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摘要 

隨著通訊與多媒體技術的發展，視訊應用變得越來越普遍。動量估測

在視訊編碼中扮演一個很重要的角色，不僅因為編碼過程裡它佔了很多的

運算時間，也因為它會直接影響到編碼效率。近代的視訊編碼標準多使用

分數像素精確度的動量補償與雙向動量補償等預測技術以增進編碼效率，

但付出的代價是動量估測中運算複雜度與所需記憶體頻寬的增加。因此，

為了實現即時視訊通訊，快速的動量估測是必須的。 

在本文中，我們發展了一個可提供分數像素精確度的快速的二元動量

估測演算法。在以單一位元代表八個位元之像素資料與全二元金字塔形架

構的使用下，動量可經由階層式搜尋得到，同時降低了運算複雜度與所需

記憶體頻寬。本演算法實現在 MPEG-4 視訊編碼標準中 P-VOP 與 B-VOP 所需

的動量估測部份。經由較佳的量化參數設定，實驗結果顯示，快速分數的

像素之二元動量估測演算法加速了動量估測並且維持可接受的視覺品質。 
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Abstract 

Video applications become more and more popular with the developments of 

communications and multimedia technologies. Motion estimation that takes much 

computational time and directly affects the coding efficiency and visual quality of video 

signals plays an important role in video coding. Modern video coding standards use the 

techniques of motion compensated prediction at subpixel accuracy and bidirectional motion 

compensated prediction to improve the coding efficiency with drastically increasing 

computational complexity and required memory bandwidth in motion estimation. The faster 

motion estimation methods become essential for realizing real-time video communication. 

In this thesis, we develop a fast binary motion estimation algorithm providing fractional 

pixel motion accuracy. With the pyramidal structure and one-bit representation of pixel data, 

motion vectors at the accuracy of half or quarter pixel are got via hierarchical search, which 

can reduce both the computational complexity and required memory bandwidth. The 

algorithm is realized in the MPEG-4 reference software and evaluated for fractional-pel 

motion estimation of both P-VOPs and B-VOPs in MPEG-4. With the better quantization 

parameter setup, experimental results show that the fast fractional pixel binary motion 

estimation can speed up the encoding process with an acceptable visual quality. 
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Chapter 1 

Introduction 

 

With the developments of various technologies, we lead more convenient and 

comfortable life than before. The combination of multimedia and communications 

technologies facilitates information exchange in various ways. Media content including text, 

images, voice, music, or video clips can be transmitted via the Internet or stored in various 

storage devices like compact disc. For efficient transmission, the storage size and the 

transmission bandwidth are major concerns, especially when data are transmitted on a 

communications system with limited bandwidth. Multimedia data usually require larger 

bandwidth than that of text information. For example, the raw data volume of a video clip 

with resolution of 720x480 and a frame rate of 30 fps is about 29.7 Mega-Bytes or 237.3 

Mega-bits per second, which is challenging for compact storage or efficient transmission of 

media content. To reduce size or bandwidth cost, multimedia data compression is required to 

be for real-time multimedia data exchange over the Internet. 

Video coding is one of the important branches in multimedia technology and has been 

developed for years. Various techniques have been proposed to fit diverse requirements of 

video coding applications including low bit rate coding, scalability, error resilience, arbitrary 

shape coding, and so on. For video delivery and communications, good coding efficiency and 

good visual quality are always highly concerned. To tradeoff between the high coding 

efficiency and high visual quality, many techniques have been developed to improve the 

coding efficiency and retain the visual quality. To reduce temporal redundancy of video clips, 

motion compensated coding is used. For increasing the coding efficiency, motion 
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compensated prediction (MCP) at subpixel accuracy and bidirectional motion compensated 

prediction are adopted, which can improve both the coding efficiency and the visual quality in 

video coding. Therefore, the motion compensated coding methods are adopted in modern 

video coding standards including MPEG-2, MPEG-4, H.263 and ITU-T H.264. 

MPEG-4 adopts quarter-pel motion compensated prediction (QPEL MCP) and the 

bi-directionally predictive coded video object plane (B-VOP). QPEL MCP enables MCP of 

video coding at quarter (1/4) pixel accuracy. B-VOP is the VOP coded using the MCP from 

the past and future reference VOPs. The two tools provide better coding efficiency in 

MPEG-4 video coding with drastically increasing complexity to the video encoding and 

decoding processes. In video encoding, to search for the best reference for MCP, the motion 

estimation is the most computationally intensive module.  

Motion estimation (ME) is a major component in a video encoder. The purpose of ME is 

to search for the best motion compensation predictor in video coding, which takes 50% of the 

overall computation time of an optimized video encoder, and occupies high memory 

bandwidth. In addition, ME will highly affect the quality and size of the coded video sequence. 

With the use of QPEL MCP and B-VOPs, the ME for an MPEG-4 video encoder comes 

complicated, hence fast ME becomes an important issue for the acceleration of video encoder. 

Conventional fractional pixel ME methods need large memory size to store the 

pre-interpolated frame or additional interpolation process to build pixel representation of 

subpixel level. The other subpixel ME methods of block difference approximation including 

the linear interpolation method (LIM) [17], improved MAE approximation method (IMAM) 

[11], and parabolic prediction–based, fast half-pixel search (PPHPS) [12] need no block 

matching and interpolation processes with sophisticated computation and constrains.  
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In this thesis, we develop a novel and fast fractional pixel binary motion estimation that 

can support the MCP at fractional pixel accuracy and the bidirectional MCP with the 

considerations of acceleration, memory bandwidth reduction, and regularity. For evaluating 

the speedup and visual quality of the proposed motion estimation in video coding, we use 

MPEG-4 that covers the tools of QPEL MCP and B-VOP. In addition, the fast fractional pixel 

binary motion estimation can be applicable to other video coding standards that adopts 

block-based motion compensated coding with some modifications. 

The thesis is organized as follows. The introduction to MCP in video coding and the 

discussions on ME techniques are given in chapter 2. The proposed methods on subpixel and 

bidirectional ME are described in chapter 3. The experimental results of the proposed 

methods in an MPEG-4 video encoder are shown in chapter 4 and the conclusion is in chapter 

5. 
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Chapter 2 

Motion Estimation in Video Coding 

 

In this chapter, we first introduce the background of video coding and put more emphasis 

on the two techniques including MCP at subpixel accuracy and bidirectional MCP. Since the 

MPEG-4 video coding standard will be the platform for evaluating the coding performance 

and speedup, an overview of MPEG-4 and the tools will be given. For efficient video coding, 

some discussions about the process of ME, the computational complexity, and the major 

issues on ME for MCP at subpixel accuracy and bidirectional MCP are provided. 

 
2.1 Video Coding 

Modern data compression schemes can be divided into two classes covering the lossless 

and the lossy compression schemes. If the lossless schemes are adopted, the original data can 

be recovered from coded ones without any loss of information. The lossless schemes are often 

used for applications that do not allow any differences between the original and decoded data. 

In most cases of video applications, the issues covering the compression ratio than data 

consistence are the most concerns. For various applications covering video communications 

and delivery, which demand compact storage and efficient transmission, the lossy 

compression schemes can provide better compression performance with acceptable loss.  

A video sequence is composed of frames, which are temporal sampled images from 

video signals at a sampling rate of, for example, 30 frames per second (fps). Exploring a video 

sequence, we find similarities or regularities between neighboring pixels or frames. The 

similarities can be thought as redundancies in video data, which can be removed or 
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represented in a more efficient and compact way to achieve high compression ratio. The 

redundancy exist between pixels in a frame is called “spatial redundancy”, and the similarity 

between temporally neighboring frames are “temporal redundancy”. To reduce the two kinds 

of redundancies can provide better video compression. Thus, to achieve the efficient video 

coding, the removal or reduction of the redundancies is addressed with video coding tools. 

 

2.1.1 Hybrid Coding Scheme 

The most commonly used video coding scheme is simple “hybrid coding scheme” as 

shown in Figure 2.1. The hybrid coding scheme can be considered as a derivation from 

differential pulse code modulation (DPCM). In addition, the hybrid coding scheme combines 

two kinds of techniques covering motion compensated prediction (MCP) and still picture 

compression for improving the coding efficiency. The MCP, which is described in section 2.2, 

is used to reduce the temporal redundancy. In addition, the still picture compression 

techniques can remove or reduce spatial redundancy. Existing technologies of MCP and still 

picture compression have been widely used in various areas. In addition, the hybrid coding 

scheme can be realized in software realization or hardware circuits. In addition, Figure 2.1 

shows that the decoder in the scheme is simpler than the encoder and suitable for the case that 

a video sequence is encoded once and decoded many times. Because there are many 

advantages of hybrid coding scheme [2], the hybrid coding scheme comes to be the 

state-of-the-art architecture for video data exchange [3]. Thus, the hybrid coding scheme has 

been adopted in various modern video coding standards covering H.261, H.263, H.264, 

MPEG-1, MPEG-2, and MPEG-4. 
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Figure 2.1 – Hybrid Coding Scheme 

There are numerous ways to implement hybrid coding scheme where the organization 

and components of MCP and still picture compression are different. A typical MPEG-4 codec 

will include the following components: 

 Discrete Cosine Transform (DCT) / Inverse Discrete Cosine Transform (IDCT) 

 Motion Estimation (ME) 

 Motion Compensation (MC) 

 Quantization / Inverse Quantization 

 Variable-Length Coding (VLC) / Variable-Length Decoding (VLD) 

 Frame Buffer 

The encoder and decoder consist of some of the components above are shown in Figure 

2.2 and Figure 2.3 respectively. 
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2.2 Motion Compensated Prediction 

Prediction is a common technique in data compression while correlations usually exist in 

discrete signals. It is possible to predict current value from past or future signals, so do video 

sequence because the contents in frames are similar. A frame is divided into objects (or 

simply rectangular blocks), and similar objects in adjacent frames can be found and thought as 

the same object. The current object is described in motion vector (MV) and the difference 

(residue) between itself and its predictor as shown in Figure 2.4. The MV and residue can be 
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coded and used with reference frame to predict the object in current frame. This is why it is 

named “motion compensated prediction” for that it utilizes the relationship of motion between 

frames to predict video signals. 

 

 
Figure 2.4 – Motion Compensated Prediction 

The reference frame and motion vector are essential elements for MCP and two issues 

are derived from them: 

1. The accuracy of motions 

2. The source of reference frame 
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For the first issue, because the video sequences are obtained by spatial and temporal 

sampling of video signals, the MVs are often represented as multiples of the horizontal and 

vertical sampling intervals (pixels or pels). Since the true frame-to-frame motions of the video 

contents are completely unrelated to the spatial sampling structure of video signal, we expect 

to improve MCP with the employment of MVs at subpixel accuracy, in which the MVs are 

represented as fractions rather than integers only [4], [5]. In practical implementation of video 

coding, the MVs are shown as ))
2
1(,)

2
1(( nn yx ×× , where ZyxNn ∈∈ ,, .  

Pixels at fractional positions in the reference frame are needed with MCP at subpixel 

accuracy. However, they do not exist in reality and have to be generated via interpolation. 

There are kinds of interpolation filters used in image processing – bilinear, bi-cubic, finite 

impulse response low-pass filters (FIR-LPFs), Wiener filter, or other methods on frequency 

domain. As complexity is always one of the main considerations during video coding, modern 

video coding standards usually limit the accuracy of motion to quarter (1/4) pixels and the 

bilinear and separable FIR filters with few taps are often used during fractional pixel 

generation. For example, the interpolation filters adopted by MPEG-4 and H.264 are bilinear 

filter and FIR-LPFs, which are shown in Table 2.1. 

 

Table 2.1 – Interpolation Filters in MPEG-4 and H.264 

 Half pixel Quarter pixel 

non-quarter-sample mode Bilinear N/A 
MPEG-4 

quarter-sample mode 8-tap FIR filter(1) Bilinear 

H.264 6-tap FIR filter(2) Bilinear 

[ Note ]  (1) Coefficients of 8-tap FIR filter: (-8, 24, -48 160, 160, -48, 24, -8) / 256 

(2) Coefficients of 6-tap FIR filter: (1, -5, 20, 20, -5, 1) / 32 
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The 2nd issue relates to the prediction schemes of video coding, which can be classified 

as three: 

1. Forward prediction – Using past frame to predict current image contents. 

2. Backward prediction – Using future frame to predict current image contents. 

3. Bidirectional prediction – Using both past and future frames to predict current image 

contents. 

The relationship of MVs and reference frames in the three prediction schemes above are 

shown in Figure 2.5 while frame k is the current frame. In forward or backward prediction, 

the reference frame is the past or the future frame. Since the adjacent frames are likely to 

provide better motion compensation predictors, the most neighboring frames are usually 

chosen. In another case, the motion compensation predictor in bidirectional prediction is 

generated through a temporal interpolation process. As shown in Figure 2.5 (c), the motion 

compensation predictor  of block x is given by x̂

2211 bcbcx 1,0 21ˆ +=   ≤≤ cc 121  =+ cc  

b1 and b2 are the blocks in the past and the future frame with displacements of MVf and 

MVb correspondingly. The c1 and c2 are usually decided according to the temporal distance 

between the current and the two reference frames or simply set to 1/2, which means the 

predictor is the average of the two referenced blocks. The bidirectional prediction has the 

advantage that the motion compensated averaging over two frames may provide better 

predictor for video coding than prediction from one frame only. Thus, it is often used even if 

it is more complicated than the forward and backward prediction. 
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Figure 2.5 – (a) Forward Prediction (b) Backward Prediction (c) Bidirectional Prediction 

 

2.3 Overview of MPEG-4 Video Coding 

MPEG-4 is the latest coding standard developed by ISO/IEC that specifies the coding of 

audio-visual objects. The part 2 of MPEG-4 relates to the video coding, if no special 

explanation is given, the word “MPEG-4” referred in the following text is the part 2 of 

MPEG-4 [1]. 

MPEG-4 supports the functionalities already provided by MPEG-1 [6] and MPEG-2 [7] 

and extend them to “content-based coding”, with which the video contents (e.g. the physical 

objects in a scene) are separated encoded and decoded [8]. To enable the content-based 

coding, MPEG-4 introduces the concepts of video objects (VOs) and video object planes 

(VOPs). A VO in a scene is an entity that a user is allowed to access and manipulate, and the 

instance of a VO at a given time is a VOP [1]. For the intra coding in MPEG-4, a VOP is 
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coded without any reference other than itself. For the inter coding in MPEG-4, a VOP is 

divided into rectangular blocks and the MCP coding is conducted on each block referencing 

other VOPs of the same VO. With this scheme, each VO can be coded/decoded 

independently.  

There are many functions in MPEG-4 including the coding of synthetic data, sprite, and 

still textures object, 3D mesh coding, scalable coding, ……etc. For the sake of simplicity, our 

discussions are focused on the coding of VOPs which are composed of rectangular blocks, 

and this kind of VOPs is the most commonly used in natural video data coding nowadays. 

 

2.3.1 Types of Video Object Plane 

According to the coding methods used, there are four types of VOPs [1]: 

1. Intra-coded VOP (I-VOP) – A VOP coded using information only from itself. 

2. Predictive-coded VOP (P-VOP) – A VOP coded using MCP from a past reference 

VOP 

3. Bidirectionally predictive-coded VOP (B-VOP) – A VOP coded using MCP from a 

past and/or future reference VOP(s). 

4. Sprite VOP (S-VOP) – An S-VOP is a VOP for a sprite object or coded using 

prediction based on global motion compensation from a past reference VOP. It is in 

the range of sprite coding and will not be discussed in this thesis. 

A VOP is regularly divided into 16x16 macroblocks (MBs), and each MB contains four 

8x8 blocks. An MB in an I-VOP can be only INTRA coded where DCT, quantization, AC / 

DC prediction, and VLC are applied to the MB in order. An MB in a P-VOP can be either 

INTRA coded as if it is in an I-VOP or INTER coded where the forward prediction in section 
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2.2 is applied on MB level. The residue of an INTER coded MB is transformed with DCT, 

quantized, and coded with VLC. In addition to INTRA coding, there are four modes for 

INTER coding in a B-VOP, where the MCP processes of them are different: 

1. Forward mode 

The forward prediction is used. 

2. Backward mode 

The backward prediction is used. 

3. Bi-directional mode 

The bidirectional prediction is used, and the coefficients c1 and c2 mentioned in 

section 2.2 are set to 1/2. 

4. Direct mode 

The bidirectional prediction and same coefficients of c1 and c2 as in 

bi-directional mode are used, but only one delta vector MVd is coded in direct mode. 

The calculation of MVf and MVb used for bidirectional prediction in this mode 

involves linear scaling the MV of collocated block in temporally next I-, or P-VOP 

[1]: 

d
n

f MVMVTRBMV +
×

=
TRD

 

TRD
MVTRDTRBMV n

b
×−

=
)(   , if MVd is zero 

nfb MVMVMV −=   , if MVd is nonzero 
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MVn is the motion vector of collocated block in temporally next I-, or P-VOP, 

TRB is the temporal difference of the B-VOP and its past reference VOP, TRD is 

the temporal difference of the two reference VOPs. An example is shown in Figure 

2.6, where frame 1 is a B-VOP, frame 0 and 3 are the reference VOPs, TRD = 3, 

and TRB = 1. 

0 321

MV
b

MV
f

MV
n

 
Figure 2.6 – An Example of Bidirectional Prediction in Direct Mode [1] 

 

2.3.2 Tools and Profiles 

Each tool specifies one function in MPEG-4 and a profile defines the subset of the 

syntax and semantics in MPEG-4 and thereby the decoder capability required to decode a 

particular bitstream [1], [9]. The tool specifies the functionality of MCP at quarter-pel 

accuracy is the Q-Pel MCP, and the B-VOP specifies the bidirectional MCP. Table 2.2 lists 

the tools as to code/decode the video objects of simple profile (SP) and advanced simple 

profile (ASP), and other profiles in MPEG-4 can be found in [1]. SP defines a small set of 

tools for video coding and ASP includes two more tools, the B-VOP and Quarter-Pel MCP. 

The SP and ASP are suitable for our research and are chosen to examine the effects of 

applying MCP at quarter-pel accuracy and bidirectional MCP. 
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Table 2.2 – Tools for MPEG-4 SP and ASP [1] 

Video Object Types 
Visual Tools 

Simple Advanced Simple 

I-VOP X X 

P-VOP X X 

DC Prediction X X 

AC Prediction X X 

4-MV, Unrestricted MV X X 

Slice Resynchronization X X 

Data Partitioning X X 

Reversible VLC X X 

Short Header X X 

B-VOP  X 

Method 1 / Method 2 
Quantization 

 X 

Interlace  X 

Global Motion Compensation  X 

Quarter-pel Motion 
Compensation (QPEL MCP) 

 X 

 

2.4 Motion Estimation 

Motion Estimation (ME) is an important image processing technique that is developed 

for years and wildly used in various fields including image sequence analysis, machine vision, 

image sequence restoration, robotics, or video coding. The aim of motion estimation is to 
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estimate the motion of an object in one frame to another frame. The size of the object whose 

motion is estimated ranges from the whole frame to a small pixel. In this thesis, we will focus 

on the motion estimation techniques in video coding applications. Common ME techniques 

can be divided into three groups covering frequency-domain techniques, gradient / 

pel-recursive techniques, and block-matching techniques 

The frequency-domain techniques are based on the relationship of transformation 

coefficients (e.g. phase or magnitude) of the objects in frames. The additional operations of 

transformations make them complex and not suitable for real-time video coding applications. 

The gradient / pel-recursive techniques are originally developed for image sequence 

analysis and posses some features as dense and smooth motion field or the option to deal with 

complex motion models. When they are compared with the block-matching algorithms, 

experiment results shows that the gradient / pel-recursive techniques require more overhead 

motion information or result in higher displaced frame difference (DFD) energy [10]. In other 

words, they cost more bandwidth for transmission. As a result, the block-matching techniques 

are more adequate for video coding applications and widely adopted in modern video coding 

algorithms. 

 

2.4.1 Block-based Motion Estimation 

The block-based techniques of MCP have the advantage of low overhead motion 

information for that the same motion vectors are assigned to all the pixels within a block. 

Block-based motion estimation (BBME) is the process of obtaining these motion vectors for 

the block. In the translation motion model, the MV represents the translational movement of a 

block between the current frame and the reference one as it is described in section 2.2. It is 

very intuitive for someone to “match” the current “block” with those blocks in the reference 
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frame in order to find the most similar one, and this is what was conducted in the 

block-matching ME. Blocks are taken with different locations in the reference frame as 

candidate blocks and evaluate the similarity / difference with the current block. The 

coordinate difference of the most similar candidate block and the current one will be coded as 

MV. 

Even though the most similar block may exist at any location in the reference frame, it is 

impractical to set the candidate locations of blocks to cover the whole frame due to the 

considerable computational complexity. In the natural video sequences, object motions 

between adjacent frames are usually limited and therefore the candidate blocks are located in 

a smaller area around the concurrent location of current block in the reference frame. As 

shown in Figure 2.7, a smaller “search range” or “search window” can be set in the reference 

frame, where the candidate blocks are taken. Under this condition, the complexity is limited, 

and the MVs are also limited in ±R, or say RvuR ≤≤− ,  

 

 
Figure 2.7 – Search Range 
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2.4.2 Criteria for Similarity 

The ME in video coding process provides MVs of motion compensation predictors, 

which will greatly affects the coding performance. Smaller differences between the 

to-be-coded block and its predictor bring better coding performance. Many criteria exist for 

the measurement of similarity between current and candidate blocks in ME, such as the 

cross-correlation or mean of squared error. Some common criteria are defined in the 

following list. 

 MSE (Mean of Squared Error) 

 [ ]∑
∈

++−= referencecurrent vyuxSyxS
wh

vuMSE 2),(),(1),(  
Blockyx,

∈Blockyx,

 SSE (Sum of Squared Error) 

[ ]∑ ++−= referencecurrent vyuxSyxSvuSSE 2),(),(),(  

 MAD (Mean of Absolute Difference) 

∑
∈

++−=
Blockyx

referencecurrent vyuxSyxS
wh

vuMAD
,

),(),(1),(  

 SAD (Sum of Absolute Difference) 

∑ ++−= referencecurrent vyuxSyxSvuSAD ),(),(),(
∈Blockyx,

 

Scurrent(x, y) and Sreference(x, y) are the pixel value at coordinates (x, y) in the current and 

reference frame. (u, v) is the coordinate difference between current block and candidate block. 

The smaller SSE or SAD we get from two blocks, the higher similarity exists between them. 
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Since the operations of floating-point number, square, or division may be needed with SSE, 

MSE, or MAD, the criterion of SAD is simpler and widely used in various video codecs. 

 

2.4.3 Sub-Pixel Motion Estimation 

There are various ways for ME at subpixel accuracy, as for block-based ME, the MVs 

are obtained with iteratively matching the current block with candidate blocks at fractional 

positions in the reference frame. There are two parts involved in BBME at subpixel accuracy: 

1st—The composition of candidate blocks, and 2nd—The search methods. 

The candidate blocks are groups of pixels at fractional positions generated via 

interpolation process described in section 2.2. Figure 2.8 is a simple example shows 3x3 

candidate blocks at different positions, where the capitalized letters are integer pels (pixels at 

integer positions) and the others are half pels (pixels at half-pixel positions). The candidate 

block  is in position (0, 0), and the others are  in (0.5, 0), 

 in (0, 0.5), and  in (0.5, 0.5). While it is in other cases, 

candidate blocks with larger size and at quarter-pixel positions can be derived in a similar 

way. 
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A a1 B B1 C c1

a2 a3 b2 B3 c2 c3

D d1 E E1 F f1

d2 d3 e2 E3 f2 f3

G g1 H H1 I i1 

g2 g3 h2 H3 i2 i3 

Figure 2.8 – An Example of Candidate Blocks at Fractional Position 

The method to find the best matching candidate block is full search (FS), where all the 

candidate blocks in search range will be searched to find the one with the smallest differences. 

It is very inefficient, and, since modern video coding standards usually include MCP at 

quarter-pixel accuracy, there will be 16 times of candidate blocks compared to those in ME at 

integer-pixel accuracy. A compromise arises that FS is conducted at integer-pixel level to find 

the best integer-pixel position, and then, based on the result of integer-pixel level, search the 8 

surrounding half-pixel positions to find the best half-pixel position. After all, the final 

position is got with searching the 8 quarter-pixel positions surrounding the result of half-pixel 

level. It is shown in Figure 2.9, where the symbols ╳, ○, △ are candidate positions at 

integer-, half-, and quarter-pixel levels, and A, B, C denote the search results at integer-, half-, 

and quarter-pixel levels correspondingly. The FS with levels is widely used as benchmark for 

the development of ME at subpixel accuracy. 

- 20 - 



 

A

B
C

 

Figure 2.9 – Full Search with Three Levels 

 

2.4.4 Motion Estimation for B-VOPs in MPEG-4 

Motion estimation for B-VOPs in MPEG-4 involves the estimation of MVs for the four 

modes mentioned in Section 2.3.1, which becomes more complicated than ME for forward 

prediction only. The methods for the four modes are described as follows. 

1. Forward mode – The candidate blocks are taken from past reference frame and 

examined to find the best predictor. 

2. Backward mode –The candidate blocks are taken from future reference frame and 

examined to find the best predictor. 

3. Bidirectional mode – The candidate blocks are generated as described in section 2.2 

and 2.3.1 with MVf and MVb. If every combination of possible positions of forward 

and backward motion is examined, the complexity will be large. For example, let 

the search range for forward and backward motion in bidirectional mode to be both 

R± , the number of all possible combination is 16R4, which is much larger than the 

numbers (4R2) in forward or backward mode. An alternative way is to use the MVs 

found in forward and backward mode as the MVs in bidirectional mode. Although 
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this combination may not result the best predictor, the complexity would be more 

acceptable, and this method is implemented in the MPEG-4 VM. 

4. Direct mode – Since the MV of co-located block in the next reference frame has 

been determined before the ME for direct mode, the candidates of forward and 

backward motion can be limited according the range of delta vector MVd, which is 

often much smaller than the search ranges in forward and backward modes. The 

candidate blocks are generated as described in section 2.3.1 with different delta 

vectors and examined to find the best predictor. 

 

2.5 Computational Complexity 

The computational complexity of searching the MV of a block consists of three parts – 

search points, matching pixels, and operations of evaluating difference. The search points are 

the positions of candidate blocks. The matching pixels are the pixels participating in 

evaluating block difference. In common cases, the number of matching pixels of a 16x16 MB 

is . The operations of evaluating difference of a pixel are 12561616 =× subtraction + 1absoluting + 

1addition = 3, when SAD is used. Let the search window to be RR 22 ×  in integer pixel, when 

3-level full search is used, the total operations of ME of an MB to quarter-pixel accuracy are 

.  1382430723256)994( 22 +=××++ RR

If the same 3-level full search is used in forward and backward mode of B-VOP, the MVf 

and MVb in forward and backward mode are used in bidirectional mode, and the search radius 

in direct mode is Rd, the operations of ME at quarter-pixel accuracy for an MB in B-VOPs are 

summarized. For each MB, the forward mode needs 3072R2 + 13824 operations, the 

backward mode requires 3072R2 + 13824 operations, the bidirectional mode has 

 operations, and the direct mode takes  7683256 =× 22 )1(7683256)1( +=××+ dd RR
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operations. Thus, 3-level full search will take 6144R2 + 768(Rd +1)2 + 28416 operations per 

MB in total. The operations of pixel averaging in bidirectional and direct mode are not 

included above. The complexity of ME for an MB in a P-VOP or a B-VOP with different 

motion accuracy is shown in Table 2.3. 

 

Table 2.3 – Computational Complexity of Motion Estimation for a Macro Block 

 
Exhaustive Full Search 

Full Search (integer-pixel) 
+ Refinement (subpixel) 

P-VOP (half-pixel) 12288R2 3072R2 + 6912 
P-VOP (quarter-pixel) 196608R2 3072R2 + 13824 
B-VOP (half-pixel) 24576R2 + 768(Rd+1)2 + 768 6144R2 + 768(Rd +1)2 + 14592
B-VOP (quarter-pixel) 393216R2 + 768(Rd +1)2 + 768 6144R2 + 768(Rd +1)2 + 28416

 

2.6 Motion Estimation Algorithms 

The procedure of ME algorithms providing subpixel motion accuracy can usually be 

divided in to two portion covering finding the MV at integer-pixel accuracy and then refining 

the MV at subpixel accuracy. The methods dealing with the MV refinement at subpixel 

accuracy can be categorized as two groups consisting of block matching with levels and 

difference approximation methods. 

The former is conventional, while it is intuitive that refinement are conducted level by 

level and the subpixel positions around the one pointed with MV from upper level are 

searched. It has the advantage of regularity and the disadvantages of possibly higher 

complexity, higher memory bandwidth, and the need of interpolation of pixels. The latter 

approximates the block differences at subpixel positions with a given model instead of block 

matching. It avoids the operations from matching of blocks and interpolation of pixels but 
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introduces some constrains and extra computations in addition. Some modern subpixel ME 

algorithms belong to the latter are discussed in the following section. 

 

2.6.1 Sub-Pixel Motion Estimation with Block Difference Approximation 
Methods 

The subpixel ME algorithms of block difference approximation all have their own 

models, which are linear, quadratic, parabolic, …and so on. The core of a block difference 

approximation method is to solve the parameters of the model. Block differences at subpixel 

positions are got through calculation without the real matching of blocks. In [11], a 

quadratic-like model is assumed in IMAM as to estimate the mean absolute error/difference 

(MAE / MAD) at half-pixel positions. The positions with the minimal estimated MAE is 

chosen as the MV of half-pixel accuracy. 

A hybrid method named PPHPS of combining the difference approximation and block 

matching is proposed in [12]. A parabolic function is used as to model the SAD at half-pixel 

positions. With the SADs of surrounding integer positions, unknown parameters of the 

function are calculated. Instead estimating all values at half-pixel positions, a predicted 

position is found at the minimum of the function, and block matching of three search points is 

executed to get the true SADs and MV of half-pixel accuracy. 

Although fewer or no block matching processes exist in the block difference 

approximation methods, they all have the similar problems: 

1. The prediction accuracy depends on the models used. The adoption of a more 

complex model (from linear to quadratic or parabolic) may bring improvements on 

prediction accuracy, but also higher computational complexity. Meanwhile, the true 

error surface of SAD may not coincide with the model, and that is why block 
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matching is still needed in PPHPS after the estimation of the half-pixel MV. The 

block matching is back again. 

2. Some constrains or limits are also introduced as the model of block difference is 

used. The SADs or MAEs surrounding the subpixel positions have to exist before 

computing the parameters of the model. When SADs of some positions in search 

range or around the border of search window may be missing with modern fast ME 

algorithms, the block difference approximation will not be applicable. In addition, 

due to the similar constrains of existent SADs, this kind of methods can only be 

carried out either in half-pixel level of in the quarter-pixel one. The interpolation 

and matching processes are still needed in the other level. 

From the discussions above, the matching between blocks seems to be inevitable with an 

ME algorithm providing quarter-pixel motion accuracy. In the method we proposed, 

block-matching is still used, which is more regular for hardware implementation, and 

interpolation process during the matching in subpixel level is avoided. 

 

2.6.2 Binary Hierarchical Motion Estimation 

Multiresolution techniques have been proposed as to reduce the computational 

complexity of ME [18], [19]. A hierarchical search will be performed from lower to higher 

resolution levels and the MV is refined level by level. Furthermore, binary ME algorithms are 

developed to reduce the computational complexity and memory bandwidth by reducing the 

pixel depth to one bit [13]-[16]. All these methods focus on motion search above integer level 

and still need 8-bit block matching at subpixel levels rather than the binary representation. 

Based on the concept of binary hierarchical motion search, we develop the ME providing 

subpixel motion accuracy, which is also applicable in B-VOPs of MPEG-4. 
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Chapter 3 

Fractional Pixel Binary Motion Estimation 

 

The fractional pixel binary motion estimation (FPBME) supporting subpixel motion 

accuracy and motion search in B-VOPs is presented in this chapter. This method is based on 

binary hierarchical motion estimation and makes use of the spatial-temporal correlations in 

motion vector field to achieve low complexity and good visual quality. A simple strategy to 

improve rate-distortion performance in MPEG-4 ASP is also introduced in later section of this 

chapter. 

 

3.1 Binary Pyramidal Structure 

The binary pyramidal structure is the core of our method. The luminance of each frame 

in video sequence is processed with filters to generate layers of binary data with different 

spatial resolutions. As shown in Figure 3.1, the luminance data are subsampled with 

subsampling filters and then binarized into bitmap. Pixels at fractional positions are 

interpolated and binarized into bitmap with larger size. Every pixel in the bitmap is of one-bit 

width, which stores the binary feature. The bitmaps including Lv_4, Lv_2, Lv_I, Lv_H, and 

Lv_Q (if QPEL MCP is used) constitute the binary pyramid of a certain frame (or VOP). 
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Figure 3.1 – Construction of Binary Pyramid 

 

3.2 Subsampling and Interpolation 

The luminance data are subsampled to achieve image with lower resolution. Low pass 

filters may be needed to avoid aliasing. There are three ways for subsampling. 

 Direct Subsampling 
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No anti-aliasing filter is used. Pixels at even coordinates are directly used 

without any processing. The advantage of this is very low complexity where no 

extra operations are needed, but aliasing may happen. 

 Mean filter 

As shown in Figure 3.2, mean of four pixels (A, B, C, D) are used as the 

subsampled pixel value. 
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…
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DC
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…

…
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DC

B

 
Figure 3.2 – Mean Filter during Subsampling 

 

 3-tap Low-Pass Filter 

A serapable 3-tap low-pass filter is used as the anti-aliasing filter during 

subsampling. The filter coefficients are 

[ ] 4121 ÷  

The use of 3-tap LPF will slightly increase the complexity of subsampling but 

avoid aliasing. 

The filters used in interpolation process depend on usage of QPEL MCP. In MPEG-4, as 

shown in Table 2.1, if sequence is coded without QPEL MCP, bilinear filter is used to 

generate the half pixels, and interpolation for quarter pixels is not conducted. When QPEL 

MCP is adopted, the half pixels are generated with 8-tap FIR filter of 
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[ ] 2568244816016048248 ÷−−−−  

, and the quarter pixels are then calculated with bilinear filtering the integer and half 

pixels. 

 

3.3 Binarization 

The depths of pixels are reduced to one bit width through binarization. Since human eyes 

are more sensitive to edges and high frequency regions, which are distinct from their 

neighbors, this regions or pixels are more important for human vision. This kind of feature 

pixels can be extracted through the comparison between pixel value (x) and threshold (TH) 

from low-pass filtering the local region, which is 

⎩
⎨
⎧ >

=
otherwise

THx
y

,0
,1

 

For this reason, low-pass filters are used to produce the bitmaps with binary features. 

Various filters are discribed in the following sections. 

 

3.3.1 Filters in Integer and Subsampled Levels 

The same filtering process is conducted in Lv_I, Lv_2, and Lv_4 except the different 

dimensions of levels. The filter is first applied on luminance data of frame in Lv_I, or pixels 

after downsampling in Lv_H and Lv_Q as to get a threshold for a pixel. After the filtering, the 

pixel value is compared with its threshold to decide the binary value, 0 or 1, of it. This 

process is executed repeatedly to generate all the binary data of each level. 

The filters mentioned above can maybe changed and described in the following. 
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 Mean of 4 surrounding pixels (M4) 

As shown in Figure 3.3, the threshold of pixel X (center pixel) is 
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Figure 3.3 – Threshold from Mean of 4 Surronding Pixels 

 

 Mean of 8 surrounding pixels (M8) 

As shown in Figure 3.4, the threshold of pixel X is 
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Figure 3.4 – Threshold from Mean of 8 Surronding Pixels 

 

 N-tap FIR filters 

FIR filters with increasing tap numbers have better frequency response, but 

cause more complexity to binarization process. A separable 13-tap Hamming filter 

with 30% of cut-off frequency is introduced for better binarization: 

[ ]  3276082295,475,580,3819,7918,9830,7918,3819,580,475,295,82 ÷−−−−−−
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3.3.2 Filters in Sub-Pixel Levels 

Because the candidate blocks at subpixel positions are got from a subsample-like process 

as shown in section 2.4.3, the filters mentioned in last section cannot be directly applied to the 

interpolated frame data. The threshold of a pixel of integer-pixel position in subpixel levels 

should be generated from filtering neighboring integer pixels instead of half or quarter pixels. 

For example, if the filter M4 is used for binarization, the threshold for the pixel E in Figure 

2.8 should be decided from averaging the integer pixels of B, D, F, and H, instead of half 

pixels of b2, d1, e1, and e2. The same concept is suitable for half and quarter pixels. The 

solution to this problem is to modify binarization filters as follows. 

 Mean of 4 surrounding pixels at subpixel levels 

The referenced pixels by the filter can be expressed as 

(x+2, y), (x-2, y), (x, y-2), (x, y+2) in Lv_H 

(x+4, y), (x-4, y), (x, y-4), (x, y+4) in Lv_Q 

 where (x, y) is the pixel to decide the threshold for. 

 

 Mean of 8 surrounding pixels at subpixel levels 

The referenced pixels by the filter can be expressed as 

(x+2, y+2), (x+2, y+2), (x-2, y+2), (x, y-2), (x, y+2), (x-2, y+2), (x-2, y), (x-2, 

y-2) in Lv_H 
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(x+4, y+4), (x+4, y+4), (x-4, y+4), (x, y-4), (x, y+4), (x-4, y+4), (x-4, y), (x-4, 

y-4) in Lv_Q 

 where (x, y) is the pixel to decide the threshold for. 

 

 N-tap FIR filters at subpixel levels 

The 13-tap filter is modified as 

[-82, 0, -295, 0, -475, 0,580, 0, 3819, 0, 7918, 0, 9830, 0, 7918, 0, 3819, 0, 580, 0, 

-475, 0, -295, 0, -82]÷32760 in Lv_H 

[-82, 0, 0, 0, -295, 0, 0, 0, -475, 0, 0, 0, 580, 0, 0, 0, 3819, 0, 0, 0, 7918, 0, 0, 0, 

9830, 0, 0, 0, 7918, 0, 0, 0, 3819, 0, 0, 0, 580, 0, 0, 0, -475, 0, 0, 0, -295, 0, 0, 0, 

-82]÷32760 in Lv_Q 

Although the modified filters described above seem to be much more complicated than 

those in section 3.3.1, regularities can be found that the distances between referenced pixels 

and center pixel in Lv_H and Lv_Q are twice and 4 times as those in Lv_I correspondingly. 

They can be easily handled during the implementation of software or hardware with regularly 

access these referenced pixels. The filters at subpixel levels cause only little more complexity 

and are still applicable. 
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3.4 Matching Criterion 

Compared to the criteria in section 2.4.2, simpler criterion for measuring similarity can 

be used when one pixel is represented in a single bit. The criterion used during binary block 

matching is SOD (sum of differences) and is defined as 

[ ]∑ ++⊕= referencecurrent vyuxSyxSvuSOD ),(),(),(  
∈Blockyx,

Scurrent(x, y) and Sreference(x, y) are the binary representations at coordinates (x, y) in the 

current and reference frame. (u, v) is the coordinate difference between current block and 

candidate block. The symbol  denotes the one-bit XOR operation. The characteristics of 

SOD are 

⊕

1. SOD has less computational complexity than SAD, since no extra operation needed 

to handle the sign information. 

2. XOR is easy to be implemented in hardware. 

3. Even without dedicated hardware, pixels with binary representation can be put 

together in a single register of processor and compared simultaneously. 

Similar to SAD, higher SOD means more differences and less similarities exist between 

two binary blocks. 

 

3.5 Search Flow 

The proposed search flow is simple and straightforward. As shown in Figure 3.5, the 

motion search for a block starts from Lv_4, goes top-down through levels, and ends after the 

refinement search with candidates. The only decision made between levels is the usage of 
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QPEL MCP. If QPEL MCP is not enabled, Lv_Q search is skipped, and the refinement search 

with candidates will be conducted right after the Lv_H. Details of searching in each level are 

described in the following sections. For the simplicity of descriptions, the block size of 16 and 

search range of (-R ~ +R) in integer pixels are assumed without loss of generality.  

LV_4
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Search

LV_2
Search

LV_Q
Search

LV_H
Search

LV_I
Search

QPEL MCP ?

Refinement
Search

with Candidates

mv_4

mv_2

mv_I
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mv_Q

Final
motion vector

Y

N

 
Figure 3.5 – Search Flow 

 

3.5.1 Lv_4 Search 

Full search with search range )~( RR
+−

44
 is conducted in this level. The 4x4 blocks 

from the Lv_4 bitmap in the binary pyramid of current and reference frame are matched 

iteratively as to find the motion vector, mv_4, which results the minimal SOD. 
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3.5.2 Top-Down Hierarchical Search 

From Lv_2 to Lv_Q, motion vector from the upper level will be scaled by 2, and a 

search of search range  will be conducted around the position pointed by the scaled 

motion vector. The position with the minimal SOD will be taken as the motion vector of this 

level and passed to lower level. Details of each level are shown in Table 3.1. 

1±

 

Table 3.1 – Details of Lv_2 to Lv_Q 

 Lv_2 Lv_I Lv_H Lv_Q 
Block Size 8x8 16x16 16x16 16x16 

Source of Block Lv_2 bitmap Lv_I bitmap Lv_H bitmap Lv_Q bitmap 
Search Range (-1 ~ +1) (-1 ~ +1) (-1 ~ +1) (-1 ~ +1) 
Search Points 9 9 9 9 

 

3.5.3 Refinement with Candidates 

The spatial-temporal correlations in motion vector field will be utilized during this step. 

Motion vectors of the neighboring blocks (as shown in Figure 3.6) of the current block will be 

chosen as center of refinement search. The motion vectors are listed below: 

 mv_UR: motion vector of upper right block 

 mv_U: motion vector of upper block 

 mv_L: motion vector of left block 

 mv_CL: scaled motion vector of co-located block in reference frame 

 mv_Z: zero motion 
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Because motion estimation will also be executed to get the forward and backward motion 

vectors in B-VOP, the mv_CL will be adjusted according to the reference frame as: 

 Forward motion estimation in P-VOP 

pastMVCLmv =_

 Forward motion estimation in B-VOP 

pastMVTRBCLmv =_  
TRD

 Backward motion estimation in B-VOP 

futureMVTRDTRBCLmv −
=_  

TRD

MVpast and MVfuture are the motion vector of co-located blocks in past and future reference 

frame correspondingly. TRB is the temporal difference of current B-VOP and previous 

P-VOP. TRD is the temporal difference of previous and next P-VOPs, where B-VOPs are in 

between. 

Blocks in this step come from the Lv_Q when QPEL MCP is enabled. If QPEL MCP is 

disabled, blocks in Lv_H will be used instead. Refinement search of search range  will be 

conducted around the position pointed by these five motion vectors as to improve the 

accuracy of motion estimation. The MV with minimal SOD in this step will be compared with 

the result from last step, and the MV with smaller SOD will be the final MV of the block. 

1±
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Figure 3.6 – Candidates in Candidate Refinement Search Step 

 

3.6 Complexity Analysis 

Let the search range in integer pixel to be R ( RR +− ~ ), the computational complexity 

of the proposed subpixel binary motion estimation is shown in Table 3.2. While comparing 

the proposed method with FS, the complexity reduction is large. 

Table 3.2 – Computational Complexity of Each Level 

  LV_4 LV_2 LV_I LV_H LV_Q Total 
Search 
Points 

  4R2 9  4R2 + 9 
Full Search 
Half-pixel 
Accuracy 

Marching 
Pixels per 

Point 
  256 256  1024R2 + 2304

Search 
Points 

  4R2 9 9 4R2 + 18 
Full Search 

Quarter-pixel 
Accuracy 

Marching 
Pixels per 

Point 
  256 256 256 1024R2 + 4608

Search 
Points 

R2/4 9 9 54  (R2)/4 + 72 
FPBME 

Half-pixel 
Accuracy 

Marching 
Pixels per 

Point 
16 64 256 256  R2 + 18432 

Search 
Points 

R2/4 9 9 9 54 (R2)/4 + 81 
FPBME 

Quarter-pixel 
Accuracy 

Marching 
Pixels per 

Point 
16 64 256 256 256 R2 + 19008 
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3.7 Rate-Distortion Performance of MPEG-4 Advanced Simple Profile 

As shown in section 2.3.2, QPEL MCP and B-VOP are defined in MPEG-4 ASP. In this 

section, we focus on the performance gains when applying B-VOP and QPEL MCP, and 

compare them with Simple Profile (SP). 

 QPEL-MCP 

The performance gain of QPEL MCP is obvious since it provides better predictors 

and therefore reduces the texture bits when coding a video sequence. 

 

 B-VOP 

More reference VOP and various prediction modes of B-VOP help to improve the 

rate-distortion performance. However, when applying B-VOP in low-bitrate applications 

(especially in lower time resolution, such as 15 fps, 10fps…etc.), the performance might 

be worse than that of SP. For example, in the case of 2 B-VOPs between I- and P-VOPs 

(as in Table 3.3), the temporal distances between P-VOPs of ASP and their reference 

VOPs are 3, where those in SP are 1. The longer temporal distance and lower frame 

correlation often make VOP 3 and 6 in ASP cost more bits or have worse quality than 

those in SP, if the same quantization parameter (QP) is used in P- and B-VOPs. 

 

Table 3.3 – An Example of Sequences Coded with or without B-VOPs 

Time index 0 1 2 3 4 5 6 … 
SP I P P P P P P … 

ASP I B B P B B P … 
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The simplest solution is to set larger QP to B-VOPs and smaller QP to P-VOPs. it 

is, 

1, >×= nQPnQP −− VOPPVOPB  

Performances are improved with larger n as shown in Figure Figure 3.7. This results 

more distortions and lower bitrate in B-VOP, while less distortions and higher bitrate in 

P-VOP. The benefit is that, since P-VOPs are used as references of B-VOPs and 

successive P-VOPs, P-VOPs with less distortion retain more image information as to be 

better references during coding, and therefore the coding performance is improved. 

Simple comparisons between SP and ASP with different visual tools are shown in Figure 

3.8. The video sequence is BUS, CIF (352x288), 15fps, and 3-level full search is used. When 

apply B-VOP, n = 1.5, and 2 B-VOPs are used between consecutive P-VOPs. 
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Figure 3.7 – Rate-Distortion Performance with Different QP in B-VOPs 
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Figure 3.8 – Rate Distortion Performance with Different Visual Tools 

 

3.8  Merging of Bitmaps 

For the multi-resolution ME methods and for supporting fractional-pel ME, extra storage 

is the common drawback, which is addressed based on the binary representation of pixels. 

With binary representation of pixel data, the extra storage size is smaller than the pyramidal 

structures for ME with more pixel depth. In addition, the bitmaps of Lv_I, Lv_H, and Lv_Q 

can be merged to reduce the memory required for binary pyramid.  

During the interpolation process, duplicate pixels at integer or half-pixel positions are 

kept in sub-pixel levels as shown in Figure 3.9. The binary values of the duplicate pixels at 

the same coordinate are identical when using similar binarization filters in Lv_I, Lv_H, and 

Lv_Q. The property of identical binary pixels makes it possible to merge the bitmaps of 

integer and sub-pixel levels. When FPBME is conducted at half-pixel accuracy, the bitmap of 

Lv_I is merged into the bitmap of Lv_H. When FPBME is conducted at quarter-pixel 
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accuracy, the bitmaps of Lv_I and Lv_H are both merged into the bitmap of Lv_Q. The bits 

required for a binary pyramid with or without bitmap merging is shown in Table 3.4, in which 

W and H are the width and height of a frame correspondingly. Since the bitmaps are merged, 

the computational complexity of pre-processing and the memory requirement of binary 

pyramid will both be reduced with the technique of bitmap merging. 

 

0 1-1 0.5-0.5 1.5-1.5

Lv_I

Lv_H

Lv_Q

 

Figure 3.9 – Duplicate Pixels in Lv_I, Lv_H and Lv_Q 

 

Table 3.4 – Memory Reduction Achieved with Bitmap Merging 

  Total Bits Reduction Rate 

No Bitmap Merging WH
16
85  FBME 

Half-pixel 
Accuracy Bitmap Merging WH

16
69  

18.82% 

No Bitmap Merging WH
16
341  FBME 

Quarter-pixel 
Accuracy Bitmap Merging WH

16
261  

23.46% 
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Chapter 4  

Experimental Results 

 

In this chapter, the experimental results of the fast fractional-pel motion estimation are 

provided.  

 

4.1 Simulations 

The test setup of our experiments: 

 Test Operation System: Microsoft Windows XP professional 

 Test Software: MPEG-4 Verification Model – MoMuSys FPDAM1-1.0-001220 

 Compiler: Microsoft Visual C++ 6.0 

 Common Test Configurations: 

 No shape coding 

 Deblocking Filter is disabled 

 No rate control – the QPs are kept constant during coding a sequence. 

 H.263 quantization mode is selected. 

 Rounding Control is enabled. 

 Initial value for Rounding Control : 0 

 Error Resilience mode is disabled. 

 NEWPRED is not used. 

 AC/DC prediction of Intra macroblocks is enabled. 

 COMBINED motion/shape/texture coding will be used 

 No SPRITE Usage 
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 Search range per coded frame: 16 

 Test sequences: 

Akiyo, Foreman, Mobile-and-Calendar, (Coastguard, Container, Stefan) in CIF 

(352x288), YUV 4:2:0 

Other configurations will be described in the following sections. 

 

4.2 Performance Comparisons 

The rate-distortion performance of different conditions is shown in figure. The 

distortions are represented with PSNR (peak signal-to-noise rate). The rate control is disabled 

for that the rate-distortion performance of motion estimation will be shown without influences 

of the scheme of rate control. The figures are plotted with data of PSNR and bitrates gathered 

via coding the test sequence with different quantization parameters listed in the following. 

 No B-VOP usage (IPP) 

QPI = QPP = 4, 8, 16, 24, 31 

 Two B-VOPs between I- or P-VOPs (IBBP) 

QPI = QPP = 4, 8, 16, 24 

QPI = 1.25 QPP = 5, 10, 20, 30 

The results of the proposed method will be compared with those of FS. 
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4.2.1 Impact of Refinement Search with Candidates on Coding 
Efficiency 

The effects of the step of refinement search with candidates are shown in Figure 4.1 to 

Figure 4.3. The sequence is coded at the frame rate of 30 fps. Motion estimation with or 

without the step of refinement search with candidates are denoted as “CRS (candidate 

refinement search)” and “No CRS.” As can be seen in this figures, the improvement of 1 ~ 

4dB in PSNR_Y can be achieved with CRS. 
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Figure 4.1 – R-D of Akiyo with and without CRS: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) 
Half-pixel, IBBP (d) Quarter-pixel, IBBP 
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Figure 4.2 – R-D of Foreman with and without CRS (a) Half-pixel, IPP (b) Quarter-pixel, IPP 
(c) Half-pixel, IBBP (d) Quarter-pixel, IBBP 
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Figure 4.3 – R-D of Mobile with and without CRS (a) Half-pixel, IPP (b) Quarter-pixel, IPP 
(c) Half-pixel, IBBP (d) Quarter-pixel, IBBP 

 

4.2.2  Impact of Binarization Filters on Coding Efficiency 

The R-D curves of sequences coded with different binarization filters described in 

section 3.3 are shown in Figure 4.4 to Figure 4.6. The notation of subsampling and 

binarization filters is shown in Table 4.1. 

Table 4.1 – Notations of Subsampling and Binarization Filters 

Filters 
Subsamplig Binarization 

S0 – Direct Subsampling B1 – Mean of 4 surrounding pixels 
S1 – Mean Filter B2 – Hamming, 13-tap, 30% Cut-Off Frequency 
S2 – 3-tap Low-Pass Filter B3 – Mean of 8 surrounding pixels 
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Figure 4.4 – R-D of Akiyo Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel, 
IBBP (d) Quarter-pixel, IBBP 
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Figure 4.5 – R-D of Foreman Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) 
Half-pixel, IBBP (d) Quarter-pixel, IBBP 
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Figure 4.6 – R-D of Mobile Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel, 
IBBP (d) Quarter-pixel, IBBP 
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4.2.3 Impact of Subsampling Filters on Coding Efficiency 

Different subsampling filters are applied while the binarization filters are the same, and 

the results are shown in Figure 4.x to Figure 4.x. The same notation of filters in Table 4.1 is 

used. 
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Figure 4.7 – R-D of Akiyo Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel, 
IBBP (d) Quarter-pixel, IBBP 
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Figure 4.8 – R-D of Foreman Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) 
Half-pixel, IBBP (d) Quarter-pixel IBBP 
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Figure 4.9 – R-D of Mobile Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel, 
IBBP (d) Quarter-pixel, IBBP 
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4.3  Discussions  

The results in section 4.2.1 show that the candidate refinement step can effectively 

improve the coding performance of sub-pixel binary motion estimation. Even performance 

lost is found due to the binary representation of data, the utilization of spatial-temporal 

relations in motion field helps meliorating it. 

In section 4.2.2, the coding performance varies with the usage of different binarization 

filters. The variations of performance variations are within 0.3 ~ 0.4 dB, which means, if the 

computational complexity is the first concern, a filter with low complexity shall be used for 

binarization. 

The results of experiments on subsampling filters show that, there are nearly no 

differences on coding performance between the mean filter and the 3-tap LPF. In addition, in 

some cases, the subsampling without anti-aliasing can do as good as the others with 

anti-aliasing. 

Figure 4.10 to Figure 4.15 show the R-D curves of sequences coded with the proposed 

method. The coding efficiency is improved with the usage of QPEL MCP and B-VOPs. With 

the proposed method in the ME of B-VOPs, we have less R-D performance drop as compared 

to the results of FS. In other word, the proposed method consisting of the binary motion 

estimation and the setup of QPs can enhance the R-D performance of B-VOPs for MPEG-4 

video coding. 
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Figure 4.10 – R-D curve of Akiyo Sequence Coded with Different Visual Tools 
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Figure 4.11 – R-D Comparisons of Akiyo with FPBME and FS (a) IPP (b) IBBP 
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Figure 4.12 – R-D curve of Foreman Sequence Coded with Different Visual Tools 
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Figure 4.13 – R-D Comparisons of Foreman with FPBME and FS (a) IPP (b) IBBP 
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Figure 4.14 – R-D curve of Mobile Sequence Coded with Different Visual Tools 
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Figure 4.15 – R-D Comparisons of Mobile with FPBME and FS (a) IPP (b) IBBP 
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Chapter 5 

Conclusion and Future Work 

 

5.1  Conclusion 

In this thesis, we proposed a fast, regular, and simple binary hierarchical motion 

estimation algorithm that supports fractional-pel accuracy. The proposed algorithm is 

evaluated on MPEG-4 reference software with two visual tools – QPEL MCP and B-VOP. 

Out fast algorithm can speedup the fractional-pel motion estimation with acceptable quality.  

The novelty is summarized in the following. 

 Fast all binary subpixel motion estimation – From subsampled level to sub-pixel 

levels, all matching processes are performed between blocks with binary 

representation of pixels. 

 Regular pattern of search points – From Lv_2 to Lv_Q and candidate refinement 

step, the patterns of search points are kept as a 3x3 square. With the regular patterns, 

the fast fractional-pel ME can be easily realized in software and hardware. 

 Lower and constant computational complexity – As each MV of block in the frame 

or sequence is of the same accuracy, the same one-pass and less complexity 

procedure are executed. Based on the one-pass and simple ME, we can facilitate 

hardware realization without possible stalls or hazards in pipeline, which is often 

found for other adaptive, dynamic, or early terminated ME methods.  

 Usage of spatial-temporal relations in motion field – The spatial-temporal relations 

in motion field are proved to be useful for improving the coding efficiency. 
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 Applicability in B-VOP coding – The proposed algorithm is applicable in forward 

and backward ME in B-VOPs with largely reduced complexity. With the MV of 

co-located blocks in the referenced P-VOPs, the coding efficiency is also improved. 

 Potential for parallel processing – Bits of binary blocks can be put in one register of 

a modern processor (or simply a microcontroller) to be compared simultaneously, or 

processed in parallel with dedicated hardware for more speedup. 

 Reduction of extra storage and pre-processing  – With the technique of bitmap 

merging, the bitmaps in Lv_I, Lv_H and Lv_Q can be merged into one bitmap in 

Lv_H (non QPEL MCP) or Lv_Q (QPEL MCP), where the extra memory storage 

and computational complexity of pre-processing are both reduced. 

 

5.2  Future Work 

Based on the proposed algorithm, some improvement or extension can be considered in 

the future: 

 Multiple block sizes – The coding with multiple-sized blocks is in the mainstream 

of modern video techniques. The motion estimation with multiple-sized blocks has 

to be developed. 

 Combination with rate-distortion optimization (RDO) tool – RDO can further 

improve the coding performance. A rate to binary distortion (SOD) model is needed 

for the realization of binary motion estimation with RDO. 
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