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通道解碼器之設計與實作 

林建青 

國立交通大學電子工程學系電子研究所 

指導教授：李鎮宜教授、張錫嘉教授 

摘 要 

本論文由演算法到架構設計與電路實現探討通道解碼器。依解碼方式不同可分成三

個主要部分討論，分別是代數解碼，機率解碼以及重複解碼方式。 

採用代數解碼的 Reed-Solomon code 用以研究其通用多系統的可能性。我們應用

Montgomery 乘法演算法於通用有限場乘法器，使得有限場算數運算器不受有限場的限

制。利用這些通用型運算器與簡化結構即可建構出一可符合大部分系統規範之

Reed-Solomon 解碼器，且不需進行電路修正。經由電路實現可以發現達成此通用能力

僅需要小於一倍複雜度的額外成本，電路量測結果則證實解碼速度足以滿足目前大部分

應用的需求。 

Viterbi 解碼演算法是一種針對 convolutional code 的最大可能性解碼方式，目前被

廣泛應用於數位通訊系統。針對低功率設計，我們採行動態殘存路徑記憶體存取以及資

料路徑變形。殘存路徑記憶體搭配所提出之路徑匹配與路徑預測方法可根據通道狀況動

態調整截斷長度。運用一暫存記憶體，當路徑回歸至暫存路徑時，即可關閉大量記憶體

讀取而降低功率消耗。另一方面吾人提出將加法-比較-選擇運算轉換成比較-選擇-加

法，藉以降低運算量而達到降低電路成本與功率消耗。由電路量測結果得知這兩種技術

可降低 Viterbi 解碼器的功率消耗達 30%~ 40%。針對高速 Viterbi 解碼器則提出二維加

法-比較-選擇運算結構，在實際基數 16的柵狀圖上實現Viterbi解碼器可達到 1Gb/s 的資

料解碼速度。 
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再進一步研究重複解碼方式，以 turbo code 與 low-density parity-check (LDPC) code 

為對象。針對 turbo 解碼器應用於行動通訊系統並具有大型打亂器之編碼，以簡單解碼

器架構降低電路成本，並考量記憶體最佳化以降低功率消耗。並且在一整合型 turbo 與

Viterbi 解碼器晶片上得到更好的能量效率。對於 LDPC 解碼器則因其高平行度解碼演

算法而進行高速應用之研究。由於不規則之對偶檢查矩陣以及大量運算元造成大量不規

則資訊交換，我們提出一交換式記憶體以容納此大量資訊之傳遞。在電路實做上可達到 

5.92Gb/s 之資料解碼速度，面積則因大於 70%之晶片密度而顯的更有效益。 

本論文在研究三種通道解碼方式以及其應用上的實做，並探討系統規範提出可實現

之方案並進行分析。最後透過電路實做進行量測或評估，實驗結果則顯示如預期之正面

結論。 



CHANNEL DECODER DESIGN AND IMPLEMENTATION

by
Chien-Ching Lin,

Department of Electronics Engineering
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Chen-Yi Lee and Hsie-Chia Chang, Adviser

This dissertation investigates the channel decoders from algorithms to architecture designs and

circuit implementation. Three different decoding schemesare studied, including the algebraic, the

probabilistic, and the iterative decoding algorithms.

The Reed-Solomon code based on the algebraic decoding is exploited to many system specifi-

cations. We apply the Montgomery multiplication algorithmto the universal finite field multiplier;

as a result, the arithmetic units are capable of different finite field definitions. The Reed-Solomon

decoder is constructed based on the proposed arithmetic operations and modified for less com-

plexity. Hence the decoder can be applied to many systems without circuit modification. The

chip implementation results show that the overhead due to the universality is no more than 100%.

Moreover, the decoding speed from the measurement can meet most current or future applications.

The maximum-likelihood decoding, Viterbi decoding algorithm, for the convolutional code

is widely used in many digital communications. The low powerdesign techniques for the Viterbi

decoder are proposed for the dynamically survivor memory access and the datapath transformation.

The survivor memory unit with the path merging and the path prediction algorithms can adaptively

adjust the truncation length according to the channel conditions. Combining a cache buffer, we

can avoid many read operations in the memory, leading less power consumption. On the other

hand, we also transform the add-compare-select (ACS) operation to compare-select-add (CSA) for

less computations resulting in lower cost as well as lower power dissipation. The implementation

results indicate about 30%∼40% power reduction is accomplished with the proposed architecture.

The high speed and area efficient Viterbi decoder is also presented with the two-dimensional ACS

structure. The decoder on the radix-16 trellis is implemented and shown to achieve over 1Gb/s

data throughput.
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We further conduct the research into the iterative decodingbased turbo codes and low-density

parity-check (LDPC) codes. The turbo decoder is consideredin the mobile communication system

with large interleaver size. The simple decoder architecture is utilized for cost consideration, and

the memory is optimized for power consumption. The unified turbo and Viterbi decoder chip is

also shown to achieve better energy efficiency. The LDPC decoder is designed for high speed

applications for its highly parallelizable decoding algorithm. Because of the irregular parity check

matrix and the large number of processing elements, the register exchange memory is introduced

to accommodate the large message passing in the decoder. As aresult, the circuit implementation

leads to a high decoding speed, which is 5.92Gb/s, and area efficient decoder chip whose chip

density is larger than 70%.

In this dissertation, the research includes different channel decoding schemes as well as their

implementation for applications. Exploring the system requirements, we provide various design

methods and analysis for the decoders. Finally, the circuits are realized for measurement or analy-

sis, and the results reveal the positive consequence as expected.
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Chapter 1

Introduction

A communication system conveys a information source to a destination through a channel.

The channel can be microwave links, wireline cables, or storage mediums. Fig. 1.1 illustrates

a traditional digital communication system. The information data is first processed by the

source encoder for more compactness. The data is compressed by assigning short descriptions

to the frequent symbols and longer descriptions to the less frequent symbols [1, 2]. The

Information 

source

Source

encoder

Channel

encoder
Modulator

Channel

Demodulator
Channel

decoder

Source

decoder

Information

destination

Figure 1.1: Block diagram of a digital communication system

channel encoder then transforms the source encoded data into longer sequence where some

redundant symbols are introduced, also termed parity symbols. Afterward, the modulator

will convert the channel coded symbols to analog signals transmitted through the channel and

corrupted by noise, distortion, and interference. In the receiver, the demodulator estimates

the received symbols from the channel outputs and produces the continuous or quantized

symbols. The received symbols may contain errors because the demodulator processes the

channel outputs including noise. If so, the channel decoder will use the coded data with

parity symbols to recover the whole transmitted information. An ideal channel decoder would
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correct all the errors and generate the data sequence matching the compressed information.

Finally, the source decoder reproduces the information source according to the channel

decoder outputs.

The development of the channel encoder and the decoder, referred to channel coding or

error control coding, begins with the remarkable papers by C. E. Shannon in 1948 [3, 4].

Shannon indicated that any reliable transmission is achievable if the information rate R in

bits per channel is less than the channel capacity C for the channel.

Encoder
Channel

Decoder
u v r û

( | )P y x

Figure 1.2: A communication channel

Fig. 1.2 presents a simplified communication system that focuses on the the channel

coding. Assume two finite sets X and Y are the channel input and output alphabets, we

can denote a discrete channel by the transition probability P (y|x) for x ∈ X and y ∈ Y.

The coding scheme is first defined to be an (n, k) code with the encoding function

f : Xk 7→ Xn (1.1)

and the decoding function

g : Yn 7→ Xk. (1.2)

The information sequence u ∈ Xk is encoded to a codeword v ∈ Xn with the rate R = k/n.

For the discrete memoryless channel, we can transmit the codeword with the following

probability

P (r|v) =

n
∏

i=1

P (x = ri|y = vi), (1.3)

where ri ∈ X and vi ∈ Y. The channel decoder will estimate the information sequence û

that maximizes P (v|r). The decoding error occurs when û 6= u, and the error probability

is Pe = P{û 6= u}. The channel coding theorem [3, 4] by Shannon states that for all rates

2



R < C, there exists a (n, k) code that can achieve Pe → 0.

The first class of codes, block codes, has an algebraic coding structure [5]. The first block

code, discovered by R. E. Hamming [6] in 1950, is a class of single error correction codes and

termed Hamming codes. Another class of multiple random error correcting block code is the

Reed-Muller code that first introduced by D. E. Muller in 1954 [7] and completed by I. S.

Reed [8] for error correction and detection in communication and data storage systems. The

breakthrough in 1960 was due to Bose and Ray-Chaudhuri [9], and Hocquenghem [10] who

found a large class of multiple error correcting codes, referred to BCH codes. The important

non-binary Reed-Solomon codes are proposed by I. S. Reed and G. Solomon in 1960 [11],

and have been classified into non-binary BCH codes [12].

The second class is the convolutional code that has the probabilistic decoding features.

The convolutional code was first introduced by P. Elias in 1955 [13], and the efficient se-

quential decoding method was then proposed by J. M. Wozencraft and B. Reiffen [14]. The

Viterbi algorithm proposed by A. J. Viterbi in 1967 [15] is a much simple algorithm for

implementation, leading to the widespread applications of the convolutional code. The op-

timal symbol by symbol detection algorithm that estimates the a posteriori probabilities

of information symbols were provided by Bahl, Cocke, Jelinek, and Raviv in 1974 [16] and

termed BCJR decoding algorithm. This algorithm also led to the invention of the turbo code

in 1993 [17, 18]. In 1989, J. Hagenauer introduced the sub-optimal algorithm, soft-output

Viterbi algorithm (SOVA) [19], that also calculates the a posteriori probability for each

information symbol.

In 1993, there is a significant advance in channel coding because of the advent of turbo

codes, discovered by C. Berrou, A. Glavieux and P. Thitimajshima [18]. The soft iterative

decoding of turbo codes based on either the BCJR or the SOVA algorithms results in the

performance near the Shannon limit and still has the reasonable complexity for practical

implementation. These attractive features make the turbo code popular in the modern

digital communication systems. The other capacity approaching code, low-density parity-
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check (LDPC) code, was first proposed by R. G. Gallager in 1962 [20, 21], but was nearly

forgotten until its rediscovery in the late 1990s. The graphical representation for the LDPC

code was presented by R. M. Tanner [22] in 1981. MacKay and Neal rediscovered the LDPC

code and investigated its graph based iterative decoding algorithm [23,24]. It has been shown

in [25] that long LDPC codes based on the belief propagation algorithm [26] can achieve

an error performance very closing to the Shannon limit. Furthermore, the turbo decoding

can also be interpreted as the the belief propagation algorithm on graphs. [27, 28]. The

LDPC code has many benefits, including its good error performance, and more high speed

communication systems have considered employing LDPC code to enhance performance.

Based on a specific decoding algorithm, the channel decoder implementation depends on

the system requirements or the constraints; it also relays on the target circuit technology.

Generally, the cost and the power consumption are always the optimization objectives. In

the channel coding design, it should be a trade-off between the error performance and the

design cost, or the power consumption. The decoder design starts from the algorithm and

the performance analysis in the system level where the design parameters are determined

according to the system specifications. The architecture design connects the decoding al-

gorithm, the circuit technology, and the target application. A channel decoder with better

quality would require a close link from the algorithm and the system to the circuit imple-

mentation. For different code types and system definitions, we will investigate the design

methodology from coding basics to circuit implementation.

In the design of algebraic block codes, we consider the Reed-Solomon decoders for general

purposes; they have been extensively applied to many applications, but often have different

specifications, even in a system. Because of the relatively simple arithmetic units and decod-

ing algorithm, the Reed-Solomon decoders include the high speed design approach [29–31],

the the low complexity architecture [32–34], the low power design [35, 36], and the recon-

figurable decoders [36–38]. The advance in VLSI technology facilitates the decoding speed

and reduces the circuit cost as well as power dissipation. Therefore, the need for time to
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market motivates the design of universal RS decoders. The throughput and the overhead

for universality will be the major consideration in our study.

For the convolutional code, the Viterbi decoding algorithm as well as its implementation

will be covered, including the low power design and high speed structures. The Viterbi

decoder in wireless communications would have the constraints in power consumption and

cost, especially for the mobile devices. The low power techniques can be in the circuit

level [39,40] and in the architecture level [41–44], including the algorithm modifications. For

the Viterbi decoding algorithm, the adaptive approximations for low power are also reported

in [45, 46]. In our research, the low power Viterbi decoder is investigated in terms of the

adaptive memory access and the low complexity datapath architecture. The present adaptive

approach, without any performance loss, can remove most redundant memory access in the

decoder [47].

High speed Viterbi decoders are also important because of the demand for high data

transmission rate in wireless applications [48–50]. The Viterbi decoders in [51–53] break

down the critical path delay by means of bit-level pipeline and accomplish high throughput

with very high clock frequencies. Furthermore, the dynamic circuit techniques are also

exploited to accelerate the critical path. The architectures using high radix trellis in [49,

50,54,55] achieve parallel processing that enhances the throughput. The four states Viterbi

decoder based on sliding block approach that performs decoding concurrently in forward

and backward directions is also reported in [56]. However, as the constraint length or the

parallelism increases, the complexity of trellis based decoding grows rapidly for the parallel

architectures. Hence we consider a more aggressive parallel architecture and explore the

possible structure for implementation [57].

Furthermore, the soft iterative decoder for the turbo decoding is studied while considering

the low power mobile communication system. The turbo decoder in [58] reports a design for

the 3GPP system [59] whose interleaver size is 5114. The high throughput decoders [60–62]

mainly focus on the parallelism and speed optimization of computational units. We refer
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to the 3GPP2 communication system [63] where the turbo code is defined to have a larger

interleaver size 20730. The memory required to realize interleaver function will occupy a

large circuit area and cause significant power consumption. For the mobile communication

system, we concentrate on the minimization of memory area as well as power dissipation [64].

The LDPC decoder based on the message passing decoding is also exploited for multiple

Gb/s communications. We will discuss the design issues of parallel architectures and circuit

implementation difficulty. The parallel LDPC decoder will cause a large number of signals

that convey messages between a large number of processing elements, leading to much com-

plicated interconnections [65]. This will degrade the decoding throughput and enlarge the

circuit area. In the dissertation, we conduct the research on the efficient memory manage-

ment strategy for high speed parallel processing [66]. The low complexity architectures for

the processing elements are also presented.

The Reed-Solomon coding is first introduced in Chapter 2, including the universal decoder

architecture. Chapter 3 discusses the convolutional code, and the Viterbi decoding algorithm

as well as the decoder architectures for the low power and the high speed considerations.

The BCJR algorithm is also presented in the final part of Chapter 3. The soft iterative

decoding algorithms and decoder designs for the turbo code and the LDPC code are given

in Chapter 4. Finally, we conclude the dissertation in Chapter 6.

6



Chapter 2

Reed-Solomon Codes

Reed-Solomon (RS) codes were first constructed by Reed and Solomon in 1960 [11]. In

general, RS codes can be categorized into the non-binary BCH codes [9, 10] whose symbols

are taken from the field GF (2m). The block length of a (n, k) RS code is n symbols consisting

of k message symbols in GF (2m). The minimum distance of (n−k+1) leads to the correcting

capability of t = ⌊n−k
2
⌋ random errors With the erasure information of ρ symbols, the

number of correctable errors becomes ⌊n−k−ρ
2

⌋. Because of the effective error correction, the

applications of RS codes include data storage systems and digital communications, either

wireless or wireline systems.

Before the presentation of RS codes, the finite field and the BCH code are reviewed in

sections 2.1 and 2.2. The following sections 2.3 and 2.4 describe the encoding and decoding

procedures, and the decoder designs.

2.1 Finite Field

A field F is a set of at least two elements where two binary operations, addition “+” and

multiplication “·”, are defined to satisfy the following conditions.

1. F is an Abelian group under “+” with identity element denoted by 0.

2. The set of nonzero elements in F is an Abelian group under “·” with identity element

denoted by 1.
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3. The multiplication “·” is distributive and therefore

a · (b + c) = a · b + a · c ∀a, b, c ∈ F

The number of elements in a field, or the order of the field, can be infinite or finite. The

well-known examples of infinite fields include the set of all real numbers and the set of all

rational numbers. However, the interested fields are those with finite numbers of elements

that are termed finite field or Galois field (GF ).

For a prime number p, a finite field GF (p) with p elements can be constructed based on

the modulo p arithmetic [67] and has the elements {0, 1, . . . , p − 1}. Furthermore, for any

positive integer m, the field GF (pm) which is referred to the extension field of GF (p) can also

be built with pm elements , and p is called its characteristic. Actually, as proved in [67], the

order of any finite field is a power of a prime. The finite field GF (pm) is regarded as a vector

space over GF (p) with the dimension m, and each element in GF (pm) can be represented by

m tuples â = (a0, a1, . . . , am−1). In addition, the elements in GF (pm) can also be denoted

by the polynomials over GF (p) with the degrees less than or equal to m− 1. Therefore, â is

also expressed by a0 + a1x + · · · + am−1x
m−1. The addition is defined component-wise, and

the multiplication should be based on the modulo f(x) operation. Notice that f(x) must be

an irreducible m-th degree polynomial over GF (p), meaning no polynomials over GF (p) of

degrees less than m but larger than 0 divide f(x). Thus, for â, b̂, ĉ ∈ GF (pm), the addition

and multiplication can be proceeded as follows.

ĉ = â + b̂ = (a0 + b0) + (a1 + b1)x + · · ·+ (am−1 + bm−1)x
m−1 (2.1)

ĉ = â · b̂ = [(a0 + a1x + · · ·+ am−1x
m−1)(b0 + b1x + · · ·+ bm−1x

m−1)] mod f(x)(2.2)

Consider an element β in GF (pm), the monic polynomial mβ(x) of the least degree with

coefficients in GF (p) such that mβ(β) = 0 is referred to the minimum polynomial of β. The
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polynomial mβ(x) is irreducible and has a degree less than or equal to m [68]. Because β is

a zero of mβ(x), the conjugates of β that are distinct elements β, βp, βp2
, . . . , are also zeros

of mβ(x) [67, 69]. The smallest integer k such that βqk
= β is the degree of β, and k is a

divisor of m. Although mβ(x) is irreducible over GF (p), it can be factored over GF (pm)

mβ(x) = (x − β)(x − βp) · · · (x − βpk−1

), (2.3)

where the degree is exactly k.

If f(x) is any polynomial over GF (p) satisfying f(β) = 0, it is easy to verify that

mβ(x)|f(x). Furthermore, since GF (pm) has pm−1 nonzero elements, βi has at most pm−1

distinct values for all integers i, and therefore there exists an integer t, with 1 ≤ t ≤ pm − 1,

that results in βi+t = βi or βt = 1. The smallest positive integer t such that βt = 1 is

termed the order of β. The nonzero element α in GF (pm) is said to be primitive if its order

is pm − 1. Thus, the powers of the primitive element α generate all the nonzero elements of

GF (pm). That is

GF (pm) = {0, 1, α, α2, . . . , αpm−2}.

Hence every element in GF (pm) is a root of xpm −x = 0; alternatively, (αi)pm
= (αpm

)i = αi

for i = 0, 1, . . . , pm − 2, and 0pm
= 0. The root number of xpm − x = 0 is at most pm which

is the order of GF (pm). It follows that

xpm − x =
∏

β∈GF (pm)

(x − β). (2.4)

The definition of minimum polynomial also deduces that mβ(x)|(xpm−x) for all β in GF (pm).

On the other hand, the minimum polynomial of α is called the primitive polynomial p(x),

and the degree of p(x) is m determined by the degree of α. Furthermore, due to the order

of α, we found that p(x) divides xpm−1 − 1, but does not divide any xn − 1 with n < pm − 1.

Note that not all irreducible polynomials are primitive. Nevertheless, it is convenient to use
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Table 2.1: Representation of the elements in GF (24)
Power Polynomial 4-tuple

0 0 0 0 0 0
1 1 0 0 0 1
α α 0 0 1 0
α2 α2 0 1 0 0
α3 α3 1 0 0 0
α4 α + 1 0 0 1 1
α5 α2 + α 0 1 1 0
α6 α3 + α2 1 1 0 0
α7 α3 + α + 1 1 0 1 1
α8 α2 + 1 0 1 0 1
α9 α3 + α 1 0 1 0
α10 α2 + α + 1 0 1 1 1
α11 α3 + α2 + α 1 1 1 0
α12 α3 + α2 + α + 1 1 1 1 0
α13 α3 + α2 + 1 1 1 0 1
α14 α3 + 1 1 0 0 1

primitive polynomials to construct finite fields.

Table 2.1 shows an example of GF (24) that is an extension filed of GF (2) and is built

with the primitive polynomial p(x) = x4 + x + 1. The primitive element α is a root of p(x)

and therefore p(α) = α4 +α+1 = 0. The nonzero elements of GF (24) comprise powers of α,

or can be represented as polynomials with degrees ≤ 3 according to the equation α4 = α+1.

Alternatively, the other useful representation for the elements in GF (24) is 4-tuple where

the four components are the coefficients in the polynomial representation. In Table 2.1, we

can find that the power representation is useful for multiplication, while the polynomial or

4-tuple format is more practical for addition.

Additionally, with the primitive polynomial p(x) = x2 + x + 2 over GF (3), the elements

of GF (32) are also presented in Table 2.2. The primitive element α in GF (32) satisfies

p(α) = α2 + α + 2 = 0, meaning that α2 = 2α + 1. According to these facts, the power, the

polynomial, and the 2-tuple representations can be formed as shown in Table 2.2.

The most widely applied finite fields are the prime field GF (2) and its extension GF (2m)

for the binary arithmetic operations that are well suited for digital circuit design.
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Table 2.2: Representation of the elements in GF (32)
Power Polynomial 2-tuple

0 0 0 0
1 1 0 1
α α 1 0
α2 2α + 1 2 1
α3 2α + 2 2 2
α4 2 0 2
α5 2α 2 0
α6 α + 2 1 2
α7 α + 1 1 1

2.2 BCH code

BCH code is a large class of multiple-error-correcting codes, a generalization of the Hamming

codes; furthermore, and it is best expressed as cyclic code [70]. For any positive m and t,

more than a primitive binary BCH code can be constructed to correct t errors while the block

length is 2m − 1 with no more than mt redundant digits. The generator polynomial g(x)

is defined by the least common multiple (LCM) of the minimum polynomials over GF (2)

m1(x), m2(x), . . . , and m2t(x) corresponding to α, α2, ..., and α2t where α is primitive in

GF (2m).

g(x) = LCM{m1(x), m2(x), · · · , m2t(x)} (2.5)

Therefore, αi for i = 1, 2, · · · , 2t as well as their conjugates are zeros of g(x). Since (αi)2j
is

a conjugate of αi, they have the same minimum polynomial mi(x). As a result, mi2j (x) =

mi(x) for each positive integer j and 1 ≤ i2j ≤ 2t; hence g(x) will be reduced to

g(x) = LCM{m1(x), m3(x), m5(x), · · · , m2t−1(x)}, (2.6)

and each mi(x) has degree at most m. Consequently, the degree of g(x) is no more than mt

and results in at most mt parity check digits for the code. If c(x) is a codeword polynomial,

it must be a multiple of g(x), that is g(x)|C(x). From the definition of g(x), we can find
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that c(αi) = 0 for 1 ≤ i ≤ 2t. The encoding of a message polynomial u(x) = u0 + u1x +

u2x
2 + · · ·+ uk−1x

k−1 is multiplying u(x) by g(x),

c(x) = u(x) · g(x) (2.7)

Accordingly, if g(x) = g0 + g1x + · · ·+ grx
r, the k × n generator matrix G is constructed as

G =

























g0 g1 g2 · · · gr 0 0 0 · · · 0

0 g0 g1 g2 · · · gr 0 0 · · · 0

0 0 g0 g1 · · · · · · gr 0 · · · 0

...
...

0 0 0 0 g0 g1 g2 · · · · · · gr

























(2.8)

Obviously, this encoding procedure is not in systematic form. The systematic encoding

proceeds as follows: multiplying u(x) by xn−k, dividing xn−ku(x) by g(x) to obtain the

remainder polynomial r(x), and adding r(x) to xn−ku(x). The systematic code c(x) becomes

c(x) = xn−ku(x) + r(x). (2.9)

Since xn−ku(x) = q(x)g(x) + r(x) where q(x) is the quotient polynomial, we find that

c(x) = xn−ku(x) + r(x) = q(x)g(x)

which is a multiple of g(x). Because αi for 1 ≤ i ≤ 2t are roots of c(x),

c(αi) = c0 + c1α
i + c2α

2i + · · ·+ cn−1α
(n−1)i = 0. (2.10)
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Based on (2.10), we can construct the parity check matrix

H =



















1 α α2 α3 · · · α(n−1)

1 α2 (α2)2 (α2)3 · · · (α2)(n−1)

...
...

1 α2t (α2t)2 (α2t)3 · · · (α2t)(n−1)



















, (2.11)

and obtain the following result

ĉ · HT = 0,

where ĉ = (c0, c1, . . . , cn−1) is the codeword vector.

The codeword c(x) is transmitted and corrupted by noise. In the recover, the received

vector r(x) will be

r(x) = c(x) + e(x),

and e(x) is the error pattern. The syndrome of r(x) is defined by the 2t-tuple Ŝ =

(S1, S2, S3, . . . , S2t) in which

Si = r(αi) = c(αi) + e(αi) = e(αi), for 1 ≤ i ≤ 2t (2.12)

The result in (2.12) follows from the fact that αi is a root of c(x). Assume e(x) has v (≤ t)

errors in the positions j1, j2, · · · , jv with 0 ≤ j1 < j2 < · · · < jv ≤ n − 1, then e(x) can be

expressed as

e(x) = xj1 + xj2 + · · · + xjv . (2.13)

According to (2.12) and (2.13), the syndrome equations with i = 1 ∼ 2t will be

Si = (αj1)i + (αj2)i + · · ·+ (αjv)i (2.14)

= βi
1 + βi

2 + · · ·+ βi
v,
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if we define βx = αjx for x = 1, 2, . . . , v. Additionally, the error location polynomial is

defined as

σ(x) = (1 − β1x)(1 − β2x) · · · (1 − βvx) (2.15)

= σ0 + σ1x + · · ·+ σvx
v

The roots of σ(x) = 0 are β−1
1 , β−1

2 , · · · , and β−1
v ; the coefficients of σ(x) satisfy the following

equations:

σ0 = 1

σ1 = β1 + β2 + · · ·+ βv

σ2 = β1β2 + β2β3 + · · ·+ βv−1βv (2.16)

...

σv = β1β2 · · ·βv

Furthermore, the expression in (2.16) is related to the syndromes S1 ∼ Sv be the following

Newton’s identities [70]:

S1 + σ1 = 0

S2 + σ1S1 + 2σ2 = 0

S3 + σ1S2 + σ2S1 + 3σ2 = 0

... (2.17)

Sv + σ1Sv−1 + · · · + σv−1S1 + vσv = 0

...

S2t + σ1S2t−1 + σ2S2t−2 + · · ·+ σvS2t−v = 0

14



If the syndromes S1, S2, · · · , Sv are calculated according to (2.12), the coefficients of σ(x)

can be obtained from (2.17). The error location information β1, β2, · · · , βv can then be found

through solving the roots of σ(x) = 0. Since the number of elements in GF (2m) is finite,

σ(x) = 0 is able to be efficiently solved by substituting each nonzero element of GF (2m)

into the equation, a process known as Chien search [71].

2.3 Reed-Solomon code

A Reed-Solomon code [11] over GF (q) is an important subclass of non-binary BCH codes

and has a length of n = q − 1. From the definition of generator polynomial in (2.5), the

g(x) of a RS code that corrects t or fewer errors is described by the minimum polynomials

of α, α2, α3, · · · , and α2t, and α is a primitive element in GF (q). Besides, the minimum

polynomial mi(x) over GF (q) of each element αi is mi(x) = x−αi. Therefore, the generator

polynomial of this code should be

g(x) = (x − α)(x − α2) · · · (x − α2t). (2.18)

This polynomial always has the degree 2t ,and thus an (n, k) RS code satisfies n−k = 2t, the

number of parity check digits. The minimum distance is shown to be n − k + 1 = 2t + 1 [5]

that can correct at most t errors. Notice that g(x) can also be characterized by the minimum

polynomials of αh, αh+1,· · · , and αh+2t−1. The express in (2.5) is generalized to

g(x) = (x − αh)(x − αh+1) · · · (x − αh+2t−1). (2.19)

The encoding of RS codes is similar to the binary BCH codes and can be either in the

multiplication operation of (2.7) or in the systematic form of (2.9). Both encoding schemes

make the codeword c(x) be a multiple of g(x); as a result, all roots of g(x) are also zeros of

c(x), or c(αh+i) = 0 for 0 ≤ i ≤ 2t− 1. The number of parity check symbols are 2t, and the
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resulting codewords has the minimum distance of 2t+1 that corresponds to correct at most

t errors. Moreover, if there are ν erasures, referred to errors with , the RS code can correct

at moat ⌊2t−ν
2

⌋ errors.

The decoding of RS code is quite similar to binary BCH codes except that error values

should be calculated as well. We also define the received data r(x) as the codeword polyno-

mial c(x) corrupted by the error polynomial e(x); that is r(x) = c(x)+ e(x). The syndromes

will be

Si = r(αi) = e(αi), for 1 ≤ i ≤ 2t, (2.20)

where αh+i−1 are all roots of the generator polynomial in (2.19). Since RS code is nonbinary,

the error pattern e(x) should be

e(x) = e1x
j1 + e2x

j2 + · · ·+ evx
jv , (2.21)

indicating that there are v error values, e1, e2, . . . , and ev, in the locations j1, j2, . . . , and

jv. Therefore, Si in (2.20) can be expressed by

Si = e1β
i
1 + e2β

i
2 + · · ·+ evβ

i
v, (2.22)

and βx = αjx for x = 1, 2, · · · , v. Furthermore, we also define the syndrome polynomial S(x)

as [72]

S(x) ,

∞
∑

i=1

Six
i−1 (2.23)

=

∞
∑

i=1

(

v
∑

κ=1

eκβ
i
κ)x

i−1

=
v
∑

κ=1

eκβκ(
∞
∑

i=1

(βκx)i−1)

=

v
∑

κ=1

eκβκ

1 − βκx
(2.24)
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In (2.24), we apply the following equation

1

1 − βκx
=

∞
∑

i=1

(βκx)i−1

The error location polynomial σ(x) is also defined as shown in (2.15). The relation of S(x)

and σ(x) can be constructed from

S(x)σ(x) = (
v
∑

κ=1

eκβκ

1 − βκx
) ×

v
∏

i=1

(1 − βix) =
v
∑

κ=1

eκβκ

v
∏

i=1,i6=κ

(1 − βix) , ω(x) (2.25)

The result of S(x)σ(x) is defined by the polynomial ω(x) with degree v−1. During decoding,

only the coefficients S1 ∼ S2t in S(x) are known, or we can obtain only S(x) mod x2t. Hence

the key equation is defined as follows [72]:

S(x)σ(x) = ω(x) mod x2t (2.26)

The decoding problem is to solve σ(x) and ω(x) from the syndrome information S(x) ac-

cording to the key equation (2.26). The error locations will be identified by applying Chien

search [71] on σ(x), and the error values can be calculated from ω(x) according to Forney’s

algorithm [73]:

eκ =
−ω(β−1

κ )

σ′(β−1
κ )

, for 1 ≤ κ ≤ v. (2.27)

Notice that σ′(x) indicates the derivative of σ(x) and therefore

σ′(x) =
dσ(x)

dx
=

v
∑

κ=1

−βκ

v
∏

i=1,i6=κ

(1 − βix). (2.28)

We note from (2.25) that the degree of ω(x) is v − 1; as a result, in S(x)σ(x), the

coefficients of the terms with powers large than v − 1 must be zero. The following Newton’s
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identity can be derived [72]


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...
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
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


















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

















(2.29)

It is inefficient to directly solve (2.29) for moderate or large v. The efficient iterative algo-

rithm to solve key equation (2.26) was developed by Berlekamp [72, 74] and independently

by Massey [75, 76] and is referred to Berlekamp-Massey algorithm. This algorithm is an

approximation procedure for finding σ(x) that satisfies (2.29) and has the smallest degree.

The detailed procedure is given as follows.

• Initial conditions:

σ(0)(x) = 1, τ (0)(x) = 1, D0 = 0

∆0 = S1, δ = 1,

• Iteration from i = 1 to 2t:

σ(i)(x) = σ(i−1)(x) +
∆i−1

δ
τ (i−1)(x) · x (2.30)

∆i =

t−1
∑

j=0

σ
(i)
j Si+1−j (2.31)

If ∆i−1 = 0 or Di−1 ≥ i − Di−1,

τ (i)(x) = τ (i−1)(x) · x,

Di = Di−1.
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Otherwise,

τ (i)(x) = σ(i−1)(x),

Di = i − Di−1, δ = ∆i−1

After 2t iterations, we obtain the error location polynomial σ(x) = σ(2t)(x). In (2.30), the

operation tends to make σ(i) satisfy the discrepancy ∆i−1 = 0. The new discrepancy ∆i

in (2.31) continues to measure the correctness of dummy error location polynomial σ(i)(x)

whose coefficients are σ
(i)
j . On the other hand, Di is a control variable that indicates the

degree of σ(i)(x) [5].

The evaluation of error value polynomial ω(i)(x) can use the key equation [77]. We

determine

ω(x) = ω0 + ω1x + · · ·+ ωv−1x
v−1

after Berlekamp-Massey algorithm when σ(x) is well defined. From the key equation (2.26),

the coefficients of ω(x) will be calculated by

ωi =

i
∑

j=0

σjSi+1−j , for 0 ≤ i ≤ v − 1. (2.32)

This equation is identical to the discrepancy computation in (2.31).

In addition to the Berlekamp-Massey algorithm, the Euclidean algorithm [78, 79] is the

other efficient solution for solving key equation. The key equation (2.26) is first rewritten as

S(x)σ(x) + Q(x)x2t = ω(x). (2.33)

Notice that Q(x) is the quotient polynomial and ω(x) is the remainder polynomial while

S(x)σ(x) is divided by x2t. Hence according to Euclidean algorithm, ω(x) can be acquired

through the procedure that derives the greatest common divisor (GCD) polynomial of S(x)

and x2t. The algorithm proceeds as follows.
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• Initial conditions

ω(−1) = x2t, ω(0) = S(x)

σ(−1)(x) = 0, σ(0)(x) = 1

• Iterations from i = 1:

ω(i)(x) = q(i)(x)ω(i−1)(x) + ω(i−2)(x) (2.34)

σ(i)(x) = q(i)(x)σ(i−1)(x) + σ(i−2)(x) (2.35)

The iteration is terminated when degree of σ(i)(x) is larger than that of ω(i)(x). Oth-

erwise, the iteration continues, and i is increased by one, or i = i + 1.

If the iteration is terminated, we set error location polynomial σ(x) = σ(i)(x) and error

value polynomial ω(x) = ω(i)(x). The operation in (2.34) is polynomial division that divides

ω(i−2)(x) by ω(i−1)(x); qi(x) and ω(i)(x) correspond to quotient and remainder polynomials.

The quotient qi(x) is then used in (2.35) for calculating new σ(i)(x). What should be noted

is that the degree of ω(i)(x) decreases with i whereas σ(i)(x) has an increasing degree. The

stopping criterion comes from (2.25) where ω(x) has the degree at most v − 1 with the σ(x)

of degree v.

In summary, RS decoding starts from syndrome calculation (2.20) and then solves key

equation (2.26) with either Berlekamp-Massey algorithm or Euclidean algorithm. Finally, we

apply Chien search to error location polynomial σ(x) for finding error locations; moreover,

error values can be evaluated with Forney’s algorithm (2.27).

The erasure and error decoding is quite similar to the above mentioned error only decod-

ing procedure. If there are v errors and u erasures in the received vector r(x), 2v + u ≤ 2t,

the syndrome calculation is as (2.20), but the erasure symbols are replaced with arbitrary

values, for example, zeros. The erasure location polynomial is also defined as

λ(x) = (1 − αl1x)(1 − αl2x) · · · (1 − αlux) (2.36)
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where l1, l2, . . . , lu are erasure positions. The key equation should be modified by

S(x)λ(x)σ(x) = ω(x) mod x2t. (2.37)

The errata location polynomial Λ(x) = λ(x)σ(x) identifies both error and erasure locations.

We can denote the known polynomials S(x) and λ(x) with Forney syndrome polynomial [73]

T (x) , S(x)λ(x) mod x2t (2.38)

= T1 + T2x + T3x
2 + · · ·+ T2tx

2t−1,

and the key equation (2.37) will become

T (x)σ(x) = ω(x) mod x2t. (2.39)

Similar to (2.25), it can be deduced that ω(x) will have the maximum degree of (v + u− 1)

for the degree of λ(x)σ(x) is (v + u); as a result, the following equation is derived:
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(2.40)

Applying Berlekamp-Massey algorithm, we can compute σ(x) iteratively [77] as follows.

• Initial conditions:

σ(u)(x) = 1, τ (u)(x) = 1, Du = 0

∆u = Tu+1, δ = 1,

21



• Iteration from i = (u + 1) to 2t:

σ(i)(x) = σ(i−1)(x) +
∆i−1

δ
τ (i−1)(x) · x (2.41)

∆i =

t−1
∑

j=0

σ
(i)
j Ti+1−j (2.42)

If ∆i−1 = 0 or Di−1 ≥ i − u − Di−1,

τ (i)(x) = τ (i−1)(x) · x,

Di = Di−1.

Otherwise,

τ (i)(x) = σ(i−1)(x),

Di = i − u − Di−1, δ = ∆i−1

When i = 2t, we obtain the error location polynomial σ(x) = σ2t(x) and error value poly-

nomial ω(x) from (2.39).

On the other hand, Euclidean algorithm is also applicable for solving (2.39).

• Initial conditions

ω(−1) = x2t, ω(0) = T (x)

σ(−1)(x) = 0, σ(0)(x) = 1

• Iterations from i = 1:

ω(i)(x) = q(i)(x)ω(i−1)(x) + ω(i−2)(x) (2.43)

σ(i)(x) = q(i)(x)σ(i−1)(x) + σ(i−2)(x) (2.44)

The iteration is terminated when degree of σ(i)(x) plus u is larger than that of ω(i)(x).

Otherwise, the iteration continues, and i is increased by one, or i = i + 1.

The error location and error value polynomials are accomplished with σ(x) = σ(i)(x) and
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ω(x) = ω(i)(x) after the termination of Euclidean algorithm.

The roots of σ(x) = 0 determining error locations are found by Chien search. Further-

more, according to Forney’s algorithm, the error values should be

eκ =
−ω(β−1

κ )

Λ′(β−1
κ )

=
−ω(α−jκ)

Λ′(α−jκ)
, for 1 ≤ κ ≤ v, (2.45)

and the erasure values are

êρ =
−ω(α−lρ)

Λ′(α−lρ)
, for 1 ≤ ρ ≤ u. (2.46)

In error and erasure decoding algorithm, the major difference is the Forney syndrome

polynomial T (x) in (2.38) and key equation (2.39). Additionally, there are corresponding

modifications in both Berlekamp-Massey and Euclidean algorithms for the known erasure

location polynomial λ(x) and T (x).

In addition to the presented decoding approach, RS codes can also be decoded in the

frequency domain [80]. The time domain algorithm that eliminate syndrome calculations are

also studied in [5], [81], and [82]. Although time domain approaches dispense with syndromes,

the computation in solving key equation may require more computing complexity.

2.4 Design of Reed-Solomon decoder

RS decoders usually consist of a syndrome calculator, a key equation solver, a Chein search

module, and a error value evaluator. Moreover, a Forney syndrome calculator and a polyno-

mial multiplier are also included for erasure decoding. Fig. 2.1 illustrates the RS decoding

flow with error and erasure. The syndrome calculator generates 2t syndromes from the re-

ceived vector r(x). If there are erasure symbols, the Forney syndrome calculator evaluates

T (x) based on (2.38) and λ(x) based on (2.36). According to S(x) or T (x), the key equa-

tion solver delivers σ(x) and ω(x) with either Berlekamp-Massey or Euclidean algorithm.
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Figure 2.1: RS error and erasure decoding flow chart

Additionally, the errata location polynomial Λ(x) needs to be calculated when λ(x) exists.

The error locations are found by Chien search block; besides, error value evaluator computes

error values using (2.27) or both error and erasure values using (2.45) and (2.46). The first-in

and first-out (FIFO) memory stores the received vector r(x) that has to be corrected after

decoding procedure.

The high-speed RS decoders are investigated in [29, 31, 83]. The low complexity ap-

proaches using inversionless Berlekamp-Massey algorithm are also presented in [32,33,84,85].

Furthermore, the efficient decomposed architecture for key equation solver is also reported

in [31,33,77]. However, most designs are application specific solutions without configurabil-

ity or programmability. A universal RS codec that can manipulate different code rates and

block lengths has to support various finite fields. The difficulty for the universal RS codec

is the dedicated hardware providing finite field operations for variable field degree m and

irreducible polynomials, or primitive polynomials. Hence the software approach is proposed

in [37] by using programmable digital signal processor (DSP) with optimized datapaths.

In the follow-up sections, a universal finite field datapath for GF (2m) is presented for

both dedicated hardware and processor arithmetic unit [86]. As shown in (2.1), finite field

addition (FFA) over GF (2m) is a component-wise operation over GF (2) ans is simple to

implement with different degree m. Nevertheless, in (2.2), finite field multiplication (FFM)

is much complex due to the polynomial modulo operation. The present universal FFM will
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efficiently accommodate different irreducible polynomials and eliminate the effect of the field

degree m.

2.4.1 Universal finite field multiplier

The universal FFM is based on the Montgomery multiplication algorithm [87] that improves

the modular multiplications. With polynomial representation, multiplication of â and b̂ in

GF (pm) can be expressed as (2.2), which is a modular multiplication. Note that ĉ is also an

element of GF (pm) and f(x) is an irreducible polynomial over GF (p) with degree m. The

Montgomery product is defined as

ĉM = â · b̂ · µ∗ mod f(x), (2.47)

where µ∗ = x−m mod f(x) is a constant element in GF (pm), and µ∗ · µ = 1 mod f(x)

while µ = xm. Furthermore, we can find that f(x) and µ are relatively prime because f(x)

is irreducible; as a result, there exists a polynomial f ∗(x) that satisfies the following property

µ · µ∗ + f(x) · f ∗(x) = 1. (2.48)

With (2.48), the Montgomery product in (2.47) can be determined by

q̂ = â · b̂ · f ∗(x) mod µ (2.49)

ĉM = (â · b̂ + q̂ · f(x))/u. (2.50)

The polynomial f ∗(x) can be obtained from (2.48) by using Euclidean algorithm [67]. The

modular and division operations in (2.49) and (2.50) becomes much simple as compared

with the modulo f(x) operation in (2.48) because of µ = xm. The computation can be

further partitioned into a series of simpler operations for less complexity. We use µ∗ = x−m
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mod f(x) and polynomial representation of â = a0 + a1x + · · · + am−1xm−1 to decompose

(2.47):

ĉM = [am−1b̂x
−1 mod f(x)] + [am−2b̂x

−2 mod f(x)] + · · · [a0b̂x
−m mod f(x)]. (2.51)

This equation can be rearranged to the following iterative form:

ĉM = [am−1b̂+[am−2b̂+ · · · [a0b̂x
−1 mod f(x)] · · · ]x−1 mod f(x)]x−1 mod f(x). (2.52)

Similar to (2.49) and (2.50), we can use the Montgomery product (aib̂x
−1 mod f(x)) and

rewrite (2.52) as

• Initial conditions

Â(0) = 0

• Iterations from i = 0 to m − 1

q̂ = [(Â(i) + aib̂)f
∗(x)] mod x (2.53)

Â(i+1) = (Â(i) + aib̂ + q̂f(x))/x (2.54)

After m iterations, we will obtain ĉM = Am. Notice that f ∗(x) in (2.53) is the multiplicative

inverse of f(x) under modulo x operation, which is f(x)f ∗(x) = 1 mod x, or f ∗(x) = f−1(x)

mod x.

In GF (2m), the elements are often represented in binary digits, and the coefficients in the

polynomial representation are either zero or one. Hence f ∗(x) = f−1(x) mod x is always

one for f(x) is irreducible, and the term f ∗(x) in (2.53) can be eliminated. The result q̂ of

(2.53) is the constant term of (Ai + aib̂). The iteration number varies with the field degree

m. Therefore, we define a constant integer d such that m ≤ d and let u∗ = x−d mod f(x)

in (2.47). The corresponding iterative computation will become as follows:
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• Initial conditions

Â(0) = 0

• Iterations from i = 0 to d − 1

ai = 0, for i ≥ m (2.55)

T̂ = Â(i) + aib̂ (2.56)

Â(i+1) = (T̂ + t0f(x))/x (2.57)

The final result is

ĉM = Â(d) = â · b̂ · x−d mod f(x) (2.58)

Note that we force ai = 0 when i ≥ m to ensure correct operation, and t0 in (2.54) is the

constant term of T̂ . For any m ≤ d and irreducible polynomial f(x), we can compute the

Montgomery product (2.58) with d iterations of (2.55)∼(2.54) without modular operations.

We also find that µ∗ = x−d mod f(x) is a constant element in a given GF (2m). However,

for the normal FFM, there is still a factor µ∗ involved in the product ĉM . In order to remove

this factor, we apply another Montgomery multiplication to correct the product ĉM

ĉ = ĉM · δ̂ · x−d mod f(x) (2.59)

and let δ̂ = x2d mod f(x); as a result, the normal FFM product ĉ is obtained. In many

applications, it is unnecessary to perform the product correction each time we apply Mont-

gomery multiplication because d is a constant, and the correction is needed only after a

series of multiplications. We will show this approach in the decoder design.
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Fig. 2.2 illustrates an example of Montgomery multiplier structure for d = 4. This

multiplier has three inputs â, b̂, and f(x), represented by

â = a3x
3 + a2x

2 + a1x + a0

b̂ = b3x
3 + b2x

2 + b1x + b0

f(x) = f4x
4 + f3x

3 + f2x
2 + f1x + f0.

As derived in (2.58), the result ĉM will be

Â(4) = A
(4)
3 x3 + A

(4)
2 x2 + A

(4)
1 x + A

(4)
0 .

Note that f0 always equals to one that can be eliminated for simplicity. The multiplier in

Fig. 2.2 can operate over any GF (2m) with m ≤ 4.
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Figure 2.2: Montgomery multiplier structure for GF (2m) and m ≤ 4

2.4.2 Universal finite field divider

The finite field division

ĉ = b̂/â = b̂ · â−1 (2.60)
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can be proceeded with two steps where the first one is finding the multiplicative inverse â−1

for â, and the second one is multiplying b̂ by â−1. The process in finding â−1 is referred

to finite field inversion (FFI). There are possible solutions for FFI: table look-up approach

and Fermat’s algorithm [88]. The former constructs a â−1 table indexed by â; additional

memory is required for storing the table, but the operation is as simple as memory access.

The latter uses the Fermat’s identity

â−1 = â2m−2 =

m−1
∏

i=1

â2i

(2.61)

which can be completely implemented with multipliers. However, with Montgomery multi-

plication, we will achieve the following result

â−1
M = â−1 · δ̂∗ (2.62)

δ̂∗ = x−(2m−2)d mod f(x) = xd mod f(x) (2.63)

In (2.63), we also use the Fermat’s identity x−1 = x2m−2 mod f(x). Hence the finite field

division in (2.60) can be rewritten as

ĉ = b̂ · (â−1 · xd) · x−d mod f(x) = b̂ · â−1
M · x−d mod f(x) (2.64)

which is also a Montgomery multiplication. It is unnecessary to adjust the quotient ĉ with

any factor.

�a

�
b

� �
1−⋅b a

A
R

B
R

Square function

Figure 2.3: Montgomery division structure for GF (2m)
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The finite field divider using Fermat’s algorithm is shown in Fig. 2.3. Initially, register

RB is loaded with b̂. The multiplier on the left side performs the finite field square function

generating a sequence of â2, â4,. . . , and â2m−1
; the other multiplier serially multiplies b̂ by

this sequence. After m − 1 cycles, the result b̂ · â−1 is obtained without correction factor.

2.4.3 Syndrome Calculator

The syndrome calculator computes 2t syndromes according to (2.20) which can be expressed

as

Si =

n−1
∑

j=0

rjα
i·j (2.65)

= (· · · ((rn−1α
i + rn−2)α

i + rn−3)α
i + · · · )αi + r0 (2.66)

According to (2.66), we can construct a syndrome calculator for Si as shown in Fig. 2.4,

consisting of a register, a finite field adder, and a constant finite field multiplier which mul-

tiplies by αi. The received data are serially inputted from rn−1 to r0. After r0 is calculated,

the final result Si will be in the register. The constant FFM is simpler than the standard

α× i

0 1 2 1
, , ,..., −nr r r r

i
S

Figure 2.4: Syndrome calculator for Si

FFM in terms of complexity and critical path timing. Nevertheless, if we want to design

a universal syndrome calculator, the constant FFM should be replaced with Montgomery

multiplication where the multiplier is αi+d. Notice that αi+d varies with the irreducible poly-

nomial f(x), limiting the simplication of Montgomery multiplication. Hence the modified

syndrome computation is proposed [38] to reduce the Montgomery multiplication. We first
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rewrite (2.65) as follows:

Si =

n−1
∑

j=0

rjα
i·j =

n−1
∑

j=0

rjα
d·j+(i−d)·j =

n−1
∑

j=0

(rjα
d·j)α(i−d)·j (2.67)

The new received symbol r′j is defined to be rjα
d·j, and (2.67) can also be expand into

iterative form:

Si = (· · · (r′n−1α
i−d + r′n−2)α

i−d + · · · r′1)αi−d + r′0. (2.68)

Therefore, because of the term αi−d, we can use Montgomery multiplication with constant

multiplier αi if i < d. Since d is the maximum value of m, b̂ = αi with i < d in (2.58) can

be represented as a constant, regardless of different f(x). Furthermore, when i = d, αi−d =

α0 becomes one and the constant multiplier can also be eliminated. The corresponding

Montgomery multiplier will be simplified due to the constant b̂ = αi. On the other had,

once i is larger or equal than d, we can modified (2.67) to achieve the similar results; that is

Si =















































∑n−1
j=0 (rjα

d·j)α(i−d)·j, for 0 < i ≤ d

∑n−1
j=0 (rjα

2d·j)α((i−d)−d)·j , for d < i ≤ 2d
∑n−1

j=0 (rjα
3d·j)α((i−2d)−d)·j , for 2d < i ≤ 3d

...
...

∑n−1
j=0 (rjα

πd·j)α((i−(π−1)d)−d)·j , for (π − 1)d < i ≤ πd

(2.69)

We can find that (i − (π − 1)d) is still between 0 and d as (π − 1)d < i ≤ πd, and therefore

a group of constant multipliers can be defined for αi with 0 < i < d. It is also convenient to

deliver S̃i = αdSi which will facilitate the key equation solver implementation. A syndrome

calculator with d = 8 and t ≤ 8 is presented in Fig. 2.5. There are at most 16 syndromes

that should be computed from S̃i = α8r(αi) for i = 1 ∼ 16. For d = 8, we construct eight

syndrome cells, SC1 ∼ SC8, as shown in Fig. 2.5; besides, SC8 is a special cell without
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constant multipliers. Based on (2.69), we can express S̃i as follows:

S̃i = α8Si =











∑n−1
j=0 (rjα

8(j+2)α−8)α(i−8)·j , for 0 < i ≤ 8

∑n−1
j=0 (rjα

8(2j+2)α−8)α((i−8)−8)·j , for 8 < i ≤ 16.
(2.70)

As 0 < i ≤ 8 and 8 < i ≤ 16, the received symbol rj should respectively multiply

by factors α8(j+1) and α8(2j+1), or α8(j+2) and α8(2j+2) in Montgomery multiplication. In

Fig. 2.5, two factor generators, FG1 and FG2, are allocated to produce the scaling factors

with Montgomery multipliers. The register in FG1 initially contains α8(n+1) and serially
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(a) Syndrome calculator

8iα −×

(b) SCi for i = 1 ∼ 7

(c) SC8

Figure 2.5: Syndrome calculator with d = 8 and t ≤ 8

multiplies by B1 = 1; as a result, α8(j+2) in which j counts from n−1 to 0 will be generated.

Similarly, to create α8(2j+2) for j = (n − 1) ∼ 0 in FG2, the register sequentially multiplies

by B2 = α−8 with initial value α8·2n. We then multiply rj and the factors from FG1 and

FG2 with Montgomery multipliers.

Although the syndrome calculator in Fig. 2.5 supports only t ≤ 8, it can be extended

to handle t ≤ 16 syndrome calculation which has at most 32 syndromes Si = r(αi) with
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i = 1 ∼ 32. The first 16 syndromes S̃1 ∼ S̃16 can be computed by using the configuration

in Fig. 2.5. The calculation of other syndromes needs some modifications for FG1 and FG2.

We first represent S̃17 ∼ S̃32 in the following form:

S̃i = α8Si =











∑n−1
j=0 (rjα

8(3j+2)α−8)α(i−16)·j , for 16 < i ≤ 24

∑n−1
j=0 (rjα

8(4j+2)α−8)α((i−24)−8)·j , for 24 < i ≤ 32.
(2.71)

In (2.71), the constant multiplications remain the same as compared to (2.70). The difference

is the factors by which rj multiplies; consequently, as j counts from (n − 1) to 0, FG1 and

FG2 will generate α8(3j+2) and α8(4j+2). The initial value becomes α8(3n−1), and the B1 input

α−16 in FG1. On the other hand, we configure FG2 with the initial value α8(4n−2) and the

input B2 = α−24. Because there are 16 computation cells in Fig. 2.5, it will require double

time to complete 32 syndrome calculations in contrast to t ≤ 8 case.

Generally, according to (2.69), the architecture (see Fig. 2.5) is possible to be extended to

more syndromes, but the computation time also increases. The present approach provides the

feasibility for different syndrome calculations; nevertheless, the trade-off between the number

of syndrome cells and the the computation time should depend on system specifications and

requirements.

2.4.4 Key Equation Solver

The algorithm in solving key equation (2.26) or (2.37) can be either Berlekamp-Massey

algorithm or Euclidean algorithm. As indicated in section 2.3, Berlekamp-Massey algorithm

has the fixed iteration number 2t, which is much regular for different RS codes and therefore

is selected for universal RS decoder. For error and erasure decoding, we combine the Forney

syndrome calculator and the polynomial multiplier for Λ(x) in Fig. 2.1 with the key equation

solver. Th inversionless algorithm is also applied [32,33,84,85] to avoid finite field division,

leading to less complexity. The inversionless Berlekamp-Massey algorithm is presented as
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follows:

• Initial conditions:

σ(u)(x) = 1, τ (u)(x) = 1, Du = 0

∆u = Tu+1, δ = 1,

• Iteration from i = (u + 1) to 2t:

σ(i)(x) = δσ(i−1)(x) + ∆i−1τ
(i−1)(x) · x (2.72)

∆i =

t−1
∑

j=0

σ
(i)
j Ti+1−j (2.73)

If ∆i−1 = 0 or Di−1 ≥ i − u − Di−1,

τ (i)(x) = τ (i−1)(x) · x,

Di = Di−1.

Otherwise, the erasure information αl1 ∼ αlu

τ (i)(x) = σ(i−1)(x),

Di = i − u − Di−1, δ = ∆i−1

The final result σ(2t)(x) will be (η · σ(x)) that includes a element η ∈ GF (2m). Note that

η will be ineffective for the roots of σ(x) = 0 and the error evaluation in (2.45) and (2.46)

because error evaluation polynomial will also be (η · ω(x)) [77].

Before we start to solve key equation, the erasure information αl1 ∼ αlu in (2.36) should be

generated. Similarly, we generate αl1+d ∼ αlu+d for the simplification in key equation solver.

The erasure information generator is illustrated in Fig. 2.6 with a constant α−1 multiplier,

where we let α−1 = α(d−1)−d and assign the constant multiplier input to be αd−1. As what we

had discussed previously, αd−1 can be represented as a constant element. The register initially

contains α(n−1)+d and serially multiplies by α−1, corresponding to the received sequence rj .
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Figure 2.6: Erasure information generator

The contents of the register are captured whenever the erasure appears in the received data.

After receiving all rj , we obtain the the erasure information αl1+d ∼ αlu+d.

With the syndrome polynomial

S̃(x) =
2t
∑

i=1

S̃ix
i−1 =

2t
∑

i=1

αdSix
i−1, (2.74)

the key equation can be solved as follows:

• Initial conditions:

σ(0)(x) = S̃(x), τ (0)(x) = S̃(x)

∆0 = αl1+d, δ = αd

• Iteration from i = 1 to u:

σ(i)(x) = δσ(i−1)(x) + ∆i−1τ
(i−1)(x) · x (mod x2t) (2.75)

∆i = αli+1+d, τ (i)(x) = σ(i)(x)

• When i = u, we set the following conditions for further computation.

T̃ (x) =

2t
∑

i=1

T̃ix
i−1 = σ(u)(x), ∆u = T̃u+1,

σ(u)(x) = αd, τ (u)(x) = αd, Du = 0
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• Iteration from i = (u + 1) to 2t:

σ(i)(x) = δσ(i−1)(x) + ∆i−1τ
(i−1)(x) · x (2.76)

∆i =
t−1
∑

j=0

σ
(i)
j T̃i+1−j (2.77)

If ∆i−1 = 0 or Di−1 ≥ i − u − Di−1,

τ (i)(x) = τ (i−1)(x) · x,

Di = Di−1.

Otherwise,

τ (i)(x) = σ(i−1)(x),

Di = i − u − Di−1, δ = ∆i−1

When all 2t iterations are finished, we will attain the error location polynomial

σ̃(x) = σ(2t)(x) = η′σ(x) =

v
∑

i=0

σ̃ix
i (2.78)

with with η′ = αdη. The iteration from i = 1 to u intends to estimate the Forney syndrome

polynomial T̃ (x) = αdT (x); the inversionless Berlekamp-Massey algorithm proceeds from

i = (u + 1) to 2t. Since we apply the Montgomery multiplication to all FFM computations,

each quantity will contains an additional factor αd. Subsequently, we can establish the error

value polynomial

ω̃(x) = η′ω(x) =

u+v−1
∑

i=0

ω̃ix
i (2.79)

by the following property

ω̃i =
i
∑

j=0

σ̃jT̃i+1−j , (2.80)

which is quite similar to the discrepancy evaluation in (2.77). On the other hand, we can

derive the errata location polynomial Λ(x) with the process of T̃ (x) construction. The
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procedure is described as follows:

• Initial conditions:

σ(2t)(x) = σ̃(x), τ (2t)(x) = σ̃(x)

∆2t = αl1+d, δ = αd

• Iteration from i = 2t + 1 to 2t + u:

σ(i)(x) = δσ(i−1)(x) + ∆i−1τ
(i−1)(x) · x (2.81)

∆i = αli+1+d, τ (i)(x) = σ(i)

The errata polynomial will be Λ̃(x) = σ(2t+u)(x) = η′Λ(x). Notice that the uniformity of

(2.75), (2.76), and (2.81) lead to the simple key equation solver architecture. Moreover,

the calculations of discrepancy and error value polynomial calculations can use identical

computational structures.

The above mentioned algorithm requires the computations of Forney syndrome polyno-

mial and errata location polynomial; nevertheless, those computations can be combined with

Berlekamp-Massey algorithm as reported in [89]. The modified flow is as follows:

• Initial conditions:

σ(0)(x) = αd, τ (0)(x) = αd

∆0 = αl1+d, δ = αd

• Iteration from i = 1 to u:

σ(i)(x) = δσ(i−1)(x) + ∆i−1τ
(i−1)(x) · x (2.82)

∆i = αli+1+d, τ (i)(x) = σ(i)(x)
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• When i = u, we initialize Berlekamp-Massey algorithm with σ(u)(x) = αdλ(x).

τ (u)(x) = σ(u)(x), ∆u = S̃u+1, Du = 0

• Iteration from i = (u + 1) to 2t:

σ(i)(x) = δσ(i−1)(x) + ∆i−1τ
(i−1)(x) · x (2.83)

∆i =

t−1
∑

j=0

σ
(i)
j S̃i+1−j (2.84)

If ∆i−1 = 0 or Di−1 ≥ i − u − Di−1,

τ (i)(x) = τ (i−1)(x) · x,

Di = Di−1.

Otherwise,

τ (i)(x) = σ(i−1)(x),

Di = i − u − Di−1, δ = ∆i−1

The errata location polynomial will be finally obtained as

Λ̃(x) = σ(2t)(x) =
u+v
∑

j=0

Λ̃jx
j. (2.85)

Additionally, the coefficients of error value polynomial can be derived according to the key

equation (2.37). That is

ω̃i =

i
∑

j=0

Λ̃jS̃i+1−j , for i = 0 ∼ u + v − 1. (2.86)

The operations from i = 1 to u are erasure location polynomial expansion that recursively

computes αdλ(x) by (2.82). The Berlekamp-Massey algorithm, which is from i = u + 1
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to 2t, starts with both σ(u)(x) and τ (u)(x) equal to αdλ(x), and therefore the final result

will be (η′σ(x)λ(x)) = Λ̃(x). Furthermore, to achieve less decoding latency, the polynomial

expansion in (2.82) can work in parallel with syndrome calculator because it is independent

of the syndromes S̃i.

Based on the decomposed architecture in [77], the key equation solver is demonstrated

in Fig. 2.7. Only three Montgomery multipliers are required due to the serial operations,

leading to the modest complexity. There are two buffer memory, buffer-σ and buffer-τ , for

storing σ(i−1)(x) and τ (i−1)(x). We configure this architecture for erasure location polyno-

mial, Berlekamp-Massey algorithm, and error value polynomial. When i = 1 ∼ u, Fig. 2.7 is

in polynomial expansion mode (2.82) with ∆i = αli+1+d and δ = αd, and the result σ(i)(x) is

then saved to both buffer-σ and buffer-τ . After u iterations, we have αdλ(x) in both buffers

( 1) ( )i
x

−τ

( 1) ( )i
x

−σ �
1i jS + −

δ
1i−∆

( )i

jσ
buffer-

buffer-

Figure 2.7: Key equation solver

which are ready for the next Berlekamp-Massey algorithm. As the syndrome polynomial

S̃(x) is available, the solver will perform (2.83) and (2.84) from i = u + 1 to 2t and finally

generate Λ̃(x) (see (2.85)) in buffer-σ. The error value polynomial can also obtained with

Fig. 2.7 according to (2.86). We let ∆i−1 = 0 and δ = αd; consequently, the coefficient Λ̃j

from buffer-σ will multiply by S̃i+1−j , and the product will be accumulated to be ω̃i.

2.4.5 Chein Search

The key equation solver will provide errata location polynomial Λ̃(x) for Chien search op-

eration that repeatedly check Λ̃(x) = 0 when x = α0, α−1, . . . , α−(n−1). We can represent

39



Chien search as the following equation

Λ̃(α−i) =

u+v
∑

j=0

Λ̃jα
−i·j, (2.87)

which is similar the syndrome calculation (2.65). In order to reduce the multiplier complexity,

(2.87) is also transformed to

Λ̃(α−i) =

u+v
∑

j=0

Λ̃j(α
(d−j)−d)i, (2.88)

= Λ̃0 +

πm
∑

π=0

(α−πd)i ·
d
∑

j=1

Λ̃πd+j(α
(d−j)−d)i, (2.89)

where πm = ⌊u+v
d
⌋, and Λ̃πd+j = 0 when πd + j > u + v. We divide the coefficients of Λ̃(x)

in (2.89) into (πm + 1) groups and let Λ̃πd+j multiply by α((d−j)−d)·i with 1 ≤ j ≤ d. As

a result, αd−j can be represented as a constant input for Montgomery multiplier because

0 ≤ d − j ≤ d − 1. With d = 8 and t ≤ 16 including erasures, the Chien search structure

is presented in Fig. 2.8. Since the maximum degree of Λ̃(x) is 16, this architecture should

have 16 Chien search cells (CC). The j-th Chien search cell (CCj) use a constant multiplier

in which one of the inputs is forced to α8−j. Based on (2.89), there is a factor generator

producing α−8i for i = 1 ∼ (n− 1). Additionally, the values Λ̃′(α−jκ) in (2.45) and Λ̃′(α−jρ)

in (2.46) are determined when Λ̃(α−jκ) or Λ̃(α−jρ) equals to zero [77]. However, the outputs

of Fig. 2.8 are Λ̃′(α−jκ) · α−jκ or Λ̃′(α−jρ) · α−jρ because of the following conditions:

Λ̃′(x) =

dΛ
∑

j=0

Λ̃2j+1x
2j = x−1 ·

dΛ
∑

j=0

Λ̃2j+1x
2j+1 , x−1 · Λ̃odd(x) (2.90)

in which dΛ = u+v
2

− 1 as (u + v) is even, or dΛ = u+v−1
2

as (u + v) is odd. We also define

a polynomial Λ̃odd(x) to be Λ̃(x) with zero coefficients in the even degree terms; that is,

Λ̃2j = 0. Consequently, the structure in Fig. 2.8 can also generate Λ̃odd(α
−i) = α−iΛ̃′(α−i)
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Figure 2.8: Chien search module with d = 8 and t ≤ 16

during Chien search operation. When Chien search identifies the error or erasure locations,

the results α−iΛ̃′(α−i) will be delivered for error or erasure value evaluation.

2.4.6 Error Value Evaluator

In the error and erasure value computations with (2.45) and (2.46), not only the inversions

of Λ̃′(α−jκ) and Λ̃′(α−jρ), but also ω̃(α−jκ) and ω̃(α−jρ) need to be determined. In order to

41



comply the data from Chien search, we modify the error and erasure values to be

eκ =
−α−jκω̃(α−jκ)

α−jκΛ̃′(α−jκ)
(2.91)

eρ =
−α−jρω̃(α−jρ)

α−jρΛ̃′(α−jρ)
, (2.92)

meaning that x · ω̃(x) should be used in both (2.91) and (2.92). Fig. 2.9 shows the corre-

sponding architecture for both error and erasure values. The cell CCj is identical to the j-th

Chien search cell in Fig. 2.8, and the evaluation of α−iω̃(α−i) is based on the equation:

α−iω̃(α−i) =

u+v
∑

j=1

ω̃j−1(α
(d−j))−d)i =

πm
∑

π=0

(α−πd)i ·
d
∑

j=1

ω̃πd+j−1(α
(d−j)−d)i. (2.93)

For d = 8 and t ≤ 16, the computation of (2.93) can be divided into two groups corresponding

to π = 0 and π = 1. In the π = 1 group, we need an additional α−8i generator to adjust the

result. Finally, the divider performs finite field division to complete (2.91) and (2.92). The

divider can be either a look-up table combined with a multiplier or the structure in Fig. 2.3

using Fermat’s identity (2.61). The look-up table requires multiple contents to satisfy various

GF (2m); accordingly, we use a dynamic look-up table updated on-the-fly for different finite

field definitions. The inversion table is presented in Fig. 2.10. A random access memory

(RAM) with the size of 2d × d is implemented to store the inversion contents that create

by α−i+d generator. We let each α−i+d be indexed by αi to compensate the α−d factor in

Montgomery multiplication completing the division operation. The inversion contents can

be generated during the syndrome calculation. The registers in α−i+d and αi generators are

initialized with the constants αd and α0 = 1. As i counts from 0 to n − 1, each value α−i+d

will be written to the address αi. Notice that α−i+d generator uses a constant Montgomery

multiplier, however, the constant α multiplier in αi generator is a direct implementation

without Montgomery algorithm because α1+d is unable to be a constant multiplier input.

As compared with the divider in Fig. 2.3, the look-up table based architecture provides much
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Figure 2.9: Error value evaluator with d = 8 and t ≤ 16

faster computation although a memory is required.
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43



Chapter 3

Convolutional codes

Convolutional codes first proposed by Elias [13] in 1955 have been widely exploited in com-

munication systems to provide a superior error correction capacity. Compared with block

codes, convolutional encoder contains memory, or the codeword symbols depends not only on

the current information symbols, but also on some previous information symbols. Therefore,

an (n, k, m) convolutional code can be defined as follows: the information stream or block is

divided to frames of k symbols, and current information frame as well as m previous ones are

encoded into codeword frame of length n. The error correction performance is determined

by the code rate R = k/n and the memory order m.

The decoding of convolutional codes includes sequential decoding [14], threshold decod-

ing [90], and Viterbi algorithm [15]. Moreover, the maximum a posteriori (MAP) decoding

algorithm [16] and the soft output Viterbi algorithm (SOVA) [19] are also utilized for soft

iterative decoding. Sequential decoding is the first practical decoding algorithm whose com-

plexity is independent of the memory order m. The Fano algorithm [91] and the stake

algorithm [92, 93] are also of this type. Considering simple implementation, the threshold

decoding [94], or majority-logic decoding, is proposed in [90], however, the performance is

sub-optimum. The Viterbi algorithm is a maximum likelihood (ML) decoding that optimally

minimizes the block error probability. Because of the parallel computation, the decoder us-

ing Viterbi algorithm is quite suitable for high speed applications. Hence, the requirement

for high speed data transmission has conducted many researches in algorithm transforma-

tions and VLSI implementation. The MAP algorithm, or referred to BCJR algorithm, and

the sub-optimum SOVA are symbol by symbol detection algorithm that minimizes the sym-

44



bol error probability. They are much popular due to the iterative decoding of the parallel

concatenated convolutional codes (PCCC), named turbo code [17, 18].

This section will focus on the Viterbi decoding algorithm as well as the architecture

design after the introduction of convolutional codes. The MAP algorithm and the SOVA

are also presented finally.

3.1 Convolutional codes and encoders

An (n, k) convolution code over F = GF (q) can be defined as a k-dimensional subspace of

n-dimensional vector space F n((D)) [94, 95]. The set F ((D)) of Laurent series in D over

F is the set of sequences a(D) =
∞
∑

i=r

aiD
i in which ai ∈ F , and r is an arbitrary integer.

Furthermore, we can express the information stream as the sequence

u(D) =

∞
∑

i=r

uiD
i (3.1)

where ui = (u
(1)
i , u

(2)
i , . . . , u

(k)
i ) is i-th k-tuple information frame, and therefore u(D) ∈

F k((D)). The codeword stream is also the sequence v(D) in F n((D)) and can be represented

with the n-tuple codeword frame vi = (v
(1)
i , v

(2)
i , . . . , v

(n)
i ):

v(D) =
∞
∑

i=r

viD
i (3.2)

The (n, k) convolutional encoder can then have the following definition [95, 96]:

Definition 3.1. An encoder is a k × n convolutional encoder over F if the mapping

F k((D)) 7→ F n((D)) realized by the encoder can be represented by v(D) = u(D)G(D)

where G(D) is a k × n matrix of rank k with entries in the subset F (D) of F ((D)).

We represent the set of finite degree polynomials in D over F by F [D]; moreover, F (D)

denotes the set of rational functions a(D)/b(D) with both a(D) and b(D) in F [D]. Clearly,
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F [D] and F (D) are subsets of F ((D)). The generator matrix G(D), also termed encoder, in

the definition 3.1 results in the codewords of length n and coding rate R = k/n. Generally,

G(D) is often expressed as a generator matrix:

G(D) =



















g
(1)
1 (D) g

(2)
1 (D) · · · g

(n)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) · · · g

(n)
2 (D)

...
...

. . .
...

g
(1)
k (D) g

(2)
k (D) · · · g

(n)
k (D)



















. (3.3)

where g
(j)
i (D) ∈ F (D) for all i = 1, 2, . . . , k and j = 1, 2, · · · , n. We express the rational

function as g
(j)
i (D) = a

(j)
i (D)/b

(j)
i (D) with the polynomials a

(j)
i (D) and b

(j)
i (D). Accordingly,

the memory order m is the maximum degree among all a
(j)
i (D) in G(D).

m = max
1≤i≤k,1≤j≤n

deg[a
(j)
i (D)] (3.4)

In the graphical representation, we can use the controller canonical form for the linear system

with the input u(D) ∈ F ((D)):

v(D) = u(D)a(D)/b(D), (3.5)

where a(D), b(D) ∈ F [D] and

a(D) =
m
∑

i=0

aiD
i

b(D) = 1 +

m
∑

i=1

biD
i

As shown in Fig. 3.1, the delay elements denoted by D construct a single input shift register.

The m delay elements are memory units that store the previous m shift register inputs. We

can find that a(D)/b(D) is a rational transfer function for the input u(D), and the output
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...
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. . .

i
u

i
v

b1

Figure 3.1: The controller canonical form of (3.5)

v(D) is also in F ((D)). Alternatively, if (3.5) is rewritten as

v(D) = u(D)a(D) + v(D)(

m
∑

i=1

biD
i), (3.6)

the observer canonical form of the system is illustrated in Fig. 3.2, which is another real-

ization of Fig. 3.1 for the same transfer function. The generator matrix in (3.3) with the

a0

...

i
u

i
vD D D D

am am-1 am-2

bm bm-1 bm-2 b1

...

...

Figure 3.2: The observer canonical form of (3.6)

entries in F (D) is referred to a rational transfer function matrix.

The above mentioned encoder (3.3) leads to the constraint length definitions [94] listed

below:

1. The constraint length for i-th information sequence is the maximum degree within i-th

row of G(D).

νi = max
1≤j≤n

deg[a
(j)
i (D)] (3.7)
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Note that a
(j)
i (D) is the numerator of the rational function g

(j)
i (D).

2. The overall constraint length is the summation of (3.7) for all information sequence.

ν =

k
∑

i=1

νi (3.8)

3. The input constraint length is the number of information symbols that affect each

codeword frame.

K = ν + k (3.9)

4. The output constraint length is the number of codeword symbols that related to a

single information frame.

nm = n(m + 1) (3.10)

The required number of memory elements in the controller canonical form (see Fig. 3.1)

is equal to the overall constraint length ν. Notice that many literatures define a single

constraint length for an encoder with one of the above four statements. For example, in [97]

the overall constraint length ν in (3.8) is defined to be the constraint length of a convolutional

encoder.

There are infinite number of generator matrices that produce the same set of codewords.

Thus we can define the equivalence of two encoders as:

Definition 3.2 (Forney [98] ). Two encoders G(D) and G′(D) are equivalent if they generate

the same code.

Furthermore, two equivalent encoders G(D) and G′(D) can be related by G(D) =

T (D)G′(D) if and only if T (D) is a k × k nonsingular matrix over F (D) [96]. For two
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codeword sets {v(D)} and {v′(D)} corresponding to G(D) and G′(D), or

v(D) = u(D)G(D) = u(D)T (D)G′(D) = u′(D)G′(D)

v′(D) = u(D)G′(D),

we can find that {u′(D) = u(D)T (D)} and {u(D)} are identical sets because T (D) is

invertible. It can also be verified that T (D) is nonsingular if G(D) and G′(D) are equivalent.

The encoder in definition 3.1 is required to perform one-to-one mapping for correctly

decoding. Therefore, these exists a G−1(D) such that

v(D)G−1(D) = u(D)G(D)G−1(D) = u(D)

for all u(D). We use the equation G(D)G−1(D) = Ik where Ik is the k × k identity matrix,

and G(D)−1 is the right inverse of G(D). The basic encoder is defined as follows:

Definition 3.3 (Forney [98] ). A generator matrix G(D) is basic if it is polynomial and has

a polynomial right inverse.

It follows that every rational encoder is equivalent to a basic convolutional encoder [96,

98]. Generally, basic encoders are not unique, and therefore, two basic encoders G(D) and

G′(D) are equivalent if and only if G′(D) = T (D)G(D) where T (D) is a k × k polynomial

matrix with determinant 1 [95, 96]. Because T (D) is nonsingular, G′(D) = T (D)G(D)

indicates the equivalence of G′(D) and G(D). Conversely, if G(D) and G′(D) are equivalent,

there exist a k×k matrix T (D) over F (D) such that G′(D) = T (D)G(D), and T (D)−1 exists.

Furthermore, since G(D) is basic and thus has a polynomial right inverse G−1(D), we can

find that T (D) = G′(D)G−1(D) is also polynomial; besides, T (D)−1 should be polynomial.

As a result, G′(D) = T (D)T−1(D)G′(D) and T (D)T−1(D) = Ik. Since both T (D) and

T−1(D) are polynomials, T (D) must have determinant 1, or det(T (D)) = 1.

Among all equivalent basic encoders, there is one that requires a minimal number of
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memory elements. Accordingly, such encoder is defined by

Definition 3.4 (Johannesson [96]). A minimal basic encoding matrix is a basic genera-

tor matrix whose overall constraint length ν is minimal over all equivalent basic encoding

matrices.

Let G(D) be a basic encoder, and it can be decomposed into three parts:

G(D) = G0(D) +



















Dν1

Dν2

. . .

Dνk



















· Ḡh (3.11)

Notice that Ḡh is a k×n matrix over F and has nonzero entries in the positions (i, j) where

deg gj
i (D) = νi. As a result, G0(D) contains the enteritis in G(D) where the highest degree

terms in each row are removed. For G(D) with the overall constraint length ν, we can obtain

the following equivalent statements [96, 97]:

1. G(D) is a minimal basic encoder.

2. The maximum degree of all k × k sub-determinants of G(D) equals to ν.

3. Ḡh is of full rank.

According to (3.11), the second and the third statements are equivalent. The proof about

the equivalence of the first and the second statements can be found in [96] and [97]. The

above three statements characterize the minimal basic encoder in definition 3.4 and provide

the rules for constructing a minimal basic encoder. Moreover, a minimal basic encoder for

a convolutional code is unnecessarily unique, and every encoding matrix is equivalent to a

minimal basic encoding matrix [98].

The physical state of a rational encoder G(D) at some time instance is defined to be the

contents of the memory elements in its realization, which can be either the controller or the
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observer canonical form. On the other hand, the abstract state is the output sequence at time

0 and later if the input sequence u(D) occurs up to time −1 and becomes all zero thereafter.

Hence, the abstract state depends only on G(D) instead of its realization [96]. Different

abstract states must correspond to different output sequences and different physical states.

However, different physical states may correspond to the same abstract state [95]. Let P be

the projection operator that forces the sequences to all zero for non-negative time instants,

and Q be the projection operator that truncates the sequences at negative time instants.

For example, assume r < 0,

u(D)P =
−1
∑

i=r

uiD
i (3.12)

u(D)Q =

∞
∑

i=0

uiD
i. (3.13)

Therefore, the abstract state vS(D) can be formally written by

vS(D) = u(D)PG(D)Q. (3.14)

Accordingly, the minimal basic encoder in definition 3.4 will have the following properties [96,

97, 99]:

1. If G(D) is minimal basic and

u(D) =

n
∑

i=−m

uiD
i = (u

(i)
i , u

(i)
i , . . . , u

(k)
i )Di, (3.15)

u(D)G(D)Q = 0 will deduce that u(D) = 0.

2. The abstract state number of a minimal basic encoder equals the physical state number.

3. The abstract state number of an encoder is always larger than or equal to that of an

equivalent minimal basic encoder.
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The first property can be verified with (3.11), and

v(D) = u(D)G0(D) + u(D)



















Dν1

Dν2

. . .

Dνk



















Ḡh (3.16)

must have zero coefficients vi for i ≥ 0. Without loss of generality, we may assume that

m = ν1 = ν2 = · · · = νl > νl+1 ≥ · · · ≥ νk (3.17)

Consequently, the coefficient vm+n of Dm+n in v(D) will be

(u(0)
n , u(1)

n , . . . , u(l)
n , 0, . . . , 0)Ḡh = 0. (3.18)

Since Ḡh has full rank, we can obtain u
(0)
n = u

(1)
n = · · · = u

(l)
n = 0. The coefficient vi for

i < m + n can also be examined in such method, and we will find that u(D) = 0. For

example, if (m − 1) = νl+1 > νl+2, the coefficient vm+n−1 becomes

(u
(0)
n−1, u

(1)
n−1, . . . , u

(l)
n−1, u

(l+1)
n , 0, . . . , 0)Ḡh = 0, (3.19)

and therefore u
(l+1)
n = u

(0)
n−1 = u

(1)
n−1 = · · · = u

(l)
n−1 = 0.

The second property of a minimal basic encoder G(D) ensures the minimum realization

of its controller canonical form. Because the basic encoder is polynomial, the following input

sequence

u(D) = (

−ν1
∑

i=−1

u
(1)
i Di,

−ν2
∑

i=−1

u
(2)
i Di, . . . ,

−νk
∑

i=−1

u
(k)
i Di) (3.20)

will be the physical state in the controller canonical form at time instant 0. According
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to (3.14), the abstract state of G(D) can be written as

vS(D) = u(D)G(D)Q. (3.21)

If there are two different physical states u1(D) and u2(D) in the form of (3.20) correspond

to the the same abstract state, we will have

vS(D) = u1(D)G(D)Q = u2(D)G(D)Q, (3.22)

or

(u1(D) − u2(D))G(D)Q = 0. (3.23)

Directly from the first property, we can conclude that (u1(D)−u2(D)) must be zero, resulting

in u1(D) = u2(D). Hence the abstract state number should equal to the physical state

number for a minimal basic encoder.

The third property shows the minimum of a minimal basic encoder. We consider two

equivalent encoders G(D) and G′(D) whose abstract states are vS(D) and v′
S(D) respec-

tively. From the abstract state definition, vS(D) can be obtained

vS(D) = u(D)PG(D)Q

= u(D)PT (D)G′(D)Q

= u(D)PT (D)(P + Q)G′(D)Q

= u(D)PT (D)PG′(D)Q + u(D)PT (D)QG′(D)Q. (3.24)

Note that

v′
S(D) = [u(D)PT (D)P ]G′(D)Q (3.25)
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is an abstract state of G′(D); moreover,

v′(D) = [u(D)PT (D)Q]G′(D)Q = [u(D)PT (D)Q]G′(D) (3.26)

is a codeword generated by G′(D) and the input sequence u(D)PT (D)Q. Therefore, the

abstract state of G(D) can be expressed by the sum of an abstract state and a codeword

corresponding to G′(D). That is

vS(D) = v′
S(D) + v′(D) (3.27)

If G′(D) is minimal basic, the relation in (3.27) is unique. This uniqueness can be verified

by the contrary assumption:

vS(D) = v′
S1(D) + v′

1(D) = v′
S2(D) + v′

2(D) (3.28)

where v′
S1(D) and v′

S1(D) are different abstract states of G′(D); v′
1(D) and v′

2(D) are

codewords by G′(D). Rearranging (3.28), we have

v′′
S(D) = v′

S1(D) − v′
S2(D) = v′

2(D) − v′
1(D) = v′′(D). (3.29)

Notice that v′′
S(D) is also an abstract state, and v′′(D) is a codeword. Hence they should be

v′′
S(D) = u′′

S(D)PG′(D)Q (3.30)

v′′(D) = u′′(D)G′(D)Q. (3.31)

The input sequence u′′
S(D) has the degree ≥ −m, which is sufficient to produce an abstract

state. The operator Q in (3.31) comes from (3.26), where we can also find that u′′(D) must
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be polynomial. Furthermore, the combination of (3.29), (3.30), and (3.31) leads to

u′′
S(D)PG′(D)Q − u′′(D)G′(D)Q = [u′′

S(D)P − u′′(D)]G′(D)Q = 0. (3.32)

Based on the first property, we will obtain

u′′
S(D)P − u′′(D) = 0, (3.33)

and therefore u′′
S(D)P = u′′(D) = 0 since u′′(D) is polynomial. As a result, v′

S1(D) =

v′
S2(D) and v′

2(D) = v′
1(D), resulting in the uniqueness of (3.27) if G′(D) is minimal basic.

In other words, for any abstract state v′
S(D) of G′(D), there exists an abstract state vS(D)

of G(D) such that (3.27) holds; in addition, v′
S(D) can be a sum of an abstract state and

a codeword of G(D). Therefore, the map vS(D) 7→ v′(D) is surjective, and the abstract

state number of G(D) must be larger than or equal to that of the equivalent minimal basic

encoder G′(D).

An encoder with the minimal abstract state number is of interest because the minimality

also effects the complexity of encoders and decoders. The more general minimal encoder is

then defined as follows:

Definition 3.5. [Johannesson [96]] An encoder G(D) is minimal if its abstract state number

is minimal over all equivalent encoders.

Clearly, a minimal basic encoder is a minimal encoder. Moreover, for an encoder G(D)

whose equivalent minimal basic encoder is Gmb(D), the following statements are equiva-

lent [96, 98]:

1. G(D) is a minimal encoder.

2. The abstract state number of G(D) equals to that of Gmb(D).

3. For G(D), only the abstract state of zero can be a codeword.
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4. G(D) has a polynomial right inverse in D and a polynomial right inverse in D−1.

The second statement comes directly form the definition 3.5 and the second property of a

minimal basic encoder. As mentioned above, the map vS(D) 7→ vSmb(D) from the abstract

state of G(D) to that of Gmb(D) has been shown to be surjective. From the second statement,

we can find the unique relation that

vSmb(D) = vS(D) + v(D) (3.34)

with v(D) being a codeword. With the similar derivation from (3.29) to (3.33), it can be

correspondingly verified that only zero abstract state of G(D) can be a codeword. Hence

the map vS(D) 7→ vSmb(D) should be bijective from the second and the third statements.

The equivalence about the fourth statement is detailed in [96]. Notice that the minimal

encoder is defined to be the one that can be realized with a minimum number of memory

units, and the realization may be in neither controller canonical nor observer canonical form.

Therefore, as indicated in [96], some encoders are minimal, but are not minimal basic.

If we consider the 2 × 3 encoder over GF (2)

G(D) =







1 + D + D2 D2 1

1 + D 1 D






, (3.35)

the information stream

u(D) = (1, 0) + (1, 1)D + (0, 0)D2 + (0, 1)D3 = (1 + D, D + D3) (3.36)

can be encoded to be

v(D) = u(D)G(D) (3.37)

= (1 + D2 + D4, D + D2, 1 + D + D2 + D4) (3.38)
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Furthermore, in Fig. 3.3, we illustrate the encoder (3.35) in controller canonical form with

three delay elements. This is a rate R = 2/3 encoder with memory order m = 2, meaning

that each codeword frame vi will depend on ui as well as two previous frames ui−1 and ui−2.

Therefore, we also refer Fig. 3.3 to be the (3, 2, 2) convolutional encoder. With (3.7)∼(3.9),

D D

D

(1)

i
u

(2)

i
u

(1)

i
v

(2)

i
v

(3)

i
v

Figure 3.3: A (3, 2) convolutional encoder with memory order m = 2

the constraint lengths of the encoder G(D) in (3.35) are ν1 = 2, ν2 = 1, ν = 3, nm = 9, and

K = 5. Moreover, we can easily check that G(D) is a minimal basic encoder having eight

(23) physical states or abstract states, and the realization in Fig. 3.3 is minimal.

Alternatively, the convolutional encoder with a polynomial generator matrix can be

expressed by the analytical representation [94, 100]. We first denote the i-th informa-

tion sequence with u(i) = (u
(i)
0 , u

(i)
1 , u

(i)
2 , . . . ) and the j-th codeword sequence with v(j) =

(v
(j)
0 , v

(j)
1 , v

(j)
2 , . . . ). For j = 1, 2, . . . , n, the encoding function will be written as the discrete

convolution of u(j) and the generator sequence g
(j)
i ; that is

v(j) =

k
∑

i=1

u(i) ∗ g
(j)
i , (3.39)

and g
(j)
i = (g

(j)
i,0 , g

(j)
i,1 , . . . , g

(j)
i,m). This convolution operation in (3.39) can also be in matrix

multiplication form. The information stream should be u = (u0, u1, u2, . . . ) with ui =

57



(u
(1)
i , u

(2)
i , . . . , u

(k)
i ). On the other hand, the generator matrix Ḡ becomes semi-infinite:

Ḡ =



















G0 G1 G2 · · · Gm

G0 G1 · · · Gm−1 Gm

G0 · · · Gm−2 Gm−1 Gm

. . .
. . .



















, (3.40)

and the k × n sub-matrix is

Gx =



















g
(1)
1,x g

(2)
1,x · · · g

(n)
1,x

g
(1)
2,x g

(2)
2,x · · · g

(n)
2,x

...
...

. . .
...

g
(1)
k,x g

(2)
k,x · · · g

(n)
k,x



















, for x = 0, 1, . . . , m . (3.41)

Hence, the convolutional encoding of u is given by

v = u · Ḡ (3.42)

Note that the codeword v = (v0, v1, v2, . . . ) is a linear combination of the rows in Ḡ. With the

analytical representation, we can write the the following generator matrix for the information
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stream in 3.36 and the (3,2,2) encoder in Fig. 3.3:

Ḡ =













































101 100 110

100 101 000

101 100 110

100 101 000

101 100 110

100 101 000

101 100 110

100 101 000













































. (3.43)

According to (3.42), the information u = (10, 11, 00, 01) will be encoded to be

v = (10, 11, 00, 01) · Ḡ = (101, 011, 111, 000, 101, 000),

which is equivalent to (3.38).

Convolution encoders can be in either systematic form or non-systematic form. In a

systematic encoder, the information sequence is a part of the codeword sequence; therefore,

the generator matrix can be in the following form:

Gs(D) = [ I(D) G′(D) ]. (3.44)

Notice that I(D) is a k × k identity matrix, and G′(D) is a k × (n − k) matrix

G′(D) =



















g
(k+1)
1 (D) g

(k+2)
1 (D) · · · g

(n)
1 (D)

g
(k+1)
2 (D) g

(k+2)
2 (D) · · · g

(n)
2 (D)

...
...

. . .
...

g
(k+1)
k (D) g

(k+2)
k (D) · · · g

(n)
k (D)



















. (3.45)
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The encoder in (3.44) will generate the codeword frame where the first k symbols are in-

formation frame, and the remaining (n − k) symbols are called the parity-check sequences.

The encoders without systematic features are termed non-systematic. The systematic form

of (3.44) has the following right inverse

G−1
s (D) =







I(D)

0̄






(3.46)

where 0̄ is an (n − k) × k zero matrix. We will observe that G−1
s (D) is polynomial in D

and D−1, and thus it is a minimal encoder. Therefore, all systematic encoders are minimal

encoders [98].

Form [101], we know that every encoder is equivalent to a systematic rational en-

coder. Consequently, the systematic encoder Gs(D) can be obtained from an equivalent

non-systematic encoder G(D). We first find a k × k submatrix T (D) of G(D) and compute

Gs(D) = T−1(D)G(D). (3.47)

For instance, the equivalent systematic encoder Gs(D) of the encoder in (3.35) can be com-

puted by letting

T (D) =







1 + D + D2 D2

1 + D 1






. (3.48)
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As a result,

Gs(D) = T−1(D)G(D)

=
1

1 + D + D3







1 D2

1 + D 1 + D + D2













1 + D + D2 D2 1

1 + D 1 D







=







1 0 1+D3

1+D+D3

0 1 1+D2+D3

1+D+D3






(3.49)

The corresponding observer canonical realization of (3.49) is illustrated in Fig. 3.4. The

D D D

(1)

i
u

(2)

i
u

(1)

i
v

(2)

i
v

(3)

i
v

Figure 3.4: A (3, 2) systematic convolutional encoder in observer canonical form

memory unit number is three which is equal to that of Fig. 3.3, resulting in the minimal

realization of (3.49).

There is a encoder G(D) that generates finite weight codewords v(D) for the infinite

weight input sequence u(D) [98, 102]. Such encoder is referred to catastrophic because a

finite number of errors in v(D) may cause an infinite number of errors in u(D) [97]. We

consider the (2,1,2) encoder

G(D) = [ 1 + D 1 + D2 ],
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and the infinite weight data stream

u(D) =
1

1 + D
=

∞
∑

i=0

Di.

After encoding, the codeword sequence becomes v(D) = (1, 1 + D), which has a Hamming

weight of 3. A small number of errors may cause the decoder to estimate an all zero codeword,

leading to infinite decoding errors. According to [98], a non-catastrophic encoder should have

a right pseudo-inverse G̃−1(D) without feedback, or the polynomial right inverse G̃−1(D) such

that

G(D)G̃−1(D) = DlI(D) (3.50)

for some l ≥ 0, and k × k identity matrix I(D). Consequently, all minimal encoders are

non-catastrophic. The sufficient condition [102] for an (n, 1) convolutional encoder

G(D) =

[

g
(1)
1 (D) g

(2)
1 (D) · · · g

(n)
1 (D)

]

(3.51)

having right pseudo-inverse is the greatest common divisor (gcd) of the entries equals Dl:

gcd[g
(1)
1 (D), g

(2)
1 (D), · · · , g

(n)
1 (D)] = Dl. (3.52)

Moreover, for an (n, k) encoder in (3.3), the sufficient condition becomes

gcd[∆i(D), i = 1, 2, · · · ,

(

n

k

)

] = Dl, (3.53)

where ∆i(D) for i = 1, 2, · · · ,
(

n
k

)

denote the determinants of distinct k × k submatrices of

G(D).

The behavior of an encoder can be described graphically. All possible physical states, or

directly termed states, as well as the input data frame that may cause the state transitions

can be represented by a state diagram. Accordingly, a state diagram consists of all states
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D D
(1)

i
u

(1)

i
v

(2)

i
v

(1)

2iu −
(1)

1iu −

Figure 3.5: The (2,1,2) convolutional encoder

and branches that indicate transitions caused by the input data. Generally, each state has

2k incoming branches and 2k outgoing branches. We use the (2,1,2) encoder over GF (2)

G(D) = [ 1 + D + D2 1 + D2 ] (3.54)

as an example. The controller canonical realization is illustrated in Fig. 3.5, and the cor-

responding state diagram is shown in Fig. 3.6. The state Sj is the memory unit contents

S0

S1 S2

S3

0/00

1/11

1/01

0/10

1/10

0/01

1/00

0/11

Figure 3.6: The state diagram of the (2,1,2) convolutional encoder

(u
(1)
i−1, u

(1)
i−2) in Fig. 3.5. Since the overall constraint length ν = 2 results in total 22 = 4 states,

we have S0 = (0, 0), S1 = (0, 1), S2 = (1, 0), and S3 = (1, 1). The branches labeled with
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u
(1)
i /v

(1)
i v

(2)
i show the state transitions according to the input u

(1)
i , and one codeword frame

(v
(1)
i , v

(2)
i ) will be generated within each state transition. Therefore, the encoding operation

is a series of state transitions form a known state, for example S0.

The other useful graphical representation is the tree diagram where states at different

time instants will correspond to different nodes. Starting at a known root node (or state),

the tree expands one of 2k branch candidates based on the input data. The example in

Fig. 3.6 is also illustrated in the tree diagram Fig. 3.7. Each node has two possible outgoing

branches, the upper branch relates to the input u
(1)
i = 0, and the lower one to u

(1)
i = 1. The

output codeword v
(1)
i v

(2)
i is also marked on the branches. The tree expands from left to right

as the input u
(1)
i enters the encoder, and each path corresponds to a distinct input sequence.

We can also find that though the possible node number increases while the tree expands,

there are at most four states, S0 ∼ S3, in the diagram.

S0

S0

S0

S0

S2

S1

S2

S3

S2

S1

S3

S0

S3

S2

S1

(1) 0
i
u =

(1) 1
i
u =

00

11

00

00

11

01

10

11

10

01

11

00

01

10

0t = 1t = 2t = 3t =

Figure 3.7: Tree diagram of the (2,1,2) convolutional encoder

The third graphical representation is the trellis diagram. We first note from the tree

diagram in Fig. 3.7 that the four possible states appear at the time instant t = 2, and

the eight nodes at t = 3 can be represented by the four states. Hence we can reduce
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the tree diagram to the trellis diagram with four states at each time instant, avoiding the

exponentially increasing branches. For a minimal basic (n, k) encoder over GF (2) with

overall constraint length ν, there are 2ν states at each time instant, and each state has 2k

incoming and 2k outgoing branches. Fig. 3.8 shows the trellis diagram associated with the

tree diagram in Fig. 3.7; the solid branches indicate the input u
(1)
i = 1, and the dash branches

u
(1)
i = 0. The labels on the branches also reveal the input and the output u

(1)
i /v

(1)
i v

(2)
i .

0/00

1/11

0/00

1/01

0/10

1/11

0/00

0/11

1/00

1/01

0/10

1/10

0/01

1/11

0/00

0/11

1/00

1/01

0/10

1/10

0/01

1/11

S0

S1

S2

S3

0t = 1t = 2t = 3t = 4t =

Figure 3.8: Trellis diagram of the (2,1,2) convolutional encoder

The distance property of the convolutional code can be described with weight enumer-

ating function (WEF) [103], or the transfer function of a signal flow graph [94, 100]. If

we assume the encoding starts from S0 and terminates at S0 with arbitrary lengths, the

state diagram in Fig. 3.6 can be modified to be the signal flow graph in Fig. 3.9. To avoid

ambiguity, S ′
0 denotes the terminated state S0 at some time instant. We first consider the

input-output weight enumerating function (IOWEF)

A(W, D, L) =
∑

w,d,l

Aw,d,lW
wDdLl (3.55)

where Aw,d,l is the number of weight d codewords encoded from weight w information se-

quences whose length is l branches. Therefore, we label each branch in Fig. 3.9 with a

gain W wDdLl according to the input and output weight information in Fig. 3.6. Note that

Fig. 3.9 is a signal flow graph with source node S0 and sink node S ′
0. Since A(W, D, L)

can be regarded as the transfer function of the signal flow graph, (3.55) is obtained through
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S0

2
D L

2
WD L

S1S2

S3

WL

DL

DLWDL

WDL

S'0

Figure 3.9: State diagram with weighted branches of the (2,1,2) convolutional encoder

solving the following equations:

ΨS2 = WD2L · ΨS0 + WL · ΨS1 (3.56)

ΨS3 = WDL · ΨS2 + WDL · ΨS3 (3.57)

ΨS1 = DL · ΨS2 + DL · ΨS3 (3.58)

ΨS′

0
= D2L · ΨS1 (3.59)

Finally, we achieve the rational function

A(W, D, L) =
ΨS′

0

ΨS0

=
WD5L3

1 − WDL(1 + L)
. (3.60)

Generally, the function (3.60) can be expanded to be

A(W, D, L) = WD5L3

∞
∑

i=0

[WDL(1 + L)]i (3.61)

= WD5L3 + W 2D6L4(1 + L) + W 3D7L5(1 + L)2 + . . . (3.62)

For the encoder (3.54), we can learn from (3.61) that there is a weight five codeword as-

sociated with the input sequence of weight one and length three. A simple IOWEF will
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eliminate L in (3.55), and therefore

A(W, D) =
∑

w,d

Aw,dW
wDd = A(W, D, L)|L=1 (3.63)

=
WD5

1 − 2WD
(3.64)

The value Aw,d counts the number of weight d codewords generated from weight w input

sequences, and Aw,d =
∑

l Aw,d,l. Furthermore, the WEF is just

A(D) =
∑

d

AdD
d = A(W, X, L)|W=L=1 (3.65)

=
D5

1 − 2D
= D5 + 2D6 + 4D7 + . . . (3.66)

that enumerates the codewords of all possible weights, and Ad =
∑

w,l Aw,d,l. Form (3.66),

the code contains a non-zero codeword with the minimum weight five, and thus the free

distance (dfree) of the code is five.

3.2 Viterbi algorithm

The Viterbi algorithm, proposed in 1967 [15], is a maximum likelihood (ML) decoding tech-

nique for convolutional codes [104]. Assuming that the codeword v is transmitted through

a discrete memoryless channel, the received sequence r is observed from the channel output.

The ML decoder will find a codeword v̂, the estimation of v, for which the a posteriori

probability P (v̂|r) is maximum. With Bayes’ rule, the probability can be written as

P (v̂|r) =
P (r|v̂)P (v̂)

P (r)
, (3.67)

and the maximization of P (v̂|r) is equivalent to maximizing P (r|v̂)P (v̂). Note that each v̂

corresponds to a distinct state sequence of length N denoted by (x0, x1, . . . , xN), assuming
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x0 and xN are known. The sequence, also a path in the trellis diagram, is a finite-state

discrete-time Markov process [104]. Therefore, the probability of being in state xt+1 at time

t + 1, given all states up to time t, depends only on the state xt at time t. That is

P (xt+1|x0, x1, . . . , xt) = P (xt+1|xt), (3.68)

and

P (v̂) = P (x0, x1, x2, . . . , xN )

=
N−1
∏

t=0

P (xt+1|xt, . . . , x0)

=

N−1
∏

t=0

P (xt+1|xt) (3.69)

For a discrete memoryless channel, we can also write

P (r|v̂) =
N−1
∏

t=0

P (rt|v̂t), (3.70)

and the decoder will maximize the probability

P (r, v̂) = P (r|v̂)P (v̂) =

N−1
∏

t=0

P (rt|v̂t)P (xt+1|xt) (3.71)

For convenience, we assign a metric

Γ = − log P (r, v̂) =

N−1
∑

t=0

− log P (rt|v̂t) − log P (xt+1|xt) (3.72)

to the path; thus, the decoder need to find a path such that Γ is minimum. Note that

P (xt+1|xt) depends on the t-th encoder input ut and is zero if there is no branch between

xt+1 and xt. If the data sequence u is an equally probable source, P (xt+1|xt) is a constant
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equal to 1/2k for a binary (n, k, m) convolutional code. Consequently, we can reduce the

metric to

Γ =
N−1
∑

t=0

− log P (rt|v̂t) (3.73)

We first consider the path (x0, x1, . . . , xt) terminating in xt at time t and its path metric

Γ(xt) =
t−1
∑

i=0

− log P (ri|v̂i). (3.74)

Although there are many possible paths that terminate in xt+1, the one with the smallest

path metric is of interest and is denoted by x̂(xt+1), the survivor corresponding to the state

xt+1. The set of all physical states is defined to be S. The Viterbi decoding algorithm is

proceeded as follows:

• Initialization:

t = 0

x̂(x0) = x0, Γ(x0) = 0

x̂(χ) is arbitrary, Γ(χ) = ∞ for χ ∈ S and χ 6= x0

• Iterations until t = N :

For each xt+1 in S, we compute

Γ(xt+1) = min
xt

(Γ(xt) + γ(xt+1, xt)), (3.75)

and

γ(xt+1, xt) = − log P (rt|v̂(xt+1, xt)). (3.76)

Notice that v̂(xt+1, xt) is the codeword sequence that corresponds to the branch be-

tween xt+1 and xt. Among the paths entering xt+1, only the one with the minimum

metric is stored to be x̂(xt+1), and the others are discarded; moreover, the path metric
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Γ(xt+1) is saved for the next iteration. If t = N , the operation is completed; otherwise,

t is increased by one to resume the next iteration.

Finally, we can obtain the survivor x̂(xN ) as well as the estimated data sequence û on

the survivor. Some decoding examples can be found in [104], [94], and [105]. The term

γ(xt+1, xt) in (3.76) is called branch metric. If the n-tuple codeword is

v̂t = v̂(xt+1, xt) = (v̂
(1)
t , v̂

(2)
t , . . . , v̂

(n)
t ),

and the received sequence is also n-tuple

rt = (r
(1)
t , r

(2)
t , . . . , r

(n)
t ),

we can rewrite the branch metric as

γ(xt+1, xt) = −
n
∑

i=1

log P (r
(i)
t |v̂(i)

t ). (3.77)

For a code over GF (2) and a binary symmetric channel (BSC) with transition probability

p < 0.5, the branch metric will be

γ(xt+1, xt) = d(rt, v̂t) log
1 − p

p
+ n log

1

1 − p
, (3.78)

where d(rt, v̂t) is the Hamming distance between rt and v̂t. Additionally, since n log 1
1−p

is

constant and log 1−p
p

> 0, the branch metric in (3.78) can be reduced to

γ(xt+1, xt) = d(rt, v̂t) (3.79)

without any effect on finding the least metric path in (3.75). On the other hand, if the code
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is transmitted over an AWGN channel with BPSK signals, the probability is expressed

P (r
(i)
t |v̂(i)

t ) =
1√

2πσ2
e−

(r
(i)
t −v̂

(i)
t )2

2σ2 . (3.80)

Notice that v̂
(i)
t has been mapped with 0 7→ −1 and 1 7→ +1, and 2σ2 = N0/Es in which N0

is the one sided power spectra density of noise, and Es is the energy per signal. Moreover,

Es/N0 is often termed the signal to noise ratio (SNR). As a result, the branch metric becomes

γ(xt+1, xt) =
n

2
ln(2πσ2) +

1

2σ2

n
∑

i=1

(r
(i)
t − v̂

(i)
t )2 (3.81)

that can also be simplified to

γ(xt+1, xt) =

n
∑

i=1

(r
(i)
t − v̂

(i)
t )2 =

n
∑

i=1

[(r
(i)
t )2 − 2r

(i)
t v̂

(i)
t + (v̂

(i)
t )2] (3.82)

for n and σ2 are constant. Notice that
∑

(r
(i)
t )2 is the same for all survivors, and (v̂

(i)
t )2 is

constant in BPSK modulation. Therefore, the metric is further reduced to

γ(xt+1, xt) = −
n
∑

i=1

r
(i)
t v̂

(i)
t (3.83)

which is the negative inner product between the received rt and the codeword v̂t.

Based on the Viterbi decoding algorithm, the decoding error probability can be evalu-

ated [94,100,106]. We first assume an all zero data sequence u over GF (2) is encoded (v = 0)

and transmitted through a binary symmetric channel. Any 1s in the decoded sequence û are

decoding errors. In the trellis diagram Fig. 3.8, for instance, the correct state sequences are

all S0. If some errors occur, the decoder will trace the path that diverges from the correct

one. We consider the first event error that an incorrect path first diverges from the correct

path at time t and remerges to it after some time instants. Assuming the incorrect path has
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codewords of weight d, the first event error probability is

Pd =



























d
∑

e=(d+1)/2

(

d

e

)

pe(1 − p)d−e, for odd d

1

2

(

d

d/2

)

pd/2(1 − p)d/2 +

d
∑

e=d/2+1

(

d

e

)

pe(1 − p)d−e, for even d.

(3.84)

Based on (3.65), the first error event probability caused by all incorrect paths at time t is

overbounded by

Pf(E) <
∞
∑

d=dfree

AdPd. (3.85)

Notice that the error event probabilities at any time instants must be (3.85) because of the

independence of t. There may be many error events after the first error event. As shown in

Fig. 3.10, the first error event cause the decoded path to be v1 instead of the correct v at

time t1. Moreover, the decoder eliminates v1 at time t2 due to the second error event, the

the survivor becomes v2. As a result, we have the following path metrics for v, v2, and v2

t1 t2

v1

v2
v

Figure 3.10: Illustration of error events in the trellis diagram

at time t2:

Γ(v) ≥ Γ(v1) ≥ Γ(v2) (3.86)

We can find that if the path selection at time t2 is between v and v2, the survivor will also

be v2. Hence the error event probability is still bounded by (3.85), and we can conclude
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that the error event probability at any time instant is

P (E) <

∞
∑

d=dfree

AdPd. (3.87)

The probability Pd in (3.84) can be upper bounded by

Pd <

(

d

⌈d/2⌉

)

pd/2(1 − p)d/2 +
d
∑

e=⌈d/2⌉+1

(

d

e

)

pe(1 − p)d−e

<

(

d

⌈d/2⌉

)

pd/2(1 − p)d/2 +

d
∑

e=⌈d/2⌉+1

(

d

e

)

pd/2(1 − p)d/2

< (pd/2(1 − p)d/2)
d
∑

e=0

(

d

e

)

= 2dpd/2(1 − p)d/2 (3.88)

Consequently, we can upper bound P (E) in (3.87) with the WEF in (3.65); that is

P (E) <

∞
∑

d=dfree

Ad(2
√

p(1 − p))d = A(D)|
D=2

√
p(1−p)

. (3.89)

If p is small, the small degree terms will dominate the bound, and we can approximate (3.89)

as

P (E) ≈ Adfree
(2
√

p(1 − p))dfree = Adfree
(2
√

p)dfree (3.90)

Furthermore, the bit error probability Pb(E) for the source sequence u can be upper bounded

by

Pb(E) <
1

k
(wAw,d)Pd, (3.91)

where w and Aw,d are defined in IOWEF (3.55), and k is the information bit number per

branch; thus, wAw,d is the total number of non-zero information bits on all weight d paths.
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Similarly, based on (3.88) and (3.55), we can further bound Pb(E) as

Pb(E) <
1

k

∂A(W, D)

∂W
|
D=2

√
p(1−p),W=1

(3.92)

In the AWGN channel with binary inputs and continuous outputs, the error probability

can be derived similarly according to the above mentioned approach [100,106]. The all zero

sequence is assumed to be transmitted with BPSK modulation, where 1 is mapped to +1,

and 0 to −1. The correct path v is a codeword of all −1s. As shown in Fig. 3.10, if the

error event v1 containing d +1 codeword symbols merges v at time t1, the path metric of

v1 must be smaller, and therefore

d
∑

e=1

(r(e) − (−1))2 ≥
d
∑

e=1

(r(e) − (+1))2, (3.93)

where r(e) denote the received symbols corresponding to which v1 has +1 codeword symbols.

Moreover, we can write

d
∑

e=1

[(r(e) − (−1))2 − (r(e) − (+1))2] = 4
d
∑

e=1

r(e) ≥ 0, (3.94)

and the event error probability becomes

Pd = Pr{ξ =

d
∑

e=1

r(e) ≥ 0}. (3.95)

We further note that r(e) are independent Gaussian random variables with mean −1 and

variance σ2 = N0/2Es; as a result, ξ is also Gaussian with mean −d and variance dσ2.
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Hence, the probability in (3.95) will be

Pd =

∫ ∞

0

1√
2πdσ2

e−
(ξ−(−d))2

2dσ2 dξ

=

∫ ∞

d/
√

dσ2

1√
2π

e−
x2

2 dx = Q(

√

d

σ2
) = Q(

√

2dEs

N0
). (3.96)

The Gaussian error integral

Q(x) ,
1√
2π

∫ ∞

x

e−
x2

2 dx =
1

2
erfc(

x√
2
), (3.97)

and the complementary error function (erfc) is defined in [107]. According to (3.87), the

event error probability for the AWGN channel can be represented by

P (E) <
∞
∑

d=dfree

AdQ(

√

2dEs

N0

). (3.98)

With the following bound [108, 109],

Q(x) ≤ 1

2
e−

x2

2 < e−
x2

2 , (3.99)

we will have

P (E) < A(D)|D=e−Es/N0 (3.100)

as well as the bit error probability

Pb(E) <
1

k

∂A(W, D)

∂W
|D=e−Es/N0 ,W=1 (3.101)

The upper bounds of (3.100) and (3.101) are derived from the weaker bound in (3.99). The

tighter versions can be found in [106] and [100]. Moreover, the more accurate approximations

for Q(x) are discussed in [109], [110], and [111].
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The same ensemble average error bound for time-varying convolutional codes is shown in

theorem 3.1, assuming the maximum likelihood decoding. The time-varying convolutional

codes are counterparts of fixed, or time-invariant, convolutional codes in which the gener-

ator polynomials are invariant over different time instants. Consequently, in time-varying

convolutional codes, the generator matrix (see (3.40)) may have different sum-matrices Gx

at distinct rows, leading to the following encoder:

Ḡ =



















G
(0)
0 G

(0)
1 G

(0)
2 · · · G

(0)
m

G
(1)
0 G

(1)
1 · · · G

(1)
m−1 G

(1)
m

G
(2)
0 · · · G

(2)
m−2 G

(2)
m−1 G

(2)
m

. . .
. . .



















. (3.102)

The sub-matrices G
(t)
x and G

(t′)
x for t 6= t′, x = 0 ∼ m may be unequal. The convolutional

channel coding theorem for binary codes is described as follows [100, 106].

Theorem 3.1 (Viterbi [100]). For any discrete input memoryless channel with capacity

C, there exists a time-varying convolutional code of constraint length K, rate k/n bits per

channel symbol, and arbitrary block length, whose bit error probability Pb, resulting from

maximum likelihood decoding, is bounded by

Pb < (2k − 1)
2−KkEc(R)/R

(1 − 2−ǫkEc(R)/R)2
, for small ǫ > 0 (3.103)

where

Ec(R) = R0 = max
p

E0(1,p) for 0 ≤ R ≤ R0(1 − ǫ) (3.104)

and

Ec(R) = max
p

E0(ρ,p) 0 ≤ ρ ≤ 1 (3.105)

for R = (1 − ǫ) max
p

E0(ρ,p)

ρ
, and R0(1 − ǫ) ≤ R ≤ C(1 − ǫ).
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The Gallager function [112, 113] is defined as follows:

E0(ρ,p) , − ln
∑

y

[

∑

x

p(x)p(y|x)
1

1+ρ

]1+ρ

. (3.106)

For the set of all possible channel input alphabets X, the arbitrary set p = {p(x)|x ∈ X}

satisfies p(x) ≥ 0, ∀x ∈ X and
∑

x p(x) = 1. The transition probability p(y|x) for y ∈ Y

and x ∈ X indicates a discrete memoryless channel, and Y denotes the channel output

alphabets. The code rate R in theorem 3.1 is nats per channel symbol; that is, R = k ln 2/n.

3.2.1 Path truncation

As was indicated in the Viterbi decoding algorithm, the paths, or survivors, terminated at

each state should be stored up to the last received codeword, meaning that the entire received

sequence are analyzed before any decoding output. In real applications, the information

sequence length N may be very large that cause massive storage requirement. Due to

the practical storage constraint, the survivor for each state should be truncated to a finite

length as shown in Fig. 3.11. The corresponding trellis diagram with state number M = 2ν

is truncated to finite time instants T , and there are M paths terminating at time t + T .

With the truncation length of T , the decoder is required to output data on the branch at

depth t according to the path metrics at time t + T [100, 114]. If all surviving paths have a
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Figure 3.11: Trellis diagram truncated to T instants
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common node at time t, the unique branch is chosen. Otherwise the branch corresponding

to the best metric value at time t + T will be selected. This truncation technique can result

in an additional error if an incorrect path diverges from the correct path at depth t, and

remains unmerged from it before time t + T . Therefore, T must be larger enough such that

the truncation error is comparable to or less than the maximum-likelihood decoding [115].

We also assume an all zero information sequence over GF (2) is encoded and transmitted

through a memoryless channel. In the truncated trellis diagram of length T , the truncation

error will be caused by the incorrect paths that diverge from the correct path before time

t and extend to Si 6= S0 at time t + T without going through S0. Therefore, the WEF for

...

...

...

...

...

...

...

...

1 2 3 t t+1t-1... ...
t+T0

S0

S1

S2

S3

correct path

Figure 3.12: Incorrect paths with lengths larger than T

those incorrect paths connecting S0 and Si can be defined as

AT
S0,Si

(D, L) =
∑

d,l>T

Ad,l,iD
dLl (3.107)

that enumerates the weights for all the paths between S0 and Si of lengths at least T +1 [115].

Notice that (3.107) can be derived from the transfer function of S0 and Si in the signal flow

graph. For example, considering the state diagram in Fig. 3.9, we first obtain

AS0,S1(D, L) =
ΨS1

ΨS0

|W=1 =
D3L2

1 − DL(1 + L)

= D3L2 + D4L3(1 + L) + D5L4(1 + L)2 + · · · , (3.108)
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and AT
S0,S1

(D, L) will be derived by discarding the terms with the degrees of L being less

than or equal to T in (3.108). As a result, the error probability arising from truncation

should be

P (T ) <
M−1
∑

i=1

AT
S0,Si

(D, L)|D=D0,L=1, (3.109)

where D0 = 2
√

p(1 − p) for the BSC, and D0 = e−Es/N0 for the AWGN channel. Note that

P (T ) is the probability that the decoder makes an error decoding at time t. From (3.109)

and (3.101), the overall bit error probability including truncation error is upper bounded by

Pb(E, T ) <
1

k

∂A(W, D)

∂W
+

M−1
∑

i=1

AT
S0,Si

(D, L)|D=D0,W=1,L=1. (3.110)

The determination of T should make the second term in (3.110) become eliminable. For small

channel noise (small p or large Es/N0), the upper bound of bit error probability is dominated

by the least degree term according to (3.90). In (3.110), let dT denote the smallest degree

of D in the second term, the minimum T (Tmin)is required to achieve dT > dfree because

the smallest degree is dfree for the first term. Continuing the example in Fig. 3.9, we can

generate (3.107) for Si = S1, S2, and S3. Since dfree = 5, the value dT should be at least

six, and therefore T is larger than seven (Tmin = 7).

Alternatively, in [100], the ensemble average probability P̄ (T ) corresponds to an error

path which is unmerged from the correct path for exactly T time instants, and there are no

more than 2kT such error paths for a binary code. As a result, the error probability can be

bounded by

P (T ) < 2kTρe−TnE0(ρ,p)

= 2−kT (E0(ρ,p)−ρR))/R for 0 < ρ ≤ 1

= 2−kTEb(R)/R (3.111)
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where R is in nats per symbol, and

Eb(R) = max
ρ,p

[E0(ρ,p) − ρR] (3.112)

according to [112]. Furthermore, we can deduce that

Eb(R) = max
p

E0(1,p) − R for 0 ≤ R <

(

max
p

∂E(ρ,p)

∂ρ

∣

∣

∣

∣

ρ=1

)

, (3.113)

and

Eb(R) = max
p

[E0(ρ,p) − ρ
∂E0(ρ,p)

∂ρ
], for 0 < ρ ≤ 1 (3.114)

when

R = max
p

∂E0(ρ,p)

∂ρ
, and

(

max
p

∂E(ρ,p)

∂ρ

∣

∣

∣

∣

ρ=1

)

≤ R < C.

Note that C is the channel capacity [1, 113]. As a result, from the exponents of (3.103)

and (3.111), the criterion of truncation length T selection is shown to be TEb(R) > KEc(R),

or

T

K
>

Ec(R)

E(R)
, (3.115)

where K is the input constraint length in (3.9), and R = k ln 2/n is the code rate.

The more intuitive formulation of (3.115) can be derived with the very noisy channel,

which is assumed to be discrete and memoryless [100]. The conditional probability of re-

ceiving y ∈ Y, given that x ∈ X is transmitted, is expressed by

p(y|x) = p(y)(1 + ǫxy), (3.116)

where |ǫxy| ≪ 1 for all x and y, and
∑

y∈Y

p(y)εxy = 0 for all x. The condition in (3.115) can
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then be reduced to

T

K
≥



























1
1−2R/C

0 ≤ R < C
4

1

2(1−
√

R/C)2
C
4
≤ R ≤ C

2

1+
√

R/C

1−
√

R/C

C
2

< R < C.

(3.117)

For different coding rate R, the truncation length ranges from K to infinite as R approaches

channel capacity C. Of different R/C ratios, Fig. 3.13 shows the valid truncation length in

gray region. In real applications, truncation length T must vary with respect to R and C.

T/K

R/C
2.5

1

Figure 3.13: Truncation length versus coding rate.

From Fig. 3.13, we can find that the truncation length increases with the ratio R/C. This

trend also appears in the results of (3.110). For larger channel noise, the degree dT must be

enlarged to reduce the truncation error, and we have to increase Tmin accordingly. The Tmin

is based on the best path metric decoding. The research in [116] further indicates that the

truncation length about 2Tmin can lead to negligible truncation error if the decoder select any

survivor at time t+2Tmin without considering the path metrics. This approach, termed fixed

state decoding, eliminates the search for the best path metric among all survivors, however,

more storage is required.
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3.2.2 Punctured convolutional codes

The rate k/n code can be encoded by a k × n generator matrix; alternatively, it can also

be obtained by periodically deleting some codeword symbols form rate 1/n codewords [117].

The complexity of Viterbi decoding algorithm is proportional to the number of branch en-

tering to each state, and the branch number increases exponentially with k. In a punctured

convolutional code, the decoder complexity is comparable with the original rate 1/n code,

referred to the mother code. A single mother code can be used to generated different rates

through puncturing. We define an n× pt puncturing matrix P with elements in GF (2), and

the zero elements in P will indicate which codeword symbols within the puncturing period

pt should be deleted. For example, in the matrix

P =







1 0

1 1






(3.118)

for a rate 1/2 mother code whose codeword sequence is represented by

u(D) =
∞
∑

i=0

(







u
(1)
2i

u
(2)
2i






D2i +







u
(1)
2i+1

u
(2)
2i+1






D2i+1

)

, (3.119)

the codeword symbol u
(1)
2i+1 is deleted before transmission, resulting in the rate 2/3 punctured

code. More puncturing matrices for rate 1/2 codes can be found in [118].

The Viterbi decoding algorithm for punctured codes operates quite similar to that for

decoding the rate 1/n mother code, except that the removed symbols are not considered in

the branch metric calculation. Hence we can use one decoder to decode various punctured

codes from the same mother code.

The rate (n − 1)/n punctured encoder can also be characterized with the equivalent

ordinary (n − 1) × n encoder without puncturing [119]. Therefore, it is possible to discuss

the minimal and the catastrophic properties of a punctured encoder [120, 121]
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3.3 Viterbi decoder architecture

The Viterbi decoder consists of four main units [122]: branch metric unit (BMU), add-

compare-select unit (ACSU), path metric (PM) memory, and survivor memory unit (SMU).

As illustrated in Fig. 3.14, BMU calculates the branch metrics from the input data based

ACSU SMUBMU

PM 
Memory

Input Output

Figure 3.14: Block diagram of Viterbi decoder

on either (3.79) or (3.82). The ACSU recursively accumulates branch metrics (BM) as

path metrics stored in the PM memory, and makes decisions to select the most likely state

sequence. The add-compare-select (ACS) operation is formulated in (3.75). Finally, the

SMU traces the decisions to extract this sequence in the survivor memory that keeps all

survivors terminating at each state.

The nonlinear and recursive nature of ACSU limits the maximum achievable through-

put rate. Furthermore, as the overall constraint length ν rises, the large number (2ν) of

ACS operations are required to determine 2ν survivors. The hardware complexity increases

exponentially, and so does the power consumption, leading to many researches on the the

optimization for ACSU.

On the other hand, the SMU is also an area and power consuming blocks in Viterbi

decoders. There are two mainly solutions for the SMU: the register-exchange and the mem-

ory traceback architectures [123–126]. As compared with the register-exchange approach,

the traceback based SMU has a limited memory bandwidth in nature, and thus limits the

decoding speed. However, the traceback approach with memory is more area efficient for

large constraint lengths; it is also considerably more power efficient without data movement
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in the memory.

Each component in the Viterbi decoder of Fig. 3.14 will be addressed in the following

sections.

3.3.1 Branch metric unit

The BMU evaluates the metric, or distance, between the received samples and the codewords

on branches. In the hard decision decoding scheme, the channel is assumed to be BSC where

the received signals have been decided to be the alphabets during transmission. In binary

cases, the received symbols are either one or zero. Therefore, the branch metric (BM) is the

Hamming distance between the received data and the codewords as expressed in (3.78).

Alternatively, the soft decision decoding scheme can be applied to improve the decoding

performance [94, 127]. The BM evaluation is shown in (3.82). Due to the finite precision

in practical implementation, it is necessary to quantize the channel symbols, but this will

cause additional quantization noise. Such noise may increase the required SNR (Es/N0) to

achieve a specific bit error rate (BER). The hardware complexity increases linearly with the

quantization bit number in the demodulated symbols; therefore, the objective is to find the

sufficient quantization levels that minimize the effect of quantization loss on the decoding

performance.

For a ̺ bits quantizer, we consider the uniform quantization because nonuniform ones

can achieve only slight improvement when ̺ ≥ 3 [128]. The stepsize ∆ is also defined to be

the spacing between any two quantized values. For the received BPSK signal r
(i)
t , Fig. 3.15

illustrates a ρ = 3 example, and r
(i)
t,q is the quantization results between −2ρ−1 and 2ρ−1 − 1.

We can write the quantization function Φ(r
(i)
t ) as
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Figure 3.15: Block diagram of Viterbi decoder

r
(i)
t,q = Φ(r

(i)
t ) =































2ρ−1 − 1
r
(i)
t

∆
≥ (2ρ−1 − 1.5)

⌊ r
(i)
t

∆
+ 0.5⌋ (−2ρ−1 − 0.5) <

r
(i)
t

∆
< (2ρ−1 − 1.5)

−2ρ−1 r
(i)
t

∆
≤ (−2ρ−1 − 0.5).

(3.120)

The quantization bits ρ and the stepsize ∆ vary with modulation types and channel condi-

tions. Moreover, for each ρ, there is a optimal ∆ that minimize the BER. We consider the
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Figure 3.16: Different quantization schemes in BPSK modulation and their BER perfor-
mance

(2,1,6) convolutional encoder

G(D) = [ 1 + D2 + D3 + D5 + D6 1 + D + D2 + D3 + D6 ] (3.121)

in the IEEE 802.11a wireless LAN (WLAN) system [129]. With the BPSK modulation, the
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performance figures in AWGN channel are shown in Fig. 3.16, where the input codewords

are quantized to be different bit number and step sizes. In Fig. 3.16(b) with the fixed

SNR=0.5dB, the step size ∆ significantly affects the bit error rate, and the performance

degrades rapidly for smaller ∆. The optimal step size that minimizes BER decreases as ρ

increases. However, it may be better to apply the ∆ larger than the optimal value to avoid

serious performance degradation [128]. If ρ is determined to be four, Fig. 3.16 also shows

that the optimal ∆ is almost independent of the channel SNRs; such property avoids the

necessity of dynamically adjusting ∆ according channel conditions, which are quite difficult

to be estimated in real applications. Additionally, the results in the 64 quadrature amplitude
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Figure 3.17: Different quantization schemes in 64-QAM and their BER performance

modulation (64-QAM) is presented in Fig. 3.17. The quantization is slightly different from

Fig. 3.15 because of the amplitude modulation. Referring to the 64-QAM constellation

in [129], we use the following quantizer scheme to demap the first three bits:

b0 = Φ(I) (3.122)

b1 = Φ(4 − |I|) (3.123)

b2 = Φ(2 − |4 − |I||) (3.124)
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where I is the in-phase component (carrier) in the received signal. The other three bits can

also be obtained from (3.122)∼ (3.124) with I being replaced by the quadrature component

Q. The performance in Fig. 3.17(a) indicates a significant improvement from ρ = 3 to ρ = 4,

meaning that more resolution is requited as compared to the BPSK modulation.
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Figure 3.18: Rate effect on the step size in BPSK modulation and 64-QAM

Applying different puncturing matrices [129] to the encoder (3.121), we obtain the per-

formance figures in Fig. 3.18. Notice that the optimal step size decreases with the increasing

rate especially in 64-QAM. in Fig. 3.18(b), the lower rate convolutional code with more

redundant information seems much flexible over a wide range of step sizes, whereas the

punctured codes with rates R = 3/4 and R = 2/3 become sensitive to the step size varia-

tion.

3.3.2 Add-compare-select unit

The ACSU is the major arithmetic unit in the Viterbi decoder, and it also dominates the

computational complexity. The most common solution to develop a high throughput Viterbi

decoder is fully parallel approach where ACS units are assigned to each state. Nevertheless,

the throughput is also limited by the recursive operation. Fig. 3.19(a) shows a subset of

the trellis diagram in Fig. 3.8, where S
(t)
i denotes state Si at time t, and β

(t)
i represents
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the branch connecting S
(t)
i and S

(t+1)
0 . We can construct the ACS unit for state S

(t+1)
0 in

Fig. 3.19(b) according to the following operation:

Γ(S
(t+1)
0 ) = min

i=0,1
[Γ(S

(t)
i ) + γ(β

(t)
i )]. (3.125)

The branch metric γ(β
(t)
i ) can be based on either (3.83) for soft decision decoding or (3.79)

for hard decision decoding. The two-way comparator (cmp) finds the best path metric

associated with the survivor.
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Figure 3.19: ACS unit structure and the corresponding trellis diagram

Moreover, the critical path delay and the cost of the ACSU is also determined by the

word length of fixed-point path metric Γ. With a finite word length, metric normalization is

necessary to rescale Γ for the accumulation in (3.125) may cause overflow. Note that different

normalization schemes will lead to different word lengths. Among various normalization

approaches, the modulo normalization can simplify the circuit implementation [130, 131]

since it exploits the nature of two’s complement arithmetic and dispenses with extra control

circuits. From the discussion of path truncation, we know that all survivors at time t + T

would very likely originate from the same state at time t for sufficient large truncation length

T ; otherwise, there would be a significant truncation error. After input symbol quantization,
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Figure 3.20: Illustration of two survivors at time t + T

we can bounded the branch metric by

|γ| ≤ nB. (3.126)

The value of B depends on the quantization scheme and the branch metric evaluation. For

instance, B should be 2ρ−1 if the input symbol is quantized to ρ bits, and γ is calculated

with (3.83). Therefore, as shown in Fig. 3.20, the difference of any two path metrics Γ(S
(t+T )
a )

and Γ(S
(t+T )
b ) at time t + T will be bounded by

|Γ(S(t+T )
a ) − Γ(S

(t+T )
b )| ≤ (TnB + Γ(S

(t)
i )) − (−TnB + Γ(S

(t)
i )) = 2TnB. (3.127)

Additionally, the compare operation in (3.125) can be written as the path metric difference:

∆Γ = [Γ(S
(t)
1 ) + γ(β

(t)
1 )] − [Γ(S

(t)
0 ) + γ(β

(t)
0 )]

= [Γ(S
(t)
1 ) − Γ(S

(t)
0 )] + [γ(β

(t)
1 ) − γ(β

(t)
0 )]

≤ (2TnB) + 2nB = (2T + 1)nB, (3.128)

and the sign of ∆Γ will be the compare result. In two’s complement arithmetic with c bits,

the addition is defined by modulo 2c, and ∆Γ is reduced to

∆Γ mod 2c. (3.129)
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The reduced metric difference in (3.129) equals to the true ∆Γ if the following condition is

satisfied [130]:

(2T + 1)nB < 2c−1. (3.130)

Hence the bit number c required to represent the path metrics depends on the truncation

length T and the branch metric bound nB. In real applications, the number c is lower

than the bound in (3.130) because the equality in (3.126) holds occasionally. In the modulo

normalization scheme, the comparator has to be implemented with two’s complement sub

tractors instead of comparators. The modified comparison rule for efficient implementation

is reported in [131].

The decoders using high radix trellis in [42,49,50,54,55] achieve high-speed with τ steps

of lookahead where the throughput will be enhanced by τ . Nevertheless, the ideal speedup is

difficult to achieve due to the exponentially increasing number of branches compared within

each ACS unit, restricting τ to be at most two in most designs. Fig. 3.21 illustrates a τ = 2

example from the encoder (3.54); the radix-4 trellis diagram in Fig. 3.21(b) is obtained

form the original radix-2 diagram in Fig. 3.21(a) that the branches between t and t + 2

are merged. There are four entering branches in each state, and thus the ACS unit has to

perform the comparison among four path metrics, which is double as compared with radix-2

trellis diagram. The decoding throughput is also doubled because each branch in Fig. 3.21(b)

contains two information symbols. Accordingly, the radix-4 ACS structure is also illustrates

t 1t + 2t +
(a) radix-2

t 2t +
(b) radix-4

Figure 3.21: Radix-2 and radix-4 trellis diagrams
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in Fig. 3.22. The number of adders becomes four, and there are four path metrics that should

be compared. Generally, the radix-4 ACS unit can achieve a better compromise between

cost and throughput [54]. In a radix-8 trellis diagram with eight states, for example, the

ACS unit requires eight adders which is four times as many as the radix-2 ACS unit, but

the decoding speed can only be enhanced up to three times.
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Figure 3.22: ACS unit structure and the corresponding radix-4 trellis diagram

The Viterbi decoders in [51–53] break down the critical path delay by means of bit-level

pipeline and accomplish high throughput with very high clock frequencies. Furthermore, the

dynamic circuit techniques are also exploited to reduce the critical path. The four states

Viterbi decoder based on sliding block approach that performs decoding concurrently in

forward and backward directions is also reported in [56]. However, as the constraint length

increases, the complexity grows rapidly because of the highly parallel ACSU as well as large

skew buffers on signal wires.

For different applications and design constraints, the implementation approach ranges

from fully parallel computing array to sharing the computational resources through multi-

plexing. As for the WLAN category, the fully parallel approach is preferred because the

demanded data rate may reach decades of Mb/s or even hundreds of Mb/s. A further

improvement is the parallel architecture [132] where path metrics and decisions are calcu-
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lated concurrently with an expense of carry-save-adders. The transformations of ACS unit

in [133], [134], and [43] result in a compare-select-add (CSA) structure, leading to lower

computational complexity. St−1
x,y connects to St

x through βt−1
x,y , and St−2

x,y,z attaches to St−1
x,y via

βt−2
x,y,z. The recursion in (3.137) is an ACS operation shown in Fig. 3.19(b) that iteratively

updates the path metrics in each time instance. It is the serial operations within ACSU that

However, the longer critical path delay will result in a slower decoding speed. A modified

CSA (MCSA) is presented to improve the data-path delay in original CSA architectures

while preserving lower complexity [47].

Referring to the trellis diagram in Fig. 3.19(a), we can obtain the comparison results for

S
(t+1)
0 and S

(t+1)
2 :

D(S
(t+1)
0 ) = sgn[Γ(S

(t)
0 ) − Γ(S

(t)
1 ) + γ(β

(t)
0 ) − γ(β

(t)
1 )] = sgn[∆Γ

(t)
0,1 + ∆γ

(t)
β ] (3.131)

D(S
(t+1)
2 ) = sgn[Γ(S

(t)
0 ) − Γ(S

(t)
1 ) + γ(B

(t)
0 ) − γ(B

(t)
1 )] = sgn[∆Γ

(t)
0,1 + ∆γ

(t)
B ], (3.132)

where

∆Γ
(t)
0,1 = Γ(S

(t)
0 ) − Γ(S

(t)
1 ) (3.133)

∆γ
(t)
β = γ(β

(t)
0 ) − γ(β

(t)
1 ) (3.134)

∆γ
(t)
B = γ(B

(t)
0 ) − γ(B

(t)
1 ). (3.135)

Generally, D(S
(t+1)
i ) is referred to the decision of state Si at time t + 1. For the encoder

in (3.54), we will find that

∆γ
(t)
β = −∆γ

(t)
B , ∆γ (3.136)

The identical term ∆γ indicates that the computations of D(S
(t+1)
0 ) and D(S

(t+1)
0 ) can share

the same arithmetic unit. The reconstructed CSA unit is shown in Fig. 3.23. Notice

that the ∆Γ calculation can be shared by many CSA units. The resource sharing of ∆Γ
(t)
0,1

for D(S
(t+1)
0 ) and D(S

(t+1)
0 ) reduces one subtractor as compared to the conventional ACS.
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Figure 3.23: The CSA architecture
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Figure 3.24: The modified comparator unit

Furthermore, a modified comparator unit is proposed in Fig. 3.24 to enhance the adder and

the subtractor in the compare operation of Fig. 3.23, assuming ∆Γ
(t)
0,1 is a + 1 bits, ∆γ is

b + 1 bits, and a > b. In (3.131) and (3.132), the signs of ∆Γ(S
(t)
0,1) + ∆γ and ∆Γ

(t)
0,1 − ∆γ

are expected results and can be obtained by comparing the magnitudes of ∆Γ
(t)
0,1 and ∆γ,

and by checking their difference in signs. The improvement in Fig. 3.24 comes from a > b,

and therefore only the b + 1 bits adder as well as the carry propagation circuit are required,

resulting in the lookahead architecture that speeds up the compare operations. As a result,

the circuit in Fig. 3.24 implements both (3.131) and (3.132) with a lower critical path delay

and lower complexity.
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Table 3.1: Comparison of different types of 64-state ACSU

Conventional ACS Parallel ACS [132] CSA MCSA

Gate count 1 17.3k 32k 19.6k 14.7k

Critical path report 1 6.21ns 5.75ns 8.28ns 8.06ns

Power dissipation 2 28mW 31mW 43mW 24mW

1 Timing constraints: 8.5ns in the worst operating condition.
2 Simulated with 100MHz frequency and 1.8V supply.

Based on the 0.18-µm standard cell library [135], Table 3.1 summarizes a design example

where the state number is 64 and the word lengths are set to be a = 12 and b = 6.

Considering the gate level design, we investigate the gate count and the power dissipation

of different ACSUs, including the parallel ACS structure in [132]. In the modified CSA

(MCSA) scheme, the area reduction from the conventional ACS structure is about 15%, and

an average 14.3% power saving is observed through simulation.
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Figure 3.25: Trellis representation for the recursive path metric calculation

For high-speed applications [136,137], the data rate is required to achieve hundreds MB/s

or even 1 Gb/s, and thus the ACSU may need to have more parallelism. Therefore, we present

the ACS unit for radix-2τ trellis with τ > 2 [57]. an highly parallel ACS design [57]. Since

path metrics are the recursive ACS operations, from Fig. 3.25 can the metric Γ(S
(t+1)
d ) be
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iteratively obtained with

Γ(S
(t+1)
d ) = min

x=1,2
[Γ(S(t)

x ) + γ(β(t)
x )]

Γ(S(t)
x ) = min

y=1,2
[Γ(S(t−1)

x,y ) + γ(β(t−1)
x,y )] (3.137)

Γ(S(t−1)
x,y ) = min

z=1,2
[Γ(S(t−2)

x,y,z ) + γ(β(t−2)
x,y,z )]

...

Note that S
(t)
x connects to arbitrary state S

(t+1)
d at time t + 1 through β

(t)
x , S

(t−1)
x,y to S

(t)
x

through β
(t−1)
x,y , and S

(t−2)
x,y,z to S

(t−1)
x,y through β

(t−2)
x,y,z . The recursion in (3.137) is the ACS

operation shown in Fig. 3.19(b) that iteratively updates the path metrics at each time

instance. It is the serial operations within ACSU that causes the critical path bottleneck.
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Figure 3.26: The radix-2τ ACS operation

With τ steps of lookahead, the trellis structure becomes radix-2τ in Fig. 3.26(a), and the

Γ(S
(t+τ)
d ) at time instance t + τ can be expressed by

Γ(S
(t+τ)
d ) = min

x∈C
[Γ(S(t)

x ) + γ(β(t)
x )], (3.138)

and C = {1, 2, . . . , 2τ} is the set of indexes indicating S
(t)
x connects to S

(t+τ)
d through β

(t)
x .
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The equivalent radix-2τ ACS unit in Fig. 3.26(b) achieves τ times speedup as compared

to the radix-2 ACSU in Fig. 3.19(b). Nevertheless, the number of branches in (3.138)The

radix-2M PM updating and the corresponding ACS structure will be 2τ−1 times of that in

radix-2 trellis, leading to the exponentially increasing complexity. The high radix approach

that accelerates Viterbi decoding can also cause large critical path delay due to exponentially

increasing branches. As shown in Fig. 3.26, the adders can be proceeded simultaneously,

but the speed of the comparator will be degraded as the number of branches increases.

Therefore, the comparator should be optimized to acquire the corresponding enhancement

contributed by the high radix trellis. The retiming technique is then presented to speedup

the ACS operations.
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Figure 3.27: The trellis diagram after retiming

The retiming approacher tends to parallelize the computations within ACS unit. The

pre-path metric (pre-PM), denoted by Λ, is first defined by

Λ(β(t)
x ) , Γ(S(t)

x ) + γ(β(t)
x ), (3.139)

From the recursion in (3.137), we know that Γ(S
(t)
x ) is function of the information coming

from β
(t−1)
x,1 and β

(t−1)
x,2 . Therefore, (3.139) can be rewritten as

Λ(β(t)
x ) , min

y=1,2
[Λ(β(t−1)

x,y )] + γ(β(t)
x ), ∀β(t−1)

x,y connect to S(t)
x (3.140)

= min
y=1,2

[Λ(β(t−1)
x,y ) + γ(β(t)

x )], (3.141)
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leading to a new recursion for Λ. Notice that (3.140) contains a compare-select (CS) function

for Λ(β
(t−1)
x,y ) and an addition of γ(β

(t)
x ). Fig. 3.27 illustrates the operation (3.140) in the

trellis diagram when x = 1. The final addition is independent of the compare function and

can be performed concurrently with the compare function, resulting in better critical path

delay. Since the recursion has been changed from Γ(S
(t+1)
d ) to Λ(β

(t)
1 ) and Λ(βt

2), the number

of adders and multiplexers is doubled in contrast to the original ACS unit in Fig. 3.19(b).
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Figure 3.28: The retiming among different time instances for a two states trellis diagram

The transformation is a retiming of registers storing path metrics and adders among

different time instances. Fig. 3.28 demonstrates the retiming procedure for a two state

trellis diagram. The registers at t are moved to the branches between t and t − 1 to keep

the pre-path metric Λ, and the registers number becomes double. Furthermore, the adders

are also relocated to be in parallel with the compare operations. The result after retiming

is presented in Fig. 3.29 in which the registers, the adders, and the multiplexers are double

as many as the structure before retiming. Actually, the architecture in Fig. 3.29 is identical

to the double state approach presented in [138–140].

Based on the retiming technique, the critical path due to exponentially increasing branches

in high-radix (τ > 2) ACS unit can be improved. The comparator of a radix-2τ ACS unit

is to search for the minimum pre-path metrics among 2τ candidates. One of the solutions

to simplify the searching algorithm is the decomposition of the candidates that need to be
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compared. The ACS operation in (3.138) can be re-written as

Γ(S
(t+τ)
d ) = min

x∈Xq

[min
y∈Yp

[Γ(S(t)
x,y) + γ(β(t)

x,y)]], (3.142)

where Xq = {1, 2, . . . , 2q}, Yp = {1, 2, . . . , 2p}, and τ = p + q. The minimum function is

decomposed into two levels, and the 2τ candidates are partitioned into 2q subsets. The first

level is 2p-way CS (CS-2p) operations that finds the minimum within each subset containing

2p candidates. Similarly, with a 2q-way CS (CS-2q) function, the outputs from the first

level are compared consecutively to produce the final result. Fig. 3.30 demonstrates the

architecture of a radix-2τ ACS unit. The critical path in Fig. 3.30 will be the adder as well

as the two levels of comparator and multiplexer. We also define Λ(β
(t)
x ) as the result in the

first level comparison (see Fig.3.30); consequently,

Λ(β(t)
x ) = min

y∈Yp

[Γ(S(t)
x,y) + γ(β(t)

x,y)]. (3.143)
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Figure 3.30: Radix-2τ ACS unit with two levels of compare-select functions

The original ACS recursion in (3.142) can then be transformed to

Γ(St+τ
d ) = min

x∈Xq

[Λ(β(t)
x )]. (3.144)

Substituting Λ(β
(t−τ)
x,y,z ) for Γ(S

(t)
x,y) in (3.143), we can deduce the recursion of Λ(β

(t)
x ) :

Λ(β(t)
x ) = min

y∈Yp

[min
z∈Xq

[Λ(β(t−τ)
x,y,z )] + γ(β(t)

x,y)], (3.145)

where β
(t−τ)
x,y,z is the z-th branch entering S

(t)
x,y.

Fig. 3.31 shows the corresponding radix-2τ trellis diagram for (3.145). With two level

computations, the first CS-2q finds the minimum Λ(βt−τ
x,y,z) for all z ∈ Xq, and the second

ACS-2p completes the remaining ACS operation in (3.145). Note that γ(β
(t)
x,y) is constant for

different z, the first CS-2q and the additions in ACS-2p can be proceeded simultaneously,

achieving less datapath delay.

Fig. 3.32 shows the retiming process (RT-1) for radix-2τ ACS unit according to (3.145)
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Figure 3.31: Radix-2τ trellis diagram with retiming

and Fig. 3.31. In Fig. 3.32, the registers are moved to the branch βx,y,z to store Λ(β
(t−τ)
x,y,z ) for

z ∈ Xq, and the register number becomes 2q times. Furthermore, the adders are changed to

the inputs of 2q-to-1 multiplexer, and their amount also increases 2q − 1 times. The number

of multiplexers in the second level operation should be 2τ times because each state has 2τ

leaving branches. Fig. 3.33 shows the structure of the retimed radix-2τ ACS unit where the

comparisons in the first level coincide with the additions.

The datapath delay is shown in Fig. 3.34 where TCS−2p, TCS−2q , and TACS−2p correspond

to the delay times of the CS-2p, the CS-2q, and the ACS-2p operations. The longest delay

path is reduced to the two levels of CS operations, assuming comparators have larger delay

time than adders. Consequently, the processing speed can be enhanced through retiming

the radix-2τ ACS unit.

Although the datapath delay can be reduced through the retiming approach, the expo-

nentially increasing complexity of high radix Viterbi decoders causes the difficulty in VLSI

implementation. The number of branch metrics (2τn) generated by the BMU also increases

exponentially. Therefore, we introduce a radix-2p × 2q structure that achieves the through-

put equivalent to radix-2τ approach where τ = p + q and p, q > 0. With the retiming
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Figure 3.32: Retiming of the radix-2τ ACS structure

technique, the radix-2p × 2q structure can achieve more area efficiency than the radix-2τ

architecture [57].

Fig. 3.35 shows the radix-2p × 2q ACSU consisting of two levels of consecutive radix-2p

and radix-2q ACS units. The path metrics at time t + p are obtained from the first level

ACS units and directly passed to the second level that computes Γ(S
(t+τ)
d ). The successive

ACS operations result in an equivalent radix-2τ ACS operation; that is,

Γ(S
(t+τ)
d ) = min

x∈Xq

[Γ(St+p
x ) + γ(β(t+p)

x )]

= min
x∈Xq

[min
y∈Yp

[Γ(S(t)
x,y) + γ(β(t)

x,y)] + γ(β(t+p)
x )] (3.146)

As compared with the radix-2τ ACS unit, the radix-2p × 2q ACS unit in Fig. 3.36, termed
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Figure 3.33: The radix-2τ ACS unit after retiming

two-dimensional (2-D) structure, requires only smaller radix-2p ACS (ACS-2p) units and

radix-2q ACS (ACS-2q) units. The exponentially increasing hardware cost is decomposed

into smaller ACS units; as a result, the Viterbi decoder based on radix-2p × 2q architecture

is more area efficient than that based on the radix-2τ trellis. Nevertheless, the critical path

of the 2-D structure is through two levels of ACS units, inducing one more adder delay as

compared with the radix-2τ ACS unit in Fig. 3.30. We will improve the 2-D ACS unit to

achieve higher speed with acceptable cost through the retiming approach. There are two

possible solutions based on (3.146).

The first solution comes from the independence of γ(βt+p
x ) and the function min

y∈Yp

[Γ(S(t)
x,y)+

γ(β(t)
x,y)]. We can rewrite (3.146) as

Γ(S
(t+τ)
d ) = min

x∈Xq

[

min
y∈Yp

[Γ(S(t)
x,y) + γ(β(t)

x,y) + γ(β(t+p)
x )]

]

. (3.147)
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Figure 3.35: The structure of ACS-2p × 2q unit

The branch metric γ(βt+p
x ) is moved to the multiplexer inputs in the first level of Fig. 3.36.

This retiming procedure (RT-2) as shown in Fig. 3.37 results in a ACS unit in Fig. 3.39(a).

Note that the critical path is almost the same as the radix-2τ ACS unit in Fig. 3.30. The

overhead to attain this acceleration is 2p − 1 times more adders and multiplexers in the first

level.

The other retiming technique for the radix-2p × 2q ACS unit first define Λ(β
(t+p)
x ) to be

Λ(β(t+p)
x ) = min

y∈Yp

[Γ(S(t)
x,y) + γ(β(t)

x,y)] + γ(β(t+p)
x ), (3.148)
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Figure 3.36: ACS-2p × 2q unit

and thus (3.146) will become

Γ(S
(t+τ)
d ) = min

x∈Xq

[Λ(β(t+p)
x )]. (3.149)

Accordingly, Γ(S
(t)
x,y) can be extended as a function of Λ(β

(t−q)
x,y,z ) where β

(t−q)
x,y,z is the incoming

branch of state S
(t)
x,y, and we can rewrite (3.148) to be

Λ(β(t+p)
x ) = min

y∈Yp

[

min
z∈Xq

[Λ(β(t−q)
x,y,z )] + γ(β(t)

x,y)

]

+ γ(β(t+p)
x ) (3.150)

= min
y∈Yp

[

min
z∈Xq

[Λ(β(t−q)
x,y,z ) + γ(β(t)

x,y)] + γ(β(t+p)
x )

]

. (3.151)

Fig. 3.38 illustrates the corresponding operation on the radix-2p × 2q trellis for (3.150) with

x = 1. The computation contains CS-2q operations, ACS-2p calculations, and a final addi-

tion (Add). Note that the additions can also be retimed for less datapath delay as shown

in (3.151); however, the addition numbers for γ(β
(t)
x,y) and γ(β

(t+p)
x ) will be increased respec-

tively by 2q and 2p times.
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Figure 3.37: Retiming of the radix-2p × 2q ACS unit

We demonstrate this retiming procedure (RT-3) in Fig. 3.37 where both registers and

adders are reallocated; the the final architecture is shown in Fig. 3.39(b). The registers in

Fig. 3.39(b) stores the results Λ(β
(t+p)
x ) on branches, and therefore the registers become 2q

times as many as the original ACS-2p × 2q. In the radix-2p × 2q trellis, each multiplexer

in the first level connects to 2q adders, and the multiplexer in the second level connects to

2p adders. As a result, there will require 2q times 2p-to-1 multiplexers and 2p times 2q-to-1

multiplexers after retiming.

The optimization methods as mentioned above tend to break the critical path through

parallelizing the serial operations; thus, more hardware resources should be allocated. In-

stead of storing path metrics, the radix-2τ and radix-2p × 2q ACS units with RT-1 and RT-3

save the pre-path metrics on branches, leading to more memory requirement. Moreover, to

achieve parallel processing, the retiming of adders in RT-1, RT-2, and RT-3 causes more
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Figure 3.38: Radix-2p × 2q trellis

adders and multiplexers.

Fig. 3.40 compares the datapath delays of different ACS configurations. The delay times

of CS-2p, CS-2q, ACS-2p, and ACS-2q functions are defined to be TCS−2p, TCS−2q , TACS−2p,

and TACS−2q . Additionally, we also assume that the compare-select operation has larger

delays, TCS−2p and TCS−2q , than those of additions (Add). What should be noted is that

the major enhancement is the elimination of datapath delay of additions on the critical

path. Both ACS-2τ with RT-1 and ACS-2p ×2q with RT-3 can achieve the lowest delay time

TCS−2p + TCS−2q because of the parallel additions and comparisons. Furthermore, Fig. 3.40

also shows that ACS-2p × 2q with RT-2 can acquire a comparable performance to the high

radix ACS-2τ structure.

We summarize the complexity of different ACS architectures, mentioned above, in Ta-

ble 3.2. The cost of ACS-2p × 2q is smaller than that of ACS-2τ because 2τ ≥ 2p + 2q for

τ = p + q. The minimum adder number required in the ACS-2p × 2q can be achieved when

p = ⌈ τ
2
⌉ and q = τ −⌈ τ

2
⌉. Considering the ACS-2τ with RT1 and the ACS-2p×2q with RT-3,

the adder number in the former is larger than that in the latter while q > 1. Moreover,
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Figure 3.39: 2-D ACS unit after retiming

the ACS-2τ with RT-1 has 2q times as many 2p-way comparators as the ACS-2p × 2q with

RT-3. The original ACS-2τ structure has the delay time similar to ACS-2p × 2q with RT-2,

but has (2q −1) times more 2p-way comparators, which are considerably more complex than

adders. According to the the summary in Table 3.2, the 2-D ACS-2p × 2q structure is more

cost efficient with retiming for the high speed requirement.

Table 3.2: Comparison of complexity among different ACS configurations

registers adders
2p-way 2q-way 2p to 1 2q to 1

comparator comparator multiplexer multiplexer

ACS-2τ M 2τ · M 2q · M M 2q · M M

ACS-2p × 2q M (2p + 2q) · M M M M M

ACS-2τ (RT-1) 2q · M 2q · 2τ · M 2q · M M 2q · M 2M · M
ACS-2p × 2q (RT-2) M (2p + 2p · 2q) · M M M 2q · M M

ACS-2p × 2q (RT-3) 2q · M (2q · 2p + 2p · 2q) · M M M 2q · M 2p · M
1 The number of states is M = 2ν .
2 τ = p + q.
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3.3.3 Survivor memory unit

The survivor memory stores the path history, or the survivors, within the truncation length

T . For different management strategies, the survivor memory unit can be categorized into

the register exchange (RE) architecture and the traceback (TB) architecture [123–126].
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Figure 3.41: The SMU based on the register exchange approach

The register exchange is a direct implementation of the Viterbi decoding algorithm over

the trellis diagram. Furthermore, any survivor, or the state sequence, also corresponds to a

distinct branch sequence or information sequence. For example, the incoming branches of
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S0 in Fig. 3.8 are generated by the information bit “0”. To save the survivor memory, we

keep the branch information rather than the entire state sequence. Fig. 3.41 illustrates a

design example for the trellis diagram Fig. 3.8. The decisions D(S
(t+1)
i ) for i = 0 ∼ 3 come

form the ACS units, and the path metrics Γ(S
(t)
i ) are stored in the PM memory. There are

2k decisions at each state for an (n, k) code. The survivors are shifted in the register array

from the left to the right. In the leftmost size, the register inputs are “0”, “0”, “1”, and “1”,

corresponding to the information symbols on the entering branches of S0, S1, S2, and S3.

The output data will be obtained through finding the survivor with the best path metric.

For a non-punctured code, the truncation length T is often chosen to be 4ν ∼ 5ν [100] where

ν is the overall constraint length. On the other hand, if the truncation length T is extended

to 10ν [116], the output data can be selected form any register in the final stage with slight

performance loss.
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Figure 3.42: The traceback operation

The traceback approach proceeds after all survivors are stored in the memory. Fig. 3.42

is an example that the decoder tends to decode the information at time t according to the

best metric Γ(S
(t+5)
1 ) at time t + 5. The traceback operation starts form S1 at time t + 5

and sequentially reads the branches to trace the survivor form time t + 4 to t. Finally, we

can find the state S0 at time t and the information symbol associated with the branch β
(t)
0 .

Since only the branch is necessary to pinpoint the previous state, the memory will contain

the branch information. Note that the decisions are used to identify the branches entering

each state. In Fig. 3.43, for example, the upper branch coming into each state is marked
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with “0”, and the other is “1”. Hence the decisions will provide the branch information that

should be stored into survivor memory.
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Figure 3.43: The branches are labeled with either 0 or 1

According to the trellis diagram Fig. 3.8, the SMU using traceback architecture is shown

in Fig. 3.44. Fig. 3.44(a) is the memory update procedure in which the decisions are written

to the survivor memory from the address 0 up to T−1, corresponding to the T time instances

of t1 + 1 to t1 + T . Fig. 3.44(b) is the traceback operation starting from the state S
(t1+T )
i
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Figure 3.44: The SMU based on the traceback approach

with the best path metric at time t1+T . The state S
(t1+T )
i is first used to index the branches

read form the address T − 1; the previous state S
(t1+T−1)
i′ will be obtained from S

(t1+T )
i and

its incoming branch β
(t1+T−1)
i′ . The state S

(t1+T )
i as well as the branch β

(t1+T−1)
i′ is termed

the pointer for the state S
(t1+T−1)
i′ . Referring to the example in Fig. 3.42, we will find that

the branch β
(t+4)
3 , labeled with 1, will be indexed by S

(t+5)
1 and is utilized to identify S

(t+4)
3 .
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Since S1 = 01 in the binary representation, we could get S3 = 11 through left shifting S1 by

one bit and concatenating 1 to the least significant bit (LSB); that is,

S3 = 2S1 + 1 mod 4.

As the branches are serially read form address T −1 to 0, we can subsequently find the state

at time t1 and decode the corresponding information symbol.

In the register-exchange or the traceback based architecture, the memory for a binary

(n, k) code with the overall constraint length ν is required to store k × T × 2ν bits and

can be organized to T words where each word stores 2ν decisions. As compared with the

register-exchange approach, the traceback operation avoids the data movement within the

survivor memory, and therefore has less dynamic power consumption. Nevertheless, the

implementation of a high speed traceback unit would be more difficult because of the limited

data bandwidth in the embedded memory.

The traceback algorithm, or k-pointer algorithm, for the survivor memory management

has been proposed in [124] and [126]. It divides the memory into banks and accesses them

concurrently to achieve the demanded data bandwidth. In the k-pointer algorithm, three

operations are defined [125, 126]:

1. Writing new data (WR): The decisions form ACSU are written into the survivor mem-

ory. The writing address increases as the ACS operations proceed to the next time

instance.

2. Traceback read (TB): This operation sequentially reads the branch from the survivor

memory to perform the traceback operation as shown in Fig. 3.44(b). However, only

the final state after all the branches are traced will be found without outputting any

information symbols. Ensuring all the survivors have converged, this state is treated

as the start point for the next traceback operation.
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3. Decode read (DC): This operation is also a traceback read except that the information

symbols will be decoded and outputted. Hence the decode read begins with the state

determined by the previous traceback read operation. The output information will be

in the reverse order because of the traceback operation.

Accordingly, the SMU based on the 3-pointer even algorithm can then be illustrated in

Fig. 3.45. The three traceback pointers consist of two TB operations and one DC producing
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Figure 3.45: The SMU using 3-pointer even algorithm

the decoded symbols. The SMU contains six banks, and each has T/2 words. Before any

TB or DC operation, the memory banks need to be filled with decisions from the ACSU.

The first TB operation starts in the bank 2, and the subsequent TB operation proceeds in

the bank 1, leading to the traceback of T time instances. As a result, we can initiate the

DC operation in the bank 0 because the beginning state is considered to be reliable after the

previous traceback. Finally, a first in and last out (FILO) buffer of length T/2 symbols can

be applied to reverse the output sequence. Note that the decoding throughput of Fig. 3.45

is similar to the register-exchange based SMU; however, the decoding latency of the former

is 3T which is three times as much as the later, assuming one memory address is read within
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one time instance.

Alternatively, the 3-pointer odd algorithm [126] combines the WR and the DC operations

into the same memory bank. As the DC reads out one data, the WR operation will write

new decisions to the address that is just read. Therefore, to achieve the corresponding

throughout that the 3-pointer even algorithm can have, each memory bank requires one

port for the data reading (DC), and the other port for the simultaneous data writing (WR).

Moreover, the 3-pointer odd algorithm reduces the memory bank number to five. In general,

the k-pointer even algorithm demands 2k memory banks having T
k−1

words in each bank. In

the k-pointer odd algorithm, we require 2k − 1 memory banks with T
k−1

words in each. For

higher k, we can accomplish more parallelism in the SMU, but requite more memory banks.

In the trellis diagram, Fig. 3.46 also summarizes the operations in the SMU based on the

the k-pointer algorithms. Because of the demand for high speed data transmission, both

TBDC WR

Write
Region

Read
Region

M survivors

Figure 3.46: SMU operations over the trellis diagram

methods would cause a large amount of memory access operations as well as large power

consumption.

As shown in (3.117), the truncation length determining the size of the survivor memory

and also the decoding latency, is a function of coding rates and channel capacity. The traced
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Figure 3.47: The proposed memory management of SMU

path will remerge to the correct path within the truncation length with a high probability.

In order to preserve the performance, the truncation length is conventionally set to the

maximum. Nevertheless, this will lead to many redundant operations during the traceback

for the operating condition is not always the worst. It is inappropriate to design the Viterbi

decoder works in the worst cases.

For a fixed T , SMU will trace the same path that had been traced recently as the path

remerges to the correct one. This implies that the SMU tends to reuse the data which

have been used in previous traceback operations. Considering the data locality in survivor

memory, a dynamic traceback mechanism can be implemented to reduce power consumption

caused by a great number of memory access [42, 47].

According to the cache based SMU design in Fig. 3.47, the modified traceback algorithm,

path merging algorithm, is summarized in Fig. 3.48 The survivor memory initially contains

M survivors. Since the correct path is hard to be exactly known in the receiver system,

the buffer contents will be the path which is last traced. In the traceback operation, Sx

is recursively updated according to the previous Sx and the branch β; simultaneously, it

is compared with Sy obtained form the buffer. While Sx is different from Sy, the buffer

contents should be revised to the new branch βi. On the contrary, when the traced path

merges to the previous one, SMU can stop further traceback operations because the buffer

has contained the same survivor.
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Figure 3.48: The path merging algorithm

Simulation results, shown in Table 3.3, reveal the effects of the modified traceback algo-

rithm, assuming the QPSK modulation over the AWGN channel. These results represent the

length required by the traced path to merge to the last one, and over 94% paths will merge

after tracing 3 time instances in different channel conditions. Therefore, many redundant

operations can be eliminated through the proposed SMU design.

The path merging algorithm can be successfully applied to the traceback operations

for the buffer contents are iteratively updated. However, in the WR operation where new

survivors from ACSU are written into memory, there is nothing to update the buffer, and

nothing can be read from it during the TB operation. Therefore, the path prediction algo-
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Table 3.3: Distribution of path convergence

SNR †(dB) 2 3 4 5

1 time instance 90.82% 95.16% 97.58% 98.91%

2 time instances 93.33% 97.02% 98.81% 99.60%

3 time instances 94.03% 97.47% 99.05% 99.70%

† QPSK modulation and AWGN channel

rithm accompanied with the WR is proposed and shown in Fig. 3.49 where WR is assumed

to process τ time instances. While ACSU proceeds each new time instance in the trellis

diagram, the predicted state with the minimum path metric is also found and verified that

a valid transition exists. Once the sequence of states encounters an invalid transition, the

prediction process should be stopped to avoid improper path merging during TB operation.

In terms of different SNRs, the simulation results in Fig. 3.50 represent the prediction ac-

curacy, which is defined as the percentage of total predictable states in the WR operation.

Combined with the path merging algorithm, we conclude the buffer updating procedure

in Fig. 3.51. The predicted state sequence is stored during the WR operation while new

state sequence is rewritten during the TB operation until the traced path merges to that in

the buffer. Even if incorrect states are predicted, they will be corrected in the TB operation,

leading to no performance loss with the path prediction algorithm.

3.4 The MAP algorithm

The maximum a posteriori probability (MAP) decoding algorithm for linear codes is devel-

oped by Bahl, Cocke, Jelinek, and Raviv in 1974 [16] and is termed BCJR algorithm, the

optimal symbol-by-symbol detection algorithm that minimizes the symbol error probability.

As compared to the Viterbi algorithm that minimize the codeword error probability (see

(3.67)), the BCJR algorithm estimates the a posteriori probabilities (APP) of the states as

well as their transitions from the received sequence r over a discrete memoryless channel.
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Figure 3.49: The path prediction algorithm

Therefore, for any state transition from St
m′ at time t to S

(t+1)
m at time t+1, we can estimate

the joint probability

Pr{S(t)
m′ , S

(t+1)
m , r} = Pr{S(t)

m′ , S
(t+1)
m , rt−1

0 , rt, r
N−1
t+1 }

= Pr{rN−1
t+1 |S(t)

m′ , S
(t+1)
m , rt−1

0 , rt}

× Pr{S(t+1)
m , rt|S(t)

m′ , r
t−1
0 }

× Pr{S(t)
m′ , r

t−1
0 }

= Pr{rN−1
t+1 |S(t+1)

m }Pr{S(t+1)
m , rt|S(t)

m′}Pr{S(t)
m′ , r

t−1
0 }

(3.152)
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Figure 3.50: Prediction accuracy in AWGN channel. (a) QPSK and R = 1/2. (b) 64-QAM
and R = 3/4

Notice that rt−1
0 denotes the received sequence from time 0 to t − 1, and rN−1

t+1 the received

sequence from time t + 1 to N − 1. The second equation of (3.152) comes form Bayes’ rule,

and the third equation is due to the Markov process in the state transitions. We further

define three functions:

α(S
(t)
m′) = Pr{S(t)

m′ , r
t−1
0 } (3.153)

γ(S
(t)
m′ , S

(t+1)
m ) = Pr{S(t+1)

m , rt|S(t)
m′} (3.154)

β(S(t+1)
m ) = Pr{rN−1

t+1 |S(t+1)
m }, (3.155)

and thus (3.152) can be rewritten as

Pr{S(t)
m′ , S

(t+1)
m , r} = α(S

(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S(t+1)

m ) (3.156)
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Figure 3.51: The buffer updating operations

On the other hand, we extend the definition of (3.153) to be

α(S(t+1)
m ) = Pr{S(t+1)

m , rt
0}

=
∑

S
(t)

m′
∈S

Pr{S(t)
m′ , S

(t+1)
m , rt

0}

=
∑

S
(t)

m′
∈S

Pr{S(t+1)
m , rt, |S(t)

m′ , r
t−1
0 }Pr{S(t)

m′ , r
t−1
0 }

=
∑

S
(t)

m′
∈S

Pr{S(t+1)
m , rt, |S(t)

m′}Pr{S(t)
m′ , r

t−1
0 }

=
∑

S
(t)

m′
∈S

γ(S
(t)
m′ , S

(t+1)
m )α(S

(t)
m′),

(3.157)
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where S is the set of all states. Similarly, we have

β(S
(t)
m′) =

∑

S
(t+1)
m ∈S

Pr{S(t+1)
m , rN−1

t |S(t)
m′}

=
∑

S
(t+1)
m ∈S

Pr{S(t+1)
m , rt, r

N−1
t+1 , S

(t)
m′}/ Pr{S(t)

m′}

=
∑

S
(t+1)
m ∈S

Pr{rN−1
t+1 |S(t+1)

m , rt, S
(t)
m′}Pr{S(t+1)

m , rt|S(t)
m′}

=
∑

S
(t+1)
m ∈S

Pr{rN−1
t+1 |S(t+1)

m }Pr{S(t+1)
m , rt|S(t)

m′}

=
∑

S
(t+1)
m ∈S

β(S(t+1)
m )γ(S

(t)
m′ , S

(t+1)
m ),

(3.158)

and consequently the forward metric α in (3.153) and the backward metric β in (3.155)

will be computed recursively with (3.157) and (3.158). If the encoder starts from S
(0)
0 and

terminates at S
(N)
0 , the following initial conditions are satisfied:

α(S
(0)
0 ) = 1, α(S

(0)
x ) = 0 for S

(0)
x ∈ S\S0

β(S
(N)
0 ) = 1, β(S

(N)
x ) = 0 for S

(N)
x ∈ S\S0

(3.159)

Finally, the branch metric in (3.154) can also be

γ(S
(t)
m′ , S

(t+1)
m ) =

Pr{S(t+1)
m , S

(t)
m′ , rt}

Pr{S(t)
m′}

=
Pr{S(t+1)

m , S
(t)
m′}

Pr{S(t)
m′}

× Pr{S(t+1)
m , S

(t)
m′ , rt}

Pr{S(t+1)
m , S

(t)
m′}

= Pr{S(t+1)
m |S(t)

m′}Pr{rt|S(t+1)
m , S

(t)
m′}

= P (ut)P (rt|v̂t),

(3.160)

where ut is the encoder input that causes the transition S
(t)
m′ → S

(t+1)
m , and v̂t is the cor-

responding codeword. With the branch metric in (3.160), we can derive α and β for each
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state at different time instances; as a result, the joint probability (3.152) is available for all

S
(t)
m′ , S

(t+1)
m ∈ S and t = 0 ∼ N .

The a posteriori the information for the symbol ut is defined to be the log-likelihood

ratio (LLR)

L(ut) , ln
Pr{ut = +1|r}
Pr{ut = −1|r} , (3.161)

and the decoder can decide the output

ût =















+1 if L(ut) ≥ 0

−1 if L(ut) < 0

(3.162)

and the corresponding soft information L(ut). Combining with (3.152), we can express the

APP of ut as

L(ut) = ln

∑

(m′,m)∈B
+1
t

Pr{S(t)
m′ , S

(t+1)
m |r}

∑

(m′,m)∈B−1
t

Pr{S(t)
m′ , S

(t+1)
m |r}

= ln

∑

(m′,m)∈B
+1
t

Pr{S(t)
m′ , S

(t+1)
m , r}

∑

(m′,m)∈B−1
t

Pr{S(t)
m′ , S

(t+1)
m , r}

(3.163)

Among all possible state transitions S
(t)
m′ → S

(t+1)
m , B+1

t is the set of all (m′, m) that indicate

the transitions are caused by ut = +1, and B−1
t , the set of (m′, m), denotes the transitions

are due to ut = −1. The MAP decoding algorithm not only decodes ût , but also estimates

the APP for each ut

L(ut) = ln

∑

(m′,m)∈B
+1
t

α(S
(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S

(t+1)
m )

∑

(m′,m)∈B
−1
t

α(S
(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S

(t+1)
m )

(3.164)

Alternatively, the MAP algorithm can be defined in the logarithmic domain for compu-
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tational efficiency. We first transfer the metrics to the logarithmic domain; that is

γ̄(S
(t)
m′ , S

(t+1)
m ) = ln γ(S

(t)
m′ , S

(t+1)
m ), (3.165)

ᾱ(S
(t+1)
m′ ) = ln α(S

(t+1)
m′ ) = ln

∑

S
(t)

m′
∈S

eγ̄(S
(t)

m′
,S

(t+1)
m )+ᾱ(S

(t)

m′
), (3.166)

and

β̄(S(t)
m ) = ln β(S(t)

m ) = ln
∑

S
(t+1)
m ∈S

eβ̄(S
(t+1)
m )+γ̄(S

(t)

m′
,S

(t+1)
m ). (3.167)

Finally, the APP information in (3.164) will become

L(ut) = ln





∑

(m′,m)∈B
+1
t

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )





− ln





∑

(m′,m)∈B
−1
t

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )





(3.168)

Considering the following Jacobian function [141]

ln(ex1 + ex2) , max ∗(ex1, ex2) = max(x1, x2) + ln(1 + e−|x1−x2|), (3.169)

and its extension

ln(ex1 + ex2 + · · · + exb) , max ∗(ex1, ex2 , . . . , exb), (3.170)

= max ∗(· · ·max ∗(max ∗(x1, x2), x3) · · · , xb), (3.171)

we can write (3.166) and (3.167) in more simple forms:

ᾱ(S
(ti+1)
m′ ) = max ∗

S
(t)

m′
∈S

[γ̄(S
(t)
m′ , S

(t+1)
m ) + ᾱ(S

(t)
m′)] (3.172)

β̄(S(t)
m ) = max ∗

S
(t+1)
m ∈S

[β̄(S(t+1)
m ) + γ̄(S

(t)
m′ , S

(t+1)
m )], (3.173)
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and therefore,

L(ut) = max ∗
(m′,m)∈B

+1
t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )]

− max ∗
(m′,m)∈B−1

t
[ᾱ(S

(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )].

(3.174)

The initial conditions become

ᾱ(S
(0)
0 ) = 0, ᾱ(S

(0)
x ) = −∞ for S

(0)
x ∈ S\S0

β̄(S
(N)
0 ) = 0, β̄(S

(N)
x ) = −∞ for S

(N)
x ∈ S\S0

(3.175)

Note that (3.169) can be implemented with a max function as well as a lookup table for the

term ln(1 + e−|x1−x2|), leading to the much simple hardware design. Furthermore, according

to the recursion in (3.171), the evaluations in (3.172), (3.173), and (3.174) will also benefit

from the simplification of (3.169). The MAP decoding algorithm based on (3.172), (3.173),

and (3.174) is termed Log-MAP algorithm [142,143].

If the a priori information is represented by

La(ut) , ln
P (ut = +1)

P (ut = −1)
, (3.176)

the a priori probability will be

P (ut = ±1) =
e±La(ut)

1 + e±La(ut)
=

[

e−La(ut)/2

1 + e−La(ut)

]

eutLa(ut)/2 = Ate
utLa(ut)/2 (3.177)

where At is independent of ut. Furthermore, according to (3.80), the probability P (rt|v̂t) in
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the AWGN channel with 2σ2 = N0/Es is

P (rt|v̂t) =

(

1√
2πσ2

)n

e−
Pn

i=1(r
(i)
t −v̂

(i)
t )2

2σ2

=

[(

1√
2πσ2

)n

e−
Pn

i=1[(r
(i)
t )2+(v̂

(i)
t )2]

2σ2

]

e

Pn
i=1 r

(i)
t ·v̂

(i)
t

σ2

= Bte
Pn

i=1 Lc·r(i)
t ·v̂(i)

t /2.

(3.178)

Notice that Bt is constant within each time instance since r
(i)
t is the same for all branches

and v̂
(i)
t = ±1. Additionally, the channel reliability value Lc is defined to be 4Es

N0
for the

AWGN channel [144]. As a result, we will find that At and Bt will be canceled out in the

LLR of either (3.164) or (3.174). The branch metric can then be expressed with both At

and Bt being dropped;

γ̄(S
(t)
m′ , S

(t+1)
m ) = ln P (ut)P (rt|v̂t) =

1

2
(utLa(ut) +

n
∑

i=1

Lc · r(i)
t · v̂(i)

t ) (3.179)

The further simplification is achieved through discarding ln(1 + e−|x1−x2|) in (3.169).

Consequently, we have the following approximations:

max ∗(ex1 , ex2) ≈ max(x1, x2) (3.180)

max ∗(ex1 , ex2, . . . , exn) ≈ max
i=1∼n

(xi). (3.181)

Applying (3.180) and (3.181), we can reduce the Log-MAP algorithm to the Max-Log-MAP

algorithm that contains only the additions and the max functions. However, the performance

would degrade because of the information loss in (3.180) and (3.181).

In Fig. 3.52, the trellis diagram for the encoder (3.54), we demonstrate the MAP decoding

in the the logarithmic domain. The dashed branches are generated by ut = −1, and the
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Figure 3.52: Trellis diagram for the MAP decoding algorithm

solid branches corresponds to ut = +1. Accordingly, we know that

B+1
t = {(0, 2), (1, 2), (2, 3), (3, 3)} (3.182)

B−1
t = {(0, 0), (1, 0), (2, 1), (3, 1)}; (3.183)

the forward metric and the backward metric for S
(t)
0 should be

ᾱ(S
(t)
0 ) = max ∗[ᾱ(S

(t−1)
0 ) + γ̄(S

(t−1)
0 , S

(t)
0 ), ᾱ(S

(t−1)
1 ) + γ̄(S

(t−1)
1 , S

(t)
0 )] (3.184)

β̄(S
(t)
0 ) = max ∗[β̄(S

(t+1)
0 ) + γ̄(S

(t+1)
0 , S

(t)
0 ), β̄(S

(t+1)
2 ) + γ̄(S

(t+1)
2 , S

(t)
0 )]. (3.185)

Generally, in the Max-Log-MAP decoding where the max∗ is simplified to the max function,

both (3.184) and (3.185) are ACS operations that is similar to the Viterbi decoding algorithm.

Furthermore, according to (3.80), the branch metric in the AWGN channel with Lc = 4Es

N0
is

γ̄(S
(t)
m′ , S

(t+1)
m ) =

1

2
(utLa(ut) + r

(1)
t v̂

(1)
t + r

(2)
t v̂

(2)
t ), (3.186)

and La(ut) = 0 if the information bits are assumed to be equally likely, or P (ut = +1) =

P (ut = −1). We can evaluate the APP of ut with (3.174) after evaluate ᾱ for each state at

time t, β̄ for each state at time t + 1, and all branch metrics between t and t + 1.

In the MAP decoding algorithm,the whole codeword sequence as well as all the metrics
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Figure 3.53: The windowed MAP algorithm

should be kept to calculate all L(ut) with t = 1 ∼ N . It is impractical to implement a MAP

decoder with large N . To reduce the memory requirement, the sliding window algorithm [145,

146] is applied to avoid storing the metrics corresponding to the entire codeword sequence.

In Fig. 3.53, the codeword stream is divided into ⌈N/Tsb⌉ sub-blocks of length Tsb, and the

dummy backward recursion βd is employed to establish the initial conditions for the true

backward recursion β. Note that βd is an operation that is similar to the traceback in the

Viterbi algorithm. Although the initial condition for the βd recursion is unknown except the

last sub-block, we set the equally likely conditions for βd within the (j + 1)-th sub-block

βd(S
((j+1)·Tsb)
m ) =

1

M
, for all S(jω)

m ∈ S. (3.187)

After the βd process of Tsb time instances, the initial metrics β(S
(j·Tsb)
m ) in the j-th sub-

block are available for the β recursion. During the (j + 1)-th βd operation, the forward α

recursion proceeds concurrently in the j-th sub-block, and all the metric values are stored in

the memory. In the backward β recursion of the j-th sub-block, we can calculated the L(ut)

value with the α metrics in the memory, the β metrics in computing, and the corresponding

branches metrics in the j-the sub-block. The length Tsb which is set to be 6ν is sufficient to

ensure the reliable initialization for the β recursion [146].
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Chapter 4

Soft Iterative Decoding

4.1 Message passing algorithm

The soft iterative decoding algorithm relies on the message passing or belief propagation

algorithm [26, 27]. We consider the following conditional probability

P (x = a|C) (4.1)

which is the a posteriori probability of x based on the knowledge of the constraint C.

According to the Bayes’ theorem, we can express (4.1) as

P (x = a|C) =
P (C|x = a)P (x = a)

P (C)
. (4.2)

The term P (x = a) is the a priori probability and is also referred to the instrinsic probability

for x [147], denoted by Pint(x = a). On the other hand, P (C|x = a) is termed the extrinsic

probability with respect to C. The extrinsic probability, defined by

Pext(x = a) = (
∑

a′∈A

P (C|x = a′))−1P (C|x = a) = ρeP (C|x = a) (4.3)

provides a new information for x according to the constraint C, assuming a takes values

from the alphabet set A. Consequently, the a posteriori probability in (4.2) can be written

as

Ppost(x = a) = P (x = a|C) = ρpPext(x = a)Pint(x = a), (4.4)
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where ρp = (ρeP (C))−1. If A = GF (2), the log-likelihood ratio representation for (4.4) will

be

Lpost(x) = ln
Ppost(x = 1)

Ppost(x = 0)
= ln

Pext(x = 1)

Pext(x = 0)
+ ln

Pint(x = 1)

Pint(x = 0)
= Lext(x) + Lint(x). (4.5)

In the graph representation, we use an undirected graph, referred to the normal graph

[147,148], in which the constraints are denoted by vertices (nodes), state variables for message

passing are denoted by ordinary edges, and symbol variables are denoted by left edges (half

edges). Fig. 4.1 shows an example with three vertices; the edges connecting two vertices

are ordinary edges, and the edges connecting only one vertex are left edges. Fig. 4.2

C1

C2 C3

left 

edge

ordinary 

edge

vertex

Figure 4.1: An example of normal graph
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Figure 4.2: Graph representation of the extrinsic and the instrinsic probabilities

illustrates a graph consisting of a single vertex and d edges, which are all left edges. There
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are d symbols, x1, x2, ..., and xd, that correspond to the constraint C. We define a set

SC which is a subspace of the d-dimensional vector space Ad (SC ⊂ Ad), and any d-tuple

x = (x1, x2, . . . , xd) ∈ SC will satisfy the constraint C. Assume each edge has the instrinsic

probability Pint(xj) associated with the symbol xj for j = 1 ∼ d, the a posteriori probability

of a symbol xi with respect to C will be the combination of the intrinsic Pint(xi) and the

extrinsic Pext(xi). Therefore, we have to evaluate Pext(xi) based on the constraint C and the

other instrinsic probabilities Pint(xj) with j 6= i. The extrinsic probability is

Pext(xi) = ρcP (C|xi)

= ρc

∑

xj ,∀j 6=i
x∈SC

P (x1, . . . , xi−1, xi+1, . . . , xd)

= ρc

∑

xj ,∀j 6=i
x∈SC

d
∏

j=1
j 6=i

Pint(xj)

(4.6)

where we assume the symbol variables x1, x2, . . . , xd are independent, and ρc is a normaliza-

tion constant.
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Figure 4.3: Graph representation of the message passing between two vertices

Additionally, we consider the graph with two vertices (constraints), C1 and C2, as shown

in Fig. 4.3. The constraint C1 has i − 1 left edges and one ordinary edge, corresponding to

the symbols x1 ∼ xi−1 and xi. On the other hand, xi ∼ xd are constrained by C2 where

129



only xi is on the ordinary edges. We also define two constraint sets SC1 and SC2 such that

any x1 = (x1, x2, . . . , xi) ∈ SC1 and x2 = (xi, xi+1, . . . , xd) ∈ SC2 will respectively satisfy C1

and C2. Similar to the single vertex graph in Fig. 4.2, we want to estimate the extrinsic

probability for the left edge based on both C1 and C2. As shown in Fig. 4.3, the symbol

xi+1 is first considered. If we only consider the constraint C2, the extrinsic probability can

be written as

Pext(xi+1) = ρ2P (C2|xi+1) =
∑

x2\xi+1
x2∈SC2

P
(2)
int (xi)

d
∏

j=i+2

Pint(xj) (4.7)

according to the results in (4.6). However, the instrinsic probability P
(2)
int (xi) for C2 is on the

ordinary edge that is unable to be acquired form the inputs. In the following, we use both

C1 and C2 to evaluate

Pext(xi+1) = ρCP (C1, C2|xi+1). (4.8)

The above conditional probability is rewritten as

P (C1, C2|xi+1) =
∑

x2\xi+1
x2∈SC2

P (C1, C2, xi, xi+2, . . . , xd|xi+1)

=
∑

x2\xi+1
x2∈SC2

P (C2|C1,x2)P (C1, xi, xi+2, . . . , xd|xi+1)

=
∑

x2\xi+1
x2∈SC2

P (C1, xi, xi+2, . . . , xd|xi+1),

(4.9)

where the third equality comes from the fact that C1, xi, and C2 in Fig. 4.3 from a Markov

chain [147], and

P (C1, C2|xi) = P (C1|xi)P (C2|xi). (4.10)
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Therefore, we can write

P (C2|C1,x2) = P (C2|x2) = 1, for x2 ∈ SC2 (4.11)

because x2 contains xi. Continuing form (4.9), we can further derive the following factor-

ization:

P (C1, xi, xi+2, . . . , xd|xi+1) = P (C1|x2)P (xi, xi+2, . . . , xd|xi+1)

= P (C1|xi)P (xi)P (xi+2) · · ·P (xd)

= (ρ1)
−1P

(1)
ext(xi)Pint(xi)

d
∏

j=i+2

Pint(xj).

(4.12)

Notice that

P
(1)
ext(xi) = ρ1P (C1|xi) (4.13)

is the extrinsic probability of xi with respect to C1, Pint(xj) are instrinsic probabilities

for the left edges connecting C2, and Pint(xi) is the instrinsic probability for the ordinary

edge variable xi. Since the ordinary edge connects C1 and C2 without external input, the

probability Pint(xi) can be initialized to be a constant; that is, Pint(xi) = 1
|A| for xi ∈ A.

After the above derivation, the extrinsic probability in (4.9) can be expressed as

Pext(xi+1) = ρ′
C

∑

x2\xi+1
x2∈SC2

P
(1)
ext(xi)

d
∏

j=i+2

Pint(xj), (4.14)

and ρ′
C = ρC/(ρ1|A|). Referring to (4.8) , we can find if the extrinsic probability P

(1)
ext(xi)

from C1 is available, and

P
(2)
int (xi) = P

(1)
ext(xi), (4.15)

only the constraint C2 is necessary for estimating Pext(xi+1). Correspondingly, Pext(xj) for

j = (i + 2) ∼ d can also be calculated. For Pext(xl) with l = 1 ∼ (i − 1), the extrinsic prob-
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ability P
(2)
ext(xi) with respect to C2 should be first computed, and the instrinsic probability

for C1 is set to be

P
(1)
int (xi) = P

(2)
ext(xi). (4.16)

The process of (4.15) or (4.16) is the message passing between vertices C1 and C2. With

the message passing algorithm, the problem of solving both C1 and C2 is decomposed into

solving the single vertex graph, which is much simpler than the two vertices case. The

message passed on the edge xi can be represented by

µC1→C2(xi) = P
(1)
ext(xi) = ρ1

∑

x1\xi
x1∈SC1

i−1
∏

j=1

Pint(xj) (4.17)

µC2→C1(xi) = P
(2)
ext(xi) = ρ2

∑

x2\xi
x2∈SC2

d
∏

j=i+1

Pint(xj) (4.18)

Moreover, the operation in calculating µC1→C2(xi) or µC2→C1(xi) is the sum of products, and

thus the message passing algorithm is also termed the sum-product algorithm [149].

In a graph with vertices, C0, C1,· · · , and Cd, the vertex C0 has d ordinary edges that

respectively connect to C1, C2,· · · , Cd with symbol variables x1, x2, · · · , xd. Assume the

messages µCj→C0(xj) with j = 1 ∼ d have been obtained from C1 ∼ Cd, we can calculate

µC0→Ci
by

µC0→Ci
(xi) =

∑

x\xi
x∈SC0

d
∏

j=1,
j 6=i

µCj→C0(xj) (4.19)

where SC0 is the constraint set for C0, and x = (x1, x2, . . . , xd). For i = 1 ∼ d, the messages

µC0→Ci
(xi) can be found and become the instrinsic probability inputs for the vertices C1 ∼

Cd.

The above discussion of the message passing algorithm is based on the graph without

cycles. In the graph with cycles [150], the message passing algorithm will be somewhat

different from that in the graph without cycles. In Fig. 4.4, the graph has four vertices that
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Figure 4.4: Graph with cycles

form a cycle and and two left edges having probability inputs. The message calculation form

C1 to C3 will need µC4→C1 , the message form C4. Nevertheless, µC4→C1 also requires the

messages from C2 as well as C3 that depends on µC1→C3 . It is impossible to derive µC4→C1

with only the probabilities on the left edges. Hence we have to directly initialize µC4→C1

to a constant probability, and the message passing algorithm can proceed as in the graph

without cycles. If the variables xi ∈ A for all i, the initial value of µC4→C1 can be set to be

1
|A| , where |A| denotes the order of A. Furthermore, the independency assumption among all

edge variables would no longer hold, and the extrinsic probability based on the sum-product

computation becomes an approximation.

The message passing schedule determines the computation order for a graph and also

effects the computational complexity as well as the final results. The detailed discussion can

be found in [147], [149], and [28]. Generally, some stopping criteria should be defined to

terminate the message passing algorithm. Each block will be detailed in the following.

4.2 Turbo code

The parallel concatenated convolutional codes (PCCC), named turbo code [17,18], has been

widely adopted in wireless communication systems [59,63,151,152]. Turbo code can achieve

an excellent coding performance with simple constituent codes concatenated by a interleaver
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whose length is N .

4.2.1 Turbo encoder

Fig. 4.5 is a turbo encoder with two recursive systematic convolutional (RSC) encoders and

an interleaver. It is shown in [153] that the constituent encoder must be recursive for better

performance. In the first encoder, the information symbols are encoded to the systematic

part v0(D) and the parity v1(D); thus, v0(D) = u(D). The second encoder encodes ũ(D),

the information sequence u(D) after interleaving. However, the systematic part which is also

ũ(D) will be discarded during transmission because v0 has carried the information sequence.

The two constituent encoders are typically identical; nevertheless, they can be different and

have been shown to achieve better performance [154,155]. If the code rates of encoder 1 and

Encoder 1

Encoder 2

Interleaver

( )Du

( )Duɶ

1( )Dv

2 ( )Dv

0 ( )Dv

Figure 4.5: Turbo encoder

encoder 2 are R1 and R2 respectively, the overall code rate R in Fig. 4.5 will satisfy

1

R
=

1

R1

+
1

R2

− 1. (4.20)

The interleaver permutes the information sequence u(D) to a new one ũ(D). The size and

the permutation will considerably affect the turbo code performance. At low SNRs, the

interleaver size has the most important effect, whereas the permutation would dominate
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the error performance at high SNRs. Conceptually, the interleaver is used to generate the

code with a long block length from smaller constituent codes, and it decorrelates the two

smaller encoders, or u(D) and ũ(D), to improve the decoding quality based on the iterative

message passing algorithm. If we assume the interleaver performs random permutation, the

error probability can be reduced by a factor of 1/N [103, 153], which is also referred to the

interleaver gain. The graph model for the turbo encoder in Fig. 4.5 is also illustrated in

. . .

Interleaver

. . .

0( ) ( )D D=u v

1( )Dv

2 ( )Dv

state sequence 

in encoder 1

state sequence 

in encoder 2

Figure 4.6: Graph representation of the turbo encoder

Fig. 4.6 [27,28,156]. The graph is separated by the interleaver. The upper part comprise the

vertices for the information bits u(D), the state sequence of the first encoder, and the parity

symbols v1(D). In the lower part, the permuted information ũ(D) is used as the inputs to

produce the state sequence in the second encoder as well as the parity symbols v2(D).

Due to the iterative decoding algorithm using soft-in/soft-out (SISO) decoders [144], an

excellent coding performance can be achieved with simple constituent decoders concatenated

by interleavers. The coding gain of turbo codes is better than that of convolutional codes

on the basis of comparable complexity. Therefore, turbo codes are used in many mobile

communication devices due to their outstanding performance and moderate complexity.

However, the iterative decoding in turbo decoders limits the decoding speed and increases
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the decoding latency.

4.2.2 Iterative decoding of turbo codes

The decoder iteratively decodes the PCCC with the MAP algorithm that calculates a posteriori

probability of each information bit ut [16]. For a rate 1/n RSC encoder, each codeword frame

consists of one systematic bit and (n− 1) parity bits. In the receiver, the received codeword

has the systematic symbol r0,t and the parity symbols r
(1)
t ∼ r

(n−1)
t , ans then the branch

metric in logarithmic domain should be

γ̄(S
(t)
m′ , S

(t+1)
m ) = ln P (ut)P (rt|v̂t) =

1

2
(utLa(ut) + Lcutr0,t +

n−1
∑

i=1

Lcr
(i)
t v̂

(i)
t ) (4.21)

which is from (3.179). As a result, the APP information from the SISO decoder can be

derived as follows:

L(ut) = ln

∑

(m′,m)∈B
+1
t

[

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )

]

∑

(m′,m)∈B
−1
t

[

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )

]

= ln

∑

(m′,m)∈B+1
t

[

e
1
2
((+1)La(ut)+(+1)Lcr,0t)

][

eᾱ(S
(t)

m′
)+ 1

2

Pn−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

∑

(m′,m)∈B−1
t

[

e
1
2
((−1)La(ut)+(−1)Lcr0,t)

][

eᾱ(S
(t)

m′
)+ 1

2

Pn−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

= La(ut) + Lcr0,t + ln

∑

(m′,m)∈B
+1
t

[

eᾱ(S
(t)

m′
)+ 1

2

Pn−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

∑

(m′,m)∈B
−1
t

[

eᾱ(S
(t)

m′
)+ 1

2

Pn−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

= La(ut) + Lcr0,t + Le(ut).

(4.22)

The term Le(ut) is the extrinsic information corresponding to the information bit ut [17,18].

In the decoder, we receive the systematic sequence r0(D) as well as the parity sequences

r1(D) and r2(D) from encoder 1 and encoder 2. In the decoding flow shown in Fig. 4.7,

there are two SISO decoders for the two constituent encoders in Fig. 4.5. Initially, we set the
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Figure 4.7: The turbo decoding flow

a priori information La1(ut) for the first decoder to zero and apply the BCJR algorithm to

calculate the a posteriori information L1(ut). From (4.22), the extrinsic information Le1(ut)

can be obtained

Le1(ut) = L1(ut) − Lcr0,t − La1(ut), (4.23)

where La1(ut)i = 0 initially. In the SISO decoder-2, the inputs are r̃0(D) permuted from the

systematic part r0(D) and the parity sequence r2(D), while the a priori information La2(ũt)

is the extrinsic output Le1(ut) from decoder-1 after permutation. Consequently, we can

evaluate the a posteriori output L2(ũt) and the extrinsic information Le2(ũt) corresponding

to the second constituent code by

Le2(ũt) = L2(ũt) − Lcr̃0,t − La2(ũt). (4.24)

As shown in Fig. 4.7, the information Le2(ũt) can be regarded as the the a priori information

La1(ut) for SISO decoder-1 after being reordered by the de-interleaver. The BCJR algorithm

proceeds again for the first constituent code based on the information La1(ut) from SISO

decoder-2. The turbo decoding proceeds iteratively with the extrinsic information passing

between the two SISO decoders. When the stopping criteria are reached, which may be the

maximum iteration number or a correctly decoded codeword, the APP information L2(ũt) is
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exported for hard decision. Fig. 4.8 also presents the message passing on the graph when the

SISO decoder-1 computes the extrinsic information Le1(ut) with the a priori information

La1(ut) from the SISO decoder-2.

The turbo encoder specified in the 3GPP2 system [63] is demonstrated in Fig. 4.9. The

constituent RSC encoder is

G(D) =

[

1 1+D+D3

1+D2+D3
1+D+D2+D3

1+D2+D3

]

(4.25)

whose rate is 1/3. Since the systematic symbol ṽ0,t in the second encoder is dropped during

the codeword transmission, the overall code rate of the turbo encoder is R = 1/5. The

maximum interleaver size in N = 20730, and thus each information sequence

u(D) =
N
∑

t=1

utD
t (4.26)

has 20730 bits. The codeword is composed of the systematic sequence

v0(D) =

N
∑

t=1

v0,tD
t = u(D), (4.27)
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Figure 4.9: The turbo encoder specified in the 3GPP2 system

the first parity sequence

v1(D) =
N
∑

t=1

(v
(1)
1,t , v

(2)
1,t )D

t, (4.28)

and the second parity sequence

v2(D) =
N
∑

t=1

(v
(1)
2,t , v

(2)
2,t )D

t. (4.29)

After the encoding process, we charge the switch positions to B so that the states of both

constituent codes returns to zero states. Hence additional 18 tail bits should be transmit-

ted [63]; the first nine tail bits are generated from the first constituent encoder outputs

(v0,t, v
(1)
1,t , v

(2)
1,t ), while the last nine bits are from (ṽ0,t, v

(1)
2,t , v

(2)
2,t ) in the second constituent en-

coder. In the turbo decoder, we apply the iterative decoding based on the BCJR algorithm

as shown in Fig. 4.7. Assume the 16-QAM modulation and the AWGN channel, the BER

performance is presented in Fig. 4.10, including different iteration numbers. Notice that

both SISO decoders in Fig. 4.10 will complete once within each decoding iteration. We can
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Figure 4.10: The BER performance based on the iterative decoding

find that the error performance will improve as the iteration number increases. The BER

curve can be divided into three regions [157], which are pointed out for the 8 iterations curve

in Fig. 4.10. The non-convergence region has an almost constant and high error probability.

In the waterfall region, the error probability sharply drops to a lower value. Moreover, the

error floor region reveals a slowly decreasing error probability. The waterfall region is deter-

mined by the interleaver gain, and the error floor region is by the minimum distance of the

code [158], which is also related to the interleaver. Therefore, there are two design criteria

for the interleaver [159]; the first one is the optimization of the weight distribution for the

code, and the second is the decorrelation between the constituent encoders. The former

tends to improve the minimum distance for lower error floor, while the latter increases the

convergence rate that dominates the curve slope in the waterfall region. Generally, the con-

vergence rate can be enhanced by increasing the interleaver size N . The interleaver designs

for the turbo code can be found in [143, 159–164].
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4.2.3 Turbo decoder

In the Log-MAP algorithm, which is equivalent to the MAP algorithm, the channel reliabil-

ity value Lc = 4Es

N0
requires the SNR estimation for the AWGN channel [165]. Nevertheless,

the real channel condition is hard to be accurately judged. Furthermore, in the max∗ func-

tion (3.169), we need to implement a table for the nonlinear term ln(1 + e−|x1−x2|) that also

depends on Lc. Multiple tables are necessary for various SNRs, leading to a much complex

circuit design. Alternatively, we can apply the Max-Log-MAP algorithm where max∗ is

reduced to the maximum (max) function, revealed in (3.180). The value Lc becomes ineffec-

tive in the Max-Log-MAP algorithm because of the maximum function [166]; however, the

performance loss will be encountered. In [167] and [168], the approach that scales the ex-

trinsic information is introduced to improve the turbo decoder based on the Max-Log-MAP

algorithm.

The number of bits to represent the quantities in decoding algorithms affects the per-

formance, memory size, and chip area. In [169], the upper bounds of quantities in SISO

decoding is derived theoretically. The fixed-point performance of turbo decoding in 3GPP2

is also presented in [170] by using Log-MAP algorithm. We analyze the Max-Log-MAP

algorithm to achieve the optimal performance after quantizing the quantities.

The internal precision of both SISO decoders in Fig. 4.7 are the same if we assume

only one SISO decoder is implemented. The width of symbols in SISO decoder is strongly

dependent on the range of input symbols as well as the fixed-point representation. The

notation ni.nf indicates the symbol is quantized to (ni + nf) bits where ni bits are integer

part, and nf bits are fractional part. After quantization, we first define the maximum

absolute value of the input symbols r0,t and r
(i)
t as Ain and that of the a priori input La(ut)

as Aa. For example, Ain = 2ni−1 if r0,t and r
(i)
t are represented by (ni + nf). The branch

metric is obtained by (4.21), and the maximum difference between any two branch metrics
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at time t

∆γ(t) = max
(m′

1,m1),(m′

2,m2)∈Bt

|γ̄(S
(t)
m′

1
, S(t+1)

m1
) − γ̄(S

(t)
m′

2
, S(t+1)

m2
)| (4.30)

is upper bounded by

∆γ(t) ≤ n · Ain + Aa. (4.31)

Note that Bt = {B+1
t ,B−1

t } is the state index set of all branches between time t and t + 1,

and we also assume all the received symbols are equally quantized.

1t −2t − t

Figure 4.11: A trellis diagram example

For a convolutional code with memory order m, the paths entering each state at time t

stem from all states at time t − m. Fig. 4.11 shows an example with m = 2. Therefore, we

can bound the difference of forward metrics α as follows:

∆α(t) ≤ m · Aa + dm · Ain, (4.32)

and

∆α(t) = max
S

(t)
m1

,S
(t)
m2

∈S

|α(S(t)
m1

) − α(S(t)
m2

)|. (4.33)

The value dm ≤ nm indicates the maximum Hamming distance between any two paths from

time t − m to t. Similarly, for the backward metric, we have

∆βt ≤ m · Aa + dm ·in . (4.34)

142



Form the calculation of L(ut) in (3.168), we can derive the following upper bound:

L(ut) ≤ ln

[

∑

(m′,m)∈B+1
t

eα
(t)
max+γ

(t)
max+β(S

(t+1)
m )

]

− ln

[

∑

(m′,m)∈B−1
t

eα
(t)
min+γ

(t)
min+β(S

(t+1)
m )

]

= (α(t)
max + γ(t)

max) − (α
(t)
min + γ

(t)
min)

+

(

ln
∑

(m′,m)∈B+1
t

eβ(S
(t+1)
m )

)

−
(

ln
∑

(m′,m)∈B−1
t

eβ(S
(t+1)
m )

)

(4.35)

We can also find that the two branches coming into a state at time t + 1 will correspond to

the information bits ut = +1 and ut = −1. As a result,

ln
∑

(m′,m)∈B
+1
t

eβ(S
(t+1)
m ) = ln

∑

(m′,m)∈B
−1
t

eβ(S
(t+1)
m ), (4.36)

and the bound in (4.35) is reduced to

L(ut) ≤ ∆α(t) + ∆γ(t) (4.37)

Accordingly, the lower can also be obtained as follows:

L(ut) ≥ −(∆α(t) + ∆γ(t)). (4.38)

Combining the upper bound, we summarize the bound of L(ut) as

|L(ut)| ≤ ∆α(t) + ∆γ(t) ≤ (m + 1)(n · Ain + Aa), (4.39)

in which we use dm ≤ nm. Since the extrinsic value is obtained by,

Le(ut) = L(ut) − Lcr0,t − La(ut), (4.40)
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the bound for Le(ut) can be written as

|Le(ut)| ≤ |L(ut)| (4.41)

if L(ut), r0,t, and La(ut) are assumed to have the same sign.

From the above discussions, we have derive the differences for α and β, and the modulo

normalization scheme [130,131] can be applied to avoid metric overflow. Furthermore, once

the received symbols have been quantized to fixed point values, we can acquire the data

width requirements for α, γ, and β based on the modulo normalization; on the other hand,

L(ut) and Le(ut) can also be determined by the data widths of α and γ. Note that the upper

bound in (4.41) shows that |Le(ut)| is smaller than |L(ut), and we can use the representation

of L(ut) for Le(ut). In turbo decoding, the a priori information La(ut) comes from the

extrinsic information Le(ut) of the other decoder. Generally, |Le(ut)| is smaller than |L(ut)

in real applications [170, 171], and thus we may use smaller widths for Le(ut) and La(ut).

The turbo decoder architecture is presented in Fig. 4.12, consisting of the single SISO

decoder, the interleaver/de-interleaver for the extrinsic data Le(ut), the interleaver for the

systematic symbols r0,t, and the cache buffer for the BMUs. In the SISO decoder, there

are three ACS groups for α, β, and βd recursions in the sliding windowed MAP algorithm

(see Fig. 3.53). The SISO decoder processes three consecutive sub-blocks concurrently for

different strategies in the BCJR algorithm. ACSU-α carries out the forward recursion and

saves the results in the α-memory . ACSU-β starts backward recursion from the initial

conditions determined by the ACSU-βd previously. At the same time, the LLR calculator

determines L(ut) and Le(ut), which is formulated in (3.174) and (4.40). Because of the

Max-Log-MAP algorithm, the ACSU is identical to that in the Viterbi decoder. The BMUs

compute branch metrics for ACSU-α, ACSU-β, and ACSU-βd according to (4.21).

Since the modulo normalization is applied, the evaluation of L(ut) should be modified in

144



BMU- d BMU- BMU-

ACSU- d ACSU- ACSU-

-memory
LLR

calculator

LIFO 

buffer

( )
t

L u

Interleaver

Cache 

buffer

( )
e t
L u

Interleaver / de-interleaver

0,tr

0,trɶ

1,tr2,tr

( )
t

L u

SISO decoder

( )
a t
L u

Figure 4.12: The turbo decoder architecture with a single SISO decoder

the LLR calculator. Considering the following operation

S = max(α1 + γ1 + β1, α2 + γ2 + β2), (4.42)

we have to determine the sign of

(α1 + γ1 + β1) − (α2 + γ2 + β2) = (α1 − α2) + (β1 − β2) + (γ1 − γ2). (4.43)

If α1, α2, β1 and β2 are modulo normalized, only the difference of them are useful during

calculations. As shown in (4.43), we should first find the difference in the left-hand side

instead of the summation first in the right-hand side. The operation is also illustrated in

Fig. 4.13.
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Figure 4.13: The comparator cell in the LLR calculator

In the L(ut) computation based on the Max-Log-MAP algorithm, we can write

L(ut) = max
(m′,m)∈B+1

t

[α(S
(t)
m′) + γ(S

(t)
m′ , S

(t+1)
m ) + β(S(t+1)

m )]

− max
(m′,m)∈B

−1
t

[α(S
(t)
m′) + γ(S

(t)
m′ , S

(t+1)
m ) + β(S(t+1)

m )]

= (α(+1)
max + γ(+1)

max + β(+1)
max ) − (α(−1)

max + γ(−1)
max + β(−1)

max )

= (α(+1)
max − α(−1)

max) + (γ(+1)
max − γ(−1)

max ) + (β(+1)
max − β(−1)

max ).

(4.44)

For u = +1 or u = −1, α
(u)
max, γ

(u)
max, and β

(u)
max are selected from

{α(S
(t)
m′), γ(S

(t)
m′ , S

(t+1)
m ), β(S(t+1)

m )|(m′, m) ∈ Bu
t } (4.45)

according to the maximum function

max
(m′,m)∈Bu

t

[α(S
(t)
m′) + γ(S

(t)
m′ , S

(t+1)
m ) + β(S(t+1)

m )]. (4.46)

Consequently, we can derive L(ut) with sum of the difference between metrics. The extrinsic

information Le(ut) is also computed by (4.40). Fig. 4.14 is the architecture of the LLR

calculator where the comparator (CMP) cell is similar to the comparator in Fig. 4.13, but
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Figure 4.14: The LLR calculator architecture

has more inputs depending on B+1
t and B−1

t . The CMP cell will perform the function (4.46)

and generate the selection signals to identify α
(u)
max, γ

(u)
max, and β

(u)
max.

In Fig. 3.53, each sub-block needs to be read by ACSU-βd, ACSU-α, and ACSU-β

separately. At the same time slot, from ti to ti+1, three consecutive sub-blocks are read by

the BMUs. The minimum data bandwidth to the external codeword memory should be 3fcM

symbols per second (MS/s) , assuming a fcMHz working frequency in the ACSUs. Therefore,

an input cache is implemented to reduce the repeated access of the external memory [171].

With the four banks memory model, the behavior of each bank can be expressed by Fig.

4.15 where each bank has Tsb words and should be connected to the three TMUs with

multiplexers. Codewords are written to the memory and read by the BMU-α, the BMU-βd,

and the BMU-β for branch metric calculations. The data bandwidth of the cache is fcMS/s

for inputs and 3fcMS/s for outputs. Accordingly, a multi-port memory or a higher working

frequency can be applied to reduce the interconnection between the cache and the BMUs.

However, both methods may lead to larger area or more power consumption. The reading

by BMU-β and the codeword writing is further combined by avoiding the write-after-read

(WAR) data hazard; as a result, the memory size can be reduced from 4Tsbto 3Tsb words.
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Figure 4.15: The multi-bank cache model

The last-in/first-out (LIFO) buffer is included in Fig. 4.12 to reorder the output sequence

that is the inverse of the original data sequence because of the computational schedule in

the sliding windowed MAP algorithm.

The embedded interleaver/de-interleaver is designed to reduce the amount of time re-

quired to permute symbols. The interleaver size N can achieve lower bit error rate (BER),

but requires larger memory size. We use a single memory block for both interleaving and

de-interleaving functions, which is explained in Fig. 4.16. In SISO decoder-1, the extrin-

sic information is read and written in a sequential order, while the extrinsic information is

accessed in a permuted order in SISO decoder-2. Therefore, the data in the memory are

always in sequence regardless of the permutation. Note that the SISO decoder in Fig. 4.12

performs both SISO decoder-1 and SISO decoder-2 functions in different time slots, lead-

ing to no data hazard. The memory require one reading port and one writing port in this

configuration, and can be either a dual-port SRAM (DP-SRAM) or a single-port SRAM

(SP-SRAM) working at higher clock rates.

The permutation realized by address management operates on-the-fly with the SISO

decoder and induces no additional delay within each iteration. However, in some cases [63],

the address generator (AG) may produce invalid addresses and stall the SISO decoder. This
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Figure 4.16: The operation of interleaver during SISO decoding
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Figure 4.17: The removal of invalid addresses with two AGs

can be solved by using two AGs as illustrated in Fig. 4.17. While an invalid address is

observed, the address from the other generator is adopted.

4.3 Low-density parity check code

Low-density parity-check (LDPC) code, a linear block code defined by a very sparse parity-

check matrix, was first introduced by Gallager [20,21] and rediscovered by MacKay [23,24]. It

has engaged much research interest recently because the sparse property of parity check ma-

trix H makes the decoding algorithm simple and practical at good communication rates [24].

Similar to turbo code [17], LDPC code can achieve a capacity approaching performance as
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the block length becomes large [25, 172]; however, LDPC decoders, which are highly paral-

lelizable, have a much higher decoding speed [65] than turbo decoders [60]. LDPC decoders

based on sum-product algorithm (SPA) are capable of parallel implementation, leading to a

much higher decoding speed than turbo decoders. Such distinct dominance of LDPC code

can be employed to enhance system performances for high speed wireless communications.

Consequently, more high speed communication systems have considered employing LDPC

code to enhance performance.

An (N ,K) LDPC code over GF (2) is often represented by the bipartite graph [22, 150]

where N bit nodes and M (≥ N − K) check nodes are connected by edges according to a

M ×N matrix H . In the following parity check matrix of a (10,5) LDPC code, for example,

H =

























0 0 0 1 1 0 0 1 0 1

1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 1 0 1 0

0 0 1 0 1 1 1 0 0 0

1 0 1 0 0 0 0 1 1 0

























, (4.47)

and

[ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ] × HT = [ c0 c1 c2 c3 c4 ], (4.48)

Fig. 4.18 represents the five parity check equations

c0 : x3 + x4 + x7 + x9 = 0

c1 : x0 + x1 + x5 + x9 = 0

c2 : x1 + x3 + x6 + x8 = 0

c4 : x2 + x4 + x5 + x6 = 0

c5 : x0 + x2 + x7 + x8 = 0

(4.49)
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in the bipartite graph with 10 bit nodes and 5 check nodes. The column weight of H

determines the number of edges (or degree) for each bit node connected to check nodes,

while the row weight of H determines the connections for each check node. A LDPC code

with equal weights for columns and rows is a regular code, as shown in (4.47), and otherwise

is termed irregular. It has been shown that irregular codes can outperform those based on

regular graphs [173].

edge

check nodes

bit nodes

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x

0c 1c 2c 3c 4c

Figure 4.18: The bipartite graph for the (10,5) LDPC code

4.3.1 LDPC decoding algorithm

The decoding of LDPC codes is based on sum-product algorithm (SPA) [24,26], or message

passing (MP) algorithm, which iteratively updates the a posteriori probabilities of the bit

nodes. We first consider the message passing for the check nodes. Fig. 4.19 is a check node

1x 2x dx

. . .

ix

jc

Figure 4.19: The check node with degree d

with d edges, and each edge corresponds to a variable in GF (2). The constraint set for the
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node is

Scj
= {(x1, x2, . . . , xd)|x1 + x2 + · · · + xd = 0}; (4.50)

therefore, the output message on the edge xi should be

µcj→xi
(xi) = Pext(xi) = P (x1 + · · · + xi−1 + xi+1 + · · ·+ xd = xi) (4.51)

Before deriving (4.51), we begin with the two variables condition:

P (x1 + x2 = 0) = Pint(x1 = 0)Pint(x2 = 0) + Pint(x1 = 1)Pint(x2 = 1)

= (1 − p1)(1 − p2) + p1p2,

(4.52)

where pi = Pint(xi = 1). Moreover, the above equation can be expressed as

2P (x1 + x2 = 0) − 1 = (1 − 2p1)(1 − 2p2) (4.53)

If we assume

2P (x1 + x2 + · · ·+ xj = 0) − 1 = 2Πj − 1

= (1 − 2p1)(1 − 2p2) · · · (1 − 2pj)

=

j
∏

l=1

(1 − 2pl),

(4.54)

the following probability will be

Πj+1 = P (x1 + x2 + · · ·+ xj+1 = 0)

= P (x1 + x2 + · · ·+ xj = 0)(1 − pj+1) + P (x1 + x2 + · · · + xj = 1)pj+1

= Πj(1 − pj+1) + (1 − Πj)pj+1

(4.55)
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As a result, we can obtain

2Πj+1 − 1 = (2Πj − 1)(1 − 2pj+1) =

j+1
∏

l=1

(1 − 2pl) (4.56)

from (4.54). By induction, we conclude that

Πk = P (x1 + x2 + · · · + xd = 0) =
1

2
[1 +

d
∏

j=1

(1 − 2pi)] (4.57)

for any d ≥ 1. The probability in (4.51) can then be written as

µcj→xi
(xi = 0) =

1

2

[

1 +

d
∏

l=1,l 6=i

(1 − 2µxl→cj
(xl = 1))

]

(4.58)

µcj→xi
(xi = 1) =

1

2

[

1 −
d
∏

l=1,l 6=i

(1 − 2µxl→cj
(xl = 1))

]

, (4.59)

where we let pl = µxl→cj
(xi = 1), the message from xl.

ix

jc1c 2c dc
... . . .

( ) ( | )int i i iP x P r x=

ir

Figure 4.20: The bit node with degree d

For the message passing at the bit node as shown in Fig. 4.20, the node xi will receive

messages from the check nodes connecting to itself. Since the constraint set for xi is

Sxi
= {xi = a|a ∈ GF (2)}, (4.60)
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the output message from xi to cj will be

µxi→cj
(xi = 0) = ρb · Pint(xi = 0)

d
∏

l=1,l 6=j

µcl→xi
(xi = 0) (4.61)

µxi→cj
(xi = 1) = ρb · Pint(xi = 1)

d
∏

l=1,l 6=j

µcl→xi
(xi = 1), (4.62)

and

ρb =
∑

xi

Pint(xi)

d
∏

l=1,l 6=j

µcl→xi
(xi). (4.63)

The instrinsic probability Pint(xi) comes from the received symbol ri, and Pint(xi) = P (ri|xi).

In the logarithmic domain, we can use the log-likelihood ratio to represent the messages.

However, the ratio is redefined to be

L(x) = ln
P (x = 0)

P (x = 1)
, (4.64)

and

P (x = 1) =
1

eL(x) + 1
. (4.65)

Alternatively, we can write

1 − 2P (x = 1) =
eL(x) − 1

eL(x) + 1
= tanh(

L(x)

2
), (4.66)

in which the hyperbolic tangent is

tanh(
x

2
) =

ex − 1

ex + 1
. (4.67)
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According to the definition of (4.64), the messages from check node cj to bit node xi can be

Lcj→xi
(xi) = ln

1 +
∏d

l=1,l 6=i(1 − 2µxl→cj
(xl = 1))

1 −
∏d

l=1,l 6=i(1 − 2µxl→cj
(xl = 1))

= ln
1 +

∏d
l=1,l 6=i tanh(

Lxl→cj (xl)

2
)

1 −
∏d

l=1,l 6=i tanh(
Lxl→cj (xl)

2
)

= 2 tanh−1

( d
∏

l=1,l 6=i

tanh(
Lxl→cj

(xl)

2
)

)

.

(4.68)

Note that the inverse hyperbolic tangent

tanh−1(y) =
1

2
ln

1 + y

1 − y
(4.69)

is applied to the above equation. We further define another function for x > 0:

Ψ(x) = Ψ−1(x) = ln
1 + e−x

1 − e−x
= − ln(tanh(

x

2
)), (4.70)

and decompose the following function

d
∏

l=1,l 6=i

tanh(
Lxl→cj

(xl)

2
) =

d
∏

l=1,l 6=i

Al

=

( d
∏

l=1,l 6=i

sgn(Al)

)

exp

( d
∑

l=1,l 6=i

ln |Al|
)

=

( d
∏

l=1,l 6=i

sgn(Lxl→cj
(xi))

)

exp

( d
∑

l=1,l 6=i

ln[tanh(
|Lxl→cj

(xl)|
2

)]

)

(4.71)

because the sign of Al = tanh(
Lxl→cj (xl)

2
) is consistent with Lxl→cj

(xl). Moreover, we also
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note that for any integer s

(−1)sΨ−1(x) = ln
1 + (−1)se−x

1 − (−1)se−x
. (4.72)

If we let

x = −
d
∑

l=1,l 6=i

ln[tanh(
|Lxl→cj

(xl)|
2

)] (4.73)

in (4.72), (4.68) can be then rewritten as

Lcj→xi
(xi) =

( d
∏

l=1,l 6=i

sgn(Lxl→cj
(xl))

)

Ψ−1

(

−
d
∑

l=1,l 6=i

ln[tanh(
|Lxl→cj

(xl)|
2

)]

)

=

( d
∏

l=1,l 6=i

sgn(Lxl→cj
(xi))

)

Ψ−1

( d
∑

l=1,l 6=i

Ψ(|Lxl→cj
(xl)|)

)

,

(4.74)

where we use the function Ψ(x) = − ln(tanh(x
2
)) again. As compared with (4.68), the

multiplications has been converted to the additions in (4.74). The messages from bit node

xi to check node cj can also be expressed as

Lxi→cj
(xi) = ln

ρb · Pint(xi = 0)
∏d

l=1,l 6=j µcl→xi
(xi = 0)

ρb · Pint(xi = 1)
∏d

l=1,l 6=j µcl→xi
(xi = 1)

= Lint(xi) +
d
∑

l=1,l 6=j

Lcl→xi
(xi).

(4.75)

In the AWGN channel with variance 2σ2 = N0/Es, the value Lint(xi), also termed channel

value, can be obtained by

Lint(xi) = ln
P (ri|xi = −1)

P (ri|xi = +1)
=

2

σ2
ri = Lcri, (4.76)

assuming 1 is mapped to −1, and 0 to +1.

Fig. 4.21 shows a bipartite graph for decoding an (N ,K) LDPC code,and M = N − K.

The messages on the ordinary edges between bit nodes and check nodes are initialized to

156



. . .

H

.  .  .

.  .  .

check nodes

bit nodes

r

0x 1x 2x

0r 1r 2r 1N
r −

0c 1c 2c 1M
c −

0cL r 1cL r 2cL r
1c N

L r −
0( )

ext
L x

1( )ext
L x 2( )

ext
L x

Figure 4.21: Graph representation of LDPC decoding

zero, Lcl→xi
(xl) = 0 for all l as well as i = 0 ∼ (N − 1). Moreover, the received sequence

r = (r0, r1, . . . , rN−1) provides the channel values Lcri for the bit nodes. Beginning with

iteration number J = 1, we can summarize the iterative LDPC decoding as follows:

1. The messages from check nodes to bit nodes is updated by

Lxi→cj
(xi) = Lint(xi) +

∑

l∈Φ(i)\{j}
Lcl→xi

(xi), (4.77)

where the set Φ(i) denotes the indexes of all the check nodes connecting to xi.

2. For each check node, we calculate the messages conveyed to the bit notes with

Lcj→xi
(xi) =

(

∏

l∈B(j)\{i}
sgn(Lxl→cj

(xl))

)

Ψ−1

(

∑

l∈B(j)\{i}
Ψ(|Lxl→cj

(xl)|)
)

. (4.78)

The set B(j) comprises all the indexes of the bit nodes that involve the check node cj .

3. The a posteriori information for the codeword symbol xi is obtained by

Lpost(xi) = Lint(xi) + Lext(xi) = Lint(xi) +
∑

l∈Φ(i)

Lcl→xi
(xi). (4.79)
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Notice that

Lext(xi) =
∑

l∈Φ(i)

Lcl→xi
(xi) (4.80)

is the extrinsic information from the LDPC decoder. Finally, we use Lpost(xi) to decide

the codeword symbols; that is,

x̂i =















1 if Lpost(xi) < 0

0 if Lpost(xi) ≥ 0

(4.81)

4. If the parity check is satisfied

x · HT = 0, (4.82)

or the iteration number J reaches the predefined value Jm, the LDPC decoding is com-

pleted, and the estimated codeword x̂ = (x̂0, x̂1, . . . , x̂N−1) is outputted. Otherwise,

the decoder repeats the steps 1 ∼ 3 for the next decoding iteration, and J is increased

by one.

The message passing algorithm on the bipartite graph Fig. 4.21 with cycles becomes sub-

optimal due to the loss of the independence criteria. Nevertheless, the message passing

algorithm in most practical designs can provide precisely decoding. Generally, the length of

the shortest cycle in a graph is referred to the girth [150] of the graph. The error performance

of the graph based iterative decoding is significantly affected by the girth, and a large girth

will improve the decoding quality [174–178]. The design of parity check matrices should

maximize the girth for better decoding performance.

The implementation of (4.78) is the most complicated part of the LDPC decoder and

often accomplished by the table look-up approach [65]. An alternative is the sub-optimal
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expression for (4.74) [144]:

Lcj→xi
(xi) ≈

( d
∏

l=1,l 6=i

sgn(Lxl→cj
(xi))

)

min
l∈B(j)\{i}

(|Lxl→cj
(xi)|). (4.83)

The approximation in (4.83) is based on the property of Ψ(x) shown in Fig. 4.22. The

smaller |Lxl→cj
(xi)| will dominate the summation in (4.78). If

|Lmin(xi)| = min
l∈B(j)\{i}

(|Lxl→cj
(xi)|), (4.84)

we can approximate the summation

∑

l∈B(j)\{i}
Ψ(|Lxl→cj

(xi)|) = Ψ(|Lmin(xi)|) + δ

≈ Ψ(|Lmin(xi)|),
(4.85)

and the residual δ > 0.

0 1 2 3 4 5
0

1

2

3

4

5

6

x

(
)
x

Ψ

Figure 4.22: Plot of the Ψ(x) function

The decoding procedure based on (4.77) and (4.83), referred to min-sum algorithm [156],

is more practical for implementation because of its simplicity, although there is a perfor-

mance degradation at low SNR conditions. The more accurate approximations, including
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table look-up [179] and normalization [180–182] approaches, have been proposed to enhance

performance with an additional correction process. A further improvement using dynamic

normalization technique is reported in [183].

4.3.2 LDPC decoder

An LDPC decoder mainly consists of the message memory keeping messages on the edges,

the bit node unit (BNU) that computes (4.77), and the check node unit (CNU) that per-

forms (4.78). The management of the message memory depends on the structure of the parity

Message

memory
BNU CNU

( )
int i
L x

( )
j ic x i

L x→

( )
i jx c i

L x→ ( )
i jx c i

L x→

( )
j ic x i

L x→

Figure 4.23: The LDPC decoder architecture

check matrix H , the maximum decoding throughput, and the parallelism in the computa-

tional units. The implementation ranges from the partially parallel architectures [66, 184]

to the fully parallel ones [65]. Among the partially parallel designs, the serial implementa-

tion using a single processing element has a simple memory architecture, but the decoding

throughput is limited. More processing elements are necessary for higher decoding speed;

however, more memory bandwidth or access ports are required, leading to much critical

memory designs in terms of area, timing, and power consumption. Furthermore, the ran-

dom structure of parity check matrices also complicates the message processing schedule.

Th fully parallel design assigns N BNUs and M = N − K CNUs for parallel computation.

However, the randomness of bipartite graph causes complicated signal connections during

circuit implementation and requires more area for signal wires. The fully parallel implemen-
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tation in [65] demands large area to accommodate interconnections, leading to only 50%

chip density. The partially parallel architecture with the high level parallelism also suffers

from the same complication. Moreover, the critical path delay induced by global routing

decreases the maximum achievable throughput.

Each component will be detailed in the follow-up descriptions. We first consider the

( )xΨ

( )xΨ

( )xΨ

( )xΨ

1( )x−Ψ

1( )x−Ψ

1( )x−Ψ

1( )x−Ψ

1 1| ( ) |
jx cL x→

1 1| ( ) |
jc xL x→

2 2| ( ) |
jx cL x→

2 2| ( ) |
jc xL x→

| ( ) |
d jx c dL x→

| ( ) |
j dc x dL x→

. . .

. . .

. . ..  .  .

.  .  .

Figure 4.24: The CNU architecture based on the table look-up approach

CNU that implements the function (4.78). Fig. 4.24 shows the architecture that realizes

the message magnitude calculations for the bit nodes x1, x2, . . . , xd connecting to the check

node cj with the degree d. The Ψ(x) and Ψ−1(x) blocks are look-up tables (LUT) that maps

their inputs to the Ψ function and its inverse Ψ−1. The resolution of LUTs determines the

decoding performance, but also the table sizes. Generally, more resolution can result in more

accurate messages, however, the table size increases exponentially with the resolution. The

sign operation in (4.78) can be implemented with exclusive-or function, which is illustrated

in Fig. 4.25.

Alternatively, the CNU can be designed by a sorter that search the minimum magnitude

according to the sub-optimal function (4.83). As shown in Fig. 4.26, the sorter searches

for the minimum (min) and the second minimum (min2) values among the magnitudes
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1 1sgn( ( ))
jx cL x→

2 2sgn( ( ))
jx cL x→

sgn( ( ))
d jx c dL x→

1 1sgn( ( ))
jc xL x→

2 2sgn( ( ))
jc xL x→

sgn( ( ))
j dc x dL x→

.  .  .

.  .  .

. . .

. . .
Figure 4.25: The sign operation in CNU

Sorter

1 1| ( ) |
jx cL x→

2 2| ( ) |
jx cL x→

| ( ) |
d jx c dL x→

.  .  .

1 1| ( ) |
jc xL x→

2 2| ( ) |
jc xL x→

| ( ) |
j dc x dL x→

.  .  .

Decoder

min index

min

min2

d

minL

2minL

k

Figure 4.26: The CNU architecture based on the sorter

|Lxi→cj
(xi)| for i = 1 ∼ d [66]. Assume 1 ≤ k ≤ d, we can also write

Lmin = |Lxk→cj
(xk)| = min

i=1∼d
(|Lxi→cj

(xi)|) (4.86)

Lmin2 = min
i=1∼d,i6=k

(|Lxi→cj
(xi)|), (4.87)

and the magnitude outputs for i = 1 ∼ d will be

|Lcj→xi
(xi)| =















Lmin if i 6= k

Lmin2 if i = k

(4.88)
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It is considerably difficult to achieve the sorting function for many parallel inputs. Therefore,

we divide the inputs into groups of four, and search the minimum and the second minimum

among the four values. Fig. 4.27 is an example with 16 inputs. The CMP-4 cell will identify

the two smaller values from its four inputs. After the first compare operations, we have four

minimum values from which the CMP-4 can be applied to find the final minimum and the

candidates for the final second minimum. The output second minimum is finally picked out

with a two-input comparator (CMP-2).

CMP-4
min min2

CMP-4
min min2

CMP-4
min min2

CMP-4
min min2

CMP-4
min min2

CMP-4
min

CMP-2

min

min min2

Figure 4.27: The sorter architecture with 16 inputs

The message memory unit (MMU) structure depends the parallelism of processing ele-

ments as well as the decoding throughput. Fig. 4.28 is the parallel decoder architecture with

N BNUs and M CNUs that perform parallel processing for all the bit nodes and the check

nodes. Note that the number of data read or written from the memory equals to the edge

number of the bipartite graph or to the number of 1s in the parity check matrix H . For

better performance, the code is often designed to have large block length N ; if H has a fixed

column degree d, the edge number during decoding will be N×d. The huge interconnections

between the memory and the computational units cause the difficulty in signal routing.

Fig. 4.29 shows a partially parallel decoder where much less BNUs and CNUs are al-
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Figure 4.28: The fully parallel LDPC decoder

Message

memory

CNU

crossbar switch

CNUCNU

. . .

BNUBNUBNU
Input

buffer

Figure 4.29: The partially parallel LDPC decoder

located for computations, leading to less area and much less signal routing. Nevertheless,

the operations of the BNU and the CNU have message dependency and therefore should

work separately. In each decoding iteration, most of the messages from the BNUs should

be written into the memory before the CNUs can proceed, leading to some throughput

degradation.

For the partially parallel design with high level parallelism, we may face the large signal

connections that enlarge the chip area and decrease the decoding throughput. We provide the

memory management approach as well as the architecture for the partially parallel decoder

with high decoding speed. The M × N parity check matrix H is divided into four M
2
× N

2

sub-matrices: h00, h01, h10, and h11, which is shown in Fig. 4.30. The sequence of data

processed by CNUs are {h00, h01} and {h10, h11}, whereas the sequence of data in BNUs
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H=

h00 CNU Set 1

CNU Set 2

BNU Set 1 BNU Set 2

h01

h10 h11

Figure 4.30: The sub-matrices of H

should be {h00, h10} and {h01, h11}. Fig. 4.31 illustrates the main structure of the LDPC

decoder, containing M/2 CNUs, N/2 BNUs, an input buffer connected to BNUs, and two

dedicated message memory units (MMU).

Input Buffer

buf-0 buf-1 buf-2 buf-3

h01 h00

h10h11

MMU-1

h00 h10

h11h01

MMU-0M/2

N/2

Figure 4.31: The partially parallel LDPC decoder with N/2 BNUs and M/2 CNUs

MMU is a storage unit that keeps message values in the bipartite graph. With two

MMUs, the decoder in Fig. 4.31 can achieve higher decoding speed due to less critical path

delay and parallel decoding of two distinct codewords. Each MMU that is divided into four

sub-blocks according to Fig. 4.30 receives data from one computational unit and delivers

them to another after reordering. As described below, the memory management strategies
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switching data sequence between BNU and CNU include multiplexers and register exchange

(RE) schemes, which have different level of routing complexity.

1. Multiplexer (MUX):

A B C D

(a) MMU-0 and MMU-1
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h00 h01 h01 h11

h00 h01 h10 h11

A B C D

h00 h01 h10 h11

h00 h10 h11
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MMU-0MMU-1

(b) Timing diagram

Figure 4.32: The architecture and timing diagram of MUX-based MMU

MMUs capture data from datapath and reorder them by multiplexers as shown in

Fig. 4.32(a). The detail operation is also illustrated in Fig. 4.32(b), where MMU-0

and MMU-1 interchange two codewords iteratively without stalls. Hence the decoder

can achieve the maximum throughput based on the allocated computing resources.

What should be noted in Fig. 4.32(a) is the coherent interconnection and complicated

data bus between all four sub-blocks and datapaths. The data inputted B and C should

be switched since either h01 or h10 will get into these two sub-blocks. Furthermore, the

output of MMUs can be {A,B}, {C,D}, {A,C}, or {B,D} at different time instance.

As a result, the data switching causes a large number of signal connections as well as

high routing complexity.

2. Four blocks register exchange (RE4):

Fig. 4.33(a) shows the organization of sub-blocks based on the proposed RE approach.

Since data movement is accomplished through register exchange, the multiplexers can

166



B A CD

(a) MMU-0 and MMU-1

h11h00

h01 h00h01

h01

h11

h00 h01 h10 h11

h00h01h01 h11

h00 h01 h10 h11

A B C D

h00 h01h10 h11

h00h10 h11

h00 h10 h01 h11

h00h10h10 h11

h00 h10 h01 h11

A B C D

h10

..
.

..
.

it
er
at
io
n
 #
i

it
er
at
io
n
 #
(i
+
1
)

..
.

..
.

codeword-0 codeword-1 output block

MMU-0MMU-1

h00h01h01 h11

h10

input block

h00h10 h11h10

(b) Timing diagram

Figure 4.33: The architecture and timing diagram of RE4-based MMU

be reduced by exchanging data among four sub-blocks. Fig. 4.33(b) also shows a detail

timing diagram about the data flow in MMUs. The outputs of BNUs or CNUs will be

fed into sub-blocks B, C and D, while sub-blocks A and C export data after reordering.

It can be noticed that sub-block A receives data from either B or D instead of MMU

input. The output of MMU is {A,C} without any data switching. Consequently, many

multiplexers are eliminated to achieve a much simpler signal wiring.

3. Five blocks register exchange (RE5):

The register exchange scheme based on five sub-blocks is proposed in Fig. 4.34(a) to

achieve a multiplexer free data bus between MMUs and datapaths. The multiplexer in

Fig. 4.33(a) can be further reduced by inserting sub-block E to MMU. Note that h00

and h11 in D of the RE4-based MMU (Fig. 4.33) have been dispatched to D and E of the

RE5-based MMU to avoid data switching. Therefore, the message values associated

with the four sub-matrices of H can be individually captured by different sub-blocks,

B, C, D, and E. Similarly only A and C serves as outputs of MMU. Fig. 4.34(b) also

illustrates the detail operation of RE5-based MMU. The connection of MMUs and
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Figure 4.34: The architecture and timing diagram of RE5-based MMU

datapaths becomes immediate and simple as a result of the removal of multiplexers on

data bus.

In summary, with MUX or RE approach, the proposed MMU architectures not only store

message values but reorder the data sequence as well. Moreover, to lower routing complexity,

the RE4 or RE5 based architecture is applied.

MUX RE4 RE5
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Figure 4.35: The comparison of different MMU architectures

Fig. 4.35 shows a comparison among the three MMU architectures, assuming the mes-

sage value is 6 bits. The gate count and interconnection are measured only from MMU-0
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and MMU-1, whereas the routing congestion overflow is investigated through implementing

the decoder within a 25mm2 1P6M 0.18-µm chip. The negative value in routing congestion

overflow indicates more chip area (> 25mm2) is demanded to accommodate more signal

wires. As compared with the MUX-based approach, the RE4 and RE5 based architectures

have a 15% ∼ 23% decrease in gate count due to the elimination of multiplexers. Further-

more, there is a significant drop of interconnections in RE-based approaches; as a result,

the routing congestion can be dramatically improved. This enhancement will facilitate the

circuit implementation for the RE-based MMU. The solution to switch data sequence also

enables the decoder to process two codewords concurrently without stalls.

Input buffer is also a storage component that receives and keeps channel values for

iterative decoding. According to (4.77), the BNUs require channel values Lint(xi) in every

iteration, and the input buffer in Fig. 4.31 connected to BNUs, will provide Lint(xi).

Based on the matrix partition of H , four M
2
× N

2
sub-matrices, the codeword should be

separated into two parts of N/2 symbols; consequently, codeword-0 is divided into C00 and

C01, while codeword-1 is divided into C10 and C11. Moreover, according to the codeword

segmentation, this buffer keeping two codewords should be partitioned into four segments,

buf -0, buf -1, buf -2, and buf -3. In the proposed decoder architecture, C00, C01, C10,

and C11 should be delivered to BNUs at different time instance. The buffer management

strategies will be presented as follows.

1. Multiplexer:

Fig. 4.36 shows the MUX-based input buffer where each buffer segment contains 600

channel values. The channel values should be hold in the buffer during iterative de-

coding, and different segment is delivered to BNUs through four-to-one multiplexers.

Under this organization, there is a close link between all four buffer segments and

BUNs.

2. Register exchange:
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Figure 4.36: The architecture of MUX-based input buffer

Fig. 4.37 shows the buffer structure of RE-based approach and the timing diagram of

data exchange. During the initialization, the codewords are serially shifted into buf -0

and conveyed to the other buffer segments while buf -0 is full. Each buffer segment will

exchange its contents with buf -0 when the decoding proceeds. The exchange sequence

is always {E1,E2,E3,E1,E2,E3,...} where Ei is the exchange operation between buf -i

and buf -0 . In this scheme, since only buf -0 is connected to BNUs, the multiplexers

can be removed to simplify the signal connection.
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Figure 4.37: The architecture and timing diagram of RE based input buffer

3. Register shifting:

170



In order to reduce the interconnection of buf -0 in Fig. 4.37(a), a register shifting

(RS) based architecture is proposed in Fig. 4.38. buf -0 is a shift register that serially

receives the channel values and buf -3 transports the associated channel values to BNUs.

Channel values of two different codewords are shifted within the four buffer segments

as shown in Fig. 4.38(b). Therefore, a much simpler signal connection is achieved.
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Figure 4.38: The architecture and timing diagram of RS based input buffer

With the 0.18-µm standard cell library [135], Fig. 4.39 compares the input buffer struc-

tures with N = 1200 and 5 bits channel values. The RS-based architecture can achieve

about 20% gate count and 30% interconnection reduction as compared to the MUX-based

buffer.
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Figure 4.39: The comparison of different input buffer architectures
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Figure 4.40: The H with (x + 1)2 sub-matrices

The register exchange (RE) approach for the H with four sub-matrices has been pre-

sented. When less parallelism is required, the RE methods can also be generalized for the H

with (x + 1)2 sub-matrices as shown in Fig. 4.40. The corresponding operation of the MMU

capturing data from the BNUs and delivering data to the CNUs is illustrated in Fig. 4.41.

The MMU is also partitioned into (x + 1)2 sub-blocks labeled by Mij where i and j are

integers, and 0 ≤ i, j ≤ x. In Fig. 4.41, the MMU keeps the messages of the codeword-0,

Mij = hij for all i and j, and serially shifts out the messages in the vertical direction. At the

same time, the outputs of the BNUs are also shifted into the MMU in the diagonal direction.

In this scheme, only M00 ∼ M0x are connected to the CNUs while all Mix and Mxj should

be linked with the BNUs. Moreover, there are many multiplexers exist between the MMU

and the BNUs. For example, Mx1 needs a 2-to-1 multiplexer since two inputs, h(x−1)0 and

hx1 are possible. In general, for 1 ≤ i, j ≤ x, the sub-blocks Mix and Mxj require (i+1)-to-1

multiplexers and (j + 1)-to-1 multiplexers respectively.

Similar to the RE5 based approach, the multiplexers between the MMU and the BNUs

can be further removed by replicating the sub-blocks connecting to the BNUs. According to

the input number of multiplexers, each Mix should replicate i copies, and each Mxj needs to

have j replicas. Therefore, the extra number of sub-blocks to eliminate multiplexers is

∆s = (
x−1
∑

i=1

i) + x + (
x−1
∑

j=1

j) (4.89)

= x2 (4.90)
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Figure 4.41: The RE operation for the MMU with (x + 1)2 sub-blocks
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Figure 4.42: The MMU operation for x = 2

Note that in (4.89) the first summation comes from the sub-blocks Mx1 ∼ Mx(x−1), the x

from Mxx, and the second summation from M(x−1)x ∼ M1x. Hence the overhead increases

with the growing x. In addition, we provide an example for x = 2 in Fig. 4.42 at different

time instances, t = 0 ∼ 3. The MMU initially stores the information of codeword-0, and the

operation proceeds according to Fig. 4.41. At t = 3, the messages from the BNUs are all

shifted into the MMU.
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Chapter 5

Applications of Channel Decoders

5.1 Universal Reed-Solomon decoder

The Reed-Solomon code is well acceptable in many storage applications and digital com-

munication systems for its excellent burst error correction capability. Those systems have

different code specifications depending on the performance requirements. Table 5.1 lists

Table 5.1: RS code specifications in various applications
Application Code specification

DVB-T [185], DVB-S [186] (204,188) RS code over GF (28)

ITU-T J.83 [187]
Annex A, C (204,188) RS code over GF (28)

Annex B (128,122) extended RS code over GF (27)
Annex D (207,187) RS code over GF (28)

G.975 FEC [188] (255,239) RS code over GF (28)
Flash memory (526,518) RS code over GF (210)

DVD
row (182,172) RS code over GF (28)

column (208,192) RS code over GF (28)

Blu-ray Disc
LDC (248,216) RS code over GF (28)
BIS (62,30) RS code over GF (28)

some applications for RS codes. We can find that the differences are not only in the code

rates, but in the finite field definitions as well. Therefore, based on the universal finite

field arithmetic, we investigate the cost efficient RS decoder that can meets various system

specifications.

In Table 5.1, since most RS codes are over GF (28), we define the universal (n, k) RS

decoder that supports n ≤ 255, t ≤ 16 with or without erasures, and GF (2m) with m ≤ 8

as well as any irreducible polynomials.
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Fig. 5.1 is the universal RS decoder based on the Montgomery multiplication algorithm

and look-up table based divider [38]. The dual-bank static RAM (SRAM) of size 1k bytes

is embedded to buffer four received codewords waiting for being corrected. In the syndrome
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Figure 5.1: The universal RS decoder architecture

calculator, there are 16 syndrome cells that concurrently compute syndrome values S̃1 ∼ S̃16,

which is shown in Fig. 2.5. In the case of t = 16 with erasures, the 16 syndrome cells are

sufficient, however, they can simultaneously supports the t = 8 error only decoding. Since

the key equation solver is designed to accommodate the error location polynomial with degree

16, we can modified the syndrome calculator for decoding at most 16 errors without erasures

(t = 16). According to (2.71), only the FG1 and the FG2 need to be configured for calculating

S̃17 ∼ S̃32. Consequently, S̃1 ∼ S̃16 are first calculated form the received codeword that is

also written into the FIFO memory, and S̃17 ∼ S̃32 are subsequently obtained from the

same codeword read form the FIFO memory. The erasure generator produces the erasure

information αl1+8 ∼ αlu+8 according to the erasure location in the codeword. Generally, we

can use the cell in Fig. 2.6 to generate these erasure information delivered to the key equation

solver. Based on the Berlekamp-Massey algorithm, we implement the key equation solver to

determine the Forney syndrome polynomial T̃ (x), errata location polynomial Λ̃(x), and the

error value polynomial ω̃(x). As shown in Fig. 2.7, the design is the inversionless decomposed
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architecture with only three universal finite field multipliers [33]. In the Chien search module,

we use the architecture in Fig. 2.8 that not only checks the roots of Λ̃(x) = 0, but also

generates α−iΛ̃′(α−i) for error value evaluation. Finally, according to (2.91) or (2.92), the

error value evaluator will estimate the error values eκ and the erasure values eρ with the

architecture in Fig. 2.9. In the present RS decoder, the divider in Fig. 2.9 is based on the

table look-up approach; therefore, we allocate a 256×8 SRAM for storing the inversion table

that is created by the α−i+8 and the αi generators (see Fig. 2.10).

The universal RS decoder is implemented with the standard 0.18-µm 1P6M CMOS pro-

cess and measured to achieve the maximum 160MHz clock rate at the supply voltage 1.62V∼

1.98V. The chip summary is also listed in Table 5.2. If the chip works in the GF (28) mode,

512 8
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Figure 5.2: The 0.18-µm universal RS decoder microphoto

Table 5.2: The universal RS decoder chip summary
Technology 0.18-µm 1P6M CMOS
Chip size 2.25 mm2

Core size 1.21 mm2

Gate count 46.4k

Embedded SRAM
8k bits (FIFO memory)
2k bits (Inversion table)

Supply voltage 1.62V∼ 1.98V
Clock rate 160MHz

Power consumption 68.1mW (1.8V and 160MHz)
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the maximum decoding throughput is 8bits × 160MHz = 1.28Gb/s.

We also conduct an experiment based on the 0.13-µm 1P8M CMOS process. After static

timing analysis (STA), the universal RS decoder in this experiment can achieve the maximum

300MHz clock rate while considering the worst speed corner and the coupling noise among

signal wires at the 1.02V supply. The core area is about 0.36mm2, and the average power

consumption is 20.2mW, assuming 300MHz clock rate and the 1.2V supply voltage. We

also compare different RS decoder implementations in Table 5.3. Compared with other

approaches, the proposed design has more flexibility while still has high decoding speed.

The decoder in [36] applies the serial architecture to achieve the universality; hence, the

throughput is limited. Notice that the gate count of the present decoder is also comparable

with other single mode or multi-mode decoders.

Table 5.3: Comparison among RS decoders
Design [189] [190] [36] Proposed Proposed

Technology 0.25-µm 0.35-µm 0.25-µm 0.13-µm 0.18-µm
(n, k) single variable variable variable variable

t 8 1 ∼ 8 1 ∼ 8 1 ∼ 16 1 ∼ 16
Erasure No No No 1 ∼ 16 1 ∼ 16
GF (2m) m = 8 m = 8 m = 1 ∼ 8 m = 1 ∼ 8 m = 1 ∼ 8

p(x) single single variable variable variable
Max. throughput 1.6Gb/s 800Mb/s 48Mb/s 2.4Gb/s 1.28Gb/s

Gate count 21k 34k 44k 54k 46k

We present a universal architecture for the error and erasure decoder. The proposed

architecture can accommodate variable codeword length, correctable errors , different finite

field degrees, and different primitive polynomials. Furthermore, the proposed decoder can

support erasure correction without increasing any finite field multipliers. In summary, the

decoder is not only flexible but cost efficient as well.
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5.2 Low power Viterbi decoder for the IEEE 802.11a

WLAN

The present Viterbi decoder targets the WLAN system specified in IEEE 802.11a [129].

Based on the orthogonal frequency division multiplexing (OFDM) and the forward error

correction (FEC) coding, the system is able to transmit data with data rates up to 54Mb/s.

Both phase-shift keying (PSK) modulation and quadrature amplitude modulation (QAM)

are included to provide various data rates listed in Table 5.4. The FEC coding employs rate

1/2 convolutional encoder

G(D) = [ 1 + D2 + D3 + D5 + D6 1 + D + D2 + D3 + D6 ] (5.1)

and derives higher rates from it by puncturing. The design signal-to-noise ratios (SNRs) for

FEC are the targets to achieve a packet error rate (PER) of 10% in additive white Gaussian

noise (AWGN) channel. As the requirement of data rates increase in wireless applications,

Table 5.4: Transmission modes of the IEEE 802.11a WLAN
Data rate (Mb/s) Modulation Code rate (R) Design SNR for FEC (dB)

6 BPSK 1/2 1 ∼ 2

9 BPSK 3/4 3 ∼ 4

12 QPSK 1/2 4 ∼ 5

18 QPSK 3/4 6 ∼ 7

24 16-QAM 1/2 9 ∼ 10

36 16-QAM 3/4 13 ∼ 14

48 64-QAM 2/3 17 ∼ 18

54 64-QAM 3/4 18 ∼ 19

the power consumption becomes an obvious design issue in system-level integrated circuit.

Therefore, we explore the system level behavior to remove redundant operations and achieve

a better system architecture in terms of power dissipation and complexity.

Fig. 5.3 shows the architecture of the proposed design. The de-puncture unit can sup-
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Figure 5.3: Block diagram of the proposed Viterbi decoder

port various coding rates defined in [129]. The BMU calculates the distance between the

received symbols and codewords on the branches. As illustrated in Fig. 3.23 and Fig. 3.24

the 64 parallel simplified MCSAs perform comparison among candidate paths to determine

survivors and compute the corresponding path metrics. The SMU based on the k-pointer

even algorithm with k=3 is constructed by the 6-bank memory architecture [126]. Each

memory bank equips a state buffer which retains the state sequence that would probably be

reused. The memory management unit (MMU) governs the operations of SMU, including

the path merging and path prediction operations. The comparator (CMP) computes the

minimum path metric and outputs the corresponding state to the prediction unit as well as

the TB unit. The prediction unit will generate a possible state sequence to increase buffer

reuse efficiency.

In the BMU, we have to minimize the quantization loss in terms of hardware cost,

increasing linearly with the quantization bit number. The quantization level and stepsize

vary with modulation types and channel conditions. For different quantization levels and

modulation types, Table 5.5 summarizes the performance improvement in terms of SNR
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over the hard decision decoding. All of the quantization schemes are set to be uniform

Table 5.5: Improvement of soft-decision Viterbi decoder compared to the hard decision
decoding

8-level 16-level 32-level

BPSK 1.7dB 1.9 dB 2dB

QPSK 1.7dB 1.9 dB 2dB

16-QAM 2.3dB 2.87 dB 2.96dB

64-QAM 2.2dB 2.6 dB 2.75dB

quantization and optimal stepsize [128]. While considering the indoor multipath channel,

we use the Rayleigh fading with a root mean square (rms) delay spread of 50ns. Fig. 5.4

shows the simulation results of two extreme cases. Note that there are slight improvements

from 8-level to 16-level in BPSK case and from 16-level to 32-level in 64-QAM case. In order

to achieve a good compromise between performance and complexity, 16-level soft decision

will be our choice.
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Figure 5.4: Simulation results of the soft decision Viterbi decoder in multipath channel

The overhead that implements the buffer and additional control circuit in the SMU is

less than 6%. Since the maximum truncation length is set to T = 64, each bank sized to

32 × 64 bits contains a 38 bits buffer that reduces a lot of memory read operations. The
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reduction of memory access in the 54Mb/s mode and the AWGN channel is presented in

Fig. 5.5. In the conventional SMU, the memory access number is constant. On the other

hand, in the proposed SMU the number of memory read operations degrades as the channel

condition becomes better. If the SNR is grater than 17dB, the average memory access will

be dominated by writing operations.
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Figure 5.5: Comparison of the memory access operations

The decoder is implemented and fabricated in the 0.18-µm 1P6M CMOS process. The

chip shown in Fig. 5.6 has been measured and summarized in Table 5.6. The core size

is 3.06mm2 containing 49k gates and 12k bits embedded SRAM. With the 1.64V ∼ 1.98V

supply, the chip is measured to work at the 100MHz clock rate, which is equivalent to the

75Mb/s decoding data rate when R = 3/4. Fig. 5.7 shows the measured power consumption

in terms of different data rates listed in Table 5.4. The conventional data in Fig. 5.7 is

obtained from this chip with the path merging and path prediction functions being turned

off. The more detailed information is illustrated in Fig. 5.8 where 54Mb/s data rate is

measured at SNR=19dB. The increased power dissipation in clock tree and CMP unit is

due to the additional buffer and the computation of the minimum path metric. The power
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consumption which varies with the channel condition has a 30%∼40% reduction as compared

to conventional designs.

Table 5.6: The Viterbi decoder chip summary

Technology 0.18-µm 1P6M CMOS

Chip size 5.62mm2

Core size 3.06mm2

Gate count 49k

Embedded SRAM 12k bits

Supply voltage 1.64V ∼ 1.98V

Clock rate 100MHz

Power consumption 68mW at 1.8V (54Mb/s and SNR=19dB)

A high performance and power reduction Viterbi decoder is presented for the WLAN

applications. The modified CSA architecture reduces the hardware complexity as well as the

power dissipation. Furthermore, with the path merging and the path prediction features, the

memory access drops more than 70% on the average. As a result, the power consumption

decreases due to the reduced memory access operations. The proposed design not only

considers the error correction capacity, but also provides a high speed and power efficient

solution.
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5.3 A Turbo/Viterbi decoder for the 3GPP2 mobile

communication

In the third generation (3G) mobile wireless communication [63], both turbo and convolu-

tional codes are specified for high speed data and speech transmission. Higher data rates and

185



larger block lengths in the turbo code indicate more design challenges due to large memory

size and bandwidth. On the other hand, the higher data rate requires much more memory

bandwidth, resulting in more design complexity and higher power dissipation.

The major concerns in building mobile wearable devices are the size and weight where

the battery is a large portion [191]. Thus, the key to reduce the battery size is the lower

power constraint. Low power designs of turbo decoders in [192–195] incorporate the early

termination of the iterative decoding for better channel conditions. In [196,197], the memory

blocks are optimized to achieve a significant power reduction. The sub-optimal approaches

that reduce the number of states or paths in trellis are also presented as power saving

techniques, but the performance becomes degraded. The turbo decoders with the block

length 5,114 are also reported in [58] and [60]. For 3G application, the integration of turbo

and Viterbi decoders is also reported in [58]. However, there is little research available on

the implementation of the large turbo code in 3GPP2 system [63].

We present a channel decoder that integrates both the turbo and the Viterbi decodings

with the optimized memory organization as well as the low power dissipation. The decoder

is designed with a single SISO decoder architecture based on the Max-Log-MAP algorithm,

and the embedded interleaver is implemented with the modest memory size. It also features

a cache buffer to increase the bandwidth efficiency for the SISO decoder and reduce the

external memory access.

The trellis decoding structure of both decoder enables the resource sharing of the ACS

units and the memory units, leading to a area efficient architecture. In the Max-Log-MAP

algorithm, the forward metric and the backward metric computations in Fig. 3.52 should be

ᾱ(S
(t)
0 ) = max[ᾱ(S

(t−1)
0 ) + γ̄(S

(t−1)
0 , S

(t)
0 ), ᾱ(S

(t−1)
1 ) + γ̄(S

(t−1)
1 , S

(t)
0 )] (5.2)

β̄(S
(t)
0 ) = max[β̄(S

(t+1)
0 ) + γ̄(S

(t+1)
0 , S

(t)
0 ), β̄(S

(t+1)
2 ) + γ̄(S

(t+1)
2 , S

(t)
0 )], (5.3)

which are ACS operations. Consequently, the Viterbi decoding algorithm that applies ACS
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computaitons to update path metrics can also utilize (5.2) or (5.3).

Fig. 5.9 shows the decoder architecture in the turbo decoding (TD) mode where the

active components are highlighted. The TD consists of three ACS groups for α, β, and βd

recursions in Fig. 3.53, and each ACS group contains eight ACS units according to the turbo

encoder in (4.25). The SISO decoder processes three consecutive sub-blocks concurrently

for different strategies in the windowed MAP algorithm.

As shown in Fig. 4.15, the cache buffer require four data access ports for three read oper-

ations and one write operation. From the previous discussion, either the multi-port memory

or the high working frequency can provide sufficient memory bandwidth for the cache buffer.

However, the former has large area overhead while the latter would complicate circuit imple-

mentation. We use a hybrid cache solution where a dual-port memory works at the double

clock frequency to provide the quadruple-port function. Fig. 5.10 represents the cache ar-

chitecture where Since the data ports and BMUs are directly connected, the multiplexers

are eliminated, leading to less signal routing complexity as well as power dissipation.

In the Viterbi decoding (VD) mode, 256 states trellis decoding is implemented with

1/2, 1/3, 1/4, and 1/6 coding rates. As shown in Fig. 5.11, The ACS-α and ACS-βd that

contains 16 ACS units perform these 256 ACS operations in 16 cycles. The memory for the

interleaver of TD is treated as the survivor memory. The traceback (TB) read operation is

performed separately from ACS operations due to the limited memory bandwidth and takes

additional two cycles based on the 3-point even algorithm [47,126]. The decode read follows

after the second traceback read and outputs a decoded bit. The decoding flow is illustrated

in Fig. 5.12. Averagely, to decode one data bit, it takes 19 cycles where the ACS units take

16 cycles to write new decisions, the TB read operation spends two cycles, and the decode

read operation needs one cycle. In a 100MHz clock rate, the Viterbi decoder can achieve the

maximum throughput of 5.26Mb/s.
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Table 5.7: Performance loss of fixed representations in turbo decoding

Format
Input symbols Le(ut) α

R = 1/2 R = 1/5 R = 1/5 R = 1/5

7.2 < 0.01dB < 0.01dB < 0.01dB < 0.01dB

6.2 < 0.01dB < 0.01dB < 0.01dB < 0.01dB

5.2 < 0.01dB < 0.01dB < 0.01dB > 10dB

4.2 0.2dB 0.017dB 0.05dB > 10dB

3.3 < 0.01dB 0.015dB 2dB > 10dB

3.2 0.2dB 0.02dB 4.3dB > 10dB

The fixed point representation of the quantities in the turbo decoder is determined from

the received symbols. We also use the notation ni.nf to denote the (ni + nf) bits quanti-

zation. Many different formats of input symbols were simulated in additive white Gaussian

noise (AWGN) channel and summarized in Table 5.7. The performance loss due to the

quantization is measured in terms of the signal to noise ratio (SNR) at BER=2× 10−6, and

the coding rate R = 1/2 is derived from R = 1/5 by puncturing [63]. In Table 5.7, we

first noticed that the 5.2 format is optimal for both the R = 1/2 and the R = 1/5 cases.

Nevertheless, the 3.3 format is still suitable for the R = 1/2 code, but induces additional

0.005dB loss in the R = 1/5 code. In order to reduce ni for Le(ut), α, and β, we select the

3.3 scheme and deduced the other quantities form this format.

According to the upper bounds in (4.31) and (4.32), we know that both ∆αt and ∆γt are

determined by La(ut) which is the Le(ut) output from the other SISO decoder. The extrinsic

information Le(ut) also decides the memory size of interleaver and de-interleaver that occupy

a large chip area. Consequently, we first bound Le(ut) and optimize its range to reduce the

memory size. Table 5.7 shows the simulation results of different fixed representations for

Le(ut). Although the 5.2 format has the least loss, the 4.2 format will be chosen to save the

memory size due to the large block length (N=20,730). As a result, Le(ut) is bounded to

±8 and the input symbols are bounded to ±4; in addition, the range of ∆αt and ∆γt can be

determined as 96 and 40, and |L(ut)| ≤ 136 based on (4.35), indicating that α and γ require
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Table 5.8: Summary of fixed representation in turbo decoding

quantities Input symbols La(ut) α β γ

width 6(3.3) 6(4.2) 8(6.2) 8(6.2) 8(6.2)

ni = 7 and ni = 6 respectively. For α, as shown in Table 5.7, the 6.2 format is sufficient due

to the looser bound in the noisy channel [170]. The backward metric β can also be analyzed

and will obtain the same results as α. Table 5.8 summarizes the fixed representations of

quantities in the turbo decoder. As shown in Fig. 5.13, the performance loss is 0.06dB in

the waterfall region and 0.5dB when BER=2 × 10−6.
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Figure 5.13: The BER performance of the channel decoder

The performance of the Viterbi decoder is determined by the precision of input symbols

and path metrics. For the quadrature amplitude modulation (QAM), four bits or more are

required to minimize the performance loss [47]. The word length of path metrics depends on

the code rate R, the precision of input symbols, and the trackback length T . For the code

with constraint length K = 9, the value of T should be 32 ∼ 64, depending on the channel

condition [100]. Hence, with the modulo normalization scheme [131], the four bits soft input,
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Table 5.9: Performance loss of different path metric precisions

Number of bits 13 11 10 9

Loss(BER=2 × 10−6) ∼ 0dB ∼ 0 dB ∼ 0dB 0.4dB

R = 1/6, and T = 64, the word length path metrics should be 13 bits. Nevertheless, the

simulation results in Table 5.9 show that 10 bits are sufficient in the AWGN channel. We

also provide the performance the fixed point Viterbi decoder in Fig. 5.13.

The decoder is implemented with the 0.18-µm standard CMOS process. In the TD mode,

the sub-block length Tsb is set to 20, and two clock domains are used in the memory and

the datapath respectively. Since the double clock rate provides the memory with higher

bandwidth, the single-port memory is sufficient in the proposed design except the cache

memory.

The specification report shows the dual-port memory in Fig. 5.10 is 0.103mm2, leading to

30% area reduction from Fig. 4.15 whose area is 0.146mm2. Two SP-SRAMs of 20,730 words

are included in the decoder for the systematic symbols and the extrinsic information. The

input and the output ports are implemented by the time division multiplexing approach that

avoids the use of multi-port memories. As compared with DP-SRAM design, the proposed

SP-SRAM approach has only 1/3 area with the double clock rate.

In Fig. 5.14, the chip size is 11.56mm2, and the core size is 7.29mm2. The total gate count

is about 115k including the path metric memory for the Viterbi decoder. Three SP-SRAMs

and one DP-SRAM are embedded in the chip with the total size of 251.64k bits. Table 5.10

summaries the chip features where the maximum data rate is obtained from the post-layout

simulation and verified with the chip measurement. The chip has been tested at 100MHz

(50MHz in datapath) under the 1.60∼1.98V supply and can provide the 4.52Mb/s turbo

decoding with six iterations and the 5.26Mb/s Viterbi decoding. In the 0.18-µm technology,

a 10% drop on the power grid voltage (IR-drop) will lead to 5% ∼ 6% changes in timing [198].

For wearable device, the supply voltage will vary with the capacity of batteries. Therefore,
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Table 5.10: Summary of the decoder chip

Technology 0.18-µm 1P6M CMOS

Supply voltage 1.60V∼ 1.98V

Chip size 11.56mm2

Core size 7.29mm2

Embedded SRAM 251.64k bits

Supported 1/5 for the turbo decoding

coding rate 1/2,1/3,1/4,1/6 for Viterbi decoding

Maximum 4.52Mb/s in the turbo decoder 1

data rate 5.26Mb/s in the Viterbi decoder

1 6 iterations

the power integrity is also analyzed to insure functionality and timing with the non-ideal

battery property and IR-drop. Table 5.11 shows the analysis results, including IR drop and

electron-migration (EM) risk. The IR drop analysis make sure the transistors in this chip

will have proper supply voltage during operation. The worst operating voltage due to IR

drop is 1.603V while the supply is 1.62V. The EM risk is a reliability measure and defined as

the probability that chip will fail within ten years due to EM. The worst value is 1.35×10−5

while the supply is 1.98V. The power distribution of the major blocks is also illustrated in

Fig. 5.15 where the TD is simulated with the N = 20, 730, six decoding iterations, the 16-
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Table 5.11: Power Integrity Analysis

Function R Type
Supply Voltage

1.62V 1.8V 1.98V

Turbo 1
5

IR drop 17mV 18.78mV 22.89mV

decoding 1 EM risk 2.23 × 10−6 4.46 × 10−6 1.35 × 10−5

1
6

IR drop 5.39mV 5.97mV 7.59mV

EM risk 1.99 × 10−12 5.43 × 10−12 5.67 × 10−11

1
4

IR drop 5.03mV 5.57mV 7.15mV

Viterbi EM risk 1.12 × 10−12 3.08 × 10−12 4.38 × 10−11

decoding2
1
3

IR drop 4.58mV 5.06mV 6.55mV

EM risk 3.10 × 10−13 9.08 × 10−13 3.03 × 10−11

1
2

IR drop 4.44mV 4.91mV 6.35mV

EM risk 1.97 × 10−13 5.89 × 10−13 2.46 × 10−11

1 4.52Mb/s with 6 iterations
2 1Mb/s

QAM, and the input SNR of 1dB, while VD is simulated with the R = 1/6, the quadrature

phase-shift keying (QPSK) modulation, and the SNR=-2dB.

With 1.8V supply, Table 5.12 shows the power consumption while decoding turbo and

convolutional codes, and table 5.13 summarizes the differences between the proposed de-

sign and other turbo decoder chips. The energy efficiency is defined as the average energy

consumed per bit within each decoding iteration (nJ/b/iter.). For this decoder with six

iterations, the energy efficiency will be

83mW

6 × 3.1Mb/s
= 4.46nJ/b/iter. .

In this section, we present a unified turbo and Viterbi decoder chip with less memory

usage and low power consumption. The memory size is reduced by data scheduling for the

interleaver and the single SISO decoder. Furthermore, the power consumption is improved

by the efficient memory design and the less data bandwidth for the codeword input. At the
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Figure 5.15: The power distribution of the major blocks

3.1Mb/s data rate, the power consumption is about 83mW in decoding a turbo code with

the block length of 20,730. The chip is also designed to work reliably with the wider supply

voltage range.

Table 5.12: Power consumption of the de-
coder chip

Mode Data rate Power SNR
Turbo1 4.52Mb/s 121 mW 1dB
mode 3.1Mb/s 83 mW 1dB

1Mb/s 29.5 mW 1dB
Viterbi2 5.26Mb/s 116.46 mW 3dB
mode 1Mb/s 25.1 mW 3dB
1 R=1/5 and 16-QAM
2 R=1/2 and QPSK

195



Table 5.13: Comparison of different turbo decoder chip

Proposed design [58] [60]
Coding rate (R) 1/5 1/3 1/3

Block length 20,730 5,114 5,114
Data rate (Mb/s) 4.52 2.048 24

6 iterations 10 iterations 6 iterations
Technology 0.18-µm 0.18-µm 0.18-µm

Chip core size (mm2) 7.29 9 14.51

Energy efficiency (nJ/b/iter.) 4.46 14.25 10
1 Without Viterbi decoder

5.4 High speed channel decoders for UWB

applications

Ultra-wideband (UWB) is an emerging wireless physical(PHY)-layer technology that uses a

very large bandwidth [199,200]. By its rule-making proposal in 2002, the Federal Communi-

cations Commission (FCC) unleashed 3.1GHz to 10.6GHz RF band for increasing high-speed

data transmission. The multi-band orthogonal frequency-division multiplexing (MB-OFDM)

PHY-layer proposal indicates the coded OFDM based baseband solution can provide up to

480Mb/s within 2m desired range for 528MHz UWB system [136]. To enhance overall system

performance, the convolutional codes and interleaving techniques are applied in the forward

error correction (FEC) mechanism, whose block diagram is shown in Fig. 5.16.

OFDM

MODEM

Viterbi 

Decoder

Convolutional

Encoder

OFDM

MODEM
Scrembler

De-scrembler

TX 

Data

RX 

Data

DAC RF

DAC RF

Interleaver

De-interleaver

Baseband

Figure 5.16: Block diagram of MB-OFDM UWB systems.
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The convolutional encoder is based on the rate 1/3 mother encoder

G(D) = [ 1 + D2 + D3 + D5 + D6 1 + D2 + D3 + D4 + D6 1 + D + D2 + D3 + D6 ],

(5.4)

and also punctured to R = 1/2, 5/8, 3/4.

Since the QPSK modulation is applied [136], we choose the 3 bits quantization for the

input symbols, referring to the results in Table 5.5. If the truncation length T = 48 ≈ 6K,

the bit number of path metrics should be 10 ∼ 11 bits. Form the simulation results, we find

nine bits are sufficient to achieve 0.1dB∼0.2dB performance loss in SNR. The parameters

Table 5.14: Parameters of the Viterbi decoder
State number 64
Coding rate (R) 1/3, 1/2, 5/8, 3/4
Path Metric 9 bits
Branch Metric 5 bits
Input Symbol 3 bits

48 (R=1/3)
Truncation 64 (R=1/2)
length 80 (R=5/8)

96 (R=3/4)

of the Viterbi decoder are listed in Table 5.14, and the performance figure in the AWGN

channel is also in Fig. 5.17.

The circuit implementation of Viterbi decoders are completed based on the proposed

high radix and 2-D ACS structures where M = 4 and p = q = 2. Considering the high

throughput requirement, the register-exchange approach is applied to the SMU with quite

different structures in radix-16 and radix-4×4 designs. Within the t ∼ t+4 trellis, there are

64 16-to-1 multiplexers in the radix-16 SMU whereas only 4-to-1 multiplexers are necessary

in the radix-4× 4 SMU, and their number is 128. If the 16-to-1 multiplexer is realized with

five 4-to-1 multiplexers, the multiplexer number in the radix-16 SMU is 5×64
128

= 2.5 times as

many as that in the radix-4 × 4 SMU.

The Viterbi decoders have been implemented by using the 1.8V 0.18-µm 1P6M CMOS
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Figure 5.17: The Viterbi decoder performance based on Table 5.14

technology and the 1.2V 0.13-µm 1P8M CMOS technology. Data throughput is estimated

form the static timing analysis (STA) while considering the 1.62V supply for 0.18-µm, 1.08V

supply for 0.13-µm, the worst speed corner, and the coupling noise due to the crosstalk

effect on signal wires. Table 5.15 and Table 5.16 summarize the results with tight timing

constraints. The gate count(GN ) is a measure of the total standard cell area after the layout

implementation, and ∆GN indicates the gate count increase before and after the physical

Table 5.15: Implementation results with timing critical constraints

0.18-µm 1P6M Data rate (Mb/s) Area (mm2) NG ∆NG Density
ACS-16 513 9.30 740.0k 151.1k 0.79

ACS-16(RT-1) 623 15.21 1129.9k 190.4k 0.74
ACS-4 × 41 427 4.41 310.4k 76.4k 0.77

ACS-4 × 4(RT-2) 553 5.29 398.6k 36.6k 0.75
ACS-4 × 4(RT-3) 731 6.76 533.1k 114.6k 0.79
1 This chip was fabricated, and the results showed the 500Mb/s data rate is

achieved under 1.8V supply.
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Table 5.16: Implementation results of timing critical constraints
0.13-µm 1P8M Data rate (Mb/s) Area (mm2) GN ∆GN Density

ACS-16 933 3.61 647.3k 84.7k 0.92
ACS-16(RT-1) 1,038 5.36 945.7k 212.3k 0.90

ACS-4 × 4 923 1.28 239.2k 29.1k 0.96
ACS-4 × 4(RT-2) 986 1.85 349.9k 45.6k 0.97
ACS-4 × 4(RT-3) 1,105 1.96 358.0k 43.9k 0.94

Table 5.17: Implementation results of 500Mb/s data rate

Area (mm2) NG ∆NG Density Power(mW)a

ACS-16 2.66 491.7k 66.1k 0.94 344
ACS-16(RT-1) 3.84 685.5k 82.0k 0.92 533

ACS-4 × 4 0.90 165.5k 5.2k 0.94 119
ACS-4 × 4(RT-2) 1.38 247.7k 8.4k 0.94 169
ACS-4 × 4(RT-3) 1.44 263.2k 9.9k 0.94 195
a 1.2V supply and 500Mb/s data rate

design. The density is measure from the chip implementation, and

Density =
total standard cell area

Core area
× 100% (5.5)

Both ACS-16 with RT-1 and ACS-4 × 4 with RT-3 are shown to achieve the higher data

rates, over 1Gb/s in the 0.13-µm technology. Notice that the ACS-4 × 4 Viterbi decoder

is much smaller than the ACS-16 based one. Additionally, ACS-4 × 4 with RT-2 has the

throughput similar to ACS-16, but requires only half area. The ACS-4 × 4 based decoders

are more area efficient than the ACS-16 based ones because the less computational units and

the simple signal routing result in not only the smaller GN and ∆GN , but also the higher

chip density. Table 5.17 also shows the results when the Viterbi decoders target 500Mb/s

data throughput. We can find that the ACS-4 × 4 based decoders have much smaller area

and ∆GN than the ACS-16 based ones. All these results confirm the analysis in Table 3.2,

and the ACS-2p × 2q structure is shown to be more cost efficient for the high radix Viterbi

decoders.

In Table 5.15, the ACS-4 × 4 Viterbi decoder chip fabricated with the 0.18-µm process
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Figure 5.18: Microphoto of the 0.18-µm ACS-4 × 4 Viterbi decoder

is shown in Fig. 5.18. The chip summary is also listed in Table 5.18.

Table 5.18: The Viterbi decoder chip summary

Technology 0.18-µm 1P6M CMOS

Chip size 7.34mm2

Core size 4.41mm2

Gate count 310.4k

Supply voltage 1.62V ∼ 1.98V

Clock rate 100MHz

Power consumption 300mW at 1.8V (400Mb/s)

The ACS-2p × 2q structure and the retiming mechanism facilitate the Viterbi decoder

implementation based on the high-radix trellis decoding. The chip area is reduced for less

branch number, and the retiming techniques reduce the critical path delay of the ACS units.

The results shows a significant area reduction for the designs with 2-D ACS unit and a

considerable improvement in throughput with the retiming technique. The 0.18-µm chip

design shows RT-3 can improve the throughput of ACS-4× 4 by about 71%. In the 0.13-µm

technology, both the ACS-16 and the ACS-4× 4 decoders with retiming can accomplish the

1Gb/s data rate; however, the later results in only 37% area as compared to the former.

Among the well-know error-correcting codes, the LDPC code, which can reach a capacity
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Figure 5.19: Block diagram of the proposed LDPC-COFDM UWB systems.

approaching performance by the iterative decoding algorithm [20, 25], undoubtedly engage

the most research interest recently. For improving PHY-layer capacity, LDPC codes can

increase the throughput to over 500Mb/s in future WLAN applications [201]. Therefore,

we apply the (1200,720) LDPC code to the MB-OFDM UWB system [136] illustrated in

Fig. 5.19, where the original convolutional codes and the bit interleaver have been replaced.

For the relatively small block length, the irregular code is constructed by the progressive

edge-growth (PEG) algorithm [174] to deliver better performance.

0 1 2 3 4 5 6 7 8 9 10 11
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

64 iters.
16 iters.
8 iters.
4 iters.
1 iter.

(a) BER performance

0 1 2 3 4 5 6 7 8 9 10 11
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR[dB]

P
E

R

64 iters.
16 iters.
8 iters.
4 iters.
1 iter.
PER=8%

(b) PER performance

Figure 5.20: Performance of the (1200,720) LDPC code

Based on the referenced MB-OFDM system, the performance including the bit error

rate (BER) and the packet error rate (PER) is shown in Fig. 5.20 with the AWGN channel

model and 1024 bytes data in each packet. Assume the min-sum decoding algorithm, the
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system is required to achieve 8% PER specified in [136]. The required signal to noise ratio

(SNR) is reduced as the iteration (iter.) number increases, but the improvement tends to

be insignificant after 8 iterations. In Fig. 5.21, the performance is also compared to the con-

volutional code (5.4) [136] where two different rates R = 1/2 and R = 5/8 after puncturing

the R = 1/3 mother code are selected as the references. It shows that the (1200,720) LDPC

code can achieve the comparable performance to the punctured convolutional code with only

8 decoding iterations. The short block length and small decoding iterations will facilitate

the implementation of high speed LDPC decoders.
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Figure 5.21: Comparison of different codes

Fig. 5.22 presents the bit error rate (BER) performance in AWGN channel. The com-

parison in Fig. 5.22(a) reveals the required quantization level of message in the decoder. As

compared with theoretical curve, both 5 bits and 6 bits quantization schemes have less than

0.07dB loss of signal-to-noise ratios (SNR) after 64 decoding iterations (iters.). However,

there is a 0.3dB loss with 8 decoding iterations while quantizing message into 5 bits. There-

fore, six bits scheme is considerably the better choice for circuit implementation. Fig. 5.22(b)

also shows the performance of the proposed LDPC decoder, applying 6 bits quantization in

different decoding iterations.

The decoder architecture has been shown in Fig. 4.31. In order to reduce signal routing
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Figure 5.22: The BER performance in the MB-OFDM UWB system

congestion, the RE5-based MMU and RS-based input buffer are adopted for circuit imple-

mentation. With the 0.18-µm cell library [135], the distributions of MMUs based on MUX

and RE5 approaches are demonstrated in Fig. 5.23 where the chip size constrained to 25mm2.

In addition, the routing congestion profile is measured in both horizontal and vertical axes.

The MUX-based MMU in Fig. 5.23(a) has serious signal routing difficulty almost within the

whole chip, whereas the RE5-based one in Fig. 5.23(b) has not only uniform MMU distri-

bution but also zero congestion overflow in both axes. In short, the 25mm2 chip area is

sufficient for the RE5-based approach, but is still inadequate for the MUX-based approach

due to a large amount of signal wires.

A test chip has been fabricated in the 1.8V, 0.18-µm 1P6M CMOS technology. The chip

size is 25mm2 while the core occupies 21.23mm2. The total gate count is 1.15M including two

MMUs while the chip core density is about 71.2%. After static timing analysis (STA) and

post-layout simulation, the decoder achieves 3.33Gb/s throughput with 8 decoding iterations

under 1.62V supply and worst speed corner. The estimation also includes crosstalk analysis

for signal wires that cause coupling noise.

A second test chip is implemented in a 1.2V, 0.13µm 1P8M CMOS technology. The max-

imum decoding speed has been improved to 5.92Gb/s with 8 decoding iterations. Moreover,
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Figure 5.23: The distribution of MMUs and routing congestion distribution

the chip size becomes 13.5mm2 where the core area is 10.24mm2. The chip density grows to

about 75.4% because of two more metal layers. Table 5.19 summarizes the LDPC decoder

chips in this paper and makes a comparison with the fully parallel design in [65].

Table 5.19: Summary of the LDPC decoder chips

Chip 1 Chip 2 [65]
Block length 1200 1200 1024
Technology 0.13-µm 0.18-µm 0.16-µm

Data 8 iters. 5.92Gb/s 1 3.33Gb/s 2 N.A.
rate 64 iters. 820Mb/s 1 461Mb/s 2 512Mb/s

Power 268mW 644mW 690mW
consumption @1.2V @1.8V @1.5V
Gate count 1.15M 1.15M 1.75M
Chip size 13.5mm2 25mm2 52.5mm2

Core size 10.4mm2 21.16mm2 N.A.
Chip density 75.4% 71.2% 50%

1 1.02V supply
2 1.62V supply

We present the high speed and area efficient LDPC decoder architecture. The message

memories architecture permits parallel decoding of two codewords and diminishes the routing
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congestion issues. Additionally, the data rescheduling minimizes the signal routing between

datapaths and memory units. Consequently, the chip becomes smaller due to the the in-

creased chip density. After implementation in the 0.18-µm technology, the chip can achieve

the 3.33Gb/s data rate with 8 decoding iterations. Furthermore, the 0.13-µm chip reaches

the maximum 5.92Gb/s data rate with 13.5mm2 area and 268mW power consumption.
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Chapter 6

Conclusion

The research on the channel decoder design and implementation is reported in this disser-

tation. We investigate the Reed-Solomon code with algebraic decoding, the convolutional

code with probabilistic decoding, and the iterative decoding based turbo code and LDPC

code.

6.1 Summary

The universal Reed-Solomon decoder architecture is proposed with the Montgomery algo-

rithm by which the multiplications over any GF (2m) are feasible for a predefined constant

d and 1 ≤ m ≤ d. Furthermore, the low complexity constant multiplier based on Mont-

gomery algorithm is also introduced for the syndrome calculator and the Chien search for

less circuit area. The key equation solver is a decomposed architecture using only three

universal multipliers, and the finite field inversion in the error value evaluator can be either

the Fermat’s identity or the memory based look-up table, depending on the table size. An

(n, k) error and erasure decoder for n ≤ 255 and t ≤ 16 is constructed and implemented

with the 0.18-µm and the 0.13-µm processes. As compared with the convectional designs,

the gate count increase due to the universal features is less than 50%. Additionally, this

decoder can fully support most communication and storage applications.

We provide two design strategies for the Viterbi decoding algorithm. The low power

Viterbi decoder with the path merge and the path prediction methods is optimized to achieve

the dynamic truncation length according to the channel condition. As a result, most redun-
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dant memory access is avoided to reduce the power consumption in the survivor memory unit.

The computational unit, ACS unit, is also transformed to the compare-select-add structure

for less gate count as well as less signal switching power. The Viterbi decoder for theChien

Ching Lin IEEE 802.11a system is implemented and measured to achieve 30%∼40% power

reduction. The 2-D ACS structure with retiming techniques is also introduced to accom-

modate the requirement for high decoding throughput. The ACS-4 × 4 is designed to the

parallelism equivalent to the ACS-16 architecture. The circuit implementation of ACS-4×4

based decoder is shown to accomplish the 500Mb/s data rate within the 4.41mm2 0.18-µm

silicon area. Applying the retiming approaches, the ACS-4 × 4 decoder can be improved

to 731Mb/s and 1105Mb/s data rates in the 0.18-µm and the 0.13-µm CMOS technology.

Note that the area of 1.96mm2 is required to reach the over 1000Mb/s data throughput.

Furthermore, the major feature of the ACS-4 × 4 decoder is the much smaller area, or gate

count, as compared to the ACS-16 based one.

The soft iterative decoding for the turbo code and the LDPC code can deliver the perfor-

mance approaching the Shannon limit. However, they have quite different decoding schemes;

the turbo decoding is based on the BCJR algorithm over trellis diagram, and the LDPC de-

coding is based on the sum-product algorithm over the bipartite graph. We consider the

3GPP2 mobile communication for the turbo code that has the considerably large interleaver

size. The cost and the power consumption will be the design constraints, especially the em-

bedded memory for data interleaving. In the turbo decoder design, we prefer the simple SISO

decoder architecture, the efficient memory hierarchy, and the embedded interleaver with the

modest memory size. Furthermore, the Viterbi decoding is integrated without additional

datapaths because of the trellis based decoding algorithm. The decoder after the 0.18-µm

chip implementation shows the core size 7.29mm2 and the power consumption 83mW while

decoding a turbo coded data stream at the 3.1Mb/s data rate.

On the other hand, the LDPC code is applied to the high speed UWB data communica-

tion. The LDPC decoding on the bipartite graph facilitates the parallel decoder implemen-
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tation due to the simple computations at the bit nodes and the check nodes after approx-

imation. Hence the (1200,720) LDPC code with the non-structured parity check matrix is

selected for implementation. Because of the random and the large number of connections in

the bipartite graph, the signal routing becomes very difficult, and the decoding speed is also

hard to be enhanced. More chip area is necessary for signal routing and leads to the low

chip density, especially for those based on the architecture. We exploit the register exchange

scheme for the message memory to eliminate multiplexers between datapaths and memory

units. The interconnection becomes simple and direct in the partially-parallel decoder. Con-

sequently, the chip implementations using the 0.18-µm with six metals and the 0.13-µm with

eight metals respectively accomplish the 71.2% and the 75.4% chip density. The 0.18-µm

chip has the core size 21.16mm2 and can reach the 3.33Gb/s data rate. Furthermore, the

0.13-µm decoder can provide the 5.92Gb/s decoding speed within the 10.2mm2 silicon area.

6.2 Future work

The decoding algorithm for Reed-Solomon codes in Chapter 2 is based on the hard decision

symbols GF (q) converted from the channel output signals, assuming the encoder outputs are

also over GF (q). Generally, the maximum likelihood (ML) decoding for Reed-Solomon is NP-

hard [202]. The trellis construction [203,204] provides the ML decoding for the Reed-Solomon

code [205], however, the complexity limits the code length to be ≤ 15. The non-algebraic

soft decoding algorithm in [206–208] has the computational complexity exponentially growing

with the code length. Koetter and Vardy introduced the algebraic soft-decision decoding

algorithm [209] based on the list decoding algorithm [210] that can correct an error number

larger than half the minimum distance for a code. Alternatively, the belief propagation

algorithm can also be applied to the iterative Reed-Solomon decoding [211]. The combination

of the algebraic soft-decision decoding and the belief propagation algorithms is also reported

in [212]. The other soft decision decoding algorithms can also be found in [213–218]. As
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compared to the hard decision decoding, the soft decoding algorithms can provide up to 3dB

coding gain with much complex decoder implementations [219–221]. Many research efforts

are still necessary for the algorithms as well as the decoder designs in terms of complexity,

performance, and power consumption.

The low power Viterbi decoder is still motivated by the future wireless applications. The

scarce state transition (SST) scheme [41] can be applied to reduce the dynamic power of

ACS units. The path merge approach is also applicable to the register exchange based SMU;

moreover, the circuit techniques, power gating and voltage scaling [222], will lower the power

dissipation due to data movement in the SMU.

The iterative decoding and the interleaver design dominate the decoding speed of turbo

decoders. Therefore, multiple SISO decoders are deployed for parallel processing [61, 223],

and the interleaver should be modified for multiple data access [224,225] while the error per-

formance meets the system requirement. Furthermore, the SISO decoder can also have inter-

nal parallelism based on the high radix trellis or the two-dimensional trellis structures [57].

In some applications, the LDPC codes, based on the structured parity check matrices,

has have large code length [226,227]. The large parity check matrix constructed form many

smaller sub-matrices [228–233] will facilitate the implementation of both encoders and de-

coders. Therefore, the matrix structure not only effect the decoder error performance, but

also determines the decoder architecture. The co-deign of the code structure and the de-

coder would facilitate the implementation and improve the circuit performance. Moreover,

for large LDPC codes, the embedded memory saving messages would occupy a large circuit

area; therefore, a scheduling may be necessary to reduce the memory size.

In the probabilistic based decoding algorithm, the probabilities or messages should be

quantized for digital signal processing and digital circuit implementation. However, the

quantization introduces some error during decoding, and each value should be represented

with multiple bits that leads to large chip area. Hence many researchers prefer the analog

decoding techniques [234–241]. The floating-point quantities are represented with the analog
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signals without quantization; therefore, the decoding algorithm is more optimal, and the

decoder requires less area as well as power dissipation. Nevertheless, the codes processed

by analog decoders are relative small as compared with those in current applications. The

analog decoders are still motivated by the increasing transmission speed and low power

requirement.
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