

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

快速分數像素之二元動量估測演算法

Fast Fractional Pixel Binary Motion Estimation

研 究 生：李鑑明

指導教授：蔣迪豪 博士

中 華 民 國 九 十 三 年 十 月

快速分數像素之二元動量估測演算法

Fast Fractional Pixel Binary Motion Estimation

研究生: 李鑑明 Student: Gen-Ming Lee

指導教授: 蔣迪豪 博士 Advisor: Dr. Tihao Chiang

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

in
Electronics Engineering

October 2004

HsinChu, Taiwan, Republic of China

中華民國 九十三 年 十 月

快速分數像素之二元動量估測演算法

研究生: 李鑑明 指導教授: 蔣迪豪 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

隨著通訊與多媒體技術的發展，視訊應用變得越來越普遍。動量估測

在視訊編碼中扮演一個很重要的角色，不僅因為編碼過程裡它佔了很多的

運算時間，也因為它會直接影響到編碼效率。近代的視訊編碼標準多使用

分數像素精確度的動量補償與雙向動量補償等預測技術以增進編碼效率，

但付出的代價是動量估測中運算複雜度與所需記憶體頻寬的增加。因此，

為了實現即時視訊通訊，快速的動量估測是必須的。

在本文中，我們發展了一個可提供分數像素精確度的快速的二元動量

估測演算法。在以單一位元代表八個位元之像素資料與全二元金字塔形架

構的使用下，動量可經由階層式搜尋得到，同時降低了運算複雜度與所需

記憶體頻寬。本演算法實現在 MPEG-4 視訊編碼標準中 P-VOP 與 B-VOP 所需

的動量估測部份。經由較佳的量化參數設定，實驗結果顯示，快速分數的

像素之二元動量估測演算法加速了動量估測並且維持可接受的視覺品質。

- i -

Fast Fractional Pixel Binary Motion Estimation

Student: Gen-Ming Lee Advisor: Dr. Tihao Chiang

Department of Electronic Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

Video applications become more and more popular with the developments of

communications and multimedia technologies. Motion estimation that takes much

computational time and directly affects the coding efficiency and visual quality of video

signals plays an important role in video coding. Modern video coding standards use the

techniques of motion compensated prediction at subpixel accuracy and bidirectional motion

compensated prediction to improve the coding efficiency with drastically increasing

computational complexity and required memory bandwidth in motion estimation. The faster

motion estimation methods become essential for realizing real-time video communication.

In this thesis, we develop a fast binary motion estimation algorithm providing fractional

pixel motion accuracy. With the pyramidal structure and one-bit representation of pixel data,

motion vectors at the accuracy of half or quarter pixel are got via hierarchical search, which

can reduce both the computational complexity and required memory bandwidth. The

algorithm is realized in the MPEG-4 reference software and evaluated for fractional-pel

motion estimation of both P-VOPs and B-VOPs in MPEG-4. With the better quantization

parameter setup, experimental results show that the fast fractional pixel binary motion

estimation can speed up the encoding process with an acceptable visual quality.

- ii -

誌 謝

這篇論文的完成，首先感謝的是我的指導教授蔣迪豪老師。老師在學業與生活對學

生的指導、幫助與鼓勵，學生銘記在心。

感謝我的父母，包容我的一切，永遠支持我，你們是我一直能走到今天的原因。感

謝交大諮商中心廖文慈老師，從我研究所生活最低潮的時候直到現在協助我、鼓勵我。

感謝王俊能、王士豪兩位學長在研究上給我的幫助。通訊電子與訊號處理實驗室的

學長姐與同學們，和你們相處不論是嚴肅的討論或言不及意閒聊都是令人愉快的。電工

系八九級的同學們，我的大學生活因你們而精采。文服團與管絃樂社管樂團的伙伴，如

果沒有你們，我在交大的日子會有一半的空白。感謝陪我走過快樂、悲傷、憂鬱、與生

命中每一個起落的家人、師長、同學、朋友，你們的名字或許不在這篇誌謝中，卻是在

我的心裡。

這篇論文獻給所有愛我與我愛的人。

- iii -

Contents

Chapter 1 Introduction ..1

Chapter 2 Motion Estimation in Video Coding ...4

2.1 Video Coding..4
2.1.1 Hybrid Coding Scheme ...5

2.2 Motion Compensated Prediction ..7
2.3 Overview of MPEG-4 Video Coding ... 11

2.3.1 Types of Video Object Plane ...12
2.3.2 Tools and Profiles ..14

2.4 Motion Estimation ..15
2.4.1 Block-based Motion Estimation ..16
2.4.2 Criteria for Similarity ..18
2.4.3 Sub-Pixel Motion Estimation ..19
2.4.4 Motion Estimation for B-VOPs in MPEG-4 ...21

2.5 Computational Complexity...22
2.6 Motion Estimation Algorithms ...23

2.6.1 Sub-Pixel Motion Estimation with Block Difference Approximation Methods24
2.6.2 Binary Hierarchical Motion Estimation ..25

Chapter 3 Fractional Pixel Binary Motion Estimation...26

3.1 Binary Pyramidal Structure ..26
3.2 Subsampling and Interpolation...27
3.3 Binarization ..29

3.3.1 Filters in Integer and Subsampled Levels ...29
3.3.2 Filters in Sub-Pixel Levels ..31

3.4 Matching Criterion ...33
3.5 Search Flow ..33

3.5.1 Lv_4 Search...34
3.5.2 Top-Down Hierarchical Search ...35
3.5.3 Refinement with Candidates..35

3.6 Complexity Analysis ..37
3.7 Rate-Distortion Performance of MPEG-4 Advanced Simple Profile.............................38
3.8 Merging of Bitmaps..40

Chapter 4 Experimental Results ...42

- iv -

4.1 Simulations ...42
4.2 Performance Comparisons..43

4.2.1 Impact of Refinement Search with Candidates on Coding Efficiency44
4.2.2 Impact of Binarization Filters on Coding Efficiency ..50
4.2.3 Impact of Subsampling Filters on Coding Efficiency ...57

4.3 Discussions ...63

Chapter 5 Conclusion and Future Work ..69

5.1 Conclusion..69
5.2 Future Work ..70

Bibliography..71

Vita ...73

- v -

List of Figures

Figure 2.1 – Hybrid Coding Scheme..6
Figure 2.2 – A Typical Video Encoder..7
Figure 2.3 – A Typical Video Decoder ...7
Figure 2.4 – Motion Compensated Prediction..8
Figure 2.5 – (a) Forward Prediction (b) Backward Prediction (c) Bidirectional Prediction 11
Figure 2.6 – An Example of Bidirectional Prediction in Direct Mode [1]14
Figure 2.7 – Search Range..17
Figure 2.8 – An Example of Candidate Blocks at Fractional Position.....................................20
Figure 2.9 – Full Search with Three Levels ...21
Figure 3.1 – Construction of Binary Pyramid ..27
Figure 3.2 – Mean Filter during Subsampling..28
Figure 3.3 – Threshold from Mean of 4 Surronding Pixels..30
Figure 3.4 – Threshold from Mean of 8 Surronding Pixels..30
Figure 3.5 – Search Flow..34
Figure 3.6 – Candidates in Candidate Refinement Search Step ...37
Figure 3.7 – Rate-Distortion Performance with Different QP in B-VOPs39
Figure 3.8 – Rate Distortion Performance with Different Visual Tools40
Figure 3.9 – Duplicate Pixels in Lv_I, Lv_H and Lv_Q ..41
Figure 4.1 – R-D of Akiyo with and without CRS: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c)

Half-pixel, IBBP (d) Quarter-pixel, IBBP..46
Figure 4.2 – R-D of Foreman with and without CRS (a) Half-pixel, IPP (b) Quarter-pixel, IPP

(c) Half-pixel, IBBP (d) Quarter-pixel, IBBP...48
Figure 4.3 – R-D of Mobile with and without CRS (a) Half-pixel, IPP (b) Quarter-pixel, IPP

(c) Half-pixel, IBBP (d) Quarter-pixel, IBBP...50
Figure 4.4 – R-D of Akiyo Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,

IBBP (d) Quarter-pixel, IBBP ..52
Figure 4.5 – R-D of Foreman Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c)

Half-pixel, IBBP (d) Quarter-pixel, IBBP..54
Figure 4.6 – R-D of Mobile Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,

IBBP (d) Quarter-pixel, IBBP ..56
Figure 4.7 – R-D of Akiyo Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,

IBBP (d) Quarter-pixel, IBBP ..58
Figure 4.8 – R-D of Foreman Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c)

Half-pixel, IBBP (d) Quarter-pixel IBBP...60

- vi -

Figure 4.9 – R-D of Mobile Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,
IBBP (d) Quarter-pixel, IBBP ..62

Figure 4.10 – R-D curve of Akiyo Sequence Coded with Different Visual Tools64
Figure 4.11 – R-D Comparisons of Akiyo with FPBME and FS (a) IPP (b) IBBP..................65
Figure 4.12 – R-D curve of Foreman Sequence Coded with Different Visual Tools65
Figure 4.13 – R-D Comparisons of Foreman with FPBME and FS (a) IPP (b) IBBP66
Figure 4.14 – R-D curve of Mobile Sequence Coded with Different Visual Tools..................67
Figure 4.15 – R-D Comparisons of Mobile with FPBME and FS (a) IPP (b) IBBP................68

- vii -

List of Tables

Table 2.1 – Interpolation Filters in MPEG-4 and H.264 ..9
Table 2.2 – Tools for MPEG-4 SP and ASP [1]..15
Table 2.3 – Computational Complexity of Motion Estimation for a Macro Block..................23
Table 3.1 – Details of Lv_2 to Lv_Q..35
Table 3.2 – Computational Complexity of Each Level ..37
Table 3.3 – An Example of Sequences Coded with or without B-VOPs..................................38
Table 3.4 – Memory Reduction Achieved with Bitmap Merging ..41
Table 4.1 – Notations of Subsampling and Binarization Filters...50

- viii -

Chapter 1

Introduction

With the developments of various technologies, we lead more convenient and

comfortable life than before. The combination of multimedia and communications

technologies facilitates information exchange in various ways. Media content including text,

images, voice, music, or video clips can be transmitted via the Internet or stored in various

storage devices like compact disc. For efficient transmission, the storage size and the

transmission bandwidth are major concerns, especially when data are transmitted on a

communications system with limited bandwidth. Multimedia data usually require larger

bandwidth than that of text information. For example, the raw data volume of a video clip

with resolution of 720x480 and a frame rate of 30 fps is about 29.7 Mega-Bytes or 237.3

Mega-bits per second, which is challenging for compact storage or efficient transmission of

media content. To reduce size or bandwidth cost, multimedia data compression is required to

be for real-time multimedia data exchange over the Internet.

Video coding is one of the important branches in multimedia technology and has been

developed for years. Various techniques have been proposed to fit diverse requirements of

video coding applications including low bit rate coding, scalability, error resilience, arbitrary

shape coding, and so on. For video delivery and communications, good coding efficiency and

good visual quality are always highly concerned. To tradeoff between the high coding

efficiency and high visual quality, many techniques have been developed to improve the

coding efficiency and retain the visual quality. To reduce temporal redundancy of video clips,

motion compensated coding is used. For increasing the coding efficiency, motion

- 1 -

compensated prediction (MCP) at subpixel accuracy and bidirectional motion compensated

prediction are adopted, which can improve both the coding efficiency and the visual quality in

video coding. Therefore, the motion compensated coding methods are adopted in modern

video coding standards including MPEG-2, MPEG-4, H.263 and ITU-T H.264.

MPEG-4 adopts quarter-pel motion compensated prediction (QPEL MCP) and the

bi-directionally predictive coded video object plane (B-VOP). QPEL MCP enables MCP of

video coding at quarter (1/4) pixel accuracy. B-VOP is the VOP coded using the MCP from

the past and future reference VOPs. The two tools provide better coding efficiency in

MPEG-4 video coding with drastically increasing complexity to the video encoding and

decoding processes. In video encoding, to search for the best reference for MCP, the motion

estimation is the most computationally intensive module.

Motion estimation (ME) is a major component in a video encoder. The purpose of ME is

to search for the best motion compensation predictor in video coding, which takes 50% of the

overall computation time of an optimized video encoder, and occupies high memory

bandwidth. In addition, ME will highly affect the quality and size of the coded video sequence.

With the use of QPEL MCP and B-VOPs, the ME for an MPEG-4 video encoder comes

complicated, hence fast ME becomes an important issue for the acceleration of video encoder.

Conventional fractional pixel ME methods need large memory size to store the

pre-interpolated frame or additional interpolation process to build pixel representation of

subpixel level. The other subpixel ME methods of block difference approximation including

the linear interpolation method (LIM) [17], improved MAE approximation method (IMAM)

[11], and parabolic prediction–based, fast half-pixel search (PPHPS) [12] need no block

matching and interpolation processes with sophisticated computation and constrains.

- 2 -

In this thesis, we develop a novel and fast fractional pixel binary motion estimation that

can support the MCP at fractional pixel accuracy and the bidirectional MCP with the

considerations of acceleration, memory bandwidth reduction, and regularity. For evaluating

the speedup and visual quality of the proposed motion estimation in video coding, we use

MPEG-4 that covers the tools of QPEL MCP and B-VOP. In addition, the fast fractional pixel

binary motion estimation can be applicable to other video coding standards that adopts

block-based motion compensated coding with some modifications.

The thesis is organized as follows. The introduction to MCP in video coding and the

discussions on ME techniques are given in chapter 2. The proposed methods on subpixel and

bidirectional ME are described in chapter 3. The experimental results of the proposed

methods in an MPEG-4 video encoder are shown in chapter 4 and the conclusion is in chapter

5.

- 3 -

Chapter 2

Motion Estimation in Video Coding

In this chapter, we first introduce the background of video coding and put more emphasis

on the two techniques including MCP at subpixel accuracy and bidirectional MCP. Since the

MPEG-4 video coding standard will be the platform for evaluating the coding performance

and speedup, an overview of MPEG-4 and the tools will be given. For efficient video coding,

some discussions about the process of ME, the computational complexity, and the major

issues on ME for MCP at subpixel accuracy and bidirectional MCP are provided.

2.1 Video Coding

Modern data compression schemes can be divided into two classes covering the lossless

and the lossy compression schemes. If the lossless schemes are adopted, the original data can

be recovered from coded ones without any loss of information. The lossless schemes are often

used for applications that do not allow any differences between the original and decoded data.

In most cases of video applications, the issues covering the compression ratio than data

consistence are the most concerns. For various applications covering video communications

and delivery, which demand compact storage and efficient transmission, the lossy

compression schemes can provide better compression performance with acceptable loss.

A video sequence is composed of frames, which are temporal sampled images from

video signals at a sampling rate of, for example, 30 frames per second (fps). Exploring a video

sequence, we find similarities or regularities between neighboring pixels or frames. The

similarities can be thought as redundancies in video data, which can be removed or

- 4 -

represented in a more efficient and compact way to achieve high compression ratio. The

redundancy exist between pixels in a frame is called “spatial redundancy”, and the similarity

between temporally neighboring frames are “temporal redundancy”. To reduce the two kinds

of redundancies can provide better video compression. Thus, to achieve the efficient video

coding, the removal or reduction of the redundancies is addressed with video coding tools.

2.1.1 Hybrid Coding Scheme

The most commonly used video coding scheme is simple “hybrid coding scheme” as

shown in Figure 2.1. The hybrid coding scheme can be considered as a derivation from

differential pulse code modulation (DPCM). In addition, the hybrid coding scheme combines

two kinds of techniques covering motion compensated prediction (MCP) and still picture

compression for improving the coding efficiency. The MCP, which is described in section 2.2,

is used to reduce the temporal redundancy. In addition, the still picture compression

techniques can remove or reduce spatial redundancy. Existing technologies of MCP and still

picture compression have been widely used in various areas. In addition, the hybrid coding

scheme can be realized in software realization or hardware circuits. In addition, Figure 2.1

shows that the decoder in the scheme is simpler than the encoder and suitable for the case that

a video sequence is encoded once and decoded many times. Because there are many

advantages of hybrid coding scheme [2], the hybrid coding scheme comes to be the

state-of-the-art architecture for video data exchange [3]. Thus, the hybrid coding scheme has

been adopted in various modern video coding standards covering H.261, H.263, H.264,

MPEG-1, MPEG-2, and MPEG-4.

- 5 -

Still
Image
Coder

Motion
Compensating

Prediction

Still Image
Decoder

Motion Estimator

Still Image
Decoder

Motion
Compensating

Prediction

+

+ +

Motion Vector

Input
Frame

Reconstructed
Frame

Encoder Decoder

-

Figure 2.1 – Hybrid Coding Scheme

There are numerous ways to implement hybrid coding scheme where the organization

and components of MCP and still picture compression are different. A typical MPEG-4 codec

will include the following components:

 Discrete Cosine Transform (DCT) / Inverse Discrete Cosine Transform (IDCT)

 Motion Estimation (ME)

 Motion Compensation (MC)

 Quantization / Inverse Quantization

 Variable-Length Coding (VLC) / Variable-Length Decoding (VLD)

 Frame Buffer

The encoder and decoder consist of some of the components above are shown in Figure

2.2 and Figure 2.3 respectively.

- 6 -

DCT Quantization

Inverse
Quantization

Inverse
DCT

VLC

Frame
Buffer

Motion
Estimation

+

+
Motion

Compensating
Prediction

Motion
Vector

-
ResidualInput Frame Output Bitstream

Motion
Compensating
Predictor

Reconstructed
Frame

Motion Vector

Figure 2.2 – A Typical Video Encoder

Inverse
Quantization

Inverse
DCT

Motion
Compensating

Prediction

VLD

Frame
Buffer

+Motion
Vector

Motion Compensating Predictor Reconstructed Frame

Input Bitstream

Figure 2.3 – A Typical Video Decoder

2.2 Motion Compensated Prediction

Prediction is a common technique in data compression while correlations usually exist in

discrete signals. It is possible to predict current value from past or future signals, so do video

sequence because the contents in frames are similar. A frame is divided into objects (or

simply rectangular blocks), and similar objects in adjacent frames can be found and thought as

the same object. The current object is described in motion vector (MV) and the difference

(residue) between itself and its predictor as shown in Figure 2.4. The MV and residue can be

- 7 -

coded and used with reference frame to predict the object in current frame. This is why it is

named “motion compensated prediction” for that it utilizes the relationship of motion between

frames to predict video signals.

Figure 2.4 – Motion Compensated Prediction

The reference frame and motion vector are essential elements for MCP and two issues

are derived from them:

1. The accuracy of motions

2. The source of reference frame

- 8 -

For the first issue, because the video sequences are obtained by spatial and temporal

sampling of video signals, the MVs are often represented as multiples of the horizontal and

vertical sampling intervals (pixels or pels). Since the true frame-to-frame motions of the video

contents are completely unrelated to the spatial sampling structure of video signal, we expect

to improve MCP with the employment of MVs at subpixel accuracy, in which the MVs are

represented as fractions rather than integers only [4], [5]. In practical implementation of video

coding, the MVs are shown as))
2
1(,)

2
1((nn yx ×× , where ZyxNn ∈∈ ,, .

Pixels at fractional positions in the reference frame are needed with MCP at subpixel

accuracy. However, they do not exist in reality and have to be generated via interpolation.

There are kinds of interpolation filters used in image processing – bilinear, bi-cubic, finite

impulse response low-pass filters (FIR-LPFs), Wiener filter, or other methods on frequency

domain. As complexity is always one of the main considerations during video coding, modern

video coding standards usually limit the accuracy of motion to quarter (1/4) pixels and the

bilinear and separable FIR filters with few taps are often used during fractional pixel

generation. For example, the interpolation filters adopted by MPEG-4 and H.264 are bilinear

filter and FIR-LPFs, which are shown in Table 2.1.

Table 2.1 – Interpolation Filters in MPEG-4 and H.264

 Half pixel Quarter pixel

non-quarter-sample mode Bilinear N/A
MPEG-4

quarter-sample mode 8-tap FIR filter(1) Bilinear

H.264 6-tap FIR filter(2) Bilinear

[Note] (1) Coefficients of 8-tap FIR filter: (-8, 24, -48 160, 160, -48, 24, -8) / 256

(2) Coefficients of 6-tap FIR filter: (1, -5, 20, 20, -5, 1) / 32

- 9 -

The 2nd issue relates to the prediction schemes of video coding, which can be classified

as three:

1. Forward prediction – Using past frame to predict current image contents.

2. Backward prediction – Using future frame to predict current image contents.

3. Bidirectional prediction – Using both past and future frames to predict current image

contents.

The relationship of MVs and reference frames in the three prediction schemes above are

shown in Figure 2.5 while frame k is the current frame. In forward or backward prediction,

the reference frame is the past or the future frame. Since the adjacent frames are likely to

provide better motion compensation predictors, the most neighboring frames are usually

chosen. In another case, the motion compensation predictor in bidirectional prediction is

generated through a temporal interpolation process. As shown in Figure 2.5 (c), the motion

compensation predictor of block x is given by x̂

2211 bcbcx 1,0 21ˆ += ≤≤ cc 121 =+ cc

b1 and b2 are the blocks in the past and the future frame with displacements of MVf and

MVb correspondingly. The c1 and c2 are usually decided according to the temporal distance

between the current and the two reference frames or simply set to 1/2, which means the

predictor is the average of the two referenced blocks. The bidirectional prediction has the

advantage that the motion compensated averaging over two frames may provide better

predictor for video coding than prediction from one frame only. Thus, it is often used even if

it is more complicated than the forward and backward prediction.

- 10 -

Frame k-1

Frame k

MV
f

Frame k+1

MVb

Frame k

(a) Forward Prediction (b) Backward Prediction

Frame k-1

Frame k

MV
f

(c) Bidirectional Prediction

Frame k+1

MVb

x
b2

b1

x

x

b

b

Figure 2.5 – (a) Forward Prediction (b) Backward Prediction (c) Bidirectional Prediction

2.3 Overview of MPEG-4 Video Coding

MPEG-4 is the latest coding standard developed by ISO/IEC that specifies the coding of

audio-visual objects. The part 2 of MPEG-4 relates to the video coding, if no special

explanation is given, the word “MPEG-4” referred in the following text is the part 2 of

MPEG-4 [1].

MPEG-4 supports the functionalities already provided by MPEG-1 [6] and MPEG-2 [7]

and extend them to “content-based coding”, with which the video contents (e.g. the physical

objects in a scene) are separated encoded and decoded [8]. To enable the content-based

coding, MPEG-4 introduces the concepts of video objects (VOs) and video object planes

(VOPs). A VO in a scene is an entity that a user is allowed to access and manipulate, and the

instance of a VO at a given time is a VOP [1]. For the intra coding in MPEG-4, a VOP is

- 11 -

coded without any reference other than itself. For the inter coding in MPEG-4, a VOP is

divided into rectangular blocks and the MCP coding is conducted on each block referencing

other VOPs of the same VO. With this scheme, each VO can be coded/decoded

independently.

There are many functions in MPEG-4 including the coding of synthetic data, sprite, and

still textures object, 3D mesh coding, scalable coding, ……etc. For the sake of simplicity, our

discussions are focused on the coding of VOPs which are composed of rectangular blocks,

and this kind of VOPs is the most commonly used in natural video data coding nowadays.

2.3.1 Types of Video Object Plane

According to the coding methods used, there are four types of VOPs [1]:

1. Intra-coded VOP (I-VOP) – A VOP coded using information only from itself.

2. Predictive-coded VOP (P-VOP) – A VOP coded using MCP from a past reference

VOP

3. Bidirectionally predictive-coded VOP (B-VOP) – A VOP coded using MCP from a

past and/or future reference VOP(s).

4. Sprite VOP (S-VOP) – An S-VOP is a VOP for a sprite object or coded using

prediction based on global motion compensation from a past reference VOP. It is in

the range of sprite coding and will not be discussed in this thesis.

A VOP is regularly divided into 16x16 macroblocks (MBs), and each MB contains four

8x8 blocks. An MB in an I-VOP can be only INTRA coded where DCT, quantization, AC /

DC prediction, and VLC are applied to the MB in order. An MB in a P-VOP can be either

INTRA coded as if it is in an I-VOP or INTER coded where the forward prediction in section

- 12 -

2.2 is applied on MB level. The residue of an INTER coded MB is transformed with DCT,

quantized, and coded with VLC. In addition to INTRA coding, there are four modes for

INTER coding in a B-VOP, where the MCP processes of them are different:

1. Forward mode

The forward prediction is used.

2. Backward mode

The backward prediction is used.

3. Bi-directional mode

The bidirectional prediction is used, and the coefficients c1 and c2 mentioned in

section 2.2 are set to 1/2.

4. Direct mode

The bidirectional prediction and same coefficients of c1 and c2 as in

bi-directional mode are used, but only one delta vector MVd is coded in direct mode.

The calculation of MVf and MVb used for bidirectional prediction in this mode

involves linear scaling the MV of collocated block in temporally next I-, or P-VOP

[1]:

d
n

f MVMVTRBMV +
×

=
TRD

TRD
MVTRDTRBMV n

b
×−

=
)(, if MVd is zero

nfb MVMVMV −= , if MVd is nonzero

- 13 -

MVn is the motion vector of collocated block in temporally next I-, or P-VOP,

TRB is the temporal difference of the B-VOP and its past reference VOP, TRD is

the temporal difference of the two reference VOPs. An example is shown in Figure

2.6, where frame 1 is a B-VOP, frame 0 and 3 are the reference VOPs, TRD = 3,

and TRB = 1.

0 321

MV
b

MV
f

MV
n

Figure 2.6 – An Example of Bidirectional Prediction in Direct Mode [1]

2.3.2 Tools and Profiles

Each tool specifies one function in MPEG-4 and a profile defines the subset of the

syntax and semantics in MPEG-4 and thereby the decoder capability required to decode a

particular bitstream [1], [9]. The tool specifies the functionality of MCP at quarter-pel

accuracy is the Q-Pel MCP, and the B-VOP specifies the bidirectional MCP. Table 2.2 lists

the tools as to code/decode the video objects of simple profile (SP) and advanced simple

profile (ASP), and other profiles in MPEG-4 can be found in [1]. SP defines a small set of

tools for video coding and ASP includes two more tools, the B-VOP and Quarter-Pel MCP.

The SP and ASP are suitable for our research and are chosen to examine the effects of

applying MCP at quarter-pel accuracy and bidirectional MCP.

- 14 -

Table 2.2 – Tools for MPEG-4 SP and ASP [1]

Video Object Types
Visual Tools

Simple Advanced Simple

I-VOP X X

P-VOP X X

DC Prediction X X

AC Prediction X X

4-MV, Unrestricted MV X X

Slice Resynchronization X X

Data Partitioning X X

Reversible VLC X X

Short Header X X

B-VOP X

Method 1 / Method 2
Quantization

 X

Interlace X

Global Motion Compensation X

Quarter-pel Motion
Compensation (QPEL MCP)

 X

2.4 Motion Estimation

Motion Estimation (ME) is an important image processing technique that is developed

for years and wildly used in various fields including image sequence analysis, machine vision,

image sequence restoration, robotics, or video coding. The aim of motion estimation is to

- 15 -

estimate the motion of an object in one frame to another frame. The size of the object whose

motion is estimated ranges from the whole frame to a small pixel. In this thesis, we will focus

on the motion estimation techniques in video coding applications. Common ME techniques

can be divided into three groups covering frequency-domain techniques, gradient /

pel-recursive techniques, and block-matching techniques

The frequency-domain techniques are based on the relationship of transformation

coefficients (e.g. phase or magnitude) of the objects in frames. The additional operations of

transformations make them complex and not suitable for real-time video coding applications.

The gradient / pel-recursive techniques are originally developed for image sequence

analysis and posses some features as dense and smooth motion field or the option to deal with

complex motion models. When they are compared with the block-matching algorithms,

experiment results shows that the gradient / pel-recursive techniques require more overhead

motion information or result in higher displaced frame difference (DFD) energy [10]. In other

words, they cost more bandwidth for transmission. As a result, the block-matching techniques

are more adequate for video coding applications and widely adopted in modern video coding

algorithms.

2.4.1 Block-based Motion Estimation

The block-based techniques of MCP have the advantage of low overhead motion

information for that the same motion vectors are assigned to all the pixels within a block.

Block-based motion estimation (BBME) is the process of obtaining these motion vectors for

the block. In the translation motion model, the MV represents the translational movement of a

block between the current frame and the reference one as it is described in section 2.2. It is

very intuitive for someone to “match” the current “block” with those blocks in the reference

- 16 -

frame in order to find the most similar one, and this is what was conducted in the

block-matching ME. Blocks are taken with different locations in the reference frame as

candidate blocks and evaluate the similarity / difference with the current block. The

coordinate difference of the most similar candidate block and the current one will be coded as

MV.

Even though the most similar block may exist at any location in the reference frame, it is

impractical to set the candidate locations of blocks to cover the whole frame due to the

considerable computational complexity. In the natural video sequences, object motions

between adjacent frames are usually limited and therefore the candidate blocks are located in

a smaller area around the concurrent location of current block in the reference frame. As

shown in Figure 2.7, a smaller “search range” or “search window” can be set in the reference

frame, where the candidate blocks are taken. Under this condition, the complexity is limited,

and the MVs are also limited in ±R, or say RvuR ≤≤− ,

Figure 2.7 – Search Range

- 17 -

2.4.2 Criteria for Similarity

The ME in video coding process provides MVs of motion compensation predictors,

which will greatly affects the coding performance. Smaller differences between the

to-be-coded block and its predictor bring better coding performance. Many criteria exist for

the measurement of similarity between current and candidate blocks in ME, such as the

cross-correlation or mean of squared error. Some common criteria are defined in the

following list.

 MSE (Mean of Squared Error)

 []∑
∈

++−= referencecurrent vyuxSyxS
wh

vuMSE 2),(),(1),(
Blockyx,

∈Blockyx,

 SSE (Sum of Squared Error)

[]∑ ++−= referencecurrent vyuxSyxSvuSSE 2),(),(),(

 MAD (Mean of Absolute Difference)

∑
∈

++−=
Blockyx

referencecurrent vyuxSyxS
wh

vuMAD
,

),(),(1),(

 SAD (Sum of Absolute Difference)

∑ ++−= referencecurrent vyuxSyxSvuSAD),(),(),(
∈Blockyx,

Scurrent(x, y) and Sreference(x, y) are the pixel value at coordinates (x, y) in the current and

reference frame. (u, v) is the coordinate difference between current block and candidate block.

The smaller SSE or SAD we get from two blocks, the higher similarity exists between them.

- 18 -

Since the operations of floating-point number, square, or division may be needed with SSE,

MSE, or MAD, the criterion of SAD is simpler and widely used in various video codecs.

2.4.3 Sub-Pixel Motion Estimation

There are various ways for ME at subpixel accuracy, as for block-based ME, the MVs

are obtained with iteratively matching the current block with candidate blocks at fractional

positions in the reference frame. There are two parts involved in BBME at subpixel accuracy:

1st—The composition of candidate blocks, and 2nd—The search methods.

The candidate blocks are groups of pixels at fractional positions generated via

interpolation process described in section 2.2. Figure 2.8 is a simple example shows 3x3

candidate blocks at different positions, where the capitalized letters are integer pels (pixels at

integer positions) and the others are half pels (pixels at half-pixel positions). The candidate

block is in position (0, 0), and the others are in (0.5, 0),

 in (0, 0.5), and in (0.5, 0.5). While it is in other cases,

candidate blocks with larger size and at quarter-pixel positions can be derived in a similar

way.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

IHG
FED
CBA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
111
111

ihg
fed
cba

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

222
222
222

ihg
fed
cba

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333
333
333

ihg
fed
cba

- 19 -

A a1 B B1 C c1

a2 a3 b2 B3 c2 c3

D d1 E E1 F f1

d2 d3 e2 E3 f2 f3

G g1 H H1 I i1

g2 g3 h2 H3 i2 i3

Figure 2.8 – An Example of Candidate Blocks at Fractional Position

The method to find the best matching candidate block is full search (FS), where all the

candidate blocks in search range will be searched to find the one with the smallest differences.

It is very inefficient, and, since modern video coding standards usually include MCP at

quarter-pixel accuracy, there will be 16 times of candidate blocks compared to those in ME at

integer-pixel accuracy. A compromise arises that FS is conducted at integer-pixel level to find

the best integer-pixel position, and then, based on the result of integer-pixel level, search the 8

surrounding half-pixel positions to find the best half-pixel position. After all, the final

position is got with searching the 8 quarter-pixel positions surrounding the result of half-pixel

level. It is shown in Figure 2.9, where the symbols ╳, ○, △ are candidate positions at

integer-, half-, and quarter-pixel levels, and A, B, C denote the search results at integer-, half-,

and quarter-pixel levels correspondingly. The FS with levels is widely used as benchmark for

the development of ME at subpixel accuracy.

- 20 -

A

B
C

Figure 2.9 – Full Search with Three Levels

2.4.4 Motion Estimation for B-VOPs in MPEG-4

Motion estimation for B-VOPs in MPEG-4 involves the estimation of MVs for the four

modes mentioned in Section 2.3.1, which becomes more complicated than ME for forward

prediction only. The methods for the four modes are described as follows.

1. Forward mode – The candidate blocks are taken from past reference frame and

examined to find the best predictor.

2. Backward mode –The candidate blocks are taken from future reference frame and

examined to find the best predictor.

3. Bidirectional mode – The candidate blocks are generated as described in section 2.2

and 2.3.1 with MVf and MVb. If every combination of possible positions of forward

and backward motion is examined, the complexity will be large. For example, let

the search range for forward and backward motion in bidirectional mode to be both

R± , the number of all possible combination is 16R4, which is much larger than the

numbers (4R2) in forward or backward mode. An alternative way is to use the MVs

found in forward and backward mode as the MVs in bidirectional mode. Although

- 21 -

this combination may not result the best predictor, the complexity would be more

acceptable, and this method is implemented in the MPEG-4 VM.

4. Direct mode – Since the MV of co-located block in the next reference frame has

been determined before the ME for direct mode, the candidates of forward and

backward motion can be limited according the range of delta vector MVd, which is

often much smaller than the search ranges in forward and backward modes. The

candidate blocks are generated as described in section 2.3.1 with different delta

vectors and examined to find the best predictor.

2.5 Computational Complexity

The computational complexity of searching the MV of a block consists of three parts –

search points, matching pixels, and operations of evaluating difference. The search points are

the positions of candidate blocks. The matching pixels are the pixels participating in

evaluating block difference. In common cases, the number of matching pixels of a 16x16 MB

is . The operations of evaluating difference of a pixel are 12561616 =× subtraction + 1absoluting +

1addition = 3, when SAD is used. Let the search window to be RR 22 × in integer pixel, when

3-level full search is used, the total operations of ME of an MB to quarter-pixel accuracy are

. 1382430723256)994(22 +=××++ RR

If the same 3-level full search is used in forward and backward mode of B-VOP, the MVf

and MVb in forward and backward mode are used in bidirectional mode, and the search radius

in direct mode is Rd, the operations of ME at quarter-pixel accuracy for an MB in B-VOPs are

summarized. For each MB, the forward mode needs 3072R2 + 13824 operations, the

backward mode requires 3072R2 + 13824 operations, the bidirectional mode has

 operations, and the direct mode takes 7683256 =× 22)1(7683256)1(+=××+ dd RR

- 22 -

operations. Thus, 3-level full search will take 6144R2 + 768(Rd +1)2 + 28416 operations per

MB in total. The operations of pixel averaging in bidirectional and direct mode are not

included above. The complexity of ME for an MB in a P-VOP or a B-VOP with different

motion accuracy is shown in Table 2.3.

Table 2.3 – Computational Complexity of Motion Estimation for a Macro Block

Exhaustive Full Search

Full Search (integer-pixel)
+ Refinement (subpixel)

P-VOP (half-pixel) 12288R2 3072R2 + 6912
P-VOP (quarter-pixel) 196608R2 3072R2 + 13824
B-VOP (half-pixel) 24576R2 + 768(Rd+1)2 + 768 6144R2 + 768(Rd +1)2 + 14592
B-VOP (quarter-pixel) 393216R2 + 768(Rd +1)2 + 768 6144R2 + 768(Rd +1)2 + 28416

2.6 Motion Estimation Algorithms

The procedure of ME algorithms providing subpixel motion accuracy can usually be

divided in to two portion covering finding the MV at integer-pixel accuracy and then refining

the MV at subpixel accuracy. The methods dealing with the MV refinement at subpixel

accuracy can be categorized as two groups consisting of block matching with levels and

difference approximation methods.

The former is conventional, while it is intuitive that refinement are conducted level by

level and the subpixel positions around the one pointed with MV from upper level are

searched. It has the advantage of regularity and the disadvantages of possibly higher

complexity, higher memory bandwidth, and the need of interpolation of pixels. The latter

approximates the block differences at subpixel positions with a given model instead of block

matching. It avoids the operations from matching of blocks and interpolation of pixels but

- 23 -

introduces some constrains and extra computations in addition. Some modern subpixel ME

algorithms belong to the latter are discussed in the following section.

2.6.1 Sub-Pixel Motion Estimation with Block Difference Approximation
Methods

The subpixel ME algorithms of block difference approximation all have their own

models, which are linear, quadratic, parabolic, …and so on. The core of a block difference

approximation method is to solve the parameters of the model. Block differences at subpixel

positions are got through calculation without the real matching of blocks. In [11], a

quadratic-like model is assumed in IMAM as to estimate the mean absolute error/difference

(MAE / MAD) at half-pixel positions. The positions with the minimal estimated MAE is

chosen as the MV of half-pixel accuracy.

A hybrid method named PPHPS of combining the difference approximation and block

matching is proposed in [12]. A parabolic function is used as to model the SAD at half-pixel

positions. With the SADs of surrounding integer positions, unknown parameters of the

function are calculated. Instead estimating all values at half-pixel positions, a predicted

position is found at the minimum of the function, and block matching of three search points is

executed to get the true SADs and MV of half-pixel accuracy.

Although fewer or no block matching processes exist in the block difference

approximation methods, they all have the similar problems:

1. The prediction accuracy depends on the models used. The adoption of a more

complex model (from linear to quadratic or parabolic) may bring improvements on

prediction accuracy, but also higher computational complexity. Meanwhile, the true

error surface of SAD may not coincide with the model, and that is why block

- 24 -

matching is still needed in PPHPS after the estimation of the half-pixel MV. The

block matching is back again.

2. Some constrains or limits are also introduced as the model of block difference is

used. The SADs or MAEs surrounding the subpixel positions have to exist before

computing the parameters of the model. When SADs of some positions in search

range or around the border of search window may be missing with modern fast ME

algorithms, the block difference approximation will not be applicable. In addition,

due to the similar constrains of existent SADs, this kind of methods can only be

carried out either in half-pixel level of in the quarter-pixel one. The interpolation

and matching processes are still needed in the other level.

From the discussions above, the matching between blocks seems to be inevitable with an

ME algorithm providing quarter-pixel motion accuracy. In the method we proposed,

block-matching is still used, which is more regular for hardware implementation, and

interpolation process during the matching in subpixel level is avoided.

2.6.2 Binary Hierarchical Motion Estimation

Multiresolution techniques have been proposed as to reduce the computational

complexity of ME [18], [19]. A hierarchical search will be performed from lower to higher

resolution levels and the MV is refined level by level. Furthermore, binary ME algorithms are

developed to reduce the computational complexity and memory bandwidth by reducing the

pixel depth to one bit [13]-[16]. All these methods focus on motion search above integer level

and still need 8-bit block matching at subpixel levels rather than the binary representation.

Based on the concept of binary hierarchical motion search, we develop the ME providing

subpixel motion accuracy, which is also applicable in B-VOPs of MPEG-4.

- 25 -

Chapter 3

Fractional Pixel Binary Motion Estimation

The fractional pixel binary motion estimation (FPBME) supporting subpixel motion

accuracy and motion search in B-VOPs is presented in this chapter. This method is based on

binary hierarchical motion estimation and makes use of the spatial-temporal correlations in

motion vector field to achieve low complexity and good visual quality. A simple strategy to

improve rate-distortion performance in MPEG-4 ASP is also introduced in later section of this

chapter.

3.1 Binary Pyramidal Structure

The binary pyramidal structure is the core of our method. The luminance of each frame

in video sequence is processed with filters to generate layers of binary data with different

spatial resolutions. As shown in Figure 3.1, the luminance data are subsampled with

subsampling filters and then binarized into bitmap. Pixels at fractional positions are

interpolated and binarized into bitmap with larger size. Every pixel in the bitmap is of one-bit

width, which stores the binary feature. The bitmaps including Lv_4, Lv_2, Lv_I, Lv_H, and

Lv_Q (if QPEL MCP is used) constitute the binary pyramid of a certain frame (or VOP).

- 26 -

Original
Luma

(W x H)

Interpolated
Luma

(4W x 4H)

Interpolated
Luma

(2W x 2H)

Subsampled
Luma

(W/4 x H/4)

Subsampled
Luma

(W/2 x H/2)
Subsample

by 2

Subsample
by 2

Interpolation

Interpolation

LV_I
bitmap

LV_4
bitmap

LV_2
bitmap

LV_H
bitmap

LV_Q
bitmap

Frame
Data Binirization

Binirization

Binirization

Binirization

Binirization

Binary
Pyramid

Original
Luma

(W x H)

Interpolated
Luma

(4W x 4H)

Interpolated
Luma

(2W x 2H)

Subsampled
Luma

(W/4 x H/4)

Subsampled
Luma

(W/2 x H/2)
Subsample

by 2

Subsample
by 2

Interpolation

Interpolation

LV_I
bitmap

LV_4
bitmap

LV_2
bitmap

LV_H
bitmap

LV_Q
bitmap

Frame
Data Binirization

Binirization

Binirization

Binirization

Binirization

Binary
Pyramid

Figure 3.1 – Construction of Binary Pyramid

3.2 Subsampling and Interpolation

The luminance data are subsampled to achieve image with lower resolution. Low pass

filters may be needed to avoid aliasing. There are three ways for subsampling.

 Direct Subsampling

- 27 -

No anti-aliasing filter is used. Pixels at even coordinates are directly used

without any processing. The advantage of this is very low complexity where no

extra operations are needed, but aliasing may happen.

 Mean filter

As shown in Figure 3.2, mean of four pixels (A, B, C, D) are used as the

subsampled pixel value.

A …

…

……

…

…
… …

…

…
… …

DC

BA …

…

……

…

…
… …

…

…
… …

DC

B

Figure 3.2 – Mean Filter during Subsampling

 3-tap Low-Pass Filter

A serapable 3-tap low-pass filter is used as the anti-aliasing filter during

subsampling. The filter coefficients are

[] 4121 ÷

The use of 3-tap LPF will slightly increase the complexity of subsampling but

avoid aliasing.

The filters used in interpolation process depend on usage of QPEL MCP. In MPEG-4, as

shown in Table 2.1, if sequence is coded without QPEL MCP, bilinear filter is used to

generate the half pixels, and interpolation for quarter pixels is not conducted. When QPEL

MCP is adopted, the half pixels are generated with 8-tap FIR filter of

- 28 -

[] 2568244816016048248 ÷−−−−

, and the quarter pixels are then calculated with bilinear filtering the integer and half

pixels.

3.3 Binarization

The depths of pixels are reduced to one bit width through binarization. Since human eyes

are more sensitive to edges and high frequency regions, which are distinct from their

neighbors, this regions or pixels are more important for human vision. This kind of feature

pixels can be extracted through the comparison between pixel value (x) and threshold (TH)

from low-pass filtering the local region, which is

⎩
⎨
⎧ >

=
otherwise

THx
y

,0
,1

For this reason, low-pass filters are used to produce the bitmaps with binary features.

Various filters are discribed in the following sections.

3.3.1 Filters in Integer and Subsampled Levels

The same filtering process is conducted in Lv_I, Lv_2, and Lv_4 except the different

dimensions of levels. The filter is first applied on luminance data of frame in Lv_I, or pixels

after downsampling in Lv_H and Lv_Q as to get a threshold for a pixel. After the filtering, the

pixel value is compared with its threshold to decide the binary value, 0 or 1, of it. This

process is executed repeatedly to generate all the binary data of each level.

The filters mentioned above can maybe changed and described in the following.

- 29 -

 Mean of 4 surrounding pixels (M4)

As shown in Figure 3.3, the threshold of pixel X (center pixel) is

1+
4

+++
=

DCBATH X

X

D

A

C

B

Figure 3.3 – Threshold from Mean of 4 Surronding Pixels

 Mean of 8 surrounding pixels (M8)

As shown in Figure 3.4, the threshold of pixel X is

1+
8

+++++++
=

HGFEDCBATH X

X

G

E

B

D

F

A

H

C

Figure 3.4 – Threshold from Mean of 8 Surronding Pixels

 N-tap FIR filters

FIR filters with increasing tap numbers have better frequency response, but

cause more complexity to binarization process. A separable 13-tap Hamming filter

with 30% of cut-off frequency is introduced for better binarization:

[] 3276082295,475,580,3819,7918,9830,7918,3819,580,475,295,82 ÷−−−−−−

- 30 -

3.3.2 Filters in Sub-Pixel Levels

Because the candidate blocks at subpixel positions are got from a subsample-like process

as shown in section 2.4.3, the filters mentioned in last section cannot be directly applied to the

interpolated frame data. The threshold of a pixel of integer-pixel position in subpixel levels

should be generated from filtering neighboring integer pixels instead of half or quarter pixels.

For example, if the filter M4 is used for binarization, the threshold for the pixel E in Figure

2.8 should be decided from averaging the integer pixels of B, D, F, and H, instead of half

pixels of b2, d1, e1, and e2. The same concept is suitable for half and quarter pixels. The

solution to this problem is to modify binarization filters as follows.

 Mean of 4 surrounding pixels at subpixel levels

The referenced pixels by the filter can be expressed as

(x+2, y), (x-2, y), (x, y-2), (x, y+2) in Lv_H

(x+4, y), (x-4, y), (x, y-4), (x, y+4) in Lv_Q

 where (x, y) is the pixel to decide the threshold for.

 Mean of 8 surrounding pixels at subpixel levels

The referenced pixels by the filter can be expressed as

(x+2, y+2), (x+2, y+2), (x-2, y+2), (x, y-2), (x, y+2), (x-2, y+2), (x-2, y), (x-2,

y-2) in Lv_H

- 31 -

(x+4, y+4), (x+4, y+4), (x-4, y+4), (x, y-4), (x, y+4), (x-4, y+4), (x-4, y), (x-4,

y-4) in Lv_Q

 where (x, y) is the pixel to decide the threshold for.

 N-tap FIR filters at subpixel levels

The 13-tap filter is modified as

[-82, 0, -295, 0, -475, 0,580, 0, 3819, 0, 7918, 0, 9830, 0, 7918, 0, 3819, 0, 580, 0,

-475, 0, -295, 0, -82]÷32760 in Lv_H

[-82, 0, 0, 0, -295, 0, 0, 0, -475, 0, 0, 0, 580, 0, 0, 0, 3819, 0, 0, 0, 7918, 0, 0, 0,

9830, 0, 0, 0, 7918, 0, 0, 0, 3819, 0, 0, 0, 580, 0, 0, 0, -475, 0, 0, 0, -295, 0, 0, 0,

-82]÷32760 in Lv_Q

Although the modified filters described above seem to be much more complicated than

those in section 3.3.1, regularities can be found that the distances between referenced pixels

and center pixel in Lv_H and Lv_Q are twice and 4 times as those in Lv_I correspondingly.

They can be easily handled during the implementation of software or hardware with regularly

access these referenced pixels. The filters at subpixel levels cause only little more complexity

and are still applicable.

- 32 -

3.4 Matching Criterion

Compared to the criteria in section 2.4.2, simpler criterion for measuring similarity can

be used when one pixel is represented in a single bit. The criterion used during binary block

matching is SOD (sum of differences) and is defined as

[]∑ ++⊕= referencecurrent vyuxSyxSvuSOD),(),(),(
∈Blockyx,

Scurrent(x, y) and Sreference(x, y) are the binary representations at coordinates (x, y) in the

current and reference frame. (u, v) is the coordinate difference between current block and

candidate block. The symbol denotes the one-bit XOR operation. The characteristics of

SOD are

⊕

1. SOD has less computational complexity than SAD, since no extra operation needed

to handle the sign information.

2. XOR is easy to be implemented in hardware.

3. Even without dedicated hardware, pixels with binary representation can be put

together in a single register of processor and compared simultaneously.

Similar to SAD, higher SOD means more differences and less similarities exist between

two binary blocks.

3.5 Search Flow

The proposed search flow is simple and straightforward. As shown in Figure 3.5, the

motion search for a block starts from Lv_4, goes top-down through levels, and ends after the

refinement search with candidates. The only decision made between levels is the usage of

- 33 -

QPEL MCP. If QPEL MCP is not enabled, Lv_Q search is skipped, and the refinement search

with candidates will be conducted right after the Lv_H. Details of searching in each level are

described in the following sections. For the simplicity of descriptions, the block size of 16 and

search range of (-R ~ +R) in integer pixels are assumed without loss of generality.

LV_4
Full

Search

LV_2
Search

LV_Q
Search

LV_H
Search

LV_I
Search

QPEL MCP ?

Refinement
Search

with Candidates

mv_4

mv_2

mv_I

mv_H

mv_Q

Final
motion vector

Y

N

Figure 3.5 – Search Flow

3.5.1 Lv_4 Search

Full search with search range)~(RR
+−

44
 is conducted in this level. The 4x4 blocks

from the Lv_4 bitmap in the binary pyramid of current and reference frame are matched

iteratively as to find the motion vector, mv_4, which results the minimal SOD.

- 34 -

3.5.2 Top-Down Hierarchical Search

From Lv_2 to Lv_Q, motion vector from the upper level will be scaled by 2, and a

search of search range will be conducted around the position pointed by the scaled

motion vector. The position with the minimal SOD will be taken as the motion vector of this

level and passed to lower level. Details of each level are shown in Table 3.1.

1±

Table 3.1 – Details of Lv_2 to Lv_Q

 Lv_2 Lv_I Lv_H Lv_Q
Block Size 8x8 16x16 16x16 16x16

Source of Block Lv_2 bitmap Lv_I bitmap Lv_H bitmap Lv_Q bitmap
Search Range (-1 ~ +1) (-1 ~ +1) (-1 ~ +1) (-1 ~ +1)
Search Points 9 9 9 9

3.5.3 Refinement with Candidates

The spatial-temporal correlations in motion vector field will be utilized during this step.

Motion vectors of the neighboring blocks (as shown in Figure 3.6) of the current block will be

chosen as center of refinement search. The motion vectors are listed below:

 mv_UR: motion vector of upper right block

 mv_U: motion vector of upper block

 mv_L: motion vector of left block

 mv_CL: scaled motion vector of co-located block in reference frame

 mv_Z: zero motion

- 35 -

Because motion estimation will also be executed to get the forward and backward motion

vectors in B-VOP, the mv_CL will be adjusted according to the reference frame as:

 Forward motion estimation in P-VOP

pastMVCLmv =_

 Forward motion estimation in B-VOP

pastMVTRBCLmv =_
TRD

 Backward motion estimation in B-VOP

futureMVTRDTRBCLmv −
=_

TRD

MVpast and MVfuture are the motion vector of co-located blocks in past and future reference

frame correspondingly. TRB is the temporal difference of current B-VOP and previous

P-VOP. TRD is the temporal difference of previous and next P-VOPs, where B-VOPs are in

between.

Blocks in this step come from the Lv_Q when QPEL MCP is enabled. If QPEL MCP is

disabled, blocks in Lv_H will be used instead. Refinement search of search range will be

conducted around the position pointed by these five motion vectors as to improve the

accuracy of motion estimation. The MV with minimal SOD in this step will be compared with

the result from last step, and the MV with smaller SOD will be the final MV of the block.

1±

- 36 -

Current
Block

Block_U Block_UR

Block_L Block_CL

Figure 3.6 – Candidates in Candidate Refinement Search Step

3.6 Complexity Analysis

Let the search range in integer pixel to be R (RR +− ~), the computational complexity

of the proposed subpixel binary motion estimation is shown in Table 3.2. While comparing

the proposed method with FS, the complexity reduction is large.

Table 3.2 – Computational Complexity of Each Level

 LV_4 LV_2 LV_I LV_H LV_Q Total
Search
Points

 4R2 9 4R2 + 9
Full Search
Half-pixel
Accuracy

Marching
Pixels per

Point
 256 256 1024R2 + 2304

Search
Points

 4R2 9 9 4R2 + 18
Full Search

Quarter-pixel
Accuracy

Marching
Pixels per

Point
 256 256 256 1024R2 + 4608

Search
Points

R2/4 9 9 54 (R2)/4 + 72
FPBME

Half-pixel
Accuracy

Marching
Pixels per

Point
16 64 256 256 R2 + 18432

Search
Points

R2/4 9 9 9 54 (R2)/4 + 81
FPBME

Quarter-pixel
Accuracy

Marching
Pixels per

Point
16 64 256 256 256 R2 + 19008

- 37 -

3.7 Rate-Distortion Performance of MPEG-4 Advanced Simple Profile

As shown in section 2.3.2, QPEL MCP and B-VOP are defined in MPEG-4 ASP. In this

section, we focus on the performance gains when applying B-VOP and QPEL MCP, and

compare them with Simple Profile (SP).

 QPEL-MCP

The performance gain of QPEL MCP is obvious since it provides better predictors

and therefore reduces the texture bits when coding a video sequence.

 B-VOP

More reference VOP and various prediction modes of B-VOP help to improve the

rate-distortion performance. However, when applying B-VOP in low-bitrate applications

(especially in lower time resolution, such as 15 fps, 10fps…etc.), the performance might

be worse than that of SP. For example, in the case of 2 B-VOPs between I- and P-VOPs

(as in Table 3.3), the temporal distances between P-VOPs of ASP and their reference

VOPs are 3, where those in SP are 1. The longer temporal distance and lower frame

correlation often make VOP 3 and 6 in ASP cost more bits or have worse quality than

those in SP, if the same quantization parameter (QP) is used in P- and B-VOPs.

Table 3.3 – An Example of Sequences Coded with or without B-VOPs

Time index 0 1 2 3 4 5 6 …
SP I P P P P P P …

ASP I B B P B B P …

- 38 -

The simplest solution is to set larger QP to B-VOPs and smaller QP to P-VOPs. it

is,

1, >×= nQPnQP −− VOPPVOPB

Performances are improved with larger n as shown in Figure Figure 3.7. This results

more distortions and lower bitrate in B-VOP, while less distortions and higher bitrate in

P-VOP. The benefit is that, since P-VOPs are used as references of B-VOPs and

successive P-VOPs, P-VOPs with less distortion retain more image information as to be

better references during coding, and therefore the coding performance is improved.

Simple comparisons between SP and ASP with different visual tools are shown in Figure

3.8. The video sequence is BUS, CIF (352x288), 15fps, and 3-level full search is used. When

apply B-VOP, n = 1.5, and 2 B-VOPs are used between consecutive P-VOPs.

SP + 2B

25

26

27

28

29

30

31

32

33

34

0 100 200 300 400 500 600 700 800 900 1000

bps

PSNR_Y I=P=B I=P, B=1.25P I=P, B=2B

Figure 3.7 – Rate-Distortion Performance with Different QP in B-VOPs

- 39 -

25

26

27

28

29

30

31

32

33

34

0 100 200 300 400 500 600 700 800 900

bps

PSNR_Y SP SP + QPEL SP + 2B SP + 2B + QPEL

Figure 3.8 – Rate Distortion Performance with Different Visual Tools

3.8 Merging of Bitmaps

For the multi-resolution ME methods and for supporting fractional-pel ME, extra storage

is the common drawback, which is addressed based on the binary representation of pixels.

With binary representation of pixel data, the extra storage size is smaller than the pyramidal

structures for ME with more pixel depth. In addition, the bitmaps of Lv_I, Lv_H, and Lv_Q

can be merged to reduce the memory required for binary pyramid.

During the interpolation process, duplicate pixels at integer or half-pixel positions are

kept in sub-pixel levels as shown in Figure 3.9. The binary values of the duplicate pixels at

the same coordinate are identical when using similar binarization filters in Lv_I, Lv_H, and

Lv_Q. The property of identical binary pixels makes it possible to merge the bitmaps of

integer and sub-pixel levels. When FPBME is conducted at half-pixel accuracy, the bitmap of

Lv_I is merged into the bitmap of Lv_H. When FPBME is conducted at quarter-pixel

- 40 -

accuracy, the bitmaps of Lv_I and Lv_H are both merged into the bitmap of Lv_Q. The bits

required for a binary pyramid with or without bitmap merging is shown in Table 3.4, in which

W and H are the width and height of a frame correspondingly. Since the bitmaps are merged,

the computational complexity of pre-processing and the memory requirement of binary

pyramid will both be reduced with the technique of bitmap merging.

0 1-1 0.5-0.5 1.5-1.5

Lv_I

Lv_H

Lv_Q

Figure 3.9 – Duplicate Pixels in Lv_I, Lv_H and Lv_Q

Table 3.4 – Memory Reduction Achieved with Bitmap Merging

 Total Bits Reduction Rate

No Bitmap Merging WH
16
85 FBME

Half-pixel
Accuracy Bitmap Merging WH

16
69

18.82%

No Bitmap Merging WH
16
341 FBME

Quarter-pixel
Accuracy Bitmap Merging WH

16
261

23.46%

- 41 -

Chapter 4

Experimental Results

In this chapter, the experimental results of the fast fractional-pel motion estimation are

provided.

4.1 Simulations

The test setup of our experiments:

 Test Operation System: Microsoft Windows XP professional

 Test Software: MPEG-4 Verification Model – MoMuSys FPDAM1-1.0-001220

 Compiler: Microsoft Visual C++ 6.0

 Common Test Configurations:

 No shape coding

 Deblocking Filter is disabled

 No rate control – the QPs are kept constant during coding a sequence.

 H.263 quantization mode is selected.

 Rounding Control is enabled.

 Initial value for Rounding Control : 0

 Error Resilience mode is disabled.

 NEWPRED is not used.

 AC/DC prediction of Intra macroblocks is enabled.

 COMBINED motion/shape/texture coding will be used

 No SPRITE Usage

- 42 -

 Search range per coded frame: 16

 Test sequences:

Akiyo, Foreman, Mobile-and-Calendar, (Coastguard, Container, Stefan) in CIF

(352x288), YUV 4:2:0

Other configurations will be described in the following sections.

4.2 Performance Comparisons

The rate-distortion performance of different conditions is shown in figure. The

distortions are represented with PSNR (peak signal-to-noise rate). The rate control is disabled

for that the rate-distortion performance of motion estimation will be shown without influences

of the scheme of rate control. The figures are plotted with data of PSNR and bitrates gathered

via coding the test sequence with different quantization parameters listed in the following.

 No B-VOP usage (IPP)

QPI = QPP = 4, 8, 16, 24, 31

 Two B-VOPs between I- or P-VOPs (IBBP)

QPI = QPP = 4, 8, 16, 24

QPI = 1.25 QPP = 5, 10, 20, 30

The results of the proposed method will be compared with those of FS.

- 43 -

4.2.1 Impact of Refinement Search with Candidates on Coding
Efficiency

The effects of the step of refinement search with candidates are shown in Figure 4.1 to

Figure 4.3. The sequence is coded at the frame rate of 30 fps. Motion estimation with or

without the step of refinement search with candidates are denoted as “CRS (candidate

refinement search)” and “No CRS.” As can be seen in this figures, the improvement of 1 ~

4dB in PSNR_Y can be achieved with CRS.

Akiyo, H-pel, IPP

30

32

34

36

38

40

42

0 50000 100000 150000 200000 250000 300000 350000

bps

P
S

N
R

-Y CRS

No CRS

(a)

- 44 -

Akiyo, Q-pel, IPP

30

32

34

36

38

40

42

0 50000 100000 150000 200000 250000 300000 350000

bps

P
S

N
R

-Y CRS

No CRS

(b)

Akiyo, H-pel, IBBP

30

32

34

36

38

40

42

0 50000 100000 150000 200000 250000 300000

bps

P
S

N
R

-Y CRS

No CRS

(c)

- 45 -

Akiyo, Q-pel, IBBP

30

32

34

36

38

40

42

0 50000 100000 150000 200000 250000 300000

bps

P
S

N
R

-Y CRS

No CRS

(d)

Figure 4.1 – R-D of Akiyo with and without CRS: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c)
Half-pixel, IBBP (d) Quarter-pixel, IBBP

Foreman, H-pel, IPP

27

29

31

33

35

37

39

0 500000 1000000 1500000 2000000 2500000

bps

P
S

N
R

_Y CRS

No CRS

(a)

- 46 -

Foreman, Q-pel, IPP

27

29

31

33

35

37

39

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

bps

P
S

N
R

_Y CRS

No CRS

(b)

Foreman, H-pel, IBBP

27

29

31

33

35

37

39

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

bps

P
S

N
R

_Y CRS

No CRS

(c)

- 47 -

Foreman, Q-pel, IBBP

27

29

31

33

35

37

39

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

bps

P
S

N
R

_Y CRS

No CRS

(d)

Figure 4.2 – R-D of Foreman with and without CRS (a) Half-pixel, IPP (b) Quarter-pixel, IPP
(c) Half-pixel, IBBP (d) Quarter-pixel, IBBP

Mobile, H-pel, IPP

22

24

26

28

30

32

34

36

0 1000000 2000000 3000000 4000000 5000000 6000000

bps

P
S

N
R

-Y CRS

No CRS

(a)

- 48 -

Mobile, Q-pel, IPP

22

24

26

28

30

32

34

36

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000

bps

P
S

N
R

-Y CRS

No CRS

(b)

Mobile, H-pel, IBBP

22

24

26

28

30

32

34

36

0 1000000 2000000 3000000 4000000 5000000 6000000

bps

P
S

N
R

-Y CRS

No CRS

(c)

- 49 -

Mobile, Q-pel, IBBP

22

24

26

28

30

32

34

36

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

bps

P
S

N
R

-Y CRS

No CRS

(d)

Figure 4.3 – R-D of Mobile with and without CRS (a) Half-pixel, IPP (b) Quarter-pixel, IPP
(c) Half-pixel, IBBP (d) Quarter-pixel, IBBP

4.2.2 Impact of Binarization Filters on Coding Efficiency

The R-D curves of sequences coded with different binarization filters described in

section 3.3 are shown in Figure 4.4 to Figure 4.6. The notation of subsampling and

binarization filters is shown in Table 4.1.

Table 4.1 – Notations of Subsampling and Binarization Filters

Filters
Subsamplig Binarization

S0 – Direct Subsampling B1 – Mean of 4 surrounding pixels
S1 – Mean Filter B2 – Hamming, 13-tap, 30% Cut-Off Frequency
S2 – 3-tap Low-Pass Filter B3 – Mean of 8 surrounding pixels

- 50 -

Akiyo, H-pel, IPP

30

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000 300000

bps

PS
N

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(a)

Akiyo, Q-pel, IPP

30

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000 300000

bps

P
SN

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(b)

- 51 -

Akiyo, H-pel, IBBP

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000

bps

P
S

N
R

-Y

Full Search

S2 B1

S2 B2

S2 B3

(c)

Akiyo, Q-pel, IBBP

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000

bps

P
SN

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(d)

Figure 4.4 – R-D of Akiyo Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,
IBBP (d) Quarter-pixel, IBBP

- 52 -

Foreman, H-pel, IPP

27

28

29

30

31

32

33

34

35

36

37

38

39

0 500000 1000000 1500000 2000000

bps

P
SN

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(a)

Foreman, Q-pel, IPP

27

28

29

30

31

32

33

34

35

36

37

38

39

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

bps

PS
N

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(b)

- 53 -

Foreman, H-pel, IBBP

28

29

30

31

32

33

34

35

36

37

38

0 200000 400000 600000 800000 1000000 1200000 1400000

bps

P
S

N
R

-Y

Full Search

S2 B1

S2 B2

S2 B3

(c)

Foreman, Q-pel, IBBP

28

29

30

31

32

33

34

35

36

37

38

0 200000 400000 600000 800000 1000000 1200000 1400000

bps

PS
N

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(d)

Figure 4.5 – R-D of Foreman Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c)
Half-pixel, IBBP (d) Quarter-pixel, IBBP

- 54 -

Mobile, H-pel, IPP

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

0 1000000 2000000 3000000 4000000 5000000 6000000

bps

PS
N

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(a)

Mobile, Q-pel, IPP

22

23

24
25

26

27

28

29

30

31

32

33

34
35

36

37

0 1000000 2000000 3000000 4000000 5000000

bps

PS
N

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

 (b)

- 55 -

Mobile, H-pel, IBBP

23
24
25
26
27
28
29
30
31
32
33
34
35
36

0 1000000 2000000 3000000 4000000

bps

P
S

N
R

-Y

Full Search

S2 B1

S2 B2

S2 B3

(c)

Mobile, Q-pel, IBBP

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

bps

PS
N

R
-Y

Full Search

S2 B1

S2 B2

S2 B3

(d)

Figure 4.6 – R-D of Mobile Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,
IBBP (d) Quarter-pixel, IBBP

- 56 -

4.2.3 Impact of Subsampling Filters on Coding Efficiency

Different subsampling filters are applied while the binarization filters are the same, and

the results are shown in Figure 4.x to Figure 4.x. The same notation of filters in Table 4.1 is

used.

Akiyo, H-pel, IPP

30

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000 300000

bps

PS
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(a)

Akiyo, Q-pel, IPP

30

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000 300000

bps

PS
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(b)

- 57 -

Akiyo, H-pel, IBBP

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000

bps

P
S

N
R

-Y

Full Search

S2 B2

S0 B2

S1 B2

(c)

Akiyo, Q-pel, IBBP

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000

bps

PS
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(d)

Figure 4.7 – R-D of Akiyo Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,
IBBP (d) Quarter-pixel, IBBP

- 58 -

Foreman, H-pel, IPP

27

28

29

30

31

32

33

34

35

36

37

38

39

0 500000 1000000 1500000 2000000

bps

P
SN

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(a)

Foreman, Q-pel, IPP

27

28

29

30

31

32

33

34

35

36

37

38

39

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

bps

PS
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(b)

- 59 -

Foreman, H-pel, IBBP

28

29

30

31

32

33

34

35

36

37

38

0 200000 400000 600000 800000 1000000 1200000 1400000

bps

P
S

N
R

-Y

Full Search

S2 B2

S0 B2

S1 B2

(c)

Foreman, Q-pel, IBBP

28

29

30

31

32

33

34

35

36

37

38

0 200000 400000 600000 800000 1000000 1200000 1400000

bps

P
S
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(d)

Figure 4.8 – R-D of Foreman Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c)
Half-pixel, IBBP (d) Quarter-pixel IBBP

- 60 -

Mobile, H-pel, IPP

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

0 1000000 2000000 3000000 4000000 5000000 6000000

bps

PS
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(a)

Mobile, Q-pel, IPP

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

0 1000000 2000000 3000000 4000000 5000000

bps

P
S
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(b)

- 61 -

Mobile, H-pel, IBBP

23
24
25
26
27
28
29
30
31
32
33
34
35
36

0 1000000 2000000 3000000 4000000

bps

P
S

N
R

-Y

Full Search

S2 B2

S0 B2

S1 B2

(c)

Mobile, Q-pel, IBBP

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

bps

PS
N

R
-Y

Full Search

S2 B2

S0 B2

S1 B2

(d)

Figure 4.9 – R-D of Mobile Sequence: (a) Half-pixel, IPP (b) Quarter-pixel, IPP (c) Half-pixel,
IBBP (d) Quarter-pixel, IBBP

- 62 -

4.3 Discussions

The results in section 4.2.1 show that the candidate refinement step can effectively

improve the coding performance of sub-pixel binary motion estimation. Even performance

lost is found due to the binary representation of data, the utilization of spatial-temporal

relations in motion field helps meliorating it.

In section 4.2.2, the coding performance varies with the usage of different binarization

filters. The variations of performance variations are within 0.3 ~ 0.4 dB, which means, if the

computational complexity is the first concern, a filter with low complexity shall be used for

binarization.

The results of experiments on subsampling filters show that, there are nearly no

differences on coding performance between the mean filter and the 3-tap LPF. In addition, in

some cases, the subsampling without anti-aliasing can do as good as the others with

anti-aliasing.

Figure 4.10 to Figure 4.15 show the R-D curves of sequences coded with the proposed

method. The coding efficiency is improved with the usage of QPEL MCP and B-VOPs. With

the proposed method in the ME of B-VOPs, we have less R-D performance drop as compared

to the results of FS. In other word, the proposed method consisting of the binary motion

estimation and the setup of QPs can enhance the R-D performance of B-VOPs for MPEG-4

video coding.

- 63 -

Akiyo

30

32

34

36

38

40

42

0 50000 100000 150000 200000 250000 300000 350000

bps

PSNR-Y

H-IPP

Q-IPP

H-IBBP

Q-IBBP

Figure 4.10 – R-D curve of Akiyo Sequence Coded with Different Visual Tools

30

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000 300000 350000

bps

P
S
N

R
-Y

H-IPP Q-IPP H-IPP(FS) Q-IPP(FS)

(a)

- 64 -

31

32

33

34

35

36

37

38

39

40

41

42

0 50000 100000 150000 200000 250000

bps

P
S
N

R
-Y

H-IBBP Q-IBBP H-IBBP(FS) Q-IBBP(FS)

(b)

Figure 4.11 – R-D Comparisons of Akiyo with FPBME and FS (a) IPP (b) IBBP

Foreman

27

29

31

33

35

37

39

0 500000 1000000 1500000 2000000

bps

PSNR-Y

H-IPP

Q-IPP

H-IBBP

Q-IBBP

Figure 4.12 – R-D curve of Foreman Sequence Coded with Different Visual Tools

- 65 -

28

29

30

31

32

33

34

35

36

37

38

0 200000 400000 600000 800000 1000000 1200000 14000

bps

P
S

N
R

-Y

H-IBBP Q-IBBP H-IBBP(FS) Q-IBBP(FS)

(a)

27

29

31

33

35

37

39

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 18000

bps

P
S
N

R
-Y

H-IPP Q-IPP H-IPP(FS) Q-IPP(FS)

(b)

Figure 4.13 – R-D Comparisons of Foreman with FPBME and FS (a) IPP (b) IBBP

- 66 -

Mobile

22

24

26

28

30

32

34

36

0 1000000 2000000 3000000 4000000 5000000 6000000 bps

PSNR-Y

H-IPP

Q-IPP

H-IBBP

Q-IBBP

Figure 4.14 – R-D curve of Mobile Sequence Coded with Different Visual Tools

22

24

26

28

30

32

34

36

0 1000000 2000000 3000000 4000000 5000000 60000

bps

P
S

N
R

-Y

H-IPP Q-IPP H-IPP(FS) Q-IPP(FS)

(a)

- 67 -

23

25

27

29

31

33

35

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 40000

bps

P
S

N
R

-Y

H-IBBP Q-IBBP H-IBBP(FS) Q-IBBP(FS)

(b)

Figure 4.15 – R-D Comparisons of Mobile with FPBME and FS (a) IPP (b) IBBP

- 68 -

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we proposed a fast, regular, and simple binary hierarchical motion

estimation algorithm that supports fractional-pel accuracy. The proposed algorithm is

evaluated on MPEG-4 reference software with two visual tools – QPEL MCP and B-VOP.

Out fast algorithm can speedup the fractional-pel motion estimation with acceptable quality.

The novelty is summarized in the following.

 Fast all binary subpixel motion estimation – From subsampled level to sub-pixel

levels, all matching processes are performed between blocks with binary

representation of pixels.

 Regular pattern of search points – From Lv_2 to Lv_Q and candidate refinement

step, the patterns of search points are kept as a 3x3 square. With the regular patterns,

the fast fractional-pel ME can be easily realized in software and hardware.

 Lower and constant computational complexity – As each MV of block in the frame

or sequence is of the same accuracy, the same one-pass and less complexity

procedure are executed. Based on the one-pass and simple ME, we can facilitate

hardware realization without possible stalls or hazards in pipeline, which is often

found for other adaptive, dynamic, or early terminated ME methods.

 Usage of spatial-temporal relations in motion field – The spatial-temporal relations

in motion field are proved to be useful for improving the coding efficiency.

- 69 -

 Applicability in B-VOP coding – The proposed algorithm is applicable in forward

and backward ME in B-VOPs with largely reduced complexity. With the MV of

co-located blocks in the referenced P-VOPs, the coding efficiency is also improved.

 Potential for parallel processing – Bits of binary blocks can be put in one register of

a modern processor (or simply a microcontroller) to be compared simultaneously, or

processed in parallel with dedicated hardware for more speedup.

 Reduction of extra storage and pre-processing – With the technique of bitmap

merging, the bitmaps in Lv_I, Lv_H and Lv_Q can be merged into one bitmap in

Lv_H (non QPEL MCP) or Lv_Q (QPEL MCP), where the extra memory storage

and computational complexity of pre-processing are both reduced.

5.2 Future Work

Based on the proposed algorithm, some improvement or extension can be considered in

the future:

 Multiple block sizes – The coding with multiple-sized blocks is in the mainstream

of modern video techniques. The motion estimation with multiple-sized blocks has

to be developed.

 Combination with rate-distortion optimization (RDO) tool – RDO can further

improve the coding performance. A rate to binary distortion (SOD) model is needed

for the realization of binary motion estimation with RDO.

- 70 -

Bibliography

[1] ISO/IEC 14496-2:2003, Information technology – Coding of audio-visual objects – Part
2: Visual, Mar. 2003.

[2] H. Li, A. Lundmark, and R. Forchheimer, “Image sequence coding at very low bitrates: A
review,” IEEE Trans. Image Processing, vol. 3, no. 5, pp. 589-609, Sep. 1994.

[3] J. R. Jain, and A. K. Jain, “Displacement measurement and its application in interframe
image coding,” IEEE Trans. Communications, Vol. COM-29, no. 12, Dec. 1981.

[4] B. Girod, “Motion-compensation: Visual aspects, accuracy, and limitations,” in Motion
Analysis and Image Sequence Processing, M.I. Sezan and R. L. Lagendijk, Eds. Norwell,
MA: Kluwer, 1993, pp. 125-152.

[5] B. Girod, “Motion-compensated prediction with fractional-pel accuracy,” IEEE Trans.
Commun., vol.41, pp. 604-612, Apr. 1993.

[6] ISO/IEC 11172-2, Information technology – Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbit/s – Video

[7] ISO/IEC 13818-2:2000, Information technology – Generic coding of moving pictures
and associated audio information: Video, Dec. 2000.

[8] T. Sikora, “MPEG digital video-coding standards,” IEEE Signal Processing Magazine,
vol. 14, no. 5, pp. 82-100, Sep. 1997.

[9] L. Chiariglione, “MPEG and multimedia communications,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 7, no. 1, pp. 5-18, Feb. 1997.

[10] F. Dufaux, and F. Moscheni, “Motion estimation techniques for digital TV: A review and
a new contribution,” Proceedings of The IEEE, vol. 83, no. 6, pp. 858-876, Jun. 1995.

[11] Y. Sendo, H. Harasaki, and M. Yano, “Theoretical background and improvement of a
simplified half-pel motion estimation,” Proc. ICIP 96, pp.263-266, vol.3, 1996.

[12] C. Du, Y. He, and J. Zheng, “PPHPS: A parabolic prediction-based, fast half-pixel search
algorithm for very low bit-rate moving picture coding,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 13, no. 6, pp. 514-518, Jun. 2003

[13] B. Natarajan, V. Bhaskaran, and K. Konstantinides, “Low-complexity block-based
motion estimation via one-bit transforms,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 7, no. 4, pp. 702-706, Aug. 1997.

[14] P. H. W. Wong, and O. Au, “Modified one-bit transform for motion estimation,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 9, no. 7, pp. 1020-1024, Oct.
1999.

[15] X. Song, T. Chiang, X. Lee, and Y.-Q. Zhang, “New fast binary pyramid motion
estimation for MPEG2 and HDTV encoding,” IEEE Trans. Circuits and Systems for

- 71 -

Video Technology, vol. 10, no. 7, pp. 1015-1028, Oct. 2000.
[16] J.-H. Luo, C.-N. Wang, and T. Chiang, “A novel all-binary motion estimation (ABME)

with optimized hardware architectures,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 12, no. 8, pp. 700-712, Aug. 2002.

[17] J. Jeong, W. Ahn, “Subpixel-accuracy motion estimation using a model for motion
compensated errors,” PCS93, pp. 13.4-1 - 13.4.4, 1993.

[18] P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE.
Trans. on Comms., vol. Com-31, no. 4, Apr. 1983.

[19] M. Bierling, “Displacement estimation by hierarchical block-matching,” SPIE Visual
Comm. and Image Processing, vol. 100, pp. 942-951, 1988.

- 72 -

Vita

李鑑明，民國六十七年生於台南市。民國九十年畢業於國立交通大學電子工程學

系，同年進入國立交通大學電子研究所碩士班，從事多媒體視訊編碼相關領域之研究。

民國九十三年取得碩士學位，論文題目「快速分數像素之二元動量估測演算法」。研究

興趣為視訊編碼、動量估測演算法。

- 73 -

	快速分數像素之二元動量估測演算法
	Fast Fractional Pixel Binary Motion Estimation
	誌 謝
	Contents
	List of Figures
	List of Tables

	Introduction
	Motion Estimation in Video Coding
	Video Coding
	Motion Compensated Prediction
	Overview of MPEG-4 Video Coding
	Motion Estimation
	Computational Complexity
	Motion Estimation Algorithms
	Fractional Pixel Binary Motion Estimation
	Binary Pyramidal Structure
	Subsampling and Interpolation
	Binarization
	Matching Criterion
	Search Flow
	Complexity Analysis
	Rate-Distortion Performance of MPEG-4 Advanced Simple Profil
	Merging of Bitmaps
	Experimental Results
	Simulations
	Performance Comparisons
	Discussions
	Conclusion and Future Work
	Conclusion
	Future Work
	Bibliography
	Vita

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

