condition. As a result, most redun-
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dant memory access is avoided to reduce the power consumption in the survivor memory unit.
The computational unit, ACS unit, is also transformed to the compare-select-add structure
for less gate count as well as less signal switching power. The Viterbi decoder for theChien
Ching Lin IEEE 802.11a system is implemented and measured to achieve 30%~40% power
reduction. The 2-D ACS structure with retiming techniques is also introduced to accom-
modate the requirement for high decoding throughput. The ACS-4 x 4 is designed to the
parallelism equivalent to the ACS-16 architecture. The circuit implementation of ACS-4 x 4
based decoder is shown to accomplish the 500Mb/s data rate within the 4.41mm? 0.18-pum
silicon area. Applying the retiming approaches, the ACS-4 x 4 decoder can be improved
to 731Mb/s and 1105Mb/s data rates in the 0.18-um and the 0.13-pum CMOS technology.
Note that the area of 1.96mm? is required to reach the over 1000Mb/s data throughput.
Furthermore, the major feature of the ACS-4 x 4 decoder is the much smaller area, or gate
count, as compared to the ACS-16 based one.

The soft iterative decoding for the turbojeode and.the LDPC code can deliver the perfor-
mance approaching the Shannon limit. However; they have quite different decoding schemes;
the turbo decoding is based on the BOJR-algorithm over trellis diagram, and the LDPC de-
coding is based on the sum-productalgorithm-over the bipartite graph. We consider the
3GPP2 mobile communication for the turbo code that has the considerably large interleaver
size. The cost and the power consumption will be the design constraints, especially the em-
bedded memory for data interleaving. In the turbo decoder design, we prefer the simple SISO
decoder architecture, the efficient memory hierarchy, and the embedded interleaver with the
modest memory size. Furthermore, the Viterbi decoding is integrated without additional
datapaths because of the trellis based decoding algorithm. The decoder after the 0.18-pm
chip implementation shows the core size 7.29mm? and the power consumption 83mW while
decoding a turbo coded data stream at the 3.1Mb/s data rate.

On the other hand, the LDPC code is applied to the high speed UWB data communica-

tion. The LDPC decoding on the bipartite graph facilitates the parallel decoder implemen-
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tation due to the simple computations at the bit nodes and the check nodes after approx-
imation. Hence the (1200,720) LDPC code with the non-structured parity check matrix is
selected for implementation. Because of the random and the large number of connections in
the bipartite graph, the signal routing becomes very difficult, and the decoding speed is also
hard to be enhanced. More chip area is necessary for signal routing and leads to the low
chip density, especially for those based on the architecture. We exploit the register exchange
scheme for the message memory to eliminate multiplexers between datapaths and memory
units. The interconnection becomes simple and direct in the partially-parallel decoder. Con-
sequently, the chip implementations using the 0.18-um with six metals and the 0.13-pm with
eight metals respectively accomplish the 71.2% and the 75.4% chip density. The 0.18-pm
chip has the core size 21.16mm? and can reach the 3.33Gb/s data rate. Furthermore, the

0.13-um decoder can provide the 5.92Gb/s decoding speed within the 10.2mm? silicon area.

6.2 Future work

The decoding algorithm for Reed=Solomon-eodes in Chapter 2 is based on the hard decision
symbols GF'(q) converted from the channel output signals, assuming the encoder outputs are
also over GF'(q). Generally, the maximum likelihood (ML) decoding for Reed-Solomon is NP-
hard [202]. The trellis construction [203,204] provides the ML decoding for the Reed-Solomon
code [205], however, the complexity limits the code length to be < 15. The non-algebraic
soft decoding algorithm in [206-208] has the computational complexity exponentially growing
with the code length. Koetter and Vardy introduced the algebraic soft-decision decoding
algorithm [209] based on the list decoding algorithm [210] that can correct an error number
larger than half the minimum distance for a code. Alternatively, the belief propagation
algorithm can also be applied to the iterative Reed-Solomon decoding [211]. The combination
of the algebraic soft-decision decoding and the belief propagation algorithms is also reported

in [212]. The other soft decision decoding algorithms can also be found in [213-218]. As
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compared to the hard decision decoding, the soft decoding algorithms can provide up to 3dB
coding gain with much complex decoder implementations [219-221]. Many research efforts
are still necessary for the algorithms as well as the decoder designs in terms of complexity,
performance, and power consumption.

The low power Viterbi decoder is still motivated by the future wireless applications. The
scarce state transition (SST) scheme [41] can be applied to reduce the dynamic power of
ACS units. The path merge approach is also applicable to the register exchange based SMU;
moreover, the circuit techniques, power gating and voltage scaling [222], will lower the power
dissipation due to data movement in the SMU.

The iterative decoding and the interleaver design dominate the decoding speed of turbo
decoders. Therefore, multiple SISO decoders are deployed for parallel processing [61,223],
and the interleaver should be modified for multiple data access [224,225] while the error per-
formance meets the system requirement, JFurthermore, the SISO decoder can also have inter-
nal parallelism based on the high radix trellistor. the two-dimensional trellis structures [57].

In some applications, the LDPC, codes, based on the structured parity check matrices,
has have large code length [226,227]. Thedarge-parity check matrix constructed form many
smaller sub-matrices [228-233] will facilitate the implementation of both encoders and de-
coders. Therefore, the matrix structure not only effect the decoder error performance, but
also determines the decoder architecture. The co-deign of the code structure and the de-
coder would facilitate the implementation and improve the circuit performance. Moreover,
for large LDPC codes, the embedded memory saving messages would occupy a large circuit
area; therefore, a scheduling may be necessary to reduce the memory size.

In the probabilistic based decoding algorithm, the probabilities or messages should be
quantized for digital signal processing and digital circuit implementation. However, the
quantization introduces some error during decoding, and each value should be represented
with multiple bits that leads to large chip area. Hence many researchers prefer the analog

decoding techniques [234-241]. The floating-point quantities are represented with the analog
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signals without quantization; therefore, the decoding algorithm is more optimal, and the
decoder requires less area as well as power dissipation. Nevertheless, the codes processed
by analog decoders are relative small as compared with those in current applications. The
analog decoders are still motivated by the increasing transmission speed and low power

requirement.
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