
國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

視訊嵌入轉碼器之演算法與其硬體架構設計空間探討

An Algorithm and Its Architecture Design Space

Exploration of a Video Embedding Transcoder

研 究 生：李志鴻

指導教授：蔣迪豪 教授

中 華 民 國 九十七 年 六 月

視訊嵌入轉碼器之演算法與其硬體架構設計空間探討

An Algorithm and Its Architecture Design Space

Exploration of a Video Embedding Transcoder

研 究 生：李志鴻 Student：Chih-Hung Li

指導教授：蔣迪豪 Advisor：Dr. Tihao Chiang

國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

A Dissertation
Submitted to Department of Electronics Engineering and

Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in
Electronics Engineering

June 2008
Hsinchu, Taiwan, Republic of China

中 華 民 國 九十七 年 六 月

 ‐i‐

視訊嵌入轉碼器之演算法與其硬體架構設計空間探討

研究生：李志鴻 指導教授：蔣迪豪 博士

國立交通大學

電子工程學系暨電子研究所

摘要

視訊嵌入服務在今日多元化的多媒體應用中越來越廣泛，由於多媒體的龐大資料

量，現今大部分的視訊資料都以壓縮的格式儲存與傳遞，在眾多壓縮標準中，

H.264/AVC 已成為目前視訊壓縮的主流，因此針對 H.264/AVC 標準的視訊嵌入

轉碼器將更加重要，以達到資料儲存以及網路傳輸的高效率。本論文主要是針對

視訊嵌入轉碼器的演算法發展與硬體架構設計探索：第一，我們所發表的

H.264/AVC 視訊嵌入快速轉碼演算法乃為目前文獻上第一篇在 H.264/AVC 標準

下的視訊嵌入轉碼技術。第二，關於硬體架構設計，我們利用最低的成本，成功

結合了 H.264/AVC 轉碼與編碼功能於單一個硬體架構中，此乃文獻中第一個實

現此技術的設計。第三，關於硬體設計探索(Design Space Exploration)，則是文獻

上第一篇以資料交換層級(Transaction Level Modeling)做系統效能模擬分析的

H.264/AVC 相關之硬體設計。

本論文第一部份著重於多視窗視訊嵌入轉碼器 (Multiple-Window Video
Embedding Transcoder)之低複雜度演算法的發展。為解決傳統上串聯式像素值域

轉碼器(Cascaded Pixel Domain Transcoder)的高複雜度難題，我們採用部份重新壓

縮(Partial Re-encoding)的概念來降低轉碼時所需的運算量，並減少因重新量化

(Re-quantization)所造成的轉碼視訊品質下降。針對預測不協調 (Prediction
Mismatch)的區塊，我們利用原始壓縮位元流內的資訊來幫助預測微調(Prediction
Refinement)，即幅內模式轉換(Intra Mode Switching)以及運動向量重新映射

(Motion Vector Re-mapping)，如此，我們可以完全去除壓縮器中複雜度最高的兩

個模組：模式決策(Mode Decision)和運動估計(Motion Estimation)。針對殘餘值不

協調(Residue Mismatch)的區塊，我們從理論與實驗數據的推導，有效率的找出

最需要做錯誤修正(Error Correction)的區塊，從實驗數據顯示，我們只需針對極

 ‐ii‐

少部份區塊作錯誤修正，即可將轉碼視訊品質大幅提高 2dB 左右。比起串聯式

像素值域轉碼器，我們可以將轉碼速率提高 25 倍，更令人驚訝的，我們的低複

雜度演算法最多可以有將近 1.5dB 的 PSNR 改善。

本論文第二部份著重於設計空間探索(Design Space Exploration)。基於所提出

的低複雜度演算法，我們將之實現於平台式(Platform-based Design)系統設計並以

最節省的成本將 H.264/AVC 轉碼器與解碼器結合在一個平台上。在所提出的高

效能系統硬體架構中，我們針對幾個重要的系統參數做探索：硬體平行度

(Parallelism) 、資料交換精細度(Data Exchange Granularity)以及設計平衡(Design
Balancing)。不同於傳統由下而上的設計哲學(Bottom-Up Design Methodology)，
我們採用新穎的由上而下、逐步精確的設計哲學(Top-Down and Refinement-based
Design Methodology)以獲得較優異的探索效能。我們主要採用電子系統層級

(Electronic System Level) 來做系統模擬以及探索，其模擬平台大都是操作在資料

交換層級(Transaction Level Modeling)，其模擬的效能較傳統的暫存器傳輸級

(Register Transfer Level)快上三個數量級左右。因此，比起傳統的系統設計，我

們的設計提供相當大的自由空間來針對不同的設計限制作最佳化：針對硬體成本

最佳化，我們的設計選擇(Design Alternative)可以將硬體成本降低至原本的 25%。

針對速度最佳化，我們的設計選擇可以將速度增加為原本的兩倍。在 135MHz 的

操作時脈下，我們可以針對 1920x1088 每秒 60 幅的高畫質視訊提供即時的轉碼

或解碼輸出。

本論文第三部份著重於低成本高效能的硬體模組設計開發，我們著重在兩個

核心區塊：像素預測(Pixel Prediction)和去邊濾波器(Deblocking Filter)。第一，我

們成功結合了 H.264/AVC 中幅內與幅間預測於單一個硬體架構中，除了增加硬

體使用效率外，亦大幅減少資料匯流排上的傳輸。第二，我們提出了一個具有同

步細緻可調(Fine-Grained Synchronization Capability)的去邊濾波器，如此可以讓

視訊資料管線(Video Pipe) 的效能在不同的資料交換精細度(Level of Granularity)
中，都能獲得提升。

總結，本論文提出一個低複雜度、高效率之視訊嵌入轉碼器。在演算法上，

我們著重於快速有效率的微調與修正。在硬體設計空間探索上，我們有效率且量

化地分析了各個系統參數的影響，以期在不同的設計限制下都能獲得最佳化。在

硬體設計上，我們著重於硬體使用效率的增加以及整體系統效能的增加。

 ‐iii‐

An Algorithm and Its Architecture Design Space

Exploration of a Video Embedding Transcoder

Student: Chih-Hung Li Advisor: Dr. Tihao Chiang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

As the H.264/AVC standard is receiving worldwide adoption, the video embedding
service is an important feature and thus this thesis presents an H.264/AVC
multiple-window video embedding transcoder in three parts including an algorithm, a
system architecture design space exploration, and two novel micro-architectures.

The first part describes a low-complexity algorithm as compared to the
traditional cascaded pixel domain transcoder. The partial re-encoding is adopted to
reduce the complexity and quality degradation due to re-quantization. Specifically, the
intra mode switching and motion vector re-mapping techniques are used to eliminate
the need for the mode decision and motion estimation modules. Moreover, with the
theoretical analysis, only 5% of the total blocks needs error correction. The proposed
approach can improve the quality up to 1.5 dB and enhance the throughput by 25
times as compared to the traditional cascaded transcoder.

The second part describes architecture for platform-based video embedding
transcoder and its design space exploration from several system aspects: hardware
parallelism, data exchange granularity and design load balancing using transaction
level modeling. The top-down refinement-based design methodology provides
effective exploration with high degree of freedom to optimize for various design
constraints. Further, it identifies which critical module and how it can be optimized in
terms of speed, memory and bandwidth for improving the overall performance. Our
best design alternative can reduce the cost by four times or speed up by two times
such that our design can achieve 1920x1088 @ 60 Hz video transcoding at 135MHz.

The third part describes the two novel micro-architectures designed for the
prediction and the deblocking filter modules. The prediction is unified with a systolic
architecture to improve the hardware utilization and the transmission bandwidth. The
de-blocking filter is implemented with a multi-level fine-grain synchronization
granularity to improve the system performance at finer level of granularity.

 ‐IV‐

誌 謝

進入研究所的七個年頭，累積了太多的感謝。

首先我要感謝我的指導教授蔣迪豪老師在這七年中給我的諸多指導，不僅在

學術研究的方向上不斷地引領我走在專業領域的先端，更讓我培養了獨立解決問

題以及清楚表達想法的能力。每次與蔣老師的討論都像是腦力激盪，一點一滴激

發我向前進步的潛能。除此之外，我也非常感謝蔣老師這些年來在各方面給我的

關心鼓勵與幫助。

實驗室中優秀的學長學弟們則是研究生涯當中另一個幫助我進步的動力。王

俊能學長是最早鼓勵我攻讀博士學位的，在我最青澀的時期，不厭其煩地修改我

殘破的論文寫作，更在我中途最灰心的時期再次給予我堅持到底的信心。彭文孝

學長則是在我博士班後期帶領我走進硬體設計的相關領域並教導我一些研究方

法與論文寫作上的經驗。黃項群學長清晰敏銳的思路以及對於研究的熱情，一直

是我所景仰與學習的榜樣。王世豪學長在硬體設計與伺服器架設的熟練經驗，也

常是我打擾請教的對象。親切熱心的李俊毅學長總像個大哥哥般似的幫我解決在

實驗室遇到的任何問題。而與思考敏銳的治傑共同研究則是充滿了愉快。其他不

管是已畢業或是仍在實驗室打拼的學長同學與學弟們，峯誠、家揚、崑健、健霖、

耀中、秉玉、沛昀、宗延、鑑明、偉倫、孝強、子良、掁韋、朝雄、志凱、世騫、

鴻志、世炘、德宣，謝謝你們一同營造這個讓我感動的實驗室。

在此我也要感謝張隆紋老師、黃仲陵老師、李鎮宜老師、王聖智老師、李國

君老師、蔡宗漢老師百忙之中撥冗前來參予我的口試，給予我在求學生涯上的最

後一堂課，因為有你們的寶貴意見使得論文能夠更加完備。尤其是李國君老師在

過去這一年多的時間不厭其煩地給予我在系統層級設計上的一些專業意見。

謝謝這些在學術研究上不斷幫助我的貴人，讓我能夠以更謙卑的心態來看待

這個學位，期待這個學位能夠成為往後不斷督促我進步的動力。

最後，我要感謝我的家人，尤其是媽媽在我的求學過程中，總是給我無條件

的支持，可以讓我無後顧之憂做自己想做的事。而我的女友楓珮總是直接且深刻

地感受我在研究與撰寫論文時的種種煎熬與壓力，在我低潮失意的時候，更是給

予我最大的鼓勵與幫助，陪伴我完成這個人生中重要的里程碑。

簡短的文字實在難以完全紓發內心的由衷感激，沒有你們這些人，也許沒有

今天的我，也謝謝老天給我足夠多的運氣，謹以此論文獻給所有關心我的人，希

望我的努力沒有辜負你們的期望。

李志鴻

謹誌於台灣新竹交通大學

西元 2008 年 7 月

 ‐V‐

To My Mother and Girlfriend

Contents

Abstract in Chinese i

Abstract iii

Acknowledgements iv

Contents vi

List of Tables x

List of Figures xii

List of Notations xviii

1 Introduction 1

1.1 Overview of Dissertation . 1

1.1.1 Motivation . 3

1.1.2 1st Focus: Low-Complexity Algorithm Development 4

1.1.3 2nd Focus: System Architecture Design Space Exploration 5

1.1.4 3rd Focus: Highly Ef�cient Micro-Architecture Design 7

1.1.5 Attractive Applications of Video Embedding Transcoding 8

-vi-

CONTENTS

1.2 Organization and Contribution . 9

2 Background and Related Work on Video Embedding Transcoding 14

2.1 Introduction . 14

2.2 Realization of Video Embedding Service . 15

2.3 Problem Statement of Video Transcoding . 16

2.4 Wrong Reference Problem Formulation . 19

2.5 Related Work on Video Embedding Transcoding 20

2.5.1 Cascaded Pixel Domain Transcoder (CPDT) 20

2.5.2 DCT Domain Transcoding with Motion Vector Re-mapping 21

2.5.3 DCT Domain Transcoding with Backtracking 22

2.6 The Challenge in H.264/AVC-based PIP Transcoding 22

2.7 Summary . 25

3 Low-Complexity Algorithm of MW-VET 26

3.1 Introduction . 26

3.2 Slice-Group-Based Transcoding . 28

3.3 No Frame Memory Transcoding (NFMT) . 30

3.3.1 Architecture of NFMT . 30

3.3.2 Auxiliary Bitstream Generation . 32

3.4 Reduced Frame Memory Transcoding (RFMT) 32

3.4.1 Intra Mode Switching (IMS) . 37

3.4.2 Motion Vector Remapping (MVR) . 43

3.4.3 Syntax Level Bypassing (SLB) . 50

3.5 Simulation Results . 52

3.6 Summary . 61

4 System Architecture Design Space Exploration 65

4.1 Introduction . 65

4.2 Algorithm to Architecture Mapping . 67

4.3 Highly Ef�cient System Architecture . 68

4.3.1 Memory Hierarchy . 72

4.3.2 Video Decoding Pipe . 73

4.3.3 Video Embedding Transcoding Pipe 75

-vii-

CONTENTS

4.3.4 Memory Sub-system . 75

4.3.5 Task Scheduling . 78

4.4 Effective Design Space Exploration . 80

4.5 Pruned Design Space . 84

4.5.1 Exploration of the Synchronization Granularity 84

4.5.2 Exploration of the Design Combination and Balancing 87

4.6 Evaluation of the System Performance . 89

4.6.1 Evaluation Metric . 89

4.6.2 Simulation Infrastructure . 91

4.6.3 Pareto-Based Multi-Objective Optimization 94

4.7 Simulation Results and Analysis . 95

4.7.1 Pareto Analysis for the Exploration of Synchronization Granularity . . 95

4.7.2 Pareto Analysis for the Exploration of Design Combination within the

Video Pipe . 101

4.7.3 Area-Weighted Hardware Utilization for the Exploration of Design Bal-

ancing of the Video Pipe . 102

4.8 Summary . 103

5 A Highly Ef�cient Micro-Architecture Design 106

5.1 Introduction . 106

5.2 An Ef�cient Memory Sub-System . 108

5.2.1 Background . 108

5.2.2 Interleaved Data Arrangement . 109

5.2.3 External Memory Interface . 112

5.2.4 Synchronization Buffer . 114

5.2.5 Effect of Synchronization Granularity of Memory Sub-system on Off-

Chip Transmission . 116

5.3 Combined Inter and Intra Prediction . 121

5.3.1 Motivation . 122

5.3.2 Overall Architecture . 124

5.3.3 Data Flow of the Inter Prediction . 129

5.3.4 Data Flow of Intra Prediction . 133

5.3.5 Analysis and Comparison . 140

-viii-

CONTENTS

5.4 Ef�cient Deblocking Filter with Fine-Grained Synchronization Capability . . . 146

5.4.1 The Proposed Architecture of Deblocking Filter 153

5.4.2 The Proposed Filtering Order with Fine-Grained Synchronization Ca-

pability . 154

5.5 Summary . 155

6 Conclusions 157

6.1 Summary of Contributions . 158

6.1.1 Improvement of Rate-Distortion Performance 158

6.1.2 Design Space Exploration . 159

6.1.3 Improvement of Area-Speed Ef�ciency 160

6.2 Suggestions for Future Works . 162

Bibliography 163

Appendix 174

A Why Transform Domain Approaches are Inef�cient for H.264 Transcoding 174

A.1 Integer Transform with Quantization Scaling 175

A.2 Directional Intra Prediction . 176

A.3 In-the-loop De-blocking Filtering . 178

A.4 Sub-pixel Interpolation . 178

B Constant-Rate Bumping Process 182

B.1 Bumping Process in H.264/AVC . 183

B.2 Proposed Constant-Rate Bumping Process . 184

-ix-

List of Tables

3.1 The Symbol De�nitions . 29

3.2 The Cases of the Intra4 Mode Switching . 39

3.3 The Cases of the Intra16 Mode Switching . 39

3.4 The Corresponding Operations of the RFMT for Each Block Type During the

VET Transcoding . 52

3.5 The Detailed Re�nement during the VET Transcoding 53

3.6 The Encoder Parameters for the Experiments 56

3.7 The Improvement of Execution Time and Quality as Compared to the CPDT (1) 57

3.8 The Effectiveness of Error Correction (EC) for Different Kinds of p-blocks . . 58

4.1 The Transcoding Throughput Performance of Proposed Algorithm of a Soft-

ware Implementation . 66

4.2 The Transcoding Throughput Performance of Proposed Algorithm of a Soft-

ware Implementation . 78

4.3 The Bitrate of Each Long Sequence with Different Resolution 98

4.4 The Required Clock For Each Resolution When the Size of Display Buffer is

of 32Mb. 101

-x-

LIST OF TABLES

5.1 Analysis of the Different Levels of Granularities Based on the Worst Case Au-

umption . 116

5.2 The Comparison of the Intra Prediction . 140

5.3 Comparison of Inter Prediction. 143

5.4 The Execution Cycle of the Inter and Intra Prediction in All Cases 144

5.5 The Corresponding Data Path of Each Filtered Edge 156

A.1 Computational Complexity of Each Intra Prediction Mode For Both

Operation Domain . 177

-xi-

List of Figures

1.1 The Applications of the Video Embedding Service: (a) Live TV Program of

CBBC. (b) Leatek's WinFast Series Product. (c) Disney Supports "Full Motion,

Picture-in-Picture Bonus Features" in Newly Released Blu-Ray DVD. (d) Mul-

tiple Stream Media Processor of DiscoveryBiz. (e) TV Setup Box of Allthings.

(f) Sony Debuts In-Car Navigation with PIP in Japan. (g) Videoconferencing

System of Wirered Company. (h) The PIP Functionality in Viliv X2 AIO. (i)

YouTube Overlays Ads during Video Streaming (InVideo). (j) Video Surveil-

lance System. 2

1.2 One of the Applications of Video Embedding Transcoder: Transcoding Server. 9

1.3 The Design Flow in This Dissertation . 13

2.1 Illustration of a Novel Transcoder: (a) The Simpli�ed Transcoding Process. (b)

The Simpli�ed Transcoder When the Prediction Blocks Are the Same. (c) The

Fast Transcoder That Bypasses the Input Transform Coef�cients. 18

2.2 Illustration of the Wrong Reference Problem 20

2.3 The Architecture of the CPDT . 21

3.1 The Example of Slice Group That Can Be Used in the VET Transcoding 30

3.2 The Architecture of the No Frame Memory Transcoder (NFMT) 31

-xii-

LIST OF FIGURES

3.3 The Generation of the Auxiliary Bitstream Based on the Reconstruction of a

RDO Encoder . 33

3.4 The Initial Architecture of the RFMT with RDO Re�nement Based on the Con-

cept of the Partially Re-Encoding . 34

3.5 The Intermediate Architecture of the RFMT with the MVR and the IMS Re-

�nement . 35

3.6 The Final architecture of the RFMT with Shared Frame Memory and the Con-

strained FG Bitstreams . 36

3.7 The Transcoding Scheme for the Channel Preview 37

3.8 The Wrong Intra Reference Problem within a Macroblock Depending on the

Intra Modes . 38

3.9 The Relative Position of Each Case in the Intra Mode Switching Technique . . 38

3.10 An Example of the Intra Prediction Chain . 40

3.11 Illustration of the Motion Vector Re-mapping Technique. (a) The Original Cod-

ing Mode and Motion Vectors. (b) Re�nement by Using Inter4x4 Mode and

Re-mapped Motion Vectors. 44

3.12 An Example of the Inter Prediction Chain . 47

3.13 The Flow Chart of the Proposed RFMT . 53

3.14 The ExtendedWrong Reference Problem whenMultiple Reference Frame is Used 54

3.15 The Visual Illustration after Each Re�nement Step during the VET Transcoding 55

3.16 The Percentage of the Macroblock Types and the Block types during the VET

Transcoding . 57

3.17 The Rate-Distortion Performance of the Luminance Component When One

Foreground Carphone_QCIF is Embedded in Table_SD: (a) Table_SD_Carphone_QCIF_1_1.

(b) Table_SD_Carphone_QCIF_33_20. 59

3.18 The Rate-Distortion Performance of the Luminance Component When One

Foreground Foreman_QCIF is Embedded inMobile_SD: (a) Mobile_SD_Foreman_QCIF_1_1.

(b) Mobile_SD_Foreman_QCIF_33_20. 60

-xiii-

LIST OF FIGURES

3.19 The Rate-Distortion Performance of the Luminance Component by Four Fore-

grounds Embedding with the Single-Generation Transcoding: (a) Table_SD_MD_QCIF_1_1

_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF_33_20. (b)Mobile_

SD_MD_QCIF_1_1_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF

_33_20. 62

3.20 The Rate-Distortion Performance of the Luminance Component by Four Fore-

grounds Embedding with theMulti-Generation Transcoding: (a) Table_SD_MD_QCIF_1_1

_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF_33_20. (b)Mobile_

SD_MD_QCIF_1_1_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF

_33_20. 63

4.1 The Top Level Data Flow of RFMT and Its System Partitioning 69

4.2 The Re�nement for Each Processing Macroblock and Its Hardware Partitioning

which is of Five�Staged Pipeline . 70

4.3 The System Architecture of the Proposed Video Embedded Transcoder and De-

coder . 72

4.4 The subjective Quality Comparison of the 100th Frame: (a) Decoded Picture

without Re�nement Update (b) Decoded Picture with Re�nement Update (c)

Transcoded Picture without Re�nement Update (d) Transcoded Picture with

Re�nement Update. 76

4.5 The scheduling of the Video Pipe Where P Means the CPU Programs the Indi-

vidual Module . 79

4.6 The Scheduling of the Architecture A . 79

4.7 The Scheduling of the Architecture B . 80

4.8 The Scheduling of the Architecture C . 81

4.9 The Scheduling of the Architecture D . 82

4.10 The Scheduling of the Architecture E . 83

4.11 The Scheduling of the Architecture F . 84

4.12 The Flow of Our Design Space Exploration 85

4.13 The Exploration of the Synchronization Granularity 87

4.14 The SystemC Implementation with the Annotated Timing 93

4.15 The Proposed H.264/AVC Video Embedding Transcoder and Decoder Imple-

mented by the Platform Architect of CoWare ConvergenSC 94

-xiv-

LIST OF FIGURES

4.16 The Pareto Analysis for the Average Execution Cycle Count and Equivalent

Gate Count at Different Levels of Synchronization Granularity and for the Dif-

ferent Designs of the Inter and Intra Prediction. The Combination of the Level

of Synchronization Granularity to be Explored Includes 16x16_16x16, 16x16_8x8,

16x16_4x4, 8x8_8x8, 8x8_4x4, and 4x4_4x4 where the Terms before and after

the Underscore Indicate the GM and the GV, Respectively 96

4.17 The Combined Pareto Analysis for the Average Execution Cycle Count and

Equivalent Gate Count at Different Levels of Synchronization Granularity and

for the Different Designs of the Inter and Intra Prediction 97

4.18 The Execution Cycle of Architecture 16_16_SA3 and The Minimized Clock

for Real-Time When the Size of Display Buffer is 32Mb. (a) 240x144. (b)

480x272. (c) 960x544. (d) 1920x1088. 100

4.19 The Pareto Analysis for the Average Execution Cycle Count and Equivalent

Gate Count for Each Alternative where MB and B8 Denote the MB-based and

B8-based DB, Respectively . 102

4.20 The Area-Weighted Hardware Utilization for Each Design Alternative 103

4.21 Normalized Distance to Utopia Point Considering Execution Cycle Count, Hard-

ware Cost, and Area-Weighted Utilization . 104

5.1 The Interleaved Data Arrangement for the Stored Pictures 111

5.2 The Functional Block Diagram of the External Memory Interface 112

5.3 The Command FIFO for the Detection of the Row Miss 114

5.4 The Finite State Machine Designed for the Mobile DDR SDRAM 115

5.5 The Ef�ciency of DRAM Access for Motion Compensation. The Ef�ciency is

De�ned as (# of Data Read from the External DRAM) / (Actual Data Required

for the Motion Compensation) . 118

5.6 The Ef�ciency of DRAM Access for the Decoder. The Ef�ciency is De�ned as

(# of Data Read from the External DRAM) / (Actual Data Required for Decoder) 119

5.7 The Average Cycle Counts per MB . 120

5.8 The Amount of Data Transfer . 120

5.9 The Power Consumption in DRAM . 121

5.10 The Architecture of Inter and Intra Prediction 125

-xv-

LIST OF FIGURES

5.11 The 2-D Interpolation for the Motion Compensation with Sub-Pel Precision.

Note that the 2-D Filtering Can Be Separated Into Two 1-D Filtering. 126

5.12 (a) The Uni�ed Systolic Array for Both Inter and Intra Interpolation. (b) The

Block Diagram of Functional Block W. (c) The Weighting Mode of Functional

Block W. (d) The Combination Mode of Functional Block W. 128

5.13 The Con�guration of Inter Prediction for Luminance Component 130

5.14 The Weighting Factor of Each Input for Consecutive Execution of the 6-tap

Filtering . 131

5.15 Input Scheduling of the Proposed Systolic Array that Uses Two-Input Broad-

casting . 131

5.16 Separated Filterings of the Inter Prediction for Chrominance Component 133

5.17 The Con�guration of Inter Prediction for Chrominance Component 134

5.18 Intra Prediction by Adaptive Filtering . 136

5.19 The Con�guration of Intra Prediction for the Direction Modes. (a) The Two (1

,2, 1) Filters. (b) The (1, 1) and (1, 2, 1) Filter. 137

5.20 The Progression Property of Plane Mode . 139

5.21 The Con�guration of Intra Prediction for the DC Mode and the Plane Mode.

(a) The Data Path for Accumulation. (b) The Generation of Gradient Values "b"

and "c". (c) The Pixel Prediction of Plane Mode at Odd Cycles. (d) The Pixel

Prediction of Plane Mode at Even Cycles. 141

5.22 The Execution Cycle of the Inter and Intra Prediction for the Blue_Sky Sequence 145

5.23 The Execution Cycle of the Inter and Intra Prediction for the Pedestrian_Area

Sequence . 146

5.24 The Execution Cycle of Inter and Intra Prediction for Riverbed Sequence. . . . 147

5.25 The Execution Cycle of Inter and Intra Prediction for Rush_Hour Sequence. . . 147

5.26 The Execution Cycle of the Inter and Intra Prediction for the Station2 Sequence 148

5.27 The Execution Cycle of the Inter and Intra Prediction for the Sun�ower Sequence148

5.28 The Execution Cycle of the Inter and Intra Prediction for the Tractor Sequence . 149

5.29 The Data Transmission via AHB Data Bus for the Blue_Sky Sequence 149

5.30 The Data Transmission via AHB Data Bus for the Pedestrian_Area Sequence . 150

5.31 The Data Transmission via AHB Data Bus for the Riverbed Sequence 150

5.32 The Data Transmission via AHB Data Bus for the Rush_Hour Sequence 151

-xvi-

LIST OF FIGURES

5.33 The Data Transmission via AHB Data Bus for the Station2 Sequence 151

5.34 The Data Transmission via AHB Data Bus for the Sun�ower Sequence 152

5.35 The Data Transmission via AHB Data Bus for the Tractor Sequence 152

5.36 The Architecture of the Proposed Deblocking Filter 154

5.37 The Proposed Edge Filtering Order with Fine-Grained Synchronization Capability155

6.1 The Improvement of Rate-Distortion Performance by the Proposed Low-Complexity

Algorithm . 159

6.2 The Improvement of Throughput and Hardware Cost by the Proposed Effective

Design Space Exploration . 160

6.3 The Improvement of Area-Speed Ef�ciency by the Proposed High-Ef�cient Ar-

chitecture . 161

B.1 The �ow chart of the bumping process in H.264/AVC. The �smallest_poc�

stands for the smallest picture order count (POC) among the non-output pic-

tures in the DPB. 183

B.2 The �ow chart of the proposed constant-rate bumping process. The �small-

est_poc� stands for the smallest picture order count (POC) among the non-

output pictures in the DPB and the �RB� denotes the regulation buffer. 185

B.3 Example for Comparing the Variable-Rate Bumping Process and the Proposed

Constant-Rate Bumping Process . 186

-xvii-

List of Notations

HT (�) Operation of integer transform

IHT (�) Operation of inverse integer transform

Q(�) Operation of quantization

DQ(�) Operation of de-quantization

PRED(�) Operation of pixel prediction

Pe Encoding process from pixel domain to transform domain

Pd Decoding process from transform domain to pixel domain

MC(�) Operation of motion compensation

IPn(�) Operation of intra prediction with mode n

rn Original residue of the n-th block

xn Decoded pixels of the n-th block

rn
0 Re�ned residue of the n-th block

x0n Decoded pixels of the n-th block after re�nement

cxn Decoded pixels of the n-th block without re�nement

-xviii-

LIST OF NOTATIONS

en Quantization error of n-th block

P [i] Cycle count of the system at i-th pipelined stage

Ej[i] Cycle count of the j-th component at i-th pipelined stage

uj[i] Hardware utilization of the j-th component at i-th pipelined
stage

�X Mean value of the random variable X

-xix-

CHAPTER 1

Introduction

1.1 Overview of Dissertation

The Video Embedding Service (VES), which is also known as the Picture-in-Picture (PIP) fea-

ture, attracts wide attention with the rapid growth of multimedia applications. With the PIP

functionality, the VES enables live viewing of the second channel, advanced video mosaics,

next-generation video programming guides, and user-con�gurable multi-view screens. The ap-

plications are summarized as follows and the visual experience of these applications is illus-

trated in Figure 1.1.

� Internet protocol television service (IPTV) such as video over IP (VoIP) [1]

� Internet/Mobile interactive applications such as video on demand (VoD)

� Commercial insertion [2]

� Video conferencing [3]

� Video surveillance

� Entertainment [4]

� Live news [5]

-1-

Sec 1.1. Overview of Dissertation

(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Figure 1.1: The Applications of the Video Embedding Service: (a) Live TV Program of CBBC.
(b) Leatek's WinFast Series Product. (c) Disney Supports "Full Motion, Picture-in-Picture
Bonus Features" in Newly Released Blu-Ray DVD. (d) Multiple Stream Media Processor of
DiscoveryBiz. (e) TV Setup Box of Allthings. (f) Sony Debuts In-Car Navigation with PIP in
Japan. (g) Videoconferencing System of Wirered Company. (h) The PIP Functionality in Viliv
X2 AIO. (i) YouTube Overlays Ads during Video Streaming (InVideo). (j) Video Surveillance
System.

-2-

Chapter 1. Introduction

The video compression is essential to delivery and distribution of multimedia information.

In most multimedia applications, video content is stored in the compressed format to mini-

mize transmission bandwidth and storage requirement. With the superior coding ef�ciency

and network friendliness, the H.264/AVC [6] is regarded as the multimedia standard for ser-

vice providers to deliver digital video contents over Local Access Networks (LAN), Digital

Subscriber Line (DSL), Integrated Services Digital Network (ISDN) and third generation (3G)

mobile systems [7]. Particularly, the next generation Internet protocol television service (IPTV)

could be realized with H.264/AVC over very-high-bit-rate DSL (VDSL), which can support

higher transmission rates up to 52 Mbps [8]. The high transmission bandwidth facilitates the

development of video services with more functionalities and higher interactivity for video over

DSL applications.

1.1.1 Motivation

To address the compressed video embedding technique over Internet and wireless channels,

the idea of multiple-window video embedding transcoding (MW-VET) is proposed to deliver

selected video contents that are encapsulated as one single bitstream. In such applications,

the video may be transmitted over error-prone channels with limited bandwidth. To transmit

the video contents via the single channel, the transcoder embeds downsized video frames into

another frame with a speci�ed resolution as the foreground pictures.

The most straightforward implementation of transcoding is the conventional cascaded pixel

domain transcoder (CPDT) which is nothing more than a concatenation of several decoders

and an encoder. It offers drift free performance with the highest computational cost. However,

the complexity of the CPDT approach is relatively high at both algorithm and architecture lev-

els. Furthermore, from the video compression perspective, the CPDT is inef�cient because the

-3-

Sec 1.1. Overview of Dissertation

existing correlations between input and output bitstream are not utilized at all.

To address the high complexity issue of CPDT, our goal is to implement an H.264/AVC

based VET transcoder while simultaneously (1) increasing throughput, (2) improving quality,

(3) increasing rate-distortion (R-D) performance, (4) reducing cost, and (5) increasing cost-

effective. First of all, a low-complexity transcoding algorithm is proposed while the R-D per-

formance can also be improved as compared with the CPDT approach. Second, a highly ef-

�cient architecture is presented for combining H.264/AVC based video embedding transcoder

(VET) and decoder such that the throughput performance can be further improved. Third, the

design space is explored at a higher level of abstraction to �nd the design the most cost effective

alternative. Fourth, the micro-architectures are designed for the three hot spot modules within

our system architecture. Speci�cally, this dissertation will focus on several aspects as follows.

1.1.2 1st Focus: Low-Complexity Algorithm Development

To maintain transcoded picture quality and to reduce the overall complexity, three transcoding

techniques are presented for a multiple-window video embedding transcoder (MW-VET) at the

algorithm level: 1) slice-group-based transcoding (SGT), 2) reduced frame memory transcoding

(RFMT) and 3) syntax level bypassing (SLB). The application of each transcoding technique

depends on the data partitions of the archived bitstreams and the paths of error propagation. For

the slice-aligned data partitions, the SGT that composes the VET bitstreams at the bitstream

level can provide the highest throughput. For the region-aligned data partitions, the RFMT ef-

�ciently re�nes the prediction mismatch and increases the throughput while maintaining better

R-D performance. For the blocks that are not affected by the drift error, the SLB de-multiplexes

and multiplexes the bitstreams into a VET bitstream at the syntax element level.

To exploit the correlations among bitstreams before and after transcoding while maintaining

-4-

Chapter 1. Introduction

the coding ef�ciency, we use information from the incoming bitstream to make some simpli�ca-

tion during re-encoding. Particularly, we propose the motion vector re-mapping and intra mode

switching to eliminate the motion vector estimation and mode decision which are the most com-

putational intensive functional blocks. On the other hand, to alleviate the quality degradation

due to drift error while minimizing the computation complexity, we perform the error correction

for some key blocks which occupies a small part of frame.

Our simulation results show that the proposed algorithm signi�cantly reduces processing

complexity by 25 times in terms of the time required to execute with similar or even higher R-D

performance as compared to the conventional cascaded pixel domain transcoder. Particularly,

the proposed algorithm can achieve up to 1.5 dB quality improvement in Peak Signal to Noise

Ratio (PSNR).

1.1.3 2nd Focus: System Architecture Design Space Exploration

To further increase the throughput performance, we implement the proposed low complexity

algorithm by a highly ef�cient architecture that combines H.264/AVC VET transcoder and de-

coder. We use the ARM platform based design and partition the system into several dedicated

modules to provide task level parallelism. In addition, the proposed architecture can perform

video decoding and transcoding alternatively or simultaneously. Such VET enabled decoders

can �nd their applications in a peer-to-peer service community where every user enjoys versatile

video embedded services while contributing partial computation power.

To solve the problems in traditional platform-based design, we implement most functional

blocks by dedicated modules interconnected with the shared ping-pong memories to provide

massive parallelism. First, all the computational intensive function block are partitioned as the

hardware module such that the workload of ARM core can be signi�cantly alleviated. Sec-

-5-

Sec 1.1. Overview of Dissertation

ond, we connect each module such that most of data communications take place through the

video pipe instead of between ARM core and AHB bus. Thirdly, we allocate ping-pong buffer

between adjacent pipeline stages such that computation and communication cycle can be over-

lapped.

The system performance of a pipelined system mainly depends on the synchronization over-

head. The pipeline is limited by the slowest module in the video pipe, while each module con-

sumes certain cycles at each pipeline stage according to the various coding characteristics such

that the synchronization overhead is introduced. However, the traditional bottom-up design

methodology focuses on the individual performance of each module rather than considering the

impact of synchronization overhead on the system level performance. Thus, in this thesis, we

exploit the top-down design methodology to examine the effects of different design combina-

tions with respect to system performance in order to explore the design space and ensure good

tradeoffs between cost and performance. Such design space exploration enables us to �nd an

optimized tradeoff between cost and performance. In addition, we analyze the load balancing

by normalizing resource utilization weighted by the associated cost. Another factor of synchro-

nization overhead is the level of synchronization granularity. In general, coarser granularity of

synchronization conducts less synchronization overhead at the expense of more memory. Most

designs adopt macroblock-level pipeline for the inter prediction and deblocking �lter for best

throughput performance. In this dissertation, we will exploit the impact of different level of

synchronization granularity on the synchronization overhead.

Lastly, the proposed architecture is veri�ed and simulated at system level using transaction

level modeling (TLM) technique. We implement the architecture to ensure the correctness of

data �ow at system level and perform the design space exploration for the two system parame-

ters: (1) the level of synchronization granularity and (2) design combinations within the video

-6-

Chapter 1. Introduction

pipe. These models are evaluated at the TLM level and thus it minimizes the modeling effort

and increases the simulation speed so as to explore 185 design alternatives. We then evaluate

the system performance in terms of the average cycle count, the equivalent gate count and the

cost weighted hardware utilization. From the system level simulation with TLM, the design

alternative optimized for cost can reduce the area of previous design up to 25%. The design

alternative optimized for speed can increase the throughput of previous design by 2 times at

most such that our design can ful�ll the real-time requirement for 1920x1080 @ 60 Hz videos

when clocking at 135MHz.

1.1.4 3rd Focus: Highly Ef�cient Micro-Architecture Design

We further focus on the micro-architecture design of the three key modules in our proposed sys-

tem architecture: (1) memory sub-system, (2) inter and intra prediction (IIP), and (3) deblocking

�lter (DF).

To ef�ciently utilize the throughput of external DRAM, we propose an ef�cient memory

sub-system, including (1) an interleaved data arrangement scheme for improving the ef�ciency

of DRAM access, (2) an external memory interface for the control of mobile DDR SDRAM,

(3) a synchronization buffer for data cache. Particularly, a synchronization buffer is employed

as a bridge for reformatting the read/write data exchanged between the on-chip hardware and

the off-chip DRAM. In addition, we optimize the issues of read/write commands and adaptively

enable the auto-precharge function by monitoring the motion information of the input bitstream.

To increase the ef�ciency and the utilization, we propose a uni�ed �ltering architecture

for the inter and intra prediction. First, the data paths are shared for both the inter and intra

prediction so as to increase hardware utilization and reduce hardware cost. Second, to min-

imize redundant computations in the pixel predictions, the FIR �ltering is implemented by a

-7-

Sec 1.1. Overview of Dissertation

re-programmable systolic architecture (SA). Thirdly, the proposed systolic architecture is fully

utilized for any kind of interpolation and block partition. Fourthly, a local FIFO and memory is

allocated for temporally buffering the motion-compensated data and the intermediate data such

that the motion-compensated data of a block partition is transferred without redundant trans-

mission. According to the simulation results, our combined, systolic based architecture for the

inter and intra prediction to achieve throughput up to 4.5 times while decreasing up to 60% of

the bus bandwidth.

To reduce the memory and the latency for buffering and to explore the level of synchro-

nization granularity, we propose a novel deblocking �lter with �ne-grained synchronization

capability (FGSC). In the �ner granularity such as 8x8 or 4x4 block, our proposed deblocking

�lter can more ef�ciently process the input data at each pipeline stage than the other deblocking

�lter designs with macroblock-based processing order.

1.1.5 Attractive Applications of Video Embedding Transcoding

Figure 1.2 illustrates an application scenario for the VET that can be realized in practice ap-

plication such as video on demand (VoD). Upon a client's request, the video server can use

transcoding technique to compose two or more previously compressed bitstreams into one and

then send the VET bitstream to the speci�c client. The bit-rate of transmission bitstream be-

comes much less because the secondary bitstreams are embedded directly instead of being car-

ried additionally along the primary bitstream. Implementing the VES at the client side is neither

cost effective as it requires multiple decoders at the client nor bandwidth-ef�cient as it needs

to transmit multiple bit streams to the receiver. In addition, the VET can provide compliant

bitstreams for facilitating the VES video playback in a way transparent to the normal decoder

at the client side.

-8-

Chapter 1. Introduction

IPIP IPIP

Transcoding Server
(Video Middleware)

Video Phone

Uplink H.264/AVC Bitstream
Downlink H.264/AVC VET Bitstream

Video Content Server

IPIP

Video Phone

IP Surveillant CamerasVideo Phone Video Phone

Figure 1.2: One of the Applications of Video Embedding Transcoder: Transcoding Server.

1.2 Organization and Contribution

In this dissertation, a low-complexity transcoding algorithm is developd to deliver higher cod-

ing ef�ciency with limited drifting errors. Moreover, a highly ef�cient system architecture is

proposed with hybrid pipelined scheme to further improve transcoding throughput. Although

the proposed schemes are mainly developed for Baseline Pro�le, these techniques are shown to

be extended and tailored for the Main Pro�le and High Pro�le in H.264/AVC. For more details

of each part, the rest of this thesis is organized as follows:

� Chapter 2 presents the related works on video embedding technique and shows the chal-

lenges in H.264/AVC based video transcoding.

� Chapter 3 proposes low-complexity algorithm that reduces the complexity of traditional

transcoding scheme while improving the rate-distortion performance during transcoding.

Speci�cally, the contributions in the algorithm development include the following:

� All the inference mismatches of H.264/AVC syntax elements are re�ned during the

-9-

Sec 1.2. Organization and Contribution

VET transcoding.

� The methodology of partially re-encoding is utilized and it not only reduces the

complexity of transcoding, but also preserves the picture quality.

� Each coded block is classi�ed into three types according to the predictor of a block.

With this classi�cation, an ef�cient algorithm is employed such that the wrong ref-

erence problem can be signi�cantly alleviated.

� To exploit the correlations among bitstreams before and after transcoding while

maintaining the coding ef�ciency, we propose the intra mode switching and mo-

tion vector re-mapping to eliminate the motion vector estimation and mode decision

which are the most computational intensive functional blocks.

� For the blocks that are affected by the drift error, only key blocks are effectively

re�ned rather than all the affected blocks such that the complexity can be further

reduced.

� For the blocks that are not affected by the drift error, the original syntax elements are

bypassed in the original bitstreams into a VET bitstream to eliminate the re-coding

process that is computation-intensive and harmful for transcoded quality.

� As compared to the conventional cascaded pixel-domain transcoder, our algorithm

increases the transcoding throughput by 25 times while providing 0.3�1.5dB PSNR

improvement.

� Chapter 4 demonstrates the problem of architecture design and presents the proposed

highly ef�cient system architecture where hardware ef�ciency and utilization are signif-

icantly increased. In addition, we utilize the top-down design methodology for design

space exploration. Our contributions in the system architecture design space exploration

include the following:

-10-

Chapter 1. Introduction

� A system architecture for H.264/AVC is proposed to combine video embedding

transcoder (VET) and decoder.

� An architectural exploration on synchronization granularity.

� A design space exploration on design balancing of video pipe.

� As compared to the traditional hardware design, more system design factor are ex-

plored such that the best alternative according to the design constrains can be chosen

effectively.

� As compared to the previous system design, the system performance can be in-

creased by 2 times or reduce the memory requirement to 25% depending on the

optimization object. Otherwise, we can obtain the design alternative with highest

speed-cost ef�ciency by tracing the Pareto frontier.

� The design alternative with highest speed can achieve the transcoding (or decoding)

throughput of 1920x1088@60Hz while clocking at 135MHz.

� Chapter 5 details the micro-architecture design for the three hot spot modules within our

system architecture. Speci�cally, the contributions include the following:

� To ef�ciently utilize the throughput of external DRAM, a synchronization buffer is

employed as a bridge for reformatting the read/write data exchanged between the

on-chip hardware and the off-chip DRAM.

� To increase the ef�ciency and the utilization, a uni�ed �ltering architecture is pro-

posed for the inter and intra prediction that consumes less execution cycle on the

average while the hardware cost is relatively low than the state-of-the-art designs.

Furthermore, we provide an exploration on the parallelism of systolic based inter

and intra prediction.

� To increase the ef�ciency of deblocking �lter at �ner synchronization granularity,

-11-

Sec 1.2. Organization and Contribution

we propose a novel processing order for the deblocking �lter that provides �ne-

grained synchronization capability. In addition, the memory requirement of pro-

posed deblocking �lter is lower than macroblock-based deblocking �lter.

� As compared to the conventional adder-tree based inter and intra prediction, our

systolic-based design increases the transcoding throughput up to 4 times while the

amount of data transmission via AHB data bus can be reduced by 65%.

� Chapter 6 summarizes our works and illustrates the research activities in the future.

� Lastly, Appendix A shows why transform domain approaches are inef�cient for H.264/AVC

based transcoding. Appendix B shows the constant-rate bumping process for displaying

the decoded pictures during transcoding.

In summary, this dissertation focuses on the exploration at both algorithm and architecture

level. Figure 1.3 illustrates the techniques to be discussed in this work and provides an

ordered step by step of the process.

-12-

Chapter 1. Introduction

Figure 1.3: The Design Flow in This Dissertation

-13-

CHAPTER 2

Background and Related Work on Video

Embedding Transcoding

2.1 Introduction

This chapter presents the background and related work on video embedding technique and then

shows the challenges in H.264/AVC based video transcoding. Video information embedding

technique is essential to several multimedia applications such as picture-in-picture (PIP), multi-

channel mosaic, screen-split, pay-per-view, channel browsing, commercials and logo insertion

and other visual information embedding services. For video embedding applications, the video

embedding transcoding (VET) is essential to deliver multiple-window video services over one

-14-

Chapter 2. Background and Related Work on Video Embedding Transcoding

transmission channel. The rest of this chapter is organized as follows: Section 2.2 explains

why we realize the video embedding service by video embedding transcoding. Section 2.3

decribes the generalized problem of video transcoding. Section 2.4 formulates the wrong ref-

erence problem in VET transcoding. Section 2.5 reviews some related works on VET Section

2.6 elaborates the challenges in H.264/AVC based VET. Lastly, Section 2.7 summarizes this

chapter.

2.2 Realization of Video Embedding Service

The video embedding service can be realized at the client side where multiple sets of tuners

and video decoders acquire video content of multiple channels to for one frame. The content

delivery side sends all the bitstreams of selected channels to the client while the client side re-

constructs the pixels with an array of decoders in parallel and then re-composes the pixels into

single frame in the pixel domain at the receivers. Each receiver needs N decoders running with

a powerful picture composition tool to tile the varying size pictures from N channels. Thus,

the overall cost is increased as N is increased. To reduce the cost of the VET service, fast

pixel composition and less memory access can be achieved based on the architecture design

[9][10][11][12][12]. To realize the VET feature at the client side, the key issues are inef�cient

bandwidth utilization and high hardware complexity that hinders the multiple-window embed-

ding applications deployment.

To increase the bandwidth ef�ciency of bitstream transmission and reduce hardware com-

plexity at client side, the video embedding service can be alternatively realized at the server/studio

side to deliver selected video contents that are encapsulated as one bitstream. To transmit the

video contents via the unitary channel, the MW-VET embeds downsized video frames into an-

other frame with a speci�ed resolution as the foreground areas. It can provide preview frames

-15-

Sec 2.3. Problem Statement of Video Transcoding

or thumbnail frames by tiling a two-dimensional array of video frames from multiple television

channels simultaneously. With the MW-VET, users can acquire multiple-channel video con-

tents simultaneously. Moreover, the MW-VET bitstreams are compliant to H.264/AVC and it

can facilitate the multiple-window video playback in a way transparent to the decoder at the

client side.

The challenges are to simultaneously maintain the best picture quality after transcoding,

to increase the picture insertion �exibility, to minimize the archival space of bitstreams and

to reduce computational complexity. To optimize rate-distortion (R-D) performance, the bits

of the newly covered blocks at the background picture are replaced by the bits of the blocks

at the foreground pictures. To increase the �exibility of picture insertion, the foreground pic-

tures are inserted at the macroblock boundaries of processing units. To minimize the bitstream

storage space, H.264/AVC coding standard is adopted as the target format. To decrease the

computational complexity, a low-complexity algorithm for composition is needed. Therefore,

we proposed a fast H.264/AVC based multiple-window VET (MW-VET), which encapsulates

on-the-�y multiple channels of video content with a set of pre-compressed bitstreams into one

bitstream before transmission.

For real-time applications, video transcoding should retain R-D performance with the lowest

complexity, minimal delay and the smallest memory requirement [13]. Particularly, the MW-

VET should maintain good quality after multi-generation transcoding that may aggravate the

quality degradation. An ef�cient VET transcoder is critical to address the issue of quality loss.

2.3 Problem Statement of Video Transcoding

Generally, transcoding process could be viewed as the modi�cation process of incoming residue

according to the changes in the prediction. As shown in Figure 2.1 (a), the output of transcoding

-16-

Chapter 2. Background and Related Work on Video Embedding Transcoding

is represented by

Rn
0
= Q [HT (rn

0)] = Q fHT [xn � PRED2 (xj)]g

= Q fHT [rn + PRED1 (xi)� PRED2 (xj)]g (2.1)

, where the symbols HT and Q indicate an integer transformation and quantization respec-

tively. The symbols rn and r0n denote the residue before and after the transcoding. The sym-

bols PRED1 (xi) and PRED2 (xj) represent the predictions from the reference data xi and

xj respectively. In this paper, we use the symbol �bar� above the variables to denote the re-

constructed values after decoding and the symbol �prime� to denote the re�ned values after

transcoding. The suf�x of each variable represents the index of block. The process to embed

the foreground videos onto the background can incur drift error in the prediction loop since the

reference frames at the decoder and the encoder are not synchronized.

When the predictions before and after the transcoding are identical, Figure 2.1 (a) can be

simpli�ed to Figure 2.1 (b). The quantized data rn has no further quantization distortion with the

same quantization step. Thus, the transcoded bitstream has almost identical R-D performance

with the original bitstream as represented in Eq.(2.2).

Pd � Pe � rn = IHT fDQ fQ [HT (rn)]gg = rn (2.2)

, where the symbol Pe denotes the encoding process from the pixel domain to the transform

domain. The symbol Pd denotes the decoding process from the transform domain back to the

pixel domain. The symbols IHT and DQ mean an inverse integer transformation and de-

quantization respectively.

By Eq.(2.2), the transcoding process in Figure 2.1 (b) can be further simpli�ed to that in Fig-

-17-

Sec 2.3. Problem Statement of Video Transcoding

(a)

(b)

(c)

Figure 2.1: Illustration of a Novel Transcoder: (a) The Simpli�ed Transcoding Process. (b)
The Simpli�ed Transcoder When the Prediction Blocks Are the Same. (c) The Fast Transcoder
That Bypasses the Input Transform Coef�cients.

-18-

Chapter 2. Background and Related Work on Video Embedding Transcoding

ure 2.1 (c) where the data of the original bitstreams can be bypassed without any modi�cation.

It leads to a transcoding scheme with the highest R-D performance and the lowest complexity.

Video transcoding is intended to maximize R-D performance with the lowest complexity.

Therefore, the remaining issue is to transcode ef�ciently the incoming data such that picture

quality is maximized with the lowest complexity. Speci�cally, the incoming data are re�ned

only when the reference pixels are modi�ed to alleviate the propagation error. To reduce com-

putational cycles and preserve picture quality, the residue data with identical reference pixels

are bypassed.

2.4 Wrong Reference Problem Formulation

Based on the occurrence of modi�ed reference pixels and the paths of error propagation at the

prediction loop, the MBs are classi�ed into three types: w-MB, p-MB and n-MB. As shown in

Figure 2.2, the small rectangle denotes the foreground picture (FG) and the large rectangle de-

notes the background picture (BG). Each small square within the rectangle represents one MB.

The w-MBs represent the blocks whose reference samples are entirely or partially replaced by

the newly inserted pictures. The p-MBs represent the blocks whose reference pixels are com-

posed of the pixels at w-MBs. The remaining MBs of the background pictures are denoted as

n-MBs for the un-affected MBs. We observe that most of the MBs within the processing picture

are p-MBs and only a small percentage of MBs are w-MBs. As for w-MBs, the coding modes

or motion vectors of the original bitstream are modi�ed to �x the wrong reference problem.

For the p-MBs, the wrong reference problem is inherited from the w-MBs. Thus, the coding

modes and motion vectors are better to be re�ned for each p-MB. All n-MBs' information in

the original bitstream can be bypassed because the predictors before and after transcoding are

identical.

-19-

Sec 2.5. Related Work on Video Embedding Transcoding

Figure 2.2: Illustration of the Wrong Reference Problem

2.5 Related Work on Video Embedding Transcoding

Depending on the operating domain, the transcoders can be classi�ed as either pixel domain or

transform domain approaches. In the following, we will review the most straightforward imple-

mentation of VET transcoder and two fast VET transcoding algorithms for MPEG-2 standard.

2.5.1 Cascaded Pixel Domain Transcoder (CPDT)

The cascaded pixel domain transcoder (CPDT) cascades multiple decoders, a pixel domain

composer and an encoder, as shown in Figure 2.3. It decompresses multiple bitstreams, com-

poses the decoded pixels into one picture, and re-compresses the picture into a new bitstream. It

offers drift free performance since the exhaustive re-encoding process of CPDT can avoid drift

errors from propagating to the whole group of pictures.

However, the CPDT suffers from noticeable visual quality degradation and high complexity.

Speci�cally, the re-quantization process decreases quality of the original bitstreams. The irre-

trievable quality degradation exacerbates especially when the foreground pictures are inserted at

different time using the CPDT with multiple iterations. In addition, the cost of a CPDT is rela-

tively high at both algorithm and architecture level since the computation-intensive re-encoding

-20-

Chapter 2. Background and Related Work on Video Embedding Transcoding

PDC

PIP
Bitstream

BG
Bitstream

H.264
Decoder

FG
Bitstream 1

FG
Bitstream 2

FG
Bitstream N

H.264
Encoder

PDC:
Pixel-Domain
Composition

H.264
Decoder

H.264
Decoder

H.264
Decoder

Figure 2.3: The Architecture of the CPDT

process makes the signi�cant complexity increase of the CPDT too costly for real-time video

content delivery. From the video compression perspective, the CPDT is not ef�cient because the

existing correlations between input and output bitstream are not utilized at all. The complexity

and memory requirement of the CPDT could be reduced with fast algorithms that exploit the

correlations to remove transformation and motion estimation.

2.5.2 DCT Domain Transcoding with Motion Vector Re-mapping

The discrete cosine transform (DCT) domain inverse motion compensation (IMC) approach,

which is proposed by Chang et al. [14][15][16], contributes to the DCT domain transcoding for

MPEG-2 standard. The matrix translation manipulations are used to synthesis a DCT block that

is not aligned to the boundaries of 8x8 blocks in the DCT domain. The DCT domain IMC takes

less complexity than forward and inverse transform such that the transcoder can manipulate

the bitstreams in the DCT domain to avoid transform back and forth. Chang's approach could

achieve 10% to 30% speed-up over the CPDT. There are other algorithms to speed up the DCT

domain IMC in [17][18][19].

-21-

Sec 2.6. The Challenge in H.264/AVC-based PIP Transcoding

The motion estimation can be eliminated with motion vector re-mapping (MVR) where the

new motion vectors are obtained by examining only two most likely candidate motion vectors

located at the edges outside the foreground picture. It simpli�es the re-encoding process with

negligible picture quality degradation. In addition, Chang re�nes the residue of w-MBs and

p-MBs to correct all the drift error caused by re�nement error.

2.5.3 DCT Domain Transcoding with Backtracking

A DCT domain transcoder based on a backtracking process is proposed by Yu et al. [20]

to further improve the transcoding throughput. The backtracking process �nds the affected

macroblocks (MBs) of the background pictures in the motion prediction loop. Since only a

small percentage of the MBs at the background are affected, only the damaged MBs are �xed

and the unaffected MBs are bypassed.

In practice, for most effective backtracking, the future motion prediction path of each af-

fected MB needs to be analyzed and stored in advance. To construct the motion prediction

chains, Chang [14][15][16] completely reconstructs all the re�ned reference frames in the DCT

domain for each group-of-picture (GOP). With the motion prediction chains, the transcoder de-

codes minimum number of MBs to render the correct video contents. The speedup of motion

compensation is up to 90% at the cost of the buffering delay of the transcoder for one GOP

period. The impact of the delay on the real-time applications depends on the length of a GOP

in the original bitstream.

2.6 The Challenge in H.264/AVC-based PIP Transcoding

As compared to the previous standards, the H.264/AVC poses more challenges for video em-

bedding transcoding as follows:

-22-

Chapter 2. Background and Related Work on Video Embedding Transcoding

1. Inference mismatch: Since the mode and motion information of current block is inferred

from the neighboring blocks, the foreground insertion will incur the inference mismatch

and induce serious visual artifacts. Therefore, the syntax elements in the original bit-

streams should be fully decoded, re-inferred, and re-encoded into the VET bitstream by

an entropy encoder.

2. More sophisticated wrong reference problem: Due to the advanced prediction tools such

as the variable block size, the various intra prediction modes and improved skip mode,

the wrong reference problem becomes more complicated.

3. More complicated mode decision at the re-encoder side: Due to the variable block size

and the various intra prediction modes, the mode decision at the re-encoder becomes more

complicated.

4. More sophisticated motion vector re-mapping: When performing motion vector re-mapping

technique, the H.264/AVC based VET transcoder should consider the impacts of 6-tap

interpolation and the deblocking �lter across the boundary between foreground and back-

ground picture.

5. Transform-domain (HT-domain) IMC is inef�cient: The existing approaches [17][18][19][20]

convert the bitstreams that are of MPEG-2 standard in the transform domain for complex-

ity reduction. However, application of the transform domain techniques to H.264/AVC

is not feasible since the advanced coding tools including in-the-loop de-blocking �lter,

directional intra prediction and 6-tap sub-pixel interpolation all operate in the pixel do-

main. The transform domain inverse motion compensation becomes inef�cient when the

motion compensation uses quarter-pixel resolution combined with 6-tap interpolation. In

addition, the transformation and quantization processes in H.264/AVC are so optimized

that traverse back to the pixel domain is not as expensive as before. Consequently, the

-23-

Sec 2.6. The Challenge in H.264/AVC-based PIP Transcoding

transform domain techniques have higher complexity as compared to the pixel domain

techniques. As shown in the Appendix the pixel domain transcoder actually takes less

complexity than the transform domain transcoder. The detail derivations are given in the

Appendix A for brevity.

6. Transform-domain (HT-domain) operations cause the drift error: The transform domain

manipulation introduces drift since the motion compensation is based on the �ltered pix-

els which are the output of the in-the-loop deblocking �lter. The �ltering operation is

de�ned in the pixel domain and cannot be performed in the transform domain due to

its nonlinear operations [21][22][23]. In addition, the transform domain transcoding re-

quires an inverse quantization process that introduces additional rounding error due to the

operation of division. As a result, the transform domain transcoder for the H.264/AVC

standard typically leads to an unacceptable level of error as shown in [24].

7. Backtracking method has slight bene�t while introducing a delay of one GOP: The back-

tracking method proposed by Yu [20] has no use for the H.264/AVC based transcoder due

to the deblocking �lter, the directional intra prediction and interpolation �lter. Particu-

larly, to track the prediction paths of H.264/AVC bitstreams, almost 100% of the blocks

need decoding, which is over the 10% reported in [20]. Thus, the expected complexity

reduction is limited. Furthermore, it introduces an extra delay of one GOP period.

In summary, to speed up the CPDT, there are many fast algorithms to manipulate the incom-

ing bitstreams in the transform domain. However, this is not the case for the H.264/AVC stan-

dard. To our best knowledge, all the state-of-the-art transcoding schemes with H.264 as input

bitstream format perform the fast algorithms in the pixel domain [21][25][22][23][26][27][28][29][30].

-24-

Chapter 2. Background and Related Work on Video Embedding Transcoding

2.7 Summary

In this chapter, we present the background, related work, and the challenges in H.264/AVC

based video embedding technique. First of all, we realize the video embedding service by video

embedding transcoding so as to (1) increase the information acquisition, (2) lower the band-

width requirement, (3) reduce the consuming power of client's devices, (4) provide H.264/AVC-

compliant bitstreams, and (5) minimize the storage space of video archive. Second, we formu-

late the wrong reference problem based on the occurrence of modi�ed reference pixels and the

paths of error propagation at the prediction loop. With this formulation, we are roughly aware

of the problems in the video embedding transcoding. Third, we review the related work on fast

transcoding algorithm for MPEG-2. As compared to the previous standards, the H.264/AVC

poses more challenges for video embedding transcoding. Lastly, Section 2.6 elaborates sev-

eral reasons to manifest the necessity of pixel domain manipulation for the H.264/AVC bit-

streams. Therefore, we conclude that the spatial domain technique is a more realistic approach

for H.264/AVC based transcoding. To resolve issues of low computational cost, less drift error

and small memory bandwidth, we will develop the fast algorithm of a H.264/AVC-based video

embedding transcoding in the spatial domain.

-25-

CHAPTER 3

Low-Complexity Algorithm of MW-VET

3.1 Introduction

This chapter proposes three low-complexity algorithm schemes of H.264/AVCmultiple-window

video embedding transcoder (MW-VET) for various interactive and non-interactive applications

that require video embedding services including picture-in-picture (PIP), multi-channel mosaic,

screen-split, pay-per-view, channel browsing, commercials and logo insertion, and other visual

information embedding services. In particular, the MW-VET embeds multiple foreground pic-

tures that are of smaller spatial resolution at macroblock-aligned positions. As the foreground

bitstreams are encoded as full resolution, a downsizing transcoding [21][31][25] is needed prior

to the VET transcoding. The spatial resolution adaptation transcoding has been widely inves-

-26-

Chapter 3. Low-Complexity Algorithm of MW-VET

tigated in the literatures and are not studied herein. In addition, we impose restrictions on the

foreground bitstreams to remove the dependencies to the background. In particular, the fore-

ground bitstream do not use un-restricted motion vectors and DC intra mode for the blocks at

the �rst column or the �rst row of the foreground. The loss of R-D performance is negligible.

In addition, we re-scale the DC coef�cient of the �rst DC block within an intra-coded frame

based on the reconstructed values of neighboring pixels in the background. Except for the �rst

block, the foreground bitstream can be directly inserted into the new one.

According to the type of data partition and the encoding scenario of the archived bitstream,

the MW-VET adopts one of three algorithm schemes including (1) slice group based transcod-

ing (SGT), (2) no framememory transcoding (NFMT), and (3) reduced framememory transcod-

ing (RFMT). As the prediction is applied to slice-aligned data partitions within the original bit-

stream, the SGT simply merges the bitstreams into VET bitstream by parsing and concatenating

the syntax elements and provide the highest transcoding throughput. As the prediction is ap-

plied to the region-aligned data partitions and a corresponding auxiliary bitstream is available,

the NFMT can compose VET bitstream by parsing, patching and concatenating the syntax ele-

ments from the original bitstreams and the auxiliary bitstream. If there is neither slice-aligned

data partitions within the original bitstream nor an auxiliary bitstream, the RFMT can ef�ciently

transcode the input bitstreams by three block level adaptive techniques based on the concept of

partial re-encoding. The application of each transcoding scheme depends on the data partitions

and encoding scenario of the archived bitstreams. Particularly, both the SGT and the NFMT are

serviceable only in some speci�c conditions thus restricting their application. Therefore, we

focus on the algorithm of the RFMT in this chapter.

To maintain transcoded picture quality and to reduce the overall complexity, we present

three transcoding techniques in RFMT: (1) intra mode switching (IMS), (2) motion vector re-

-27-

Sec 3.2. Slice-Group-Based Transcoding

mapping (MVR), and (3) syntax level bypassing (SLB). For region-aligned data partitions, the

RFMT ef�ciently re�nes the prediction mismatch so as to adapt the prediction schemes com-

pliant with the H.264/AVC standard and to increase the transcoding throughput while maintain-

ing better R-D performance. Speci�cally, when the prediction comes from the newly covered

area without slice-group data partitions, the pixels at the affected macroblocks are transcoded

with the RFMT based on the concept of partial re-encoding to minimize the number of re�ned

blocks. The RFMT employs intra mode switching (IMS) and motion vector remapping (MVR)

to handle intra coded blocks and inter coded blocks respectively. For the pixels outside the

macroblocks that are affected by newly covered reference frame, the SLB de-multiplexes and

multiplexes the bitstreams into a VET bitstream at the bitstream level. Experimental results

show that, as compared to the cascaded pixel domain transcoder (CPDT) with the highest com-

plexity, our RFMT can signi�cantly reduce the processing complexity by 25 times and retain

the rate-distortion performance close to the CPDT. At certain bit rates, the RFMT can achieve

up to 1.5 dB quality improvement in Peak-Signal-to-Noise-Ratio (PSNR).

In Table 3.1, we list all the symbol de�nitions used in this chapter. The rest of this chapter

is organized as follows: Section 3.2 and Section 3.3 presents the slice group based transcoding

(SGT) and no frame memory transcoding (NFMT). Section 3.4 proposes the reduced frame

memory transcoding (RFMT). Section 3.5 shows the simulation results. Finally, Section 3.6

summaries this chapter.

3.2 Slice-Group-Based Transcoding

The slice group based transcoding (SGT) is used when the prediction within the original bit-

stream of background picture uses the slice-aligned data partitions [31]. Based on the slice-

aligned data partitions, the SGT operates at the bitstream level to provide the highest through-

-28-

Chapter 3. Low-Complexity Algorithm of MW-VET

Table 3.1: The Symbol De�nitions

Symbol Meaning
CAVLD Content adaptive variable length decoding
CAVLC Content adaptive variable length coding
LB Line buffer
FM Frame memory
DB De-blocking �lter
IP Intra prediction
MC Motion compensation
ME Motion estimation
HT & Q Integer transform and quantization
DQ & IHT De-quantization and inverse integer transform
PDC Pixel domain composition
RDO MD Rate-distortion optimized mode decision
MUX Multiplexer (syntax element selector)

put with the lowest complexity. The rationale is that H.264/AVC de�nes a set of MBs to

the slice group map types according to the adaptive data partition [6]. The concept of slice

group is to separate the picture into isolated regions to prevent error propagation from lead-

ing error resiliency and random access. Each slice is regarded as an isolated region as de�ned

in H.264/AVC standard. For each region, the encoder performs the prediction and �ltering

processes without referring to the pixels of the other regions.

For the video embedding feature using static slice groups, the large window denotes a back-

ground slice and the embedded small windows denote foreground slices. For example, a frame

can be split into: a background slice and several rectangular foreground slices as shown in Fig-

ure 3.1. After video embedding transcoding, all the slices are encoded separately at the slice

level and encapsulated to one bitstream at the slice level. Based on archived H.264/AVC bit-

streams with the slice groups, a VET can replace the syntax elements of MBs in the foreground

slices with the syntax elements of other bitstreams with identical spatial resolutions. Therefore,

all the syntax elements are directly forwarded as-is to the �nal bitstream via an entropy coder.

Based on the pre-de�ned slice groups, the SGT is effective for non-interactive applications

-29-

Sec 3.3. No Frame Memory Transcoding (NFMT)

Background Slice

Foreground
Slice

Foreground
Slice

Foreground
Slice

Foreground
Slice

Figure 3.1: The Example of Slice Group That Can Be Used in the VET Transcoding

with multiple static windows. However, for interactive services, the SGT can not allow the

change of location and size of the foreground relative to the background. To further enable

movement of the window, we will present two other transcoding schemes in the next two sec-

tions.

3.3 No Frame Memory Transcoding (NFMT)

3.3.1 Architecture of NFMT

For interactive services, we propose a PIP transcoding scheme using an auxiliary bitstream,

which we refer to it as the no reference frame transcoding (NRFT) approach. To achieve best

coding ef�ciency at low complexity, the auxiliary bitstream is computed in such a way that this

bitstream can substitute all the MBs that have wrong prediction when the foreground area is

overwritten with the new content. Thus, the NRFT approach directly substitutes syntax ele-

ments of the affected blocks with the auxiliary bitstream and constitutes a simple frame compo-

sition in the transform domain. The channel bandwidth is ef�ciently used with only minimum

-30-

Chapter 3. Low-Complexity Algorithm of MW-VET

Figure 3.2: The Architecture of the No Frame Memory Transcoder (NFMT)

hardware. However, such a simple bitstream switching scheme requires additional storage for

the auxiliary bitstreams.

NFMT composes a VET bitstream on transform domain based on an auxiliary bitstream as

shown in Figure 3.2. The auxiliary bitstream is generated along with the primary bitstream to

provide the syntax elements including the transform coef�cients and motion information for a

rapid frame composite. To balance the transcoding speed and the Rate-Distortion (R-D) perfor-

mance, the PIP transcoding with the auxiliary bitstream is applied to all inter-coded frames and

the partially re-encoding transcoding is used for the intra-coded frames. By removing the high

complexity modules including spatial interpolation, motion compensation and inverse spatial

prediction from the transcoding process of all inter-coded frames, the NFMT can signi�cantly

increase the transcoding throughput with very low memory requirement.

As compared to the CPDT, for all inter-coded frames, the proposed NRFT approach can si-

multaneously reduce execution time and memory by eliminating complex modules such as intra

prediction, sub-pel interpolation and in-the-loop deblocking �lter. However, NRFT approach

suffers from error drift when using prediction residuals from the auxiliary bitstream. Our exper-

imental results show that the error drift is not serious for sequences using periodic intra-frames

with GOP size of 15 or 30.

-31-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

To provide a balanced tradeoff of coding ef�ciency and complexity, the intra-coded frames

does not use the auxiliary bitstream because the intra-frame mismatch can propagate to subse-

quent MBs spatially and temporally. To retain the R-D performance, the affected MBs of intra

frames are transcoded using the IMS approach in the next section.

For the transcoding of inter-coded frames, all three bitstreams are �rst passed through VLD

module to extract the syntax elements. With the original and the auxiliary bitstreams, the syntax

elements that can retain the better R-D performance are put into the transcoded bitstream in

the NRFT approach. For each affected MB in an inter-coded frame, we change the residual

coef�cients of affected 4x4 blocks with the syntax elements of the auxiliary bitstream. With the

selected syntax elements, we can start to re-encode the PIP bitstream using VLD.

3.3.2 Auxiliary Bitstream Generation

The auxiliary bitstream generation is shown in Figure 3.3 where we use the reconstructed frames

as the reference for prediction. Since eachMBmay contain multiple objects, we use a 4x4 block

as the basic processing unit so that drift can be minimized.

In order to simplify the switching, we need to place restrictions on the formation of predic-

tions of the auxiliary bit stream. To ensure that the patched MB of the auxiliary bitstream does

not refer to the MBs in the unexpected region, we restrict all MBs to use inter4x4 mode with

zero motion vector. To minimize error accumulation, the auxiliary bitstream is encoded using

identical reconstructed coef�cients of the background bitstream.

3.4 Reduced Frame Memory Transcoding (RFMT)

When the prediction is applied to the region-aligned data partitions, the speci�ed pixels at the

background picture are replaced by the pixels of the foreground pictures. For the pixels in

-32-

Chapter 3. Low-Complexity Algorithm of MW-VET

Figure 3.3: The Generation of the Auxiliary Bitstream Based on the Reconstruction of a RDO
Encoder

the affected MBs, the RFMT can minimize the total number of re�ned blocks by partially re-

encoding only those MBs. The RFMT employs both motion vector remapping (MVR) for inter

coded blocks and intra mode switching (IMS) for intra coded blocks respectively. The pixels

within the un-affected MBs are transcoded by the SLB that passes the syntax elements from the

original bitstreams to the transcoded bitstream.

Based on the partially re-encoding techniques, the initial RFMT architecture is shown in

Figure 3.4. After decoding all the bitstreams into pixel domain with multiple H.264/AVC de-

coders and composing all the decoded pictures into one frame by the PDC, the re-encoder side

only re�nes the residue of the affected MBs rather than re-encoding all the decoded pixels as

the CPDT architecture. For those unaffected MBs, the syntax elements are bypassed from each

CAVLD and are sent to the MUX which selects the corresponding syntax elements based on

-33-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

CAVLD

PDC

CAVLC

PIP
Bitstream

BG
Bitstream

MUX

DQ+IHT+MC+IP+DB+FM+LB

H.264 Decoder

ME+RDO_MD+
MC+IP+HT+Q+
+IHT+DQ+DB+

FM+LB
CAVLDFG Bitstream

1 DQ+IHT+MC+IP+DB+FM+LB

H.264 Decoder

CAVLDFG Bitstream
2 DQ+IHT+MC+IP+DB+FM+LB

H.264 Decoder

CAVLDFG Bitstream
N DQ+IHT+MC+IP+DB+FM+LB

H.264 Decoder

(Bypass Path)

(Bypass Path)

(Bypass Path)

(Partial Re-encoding)

(Bypass Path)

Figure 3.4: The Initial Architecture of the RFMT with RDO Re�nement Based on the Concept
of the Partially Re-Encoding

the PIP scenario. Lastly, the CAVLC encapsulates all the re-used syntax elements and the new

syntax elements of re�ned blocks into the transcoded bitstream.

To increase the throughput, the R-D optimized mode decision and motion vector re-estimation

within the re-encoder side of Figure 3.4 are replaced with the intra mode switching (IMS) and

motion vector re-mapping (MVR) as shown in Figure 3.5 [32]. Speci�cally, the re-encoder as

enclosed by the dashed line stores the decoded pixels into the FM. Then, the MVR and IMS

modules retrieve the intra modes and the motion vectors from the original bitstreams to predict

the characteristics of motion and the spatial correlation of the source. With such information,

we examine only a subset of possible motion vectors and intra modes to speed up the re�nement

process. According to the re�ned motion vectors and coding modes, the MC and IP modules

perform motion compensation and intra prediction from the data in the FB and LB. The re-

construction loop including HT, Q, DQ, IHT, and DB generates the reconstructed data of the

re�ned blocks which are further stored in the FB to avoid the drift during the transcoding. In

conclusion, other than the IMS and MVR modules all the modules in Figure 3.5 are the same

-34-

Chapter 3. Low-Complexity Algorithm of MW-VET

CAVLD

PDC

CAVLC

PIP
Bitstream

BG
Bitstream

MUX

DQ + IHT + MC
H.264 Decoder

CAVLDFG Bitstream
1 DQ + IHT + MC

H.264 Decoder

CAVLDFG Bitstream
2 DQ + IHT + MC

H.264 Decoder

CAVLDFG Bitstream
N IQ + IHT + MC

H.264 Decoder

+

MC

IP

DQ&IHT

+

HT&Q

FM

DB LB

MVR

IMS

(Bypass Path)

(Bypass Path)

(Bypass Path)

(Bypass Path)

(Partial Re-encoding with MVR & IMS)

Figure 3.5: The Intermediate Architecture of the RFMTwith theMVR and the IMS Re�nement

as those in Figure 3.4.

To de-couple the dependency between the foreground and the background, there is an en-

coding constraint for the foreground bitstream that the unrestricted motion vectors and the intra

DC modes are not used for the blocks at the �rst column or the �rst row. When the foreground

video is from an archived bitstream or an encoder of live video, the unrestricted motion vectors

and the intra DC mode can be modi�ed and the loss of R-D performance is negligible according

to our experiment. Particularly, we re-scale the DC coef�cient of the �rst DC block within an

intra coded frame based on the neighboring reconstructed pixels in the background. Except the

�rst block, the foreground bitstreams can be multiplexed directly into the transcoded bitstream.

With the constrained foreground bitstreams, the �nal architecture of the MW-VET is sim-

pli�ed as shown in Figure 3.6. The highly ef�cient MW-VET adopts only the content adaptive

variable length decoding (CAVLD) for the foreground bitstreams and uses one shared frame

memory for the background bitstream. At �rst, two frame memories are dedicated for the de-

coder and the re-encoder in Figure 3.5 to store the decoded pixels and the reconstructed pixels

-35-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

Motion Vectors

CAVLD

Intra
Mode

CAVLD DQ&IHT +

MC

IP

FM

LB

+

MC

IP
DQ&IHT

+

HT&Q

DB LB

MVR

CAVLC

PIP
Bitstream

BG
Bitstream

FG
Bitstream 1

CAVLD

MUX

CAVLD

IMS

FG
Bitstream 2

FG
Bitstream N

(Bypass Path)

(Bypass Path)

(Bypass Path)

(Bypass Path)

Figure 3.6: The Final architecture of the RFMT with Shared Frame Memory and the Con-
strained FG Bitstreams

respectively. However, the decoded data of affected blocks are no longer useful and could be

replaced with the reconstructed pixels after the re�nement. Therefore, we use a shared frame

memory to buffer the reference pixels for both the decoding and re-encoding process. Speci�-

cally, the operation of the transcoder begins with the decoding by the CAVLD. The MC and the

IP modules in the left hand side use the original motion vectors and intra modes to decode the

source bitstream into pixels stored in the FM and used for the coef�cient re�nement. On the

other hands, the MC and the IP modules in the right hand side use the re�ned motion vectors

and intra modes to re�ne the decoded pixels of the affected blocks. In addition to one shared

FM, the transcoding process is the same as that in Figure 3.5.

In case the PIP scenario generates the background block with top and left pixels next to

the foreground pictures, our RFMT needs to decode each foreground bitstreams. Then, the

transcoder switches the mode of this block to DC mode and computes the new residue accord-

ing to the reconstructed values of two foreground pictures. Moreover, if the foreground pictures

-36-

Chapter 3. Low-Complexity Algorithm of MW-VET

CAVLD

CAVLC

PIP
Bitstream

MUX

CAVLDFG Bitstream 2

CAVLDFG Bitstream N

FG Bitstream 1

Figure 3.7: The Transcoding Scheme for the Channel Preview

occupy the whole frame, the feature of channel preview is realized with the degenerated ar-

chitecture of Figure 3.7. The remaining issues are how the IMS and the MVR modules deal

with the wrong reference problem of background bitstream. There are two goals: re�ning the

affected blocks ef�ciently and deciding the minimal subset of re�ned block while retaining the

visual quality of transcoded bitstream.

3.4.1 Intra Mode Switching (IMS)

For the intra-coded w-MBs, we need to change the intra modes to �x the wrong reference

problem since the intra prediction is performed in the spatial domain. The neighboring samples

of the already encoded blocks are used as the prediction reference. Thus, when we replace

parts of the background picture with the foreground pixels, the MBs around the borders may

have visual artifacts due to the newly inserted samples. Without drift error correction, the

distortion propagates spatially all over the whole frame via the intra prediction process in a

raster scanning order. A straightforward re�nement approach is to apply the R-D optimized

(RDO) mode decision to �nd the best intra mode from the available pixels and then re-encode

new residue.

To reduce complexity we propose an intra mode switching (IMS) technique for the intra-

coded w-MBs since the best reference pixels should come from the same region. The mode

-37-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

Figure 3.8: The Wrong Intra Reference Problem within a Macroblock Depending on the Intra
Modes

FG

BG 1

234 5

67

Figure 3.9: The Relative Position of Each Case in the Intra Mode Switching Technique

switching approach selects the best mode from the more probable intra prediction modes.

Each block within a MB could be classi�ed according to the intra modes as shown in Figure

3.8. Similarly, the mode of the w-block should be re�ned while the modes of p-blocks are

unchanged. For the w-blocks, the IMS is performed according to the relative position with

respect to the foreground pictures as shown in Figure 3.9. To speed up the IMS process, a table

lookup method is used to select the new intra mode according to the original intra mode and the

relative position. Table 3.2 and Table 3.3 enumerate the IMS selection exhaustively.

-38-

Chapter 3. Low-Complexity Algorithm of MW-VET

Table 3.2: The Cases of the Intra4 Mode Switching

Case Corresponding 4x4 block Original Mode* Switched Mode*
1 Left column of blocks 1, 2, 4, 5, 6, 8 0
2 Top left of block 4, 5, 6 2
3 Top row of blocks 0, 2, 3, 4, 5, 6, 7 1
4 Top right of block 3, 7 0
5 Top row of blocks 0, 2, 3, 4, 5, 6, 7 1
6 Left column of blocks 1, 2, 4, 5, 6, 8 0
7 Right column of blocks 3, 7 0

* 0: Intra_4x4_Vertical 1: Intra_4x4_Horizontal
2:Intra_4x4_DC 3: Intra_4x4_Diagonal_Down_Left
4: Intra_4x4_Diagonal_Down_Right 5: Intra_4x4_Vertical_Right
6: Intra_4x4_Horizontal_Down 7:Intra_4x4_Vertical_Left
8: Intra_4x4_Horizontal_Up

Table 3.3: The Cases of the Intra16 Mode Switching

Case Original Mode* Switched Mode*
1,6 1, 2, 3 1
2 3 2
3,5 0, 2, 3 1

* 0: Intra_16x16_Vertical 1: Intra_16x16_Horizontal
2: Intra_16x16_DC 3: Intra_16x16_Plane

In the following, we will interpret the intra re�nement process mathematically. Take Figure

3.10 for example where the block xw is the w-block since it is predicted from the to-be-covered

block xc and the other blocks including xp;0, xp;1, xp;2, xp;3, xp;4, xp;5 are the p-blocks. In this

dissertation, we use the symbol "bar" above the variables to denote the reconstructed values after

decoding, the symbol "prime" to denote the re�ned values after transcoding, and the symbol

"hat" to denote the values after transcoding without performing re�nement. In the original

bitstream, the decoded signal of the block xw can be represented in Eq.(3.1) where rw is the

original residue.

xw = rw + IP1 (xc) (3.1)

-39-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

Figure 3.10: An Example of the Intra Prediction Chain

If we do not re�ne the block xw at all, the decoded signal of the block xw at client side is

obtained from the original residue rw and the reference block yc from foreground region as

represented in Eq.(3.2).

cxw = rw + IP1 (yc) = xw � IP1 (xc) + IP1 (yc) = xw + IP1 (yc � xc) (3.2)

, where the symbol IP1 (yc � xc) indicates the serious mismatch of wrong reference propagated

via intra prediction since the blocks in the foreground and background region are quite differ-

ent in terms of pixel values. There fore, to improve the video quality, we re�ne the residue of

w-block after the fully decoding and the intra mode switching. With the re�ned intra mode,

we compute the new residue and coded block patterns. It should be noted that only the recon-

structed values xw is used as the original video is unavailable. The re�nement of the block xw

-40-

Chapter 3. Low-Complexity Algorithm of MW-VET

is de�ned by

rw
0 = xw � IP2 (xr) = rw + IP1 (xc)� IP2 (xr) (3.3)

, where the symbols IP1 (xc) and IP2 (xr) denote intra prediction from the reference pixels

xc and xr by using the original mode and the new mode respectively. The symbol rw is the

decoded residue extracted from the source bitstream. Then, the re�ned residue is re-quantized

and de-quantized as

rw
0 = Pd � Pe � rw 0 = Pd � Pe � [rw + IP1 (xc)� IP2 (xr)]

= Pd � Pe � rw + Pd � Pe � [IP1 (xc)� IP2 (xr)]

= rw + IP1 (xc)� IP2 (xr) + ew (3.4)

,where the symbol ew denotes the quantization error of [IP1 (xc)� IP2 (xr)]. Lastly, the recon-

structed data of the block xw is shown in Eq.(3.5)

x0w = rw
0 + IP2 (xr) = rw + IP1 (xc) + ew = xw + ew (3.5)

Therefore, the symbol ew also denotes the re�nement error due to the additional quantization

process with respect to the original reconstructed value xw. As compared to Eq.(3.2), we can

signi�cantly reduce the mismatch from IP1 (yc � xc) to ew because and [IP1 (xc)� IP2 (xr)] is

smaller than IP1 (yc � xc) and the quantization error of [IP1 (xc)� IP2 (xr)] is much smaller

than [IP1 (xc)� IP2 (xr)] itself.

For the p-blocks, If we do not re�ne the residue of the block xp;0, the decoded signal of the

block xp;0 at client side is obtained from the original residue rp;0 and the reference block x0w

-41-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

instead of xw as represented in Eq.(3.6)

dxp;0 = rp;0 + IP1
�
x0w
�
= xp;0 � IP1 (xw) + IP1

�
x0w
�

= xw + IP1
�
x0w � xw

�
= xw + IP1 (ew) (3.6)

Therefore, the re�nement of w-blocks may incur drift error that is ampli�ed and propagated to

the subsequent p-blocks by the intra prediction process. In order to alleviate the error propaga-

tion, we re-calculate the coef�cients of p-blocks with the re�ned samples of w-blocks and the

original intra modes as shown in Eq.(3.7), where we assume the block xp;0 is the intra-coded

p-block that uses the decoded data of the block xw as prediction.

rp;0
0 = xp;0 � IP1

�
x0w
�
= rp;0 + IP1 (xw)� IP1

�
x0w
�

= rp;0 + IP1
�
xw � x0w

�
= rp;0 + IP1 (ew) (3.7)

Similarly, the re�ned residue should be re-quantized and de-quantized as represented in Eq.(3.8)

where the symbol ep;0 denotes the drift error in the block xp;0 and is identical to the quantization

error of intra prediction of re�nement error ew in the n-th 4�4 block.

x0p;0 = rp;0
0 + IP1

�
x0w
�
= Pd � Pe � rp;0 + Pd � Pe � IP1 (ew) + IP1

�
x0w
�

= rp;0 + IP1 (ew) + ep;0 + IP1
�
x0w
�

= xp;0 � IP1 (xw) + IP1
�
x0w
�
+ IP1 (ew) + ep;0

= xp;0 + IP1
�
x0w � xw + ew

�
+ ep;0 = xp;0 + ep;0 (3.8)

-42-

Chapter 3. Low-Complexity Algorithm of MW-VET

Similarly, the next p-block can be derived:

x0p;m+1 = xp;m+1 + ep;m+1;

where ep;m+1 = Pd � Pe � IP (em)� IP (em);m = 0; 1; 2; 3; :::::: (3.9)

The generalized projection theory says that consecutive projections onto two non-convex sets

will reach a trap point beyond which future projections do not change the results [33]. After

several iterations of error correction, the drift error can not be further compensated. Therefore,

we only perform error correction to the p-blocks within intra-coded w-MB rather than all the

subsequent p-blocks. We observe that error correction for the p-blocks within intra-coded w-

MB improves the averaged R-D performance up to 1.5dB. However, error correction for the

intra-coded p-MBs has no signi�cant quality improvement (less than 0.2dB).

3.4.2 Motion Vector Remapping (MVR)

The motion information of inter-coded w-MBs needs to be re-encoded since the motion vectors

of the original bitstreams point to wrong reference samples after the embedding process. Since

only the motion vector difference is encoded instead of the full scale motion vector. Owing to

such prediction dependency, the new foreground video creates the wrong reference problem.

To solve the wrong reference issue, re-encoding the motion information is necessary for the

surrounding MBs near the borders between foreground and background videos. In H.264/AVC,

the motion vector difference is encoded according to the neighboring three motion vectors rather

than the motion vector itself. Hence an identical motion vector predictor is needed for both en-

coder and decoder. However, due to foreground picture insertion, the motion compensation of

background blocks may have wrong reference blocks from the new foreground pictures. Con-

-43-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

(a) (b)

Figure 3.11: Illustration of the Motion Vector Re-mapping Technique. (a) The Original Coding
Mode and Motion Vectors. (b) Re�nement by Using Inter4x4 Mode and Re-mapped Motion
Vectors.

sequently, the incorrect motion vectors cause serious prediction error propagated to subsequent

pictures through the motion compensation process.

Within the background pictures, the reference pixels pointed by the motor vector may be

lost or changed. For the MBs with wrong prediction reference, the motion vectors need to

be re�ned for correct reconstruction at the receiver. To provide good tradeoff between the R-D

performance and complexity, only the MBs using the reference blocks across the picture borders

are re�ned. The re�nement process can be done with motion re-estimation, mode decision and

entropy coding. It takes signi�cant complexity to perform exhaustive motion re-estimation

and RDO mode decision for every MB with wrong prediction reference. Therefore, we use a

motion vector re-mapping method (MVR) that has been extensively studied for MPEG-1/2/4

[14][15][16]. Before applying the MVR to the inter-coded w-MBs, we select the Iinter4�4

mode as indicated in Figure 3.11. The MVR modi�es the motor vector of every 4�4 w-block

with a newmotion vector pointing to the nearest of the four boundaries at the foreground picture.

With the newly modi�ed motion vectors, the prediction residue is re-computed and the HT

transform is used to generate the new transform coef�cients. Finally, the new motion vector

and re�ned transform coef�cients of w-blocks are entropy encoded as the �nal bitstream.

-44-

Chapter 3. Low-Complexity Algorithm of MW-VET

In the following, we will interpret the inter re�nement process mathematically and explain

why we can reduce the frame memory in the RFMT. Take Figure 3.12 for example where the

blocks xw;1 and xw;2 are the w-blocks at frame 1 and frame 2 since they are predicted from the

to-be-covered block xc;0 and xc;1, respectively. In the original bitstream, the decoded signal of

the block xw;1 can be represented in Eq.(3.10) where rw;1 is the original residue.

xw;1 = rw;1 +MC (xc;0) (3.10)

If we do not re�ne the residue of the block xw;1, the decoded signal of the block xw;1 at client

side is obtained from the original residue rw;1 and the reference block yc;0 from foreground

region as represented in Eq.(3.11).

dxw;1 = rw;1 +MC (yc;0) = xw;1 �MC (xc;0) +MC (yc;0)

= xw;1 +MC (yc;0 � xc;0) (3.11)

, where the symbol MC (yc;0 � xc;0) indicates the serious mismatch of wrong reference prop-

agated via inter prediction since the blocks in the foreground and background region are quite

different in terms of pixel values. Therefore, to improve the video quality, we re�ne the residue

ofw-block after the fully decoding and the motion vector re-mapping. The re�nement of residue

can be represented by Eq.(3.12) where the symbol MC (xr;0) denotes motion compensation

from the new reference block xr;0 in the same region.

rw;1
0 = xw;1 �MC (xr;0) = rw;1 +MC (xc;0)�MC (xr;0)

= rw;1 +MC (xc;0 � xr;0) (3.12)

-45-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

The re�ned residue data is re-quantized and de-quantized as

rw;1
0 = Pd � Pe � rw;10 = Pd � Pe � [rw;1 +MC (xc;0 � xr;0)]

= Pd � Pe � rw;1 + Pd � Pe �MC (xc;0 � xr;0)

= rw;1 +MC (xc;0 � xr;0) + ew;1 (3.13)

, where the symbol ew;1 is the quantization error ofMC (xc;0 � xr;0). As metioned in Eq.(2.2),

the quantized data rw;1 has no further quantization distortion with the same quantization step.

In the transcoded bitstream, the decoded signal of this w-block is represented in Eq.(3.14).

x0w;1 = rw;1
0 +MC (xr;0) = rw;1 +MC (xc;0 � xr;0) + ew;1 +MC (xr;0)

= xw;1 + ew;1 (3.14)

, where the symbol ew;1 indicates the re�nement error with respect to the original reconstructed

value xw;1. As compared to Eq.(3.12), we can signi�cantly reduce the mismatch fromMC (yc;0 � xc;0)

to ew;1 because andMC (xc;0 � xr;0) is smaller thanMC (yc;0 � xc;0) and the quantization error

ofMC (xc;0 � xr;0) is much smaller thanMC (xc;0 � xr;0) itself.

We further consider the re�nement of the next w-block xw;2 whose the re�ned motion vector

points to the block xw;1. In the original bitstream, the decoded signal of the block xw;1 can be

represented in Eq.(3.15) where rw;2 is the original residue.

xw;2 = rw;2 +MC (xc;1) (3.15)

The re�nement of residue can be represented by Eq.(3.16) where the symbolsMC (xw;1) denote

-46-

Chapter 3. Low-Complexity Algorithm of MW-VET

Figure 3.12: An Example of the Inter Prediction Chain

motion compensation from the reference block xw;1.

rw;2
00 = xw;2 �MC (xw;1) = rw;2 +MC

�
xc;1
�
�MC (xw;1)

= rw;1 +MC
�
xc;1 � xw;1

�
(3.16)

Similarly, the re�ned residue data is re-quantized and de-quantized as

rw;2
00 = Pd � Pe � rw;200 = Pd � Pe �

�
rw;2 +MC

�
xc;1 � xw;1

��
= Pd � Pe � rw;2 + Pd � Pe �MC

�
xc;1 � xw;1

�
= rw;2 +MC

�
xc;1 � xw;1

�
+ e0w;2 (3.17)

, where the symbol e0w;2 is the quantization error of MC
�
xc;1 � xw;1

�
. In the transcoded bit-

-47-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

stream, the decoded signal of this w-block is represented in Eq.(3.18).

x00w;2 = rw;2
00 +MC

�
x0w;1

�
= rw;2 +MC

�
xc;1 � xw;1 + x0w;1

�
+ e0w;2

= xw;2 +MC (ew;1) + e
0
w;2 (3.18)

As shown, the re�nement error of the block xw;1 propagates to the proceeding blocks that take

the block xw;1 as reference. To end off the error propagation in such circumstances, we use the

reconstructed signal after re�nement x0w;1 instead of the original reconstructed signal xw;1 to

re�ne the block xw;2 as represented by Eq.(3.19)

rw;2
0 = xw;2 �MC

�
x0w;1

�
= rw;2 +MC

�
xc;1
�
�MC

�
x0w;1

�
= rw;1 +MC

�
xc;1 � x0w;1

�
(3.19)

Then, the re�ned residue data is re-quantized and de-quantized as

rw;2
0 = Pd � Pe � rw;20 = Pd � Pe �

�
rw;2 +MC

�
xc;1 � x0w;1

��
= Pd � Pe � rw;2 + Pd � Pe �MC

�
xc;1 � x0w;1

�
= rw;2 +MC

�
xc;1 � x0w;1

�
+ ew;2 (3.20)

, where the symbol ew;2 is the quantization error of MC
�
xc;1 � x0w;1

�
. In the transcoded bit-

stream, the decoded signal of this w-block is represented in Eq.(3.21).

x0w;2 = rw;2
0 +MC

�
x0w;1

�
= rw;2 +MC

�
xc;1 � x0w;1 + x0w;1

�
+ ew;2

= xw;2 + ew;2 (3.21)

-48-

Chapter 3. Low-Complexity Algorithm of MW-VET

As shown, the symbol MC (ew;1) in Eq.(3.18) is eliminated in Eq.(3.21). Therefore, for each

w-block, the original reconstructed signal is no longer used for the future re�nement and could

be replaced with the reconstructed signal after the re�nement. Therefore, we use a shared frame

memory to buffer the reference pixels for both the decoding and re-encoding.

The re�nement may occur at the border MBs with the skip mode. Since two neighboring

motion vectors are used to infer the motion vector of a MB with the skip mode, the border

MBs with the skip mode may be classi�ed as two kinds of w-MBs due to the insertion of the

foreground blocks. Firstly, for the w-MBs whose motion vectors that do not refer to a reference

bock covered by the foreground pictures, the skip mode is changed to inter16�16 mode to

compensate the mismatch of motion vectors by the motion inference. Secondly, for the w-MBs

whose motion vectors point to reference blocks covered by the foreground pictures, the skip

mode is changed to inter16�16 mode and the motion vector is re�ned to new position by the

MVR method. Then, the re�ned coef�cients are computed according to the new prediction.

To �x the wrong sub-pixel interpolation after inserting the foreground pictures, the blocks

whose motion vectors point to the wrong sub-pixel positions are re�ned. H.264/AVC supports

�ner sub-pixel resolutions such as 1/2-, 1/4- and 1/8-pixel. The sub-pixel samples do not exist

in the reference buffer for motion prediction. To generate the sub-pixel samples, a 6-tap inter-

polation �lter is applied to full-pixel samples for the sub-pixel location. The sub-pixel samples

within 2-pixel range of picture boundaries are re�ned to avoid vertical and horizontal artifacts.

The re�nement is done by replacing the wrong sub-pixel motion vectors with the nearest full-

pixel motion vectors and the new prediction residues are re-encoded.

-49-

Sec 3.4. Reduced Frame Memory Transcoding (RFMT)

3.4.3 Syntax Level Bypassing (SLB)

To minimize the transcoding complexity, the blocks within inter-coded p-MBs and n-MBs are

bypassed at the syntax level after the CAVLD. Since the blocks within p-MBs and n-MBs are

not affected by the picture insertion directly, the syntax data can be forwarded unchanged to the

multiplexer.

As for the intra-coded frames, the affected blocks by video insertion are re�ned to compen-

sate the drift error. We observe that the correction of p-blocks within the w-MBs can signi�-

cantly improve the quality. While the correction of intra-coded p-MBs might get a bit of quality

improvement with drastically increased complexity.

As for the inter-coded frames, we examine the effectiveness of error compensation in the

following. In the original bitstream, the decoded signal of the block xp;2, whose motion vector

points to the block xw;1, can be represented in Eq.(3.15) where rp;2 is the original residue.

xp;2 = rp;2 +MC (xw;1) (3.22)

The residue can be re-computed with the re�ned pixel values x0w;1 by Eq.(3.23).

rp;2
0 = xp;2 �MC

�
x0w;1

�
= rp;2 +MC (xw;1)�MC

�
x0w;1

�
= rp;2 +MC

�
xw;1 � x0w;1

�
(3.23)

Similarly, the transcoded data can be represented by Eq.(3.24) where the re�nement error of the

-50-

Chapter 3. Low-Complexity Algorithm of MW-VET

w-block is propagated to the next p-block.

x0p;2 = rp;2
0 +MC

�
x0w;1

�
= Pd � Pe � rp;2 � Pd � Pe �MC

�
xw;1 � x0w;1

�
+MC

�
x0w;1

�
= rp;2 � Pd � Pe �MC (ew;1) +MC

�
x0w;1

�
= xp;2 �MC (xw;1) +MC

�
x0w;1

�
= xp;2 +MC

�
x0w;1 � xw;1

�
= xp;2 +MC (ew;1) (3.24)

Let's assume the re�nement of w-block performs well and the term of MC (ew;1) is smaller

than the quantization step size, it means that the quantization ofMC (en) becomes zero. If our

assumption is valid, the term Pd � Pe �MC (ew;1) in Eq.(3.24) can be removed. Therefore, the

re�nement error of the block xw;1 still remains in the following p-blocks that take the block xw;1

as reference. Alternatively, we use the original residue of the block xp;2 without re�nement in

the transcoded bitstream, the decoded data at the client side is

dxp;2 = rp;2 +MC
�
x0w;1

�
= xp;2 �MC (xw;1) +MC

�
x0w;1

�
= xp;2 +MC

�
x0w;1 � xw;1

�
= xp;2 +MC (ew;1) (3.25)

As shown, the client can derive the same results as Eq.(3.24). Thus, the drift compensation of

inter-coded p-block has no quality improvement despite extra computations. In terms of com-

plexity reduction, we bypass all the transform coef�cients of p-MB and n-MB to the transcoded

bitstream.

In summary, the proposed MW-VET deals with each type of block ef�ciently according to

Table 3.4. Figure 3.13 summarizes the re�nement �ow during transcoding. In addition, the

-51-

Sec 3.5. Simulation Results

Table 3.4: The Corresponding Operations of the RFMT for Each Block Type During the VET
Transcoding

Block type Operations
Intra-coded w-block IMS and CR*
Inter-coded w-block MVR and CR*

w-MB Intra-coded p-block CR*
Inter-coded p-block SLB

n-block SLB
p-MB SLB
n-MB SLB

* CR means coef�cient re-calculation.

partially re-encoding method can preserve picture quality. For the applications requiring multi-

generation transcoding, the deterioration caused by successive decoding and re-encoding of the

signals can be eliminated with the reuse of the coding information from the original bitstreams.

As the motion compensation with multiple reference frames is applied, the proposed algorithm

is still valid. Speci�cally, it �rst classi�es the type of each block (i.e. n-block, p-block, and

w-block according to Figure 2.2). The classi�cation is based on whether the reference block

is covered by foreground pictures and it does not matter what reference picture is chosen. In

other words, the wrong reference problem with multiple reference frame feature, as illustrated

in Figure 3.14,is an extension of Figure 2.2. Then, the aforementioned MVR and SLB processes

are applied to each type of inter-coded block.

3.5 Simulation Results

To support PIP functionality, we have made several re�nements to guarantee the correctness of

reconstructed picture of PIP bitstream under the consideration of transcoding complexity. For

the clarity, we indicate the steps of these re�nements by Figure 3.15. Table 3.5 explains what

happens in each step and what re�nement have been done in detail.

The R-D performance and execution time are compared based on the transcoding meth-

-52-

Chapter 3. Low-Complexity Algorithm of MW-VET

Figure 3.13: The Flow Chart of the Proposed RFMT

Table 3.5: The Detailed Re�nement during the VET Transcoding

Problem Re�nement
1 Intra prediction Intra mode switching
2 Motion vector predictor Re-calculate motion vector difference
3 Inter prediction Motion vector re-mapping
4 Intra blocks in P-frame Re-encoding the necessary cases
5 Residue mismatch Re-calculate transform coef�cients
6 Unrestricted MVs of FG Fine tune to full-pixel position

-53-

Sec 3.5. Simulation Results

FG

FGFG

BG

BGBG

: w-blcok (8x8)

: n-block (8x8)

Frame n-1

Frame nFrame n-2

: Inter Prediction Path

FG

BG

Frame n-3

Reference Picture List

Current Picture

Figure 3.14: The ExtendedWrong Reference Problem whenMultiple Reference Frame is Used

-54-

Chapter 3. Low-Complexity Algorithm of MW-VET

Figure 3.15: The Visual Illustration after Each Re�nement Step during the VET Transcoding

-55-

Sec 3.5. Simulation Results

Table 3.6: The Encoder Parameters for the Experiments

Frame size QCIF (176x144), SD (720x480)
Frame rate 30 frames/s
GOP structure IPPP......P
Total frame 100
Intra period 15
Reference frame number 1
Motion estimation range 16 for QCIF, 64 for SD
Quantization step size 17,21,25,29,33,37

ods, test sequences and picture insertion scenarios. For a fair comparison, all the transcoding

methods have been implemented based on H.264/AVC reference software of version JM9.4.

In addition, all the transcoders are built using Visual .NET compiler on a desktop with Win-

dows XP, Intel P4 3.2 GHz and 2 Giga bytes DRAM. To further speed up the H.264/AVC

based transcoding, the source code of the reference CAVLD module is optimized using a ta-

ble lookup technique [34]. In the simulations, the test sequences are pre-encoded with the test

conditions as shown in Table 3.6. The notation for each new transcoded bitstream is `back-

ground_foreground_x_y', where x and y are the coordinates of the foreground picture. The

values of x and y need to be on the MB boundaries within the background picture. To eval-

uate the picture quality of each reconstructed sequence, the two original source sequences are

combined to be the reference video source for peak-signal-to-noise-ratio (PSNR) computation.

The percentage of each MB type and each 4�4 block type is shown in Figure 3.16. In

general, the p-MBs occupy 30% to 80% of MBs and the percentage of the w-MBs is less than

15%. In addition, the w-blocks occupy only 5% of the 4�4 blocks. Bypassing all the p-

blocks that are 95% of blocks accelerates the transcoding process as shown in Table 3.7. On

the average, as compared to the CPDT, the MW-VET can achieve 25 times of speedup with

improved picture quality.

Table 3.8 lists the PSNR comparison to show the effectiveness of error correction for differ-

-56-

Chapter 3. Low-Complexity Algorithm of MW-VET

Figure 3.16: The Percentage of the Macroblock Types and the Block types during the VET
Transcoding

Table 3.7: The Improvement of Execution Time and Quality as Compared to the CPDT (1)

VET combination Speed-up ratio PSNR gain of Luma component
BG(2) FG(3) & lication
Stefan Mobile_1_1 25 +1.72 dB
Table Carphone_1_1 28 +1.56 dB
Stefan Mobile_1_1 28 + 1.18 dB

Foreman_33_1
News_1_20
Coastguard_33_20

Table MD_1_1 25 + 1.15 dB
Stefan _33_1
Carphone _1_20
News_33_20

(1) Intel P4 3.2G, 2GB SDRAM, Windows XP and Visual .NET compiler.
(2) All are in SD (720�480) resolution.
(3) All are in QCIF (176�144) resolution.

-57-

Sec 3.5. Simulation Results

Table 3.8: The Effectiveness of Error Correction (EC) for Different Kinds of p-blocks

Methods PSNR
Golden 43.73
CPDT 42.02
RFMT w/o EC 41.18
RFMT with EC for the p-blocks in intra-coded w-MBs 43.16
RFMT with EC for all intra-coded p-blocks 43.33
RFMT with EC for all inter-coded p-blocks 43.14

ent kinds of blocks. The Golden method is not a transcoding scheme. The R-D curves of Golden

method are obtained from encoding the original picture-in-picture source sequences. The inclu-

sion of the R-D curves of Golden method is to highlight the upper bound of a transcoder. The

error correction of p-blocks in the intra-coded w-MBs can obtain a signi�cant gain in picture

quality. However, the error correction for other p-blocks almost has no quality improvement

while the complexity increases dramatically. Therefore, the results verify our derivations in

Section 3.4.

The R-D performance of different approaches at various bit rates and different VET sce-

narios are compared. We embedded one foreground picture into one background picture at

different positions in Figure 3.17 and Figure 3.18. The performance of RFMT is better than

that of CPDT. At medium and high bit rates, the RFMT can offer up to 1.5 dB improvement in

PSNR. Even through the mode and motion vectors obtained by our IMS and MVR is not always

the optimal solution, the simulation results show that our IMS and MVR approaches provide a

solution close to the optimal case. In the comparison, we have plotted the R-D curves named as

RFMT_RDO to show the optimal R-D performance when the partial re-encoding is performed

under RDO mode decision and motion vector re-estimation. It could be observed that the R-D

performance of RFMT with IMS and MVR is very close to that of RFMT_RDO.

Figure 3.19 shows the R-D curve of transcoding bitstreams that embed four foreground

pictures onto one background picture at the same time. As compared with the one-foreground

-58-

Chapter 3. Low-Complexity Algorithm of MW-VET

(a)

(b)

Figure 3.17: The Rate-Distortion Performance of the Luminance Component When One Fore-
ground Carphone_QCIF is Embedded in Table_SD: (a) Table_SD_Carphone_QCIF_1_1. (b)
Table_SD_Carphone_QCIF_33_20.

-59-

Sec 3.5. Simulation Results

(a)

(b)

Figure 3.18: The Rate-Distortion Performance of the Luminance Component When One Fore-
ground Foreman_QCIF is Embedded in Mobile_SD: (a) Mobile_SD_Foreman_QCIF_1_1. (b)
Mobile_SD_Foreman_QCIF_33_20.

-60-

Chapter 3. Low-Complexity Algorithm of MW-VET

VET scenarios, the performance has a little degradation because that the ratio of w-blocks and

p-blocks increases. Figure 3.20 shows the performance of multi-generation transcoding that

embeds one foreground picture to the background picture every generation. Our MW-VET can

retain the R-D performance while the CPDT degrades every generation. Thus, the proposed

MW-VET is robust for the multi-generation transcoding.

3.6 Summary

In this chapter, we have proposed a low-complexity algorithm of a H.264/AVCmultiple-window

video embedding transcoder (MW-VET) to embed the multiple foreground videos into one

background video. The pictures are inserted at the MB-aligned positions to retain high �exibil-

ity.

As the prediction is applied to the slice-aligned data partitions within the original bitstreams,

the SGT parses and merges the bitstreams directly. When the prediction is applied to the region-

aligned data partitions, the MBs with wrong prediction reference are processed with the RFMT

that partially re-encodes the blocks to minimize the number of re�ned blocks. To handle inter-

coded and intra-coded blocks that suffer from the wrong reference problem, the RFMT employs

motion vector remapping (MVR) and intra mode switching (IMS) respectively. The un-affected

MBs are handled by the syntax level bypassing (SLB) in terms of transcoding throughput and

picture quality. Apart from a fully functional decoder, the proposed algorithm requires only

minor extra complexity for foreground insertion.

To improve coding ef�ciency and alleviate drifting errors, every w-block, whose (inter or

intra) reference samples are covered entirely or partially by the foreground images, is �ne tuned

such that the updated inter or intra reference samples are derived completely from the back-

ground region. Further, the residues of the p-blocks within intra-coded macroblocks, which are

-61-

Sec 3.6. Summary

(a)

(b)

Figure 3.19: The Rate-Distortion Performance of the Luminance Component by Four Fore-
grounds Embedding with the Single-Generation Transcoding: (a) Table_SD_MD_QCIF_1_1
_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF_33_20. (b) Mobile_
SD_MD_QCIF_1_1_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF_33_20.

-62-

Chapter 3. Low-Complexity Algorithm of MW-VET

(a)

(b)

Figure 3.20: The Rate-Distortion Performance of the Luminance Component by Four Fore-
grounds Embedding with the Multi-Generation Transcoding: (a) Table_SD_MD_QCIF_1_1
_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF_33_20. (b) Mobile_
SD_MD_QCIF_1_1_Stefan_QCIF_33_1_Carphone_QCIF_1_20_News_QCIF_33_20.

-63-

Sec 3.6. Summary

subsequently predicted from the w-blocks, are re�ned to stop error propagation in the spatial

domain. In addition, unnecessary computations are skipped by detecting unaffected blocks.

Our results show that the RFMT as compared to the cascaded pixel domain transcoder

(CPDT) can signi�cantly reduce the processing complexity by 25 times with similar or higher

R-D performance. In addition, the RFMT can achieve up to 1.5 dB quality improvement in

PSNR. Based on the RFMT, the quality improvement over the CPDT is signi�cant for multi-

generation transcoding.

-64-

CHAPTER 4

System Architecture Design Space

Exploration

4.1 Introduction

In Chapter 3, a low-complexity multiple-window video embedding transcoder (MW-VET) is

proposed based on an H.264/AVC decoder. The proposed algorithm can be implemented as

software on a general purpose computer, however, the throughput of a pure software implemen-

tation is insuf�cient for real-time applications as shown in Table 4.1.

To improve the transcoding throughput, in this chapter a platform-based architecture is pro-

posed for combing H.264/AVC VET transcoder and decoder based on the low complexity al-

-65-

Sec 4.1. Introduction

Table 4.1: The Transcoding Throughput Performance of Proposed Algorithm of a Software
Implementation

Resolution of BG Resolution of FG Throughput Performance(1)
(Frame per Second)

CIF (352x288) QCIF (176x144) 3~4
SD (720x480) QCIF (176x144) 1~1.5
HD (1920x1088) QCIF (176x144) 0.1~0.3

(1) Intel P4 3.2G, 2GB SDRAM, Windows XP and Visual .NET compiler.

gorithm in Chapter 3. The platform-based design is adopted while the system is partitioned

into several dedicated modules to provide task-level parallelism. A VET pipe is used to support

the operations for the foreground insertion, which includes the decoding of foreground syntax,

the re�nement of the background macroblocks, and the re-encoding of the combined syntax

elements. With such implementation, the proposed architecture can perform video decoding

and transcoding alternatively or simultaneously. Such VET enabled decoders can �nd their

applications in a peer-to-peer service community, in which every user enjoys versatile video

embedding services while using only partial computational power.

In addition, this chapter advocates the simulation-based evaluation at a higher level of ab-

straction for the system architecture design space exploration. The system development needs

to perform an early estimation and balance for some system-level parameters because the op-

timization of the individual module may not lead to the optimal performance for the whole

system. In addition, the level of synchronization granularity for each layer between the mem-

ory hierarchies strongly in�uences the system performance.

The rest of this chapter is organized as follows: Section 4.2 describes the algorithm to archi-

tecture mapping. Section 4.3 presents the system architecture of the proposed video embedding

transcoder. Section 4.4 describes the �ow of the design space exploration.Section 4.5 presents

the pruned design space for exploring the level of synchronization granularity and the design

-66-

Chapter 4. System Architecture Design Space Exploration

combination of the video pipe. Section 4.6 shows how we evaluate the system performance.

Then, Section 4.7 shows the simulation results using transaction level modeling. Finally, Sec-

tion 4.8 summaries this chapter.

4.2 Algorithm to Architecture Mapping

This section describes the mapping from algorithm to architecture and some very early de-

sign decisions such as architecture selection and system partitioning. First of all, we use the

platform-based architecture to enable the hardware/software (HW/SW) partition with high �ex-

ibility and extensibility. This concept has been widely studied in the literature [35][36][37]. Al-

though the implementation of the pure software results in the best �exibility, the required com-

putational power is inadequate. Speci�cally, implementing all the tasks on a reduced instruction

set computing (RISC) CPU consumes more than 46,000 cycles per macroblock [38][39][40],

thus it makes it impossible to achieve the real time application for the 1920x1088 @ 60Hz

videos, where the RISC CPU needs to operate at 23 GHz or higher.

To meet the real-time requirement, we partition all the computationally intensive tasks as

the hardware components. Figure 4.1 shows the top level data �ow. First of all, the coarse-grain

functions, including the setting of the sequence parameter set (SPS), the picture parameter set

(PPS), the slice header (SH), and the locations of foreground pictures, are performed in software

on a host processor because these tasks require less computation and lower synchronization rate.

For the macroblock-level re�nement which requires higher synchronization rate and more com-

putation, we partition this part as dedicated hardware. The data �ow and data dependency of

the macroblock-level re�nement in RFMT can be further presented in Figure 4.2 where the

targeted algorithm is decomposed into separated tasks with self-contained functionality. Ac-

cording to the complexity analysis in [41][42][43], the grayed blocks including the transform

-67-

Sec 4.3. Highly Ef�cient System Architecture

module, the prediction module, the deblocking module, and the entropy coding module that

take most of computation in an H.264/AVC decoder. In addition, the blued blocks represents

the communicationally intensive tasks, i.e. the DRAM accesses. We distribute the computa-

tional and communicational workload by mapping these tasks onto the separated, dedicated

hardware modules. To further increase the throughput performance, we use �ve-staged pipeline

to provide task-level parallelism as shown in Figure 4.2. As compared to the tasks for decod-

ing, the techniques used for the re�nement in the RFMT consume relatively less computation.

However, in order to alleviate the overhead due to the interrupt latency of the RISC CPU, we

implement all the re�nement techniques in the hardware component with a minor extra cost.

Therefore, we implement the RFMT in a heterogeneous system including the RISC CPU, the

communication bus, and the dedicated hardware components. The RISC CPU is mainly in

charge of the high-level tasks such as the sequence-level or slice-level processing monitor, the

location of foreground insertion, and other user interaction tasks. The hardware components

address the low-level computationally intensive video signal processing.

4.3 Highly Ef�cient System Architecture

The performance of a typical ARM platform-based design is constrained by high communi-

cations overhead and insuf�cient performance of the RISC processor for entropy coding [34].

According to the results in [34], the performance of dedicated hardware takes 1,280 cycles per

macroblock in the worst case while the overall system performance is about 120,000 cycles per

macroblock on the average. Speci�cally, each hardware accelerator works as a standalone co-

processor of the RISC processor via only one 32-bit AHB bus. However, all the co-processor

processes the data from the ARM core. In addition, data movement without direct memory

access (DMA) incurs great penalty on the execution cycles. In addition to the massive data

-68-

Chapter 4. System Architecture Design Space Exploration

Last Macroblock
in a Picture?

Last Picture
in a GOP?

Start VET Transcoding

Finish VET Transcoding

Assign the Location of
Foreground Pixture

Set SPS, PPS, and SH

RISC
CPU
(SW)

Fully Decoding +
Partial Re-encoding

Last
Picture?

RISC
CPU
(SW)

HW

Figure 4.1: The Top Level Data Flow of RFMT and Its System Partitioning

-69-

Sec 4.3. Highly Ef�cient System Architecture

Entropy
Decoding

Texture Decoding Mode
Inference

Intra or
Inter?

Motion
Vector

Prediction

DRAM Read

Interpolation Interpolation

Reconstruction

Deblocking
Filter

Intra Mode
Switching

Motion
Vector

Re-mapping

WRP? WRP?

SLB?

Coefficient
Re-Calculation

Entropy
Encoding

DRAM
Write

C
A

B
A

D
D

F

IQ
ID

C
T

IIP
D

B

Refinem
ent

Clock
Cycles

1
Clock

Cycles
2

Clock
Cycles

3
C

lock
Cycles4

C
A

B
A

E

Clock
Cycles

5

Figure 4.2: The Re�nement for Each Processing Macroblock and Its Hardware Partitioning
which is of Five�Staged Pipeline

-70-

Chapter 4. System Architecture Design Space Exploration

transfer, the entropy coding places the heaviest computational load on the RISC processor. The

general purpose processor cannot process the operations of entropy coding in real-time such that

the execution cycle count of processor is considerably greater than that of dedicated hardware.

Therefore, system performance and the utilization of each hardware accelerator are both signif-

icantly degraded due to synchronization overhead in the communication-centric platform-based

designs.

To solve the problems addressed above, we implement most functional blocks by dedicated

modules interconnected with the shared ping-pong memories to provide massive parallelism.

First, the entropy coding is implemented as dedicated hardware such that the load of the RISC

core can be signi�cantly alleviated. Second, we connect each module such that most of data

communications take place through the video pipe instead of passing information between the

RISC core and the AHB bus. Third, we allocate several ping-pong buffers between adjacent

pipeline stages such that the computation and communication cycles can be overlapped.

Figure 4.3 depicts the block diagram of the proposed system architecture, which mainly

consists of six parts including (1) the RISC CPU, (2) the memory sub-system, (3) the video

decoding pipe, (4) the VET pipe, (5) the 32-bit AHB control bus, and (6) the 32-bit AHB data

bus. The RISC CPU acts as the data �ow controller, which programs the other modules and

constantly monitors their statuses via the 32-bit control bus. For the video transcoding, the

decoding and the VET pipes represent the major data paths. The decoding pipe decodes the

background video and adaptively maps the motion vectors and intra predictors depending on

the location of the foreground video. Meanwhile, the VET pipe re-encodes the syntax elements

decoded from the foreground or the background bitstream for the foreground insertion. The

decoded background pictures are stored in the external DRAM for the temporal references and

a dedicated 32-bit AHB data bus is employed for the intensive data transfer between the video

-71-

Sec 4.3. Highly Ef�cient System Architecture

New Predictor

Decoded Pixels

(5) 32-bit AMBA AHB Control Bus

External Memory Interface

Mobile DDR SDRAM (256 Mega bits)

CABAD

(6) 32-bit AMBA AHB Data Bus

Bitstream
FIFO

ARM
926EJS

Instruction
Memory

IQ/IDCT
MB

Texture
Buffer

MB
Motion
Buffer

Data Fetch
Intra/Inter
Prediction

Subblock
Reconstruct

Buffer
DeBlocking

Address
Translator

Hardware
Input

Interface

(4) Decoding pipe

HDMI Interface

Synchronizaton
Buffer

(2) Memory Sub-system

Data
Memory

H.264/AVC
Transcoder/Decoder

Input
Background

Bitstream Synchronizaton
Buffer

NAL
Parsing

23 32

DataControl

Mode
Buffer

Motion
Buffer

(1) ARM 9
CPU

Refinemnt
Module

CABAE

CABAD

(5) VET pipe

NAL
Encapsulation

Hardware Output
Interface

Output
Bitstream

Input
Foreground
Bitstreams

Output Background Picture

MUX

MUX

Motion
SE Buffer

Texture
SE Buffer

MUX

Bitstream
FIFO

+

- DCT & Q

IQ/IDCT

Reconstructed
Pixels

Refinemnt Module

Refined
Coeff.

Foreman.emfForeman.emf

Figure 4.3: The System Architecture of the Proposed Video Embedded Transcoder and De-
coder

pipe and the external DRAM.

4.3.1 Memory Hierarchy

For the data storage, we utilize the four-level memory hierarchies: (1) the external memory

for the large memory space requirement of the decoded picture buffer, (2) the synchroniza-

tion buffer in the memory sub-system for decoupling the latency of external memory and the

operation of video pipe, (3) the ping-pong memories between modules for eliminating the com-

munications overhead of the video pipe and reducing the on-chip bus bandwidth, and (4) the

local memory within each module for reducing the input bandwidth.

First, we use double-data-rate (DDR) synchronous dynamic random access memory (SDRAM)

as the external memory for increasing nearly twice the bandwidth of the high-density memory.

Second, in order to increase the on-chip bus utilization while maximizing the effective through-

put of DRAM accesses, a synchronization buffer is used in the memory sub-system so as to

re-format the read/write data while performing the DRAM accesses. With the synchroniza-

-72-

Chapter 4. System Architecture Design Space Exploration

tion buffer, the DRAM latency can be decoupled from the operation of video pipe such that

the internal modules can fetch or load data with a lower latency. Third, the video pipe con-

sists of a number of autonomous modules that communicate through ping-pong memories. The

pipeline with interconnected memories frees the processor from spending clock cycles to cope

with the intensive data movement. In addition, the use of the ping-pong memories avoids the

communications overhead because each module is reading from (or writing into) a buffer rather

than directly communicating with another module. Fourth, the local memories are employed

as con�guration register and pixel line buffer for storing the general parameter and reducing

the frequent access to the external memory. The next two sections detail the operations of the

decoding and VET pipes when the system is con�gured for transcoding.

4.3.2 Video Decoding Pipe

The decoding process of the background bitstream begins with the control information followed

by the slice data. The control information such as sequence parameter set (SPS), picture para-

meter set (PPS), and slice header (SH) are �rstly acquired by the RISC CPU for programming

each module in the decoding pipe. Then, the slice data is decoded by feeding the remain-

ing bitstream through the decoding pipe, which starts from the CABAC decoding (CABAD)

and ends with the DeBlocking �ltering. The CABAD module performs entropy decoding of

the motion information and the transform coef�cients. The decoded motion information is

then used in the Data Fetch module to derive the motion vectors or the intra prediction modes.

Meanwhile, the transform coef�cients are processed by the IQ/IDCT module to reconstruct the

prediction residues. While the memory sub-system fetches the data in preparation for the next

execution stage, the Inter/Intra Prediction (IIP) module generates the inter or intra predictors by

performing the sub-pixel interpolation or the directional prediction using the reference pixels

-73-

Sec 4.3. Highly Ef�cient System Architecture

pre-fetched and stored in the synchronization buffer. After that, the block being decoded is

reconstructed by adding the prediction residuals to the corresponding predictors and is updated

using the deblocking �ltering.

Each speci�c module within the proposed video pipe can be mapped into the well-designed

micro-architecture. For instance, [44] and [45] are the design alternatives for the inverse trans-

form module. However, the state-of-the-art designs of the pixel prediction, which includes the

inter and intra prediction, pose some disadvantages in terms of ef�ciency and utilization. To that

end, a uni�ed �ltering architecture is proposed for the inter and intra prediction in the Section

5.3.

In addition to the normal decoding process, the decoding pipe performs the prediction re-

�nement with the minimal effort. First, the Data Fetch module determines the current decoded

block according to the coding mode, motion vector, and the location for the foreground inser-

tion. Second, if the current block is recognized as a w-block or a p-block within an intra-coded

macroblock, a particular procedure is invoked for the motion vector remapping or the intra

mode switching such that the wrong reference problem can be solved as described in Chapter 3.

Therefore, the traf�c-intensive motion estimation and computation-intensive mode decision are

eliminated from the proposed architecture. Third, together with the remapped motion vectors or

the re�ned intra prediction modes, the new prediction block and the current reconstructed block

are passed to the VET pipe for the re�nement of prediction residues. Particularly, the new pre-

diction block is composed of the full-pixel block without consuming the execution cycles of the

IIP module.

-74-

Chapter 4. System Architecture Design Space Exploration

4.3.3 Video Embedding Transcoding Pipe

The VET pipe is started from the CABAC decoding of the foreground syntax elements and

ended with the CABAC encoding (CABAE) of the syntax elements decoded from either the

foreground bitstream or the background bitstream. Particularly, for the w-block or the p-block

within an intra-coded macroblock, the Re�nement module updates its prediction residues by

subtracting the new prediction block from the current reconstructed block. Furthermore, the

reconstruction of these re�ned w-/p-blocks overwrites the decoded background image so as

to minimize the drifting errors in the output bitstream. For lower power consumption, the

de-blocking �ltering is skipped during the re�nement of the w-/p-blocks to remove redundant

computation. Although such hardware-oriented simpli�cation may cause drifting errors for the

current decoded picture, there is no noticeable difference in the visual quality at high bit rate

while providing higher quality for the transcoded bitstream. With the low complexity algorithm

in the absence of motion estimation and mode decision, we can implement the function of

transcoding upon an H.264/AVC decoder by the VET pipe.

Figure 4.4 shows the comparison for the visual quality. As shown, there is no noticeable

difference between Figure 4.4 (a) and Figure 4.4 (b). On the other hand, Figure 4.4 (c) has more

visual artifacts than Figure 4.4 (d) especially around the boundary of the inserted foreground.

Therefore, such hardware-oriented simpli�cation can seamlessly integrate the normal decoding

process and transcoding functionality while providing better transcoded visual quality.

4.3.4 Memory Sub-system

The memory sub-system consists of an address translator, a memory interface, and a synchro-

nization buffer. The address translator takes the motion vectors from the Data Fetch module and

generates the physical DRAM address for the external memory interface, which further issues

-75-

Sec 4.3. Highly Ef�cient System Architecture

(a) (b)

(c) (d)

Figure 4.4: The subjective Quality Comparison of the 100th Frame: (a) Decoded Picture with-
out Re�nement Update (b) Decoded Picture with Re�nement Update (c) Transcoded Picture
without Re�nement Update (d) Transcoded Picture with Re�nement Update.

-76-

Chapter 4. System Architecture Design Space Exploration

the DRAM commands and enables the auto-precharge function adaptively. Particularly, for the

concurrent DRAM access and video decoding, all the read/write data required for the video pipe

will be �rstly fetched in the synchronization buffer. Such a buffer is also used for reformatting

the read/write data exchanged between the video pipe and the off-chip DRAM so as to simul-

taneously increase the on-chip bus utilization while maximizing the effective throughput of the

DRAM access. Speci�cally, for the implementation of the synchronization buffer, two SRAMs

are used as the ping-pong buffers to overlap the off-chip and on-chip data movements. Section

5.2 will describe more details about the memory sub-system.

In addition, the irregular and variable-rate bumping process of the H.264/AVC increases

the complexity of memory management. Different from prior video coding standards where

the decoder can output pictures according to the time stamps in the picture or slice header,

the network abstraction layers (NAL) in the H.264/AVC contain no timing information. Thus,

the bumping process manages the output of the decoded pictures such that the output order

conformance is guaranteed. Currently, the bumping process of the decoded pictures is invoked

when a decoded picture is to be stored in the decoded picture buffer (DPB) while there is no

empty space. Multiple decoded pictures could be output simultaneously while for some time

instances none of the pictures are output. The variable output rate causes extremely varying

bandwidth for the DRAM access. To ensure a constant output rate for the decoded pictures

when simultaneously performing both the transcoding and the decoding, a regulation buffer

with the size of the DPB is created and described as a modi�ed bumping process in Appendix

B.

-77-

Sec 4.3. Highly Ef�cient System Architecture

Table 4.2: The Transcoding Throughput Performance of Proposed Algorithm of a Software
Implementation

Architecture Granularity Granularity Size of Size of Internal Total Buffer
of Memory of Video Synchronization Ping-Pong Size
Subsystem Pipe Buffer N1 Buffer N2 N1+N2
(GM) (GP) (Bits) (Bits) (Bits)

A 16x16 16x16 20160 41184 61344
B 16x16 8x8 20160 32480 52640
C 16x16 4x4 20160 30432 50592
D 8x8 8x8 5424 32480 37904
E 8x8 4x4 5424 30432 35856
F 4x4 4x4 2160 30432 32592

4.3.5 Task Scheduling

We devise a hybrid pipeline structure to schedule the video pipe, where the entropy coding

modules operate at macroblock (MB) level while the other modules communicate at the sub-

block level to yield a smaller synchronization buffer. In addition, our hybrid pipeline structure

can harmonize both the VET and the decoding pipes such that the transcoded bitstream can be

output in a timely manner while the background video is being decoded. For clarity, Figure 4.5

depicts the scheduling of our hybrid pipeline design, where the CABAD and CABAE modules

operate at the macroblock level while the other modules communicate at the sub-block level.

In particular, there are six architectural candidates according to the different levels of data ex-

change. Table 4.2 summaries these six architectures and Figure 4.6 to Figure 4.11 illustrate

the corresponding task scheduling of each architecture. Lastly, the DeBlocking �lter and the

Re�nement module are scheduled to operate at the same sub-block stage because only either

one of them is activated for execution. This also suggests that the decoded background image is

made of the output results of the normal decoding process and the particular re�nement process.

-78-

Chapter 4. System Architecture Design Space Exploration

Figure 4.5: The scheduling of the Video Pipe Where P Means the CPU Programs the Individual
Module

Clock
Cycles CABAD IQIDCT

DRAM
Read

Fetch
Data via
AHB IIP Deblocking Refinement

Send Data
via AHB

DRAM
Write CABAE

0 MB_0
1 MB_1 MB_0 MB_0
2 MB_2 MB_1 MB_1 MB_0 MB_0
3 MB_3 MB_2 MB_2 MB_1 MB_1 MB_0 MB_0 MB_0
4 … MB_3 MB_3 MB_2 MB_2 MB_1 MB_1 MB_1 MB_0 MB_0
5 … … MB_3 MB_3 MB_2 MB_2 MB_2 MB_1 MB_1
6 … … MB_3 MB_3 MB_3 MB_2 MB_2
7 … … … MB_3 MB_3
8 … …

Figure 4.6: The Scheduling of the Architecture A

-79-

Sec 4.4. Effective Design Space Exploration

Clock
Cycles CABAD IQIDCT

DRAM
Read

Fetch Data
via AHB IIP Deblocking Refinement

Send Data
via AHB

DRAM
Write CABAE

0 MB_0
1 MB_1 MB_0,b8_0 MB_0
2 MB_0,b8_1
3 MB_0,b8_2
4 MB_0,b8_3
5 MB_2 MB_1,b8_0 MB_1 MB_0,b8_0 MB_0,b8_0
6 MB_1,b8_1 MB_0,b8_1 MB_0,b8_1 MB_0,b8_0 MB_0,b8_0 MB_0,b8_0
7 MB_1,b8_2 MB_0,b8_2 MB_0,b8_2 MB_0,b8_1 MB_0,b8_1 MB_0,b8_1
8 MB_1,b8_3 MB_0,b8_3 MB_0,b8_3 MB_0,b8_2 MB_0,b8_2 MB_0,b8_2
9 MB_3 MB_2,b8_0 MB_2 MB_1,b8_0 MB_1,b8_0 MB_0,b8_3 MB_0,b8_3 MB_0,b8_3
10 MB_2,b8_1 MB_1,b8_1 MB_1,b8_1 MB_1,b8_0 MB_1,b8_0 MB_1,b8_0 MB_0 MB_0
11 MB_2,b8_2 MB_1,b8_2 MB_1,b8_2 MB_1,b8_1 MB_1,b8_1 MB_1,b8_1
12 MB_2,b8_3 MB_1,b8_3 MB_1,b8_3 MB_1,b8_2 MB_1,b8_2 MB_1,b8_2
13 MB_3,b8_0 MB_3 MB_2,b8_0 MB_2,b8_0 MB_1,b8_3 MB_1,b8_3 MB_1,b8_3
14 MB_3,b8_1 MB_2,b8_1 MB_2,b8_1 MB_2,b8_0 MB_2,b8_0 MB_2,b8_0 MB_1 MB_1
15 MB_3,b8_2 MB_2,b8_2 MB_2,b8_2 MB_2,b8_1 MB_2,b8_1 MB_2,b8_1
16 MB_3,b8_3 MB_2,b8_3 MB_2,b8_3 MB_2,b8_2 MB_2,b8_2 MB_2,b8_2
17 … MB_3,b8_0 MB_3,b8_0 MB_2,b8_3 MB_2,b8_3 MB_2,b8_3
18 MB_3,b8_1 MB_3,b8_1 MB_3,b8_0 MB_3,b8_0 MB_3,b8_0 MB_2 MB_2
19 MB_3,b8_2 MB_3,b8_2 MB_3,b8_1 MB_3,b8_1 MB_3,b8_1
20 MB_3,b8_3 MB_3,b8_3 MB_3,b8_2 MB_3,b8_2 MB_3,b8_2
21 … … MB_3,b8_3 MB_3,b8_3 MB_3,b8_3
22 … … … MB_3 MB_3
23
24
25
26

Figure 4.7: The Scheduling of the Architecture B

4.4 Effective Design Space Exploration

Generally, the design space exploration is the process to �nd the optimal or the near optimal

solution among the design alternatives to ful�ll the design requirements in terms of performance

and cost. More speci�cally, design space exploration involves (1) �nding all the possible design

alternatives, (2) evaluating the performance of each design alternative, and (3) determining the

best design alternative among all options. Figure 4.12 shows the �ow of our design space

exploration. The system architecture is partitioned into several specialized components with

the four-level memory hierarchies and interoperates as a pipeline to support parallelism. The

problem is the optimization of the individual module may not lead to the optimal performance

of the overall system. In addition, the level of synchronization granularity between the memory

-80-

Chapter 4. System Architecture Design Space Exploration

Clock
Cycles CABAD IQIDCT

DRAM
Read

Fetch Data
via AHB IIP Deblocking Refinement

Send Data
via AHB

DRAM
Write CABAE

0 MB_0
1 MB_1 MB_0,b4_0 MB_0
2 MB_0,b4_1
… …
16 MB_0,b4_15
17 MB_2 MB_1,b4_0 MB_1 MB_0,b4_0 MB_0,b4_0
18 MB_1,b4_1 MB_0,b4_1 MB_0,b4_1 MB_0,b4_0 MB_0,b4_0 MB_0,b4_0
… … … … MB_0,b4_1 MB_0,b4_1 MB_0,b4_1
32 MB_1,b4_15 MB_0,b4_15 MB_0,b4_15 … … …
33 MB_3 MB_2,b4_0 MB_2 MB_1,b4_0 MB_1,b4_0 MB_0,b4_15 MB_0,b4_15 MB_0,b4_15
34 MB_2,b4_1 MB_1,b4_1 MB_1,b4_1 MB_1,b4_0 MB_1,b4_0 MB_1,b4_0 MB_0 MB_0
… … … … MB_1,b4_1 MB_1,b4_1 MB_1,b4_1
48 MB_2,b4_15 MB_1,b4_15 MB_1,b4_15 … … …
49 MB_3,b4_0 MB_3 MB_2,b4_0 MB_2,b4_0 MB_1,b4_15 MB_1,b4_15 MB_1,b4_15
50 MB_3,b4_1 MB_2,b4_1 MB_2,b4_1 MB_2,b4_0 MB_2,b4_0 MB_2,b4_0 MB_1 MB_1
… … … … MB_2,b4_1 MB_2,b4_1 MB_2,b4_1
64 MB_3,b4_15 MB_2,b4_15 MB_2,b4_15 … … …
65 … MB_3,b4_0 MB_3,b4_0 MB_2,b4_15 MB_2,b4_15 MB_2,b4_15
66 MB_3,b4_1 MB_3,b4_1 MB_3,b4_0 MB_3,b4_0 MB_3,b4_0 MB_2 MB_2
… … … MB_3,b4_1 MB_3,b4_1 MB_3,b4_1
80 MB_3,b4_15 MB_3,b4_15 … … …
81 … … MB_3,b4_15 MB_3,b4_15 MB_3,b4_15
82 … … … MB_3 MB_3
…
96
97
98

Figure 4.8: The Scheduling of the Architecture C

hierarchies strongly in�uences the system performance. Therefore, we focus on the design

space exploration on two system parameters: (1) the level of synchronization granularity and

(2) the design combinations within the video pipe.

The second part of the design space exploration is the evaluation of the large number of

potential design alternatives such that the design variable space can be translated into the per-

formance space. In order to examine the effect on the whole system, we implement the design

alternatives in the proposed architecture and present a method to evaluate the system perfor-

mance. The performance evaluation is based on (1) throughput, (2) hardware cost including

logic circuit and the memory unit, and (3) cost-normalized hardware utilization. Speci�cally,

we utilize the transaction level modeling (TLM) to evaluate the throughput performance be-

cause exploiting a wide range of design trade-off at register transfer level (RTL) is impractical

-81-

Sec 4.4. Effective Design Space Exploration

Clock
Cycles CABAD IQIDCT

DRAM
Read

Fetch Data
via AHB IIP Deblocking Refinement

Send Data
via AHB

DRAM
Write CABAE

0 MB_0
1 MB_1 MB_0,b8_0 MB_0,b8_0
2 MB_0,b8_1 MB_0,b8_1 MB_0,b8_0 MB_0,b8_0
3 MB_0,b8_2 MB_0,b8_2 MB_0,b8_1 MB_0,b8_1 MB_0,b8_0 MB_0,b8_0 MB_0,b8_0
4 MB_0,b8_3 MB_0,b8_3 MB_0,b8_2 MB_0,b8_2 MB_0,b8_1 MB_0,b8_1 MB_0,b8_1 MB_0,b8_0
5 MB_2 MB_1,b8_0 MB_1,b8_0 MB_0,b8_3 MB_0,b8_3 MB_0,b8_2 MB_0,b8_2 MB_0,b8_2 MB_0,b8_1
6 MB_1,b8_1 MB_1,b8_1 MB_1,b8_0 MB_1,b8_0 MB_0,b8_3 MB_0,b8_3 MB_0,b8_3 MB_0,b8_2
7 MB_1,b8_2 MB_1,b8_2 MB_1,b8_1 MB_1,b8_1 MB_1,b8_0 MB_1,b8_0 MB_1,b8_0 MB_0,b8_3 MB_0
8 MB_1,b8_3 MB_1,b8_3 MB_1,b8_2 MB_1,b8_2 MB_1,b8_1 MB_1,b8_1 MB_1,b8_1 MB_1,b8_0
9 MB_3 MB_2,b8_0 MB_2,b8_0 MB_1,b8_3 MB_1,b8_3 MB_1,b8_2 MB_1,b8_2 MB_1,b8_2 MB_1,b8_1
10 MB_2,b8_1 MB_2,b8_1 MB_2,b8_0 MB_2,b8_0 MB_1,b8_3 MB_1,b8_3 MB_1,b8_3 MB_1,b8_2
11 MB_2,b8_2 MB_2,b8_2 MB_2,b8_1 MB_2,b8_1 MB_2,b8_0 MB_2,b8_0 MB_2,b8_0 MB_1,b8_3 MB_1
12 MB_2,b8_3 MB_2,b8_3 MB_2,b8_2 MB_2,b8_2 MB_2,b8_1 MB_2,b8_1 MB_2,b8_1 MB_2,b8_0
13 … MB_3,b8_0 MB_3,b8_0 MB_2,b8_3 MB_2,b8_3 MB_2,b8_2 MB_2,b8_2 MB_2,b8_2 MB_2,b8_1
14 MB_3,b8_1 MB_3,b8_1 MB_3,b8_0 MB_3,b8_0 MB_2,b8_3 MB_2,b8_3 MB_2,b8_3 MB_2,b8_2
15 MB_3,b8_2 MB_3,b8_2 MB_3,b8_1 MB_3,b8_1 MB_3,b8_0 MB_3,b8_0 MB_3,b8_0 MB_2,b8_3 MB_2
16 MB_3,b8_3 MB_3,b8_3 MB_3,b8_2 MB_3,b8_2 MB_3,b8_1 MB_3,b8_1 MB_3,b8_1 MB_3,b8_0
17 … … MB_3,b8_3 MB_3,b8_3 MB_3,b8_2 MB_3,b8_2 MB_3,b8_2 MB_3,b8_1
18 … … MB_3,b8_3 MB_3,b8_3 MB_3,b8_3 MB_3,b8_2
19 … … … MB_3,b8_3 MB_3
20 …
21
22
23

Figure 4.9: The Scheduling of the Architecture D

due to the poor simulation performance. The hardware cost is obtained from the reports of our

RTL synthesis and reference designs.

The third part of the design space exploration is to determine the optimal solution within

the explored design space. We use the hierarchical design space exploration to reduce the

design space variables. More speci�cally, we �rstly search the optimal con�guration for the

high level of system parameter, i.e., the level of synchronization granularity. We then �nd the

optimal design combination for a speci�ed level of synchronization granularity. After acquiring

the data of each performance metric, we use the Pareto analysis to solve the multi-objective

optimization and to facilitate decision-making in the system architecture development [62].

-82-

Chapter 4. System Architecture Design Space Exploration

Clock
Cycles CABAD IQIDCT

DRAM
Read

Fetch Data
via AHB IIP Deblocking Refinement

Send Data
via AHB

DRAM
Write CABAE

0 MB_0
1 MB_1 MB_0,b4_0 MB_0,b8_0
… …
4 MB_0,b4_3
5 MB_0,b4_4 MB_0,b8_1 MB_0,b4_0 MB_0,b4_0
… … … … MB_0,b4_0 MB_0,b4_0 MB_0,b4_0
8 MB_0,b4_7 MB_0,b4_3 MB_0,b4_3 … … …
9 MB_0,b4_8 MB_0,b8_2 MB_0,b4_4 MB_0,b4_4 MB_0,b4_3 MB_0,b4_3 MB_0,b4_3
… … … … MB_0,b4_4 MB_0,b4_4 MB_0,b4_4 MB_0,b8_0
12 MB_0,b4_11 MB_0,b4_7 MB_0,b4_7 … … …
13 MB_0,b4_12MB_0,b8_3 MB_0,b4_8 MB_0,b4_8 MB_0,b4_7 MB_0,b4_7 MB_0,b4_7
… … … … MB_0,b4_8 MB_0,b4_8 MB_0,b4_8 MB_0,b8_1
16 MB_0,b4_15 MB_0,b4_11MB_0,b4_11… … …
17 MB_2 MB_1,b4_0 MB_1,b8_0 MB_0,b4_12MB_0,b4_12MB_0,b4_11 MB_0,b4_11 MB_0,b4_11
… … … … MB_0,b4_12 MB_0,b4_12 MB_0,b4_12 MB_0,b8_2
20 MB_1,b4_3 MB_0,b4_15MB_0,b4_15… … …
21 MB_1,b4_4 MB_1,b8_1 MB_1,b4_0 MB_1,b4_0 MB_0,b4_15 MB_0,b4_15 MB_0,b4_15
… … … … MB_1,b4_0 MB_1,b4_0 MB_1,b4_0 MB_0,b8_3 MB_0
24 MB_1,b4_7 MB_1,b4_3 MB_1,b4_3 … … …
25 MB_1,b4_8 MB_1,b8_2 MB_1,b4_4 MB_1,b4_4 MB_1,b4_3 MB_1,b4_3 MB_1,b4_3
… … … … MB_1,b4_4 MB_1,b4_4 MB_1,b4_4 MB_1,b8_0
28 MB_1,b4_11 MB_1,b4_7 MB_1,b4_7 … … …
29 MB_1,b4_12MB_1,b8_3 MB_1,b4_8 MB_1,b4_8 MB_1,b4_7 MB_1,b4_7 MB_1,b4_7
… … … … MB_1,b4_8 MB_1,b4_8 MB_1,b4_8 MB_1,b8_1
32 MB_1,b4_15 MB_1,b4_11MB_1,b4_11… … …
33 MB_3 MB_2,b4_0 MB_2,b8_0 MB_1,b4_12MB_1,b4_12MB_1,b4_11 MB_1,b4_11 MB_1,b4_11
… … … … MB_1,b4_12 MB_1,b4_12 MB_1,b4_12 MB_1,b8_2
36 MB_2,b4_3 MB_1,b4_15MB_1,b4_15… … …
37 MB_2,b4_4 MB_2,b8_1 MB_2,b4_0 MB_2,b4_0 MB_1,b4_15 MB_1,b4_15 MB_1,b4_15
… … … … MB_2,b4_0 MB_2,b4_0 MB_2,b4_0 MB_1,b8_3 MB_1
40 MB_2,b4_7 MB_2,b4_3 MB_2,b4_3 … … …
41 MB_2,b4_8 MB_2,b8_2 MB_2,b4_4 MB_2,b4_4 MB_2,b4_3 MB_2,b4_3 MB_2,b4_3

… … … … MB_2,b4_4 MB_2,b4_4 MB_2,b4_4 MB_2,b8_0
44 MB_2,b4_11 MB_2,b4_7 MB_2,b4_7 … … …
45 MB_2,b4_12MB_2,b8_3 MB_2,b4_8 MB_2,b4_8 MB_2,b4_7 MB_2,b4_7 MB_2,b4_7
… … … … MB_2,b4_8 MB_2,b4_8 MB_2,b4_8 MB_2,b8_1
48 MB_2,b4_15 MB_2,b4_11MB_2,b4_11… … …
49 MB_3,b4_0 MB_3,b8_0 MB_2,b4_12MB_2,b4_12MB_2,b4_11 MB_2,b4_11 MB_2,b4_11
… … … … MB_2,b4_12 MB_2,b4_12 MB_2,b4_12 MB_2,b8_2
52 MB_3,b4_3 MB_2,b4_15MB_2,b4_15… … …
53 MB_3,b4_4 MB_3,b8_1 MB_3,b4_0 MB_3,b4_0 MB_2,b4_15 MB_2,b4_15 MB_2,b4_15
… … … … MB_3,b4_0 MB_3,b4_0 MB_3,b4_0 MB_2,b8_3 MB_2
56 MB_3,b4_7 MB_3,b4_3 MB_3,b4_3 … … …
57 MB_3,b4_8 MB_3,b8_2 MB_3,b4_4 MB_3,b4_4 MB_3,b4_3 MB_3,b4_3 MB_3,b4_3
… … … … MB_3,b4_4 MB_3,b4_4 MB_3,b4_4 MB_3,b8_0
60 MB_3,b4_11 MB_3,b4_7 MB_3,b4_7 … … …
61 MB_3,b4_12MB_3,b8_3 MB_3,b4_8 MB_3,b4_8 MB_3,b4_7 MB_3,b4_7 MB_3,b4_7
… … … … MB_3,b4_8 MB_3,b4_8 MB_3,b4_8 MB_3,b8_1
64 MB_3,b4_15 MB_3,b4_11MB_3,b4_11… … …
65 … MB_3,b4_12MB_3,b4_12MB_3,b4_11 MB_3,b4_11 MB_3,b4_11
… … … MB_3,b4_12 MB_3,b4_12 MB_3,b4_12 MB_3,b8_2
68 MB_3,b4_15MB_3,b4_15… … …
69 … MB_3,b4_15 MB_3,b4_15 MB_3,b4_15
… … .. MB_3,b8_3 MB_3
72
73
…
76
77
…
80
81
…
84
85
…

Figure 4.10: The Scheduling of the Architecture E

-83-

Sec 4.5. Pruned Design Space

Clock
Cycles CABAD IQIDCT

DRAM
Read

Fetch Data
via AHB IIP Deblocking Refinement

Send Data
via AHB

DRAM
Write CABAE

0 MB_0
1 MB_1 MB_0,b4_0 MB_0,b4_0
2 MB_0,b4_1 MB_0,b4_1 MB_0,b4_0 MB_0,b4_0
… … … MB_0,b4_1 MB_0,b4_1 MB_0,b4_0 MB_0,b4_0 MB_0,b4_0
16 MB_0,b4_15 MB_0,b4_15 … … MB_0,b4_1 MB_0,b4_1 MB_0,b4_1 MB_0,b4_0
17 MB_2 MB_1,b4_0 MB_1,b4_0 MB_0,b4_15MB_0,b4_15… … … MB_0,b4_1
18 MB_1,b4_1 MB_1,b4_1 MB_1,b4_0 MB_1,b4_0 MB_0,b4_15 MB_0,b4_15 MB_0,b4_15 …
… … … MB_1,b4_1 MB_1,b4_1 MB_1,b4_0 MB_1,b4_0 MB_1,b4_0 MB_0,b4_15 MB_0
32 MB_1,b4_15 MB_1,b4_15 … … MB_1,b4_1 MB_1,b4_1 MB_1,b4_1 MB_1,b4_0
33 MB_3 MB_2,b4_0 MB_2,b4_0 MB_1,b4_15MB_1,b4_15… … … MB_1,b4_1
34 MB_2,b4_1 MB_2,b4_1 MB_2,b4_0 MB_2,b4_0 MB_1,b4_15 MB_1,b4_15 MB_1,b4_15 …
… … … MB_2,b4_1 MB_2,b4_1 MB_2,b4_0 MB_2,b4_0 MB_2,b4_0 MB_1,b4_15 MB_1
48 MB_2,b4_15 MB_2,b4_15 … … MB_2,b4_1 MB_2,b4_1 MB_2,b4_1 MB_2,b4_0
49 … MB_3,b4_0 MB_3,b4_0 MB_2,b4_15MB_2,b4_15… … … MB_2,b4_1
50 MB_3,b4_1 MB_3,b4_1 MB_3,b4_0 MB_3,b4_0 MB_2,b4_15 MB_2,b4_15 MB_2,b4_15 …
… … … MB_3,b4_1 MB_3,b4_1 MB_3,b4_0 MB_3,b4_0 MB_3,b4_0 MB_2,b4_15 MB_2
64 MB_3,b4_15 MB_3,b4_15 … … MB_3,b4_1 MB_3,b4_1 MB_3,b4_1 MB_3,b4_0
65 … … MB_3,b4_15MB_3,b4_15… … … MB_3,b4_1
66 … … MB_3,b4_15 MB_3,b4_15 MB_3,b4_15 …
… … … … MB_3,b4_15 MB_3
80 …
81
82
…

Figure 4.11: The Scheduling of the Architecture F

4.5 Pruned Design Space

After the architecture is partitioned as a pipelined system with multi-level memory hierarchy,

the granularity of synchronization buffer within the memory hierarchy and the various combi-

nations of the internal modules are the system level design challenges. Thus, these two design

concerns derive lots of design alternatives.

4.5.1 Exploration of the Synchronization Granularity

The granularity of the synchronization buffer immediately affects the pipelined system perfor-

mance because it is relevant to the performance for the DRAM access and the motion compen-

sation of variable block size. First, the granularity of the synchronization buffer is a dominant

factor to the occurrence of row-miss for DRAM access. The video pipe module repeatedly

-84-

Chapter 4. System Architecture Design Space Exploration

Task PartitionMemory Hierarchy

TLM
Simulation

RTL
Synthesis

Multi-Objective
Optimization

A Set of
Pareto-Optimal

Solutions

Optimized for
Cost

Optimized for
Speed-Cost
Efficiency

Optimzed for
Speed

Analysis of Design
Balancing

Area-Weighted
Utilization

TLM
Simulation

RTL
Synthesis

Multi-Objective
Optimization

Different Level of
Synchronization

Granularity

Design Combination
with Different

Parallelism

Best Design
Alternative

Phase 1:

System
Architeecture

Phase 2:

Exploration of
Synchronization
Granularity

Phase 3:

Exploration of
Design
Combination &
Balancing based
on a Specified
Level of
Synhronization
Granularity

Design
Constrains

Pipeline System

Figure 4.12: The Flow of Our Design Space Exploration

-85-

Sec 4.5. Pruned Design Space

fetches the motion-compensated pixels from a certain row of DRAM and stores the �ltered

pixels into another row of DRAM such that the row-miss always occurs at the transition from

data fetch to data storage. In the case of the row-miss, extra DRAM cycles are introduced be-

cause of the pre-charge of the original row, the activation of another row, and the CAS latency

[46]. In addition to the DRAM cycles, the granularity of the synchronization buffer affects the

amount of data transmission via AHB data bus because the motion compensation is of variable

block size and requires 6-tap interpolation. Particularly, if the granularity of the video pipe is

�ner than the size of a block partition, redundant transmission is required due to the operations

of the 6-tap interpolation. Generally, coarsening the granularity of the synchronization buffer

decreases the synchronization overhead at the expense of more memory.

To quantitatively analyze the tradeoff between the synchronization overhead and the mem-

ory cost, we explore the granularity of the memory-subsystem and the video pipe at multiple

levels such as 4x4, 8x8, and 16x16. During the transcoding process, the data exchange mainly

takes place at the two levels of the proposed memory hierarchies as shown in Figure 4.13. The

synchronization buffer in the memory sub-system is responsible for the off-chip data exchange.

The ping-pong memories between modules are responsible for the on-chip data exchange. The

frequency of data exchange has great impact on the ef�ciency of data access. For this reason,

we explore the granularity of memory-subsystem (GM) and the granularity of video pipe (GV)

at multiple levels such as 4x4, 8x8, and 16x16. In particular, the GV should be �ner than the

GM because the GM is at the higher level in the memory hierarchy. Therefore, by analyzing

the level of synchronization granularity, we explore six architectural candidates as mentioned

in Table 4.2.

-86-

Chapter 4. System Architecture Design Space Exploration

Module

Synchronization
Buffer

ModulePing-Pong
Buffer

DDR SDRAM

GM GM

GM

GV GV

Video Pipe

Memory Sub-system

Off-Chip
On-Chip

Figure 4.13: The Exploration of the Synchronization Granularity

4.5.2 Exploration of the Design Combination and Balancing

The various design alternatives among the modules in the video pipe can have impact to the

system performance in terms of the bus utilization, the hardware utilization, and the system

throughput due to the bus arbitration and the pipeline synchronization issues. Speci�cally, the

pipeline is synchronized by the slowest module in the video pipe as follows.

P [i] = argmax
1�j�M

(Ej[i]) (4.1)

where P [i] is the cycle count of the system at the i-th pipelined stage and Ej[i] is the execu-

tion cycle count of the j-th component at the i-th pipelined stage. In particular, each module

consumes different cycles at each pipeline stage according to various coding characteristic such

-87-

Sec 4.5. Pruned Design Space

that the synchronization overhead is introduced as follows.

S =

NX
i=1

P [i]

N
� arg

1�j�M

0BBBB@
NX
i=1

Ej[i]

N

1CCCCA (4.2)

where S is the throughput performance of the system and N is the number of the pipelined

stage.

The gains of task-level parallelism could be reduced by the imbalanced design combination.

In the prior designs, the individual performance is the main focus with the assumption that the

individual module can always have immediate and unlimited access to the data bus, which is

not realistic in the design with only one data bus. Therefore, we examine the effects of differ-

ent design combinations with respect to system performance in consideration of the transform

module, the prediction module, and the deblocking �lter.

We explore 2 design alternatives for the transform module (IQIDCT) with different process-

ing rates. Speci�cally, the design in [44] processes 4 pixels per cycle, while the other design

can increase the processing rate up to 8 pixels per cycle at the expense of more hardware cost

[45]. In the simulations, we use the terms of LT and HT to denote the low-throughput and the

high-throughput designs respectively.

We explore 4 design alternatives for the prediction module (IIP), which can be classi�ed into

separated adder-tree (AT) based [44][47] and combined systolic-array (SA) based approaches.

The separated AT-based design implements inter Luma/Chroma prediction and intra prediction

by three separated circuits with more hardware cost. Although the AT-based architecture has

higher processing throughput for the 2-D interpolation, it suffers from the poor hardware utiliza-

tion for the 1-D interpolation. On the other hand, our SA-based design combines inter and intra

prediction into one uni�ed circuit with less hardware cost. Furthermore, our scalable architec-

-88-

Chapter 4. System Architecture Design Space Exploration

ture has several levels of parallelisms where the number of systolic arrays can be recon�gured

as one, two, or three levels of parallel structure. In the following, we represent the 4 alternatives

as AT, SA_1, SA_2, and SA_3 respectively.

We explore 20 design alternatives for the deblocking �lter (DB), where the exploration in-

cludes the �ltering order, the processing granularity, and the memory hierarchy. Firstly, the

�ltering order can be categorized as either the MB-based and or the B8-based. Secondly,

for more ef�cient DRAM access, we can transfer the �ltered pixels of one MB in the same

pipelined stage at the expense of more memory. Thirdly, to further reduce the bus bandwidth

and the processing latency, a single-port SRAM is used as a line buffer to store a frame-wide

row of 4x4 blocks. Therefore, there are 20 alternatives among which 17 of them are MB-

based [48][49][50][51][52][53][54][55][56][57][58][59] approaches and the other 3 are B8-based

approaches. In summary, our design space exploration covers a total of 160 (2*4*20) combina-

tions.

4.6 Evaluation of the System Performance

This section presents how the system performance is evaluated. In particular, the several evalu-

ation metrics are introduced in our simulation infrastructure. The optimized design alternative

is decided based on the concept of Pareto-based multi-objective optimization.

4.6.1 Evaluation Metric

To evaluate the system performance, we consider the following design metrics: (1) processing

speed, (2) silicon area, and (3) hardware utilization. The processing speed is used to measure

the system throughput. To measure the speed, we use the average execution cycle counts of one

pipelined stage which is dominated by the slowest module in the video pipe. In particular, the

-89-

Sec 4.6. Evaluation of the System Performance

pipeline is dominated by the following four modules: IQIDCT, IIP, DB, and DRAM access.

The silicon area is used to measure the hardware cost. Although the actual chip size is not

available until the chip is taped out, we use the equivalent gate count to estimate the silicon area

at the system level. In addition, the equivalent gate count includes the cost of the local memories

and the logic circuits. One of the problems in [48][49][50][51][52][53][54][55][56][57][58][59] is

that the cost of memory units and the cost of logic circuit are not normalized to the same scale.

Speci�cally, the cost of memory is measured by the number of storage bits while the cost of

logic circuit is measured by the synthesized gate count. In some cases, the smaller logic circuit

could be obtained at the expense of more memory cost [51][57]. Therefore, we should normalize

these two cost factors to the equivalent gate count for a fair comparison.

The hardware utilization is used to evaluate the ef�ciency of a design and to determine how

the explored modules are utilized. The higher the hardware utilization, the lower the overheads

in the individual deign. Originally, the utilization is the ratio of the computational cycles to the

execution cycles of the system. However, the problem is that the factor is not scaled according

to its cost. The unbalanced design alternative increases the utilization for the low-cost module

while the other high-cost modules are signi�cantly underutilized. Because the multiple compo-

nents jointly determine the system utilization, the cost of each module should also consider the

impact of the utilization on the overall performance.

We use the average utilization normalized by the cost to represent the balance of a design

combination. Let X be the random variable that represents how the hardware cost is utilized at

the i-th cycle among theM components to be explored.

x[i] =

MP
j=1

Cj � uj[i]

MP
j=1

Cj

=

MP
j=1

Cj � uj[i]

C
(4.3)

-90-

Chapter 4. System Architecture Design Space Exploration

where the symbols Cj and uj[i] represent the hardware cost and utilization of the j-th compo-

nent at the i-th cycle, respectively. The symbol C represents the overall cost of the M com-

ponents. We further calculate the mean value of the symbol X throughout the total execution

period of N cycles as follows.

�X =

NP
i=1

xi[i]

N
=

NP
i=1

MP
j=1

Cj � uj[i]

C �N =
MX
j=1

2664�CjC
�
�

NP
i=1

uj[i]

N

3775 = MX
j=1

��
Cj
C

�
� �Uj

�
(4.4)

where
�
Cj
C

�
is the proportional cost of the j-th component. The average hardware utilization

�Uj is the hardware utilization for each individual component. A designer should keep the

balance among modules in a pipelined system such that the hardware can be more ef�ciently

utilized for improving the system throughput. Therefore, we use the area-weighted hardware

utilization, which is the summation of product of proportional cost and utilization, to represent

the overall balanced system performance.

4.6.2 Simulation Infrastructure

To effectively evaluate the system performance for the numerous design alternatives, we em-

ploy the transaction level modeling (TLM) technique to increase the simulation speed. Partic-

ularly, the entire system is modeled at mixed levels of abstraction and simulated using CoWare

ConvergenSCTM [60].

4.6.2.1 System Simulation with Mixed Levels of Abstraction

Traditionally, the coding effort of the lower level of abstraction, such as register transfer level

(RTL), is costly and its simulation is very time consuming. While we need to check if the

DRAM access violates the timing constrains at each cycle, the memory sub-system including

-91-

Sec 4.6. Evaluation of the System Performance

DRAM and DRAM controller is simulated at cycle-accurate RTL level using Verilog.

On the other hand, the remaining parts of the system are modeled at a higher level of ab-

straction, known as the transaction level, with SystemC [61] to achieve faster simulation speed.

In the SystemC implementation, the interface between modules and the granularity for data

exchange are de�ned. To synchronize the modules at different levels of abstraction, the data

exchanges are triggered by the call of the interface functions bound to the ports of a mod-

ule and carried out by the implementation of the channels that connects the ports of different

modules. In addition, the functionalities within a module are described by a set of concurrent

processes with annotated timing information. Speci�cally, within a module, the task modeling

is accomplished by the task execution followed by N waiting cycles which is annotated from the

associated hardware architecture as shown in Figure 4.14. As compared to the RTL, the trans-

action level modeling (TLM) signi�cantly reduces the design regression cycle while offering

suf�cient simulation accuracy.

In summary, the simulation with mixed levels of abstraction allows a system designer to

�nd the best trade-off between the simulation speed and the modeling accuracy. The mixed

level of abstraction not only considers the impact of external memory but also has a faster sim-

ulation speed than a pure RTL simulation such that we can effectively perform the architectural

evaluation.

4.6.2.2 Platform Creation

After the model creation, all the modules in the proposed H.264/AVC decoder are assembled

and simulated on the Platform Architect of Coware's ConvergenSCTM, as shown in Figure

4.15. Particularly, the external memory interface modeled in the Verilog is instantiated in the

SystemC-based platform using a proxy module, which acts as a wrapper and deals with the

-92-

Chapter 4. System Architecture Design Space Exploration

Behavior1
Write_if

Behavior 2
Write_if

Behavior 3
Write_if

Wait Wait Wait

Cycles of Task
Emit_if @ posedge clk

Synchronization Event @ posedge clk

Read_if (ping-pong index) Data and Control

Stage
1

Stage
2

Stage
3

Stage 3
Stage 1

Stage 2 Stage 3

Notify Sync. by
Sync. Channel

Compute

Wait

Compute

Wait Wait

Compute
Emit_if

Wait

Stage 1

Finite State
Machine

Figure 4.14: The SystemC Implementation with the Annotated Timing

-93-

Sec 4.6. Evaluation of the System Performance

Figure 4.15: The Proposed H.264/AVC Video Embedding Transcoder and Decoder Imple-
mented by the Platform Architect of CoWare ConvergenSC

signal exchange across the two different simulators. Compared with traditional system simu-

lation at register transfer level, the transaction level modeling signi�cantly reduce the design

regression cycle while offering suf�cient simulation accuracy.

4.6.3 Pareto-Based Multi-Objective Optimization

With these performance metrics, which can be viewed as the design objectives, we are able

to translate the design space variable into performance space and use the Pareto-based multi-

objective optimization to determine the optimality of a given performance space. Generally,

the goal of the design tradeoff is to �nd an optimal solution that has the lowest hardware cost

and smallest execution cycle count. However, the processing speed is typically improved at

-94-

Chapter 4. System Architecture Design Space Exploration

the expense of more hardware cost. Moreover, some poor design alternatives lead to the more

execution cycle and hardware cost. To resolve the con�icting objectives, we use Pareto analysis

to �nd a set of Pareto-optimal alternatives with multi-dimensional optimization in terms of

the execution cycle count, the hardware cost, and the normalized hardware utilization. These

Pareto-optimal alternatives can be further pruned when considering certain design constraints

such as required processing throughput and limited hardware cost.

4.7 Simulation Results and Analysis

In this section, the simulation results of our design space exploration are provided. We use the

simulation-based exploration because we would like to optimize the system performance for the

average case instead of the worst case. Our TLM simulation framework creates a large volume

of simulation data to explore the system at a high level of abstraction with annotated timing and

use the metrics described in Section 4.6 to evaluate the system performance.

4.7.1 Pareto Analysis for the Exploration of Synchronization Granularity

To �nd the optimized granularity of the synchronization, we depict the Pareto analysis in Fig-

ure 4.16 and Figure 4.17 where 25 alternatives are placed on the plot according to the cycle

count and the equivalent gate count. In our analysis, the cycle count is obtained by our TLM

simulation framework while the gate count is obtained from the synthesis of a very rough RTL

coding and the reports in [47] The equivalent gate count only includes the cost of hardware to

be explored, i.e. the ping-pong memories, the synchronization buffer, and the inter and intra

prediction. The Pareto frontier which de�nes a set of Pareto-optimal solutions is drawn by con-

necting the points that are not dominated by other points and the utopia point is de�ned as the

point in performance space that is best in every objective [62].

-95-

Sec 4.7. Simulation Results and Analysis

Equivalent Gate Count

4e+4 5e+4 6e+4 7e+4 8e+4 9e+4 1e+5

A
verage C

ycle C
ount per M

B

450

500

550

600

650

700

750

Optimized for
Speed-Cost
Efficiency

Pareto
Frontier

Equivalent Gate Count

2e+4 3e+4 4e+4 5e+4 6e+4 7e+4 8e+4
400

450

500

550

600

650

700

750

800

Optimized for
Speed-Cost
Efficiency

Pareto
Frontier

Equivalent Gate Count

2e+4 3e+4 4e+4 5e+4 6e+4 7e+4 8e+4
A

verage C
ycle C

ount per M
B

250

300

350

400

450

500

550

600

650

Optimized for
Speed-Cost
Efficiency

Pareto
Frontier

Equivalent Gate Count

2e+4 3e+4 4e+4 5e+4 6e+4 7e+4 8e+4 9e+4 1e+5
200

300

400

500

600

700

Optimized for
Speed-Cost
Efficiency

Pareto
Frontier

4x4_4x4
8x8_4x4

8x8_8x8
16x16_4x4

16x16_8x8
16x16_16x16

16x16_Hybrid
Utopia Point

AT-based IIP SA_1 IIP

SA_2 IIP SA_3 IIP

Figure 4.16: The Pareto Analysis for the Average Execution Cycle Count and Equivalent Gate
Count at Different Levels of Synchronization Granularity and for the Different Designs of the
Inter and Intra Prediction. The Combination of the Level of Synchronization Granularity to
be Explored Includes 16x16_16x16, 16x16_8x8, 16x16_4x4, 8x8_8x8, 8x8_4x4, and 4x4_4x4
where the Terms before and after the Underscore Indicate the GM and the GV, Respectively

-96-

Chapter 4. System Architecture Design Space Exploration

Equivalent Gate Count

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5

A
verage C

ycle C
ount per M

B
200

300

400

500

600

700

800

Optimized
for Cost

Optimized
for Speed

Wang's
Design [10]

Liu's
Design [12]

Optimized
for
Speed-Cost
Efficiency

Pareto
Frontier

Cost Reduction up to 75%

Throughput
Improvement
up to 2 times

The Shortest
Distance

Figure 4.17: The Combined Pareto Analysis for the Average Execution Cycle Count and Equiv-
alent Gate Count at Different Levels of Synchronization Granularity and for the Different De-
signs of the Inter and Intra Prediction

-97-

Sec 4.7. Simulation Results and Analysis

Table 4.3: The Bitrate of Each Long Sequence with Different Resolution

Frame Sequence 1920x1088 960x544 480x272 240x144
Index @ 60Hz @ 60Hz @ 60Hz @ 60Hz
1 - 217 Blue_Sky 13.39 5.78 2.74 1.14
218 - 517 Pedestrian_Area 12.83 5.24 2.16 0.85
518 - 767 Riverbed 13.81 3.19 0.97 0.24
768 - 1067 Rush_Hour 14.51 5.53 2.12 0.78
1068 - 1367 Station2 15.45 5.23 2.29 0.71
1368 - 11667 Sun�ower 16.19 6.54 2.95 1.31
1668 - 2357 Tractor 13.98 5.50 2.23 0.81
Average 14.30 4.94 2.05 0.77

The design alternative with the highest speed-cost ef�ciency is the point that has the shortest

distance to the utopia point and locates on the Pareto frontier. Therefore, when the GM and GV

are both synchronized at the level of 8x8 block, the system performance can be optimized for

both the speed and cost simultaneously no matter what kind of design for the prediction module

is used.

Our design space exploration is able to attain robust system performance in the face of vary-

ing application constraints. Speci�cally, the design alternative optimized for area can reduce

the gate count of previous design up to 25%. The design alternative optimized for speed can

increase the cycle count of previous design by 2 times at most such that the design with highest

throughput performance can ful�ll the real-time requirement for 1920x1088 @ 60 Hz videos

when clocking at 135MHz. To show this claim, we simulate a long sequence for different res-

olutions and at certain bitrates as listed in Table 4.3. Figure 4.18 shows the average execution

cycle count and the corresponding budget for the average cycle count at the minimal clock for

real time requirement. Table 4.4 lists the minimal clock for real-time for various resolutions. In

general, the internal clock frequency of a chip is the multiple of 27 MHz. Therefore, we round

the required clock frequency to the multiple of 27 MHz and show the ratio of the slower than

real-time frames when the operating clock frequency is lower than the required clock frequency.

-98-

Chapter 4. System Architecture Design Space Exploration

(a)

(b)

-99-

Sec 4.7. Simulation Results and Analysis

(c)

(d)

Figure 4.18: The Execution Cycle of Architecture 16_16_SA3 and The Minimized Clock for
Real-Time When the Size of Display Buffer is 32Mb. (a) 240x144. (b) 480x272. (c) 960x544.
(d) 1920x1088.

-100-

Chapter 4. System Architecture Design Space Exploration

Table 4.4: The Required Clock For Each Resolution When the Size of Display Buffer is of
32Mb.

Minimal Clock Ratio of
that is of Multiple Non-Real-Time

Minimal Clock of 27MHz Operating Frame
for Real-Time for Real-Time Clock N at Clock N

Resolution (MHz) (MHz) (MHz) (%)
240x144 3 27 27 0
480x272 9 27 27 0
960x544 33 54 27 15.03
1920x1088 134 135 108 12.82

In addition, our work explores a larger design space as compared to the previous design.

Particularly, our design space provides a 3 times cycle count range and a 5 times gate count

range.

4.7.2 Pareto Analysis for the Exploration of Design Combination within

the Video Pipe

In Figure 4.19, we depict the Pareto analysis where each alternative is placed on the plot ac-

cording to the cycle count and the equivalent gate count. Similarly, the cycle count is obtained

by our TLM simulation framework while the gate count is obtained from the synthesis of a very

rough RTL coding and the reports in the literatures. Observed from the left-down shift of the

Pareto curves toward the origin, the SA-based IIP design and proposed FGSC-based deblocking

�lter signi�cantly improve the area-speed ef�ciency of the system. While the high-throughput

design of the IQIDCT has no distinct improvement upon the system throughput. Thus, it shows

that the system performance may not be optimized while the individual module is improved

twice.

-101-

Sec 4.7. Simulation Results and Analysis

Equivalent Gate Count
4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5 1.4e+5

of E
xeution C

ycle

50

100

150

200

250

300

350
MB + SA_1 + LT
B8 + SA_1 + LT
MB + SA_2 + LT
B8 + SA_2 + LT
MB + SA_3 + LT
B8+ SA_3 + LT
MB + AT + LT
B8 + AT + LT
MB + SA_1 + HT
B8 + SA_1 + HT
MB + SA_2 + HT
B8 + SA_2 + HT
MB + SA_3 + HT
B8+ SA_3 + HT
MB + AT + HT
B8 + AT + HT

Original Pareto Curve

Improved by
SA-based IIPImproved by

FGSC DB

Figure 4.19: The Pareto Analysis for the Average Execution Cycle Count and Equivalent Gate
Count for Each Alternative where MB and B8 Denote the MB-based and B8-based DB, Re-
spectively

4.7.3 Area-Weighted Hardware Utilization for the Exploration of Design

Balancing of the Video Pipe

Figure 4.20 shows the area-weighted hardware utilization that reveals four system-level argu-

ments. Firstly, each peak in the bar chart shows that the proposed FGSC-based deblocking �lter

remarkably increase the utilization. Secondly, the high-throughput design of IQIDCT decreases

the utilization since it does not improve the system throughput at the expense of more cost.

Thirdly, the combined SA-based IIP designs signi�cantly improve the utilization as compared

to the separated AT-based design. Lastly, increasing the parallelism of SA-based design has

a bounded improvement for the system performance. As long as the DRAM access utiliza-

tion is close to 100%, the off-chip bandwidth eventually becomes the performance bottleneck

-102-

Chapter 4. System Architecture Design Space Exploration

Design Alternatives
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
orm

alized H
ardw

are U
tilization (%

)

10

20

30

40

50

60
MB+SA_1+LT
B8+SA_1+LT
MB+SA_2+LT
B8+SA_2+LT
MB+SA_3+LT
B8+SA_3+LT
MB+AT+LT
B8+AT+LT
MB+SA_1+HT
B8+SA_1+HT
MB+SA_2+HT
MB+SA_2+HT
MB+SA_2+HT
B8+SA_3+HT
MB+AT+HT
B8+AT+HT

Improved by our DB

Low-Throughput IQIDCT High-Throughput IQIDCT

SA_1 SA_2 SA_3 AT SA_1 SA_2 SA_3 AT

Figure 4.20: The Area-Weighted Hardware Utilization for Each Design Alternative

for higher throughput. Therefore, extra efforts on the SA-based designs, e.g. SA_3, have no

distinct improvement upon the system throughput but the utilization is decreased.

Furthermore, among these alternatives, Figure 4.21 measures the normalized distance to the

utopia point of each alternative based on the theory of multi-objective optimization. The shortest

distance indicates the optimal solution for the three performance metrics simultaneously, i.e.

execution cycle count, hardware cost, and area-weighted utilization. Therefore, the optimal

solution among these alternatives is the combination of the low-throughput transform module,

the 2-paralell SA-based prediction, and the FGSC-based deblocking �lter.

4.8 Summary

This chapter proposes a highly ef�cient and platform-based system architecture for combining

an H.264/AVC based video embedding transcoder and decoder. We �rstly partition the system

-103-

Sec 4.8. Summary

Design Alternatives
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160N

orm
alized D

istance to U
topia Point

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Best Alternative
(LT IQIDCT, SA_2 IIP, FGSC DB)

Figure 4.21: Normalized Distance to Utopia Point Considering Execution Cycle Count, Hard-
ware Cost, and Area-Weighted Utilization

into several dedicated modules interconnected with the shared ping-pong memories to provide

massive parallelism and facilitate ef�cient communication. Then, the architecture is imple-

mented to ensure the correctness of data �ow at system level and the design space exploration

is performed for two system parameters: (1) the level of synchronization granularity and (2)

design combinations within the video pipe. These models are evaluated at the TLM level, thus

they minimize the modeling effort and increase the simulation speed so as to explore the 185

design alternatives.

The system performance are computed in terms of the average cycle count, the equivalent

gate count and the area-weighted hardware utilization. From the system level simulation with

the transaction level modeling, the best design alternative can reduce the cost of previous design

up to 25% or can increase the speed of previous design by 2 times at most such that our design

can ful�ll the real-time requirement for 1920x1088 @ 60 Hz videos when clocking at 135MHz.

-104-

Chapter 4. System Architecture Design Space Exploration

With the transaction level modeling, architectures can be modeled at higher abstraction level to

obtain an initial estimate and subsequently re�ned to lower abstraction levels.

-105-

CHAPTER 5

A Highly Ef�cient Micro-Architecture

Design

5.1 Introduction

For the micro-architecture design, it is important to increase the ef�ciency and the utilization of

the dedicated hardware. As compared with the existing standards such as H.261/2/3 andMPEG-

1/2/4, the H.264/AVC-based applications demand higher bandwidth for external memory due

to intensive data transfer and less ef�cient DRAM access. With the intensive and irregular

DRAM access, the memory sub-system that acts as a bridge for exchanging data between the

on-chip hardware and the off-chip DRAM becomes the performance bottleneck for the real-time

-106-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

applications. To increase the on-chip bus utilization while maximizing the effective throughput

of the DRAM access, we will propose an ef�cient memory sub-system with synchronization

buffer.

The prediction techniques used in the H.264/AVC can save up to 50% bit rates while pro-

viding similar perceptual quality as compared with the previous standards [68]. However, the

coding gain is obtained at the cost of additional computations that require intensive �ltering

operations, thus posing challenges for the real-time applications. Moreover, the highly data-

dependent irregular �ltering makes hardware implementation more dif�cult. To increase the

ef�ciency and the utilization, we will propose a systolic-based �ltering architecture for com-

bining the inter and intra prediction. The inter and intra predictions can actually share the

processing elements because each macroblock is either coded in the inter mode or the intra

mode.

The in-the-loop deblocking �lter is another key feature as compared to the existing stan-

dards. Most of the architecture design of the deblocking �lter used the macroblock-based �lter-

ing orders, which are inef�cient for the �ner granularity of pipeline synchronization. To reduce

the processing latency and memory requirement, we will propose a novel deblocking �lter with

�ne-grained synchronization capability.

The rest of this chapter is organized as follows: Section 5.2 presents an ef�cient memory

sub-system. Section 5.3 details an uni�ed systolic architecture for the inter and intra predic-

tion. Section 5.4 proposes a novel deblocking �lter with �ne-grained synchronization capabil-

ity. Lastly, Section 5.5 summaries this chapter.

-107-

Sec 5.2. An Ef�cient Memory Sub-System

5.2 An Ef�cient Memory Sub-System

5.2.1 Background

The H.264/AVC, which incorporates advanced inter predictions, demands higher bandwidth for

the external memory due to the intensive data transfer and less ef�cient DRAM access. The in-

tensive data transfer is introduced by more accurate sub-pel interpolation, motion compensation

of smaller block size, as well as motion �eld inference of temporal direct modes in the B slices.

On the other hand, the inef�cient DRAM access is caused by motion compensation of the vari-

able block size and adaptive temporal prediction with multiple reference frames. As compared

with MPEG-1/-2/-4, the frequency of DRAM access is increased by 2x to 16x. Moreover, the

ratio of row-miss in the external DRAM is increased considerably.

With the intensive and irregular DRAM access, the memory sub-system that acts as a bridge

for exchanging data between the on-chip hardware and the off-chip DRAM becomes the per-

formance bottleneck for the real-time applications. Several literatures are dedicated to improve

the ef�ciency for the DRAM access. In [63][64], the probability of page miss is minimized by

storing reference frames in the DRAM with checkerboard pattern. That is, the adjacent groups

of pixels are stored in different banks with interleaved order. Furthermore, in [65] the lumi-

nance and chrominance components are stored in two separate DRAMs so as to gain suf�cient

bandwidth. However, the auto precharge function is enabled after each DRAM access; conse-

quentially, two to four DRAMs must be used to match the bandwidth of the on-chip modules.

To effectively schedule the DRAM commands, in 5.1 a history-based prediction scheme is used

to enable auto precharge function according to the run-time behavior of the memory access.

However, the prediction accuracy is reduced signi�cantly by the irregular data access of the

H.264/AVC.

-108-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

To increase the on-chip bus utilization while maximizing the effective throughput of the

DRAM access, a synchronization buffer is employed for re-formatting the read/write data ex-

changed between the on-chip modules and the off-chip DRAM. In addition, we optimize the

issues of DRAM commands and adaptively enable the auto-precharge function by monitoring

the motion information of a submacroblock. Further, for lower probability of row miss, the ref-

erence frames are partitioned into multiple blocks of size 32x32 and stored in the DRAM with

checkerboard pattern. In the following subsections, we will present the memory sub-system in

detail, including (1) an interleaved data arrangement scheme for improving the ef�ciency of the

DRAM access, (2) an external memory interface for the control of mobile DDR SDRAM, and

(3) a synchronization buffer for the data cache.

5.2.2 Interleaved Data Arrangement

The data arrangement in the external memory is critical to the effective bandwidth that can be

achieved as well as the power consumption incurred for the DRAM access. An inef�cient data

arrangement increases the probability of rowmiss, for which the data in the sense ampli�er must

be �rstly precharged before another row is activated causing longer latency for DRAM access

and lower effective bandwidth. In addition, the row activation and the precharge operation

induce more power consumption than normal read/write access. Eq.(5.1) illustrates the energy

consumption during the DRAM access [66], whereNactive, Nprech arg e, Nrw and are the number

of active, precharge, and read/write access respectively.

Edynamic = Nactive � Eactive +Nprech arg e � Eprech arg e +Nrw � Erw (5.1)

According to the data sheet in [46], each active or precharge command typically expends 14,000

pJ while each read/write access consumes only 2,000 pJ. Thus, the active and precharge com-

-109-

Sec 5.2. An Ef�cient Memory Sub-System

mands require 7x more energy consumption than read/write access. As a result, an ef�cient data

arrangement must simultaneously minimize the probability of row miss and reduce the number

of read/write access.

In this subsection, we propose an interleaved data arrangement based on the checkerboard

pattern to minimize the probability of row miss. As shown in Figure 5.1, the luminance com-

ponent of each reference picture is partitioned into multiple blocks of size 32x32 (i.e., four

macroblocks) and the spatially adjacent blocks are stored respectively in the 4 different banks

of DRAM. When accessing a block for the motion compensation as the example in Figure 5.1,

at most one row is activated for each bank such that the number of row-miss is minimized. In

addition, the row activations for different banks can be overlapped thereby the latency can be

reduced. Similarly, the same arrangement is applied to the chrominance components. In partic-

ular, because of lower resolution, the Cb and Cr components are mixed together when forming

the 32x16 block. Moreover, since the chrominance block is processed right after a luminance

block, the interlaced memory mapping allocates the luminance and chrominance pixels and mo-

tion data of a 32x32 block into the same row of a bank such that the row activated for the data

access of a luminance block remains open during the processing of the following chrominance

block. Additional precharge and RAS (Row Address Strobe) latency could be eliminated due

to such arrangement.

To ful�ll the requirements, we de�ne a group of 4 spatially adjacent macroblocks as a lumi-

nance row block and the pixels in a luminance row block are stored in the same row of a bank.

Similarly, the same arrangement is applied for the associated chrominance components. In par-

ticular, because of lower resolution, each Cb and Cr block of size 16x16 are mixed together

to form a chrominance row block of size 32x16. The samples in a chrominance row block are

appended after those in the associated luminance row block. Moreover, the remaining space of

-110-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.1: The Interleaved Data Arrangement for the Stored Pictures

-111-

Sec 5.2. An Ef�cient Memory Sub-System

CS#,WE#,CAS#,RAS#, B0-B1,A0-A11, DQ0-DQ31
DQM0-DQM3, DQS-DQS3

External Memory
Interface

W
ri

te
D

at
a

(3
6

B
its

)

R
ea

d
D

at
a

(3
2

B
its

)

Command FIFO Data FIFOData FIFO

Timing
Checker

NOP
Counter

St
at

e
R

eg
is

te
r

A
dd

re
ss

(3
2

B
its

)

DRAM PAD

Finite
State

Machine

Mobile DDR SDRAM (MT46H16M16LF)

Figure 5.2: The Functional Block Diagram of the External Memory Interface

a row is allocated for the storage of motion information including motion vectors and reference

indexes.

5.2.3 External Memory Interface

To minimize the extra cycles induced by the row miss and the bank miss, an external memory

interface optimized for the control of the mobile DDR SDRAM is proposed. As shown in the

functional block diagram of Figure 5.2, the physical addresses from the address translator are

stored in a speci�c command FIFO (First-In-First-Out) such that auto precharge function can be

used more ef�ciently. The �nite state machine (FSM) combined with the state register, timing

checker, and counter generates the corresponding DRAM commands under the considerations

of the timing constraints and the power consumption. The read/write data FIFO are included to

synchronize the latency of row activation, burst data, and video processing operations.

-112-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

5.2.3.1 Adaptive Auto Precharge

The auto precharge function of DRAM allows the memory controller to perform the read/write

commands in a more compact way so that the latency of DRAM access can be reduced. Nor-

mally, during the DRAM access, the row being accessed will be remained activated for the

subsequent accesses unless a refresh command is received. With the auto precharge function,

one can decide whether the row being accessed should be precharged automatically at the end of

a read/write burst. Generally, the decision for enabling the auto precharge function is dependent

on consecutive commands. For instance, the auto precharge function will be a bene�t when the

row miss occurs. However, it is redundant when the next DRAM access actually points to the

same row of a bank. In that case, an unnecessary active command and extra RAS latency are

introduced.

To adaptively enable the auto precharge function for minimizing the latency of DRAM

access, a command FIFO is allocated for the detection of row miss between consecutive DRAM

accesses. As shown in Figure 5.3, the FIFO is �rstly initialized with the address information of

the data to be accessed, including the row and column of the target banks. Moreover, a hit �ag

is associated with each entry to distinguish whether the address of the current DRAM access is

different from the one of the next access. By default, the hit �ag is set to 1. When the target

address of the incoming DRAM access is different from the current one, the hit �ag of the

current entry will be reset to 0. According to the hit �ag, the auto precharge function can be

adaptively enabled.

5.2.3.2 Finite State Machine (FSM)

Figure 5.4 shows the �nite state machine (FSM) of the external memory interface, which

processes the DRAM access and generate the DRAM commands along with the consideration

-113-

Sec 5.2. An Ef�cient Memory Sub-System

Hit Bank Row Column
1 2 100 50
1 1 100 80
0 1 91 60
1 2 100 28
0 2 100 60

2 100 60

2 101 60

Command FIFO

=

=

IncommingB

R

Hit = B' + R

Read
counter

Figure 5.3: The Command FIFO for the Detection of the Row Miss

of the timing constraints while providing the minimal latency. The timing checker and the NOP

counter are used to check the timing constraints of each state. The state register that records

the status of each bank is used for the scheduling of read/write commands so as to minimize

the number of cycles between commands. In addition, the operations of all the banks are con-

trolled by one uni�ed FSM instead of multiple FSMs such that the cost the memory controller

is minimized.

5.2.4 Synchronization Buffer

The size of the synchronization buffer is critical to the ef�ciency of the DRAM access. A

synchronization buffer of larger size allows multiple DRAM accesses to be optimized jointly.

For instance, if the synchronization buffer is designed in such a way that the data required

for the decoding of a slice can be fetched in advanced, then one can schedule the data access

of a slice according to the target addresses to minimize the row miss and thus increase the

-114-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Power Applied

PREALL

Power
on

LMR

Row
Active

LMR
IDLE Auto

Refresh
REF

CKEL
CKEH

Power
Down

READ

READ
AP

WRITE

WRITE
AP

PREALL

READ
BT

READ

READ
AP

PRE

WRITE
AP

WRITE
WRITE

WRITE
AP

PRE
PRE

READ
AP

READ
AP

PRE Automatic Path
Command Path

AP: Auto Precharge
PRE: Precharge a Bank

LMR: Load Mode Register
PREALL: Precharge All Banks

Burst
Stop

Figure 5.4: The Finite State Machine Designed for the Mobile DDR SDRAM

effective DRAM bandwidth. Apparently, the ef�ciency is gained at the cost of extra gate counts.

Therefore, how to identify the size of the synchronization buffer that can provide the best trade-

off between the ef�ciency of DRAM access and the hardware cost becomes one of the key

issues for the memory sub-system.

Table 5.1 compares the cycle counts per macroblock (MB) when the synchronization buffer

is designed at the levels of 4x4, 8x8, 16x16 (1 MB), and 32x16 (2 MBs). Note that the number

is obtained based on the worst case assumption, in which the sub-pel interpolation of a 4x4

block requires the most input data, no redundant data are fetched for different blocks, and the

input data are distributed in different banks.

-115-

Sec 5.2. An Ef�cient Memory Sub-System

Table 5.1: Analysis of the Different Levels of Granularities Based on the Worst Case Auump-
tion

Level of Granularity of One Two
Memory Sub-system 4x4 8x8 Macroblock Macroblocks
Synchronization Buffer (Bits) 2160 5424 20160 40320
Cycles/Macroblock (one DRAM) 2096 940 745 454

Con�guration for 1920x1088@30Hz

Number of DRAM (N) 8* 4 2 1
Cycles/Macroblock (N DRAMs) 1136 532 595 454
Bandwidth Utilization 7.3% 16.8% 28.1% 78.2%
AHB Bus (Bits) 128 128 64 32

*Not Able to Meet Real-Time Requirement

As shown, smaller block size causes poor DRAM bandwidth utilization because of more

DRAM active and precharge operations. Equivalently, for the same real-time requirement and

clocking rate, the con�guration with smaller block size demands more DRAMs and wider AHB

data bus. In TABLE I, when one DRAM is used, only the granularity of 2MBs can ful�ll the

real-time requirement when clocking at 162MHz, i.e., 660cycles/MB.

However, in H.264/AVC, designing for the worst case may not be the best policy since the

worst case could only occur in an irrational sequence. Moreover, the bandwidth increase by

using more DRAMs could be constrained by the limited pin counts. In the next subsection,

we will show the performance of the proposed memory sub-system when the synchronization

buffer is designed at different levels of granularity.

5.2.5 Effect of Synchronization Granularity of Memory Sub-system on

Off-Chip Transmission

Generally, increasing the size of the synchronization buffer improves the ef�ciency of DRAM

access; however, it also introduces higher cost for the on-chip hardware. To �nd the best design

-116-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

trade-off, the ef�ciency of DRAM access and the associated power dissipation as well as the

hardware cost are analyzed when the synchronization buffer is designed at different levels of

granularity. The ef�ciency of DRAM access and the associated power dissipation as well as the

hardware cost are analyzed when the synchronization buffer is designed at different levels of

granularity, including 4x4, 8x8, and 16x16 (1 macroblock).

In this subsection, the DRAM access is statistically analyzed when the synchronization

buffer is designed at different levels of granularities, including 4x4, 8x8, and 16x16. The analy-

sis is conducted by deploying one external DRAM. To capture the characteristics for different

scenarios, the testing sequences include four QCIF sequences (Stefan, Mobile, Table, Coast-

guard) and 4 HD sequences (Pedestrian, Rush_hour, Sun�ower, and Station2.). Each sequence

is further coded at low, medium, and high bit rates using the Qp of 10, 28, and 45 respectively.

In addition, to minimize the number of active and precharge operations, the data mapping in the

external DRAM is based on the checkerboard arrangement as presented in Subsection 5.2.2.

Figure 5.5 shows the memory ef�ciency for the motion compensation, which dominates the

access of DRAM. As shown, the access of DRAM has higher ef�ciency when using larger block

size. By �rstly observing the block partition and motion vectors, we can prevent redundant

data from being transferred. Figure 5.6 further shows the memory ef�ciency from the system

perspective; that is, the DRAM access for the on-chip modules is simultaneously considered.

Again, we have similar observation as in Figure 5.5. However, the difference between the 8x8

and 16x16 is not signi�cant at medium or low bit rates.

To evaluate the DRAM latency, Figure 5.7 illustrates the average cycle counts for DRAM

access per MB. Here, we consider all the data transfer for the on-chip modules. As expected,

larger block size require less DRAM cycles because of higher memory ef�ciency. Moreover, as

shown in Figure 5.8, larger block size also has less memory overhead due to less frequent active

-117-

Sec 5.2. An Ef�cient Memory Sub-System

Figure 5.5: The Ef�ciency of DRAM Access for Motion Compensation. The Ef�ciency is
De�ned as (# of Data Read from the External DRAM) / (Actual Data Required for the Motion
Compensation)

and precharge operations.

The ef�ciency of DRAM access also affects the power dissipation. Figure 5.9 compares the

estimated power dissipation for different block granularities according to the DRAM speci�-

cation [46]. As shown, smaller granularity dissipates higher power due to more DRAM com-

mands. Moreover, since each active or precharge command spends 7x power consumption than

the read/write commands, larger block size, which has less active and precharge operations, is

more ef�cient in terms of power dissipation.

From the experimental results, we obtain the conclusions as follows: (1) with one DRAM,

only the granularity of two macroblocks guarantees the design for the worst case. However,

(2) using the granularity of one macroblock with one DRAM is suf�cient for the average case.

Moreover, (3) using the granularity of 8x8 block with one DRAM consumes more power while

-118-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.6: The Ef�ciency of DRAM Access for the Decoder. The Ef�ciency is De�ned as (#
of Data Read from the External DRAM) / (Actual Data Required for Decoder)

the synchronous buffer can be reduces. In addition, (4) using the granularity of 4x4 block

requires least internal buffer, but needs more external DRAMs to provide higher bandwidth. In

summary, the synchronization buffer with larger block size has higher memory ef�ciency, and

thus, less DRAM access cycles and power dissipation. However, the granularity of 8x8 block

provides better trade-off among cost, ef�ciency, power, and real-time requirement.

In summary, the intensive, irregular DRAM access in the H.264/AVC decoder makes the

memory sub-system become the performance bottleneck for the real-time applications. More-

over, the variable-rate bumping process further complicates the management of decoded pic-

ture buffer. To tackle these issues, an ef�cient memory sub-system and a constant-rate bump-

ing process are proposed. Firstly, the memory interface is designed to optimize the issues of

read/write commands and the auto-precharge function. Moreover, an interleaved data arrange-

-119-

Sec 5.2. An Ef�cient Memory Sub-System

Figure 5.7: The Average Cycle Counts per MB

Figure 5.8: The Amount of Data Transfer

-120-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.9: The Power Consumption in DRAM

ment is proposed to reduce the probability of row miss. Secondly, a regulation buffer with

size being equal to the decoded picture buffer is created to ensure a constant output rate of de-

coded pictures for any conformed prediction structures. Thirdly, a synchronization buffer at the

granularity of 8x8 is used to maximize the DRAM bandwidth while minimizing the extra cost.

5.3 Combined Inter and Intra Prediction

In this section, we implement the inter and intra prediction with a recon�gurable systolic ar-

chitecture. First, we map all kinds of computations into the systolic operations such that the

different predictions can be performed in a similar way. Second, we synthesize a uni�ed sys-

tolic architecture from the description of prediction algorithm. Systolic architecture includes

a number of regular and modular processing elements (PEs) that simultaneously process and

pass data in a similar way. All PEs regularly pump data in and out such that a regular data

-121-

Sec 5.3. Combined Inter and Intra Prediction

�ow is maintained [67]. Thirdly, we use several multiplexers to con�gure the data paths ac-

cording to the coding modes and the motion vectors. Therefore, we can share the array of PEs

for all the prediction modes including the inter prediction of luminance component, the inter

prediction of chrominance component, and the intra prediction of both components. For the

inter prediction, the 2-D interpolation is conducted through two separable 1-D �lterings. For

the intra prediction, the boundary pixels are reshuf�ed before feeding into the systolic array.

In the following subsections, we �rstly elaborate the disadvantages of the related work on the

design of inter and intra prediction. After that, we present a uni�ed architecture that ef�ciently

combines the inter and intra prediction. Then, we detail the operations of the architecture at

different con�gurations. Lastly, we compare the proposed architecture with the state-of-the-art

designs.

5.3.1 Motivation

The spatial and temporal predictions are essential to video coding ef�ciency. The H.264/AVC

[6] simultaneously incorporates the inter and intra predictions to remove temporal and spatial re-

dundancy. Comparing with the existing standards H.261/2/3 and MPEG-1/2/4, these prediction

techniques save up to 50% bit rates while providing similar perceptual quality [68]. However,

the coding gain is at the cost of additional computations. In the intra prediction, the mode-

adaptive predictor is generated by a 1-D �ltering, which is conducted along with the boundary

pixels of a block. Similarly, the half-/quarter-pel predictor in the inter prediction is produced

through a separable 2-D �ltering with the motion compensated blocks of variable size. Both

predictions require intensive �ltering operations that poses challenges for the real-time appli-

cations. Moreover, the adaptive and irregular �ltering makes hardware implementation more

dif�cult. Therefore, there are many related work on the design for the inter and intra prediction.

-122-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

However, the state-of-the-art designs of the pixel prediction, which includes the inter and

intra prediction, pose some disadvantages in the aspect of ef�ciency and utilization as following:

1. The inter and intra predictions are always implemented as two separated modules due

to the difference in their operations [69][70][71][72][73][74][75][76]. However, in the

application of decoder and transcoder, the prediction mode of each macroblock in the

input bitstream is known in advance. Thus, using separated hardware resources for the

inter and intra prediction causes poor hardware utilization.

2. For the interpolation in the inter and intra prediction, most of the prior works implement

the �nite impulse response (FIR) �lter based on the traditional adder-tree (AT) structure

[77][44][78][47][79], where the �ltering is implemented by a number of tree-structured

adders and shifters. However, in such straightforward implementation, common terms

between consecutive �ltering operations are not reused at all. Moreover, multiple input

samples are simultaneously latched for one �ltered output causing higher input band-

width.

3. The number of FIR �lter in the AT-based design [34][78][47] is designed for the worst

case, i.e. all the 4x4 blocks are coded as Inter_4x4 mode that requires 2-D interpolation.

However, the �lter utilization is signi�cantly decreased for t he block partition that only

requires 1-D interpolation. Furthermore, the design for the 4x4 block partition introduces

redundant computations in case of larger block partition. In our simulation, the worst

case occurs rarely in the actual bitstream such that the AT-based design performs worse

system performance on the average.

4. In addition to the less ef�cient FIR �lter design, the AT-based design is tightly coupled

with the external memory [47] or the on-chip data bus [71]. The latency of the external

memory could compromise the performance of the prediction module. Besides, the re-

-123-

Sec 5.3. Combined Inter and Intra Prediction

dundant data transmission not only increases the transmission power but also degrades

the system performance caused by serious bus contention.

To increase the ef�ciency and the utilization, we propose a uni�ed �ltering architecture for

the inter and intra prediction. First, we share the data paths for both the inter and intra pre-

diction so as to increase hardware utilization and reduce hardware cost. Second, to minimize

redundant computations in the pixel predictions, the FIR �ltering is implemented by a recon-

�gurable systolic architecture. Thirdly, our proposed systolic architecture is fully utilized for

any kind of interpolation and block partition. Fourthly, we allocate a local FIFO and memory

for temporarily buffering the motion-compensated data and the intermediate data such that the

motion-compensated data of a block partition is transferred without redundant transmission.

5.3.2 Overall Architecture

The overview architecture of our inter and intra prediction in given in Figure 5.10. Depending

on the coding mode, the controller governs the data stream entering and leaving the ports of

the uni�ed systolic array. In the H.264/AVC, the predictor of a block is created from image

samples that are coded in either the previously decoded frames or the current frame. The inter

prediction creates the predictor of a block from the previously-coded frames that are stored in

the external memory. The motion-compensated data, which is determined by the motion vector

and the size of block partition, is pre-fetched into the synchronization buffer before generating

the predictor of the current block as mentioned in Section 4.3,. Thus, the source data of inter

prediction comes from the on-chip data bus via AHB interface. Due to the con�ict between

32-bit data bus and pixel-wise processing granularity of the systolic array, the internal pixel

FIFOs are used to harmonize the bus transmission and the pixel interpolation. On the other

hand, the intra prediction creates the predictor for a block using the boundary pixels in the

-124-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Unified Systolic Array

8 3-pixel FIFOs

[31:24]
[23:16]
[15:8]
[7:0]

M
ux

M
ux

Dual-Port
Register File

AHB input interface

FSM
Control

Reconstruction
& Storage

Output PortInput Port

PE PE PE PE PE PE

Controller

Figure 5.10: The Architecture of Inter and Intra Prediction

adjacent blocks. That means the systolic array get the data in the local memory that stores the

boundary pixels of the adjacent blocks when intra prediction is performed. Therefore, the �nite

state machine (FSM) controller can select the source data as the input of systolic array by two

5-to-1 multiplexers as shown in Figure 5.10.

In addition to the selection of the input of systolic array, the FSM controller controls the

data �ow for each inter-coded block which is of variable size and requires various interpolations

depended on the motion vector. Due to the sub-pixel resolutions of motion vectors such as 1/2-,

1/4-, and 1/8-pixel, the inter prediction requires intensive computations for the interpolation

of motion-compensated full-pixel samples. Speci�cally, the 1/2-pixel samples are interpolated

from full-pixel samples using the 6-tap FIR �lter whose tap is (1, -5, 20, 20, -5, 1). Particularly,

when the motion vector of a block points to a certain position, a 2-D interpolation may be

-125-

Sec 5.3. Combined Inter and Intra Prediction

F1
F2
F3
F4
F5
F6
F7
F8
F9

H
1

H
2

H
3

H
4

9 pixel

9
pixel

9x9 Full-pel data
4x9

Intermediate
results

4x4 Final
interpolated

data

T
12

T
10

T
11

T
13

Figure 5.11: The 2-D Interpolation for the Motion Compensation with Sub-Pel Precision. Note
that the 2-D Filtering Can Be Separated Into Two 1-D Filtering.

required which means that the second interpolation of one predictor is dependent on the results

of the �rst interpolation. In order to increase the hardware utilization, the 2-D interpolation is

done by two separable 1-D �lterings as shown in Figure 5.11. For instance, to get a 4x4 block

whose motion vector points to the position that requires a 2-D interpolation, the �lter �rstly

processes a 9x9 block into a 9x4 block. The local memory buffers the intermediate results and

transposes them when performing the second �ltering. Lastly, the �lter processes the 9x4 block

to produce the predictor of 4x4 block. We use a dual-port register �le as the local memory and

its size depends on the level of synchronization granularity. For instance, a 104x8 register �le

is allocated to buffer the intermediate 13x8 block of pixels at the granularity of 8x8 block.

Similarly, the FSM controller controls the data �ow for each intra-coded block which is of

variable size and requires variable predictions depended on the coding mode. In the main pro�le

of H.264/AVC [6], each intra-coded macroblock can have one of the two prediction types,

which are Intra_4x4 and Intra_16x16. For each type of predictions, the macroblock is �rstly

partitioned into multiple sub-blocks (with size being NxN where N can be 4 and 16). Then,

-126-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

each sub-block can be further assigned with directional modes, DC mode, or plane mode where

different operations are required. While the FSM controller adequately inputs the boundary

pixels into the systolic array, all different operations can be mapped into the FIR �ltering.

After the predictor of a block is generated, the reconstruction unit adds the predictor to the

residue from the input port and then outputs the reconstructed pixels to the next module, i.e. the

deblocking �lter. In particular, the boundary pixels of the current block need to be stored in the

local memory for the subsequent intra-coded blocks.

The FIR �ltering is performed using a uni�ed systolic array which pumps the data from

the controller in a pipeline fashion. For details, Figure 5.12(a) shows the pipelined network

arrangement of the PEs within our uni�ed systolic array. It consists of 6 PEs and these PEs

perform a sequence of operations on data that �ows between them. Each PE is responsible for

the multiplication and addition of a �lter tap: one multiplies its input by a factor, adds the data

from the right, and passes the result to the left. The outcome of each PE is buffered in a D

�ip-�op such that each pixel is not only used when it is input but also is reused as it moves

through the pipelines in the array. The size of the D �ip-�op is 18-, 18-, 18-, 16- and 13-bit

respectively from left to right. Except for the initial cycles, the systolic array pumps in two

pixels and generate 1 to 4 predictor(s).

The multiplexers in Figure 5.12(a) can con�gure the data paths so as to provide various

�lters. Speci�cally, the Mux #1 and #2 are used to select one of two inputs while performing the

inter prediction for the luminance component. The Mux #4, #6, and #7 are used to partition the

PEs as two concurrent �lters while performing the inter prediction for the luminance component

and intra prediction. The Mux #5 and #7 are used to implement the accumulation for the intra

DC and plane modes. Lastly, the PE1 can perform the addition of two inputs by the Mux #1

and #3 for the intra plane mode.

-127-

Sec 5.3. Combined Inter and Intra Prediction

MUX #2
Mux #1

+ + + + +DD

M
ux

#3 D

M
ux

#4

M
ux

#5 D

WWWW

M
ux

#6

M
ux

#8

data path of
intra prediction

data path of inter prediction
of chrominance part

Input 1
Input 2

Output 1
Output 2
Output 3
Output 4

PE1 PE2 PE6PE5PE4PE3

D

M
ux

#7

(a)

<<2
<<1

<<3

0

m

sel #1

Mux #2

Mux #1

Mux #3

+

Mux #4

<< 2

sel #2

sel #3

sel #4

n

<<2
<<1

<<3

0
m

sel #1

Mux #2

Mux #1

+

Mux #4

<< 2

sel #2

sel #4

n

<<2
<<1

<<3

0

m

Mux #2

+

sel #2

n

(b) (c) (d)

Figure 5.12: (a) The Uni�ed Systolic Array for Both Inter and Intra Interpolation. (b) The
Block Diagram of Functional Block W. (c) The Weighting Mode of Functional Block W. (d)
The Combination Mode of Functional Block W.

-128-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

The blocks denoted as W in Figure 5.12(a) implement the multiplications of FIR �ltering

using shift and addition. Moreover, theseW blocks can dynamically re-program the �lter tap so

as to provide various �lters. For details, Figure 5.12(b) shows the block diagram of theW block.

Speci�cally, the Mux #3 can con�gure theW block as two modes: (1) TheW block selects one

of two input signals using the Mux #1 and weights it by a factor between 1 and 20 using the

Mux #2 and #4 as shown in Figure 5.12(c). (2) TheW block performs the addition of one input

and the other input with weights of 1, 2, 4, or 8 as shown in Figure 5.12(d). Therefore, the

multiplexers and theW blocks enable the programmability and recon�gurability of our uni�ed

systolic array so as to support all the predictions. In the following, we will detail the data �ow

for different prediction modes.

5.3.3 Data Flow of the Inter Prediction

For the inter prediction, the luminance and chrominance components are processed differently.

However, all the computations are done by the same systolic array. The luminance block re-

quires a �xed 6-tap �lter while the chrominance block needs a dynamic 2-tap �lter. The actual

�lter tap used for the chrominance part is determined by the value of motion vectors. Particu-

larly, to increase the throughput, our recon�gurable architecture can be divided into two parts

for simultaneously processing Cb and Cr.

5.3.3.1 Luminance Component

The systolic array implementation of luminance interpolation, which requires 9 adders and 5

registers, constructs the whole framework of uni�ed systolic array as shown in Figure 5.13. It

is the basic form of a systolic array to implement a �xed, 6-tap FIR �lter. The weights of 5 and

20 can be implemented by the W blocks in Figure 5.12(a) as described above.

-129-

Sec 5.3. Combined Inter and Intra Prediction

Figure 5.13: The Con�guration of Inter Prediction for Luminance Component

Using systolic implementation can ef�ciently re-use the intermediate terms between consec-

utive �ltering operations and take less bus bandwidth. For better understanding, the consecutive

operations of the 6-tap �ltering is presented in Figure 5.14� where Xm,n denotes the motion-

compensated full-pixel samples, the suf�xm speci�es the row index, and the suf�x n indicates

the column index. As shown, the Outputs #3 and #4 have the common term (X0,5 times 20).

Using the conventional adder-tree architectures, the common terms will not be reused and it

introduces redundant computations and higher power consumption. Therefore, by mapping the

6-tap �ltering into the systolic array, the intermediate results can be passed through the regis-

ters and reused in different PEs. In addition, since the adder-tree designs require 6 neighboring

pixels to generate one predictor per cycle, there are 5 redundant pixels transferred via the data

bus between the two consecutive executions. In our implementation, however, each motion-

compensated pixel in the synchronization buffer is transferred once and is sent to the systolic

array one by one. Therefore, the systolic architecture has the advantage of lower bus bandwidth.

Among a variety of systolic arrays, the form of input broadcast has higher throughput by

overlapping the �ltering operations of the two adjacent rows. Several bubble cycles with invalid

data output is conducted between the two adjacent rows if pixel data is fed into the systolic

-130-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

X0,0 X0,1 X0,2 X0,3 X0,4 X0,5 X0,6 X0,7 X0,8 X1,0 X1 ,1

Output 1 1 -5 20 20 -5 1
Output 2 1 -5 20 20 -5 1
Output 3 1 -5 20 20 -5 1
Output 4 1 -5 20 20 -5 1

Figure 5.14: The Weighting Factor of Each Input for Consecutive Execution of the 6-tap Fil-
tering

Figure 5.15: Input Scheduling of the Proposed Systolic Array that Uses Two-Input Broadcast-
ing

array one by one. In order to increase the throughput, we broadcast two input lines to overlap

�ltering operations so as to improve the hardware utilization. Figure 5.15 illustrates the data

�ow of the two-input broadcast. Each PE selects corresponding input line via multiplexer at

different cycles. For example, in the 7-th cycle, PE1, PE2, and PE3 select the �rst input while

the other three PEs select the second input. First valid data out is generated in the 6-th cycle.

-131-

Sec 5.3. Combined Inter and Intra Prediction

5.3.3.2 Chrominance Component

Similarly, the chrominance component can be processed with the same manner as the luminance

part except that the �ltering is of 2-tap. When the motion vector points to the sub-pixel position,

the predictor of one sub-pixel a from four full-pixel positions, i.e. A, B , C , and D as shown in

Eq.(5.2).

a =

2664 (8� dx) � (8� dy) � A+ dx � (8� dy) �B+
(8� dx) � dy � C + dx � dy �D + 32

3775 >> 6 (5.2)

, where the terms dx and dy, whose value is an integer between 1 and 7, indicates the rel-

ative location of the motion vector to the full-pixel positions. Instead of the straightforward

implementation in [47], we re-write Eq.(5.2) by factor decomposition as follows.

a =

8>><>>:
(8� dy) � [(8� dx) � A+ dx �B] +

dy � [(8� dx) � C + dx �D] + 32

9>>=>>; >> 6

= [(8� dy) � a1 + dy � a2 + 32] >> 6 (5.3)

, where

a1 = (8� dx) � A+ dx �B

a2 = (8� dx) � C + dx �D

From Eq.(5.3), we realize the interpolation of the chrominance component by three separable

2-tap �lterings as illustrated in Figure 5.16. First, the pixels "A" and "B" are processed by

the 2-tap �lter whose tap is (8 � dx, dx) to generate the intermediate result "a1". Second, the

pixels "C and "D" are processed by the same 2-tap �lter to generate the intermediate result "a2".

Lastly, two intermediate terms "a1" and "a2" are processed by another 2-tap �lter whose tap is

-132-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

A a1 B

a

C a2 D

dx

dy

8-dx

8-dy

Figure 5.16: Separated Filterings of the Inter Prediction for Chrominance Component

(8 � dy, dy) to generate the predictor. Therefore, the interpolation of chrominance component

can be implemented by our systolic array.

To increase the hardware utilization, we partition the systolic array into two parts so as

to simultaneously process Cb and Cr. For clarity, Figure 5.17 shows the data path for the

chrominance interpolation. As shown, the samples of Cb and Cr blocks are fed into the systolic

array simultaneously via the two inputs and each color component is separately �ltered by the

recon�gurable, 2-tap �lters. Speci�cally, each PE can realize the various �lter tap between 1

and 7 according to the value of motion vector.

5.3.4 Data Flow of Intra Prediction

For the intra prediction, the computations involved for each mode is different. However, all

the computations are done by the same systolic arrays. Generally, the intra prediction requires

the accumulator and the two �xed �lters whose tap are of (1, 1) and (1, 2, 1). Particularly,

to increase the throughput, our recon�gurable architecture can be divided into two parts for

-133-

Sec 5.3. Combined Inter and Intra Prediction

Figure 5.17: The Con�guration of Inter Prediction for Chrominance Component

realizing two �lters at the same time.

5.3.4.1 Directional Mode

Except for the horizontal and vertical mode, other 6 directional modes require the FIR �ltering

to generate the predictor. The predictor is actually constructed by a linear combination of the

boundary pixels For example, Eq.(5.4) lists the corresponding formulas for the two predictors

in the Vertical_Right mode.

PRED [1; 0] = (P [0;�1] + P [1;�1] + 1)� 1

PRED [0; 3] = (P [�1; 2] + 2� P [�1; 1] + P [�1; 0] + 2)� 2 (5.4)

, where P [x; y] indicates the boundary pixel at the (x; y) position related to the current block.

By reordering the boundary pixels, all the predictors of a sub-block can be obtained by

adaptively �ltering part of boundary pixels. Different modes simply differ in how the �ltering

is applied as shown in Figure 5.18. For each mode, part of the boundary pixels are pumped into

the systolic array in a �xed order so that the data can be continuously processed to minimize

stalls and bubbles. In particular, 2-tap (1, 3) �ltering can be extended as 3-tap (1, 2, 1) �ltering

-134-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

when the last pixel is input repeatedly. For clarity, Figure 5.18 shows the data path of the intra

prediction for the direction modes. As shown in Figure 5.19(a), the systolic array is con�gured

as two (1, 2, 1) �lters for the Diagonal_Down_Left and Diagonal_Down_Right mode because

they only require (1, 2, 1) �ltering. Otherwise, the systolic array is con�gured as (1, 1) and (1,

2, 1) �lters for other directional modes as shown in Figure 5.19(b) since they require both types

of �lterings.

5.3.4.2 DC Mode and Plane Mode

In addition to the directional modes, the DC mode and the plane mode require the accumulation

operation to sum up the boundary pixels in different ways. The DC mode is useful for predic-

tion in the low pass regions. Therefore, all the predictors of a block with the DC mode are the

average value of the boundary pixels. The plane mode is effective for the regions with direc-

tional gradient. Each predictor are represented as a function of gradient and spatial coordinate.

Speci�cally, the predictors of plane mode can be calculated by Eq. (5.5).

PRED [x; y] = ClipY [(a+ b� (x� 7) + c� (y � 7) + 16)� 5] (5.5)

, where

a = 16� (P [�1; 15] + P [15;�1]) ;

b = (5�H + 32)� 6;

c = (5� V + 32)� 6;

H =
7X

x0=0

(x0 + 1)� (P [8 + x0;�1]� P [6� x0;�1]) ;

V =
7X

y0=0

(y0 + 1)� (P [�1; 8 + y0]� P [�1; 6� y0]) :

-135-

Sec 5.3. Combined Inter and Intra Prediction

(1,2)

p(-1,3) p(-1,2) p(-1,1) p(-1,0) p(-1,-1) p(0,-1) p(1,-1) p(2,-1) p(3,-1) p(4,-1) p(5,-1) p(6,-1) p(7,-1)

Spread out the boundary pixels

Adaptive filtering

(1,2,1)

Predictor of
mode #3

p(-1,-1) p(0,-1) p(1,-1) p(2,-1) p(3,-1)

p(-1,0) Pred[0,0] Pred[1,0] Pred[2,0] Pred[3,0]

p(-1,1) Pred[0,1] Pred[1,1] Pred[2,1] Pred[3,1]

p(-1,2) Pred[0,2] Pred[1,2] Pred[2,2] Pred[3,2]

p(-1,3) Pred[0,3] Pred[1,3] Pred[2,3] Pred[3,3]

Pred[0,3] Pred[0,2] Pred[0,1] Pred[1,1] Pred[2,1] Pred[3,1]
Pred[1,3] Pred[2,3] Pred[3,3]

Pred[0,0] Pred[1,0] Pred[2,0] Pred[3,0]
Pred[1,2] Pred[2,2] Pred[3,2]

p(4,-1) p(5,-1) p(6,-1) p(7,-1)

Pred[0,0] Pred[1,0] Pred[2,0] Pred[3,0] Pred[3,1] Pred[3,2]
Pred[3,3]

(1,3)

Pred[0,1] Pred[1,1] Pred[2,1] Pred[2,2] Pred[2,3]
Pred[0,2] Pred[1,2] Pred[1,3]

Pred[0,3]

Pred[0,3] Pred[0,2] Pred[0,1] Pred[0,0] Pred[1,0] Pred[2,0] Pred[3,0]
Pred[1,3] Pred[1,2] Pred[1,1] Pred[2,1] Pred[3,1]

Pred[2,3] Pred[2,2] Pred[3,2]
Pred[3,3]

Pred[1,3] Pred[1,2] Pred[1,1] Pred[1,0] Pred[2,0] Pred[3,0]
Pred[3,3] Pred[3,2] Pred[3,1]

Pred[0,3] Pred[0,2] Pred[0,1] Pred[0,0]
Pred[2,3] Pred[2,2] Pred[2,1]

Pred[0,0] Pred[1,0] Pred[2,0] Pred[3,0]
Pred[0,2] Pred[1,2] Pred[2,2] Pred[3,2]

Pred[0,1] Pred[1,1] Pred[2,1] Pred[3,1]
Pred[0,3] Pred[1,3] Pred[2,3] Pred[3,3]

Pred[1,2]
Pred[3,1]

Pred[1,1] Pred[1,0]
Pred[3,0]

Pred[0,2] Pred[0,1]
Pred[2,1] Pred[2,0] Pred[0,0]

Diagonal_Down_Left (mode #3)
Diagonal_Down_Right (mode #4)

Vertical_Right (mode #5)
Horizontal_Down (mode #6)

Vertical_Left (mode #7)
Horizontal_Up (mode #8)

Predictor of
mode #4

Predictor of
mode #5

Predictor of
mode #6

Predictor of
mode #7

Predictor of
mode #8

Pred[x,y]

Pred[x,y]

Pred[x,y]

: 2-tap (1,3) filtering

: 2-tap (1,1) filtering

: 3-tap (1,2,1) filtering

Figure 5.18: Intra Prediction by Adaptive Filtering

-136-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

(a)

(b)

Figure 5.19: The Con�guration of Intra Prediction for the Direction Modes. (a) The Two (1 ,2,
1) Filters. (b) The (1, 1) and (1, 2, 1) Filter.

-137-

Sec 5.3. Combined Inter and Intra Prediction

The item "H" and "V " are the sum of weighed difference of pixel pairs. The item "b" and

"c" can be viewed as the weighted version of "H" and "V " respectively so as to represent the

horizontal gradient and vertical gradient. After that, each predictor can be directly calculated

from the value "a", "b", "c", and the spatial coordinate. Particularly, the plane mode requires the

most computations among all the intra prediction modes. However, in this paper, we generate

the predictor in another way to minimize the number of operations.

To remove the operational redundancy in Eq. (5.5), we use the property of arithmetic pro-

gression to generate the predictors as shown in Figure 5.20. As shown, the difference of any two

successive predictors in the horizontal direction is a constant "b". Similarly, the difference of

any two successive predictors in the vertical direction is a constant "c". To obtain the predictor

of a macroblock, the boundary pixels are �rstly weighted and accumulated to obtain "H" and

"V ". Then, all the predictors can be calculated from an initial value "a". The values of predic-

tors in the same row are incremented by a factor of "b". On the other hand, the predictors in the

same column are incremented by a factor of "c". Therefore, each predictor in the macroblock

with plane mode is generated by accumulating "a", "b", and "c" without the formula of Eq. (5.5)

for each predictor.

Figure 5.21 shows the data path of the intra prediction for the DC mode and the plane mode.

Speci�cally, the feedback loops F1 and F2 in Figure 5.21(a) are created for the accumulation

to generate the average value and the values of "H" and "V " from all the boundary pixels. The

gradient values "b" and "c" are calculated by the con�guration in Figure 5.21(b). After obtaining

the "a", "b", and "c", the prediction of a macroblock with plane block can be generated at the

rate of 4 predictors per cycle. In particular, the systolic array has two different con�gurations

at the odd and even cycles as shown in Figure 5.21(c) and Figure 5.21(d). In particular, 5 of 6

PEs operate independently at the odd cycles to generate 4 predictors in the same row as shown

-138-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

a

b

c
(a-c)-7b (a-c)-6b (a-c)-5b (a-c)-4b (a-c)-3b (a-c)-2b (a-c)-b (a-c)

a-7b a-6b a-5b a-4b a-3b a-2b a-b a

Figure 5.20: The Progression Property of Plane Mode

-139-

Sec 5.3. Combined Inter and Intra Prediction

.

Table 5.2: The Comparison of the Intra Prediction

Huang '04 [77][44] Proposed
Architecture Adder Tree (AT) Separates 1-D Systolic Array (SA)
Component AT x 4 SA. x 1
of Adder > 4x3= 12 2x3 = 6
Gate Count 12945 8000
Execution Cycle1 > 64 cycles/MB2 18+64=82 cycles/MB3
of Input Wires 8x4+13+3+4=52 2
1The execution cycle count in worst case (e.g. Intra16x16 Plane Mode)
2Without including computation of H ,V ,a,b,c
318 cycles are for the computation of H ,V ,a,b,c and 64 cycles are
for the computation of predictor

in Figure 5.21(c). While the PEs reuse the outcome of neighboring PE at the even cycles to

generate 3 predictor in the same row and 1 predictor in the neighboring row as shown in Figure

5.21(d). The item an represents the seed value at the n-th cycle as follows.

an = a� b
n

2
c � c (5.6)

5.3.5 Analysis and Comparison

This subsection compares our systolic architecture with several state-of-the-art designs for the

pixel prediction. Table 5.2 shows the comparison of our combined architecture with one level of

parallelism and Huang's architecture for for intra prediction [44]. Leaving the computation of

"H", "V ", "a", "b", and "c" aside, both designs require equal execution cycles in the worst case,

i.e. the intra16 plane mode, while our architecture has lower equivalent gate count. Note that in

Huang's design, the inter and intra predictions are separated into two modules [70]. In addition,

our combined systolic architecture signi�cantly reduces the number of input wires which leads

to lower input bandwidth and cost.

-140-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

(a) (b)

+

W

D D

at
b

at -b

PE1 PE2 PE6PE5PE4PE3

W

D

W

D +

W

D

at -2b
at -6b
at -4b

a-8b

(c)

+ D D

c
b

at -3b

PE1 PE2 PE6PE5PE4PE3

D D + D

at -7b
at -5b
at -c

++

(d)

Figure 5.21: The Con�guration of Intra Prediction for the DC Mode and the Plane Mode. (a)
The Data Path for Accumulation. (b) The Generation of Gradient Values "b" and "c". (c) The
Pixel Prediction of Plane Mode at Odd Cycles. (d) The Pixel Prediction of Plane Mode at Even
Cycles.

-141-

Sec 5.3. Combined Inter and Intra Prediction

)

Table 5.3 further compares our architecture with the state-of-the-art designs for the inter

prediction. As shown, our systolic architecture has lower cost in terms of equivalent gate count.

The higher throughput has been achieved by increasing the parallelism of the systolic array,

however, our design with three levels of parallelism systolic array still consumes more cycles

than Wang's design [47] for the worst case where all the sub-blocks are coded as the Inter_4x4

mode that requires the 2-D interpolation. Wang designed the inter prediction module for the

worst case, while our systolic architecture has better throughput performance on the average as

listed in Table 5.4. In the following two subsections, we will compare the performance for the

general case.

5.3.5.1 The Effect of Parallelism on the Systolic-Based Inter and Intra Prediction

The throughput performance are evaluated and compared for different designs of inter and intra

prediction with a wide range of bitstreams as shown in Figure 5.22, Figure 5.23, Figure 5.25,

Figure 5.26, Figure 5.27, and Figure 5.28. The sequences including Blue_Sky, Pedestrian_Area,

Riverbed, Rush_Hour, Station2, Sun�ower, and Tractor are compared at a wide range of bit-

rate for four different resolutions covering 240x144, 480x272, 960x544, and 1920x1088. The

performance of SA_1 lies in between that of Wang's design and Deng's design while the perfor-

mance of SA_2 and SA_3 outperform all the other reference designs. As compared to Wang's

design [40], our systolic architecture can provide up to 4.5X throughput improvement.

5.3.5.2 Data Transmission via AHB Data Bus at Different Levels of Synchronization

Granularity

We continuously analyze the amount of motion-compensated data transmission via AHB data

bus at different levels of granularity of video pipe as shown in Figure 5.29, Figure 5.30, Figure

-142-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Table 5.3: Comparison of Inter Prediction.

Wang '03 Deng '04 Wang '05 Proposed
[40] [34] [78] [47]

Architecture 1-D Pipelined Separated Separated 1-D
Adder 2D 1D Systolic Array
Tree Adder Adder (SA)
(AT) Tree Tree

(AT) (AT)
MVG Software N/A Hardware Hardware
Component FIR x 2 Pipelined Horizontal SA x 1 SA x 2 SA x 3

FIR x 9 FIR x 9 &
Vertical
FIR x 4

Chroma N/A Chroma
FIR x 3 FIR x 2
Bilinear Bilinear Bilinear Bilinear

of Adder 6x2 + 1 > 7x9=63 6x13 + 9x1 + 9x2 + 9x3 +
+ 3x3 = 22 23x2 = 124 3 = 12 3 = 21 3 = 30

Gate Count 111721 169102 20686 8000 13000 18000
Execution 1616 800 576 1248 752 672
Cycle3 cycles/MB cycles/MB cycles/MB cycles/MB cycles/MB cycles/MB
Critical Path 4 adders4 1 18-bit adders 4 adders5 2 adders6 2 adders6 2 adders6

of 6x2 + > 13x2= 26 6x4 + 2 4 6
input wires 2x3 = 18 4x2 = 32
1Without including the cost of SRAM
2Without including the cost of chroma �lter
3The execution cycle count in worst case
(e.g. All are blocks are coded as Inter4x4 mode that requires 2-D interpolation)
4A 18-bit adder + two 16-bit adders + a 13-bits adder + a 13-bit multiplexer + a 18-bit multiplexer
5A 18-bit adder + two 16-bit adders + a 13-bits adder
6A 18-bit adder + a 15-bit adder + a 13-bit multiplexer + two 16-bit multiplexers
+ a 18-bit multiplexer

-143-

Sec 5.3. Combined Inter and Intra Prediction

Table 5.4: The Execution Cycle of the Inter and Intra Prediction in All Cases

Mode A1 B2 C3 SA_14 SA_24 SA_34

Intra_4x4_DC 32 32 32 80 80 80
Intra_4x4_Diagonal_Down_Left 64 64 64 80 80 80
Intra_4x4_Diagonal_Down_Right 64 64 64 80 80 80
Intra_4x4_Vertical_Right 64 64 64 112 112 112
Intra_4x4_Horizontal_Down 64 64 64 112 112 112
Intra_4x4_Vertical_Left 64 64 64 112 112 112
Intra_4x4_Horizontal_Up 64 64 64 112 112 112
Intra_16x16_DC 4 4 4 17 17 17
Intra_16x16_Plane 64 64 64 64 64 64
Inter_4x4 at 2-D 1616 800 576 1248 752 672
Inter_4x4 at 2 1-D 592 800 576 1008 672 544
Inter_4x4 at Horizontaol 1-D 272 800 336 464 288 288
Inter_4x4 at Vertical 1-D 272 800 288 464 256 256
Inter_4x8 at 2-D 1528 640 568 960 544 504
Inter_4x8 at 2 1-D 504 640 568 944 552 472
Inter_4x8 at Horizontaol 1-D 280 640 240 416 240 240
Inter_4x8 at Vertical 1-D 232 640 712 376 208 208
Inter_8x4 at 2-D 1528 640 448 1120 568 480
Inter_8x4 at 2 1-D 504 640 448 880 552 512
Inter_8x4 at Horizontaol 1-D 232 640 328 376 232 232
Inter_8x4 at Vertical 1-D 280 640 280 416 240 240
Inter_8x8 at 2-D 1452 512 444 824 484 348
Inter_8x8 at 2 1-D 428 512 444 740 432 348
Inter_8x8 at Horizontaol 1-D 236 512 324 356 200 200
Inter_8x8 at Vertical 1-D 236 512 708 356 196 172
Inter_16x8 at 2-D 1418 128 444 852 456 332
Inter_16x8 at 2 1-D 394 128 444 588 308 204
Inter_16x8 at Horizontaol 1-D 214 128 324 338 174 142
Inter_16x8 at Vertical 1-D 234 128 708 298 162 158
Inter_8x16 at 2-D 1418 128 444 852 456 332
Inter_8x16 at 2 1-D 394 128 444 588 308 204
Inter_8x16 at Horizontaol 1-D 214 128 324 338 174 142
Inter_8x16 at Vertical 1-D 234 128 708 298 162 158
Inter_16x16 at 2-D 1391 128 444 760 390 75
Inter_16x16 at 2 1-D 367 128 444 680 342 235
Inter_16x16 at Horizontaol 1-D 213 128 324 333 169 112
Inter_16x16 at Vertical 1-D 213 128 708 333 169 112
Average 469 334 365 485 282 234
1A Indicates the Combination of Huang '04 [44] Intra Prediction and
Wang '03 [40] Inter Prediction
2B Indicates the Combination of Huang '04 [44] Intra Prediction and
Deng '04 [78] Inter Prediction
3C Indicates the Combination of Huang '04 [44] Intra Prediction and
Wang '05 [47] Inter Prediction
4SA Indicates the Systolic Array

-144-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.22: The Execution Cycle of the Inter and Intra Prediction for the Blue_Sky Sequence

5.32, Figure 5.33, Figure 5.34, and Figure 5.35. As shown, the amount of data transmission in

our systolic designs is signi�cantly decreased when the granularity is moved from 4x4 block

to 8x8 block. While the decrease is limited as the granularity moves from 8x8 block to 16x16

block. However, our designs always conduct less data transmission than AT-based design be-

cause the motion-compensated data in a pipeline stage is transferred once without redundant

transmission in our design. Particularly, our design can reduce up to 60% of the data transmis-

sion.

In summary, an ef�cient FIR implementation is proposed to combine the inter and intra

predictions for intensive computation. The key concept of combined inter and intra prediction

is to allow �exible recon�guration of �lter so as to create different �lter taps on-the-�y. Using

the control path, the uni�ed systolic array can be con�gured as a 2-, 3-, or 6-tap �lter and

the �lter tap can be selected on-the-�y to implement the adaptive �ltering. We can achieve

-145-

Sec 5.4. Ef�cient Deblocking Filter with Fine-Grained Synchronization Capability

Figure 5.23: The Execution Cycle of the Inter and Intra Prediction for the Pedestrian_Area
Sequence

higher computation throughput without increasing the bus bandwidth and memory bandwidth.

Moreover, the data paths are shared between inter and intra predictions which is more ef�cient

from the system perspective.

5.4 Ef�cient Deblocking Filter with Fine-Grained Synchro-

nization Capability

In this section, we propose an ef�cient deblocking �lter that provides a �ne-grained synchro-

nization capability (FGSC). Most deblocking �lter designs focus on the data transportation and

the �ltering order instead of the kernel �lter design [48][49][50][51][52][53][54][55][56][57][58][59].

However, all of them used the macroblock-based �ltering orders, which are inef�cient for

-146-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.24: The Execution Cycle of Inter and Intra Prediction for Riverbed Sequence.

Figure 5.25: The Execution Cycle of Inter and Intra Prediction for Rush_Hour Sequence.

-147-

Sec 5.4. Ef�cient Deblocking Filter with Fine-Grained Synchronization Capability

Figure 5.26: The Execution Cycle of the Inter and Intra Prediction for the Station2 Sequence

Figure 5.27: The Execution Cycle of the Inter and Intra Prediction for the Sun�ower Sequence

-148-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.28: The Execution Cycle of the Inter and Intra Prediction for the Tractor Sequence

Figure 5.29: The Data Transmission via AHB Data Bus for the Blue_Sky Sequence

-149-

Sec 5.4. Ef�cient Deblocking Filter with Fine-Grained Synchronization Capability

Figure 5.30: The Data Transmission via AHB Data Bus for the Pedestrian_Area Sequence

Figure 5.31: The Data Transmission via AHB Data Bus for the Riverbed Sequence

-150-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

Figure 5.32: The Data Transmission via AHB Data Bus for the Rush_Hour Sequence

Figure 5.33: The Data Transmission via AHB Data Bus for the Station2 Sequence

-151-

Sec 5.4. Ef�cient Deblocking Filter with Fine-Grained Synchronization Capability

Figure 5.34: The Data Transmission via AHB Data Bus for the Sun�ower Sequence

Figure 5.35: The Data Transmission via AHB Data Bus for the Tractor Sequence

-152-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

the �ner granularity of pipeline synchronization. The deblocking �lter processes the recon-

structed data produced by the previous modules in the different pipelined stages. Therefore,

the macroblock-based deblocking �lter needs to suspend the computation and buffer the recon-

structed data until the whole macroblock is received. The integration of the macroblock-based

deblocking �lter into a �ner granularity pipelined system increases both the memory require-

ment and the processing latency. In the following discussions, we will describe the architecture,

the data �ow, and the �ltering order of our proposed deblocking �lter.

5.4.1 The Proposed Architecture of Deblocking Filter

To reduce the memory and the latency for buffering, we propose a novel architecture for �ne-

grain synchronization as shown in Figure 5.36. The 1-D deblocking �lter implements the con-

ditional �ltering as speci�ed in the H.264/AVC standard. It performs one �ltering operation per

cycle according to the coding information in the control register. The two pixel arrays buffer

the output of the kernel �lter and adaptively transpose the pixels. Speci�cally, the pixels of

a 4x4 block are transposed from row major order to column major order after the horizontal

�ltering. When the pixels are fully �ltered on both directions, they are transposed back to row

major order to be consistent with the data arrangement in the external DRAM. Meanwhile, the

two internal memory units store the pixels until they have been fully �ltered. Similarly, the size

of the internal memories depends on the granularity of synchronization. For instance, in the

granularity of 8x8 block, the size of two register �les is 36x32 and 64x32 respectively. The

intermediate pixels are appropriately separated into two register �les such that the 1-D �lter can

input 8 pixels and output 8 pixels at each cycle. To this end, the controller can con�gure the

data path according to the speci�c edges.

-153-

Sec 5.4. Ef�cient Deblocking Filter with Fine-Grained Synchronization Capability

MUX #1

Mx32 Dual-Port
Register File

Nx32 Dual-Port
Register File

MUX #3 MUX #4

4x4
Transpose
Array #2

4x4
Transpose
Array #1

1-D Deblocking Filter

MUX #2

A
H

B
In

pu
tP

or
t

A
H

B
In

pu
tP

or
t

M
U

X
#5

Pi
pe

In
pu

tP
or

t

FSM Controller

1 2 3 1 2

1 2 1 2 3 4

Figure 5.36: The Architecture of the Proposed Deblocking Filter

5.4.2 The Proposed Filtering Order with Fine-Grained Synchronization

Capability

The proposed �ltering scheme adopts the �ne-grain processing order as shown in Figure 5.37

where the numbers in the circles stand for the order of the edge �ltering between the two adja-

cent 4x4 blocks and the corresponding index of data path of each edge is illustrated by different

shading. To reduce the overhead with the reloaded data from the memory units, we interleave

the horizontal �ltering and the vertical �ltering while the �ltered results are still compliant.

As compared to the macroblock-based order, the proposed �lter order can reduce both mem-

ory requirement and processing latency. In the �ner granularity such as 8x8 block or 4x4 block,

our proposed deblocking �lter can ef�ciently process the input data at each pipelined stage.

-154-

Chapter 5. A Highly Ef�cient Micro-Architecture Design

B0 B1 B6 B7

B2 B3 B8 B9

B12 B13 B18 B19

B14 B15 B20 B21

A

B

C

D

E F G H
B4 B10

B16 B22

B5 B11

B17 B23

I

J

M

N

K L

O P

1 2

3

4 5

6

7

8

9 11

1210 13

14 16

1715 18

19

20 21

22

23 2425

27

28

30

26

29

34

39

33

36

38

41

35

37

40

42

31

32

43

44 45

46

47 48

Y

Cb

Cr

Figure 5.37: The Proposed Edge Filtering Order with Fine-Grained Synchronization Capability

That is, the proposed processing order is able to �lter pixels as soon as the data comes in.

5.5 Summary

In this chapter, we focus on the three hot spot micro-architecture designs including the memory

sub-system, the prediction module and the deblocking �lter. First, an ef�cient memory sub-

system is proposed to feature the interleaved data arrangement, the uni�ed FSM with content-

adaptive auto precharge, and the internal synchronization buffer. Second, the inter and intra

prediction is combined in a highly utilized systolic architecture to achieve throughput up to 4.5

times while decreasing up to 65% of the bus bandwidth as compared to the conventional adder-

tree based designs. Third, a novel deblocking �lter is proposed with a �ne-grained synchroniza-

tion granularity such that the ef�ciency can be improved at different levels of granularity.

-155-

Sec 5.5. Summary

Table 5.5: The Corresponding Data Path of Each Filtered Edge

of Corresponding Selected Selected Selected Selected Con�gure Con�gure
Data Edge Index Input of Input of Input of Input of of of
Path MUX#1 MUX#2 MUX#3 MUX#4 TA1#1 TA1#2
1 1,4,7,11,14,16, 1 1 1 1 T2 N3

25,28,31,33,
35,40

2 2,5,26,29 1 2 1 x4 N N
3 3,6,10,15,27, 2 1 x 1 T N

30,34,39
4 8,32 1 1 1 1 N N
5 12,17,36,41 2 1 2 x T T
6 13,18,21,24, 3 1 1 1 T N

37,42,45,48
7 19,22 1 1 2 2 T N
8 44,47 2 1 2 3 T T
9 38 1 1 1 1 N T
10 43,46 1 1 1 1 T T
1Transpose array
2T indicates transposed con�guration.
3N indicates normal con�guration without transposing the pixel array.
4x means don't care.

-156-

CHAPTER 6

Conclusions

To implement the video embedding service while meeting the technical challenges of the high

complexity of the cascaded transcoder, we have proposed a low-complexity video embedding

transcoder at both algorithm and architecture level in this dissertation.

In Chapter 2, we introduce the background of this work and describe the technical chal-

lenges of the H.264/AVC-based transcoding. To reduce the complexity while improving the

R-D performance, a low-complexity algorithm was proposed in Chapter 3. Moreover, system

architecture of the proposed VET algorithm and its design space exploration were presented in

Chapter 4. Lastly, in Chapter 5, three highly utilized micro-architecture designs were proposed.

In the following, we summarize this dissertation in a number of major contributions and show

how this work can be further improved.

-157-

Sec 6.1. Summary of Contributions

6.1 Summary of Contributions

The main contributions of this dissertation are summarized in the following subsection.

6.1.1 Improvement of Rate-Distortion Performance

In this dissertation, a low-complexity VET algorithm is �rstly developed to minimize complex-

ity while delivering high coding ef�ciency with limited drifting errors. The proposed reduced

frame memory transcoding (RFMT) reduces half of the frame memory and employs three re-

�nement techniques including the intra mode switching (IMS), the motion vector re-mapping

(MVR) and the syntax level bypassing (SLB).

� All the inference and reference mismatch are re�ned during the VET transcoding such

that the visual artifacts can be signi�cantly removed.

� Two low-complexity re�nement techniques including the intra mode switching and the

motion vector re-mapping are employed such that the wrong reference problem can be

signi�cantly alleviated.

� Only a few blocks are effectively re�ned to correct the drift error such that the video

quality can be further improved.

� The proposed re�nement techniques result in a negligible quality loss as compared to the

rate-distortion-optimized re�nement.

� The methodology of partial re-encoding is utilized and it not only reduces the complex-

ity of transcoding, but also preserves the picture quality. As compared to the cascaded

transcoder, the proposed algorithm increases the transcoding throughput by 25 times

while providing 0.3�1.5dB PSNR improvement.

-158-

Chapter 6. Conclusions

Figure 6.1: The Improvement of Rate-Distortion Performance by the Proposed Low-
Complexity Algorithm

6.1.2 Design Space Exploration

The second part of this dissertation describes the top-down design methodology for the design

space exploration. The proposed architecture is explored in terms of some system parameters

including hardware parallelism, data exchange granularity, and design combination. Moreover,

the exploration is performed at a higher level of abstraction using transaction level modeling

(TLM) and it can signi�cantly increase the simulation speed. Therefore, the proposed system

architecture has a higher degree of freedom such that it can be optimized for the different design

constraints. Speci�cally, the contributions of the design space exploration include the following:

� The design alternative that is optimized for cost can reduce the gate count of previous

design up to 25%.

-159-

Sec 6.1. Summary of Contributions

Figure 6.2: The Improvement of Throughput and Hardware Cost by the Proposed Effective
Design Space Exploration

� The design alternative that is optimized for speed can reduce the cycle count of previous

design up to 25% such that the proposed system architecture can ful�ll the real-time

requirement for 1920x1088 @ 60 Hz videos when clocking at 135MHz.

� This work has explored broad design space that includes 3 times of cycle count range and

5 times of gate count range as shown in Figure 6.2.

6.1.3 Improvement of Area-Speed Ef�ciency

The last part of this dissertation focuses on the micro-architecture design for the three hot spot

modules within our system architecture. Speci�cally, the contributions at architecture level

include the following:

� As compared to the conventional adder-tree based prediction module, the proposed systolic-

-160-

Chapter 6. Conclusions

Figure 6.3: The Improvement of Area-Speed Ef�ciency by the Proposed High-Ef�cient Archi-
tecture

based design can increase the transcoding throughput up to four times while the amount

of data transmission via AHB data bus can be reduced by 65%.

� To increase the ef�ciency of deblocking �lter at a �ner synchronization granularity, the

proposed deblocking �lter with �ne-grained synchronization capability not only increases

the cycle count but also reduces the memory cost as compared to the macroblock-based

deblocking �lter design.

� Lastly. Figure 6.3 shows the improvement of area-speed ef�ciency by each micro-architecture

design.

-161-

Sec 6.2. Suggestions for Future Works

6.2 Suggestions for Future Works

In this dissertation, the design exploration of an H.264/AVC VET transcoder is performed at

both algorithm level and architecture level. In the future, the algorithm can be further developed

to support other advanced coding tools in the H.264/AVC like bi-direction prediction, picture

adaptive frame/�eld coding (PAFF), macroblock adaptive frame/�eld coding (MBAFF), �exible

macroblock order (FMO), and so on.

In addition, the architecture design in this work follows the re�nement-based methodology.

Therefore, more performance evaluation metrics can be added to the design space exploration

under the same simulation infrastructure. On the other hand, the architecture can be further

re�ned to a lower level of abstraction, that is, the modules in the proposed architecture could

be implemented as the RTL models, combined into the system platform, and veri�ed for the

functionality.

Eventually, the design �ow of whole system will step forward to the RTL simulation, the

RTL synthesis, the gate level simulation, the P&R (place and route), the post layout simulation,

and the tape out.

-162-

Bibliography

[1] WinFast Series product of LeadTek. [Online]. Available: http://www.leadtek.com

[2] YouTube Website. [Online]. Available: http://www.youtube.com

[3] Multiple point videoconferencing system of Wiredred. [Online]. Available:

http://www.wiredred.com/video-conferencing/multipoint-video-conference.html

[4] "Walt disney studios home entertainment rolls into 2008 with blu-ray". [Online].

Available: "http://corporate.disney.go.com"

[5] CBBC TV programs. [Online]. Available: http://www.bbc.co.uk/cbbc/

[6] Advanced video coding for generic audiovisual services, 4th ed., ITU-T Rec. H.264 and

ISO/IEC 14496-10 (MPEG4-AVC), July 2005.

[7] S. Wenger, �H.264/AVC over IP,� IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 645�656, 2003.

-163-

BIBLIOGRAPHY

[8] M. D. Nava and C. Del-Toso, �A short overview of the VDSL system requirements,� IEEE

Communications Magazine, vol. 40, no. 12, pp. 82�90, 2002.

[9] S. Naimpally, L. Johnson, T. Darby, R. Meyer, L. Phillips, and J. Vantrease, �Integrated

digital IDTV receiver with features,� IEEE Transactions on Consumer Electronics, vol. 34,

no. 3, pp. 410�419, 1988.

[10] D. Gillies, R. Schweer, and H. Zibold, �VSLI realizations for picture in picture and �icker

free television display,� IEEE Transactions on Consumer Electronics, vol. 34, no. 1, pp.

253�261, 1988.

[11] M. Burkert, F. Frieling, U. Langenkamp, U. Libal, M. Mende, and G. Schef�er, �IC set

for a picture-in-picture system with on-chip memory,� IEEE Transactions on Consumer

Electronics, vol. 36, no. 1, pp. 23�31, 1990.

[12] C. A. Mancini and C. Markhauser, �Microprocessor controlled picture in picture system,�

IEEE Transactions on Consumer Electronics, vol. 36, no. 3, pp. 375�379, 1990.

[13] I. Ahmad, X. Wei, Y. Sun, and Y. Zhang, �Video transcoding: an overview of various

techniques and research issues,� IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 793�

804, 2005.

[14] S.-F. Chang and D. G. Messerschmitt, �Compositing motion-compensated video within

the network,� in Proceedings of IEEE 4th Workshop on Multimedia Communications,

Monterey, CA, USA, April 1992, pp. 40�56.

[15] ��, �Manipulation and compositing of MC-DCT compressed video,� IEEE Journal on

Selected Areas in Communications, vol. 13, no. 1, pp. 1�11, 1995.

-164-

BIBLIOGRAPHY

[16] D. G. Messerschmitt, Y. Noguchi, and S.-F. Chang, �MPEG video compositing in the

compressed domain,� in Proceedings of IEEE International Symposium on Circuits and

Systems, Atlanta, Ga, USA, May 1996, pp. 596�599.

[17] N. Merhav and V. Bhaskaran, �A fast algorithm for DCT domain inverse motion com-

pensation,� in Proceedings of IEEE International Conference on Acoustics, Speech and

Signal Processing, Atlanta, Ga, USA, May 1996, pp. 2307�2310.

[18] J. Song and B.-L. Yeo, �A fast algorithm for DCT-domain inverse motion compensation

based on shared information in a macroblock,� IEEE Transactions on Circuits and Systems

for Video Technology, vol. 10, no. 5, pp. 767�775, 2000.

[19] S. Liu and A. Bovik, �Local bandwidth constrained fast inverse motion compensation for

DCT-domain video transcoding,� IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, no. 5, pp. 309�319, 2002.

[20] B. Yu and K. Nahrstedt, �Internet-based Interactive HDTV,� Multimedia Systems, vol. 9,

no. 5, pp. 477�489, 2004.

[21] Y.-P. Tan and H. Sun, �Fast motion re-estimation for arbitrary downsizing video transcod-

ing using H.264/AVC standard,� IEEE Transactions on Consumer Electronics, vol. 50,

no. 3, pp. 887�894, 2004.

[22] J. Bialkowski, M. Barkouwsky, F. Leschka, and A. Kaup, �Low-Complexity transcoding

of inter coded video frames from H.264 to H.263,� in Proceedings of IEEE International

Conference on Image Processing, Atlanta, Ga, USA, October 2006, pp. 837�840.

-165-

BIBLIOGRAPHY

[23] J. Hur and Y. Lee, �H.264 to MPEG-4 transcoding using block type information,� in Pro-

ceedings of IEEE International Conference Region 10, Melbourne, Australia, November

2005, pp. 1�6.

[24] D. Lefol, D. Bull, and N. Canagarajah, �Performance evaluation of transcoding algorithms

for H.264,� IEEE Transactions on Consumer Electronics, vol. 52, no. 1, pp. 215�222,

2006.

[25] H. Shen, X. Sun, F. Wu, H. Li, and S. Li, �A fast downsizing video transcoder for

H.264/AVC with rate-distortion optimal mode decision,� in Proceedings of IEEE Inter-

national Conference on Multimedia and Expo, Toronto, Ontario, Canada, July 2006, pp.

2017�2020.

[26] P. Zhang, Y. Lu, Q. Huang, and W. Gao, �Mode mapping method for H.264/AVC spatial

downscaling transcoding,� in Proceedings of IEEE International Conference on Image

Processing, Singapore, October 2004, pp. 2781�2784.

[27] I.-H. Shin, Y.-L. Lee, and H.-W. Park, �Motion estimation for frame-rate reduction in H.

264 transcoding,� in Proceedings of the 2nd IEEE Workshop on Software Technologies for

Future Embedded and Ubiquitous Systems, Vienna, Austria, May 2004, pp. 63�67.

[28] D. Lefol and D. Bull, �Mode re�nement algorithm for H.264 inter frame requantization,�

in Proceedings of IEEE International Conference on Image Processing, Atlanta, Ga, USA,

October 2006, pp. 845�848.

[29] J. Zhang, A. Perkis, and N. Georganas, �H.264/AVC and transcoding for multimedia adap-

tation,� in Proceedings of the 6th COST 276 Workshop, Thessaloniki, Greece, May 2004.

-166-

BIBLIOGRAPHY

[30] X. Xui, L. Zhuo, and L. Shen, �A H.264 bit rate transcoding scheme based on PID con-

troller,� in Proceedings of IEEE International Symposium on Communications and Infor-

mation Technologies, vol. 2, Beijing, China, October 2005, pp. 1074�1077.

[31] C.-H. Li, C.-N. Wang, and T. Chiang, �A fast downsizing video transcoding based on

H.264/AVC standard,� in Proceedings of IEEE Paci�c Rim Conference on Multimedia,

Tokyo, Japan, November-December 2004, pp. 214�223.

[32] C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang, �A fast H.264-based picture-in-picture (PIP)

transcoder,� in Proceedings of IEEE International Conference on Multimedia and Expo,

Taipei, Taiwan, June 2004, pp. 1691�1694.

[33] A. Levi and H. Stark, �Restoration from phase and magnitude by generalized projections,�

in Image Recovery Theory and Application. Orlando, Fla, USA: Academic Press, 1987,

pp. 277�319.

[34] S.-H. Wang, W.-H. Peng, Y. He, G.-Y. Lin, C.-Y. Lin, S.-C. Chang, C.-N. Wang, and

T. Chiang, �A software-hardware co-implementation of MPEG-4 advanced video coding

(AVC) decoder with block level pipelining,� Journal of VLSI Signal Processing, vol. 41,

no. 1, pp. 93�110, 2005.

[35] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, �System-level de-

sign: orthogonalization of concerns and platform-based design,� IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1523�

1543, 2000.

[36] H. Chang, Surviving the SoC Revolution: A Guide to Platform-Based Design. Kluwer

Academic Publishers, 1999.

-167-

BIBLIOGRAPHY

[37] S. Huang, C. Chen, and H. Chen, �Hardware architecture design of video compression for

multimedia communication systems,� Communications Magazine, IEEE, vol. 43, no. 8,

pp. 122�131, 2005.

[38] H. Hubert, B. Stabernack, and K.-I. Wels, �Performance and Memory Pro�ling for Em-

bedded System Design,� in Proceedings of the 2nd IEEE International Symposium on

Industrial Embedded Systems (SIES07), Lisbon, Portugal, July 2007, pp. 94�101.

[39] B. Sheshadri, �Optimization Of H. 264 Baseline Decoder On ARM9TDMI Processor,�

2005.

[40] S. H. Wang and T. C. et al., �A platform-based MPEG-4 advanced video coding (AVC)

decoder with block level pipeling,� vol. 1, Singapore, December 2003, pp. 51�55.

[41] M. Ravasi and M. Mattavelli, �High-abstraction level complexity analysis and memory

architecture simulations of multimedia algorithms,� IEEE Transactions on Circuits and

Systems for Video Technology, vol. 15, no. 5, pp. 673�684, 2005.

[42] M. Horowitz, A. J. F. Kossentini, and A. Hallapuro, �H.264/AVC baseline pro�le decoder

complexity analysis,� IEEE Transactions on Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 704�716, 2003.

[43] V. Lappalainen, A. Hallapuro, and T. Hamalainen, �Complexity of H.26L optimized video

decoder implementation,� IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 13, no. 7, pp. 717�725, 2003.

[44] Y.W. Huang, B. Y. Shieh, T. C. Chen, and L. G. Chen, �Analysis, fast algorithm, and VLSI

architecture design for H.264/AVC intra frame coder,� IEEE Transactions on Circuits and

Systems for Video Technology, vol. 15, no. 13, pp. 378�401, March 2005.

-168-

BIBLIOGRAPHY

[45] H. Lin, Y. Chiao, B. Liu, and J. Yang, �Combined 2-D Transform and Quantization Ar-

chitectures for H.264 Video Coders,� in Proceedings of IEEE International Symposium on

Circuits and Systems, Kobe, Japan, May 2005, pp. 1802�1805.

[46] The datasheet of Micron's 256Mb Mobile DDR SDRAM. [Online]. Available:

http://download.micron.com/pdf/datasheets/dram/mobile/MT46H16M16LF.pdf

[47] S. Wang, T. Lin, T. Liu, and C. Lee, �A new motion compensation design for H.264/AVC

decoder,� in Proceedings of IEEE International Symposium on Circuits and Systems,

vol. 5, Kobe, Japan, June 2005, pp. 4558�4561.

[48] Y.-W. Huang, T.-W. Chen, B.-Y. Hsieh, T.-H. Chang, and L. Chen, �Architecture design

for deblocking �lter in H.264/JVT/AVC,� in Proceedings of IEEE International Confer-

ence on Multimedia and Expo, Baltimore, Maryland, USA, July 2003, pp. 693�696.

[49] B. Sheng, W. Gao, and D. Wu, �An implemented architecture of deblocking �lter for

H.264/AVC,� in Proceedings of IEEE International Conference on Image Processing, Sin-

gapore, October 2004, pp. 665�668.

[50] C.-C. Chen and T.-S. Chang, �An hardware ef�cient deblocking �lter for H.264/AVC,�

in Proceedings of IEEE International Conference on Consumer Electronics, Las Vegas,

Nevada, USA, January 2005, pp. 235�236.

[51] L. Li, S. Goto, and T. Ikenaga, �An ef�cient deblocking �lter architecture with 2-

dimensional parallel memory for H.264/AVC,� in Proceedings of the 10th IEEE Asia and

South Paci�c Design Automation Conference, Shanghai, China, January 2005, pp. 623�

626.

-169-

BIBLIOGRAPHY

[52] T.-M. Liu, W.-P. Lee, T.-A. Lin, and C. Lee, �A memory-ef�cient deblocking �lter for

H.264/AVC video coding,� in Proceedings of IEEE International Symposium on Circuits

and Systems, Kobe, Japan, May 2005, pp. 2140�2143.

[53] S. Shih, C. Chang, and Y. Lin, �An AMBA-compliant deblocking �lter IP for H.264 AVC,�

in Proceedings of IEEE International Symposium on Circuits and Systems, Kobe, Japan,

May 2005, pp. 4529�4532.

[54] S.-Y. Shih, C.-R. Chang, and Y.-L. Lin, �A near optimal deblocking �lter for H.264 ad-

vanced video coding,� in Proceedings of the 11th IEEE Asia and South Paci�c Design

Automation Conference, Yokohama, Japan, January 2006, pp. 170�175.

[55] G. Khurana and A. Kassim, �A pipelined hardware implementation of in-loop deblocking

�lter in H.264/AVC,� IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp.

536�540, 2006.

[56] C.-C. Chen, T.-S. Chang, and K.-B. Lee, �An in-place architecture for the deblocking

�lter in h.264avc,� IEEE Transactions on Circuits and Systems, vol. 53, no. 7, pp. 530�

534, 2006.

[57] H.-Y. Lin, J.-J. Yang, B.-D. Liu, and J.-F. Yang, �Ef�cient deblocking �lter architecture

for H.264 video coders,� in Proceedings of IEEE International Symposium on Circuits and

Systems, Island of Kos, Greece, May 2006, pp. 2617�2620.

[58] M. Bojnordi, O. Fatemi, and M. Hashemi, �An ef�cient deblocking �lter with self-

transposing memory architecture for H.264/AVC,� in Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing, Toulouse, France, May 2006, pp.

II925�II928.

-170-

BIBLIOGRAPHY

[59] S. Lee and K. Cho, �An ef�cient architecture of high-performance deblocking �lter for

H.264/AVC,� IEEE Transactions on Fundamentals, vol. E89, no. 6, pp. 1736�1739, 2006.

[60] CoWare's ConvergenSCTM. [Online]. Available: http://www.coware.com

[61] Open SystemC Initiative, SystemC Version 2.0 User �a�es Guide. [Online]. Available:

www.systemc.org

[62] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1999.

[63] H. Kim and I. C. Park, �High-performance and low-power memory-interface architecture

for video processing applications,� vol. 11, no. 11, pp. 1160�1170, 2001.

[64] J. Zhu, L. Hou, R. Wang, C. Huang, and J. Li, �High performance synchronous DRAMs

controller in H.264 HDTV decoder,� in Proceedings of IEEE International Conference

Solid-State and Integrated Circuit Technology, vol. 3, Beijing, China, October 2004, pp.

1621�1624.

[65] R. Wang, J. Li, and C. Huang, �Motion Compensation Memory Access Optimization

Strategies for H.264/AVC Decoder,� in Proceedings of IEEE International Conference

on Acoustics, Speech and Signal Processing, Philadelphia, PA, USA, March 2005, pp.

97�100.

[66] S. I. Park, Y. Yongseok, and I. C. Park, �High performance memory mode control for

HDTV decoders,� IEEE Transactions on Consumer Electronics, vol. 49, no. 14, pp. 1348�

1353, 2003.

[67] K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. Wiley,

1999.

-171-

BIBLIOGRAPHY

[68] J. Joch, F. Kossentini, and P. Nasiopoulos, �A performance analysis of the ITU-T draft

H.26L video coding standard,� in Proceedings of the 12th International Packet Video

Workshop, Pittsburgh, Pa, USA, April 2002.

[69] H. Kang, K. Jeong, J. Bae, Y. Lee, and S. Lee, �MPEG4 AVC/H. 264 decoder with scal-

able bus architecture and dual memory controller,� in Proceedings of IEEE International

Symposium on Circuits and Systems, Vancouver, Canada, May 2004, pp. 145�148.

[70] T. Chen, Y. Huang, T. Chen, Y. Chen, C. Tsai, and L. Chen, �Architecture design of

H.264/AVC decoder with hybrid task pipeling for high de�nition videos,� in Proceedings

of IEEE International Symposium on Circuits and Systems, Kobe, Japan, May 2005, pp.

2931�2934.

[71] T.-A. Lin, S.-Z. Wang, T.-M. Liu, and C. Lee, �An H.264/AVC decoder with 4x4-block

level pipeline,� in Proceedings of IEEE International Symposium on Circuits and Systems,

Kobe, Japan, May 2005, pp. 1810�1813.

[72] T.-M. Liu, T.-A. Lin, S.-Z. Wang, W.-P. Lee, K.-C. Hou, J.-Y. Yang, and C.-Y. Lee, �An

865 uW H.264/AVC video decoder for mobile applications,� in Proceedings of IEEE Asia

Solid-State Circuit Conference, HsinChu, Taiwan, November 2005, pp. 301�304.

[73] S. Park, H. Cho, H. Jung, and D. Lee, �An implemented of H.264 video decoder using

hardware and software,� in Proceedings of IEEE Custom Integrated Circuits Conference,

San Jose, Calif, USA, September 2005, pp. 271�275.

[74] T.-M. Liu, T.-A. Lin, S.-Z. Wang, W.-P. Lee, K.-C. Hou, J.-Y. Yang, and C.-Y. Lee, �A

125 uW, fully scalable MPEG-2 and H.264/AVC video decoder for mobile applications,�

IEEE Journal on Solid-State Circuits, vol. 42, no. 1, pp. 161�169, 2007.

-172-

BIBLIOGRAPHY

[75] K. Yang, C. Zhang, G. Du, J. Xie, and Z. Wang, �A hardware-software co-design

for H.264/AVC decoder,� in Proceedings of IEEE Asia Solid-State Circuit Conference,

Hangzhou, China, November 2006, pp. 119�122.

[76] Y. Lei, H. Li, K. Huang, Y. Leng, and Z. Zheng, �A H.264 video decoder with scheme of

ef�cient bandwidth optimization for motion compensation,� in Proceedings of IEEE In-

ternational Symposium on Communications and Information Technologies, Sydney, Aus-

tralia, October 2007, pp. 531�534.

[77] Y. W. Huang, B. Y. Shieh, T. C. Chen, and L. G. Chen, �Hardware architecture design

for H.264/AVC intra frame coder,� in Proceedings of IEEE International Symposium on

Circuits and Systems, vol. 2, Vancouver, BC, Canada, May 2004, pp. 269�272.

[78] L. Deng, W. Gao, M. Hu, and Z. Ji, �An ef�cient VLSI architecture for MC interpola-

tion in AVC video coding,� in Proceedings of International MultiConference in Computer

Science and Computer Engineering, Las Vegas, Nevada, USA, June 2004, pp. 564�568.

[79] T. C. Chen, Y. Huang, and L. Chen, �Fully utilized and reusable architecture for fractional

motion estimation of H.264/AVC,� in Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing, Montreal, Canada, May 2004, pp. 9�12.

[80] C. Chen, P. Wu, and H. Chen, �Transform-domain intra prediction for H.264,� in Proceed-

ings of IEEE International Symposium on Circuits and Systems, vol. 2, Kobe, Japan, May

2005, pp. 1497�1500.

-173-

APPENDIX A

Why Transform Domain Approaches are

Inef�cient for H.264 Transcoding

In this appendix, we will show that it is inef�cient to develop a transcoder in the transform

domain as commonly proposed for previous standards such as MPEG-1/2/4. There are several

reasons to support such a claim.

1. In H.264/AVC, the transformation and quantization processes are so optimized that tra-

verse back to the pixel domain is not as expensive as before.

2. The intra prediction and de-blocking �lter introduce stronger spatial domain error propa-

gation although they are effective to exploit the spatial redundancy.

-174-

Chapter A. Why Transform Domain Approaches are Inef�cient for H.264 Transcoding

3. The IMC becomes inef�cient when the motion compensation uses quarter-pixel resolu-

tion combined with 6-tap interpolation.

The following text will describe the detail study to support such a claim.

A.1 Integer Transform with Quantization Scaling

The transformation used in H.264/AVC is an integrated transform with quantization scaling,

which means the scaling multiplication is merged with the quantization. The integer trans-

form with quantization scaling is performed with simple integer operations such as shifting and

addition, which indicates no rounding mismatch between the encoder and the decoder. The

relationship between the pixel values at the encoder and the decoder can be represented by

IHT fDQ fQ [HT (x)]gg = x (A.1)

, where x and x mean the original data and the decoded data respectively. However, the data

after de-quantization is not the original HT coef�cients:

DQ fQ [HT (x)]g 6= HT (x) (A.2)

In order to obtain the transform coef�cients at the transcoder side, an inverse operation of quan-

tization is needed. The inverse quantization of HT coef�cients is derived as follows. The

following shows the quantization of HT coef�cients Yi;j .

Zi;j = (Yi;j �MFi;j + f)� S1 (A.3)

-175-

Sec A.2. Directional Intra Prediction

, where

S1 = 15 +

�
QP

6

�
, f =

2S1

3
or
2S1

6

The following shows that the data after the de-quantization is different from the original HT

coef�cients.

Wi;j = (Zi;j � Vi;j)� S2 = f[(Yi;j �MFi;j + f) >> S1]� Vi;jg � S2 6= Yi;j (A.4)

, where

S2 =

�
QP

6

�

The symbols MFi;j and Vi;j are multiplication and rescaling factor respectively as de�ned in

H.264/AVC standard. To obtain the HT coef�cients, the de-quantization process should be

replaced by converting quantized coef�cients to de-quantized HT coef�cients. The process is

computed as

Y 0i;j =
(Yi;j � S1)

MFi;j
(A.5)

However, Eq.(A.5) requires a division operation with higher complexity and additional rounding

error.

A.2 Directional Intra Prediction

The intra prediction as de�ned in the spatial domain poses challenges to the transform domain

transcoding. To implement intra prediction in the transform domain signi�cantly increases

complexity because the HT transform is not orthogonal, which means the transpose is not equal

-176-

Chapter A. Why Transform Domain Approaches are Inef�cient for H.264 Transcoding

Table A.1: Computational Complexity of Each Intra Prediction Mode For Both
Operation Domain

Mode * Transform domain Pixel domain
Multiplication Addition Multiplication Addition

0 8 12 0 128
1 8 12 0 128
2 1 1 0 135
3 168 136 0 159
4 232 200 0 160
5 192 176 0 155
6 192 176 0 155
7 128 112 0 152
8 64 48 0 155

* 0: Intra_4x4_Vertical 1: Intra_4x4_Horizontal
2:Intra_4x4_DC 3: Intra_4x4_Diagonal_Down_Left
4: Intra_4x4_Diagonal_Down_Right 5: Intra_4x4_Vertical_Right
6: Intra_4x4_Horizontal_Down 7:Intra_4x4_Vertical_Left
8: Intra_4x4_Horizontal_Up

to the inverse for HT transform as represented in below:

HT

8>>>>>>>>>><>>>>>>>>>>:

266666666664

� � � �

� � � �

� � � �

A B C D

377777777775

9>>>>>>>>>>=>>>>>>>>>>;
= Cf �

266666666664

� � � �

� � � �

� � � �

A B C D

377777777775
� CTf

6= Cf �

266666666664

� � � �

� � � �

� � � �

A B C D

377777777775
� C�1f (A.6)

The detailed operations of HT domain intra prediction could be found in [80]. As compared

to the pixel domain intra prediction, the computation increases especially in the number of

multiplication as listed in Table A.1.

-177-

Sec A.3. In-the-loop De-blocking Filtering

A.3 In-the-loop De-blocking Filtering

The de-blocking �lter de�ned in the spatial domain introduces mismatch error during HT do-

main transcoding. Particularly, the de-blocked pixels stored in the reference frame memory are

used for motion compensation. Thus, mismatch error will propagate to the next frames via mo-

tion compensation until the subsequent intra-coded frame or slices at the decoder. To prevent

the mismatch error, implementing the de-blocking �lter in the HT domain is required. However,

this kind of implementation increases the complexity and memory requirement.

A.4 Sub-pixel Interpolation

The complexity of HT domain IMC increases due to the 6-tap interpolator de�ned in H.264/AVC.

Detailed derivations are given in the following. A 4�4 motion-compensated block can be rep-

resented as the summation of four blocks in the spatial domain.

Bpred(4�4)_full_pel =
4X
k=1

Vk(4�4) �Bk �Hk(4�4) (A.7)

, where

V1(4�4) = V2(4�4) =

2664 0 Ih

0 0

3775 , V3(4�4) = V4(4�4) =
2664 0 0

I4�h 0

3775 ,

H1(4�4) = H3(4�4) =

2664 0 0

Iw 0

3775 , H2(4�4) = H4(4�4) =
2664 0 I4�w

0 0

3775
We start the discussion of IMC from a block with integer motion vector. The HT coef�cients of

-178-

Chapter A. Why Transform Domain Approaches are Inef�cient for H.264 Transcoding

prediction block can be calculated from four HT blocks as indicated by

HT
�
Bpred(4�4)_full_pel

�
= HT

4X
k=1

Vk(4�4) �Bk �Hk(4�4)

!
=

4X
k=1

HT
�
Vk(4�4) �Bk �Hk(4�4)

�
=

4X
k=1

�
Cf � Vk(4�4) � C�1f

�
�
�
Cf �Bk � C�1f

�
�
�
Cf �Hk(4�4) � CTf

�
�
�
Cf � Vk(4�4) � C�1f

�

=
4X
k=1

HT (Bk)

266666666664

c 0 0 0

0 a 0 0

0 0 c 0

0 0 0 a

377777777775
�
Cf �Hk(4�4) � CTf

�
(A.8)

The terms of
�
Cf � Vk(4�4) � C�1f

�
and

�
Cf �Hk(4�4) � CTf

�
can be pre-computed and stored in

memory. The computation of Eq.(A.8) needs 576 multiplications and 384 additions.

The sub-pixel interpolation �lter increases the complexity of transform domain IMC. The

half-pixel sample is interpolated from integral pixel samples by applying a 6-tap Finite Impulse

Response (FIR) �lter, whose weights are (1, -20, 20, 5/8, -5, 1)/32. The HT coef�cients of a

prediction block on the half-pixel position have to be calculated from nine blocks as indicated

in the following equation:

HT
�
Bpred(4�4)_sub_pel

�

=
4X
k=1

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�
Cf � Vavg(4�9) � V 0k(9�4) � C

�1
f

�
�

HT (Bk)

266666666664

c 0 0 0

0 a 0 0

0 0 c 0

0 0 0 a

377777777775
�
�
Cf �H 0

k(4�9) �Havg(9�4) � CTf
�

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(A.9)

-179-

Sec A.4. Sub-pixel Interpolation

, where

V 01(9�4) = V
0
2(9�4) = V

0
3(9�4) =

2664 0 Ih

0 0

3775 , H 0
1(4�9) = H

0
2(4�9) = H

0
3(4�9) =

2664 0 0

Iw 0

3775 ,

V 04(9�4) = V
0
5(9�4) = V

0
6(9�4) =

26666664
0

I4

0

37777775 , H
0
4(4�9) = H

0
5(4�9) = H

0
6(4�9) =

�
0 I4 0

�
,

V 07(9�4) = V
0
8(9�4) = V

0
9(9�4) =

2664 0 0

I5�h 0

3775 , H 0
7(4�9) = H

0
8(4�9) = H

0
9(4�9) =

2664 0 I5�w

0 0

3775 ,

Vavg(4�9) =
1

32

266666666664

1 �5 20 20 �5 1 0 0 0

0 1 �5 20 20 �5 1 0 0

0 0 1 �5 20 20 �5 1 0

0 0 0 1 �5 20 20 �5 1

377777777775
,

Havg(9�4) is the transpose of Vavg(4�9)

The computation of Eq.(A.9) requires 1296 multiplications and 864 additions. Assume that the

frame size isM byN and the probability of full-pixel MV is �, the total amount of computation

for the HT domain IMC involves with

576� M �N
4

� �+ 1296� M �N
4

� (1� �) =
M �N
4

� (1296� 720 � �)

multiplications and

384� M �N
4

� �+ 864� M �N
4

� (1� �) =
M �N
4

� (864� 480 � �)

additions (A.10)

-180-

Chapter A. Why Transform Domain Approaches are Inef�cient for H.264 Transcoding

As for the spatial domain IMC, the total amount of computation covers

4 � [M � (N � 1) +N � (M � 1) + (N � 1) � (M � 1)]

= 12M �N � 8 (M +N) + 4 multiplications and

5 � [M � (N � 1) +N � (M � 1) + (N � 1) � (M � 1)] + 64 � M �N
4

� 2

= 47M �N � 10 (M +N) + 5 additions (A.11)

On the average, the SD resolution bitstream has 25% of motion vectors pointing to full-pixel

locations and 75% of motion vectors pointing to half-pixel locations. Therefore, the complexity

increase by sub-pixel interpolation in the HT domain is not preferable for transcoding. From

the results of Eq.(A.10) and Eq.(A.11), the required multiplications and additions of HT domain

IMC are about 23 times and 3 times as compared to that of spatial domain IMC respectively.

-181-

APPENDIX B

Constant-Rate Bumping Process

The bumping process in H.264/AVC manages the output of decoded pictures such that the

output order conforms to the display order. Different from the prior video coding standards in

which the decoder can output the decoded pictures according to the timestamp information in

the picture or slice header, the NAL units of H.264/AVC do not contain any timing information.

Thus, the bumping process de�nes the rules for ensuring correct output of decoded pictures. It

should be noted that the output of a decoded picture does not necessarily imply the removal of

the picture from the DPB. For a reference picture, it may still be kept in the DPB for temporal

prediction while it is output for display.

-182-

Chapter B. Constant-Rate Bumping Process

Start

Decoding
and

Marking

Output

Remove
Unused
Picture

Output
Non-output
Pictures in

DPB

End
Direct
Output

No

YesNo

DPB Is
Full?

current_poc <
smallest_poc

Insert
Picture to

DPB
Yes

Iterative
Loop

YesNo

More
Picture?

Figure B.1: The �ow chart of the bumping process in H.264/AVC. The �smallest_poc� stands
for the smallest picture order count (POC) among the non-output pictures in the DPB.

B.1 Bumping Process in H.264/AVC

Figure B.1 shows the �ow chart of the current bumping process in H.264/AVC. As shown, after

the decoding of a picture, those in the DPB that are marked as unused for reference and have

been output for display will be removed from the buffer. Then, the bumping process is enabled

by checking whether the DPB has more space for the current picture. In case that the DPB is

still fully occupied, the non-output picture in the DPB that has the smallest picture order count

(POC) will be �rstly considered for output unless the current picture has an even smaller POC

and needs to be output directly. After the output of a decoded picture in the DPB, it will be

further removed if it is no longer used for reference. However, it could happen that the picture

just output for display still needs to be kept for reference. Thus, such a process must be repeated

until space is found or the current picture is output.

Due to the iterative bumping behavior in the current algorithm, multiple decoded pictures

-183-

Sec B.2. Proposed Constant-Rate Bumping Process

could be output simultaneously while for some time instances none of the pictures are output.

The irregular output rate of the bumping process causes extremely varying bandwidth during

the DRAM access. The number of frame buffer in DRAM is double to regulate the burst of

output. Thus, the maximum number of output pictures at a time is equal to DPB size plus one.

In addition to the space of DPB, the regulation buffer is used for buffering the direct outputs

that is not stored in the DPB. With a constant-rate bumping process, we can output one picture

at a time without violating the output order conformance.

B.2 Proposed Constant-Rate Bumping Process

To provide a constant output rate and minimize the bandwidth variation for the DRAM access,

an output regulation buffer is created in addition to the DPB. In particular, the bumping process

in H.264/AVC may output all pictures in the DPB and the current decoding picture. Thus, a

buffer with size being equal to the one of the DPB is allocated to regulate the burst of output.

Figure B.2 shows the proposed constant-rate bumping algorithm using the regulation buffer.

As highlighted by the gray blocks and the dotted lines, the major difference in contrast to the

variable-rate bumping process is that there will be only 1 picture output for display after the

decoding of a picture. As a result, when the DPB is still fully occupied after the output of a

picture, the current picture will be stored in the regulation buffer. On the other hand, when space

is available, the DPB keeps the current picture and the regulation buffer may output 1 picture

according to the constraint on the output rate.

For better understanding, Figure B.3 uses an example to compare the two bumping processes,

where the numbers in the parentheses indicate the display order, the number on the top of each

picture denotes the coding order, and the arrowheads reveal the prediction structure with those

pictures of gray color used for reference. According to the �ow in Fig. 7, the variable-rate

-184-

Chapter B. Constant-Rate Bumping Process

Start

Decoding
and

Marking

Output

Remove
Unused
Picture

Output
Non-output
Pictures in

DPB

End

Direct
Output

No

YesNo

DPB is
Full?

current_poc <
smallest_poc

Insert
Picture to

DPB

Yes

Yes

No

Insert
Picture to

RB

1 Picture Has
Been Output?

1 Picture Has
Been Output?

Yes No

Yes

No

RB Is
Empty?

Output

Yes
No

1 Picture
Has Been
Ooutput?

Yes

No

More
Picture?

Figure B.2: The �ow chart of the proposed constant-rate bumping process. The �smallest_poc�
stands for the smallest picture order count (POC) among the non-output pictures in the DPB and
the �RB� denotes the regulation buffer.

bumping process outputs 2 to 3 pictures when decoding the non-reference B pictures such as

pictures 2, 6, and 10. Conversely, the proposed bumping process provides constant output rate

while maintaining the conformance of output order.

-185-

Sec B.2. Proposed Constant-Rate Bumping Process

Figure B.3: Example for Comparing the Variable-Rate Bumping Process and the Proposed
Constant-Rate Bumping Process

-186-

C H I H - H U N G L I

PERSONAL INFORMATION
 Ph.D Candidate, Institute of Electronics, National Chiao-Tung University

 1001 Ta-Hsueh Road, HsinChu 30010, Taiwan.

 Office: ED422

 Tel: +886-(0)922-664-568

 E-mail: ChihHung.Li@gmail.com

EDUCATION
 Ph.D Candidate, Institute of Electronics, National Chiao-Tung University,

HsinChu,Taiwan, Sept. 2002 - Present.

 M.S. Student, Institute of Electronics, National Chiao-Tung University,
HsinChu, Taiwan, Sept. 2001 - Aug. 2002.

 B.S. Degree, Dept. of Electronics Engineering, National Chiao-Tung University,
HsinChu, Taiwan, June, 2001.

RESEARCH INTEREST

 Video/Image Compression

− MPEG1, 2, 4, 21 and H.264
− Rate control.
− Human visual system (Subjective quality evaluation).
− Video transcoding.
− Algorithm development of video coding.
− Codec optimization.

 Embedded System Design for Video/Image Compression

− Platform-based System-on-Chip design.
− System architecture modeling and verification.
− Software/hardware partition and co-design.
− DRAM controller.
− Dedicated hardware accelerators.

 Video/Image Streaming System

− MPEG-21 Part-12 Test-Bed streaming system.
− Rate control
− Universal multimedia access

PROGRAMMING SKILL

 C/C++

 SystemC

 Matlab

 Verilog, VHDL, Spice

 ARM Code

 XML, Tcl

SPECIALIZE COURSE

 (Grade) (Course)
 (90) Random Process

 (87) Video Signal Processing

 (90) Network programming

 (92) Channel Coding

 (92) Source Coding

 (92) Digital Image Processing

 (88) Digital Integrated Circuit

 (94) Digital Communication

 (89) Advance Discrete Signal Process

 (90) CAD

WORK EXPERIENCE
 Involved Project

− July. 2006 - June. 2008, NSC SOC project, “遍佈即時多媒體系統與技術-
子計畫二:可調視訊編碼之適應性動態精細改進和編碼”

− July. 2005 - June. 2006, NSC SOC project “MPEG-21 多媒體通用存取架

構下數位元件可適性之即時視訊轉碼系統之設計與製作”NSC 94-2220-
E-009-012

− July. 2005 - June. 2006, NSC SOC project “高等精細可調層次式視頻編

碼技術之研究” NSC 93-2220-E-009-012

− Oct. 2003 - Sept. 2006, 學界科專”MPEG-7/21 多媒體特徵擷取，意涵理

解及資訊探索技術子計畫一 MPEG-7/21 標準之規範理解與追蹤”
− Sept. 2002 - Aug. 2003, MicroSoft Asia Research, “Advanced PIP

(Picture-in-Picture) Application for WMV9 (Window Media Video 9)
based Video Streaming”

 Teaching Assistant

− Jan. 2007 - June. 2007, System Model Design and Verification.
− Jan. 2006 - June. 2006, Information Theory.
− Jan. 2004 - June. 2004, Programming Language.
− Jan. 2003 - June. 2003, Programming Language.
− Jan. 2002 - June. 2002, Programming Language.
− Sept. 2001 - Feb. 2002, Discrete Signal Process.

PUBLICATION
 Journal paper

1. C.-H. Li, C.-N. Wang, and T. Chiang, “A Multiple-Window Video
Embedding Transcoder based on H.264/AVC Standard," EURASIP Journal
on Advanced Signal Processing. vol. 2007, Article ID 13790, 17 pages,
2007. doi:10.1155/2007/13790.

2. C.-H. Li, W.-H. Peng, and T. Chiang, “Design of Memory Sub-System
with Constant-Rate Bumping Process for H.264/AVC Decoder," IEEE
Transaction on Consumer Electronics, vol. 53, no. 1, pp. 209–217. Feb.
2007.

3. C.-H. Li, S.-H. Wu, W.-H. Peng, and T. Chiang, “Design Space
Exploration of A Highly Efficient H.264/AVC-based Video Embedding
Transcoder Using Transaction Level Modeling," (in preparation)

 International Conference paper

1. C.-H. Li, W.-H. Peng, and T. Chiang, “Design Space Exploration of An
H.264/AVC-based Video Embedding Transcoder Using Transaction Level
Modeling, ” to be appeared in ICME 2008.

2. C.-H. Li, W.-H. Peng, and T. Chiang, “A Reconfigurable Video
Embedding Transcoder Based on H.264/AVC: Design Tradeoffs and
Analysis, ” to be appeared in ISCAS 2008.

3. C.-H. Li, C.-H. Chang, W.-H. Peng, W. Hwang and T. Chiang, “Design of
Memory Sub-System in H.264/AVC Decoder,” in Proceedings of IEEE
International Conference on Consumer Electronics (ICCE’07), pp. 1–2, Las

Vegas, USA, Jan. 2007.

4. C.-H. Li, C.-C. Chen, W.-C. Su, M.-J. Wang, W.-H. Peng, G.-G. Lee and
T. Chiang, “A Unified Systolic Architecture for Combined Inter and Intra
Predictions in H.264/AVC Decoder,” in ACM International Conference on
Wireless Networks, Communications and Mobile Computing (IWCMC’06),
pp. 73–78, Vancouver, July 2006.

5. C.-H. Li, C.-N. Wang, and T. Chiang, “A Low Complexity Picture-in-
Picture Transcoder for Video-on-Demand, ” in Proceedings of IEEE
International Conference on Wireless Networks, Communications and
Mobile Computing (WirelessCom’05), vol.2, pp. 1382–1387, Maui, Hawaii,
USA, June 2005.

6. C.-H. Li, C.-N. Wang, and T. Chiang, “A Fast Downsizing Video
Transcoding Based on H.264/AVC Standard,” in Proceedings of IEEE
Pacific Rim Conference on Multimedia (PCM’04), pp.215–223, Tokyo,
Japan, Dec. 2004.

7. C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang, “A Fast H.264-Based
Picture-In-Picture (PIP) Transcoder,” in Proceedings of IEEE International
Conference on Multimedia and Expo. (ICME’04), vol.3, pp. 1691–1694,
Taipei, Taiwan, June, 2004.

8. C.-H. Li, C.-N. Wang, and T. Chiang, “A VBR Rate Control Using
MINMAX Criterion for Video Streaming,” in Proceedings of IEEE Pacific
Rim Conference on Multimedia (PCM’02), vol.2532, pp. 831–838,
HsinChu, Taiwan, Dec. 2002.

 Contribution document of ISO/IEC MPEG

1. C.-H. Li el al “ISO/IEC JTC1/SC 29/WG 11 M12373: “Update to the FGS-
Based Multimedia Resource Delivery Test Bed Software, ” July 2005.
(73rd, Poznan, Poland)

2. C.-H. Li el al“ISO/IEC JTC1/SC 29/WG 11 M11117: “FGS-Based Video
Streaming Test Bed for Media Coding and Testing in Streaming
Environments, ” July 2004. (69th, Redmond, Washington, USA)

 Patent

1. C.-C. Chen, C.-H. Li, W.-H. Peng, and T. Chiang, “Prediction Module,”
US patent, Filed on 2006.

2. 陳治傑, 李志鴻, 彭文孝, 蔣迪豪,“預測模組,”中華民國, 專利公開號

200808067, February 2008.

3. 蘇子良, 王俊能, 蔣迪豪, 李志鴻,“使用於 MPEG-4 之具有 R-D 最佳化畫

面內更新的容錯編碼器,” 中華民國,專利公告號 I263418, October 2006.

 Technical report

1. Project report of NSC MPEG SOC NSC 95-2221-E-009-074-MY3：可調

視訊編碼之適應性動態精細改進和編碼.

2. Project report of NSC MPEG SOC NSC 93-2220-E-009-012：高等精細可

調層次式視頻編碼技術之研究 .

3. Project report of NSC MPEG SOC NSC 94-2220-E-009-012：MPEG-21
多媒體通用存取架構下數位元件可適性之即時視訊轉碼系統之設計與

製作.

4. Project report of 學界科專：MPEG-7/21 多媒體特徵擷取，意涵理解及

資訊探索技術三年計畫：MPEG-7/21 標準之規範理解與追蹤第三年度

報告.

5. Project report of 學界科專：MPEG-7/21 多媒體特徵擷取，意涵理解及

資訊探索技術三年計畫：MPEG-7/21 標準之規範理解與追蹤第二年度

報告.

6. Project report of 學界科專：MPEG-7/21 多媒體特徵擷取，意涵理解及

資訊探索技術三年計畫：MPEG-7/21 標準之規範理解與追蹤第一年度

報告.

7. Project report of MicroSoft Research Asia (MSRA)： Advanced PIP
(Picture-in-Picture) Application for WMV9 (Window Media Video 9)
based Video Streaming.

 Others

1. 文/彭文孝、李志鴻、陳治傑、蔣迪豪, “MPEG-4 AVC/H.264 視訊壓縮

編碼簡介”, 電子月刊 2006/八月號.

2. 文/李鴻儒 李志鴻、王俊能/譯, “新寬頻生活型態”, 電子月刊 2002/元月

號/第 78 期.

AWARDS
 Scholarship of Ministry of Education (2003 & 2004)

 Novatek Fellowship (2007)

REFERENCE
 Professor Tihao Chiang

− Professor, Dept. of Electronics Engineering, National Chiao-Tung
University

− 1001 Ta-Hsueh Rd., HsinChu 30010, Taiwan.
− Office: ED506
− Tel :+886-351-31558

− Fax:+886-357-31791
− E-mail: tchiang@mail.nctu.edu.tw

	論文封面.pdf
	Abstract
	誌謝
	CHLi_thesis_080714
	CV_CHLi

