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摘  要 

在這篇論文中，我們針對組合邏輯電路的矽智產單元提出了一系列的功率消耗估測

方法及功率消耗模型。因為矽智產供應商為了保護他們的設計概念可能只提供矽智產使

用者有限的設計資訊，因此我們對應電晶體層級、閘層級以及功能層級之電路設計資訊

提出不同的功率消耗估測方法及功率消耗模型。 

針對提供電晶體層級設計資訊的複雜數位電路，矽智產使用者可以採用電晶體層級

的模擬估測功率消耗，而圖樣壓縮法已經被採用來加速電晶體層級的功率消耗之估測。

在此，我們提出單一序列取樣法減少了傳統圖樣壓縮方法採用的隨機取樣法中無用的圖

樣轉換，達到改進傳統圖樣壓縮的效果。並更進一步提出多序列取樣法改善單一序列取

樣法過度取樣的缺點。 

針對只提供閘層級設計資訊的電路，我們提出一個較小的功率消耗模型。這個功率

消耗模型只須要使用輸入信號轉換時電路的零延遲充電及放電電容值當索引就可對照
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出實際功率消耗的估測值。因此矽智產使用者只要使用閘層級模擬時得到的零延遲充電

及放電電容值就可以查表得到實際功率消耗的估測值。在這個方法中我們採用了分群的

方法減小對照表，並利用蒙地卡羅模擬法縮短了建立對照表的時間。根據實驗結果顯

示，這個功率模型針對不同的輸入信號序列依然具有高度的準確性。 

如果矽智產供應商只願意提供功能層級的設計資訊，則矽智產使用者只能獲得電路

輸入及輸出的對應關係。我們針對這種應用提出一個採用類神經網路建立的全新功率消

耗模型。假如矽智產供應商提供這樣的功率消耗模型，則矽智產使用者只須要使用功能

層級模擬得到的電路輸入及輸出資訊就可以推估電路之功率消耗值。如同實驗結果所顯

示，這個功率消耗模型同時具有低複雜度及高準確度的優點。 
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Abstract 

In this dissertation, we develop several power estimation and power modeling methods 

for combinational IPs. Because IP vendors may release only limited design information to 

protect their knowledge, we propose corresponding methods for the designs with only 

transistor-level, gate-level and function-level design information. 

For complex digital circuits with transistor-level design information, users can 

estimation the power consumption of designs using transistor-level simulation. In order to 

reduce the simulation time on transistor-level simulation, we propose a single-sequence 

sampling approach to improve the performance of vector compaction techniques by reducing 

the useless transitions in random sampling techniques. A multi-sequence sampling approach 

is also proposed to improve the over sampling problem in the single-sequence sampling 

approach. 
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For the designs with only gate-level design information, we propose a smaller power 

model approach that only needs a 1-diemension lookup table for each design to map the 

zero-delay charging and discharging capacitance (CDC) during an input pattern transition to 

an estimative value of real power consumption. Therefore, IP users can estimate the power 

consumption according to the CDC values obtained from gate-level simulation. The dynamic 

grouping method is applied to reduce the size of lookup tables for circuits and Monte-Carlo 

simulation strategy is applied to reduce the characterization time. The experimental results 

show that our power model still has high accuracy for different input sequences. 

If IP vendors only provide the function-level design information, we propose a novel 

power model based on neural network that only requires the input and output information of 

each IP. If IP vendors provide such a power model, IP users can estimation the power 

consumption of IPs with only input and output information under a function-level simulation. 

As shown in the experimental results, our power model can have much smaller size with 

better accuracy.
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Chapter 1 

Introduction 

With the advance of semiconductor technology, the size of devices and the minimal 

width of metal lines are decreasing rapidly. Therefore, IC designers could integrate many 

functions, even a whole system, into a single chip. In fact, System-on-a-chip (SoC) is a trend 

of system integration in recent years. Meanwhile, the operating frequency of designs also 

rapidly grows up when the semiconductor technology getting advances. Unfortunately, after 

more devices are integrated into a chip and the operation frequency is increased, the power 

consumption of a chip is also increasing rapidly. 

For SoC designs, most design teams will not design all circuit blocks in the system by 

themselves. Instead, they integrate many well-designed circuit blocks called intellectual 

properties (IPs) and some self-designed circuit blocks to build up the complex system in a 

short time. While designing such complex systems, power consumption is also a very 

important design issue because of the increasing requirement of portable devices. 

Traditionally, power estimation is often performed at transistor-level by SPICE-liked 

simulation. However, this approach is unpractical for SoC designs because the transistor-level 

description of the whole designs is often too large to be simulated and the IP venders may not 

provide such low-level description for an IP to protect their knowledge. 

For this application, the power estimation method should consider the design 

information of IPs that IP vendors want to explore to IP users. For example, if the 
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transistor-level descriptions of IPs are provided to IP users, IP users can estimate the power 

consumption with a transistor-level simulation. The only problem is the efficiency of the 

estimation. If the gate-level descriptions of IPs are the only design information provided to IP 

users, IP vendors should provide some information such that IP users can estimate the power 

consumption of IPs from some power characteristics, which can be calculated from a 

gate-level simulation. If IP vendors only want to provide the design information for function 

checking such that IP users can only get the primary input and primary output signals, IP 

vendors should provide a high-level power model in which IP users can estimate the power 

consumption of their designs using only the primary input and output information. 

In this dissertation, we develop several power estimation and power modeling methods 

according to the design information that IP vendors will provide to IP users. We divide the 

design information into three levels. The first level is transistor-level information. The second 

level is gate-level information. The third level is behavior-level information. For those three 

levels, we develop three corresponding power estimation methods. 

For the complex digital circuits with transistor-level and gate-level design information, 

we propose two consecutive sampling techniques to improve the losing of performance in 

those pattern compaction methods with random sampling techniques. IP users can apply our 

proposed pattern compaction method to reduce the simulation time on a transistor-level 

simulator with reasonable accuracy. 

For the IPs with only gate-level design information, we propose a power model in which 

a lookup table is built for each IP that maps the zero-delay charging and discharging 

capacitance during a input pattern transition to an estimative value of real power consumption. 
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Therefore, IP users can estimate the power consumption according to the zero-delay charging 

and discharging capacitance from gate-level simulation. The grouping method is applied to 

reduce the size of lookup tables for circuits and Monte-Carlo simulation strategy is applied to 

reduce the characterization time. 

If IP vendors only provide the behavior-level design information, we propose a power 

model based on neural network in which only the input and output information of an IP is 

required to obtain the estimated power. Therefore, IP users can estimation power 

consumption of IPs with the input and output information obtained from a function-level 

simulation. Compared to the state-of-the-art 4-D lookup table, our approach requires much 

less memory but still has competitive accuracy. 

Before discussing how the power estimation can be done, we would like to introduce the 

power consumption of CMOS digital circuits and the incurred problems by the increasing 

power consumption. 

1.1  Power Consumption 

The power consumption of a CMOS digital circuit comes from four major types of 

current, which are dynamic transition current, short-circuit current, leakage current and static 

current. We will briefly explain the four kinds of current resources in the following 

descriptions. 

The dynamic transition current is resulted from the charge and discharge of the node 

capacitance. In Figure 1-1, an inverter circuit is used to explain the dynamic transition current. 

The power consumption of dynamic transition current on output node is often formulated as 
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Equation (1-1), when logical value of output node is changed from 0 to 1. The same power 

consumption will be consumed during the logical value of output node is discharged from 1 

to 0. In Equation (1-1), f is the frequency of signal transition on output node. In general, the 

dynamic power is the largest part of the total power consumption in a circuit. 

 

CL

Vdd 

Vin 
Vout

 

Figure 1-1. Dynamic transition current 

 
fVCP ddLdynamic ∗∗∗= 2

2
1

 (1-1) 

The short-circuit current is the current from Vdd to ground at the period that both PMOS 

and NMOS transistors turn on together during the input signal transitions. As illustrated in 

Figure 1-2, both PMOS and NMOS transistors are turned on together during the gray circle 

period of input signal Vin, and the short-circuit current occurs at that moment. The power 

consumption of short-circuit current can be formulated as Equation (1-2), in which Isc is the 

mean value of short-circuit current. The short-circuit current could be minimized by matching 

the rise/fall times of the input and output signals. 
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Figure 1-2. Short-circuit current 

 ddsccircuitshort VIP ∗=−  (1-2) 

The leakage current is the current from Vdd to ground even when the PMOS path or the 

NMOS path is “OFF”. It is often consisted of the leakage current in the reverse biased P-N 

junction diode between n-wall and substrate and the sub-threshold current from sub-threshold 

conduction, as illustrated in Figure 1-3. The leakage power consumption can be formulated as 

Equation (1-3), in which Ileakage is the mean value of leakage current. 

 

Drain Junction 
Leakage 

Sub-threshold 
Current 

Vdd 

Vin 
Vout

Ileakage

 

Figure 1-3. Leakage current 

 ddleakageleakage VIP ∗=  (1-3) 
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Another power source is the static current that occurs in some special logic family, such 

as the pseudo-NMOS logic family. In such kind of circuits, there is always a constant current 

from the Vdd to ground, as illustrated in Figure 1-4. The static power consumption can be 

formulated as Equation (1-4), in which Istatic is the mean value of static current. 

 
Vdd 

Vin=”High”

Vout
Istatic 

 

Figure 1-4. Static current 

 ddstaticstatic VIP ∗=  (1-4) 

1.2  Power Estimation 

The demand of portable devices and the functions integrated in those devices are both 

dramatically increasing day-by-day. However, those portable devices are often 

battery-operated. Increased power consumption means reduced operating time. In addition, 

increased power consumption also increases the heat generation of chip. In order to remove 

the extra heat to protect inner circuits, special packaging, cooling and fans are required, 

which lead to higher cost. Furthermore, larger power consumption may increase the current 

density of the metal lines in a chip and the temperature of the chip such that several silicon 

failures, such as electromigration, junction fatigue, and gate dielectric breakdown [1,2], may 
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become more likely to happen. Therefore, the power consumption has also become one of the 

most important design constraints beside timing and area constraints in present designs. 

At the design stage, various low-power design techniques have been proposed at each 

different level of abstraction, such as system-level, architecture-level, register-transfer level, 

gate-level and transistor-level. Many surveys on those low-power design techniques could be 

found in [3~9]. However, before using those low-power design techniques, we have to know 

the power consumption of current designs. Based on the power estimation results, designers 

can understand whether any low-power techniques are required and where to apply those 

low-power techniques to reduce the power consumption of the circuit. 

In the literature, many power estimation techniques have been proposed. They can be 

roughly categorized as simulation-based methods and statistics-based methods, according to 

the used information while calculating the final power consumption of circuits. In this section, 

we will introduce those two techniques briefly. Earlier surveys for those power estimation 

techniques could be found in [9~12]. 

1.2.1 Simulation-Based Methods 

Basically, simulation-based techniques will use simulators to perform power estimation. 

In those techniques, the most straightforward method of power estimation is to perform 

circuit simulation to obtain the current information and the resulted power consumption. 

SPICE is the transistor-level simulator that can provide the most accurate estimation to date. 

It solves the combination of KVL and KCL equations for the voltages of all nodes and the 

currents of some certain branches. Although it can provide more accurate results, it will suffer 
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from severe memory and execution time constrains, especially for large VLSI circuits. 

In order to alleviate the memory and speed issues for power estimation, PowerMill 

[13,14], which is a transistor-level power simulator for CMOS and BiCMOS VLSI designs, 

applies an event-driven simulation algorithm to increase the speed by two or three orders of 

magnitude over SPICE. Moreover, it uses a nonlinear device model instead of resistor model 

to model the transistors such that it can maintain the SPICE accuracy while increasing the 

simulation speed. Estimating power consumption at switch level is another idea to have faster 

simulation speed, such as the well-known tool IRSIM [15]. Because it only counts the 

switching power dissipation, which is the transition counts of the circuit nodes weighted by 

physical node capacitances, the simulation speed is often much faster than that of a 

transistor-level simulation. However, the estimation results of such tools may not as accurate 

as those of transistor-level tools. 

If the simulation can be done at higher level of abstraction, such as gate-level, the 

simulation speed could be improved much more. Therefore, many gate-level simulation 

techniques are proposed to estimate the power consumption of cell-based designs based on 

the characterization results of library cells. In general, the characterization results include the 

power model and delay model of basic cells. The power model could be a lookup table or an 

equation such that the power consumption of a circuit could be calculated by summarizing 

the power consumption of each basic gate in the circuit. In [16~20], the characterization flow 

for the cells in a cell library is proposed and the power consumption of circuits is calculated 

using a gate-level simulator according to the characterization result. The differences between 

those approaches are the accuracy of the delay model and power model of basic cells, or the 
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accuracy on estimating glitch power. For example, in [18], the authors include a glitch filter 

to reduce the over estimation on glitch power. In [21, 22], the basic unit of power 

characterization is extended to complex logic blocks or some functional units on datapath 

such that their performance is much more improved. Although the gate-level simulation 

speed is much faster, most of those techniques have to make a tradeoff between the accuracy 

and the storage complexity. 

Besides increasing the simulation speed, another approach is to reduce the number of 

input patterns for power estimation such that the transistor-level simulation time can also be 

reduced. Such kind of power estimation methods can be roughly divided into two directions: 

regeneration and sampling. Regeneration approach [23~30] is to generate a new input 

sequence that is shorter than the original input sequence but has the similar average power as 

that of the original one. Some characteristics of the original sequence, such as the pattern 

transition probabilities [23], the pattern transition probabilities of those input pins with higher 

power sensitivity values and the average transition probability of rest input pins [24], and the 

ratio of state transition number of each state [25,26], are preserved during the generation 

process. In order to reduce the complexity of the generation process, some approaches [27,28] 

only preserve the input characteristics between clustered inputs. There are also some methods 

trying to preserve the toggling behavior of the internal nodes [29~30] between the original 

input sequence and the regenerated input sequence. 

Instead of generating new input patterns, the sampling approach chooses some input 

patterns from the original sequence to estimate the average power. The Monte Carlo approach 

for power estimation is proposed in [31,32]. These methods estimate the average power by 
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sampling some input vectors with certain length l from the original sequence and feeding 

them into the simulator to derive a sample value of the average power. The average power 

consumption can be estimated with the average of several sample values. From Central Limit 

Theorem [33~36], the sample values can be assumed as a normal distribution when l 

approaches infinity. The probability that the estimated mean value is within a certain error 

range of the real mean value can also be derived under this assumption. In [31], only 

combinational circuits are considered and sequential circuits are considered in [32]. 

Sampling techniques can be further optimized through stratification of the population. 

Proper stratification of the population can reduce the sample variance such that the number of 

sampled input vectors can be further reduced. In order to stratify the input vectors, various 

indicator functions are proposed to provide a rough estimation of the power consumption of 

each input vector. According to the results of indicator functions, we can put the input vectors 

with similar power consumption into the same group and sample only a few patterns from 

each group. Therefore, the key point of this approach is to choose a good indicator function. 

In [37], the power characteristic is chosen as the zero-delay switching activity multiplied by 

the loading capacitance of each node. Those power characteristics of input pattern pairs are 

used to divide input pattern pairs into clusters such that the Monte Carlo simulation [36] 

could randomly sample the same number of pattern pairs from each cluster. This stratified 

random sampling could improve the convergence speed of the Monte Carlo simulation.  

In [38], the transition numbers of primary inputs, primary outputs, latches and selective 

internal nodes are used as the indicator function. Only when the indicator function has 

enough value changes, this input pattern pair will be used in the transistor-level simulation to 
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plot the power waveform of the input sequence. In [39], the zero delay switching conditions 

at gate level is used as the indicator function and the modules in the design is also clustered to 

improved the performance again. In [40], a cycle-based characteristic, the real-delay charging 

and discharging capacitance, is used as the indicator. They divide all pattern pairs into groups 

and select only one pattern pair from each group. This approach may not suitable for the 

designs with very deep logic level because the small delay time error will cause large power 

variance due to glitch. 

1.2.2 Statistics-Based Methods 

Statistics-based techniques can be categorized into several different levels. Some of 

them use the entropy [41~45] for high-level power estimation and modeling because the 

required information in this approach is independent of the wire loading, transistor sizes, gate 

types or even circuit structure. Using the analytical results between entropy and real power, 

we can obtain rough power estimation using only high-level or behavior-level information. 

Since the simulation at such a high level can be completed very fast, we can have a quick 

indicator about power consumption in early design stages. However, the power estimation 

results of this approach will not be very accurate due to the lack of real circuit information. In 

[46], the entropy is also used to estimate gate counts or area of Boolean functions, and the 

power consumption of the design could be calculated from switching activity and loading 

capacitance of each node in the circuit. The basic entropy calculation of logic circuit could 

refer to [47]. 

If gate-level design information is available, many researches will calculate the signal 
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transition density [48] or switching activity of each node in the circuit to estimate the power 

consumption. The estimation results can be more accurate because the power consumption of 

CMOS digital circuits are dominated by the currents that charge and discharge load 

capacitances and the short circuit currents. In early researches, gate-level power estimation 

focuses on combination circuits [49~51]. They assume that the primary inputs are spatially 

and temporally independent and the propagation delay of each gate is zero. In order to 

improve the accuracy of power estimation results, the spatial and temporal correlations are 

included for switching activity estimation in [52~54]. However, the computational 

complexity to consider spatial correlation may become too high to be adopted. 

In [55~59], they start to extend the gate-level power estimation to sequential circuits. In, 

[56, 57], the BDD (Binary Decision Diagram) is used for the switching activity estimation.  

In [58, 59], the OBDD (Ordered Binary Decision Diagram) is used for the switching activity 

estimation. However, the complexity of building BDD will grow exponentially when the 

number of primary inputs is increased. The work proposed in [60], which uses an ordered 

BDD method, can alleviate the complexity problem of those BDD-based approaches a little 

bit while estimating the switching activity. Another technique that uses the Bayesian 

networks is also proposed to calculate the switching activity of circuit [61]. 

In order to improve the accuracy of power estimation results, the idea of using transition 

density is proposed in [62]. It models the lag-1 temporal correlation about the density that an 

input makes a 0-to-1 or 1-to-0 transition. Based on the input probability and input transition 

density, a series of researches are conducted to study the sensitivity of the power 

consumption to the input probabilities and the input transition densities [63,64]. For most 
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combinational circuits, this approach can have more accurate estimation results. 

Since there are a lot of signal statistics values of inputs and outputs proposed to be the 

indicators of the power consumption at gate level, such as the input transition probability, 

input transition density, output transition density, and spatial correlation coefficient, some 

approaches use parts or all of the four mentioned indexes to form a look-up table of power 

consumption, which is often called the table-based power model [65~70]. In [68], the power 

model also considers the parameter of data width for arithmetic block and the process 

parameter of the technology. In [69,70], the power model is built based on the power 

sensitivity values of primary inputs. For each combination of those power indicators, there is 

a corresponding power value that is estimated in advance using many input sequences with 

similar indicator values. Therefore, once the values of those indicators for an input sequence 

are calculated, we can obtain a power estimation result directly from the table. In general, the 

accuracy of estimation results will increase when the dimensions of the lookup table are 

increased. However, the computation efforts for building the table will grow very fast when 

its dimensions are increased. The table size of the table-based power model is another 

important issue. A technique is proposed to reduce the table size of table-based power model 

in [71]. Another technique [72] can also reduce the table complexity by using neural 

networks to recognize the input pattern such that the power consumption of pattern pair could 

be estimated according to its class. 

Besides the table-based power models, some researches use equations to represent their 

power model [73~75]. In equation-based power models, the major work is to decide the 

format, variables and factors of the equation. For example, if the equation of power is a 
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quadratic function of 4 variables as in [73], there are 15 factors to be found out during the 

characterization process. Although the estimation results might be more accurate, the required 

characterization time is also much longer to find out those parameters. 

1.3  Approaches for Different Design Information 

In this section, we will discuss the useful power estimation techniques and relative 

power models at each level of abstraction for an IP. According to the commonly provided 

design information, the following discussion is made from three different levels, transistor 

level, gate level, and behavioral level. At each different design level, we also propose 

corresponding techniques to improve the traditional power estimation methods. Those 

improvements and their advantages will also be briefly introduced in this section. 

1.3.1  Power Estimation at Transistor Level 

If transistor-level design information of the IP is provided, the common approach is to 

perform a transistor-level simulation to estimate the power consumption of a circuit because 

of its high accuracy. Actually, in this case, almost all simulation-based techniques [13~32] 

[37~40] could be used for power estimation because it is very possible that gate-level and 

behavior-level design information is provided, too. Users can choose a technique from them 

that is most suitable to their applications. 

In simulation-based approaches, especially transistor-level simulation, the simulation 

time is the most critical concern. If we cannot improve the simulation speed too much, we 

can use another approach to reduce the number of input patterns for power estimation such 
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that the simulation time can also be reduced. In traditional vector compaction techniques, 

many useless transitions often exist in the compacted input sequence because they have to 

concatenate all selected input pattern pairs into a new input sequence. Therefore, we propose 

an improved vector compaction method with grouping and multiple-sequence consecutive 

sampling approach [76]. An algorithm to reduce the number of sequences is proposed such 

that the number of useless transitions and the length of the final compacted input sequence 

can be minimized together, thus greatly improving the efficiency and accuracy of traditional 

vector compaction approaches. 

1.3.2  Power Estimation at Gate Level 

If gate-level design information of the IP is provided, users can still use 

simulation-based approaches to estimate power consumption in gate-level simulation [16~20]. 

Although the simulation speed is much faster, those techniques often have worse accuracy 

because they cannot estimate leakage power and short-circuit power and cannot deal with 

glitch power accurately. Besides the simulation-based approaches, users can also use the 

statistics-based approaches that do not require transistor-level design information. 

In order to provide more accurate power estimation results to users without 

transistor-level information, IP vendors can provide corresponding gate-level power models 

in which those power characteristics can be obtained from gate-level simulation such as 

[65~68]. In those approaches, different lookup tables with 2 dimensions, 3 dimensions, and 

4-dimensions are proposed. In general, the accuracy of estimation results will increase when 

the dimensions of the lookup table are increased. However, the characterization time to fill up 
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the lookup tables will grow very fast when its dimensions are increased. Therefore, we 

propose a one-dimensional table-based power modeling method for combinational circuits 

[77] in which the table size is very small and almost independent to the number of primary 

inputs. Using this approach, designers can build the required power model more efficiently 

with little accuracy loss. 

1.3.3  Power Estimation at Behavior Level 

If only behavior-level design information of the IP is provided, users can see only input 

and output values during the simulation. Therefore, most of those simulation-based 

techniques cannot be used to estimate power consumption because there are no 

implementation details in behavior-level design information. In the literature, a number of 

high-level power estimation techniques [41~45] have been proposed to estimate the power 

consumption at a high level of abstraction, such as when the circuit is represented only by 

Boolean equations. This will provide more flexibility to explore design tradeoffs early in the 

design process and reduce the redesign cost and time to fix power problems. Those high-level 

techniques can be roughly divided into two categories: top-down and bottom-up. In the 

top-down techniques [41,42], a combinational circuit was specified only as a Boolean 

function without any information on the circuit implementation. Therefore, top-down 

techniques are useful when users are designing a logic block that is not previously designed 

because they can provide a rough measurement about the trend of power consumption before 

implemented. However, they may not have very good accuracy due to lack of implementation 

details.  
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For SoC designs, bottom-up approaches [62~68] are more useful when one is reusing 

previously designed circuit blocks such as IPs. Since all internal structural details of the 

circuit are known, they can build a power model for this block to estimate its power 

consumption in the target system at function level. Building those power models often 

requires a power characterization process that uses low-level simulations of modules under 

their respective input sequences to record the relationship between high-level power 

characteristics and real power consumption. Because the power consumptions are measured 

in the low-level simulations with internal circuit information, the power models can provide 

more accurate estimations than those in the top-down approaches. After the characterization 

step, no more low-level simulations are required in the estimation step. Users can obtain the 

power consumption of the circuits by only providing the high-level power characteristics 

obtained in function-level simulations thus having a very fast estimation time. 

Different to the gate-level power models, behavioral-level power models can only use 

input and output information. In this case, the proposed 1-dimension lookup table power 

model cannot be used because it requires gate-level structure and node capacitance 

information. Although those table-based power models in [62~68] can still be used in 

behavioral level, the table size and the characterization time to fill the lookup table are still 

the issues that can be further improved. Therefore, we propose a neural-network-based power 

model [78] using only the statistic information of primary inputs and outputs. The size of the 

selected neural network is quite small and is almost independent to the number of 

input/output pins and the size of the circuit. With such a simple structure, we can still have 

similar accuracy compared to the results of the most complete 4-dimensional table-based 
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power model. 

1.4  Organization 

The remainder of this dissertation is organized as follows. First, the improved vector 

compaction method using sampling techniques is presented in Chapter 2. Both the 

single-sequence and multiple-sequence consecutive sampling techniques will be presented in 

this chapter. In Chapter 3, the gate-level power model using only 1-dimensional lookup-table 

will be presented. The proposed tableless power model using feed-forward neural network for 

behavioral-level simulation will be explained in Chapter 4. Finally, we will give our 

conclusions and make some discussions about the future works in Chapter 5 to complete this 

dissertation. 
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Chapter 2 

Improved Vector Compaction Methods 

2.1 Vector Compaction Techniques 

Traditionally, power estimation is often performed at transistor-level by SPICE-liked 

simulation. However, it is impractical to simulate a complex design with a large number of 

test vectors by a transistor-level simulator because it may require too much simulation time. 

For efficiency consideration, many vector compaction techniques [23~32][37~40] have been 

proposed. The compacted input sequences are generated according to some characteristics of 

the original input sequences or the activity of the circuits while triggered by those input 

vectors. Therefore, the power characteristics can still be maintained because those statistics 

are carefully kept during the compaction process. Based on the vector compaction techniques, 

we can estimate the power consumption of a circuit with a much smaller input vector set thus 

reducing the power estimation time dramatically with little accuracy loss. 

The vector compaction techniques can be roughly classified into two categories. The 

regeneration approaches [23~30] generate a new input sequence that is shorter than the 

original input sequence but has the similar average power as that of the original one. In [23], 

the pairwise transition probabilities of inputs are used to approximate the joint transition 

probabilities of the primary inputs. Those probabilities in the original input sequences will be 

the target to be kept in the compacted sequence.  
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In [24], the authors build an incomplete state transition graph, in which the primary 

inputs with higher power sensitivity are used as the state bits, to generate a smaller sequence 

after compacting the activity number of each edge in the state transition graph by the Eulerian 

walk algorithm. The average hamming distance of unselected primary inputs will also be 

considered when they regenerate the compacted sequence. Based on grouping and sampling 

techniques, the authors of [27] separate the primary inputs of the circuit into several groups 

according to their power sensitivity values. The input pattern pairs are also divided into 

several subsets such that they can generate a smaller input sequence by randomly sampling 

from each subset according to the size of each subset and the compaction ratio. In [24,27], the 

power sensitivity values of the inputs are obtained from a simulation. Those power sensitivity 

values may become inaccurate under different distribution of input signal probability and 

switching activity. 

In [25], the authors build a transition graph of the original input sequence to model the 

transitions between vectors. With the transition graph, they can obtain the active numbers of 

all edges and keep their ratios in the compacted input sequence. In [26], the authors analyze 

the input sequence with the Markov chain model and generate a smaller input vector set that 

keeps the characteristics on the Markov chain model. In [28], the spatial correlation of input 

bits is used to cluster the input pins and the compacted sequence can be generated more easily 

compact input sequence because those bit clusters are treated as independent. In [29], the 

authors generate a compacted sequence that has the similar transition profile on the internal 

signals. In [30], the authors separate the input vectors into several vector sets based on the 

transition counts of internal nodes and generate a smaller sequence according to the fractal 
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compaction algorithm. However, the backward weight propagation in [29] and the fractal 

algorithm in [30] have high computational overhead such that the speedup is limited. 

Another category of the vector compaction techniques is the sampling approaches 

[31,32][37~40]. The sampling approach chooses some input patterns from the original 

sequence to estimate the average power. The Monte Carlo simulation method is proposed in 

[31] and [32] for combinational circuits and sequence circuits. In [37], the stratified random 

sampling technique is used to improve the convergence speed of the Monte Carlo simulation 

method. In [38], the gate-level simulation is used to draw the waveform of the indicator 

function. The transistor-level simulation is used to estimate the pattern pair only when its 

power variation is large enough. Finally, the power waveform could be used to estimate the 

power consumption of the original input sequence. In [39], the sampling process is done for 

module groups with similar power behavior. In this case, the sample size of Monte Carlo 

simulation could be reduced and the performance could be improved. 

According to the cycle-based power information obtained from logic-level simulations, 

the authors of [40] separate input pattern pairs into to several groups and select the largest 

energy cycle per group to be simulated by a transistor-level simulator such as PowerMill. 

According to the power consumption of each sampled cycle and the size of each group, they 

can calculate the average power consumption of the circuit under the original input sequences. 

Because they select the largest energy cycle in each group as sampled cycle, those cycles 

might be randomly distributed in the original input sequence. Therefore, their method is 

called a random-liked sampling method. 
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2.2 Useless Transitions 

For large circuits, vector compaction techniques could provide a faster solution for 

power estimation with reasonable accuracy. However, the random-liked sampling method 

may lose the compaction ratio and speedup as shown in Figure 2-1. Those group numbers in 

Figure 2-1 present different range of power characteristic values. After compaction, only 4 

pattern pairs are randomly selected, one from each group. However, when those 4 pattern 

pairs are serially concatenated to be the compacted sequence, 7 pattern pairs will be found in 

the compacted sequence. That means the compaction ratio and speedup are lost because the 

compacted input sequence includes 3 useless transitions. 

 

Figure 2-1. Random sampling with useless transition 

Therefore, we propose a single-sequence consecutive sampling technique to reduce 

those useless transitions. Using the single-sequence consecutive sampling technique as shown 

in Figure 2-2, we can sample a single period of patterns instead of individual pattern pairs to 

reduce the loss of compaction ratio caused by the useless transitions. Compared to the 

example shown in Figure 2-1, there is no useless transition in the compacted sequence so that 

we can keep the compaction ratio as desired and shorten the length of the sequence. 
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Figure 2-2. Consecutive sampling 

However, due to non-uniform distribution of pattern pairs in some groups, it is very 

possible that we cannot find a perfect consecutive sequence without any undesired transitions 

as shown in Figure 2-2. Using single-sequence consecutive sampling technique, we will 

over-sample some groups in such cases to find an intact single sequence that have enough 

samples for all groups. Therefore, the compaction ratio of the sequence length may not be 

improved too much. In those cases, if we can relax the limitation a little bit such that multiple 

consecutive sequences are allowed, we may generate a shorter sequence that still has the 

desired distribution. For example, if the desired distribution is G1:G2:G3:G4 = 3:1:2:2 for the 

input vectors shown in Figure 2-3, the compacted sequence found in single-sequence 

approach will include at least 11 transitions as shown in Figure 2-3(a). However, as shown in 

Figure 2-3(b), we can find two subsequences that also satisfy the requirements but the 

number of transitions is only 9 after concatenated. It implies that we can find better solutions 

for vector compaction problem if we minimize the number of sequences instead of setting the 

number to be one. Of course, the number of sequences could be one as handled in the original 

single-sequence approach, but it is just a special case in the multi-sequence approach. 

Therefore, in this work, we focus on discussing this new extension and perform some 
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experiments to show the improvements of this new approach. 

 

Figure 2-3(a). The result of single-sequence approach 

 

Figure 2-3(b). The result of multi-sequence approach 

In this work, our focus is to reduce useless transitions in random-liked sampling method 

for vector compaction. Although those vector compaction methods including previous 

approaches and the proposed approach only focus on combinational circuits, they can still be 

applied to sequential circuits with full scan. The only difference is that we have to record the 

internal states of all flip-flops (FFs) when we estimate logic-level power characteristics of 

each input transition. This FF information will then be used in the transistor-level simulation 

for the compacted input sequence to set the internal states at the beginning of each composing 

subsequence. Therefore, if the compacted input sequence is composed of only one 

subsequence, we only have to set the initial condition once, which requires very little 

overhead. 

2.3 Selection of Power Characteristics 

The power consumption of a CMOS digital circuit is often formulated as Equation (2-1). 
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The static power (Pstatic) is often much smaller than the dynamic power (Pdynamic). The Pdynamic 

is the summation of the functional transition power (Pfunc_trans), the glitch power (Pglitch) and 

the short-circuit power (Pshort-circuit), which is represented as Equation (2-2). The Pshort-circuit is 

consumed when short-circuit current flows from VDD to ground at the period that both PMOS 

and NMOS transistors turn on together during the signal transitions and is often smaller than 

the summation of the Pfunc_trans and the Pglitch. The proportion between Pfunc_trans and Pglitch 

depends on the circuit behavior and the design skill. Given a circuit with n nodes in its netlist, 

we could express the power consumptions of Pfunc_trans and Pglitch as Equation (2-3) and (2-4), 

where i denotes the index of each internal node, Ci is its load capacitance of node i, Vdd is 

supply voltage of the circuit, fi_func is the frequency of functional transition at node i and 

fi_glitch is the frequency of glitch at node i. Note that a node in the netlist is defined as the input 

or output of a logic gate in the circuit. Generally speaking, a functional transition only 

considers the signal transition from 0 to 1 or 1 to 0. On the contrary, a glitch is the signal 

transition from 0 to 1 to 0 or 1 to 0 to 1 such that it is not multiplied by a factor 1/2. τi is the 

factor of the width of glitch to the glitch power and should be between 1 and 0. 
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In Equation (2-3), the term is often defined as the charging and 

discharging capacitance (CDC) during an input transition, where f

∑
=

⋅
n

i
funcii fC

1
_

i_func =1 if node i has signal 

transition and fi_func =0 if node i has no signal transition. The Ci of node i is the summation of 

output capacitance for driving gate and the input capacitances of driven gates at node i.  For 

commercial cell libraries, the vendors will provide the output loading capacitance and input 

loading capacitances of cells. If such loading information is not provided, users can easily 

characterize the loading capacitances by themselves using the characterization process 

proposed in [19]. Therefore, to calculate the CDC values of an input pattern pair only have to 

sum the loading capacitances of those nodes whose logic values are changed during the input 

transitions. Only a logic-level simulator is required to obtain the node transition information 

for calculating CDC values. 

In the simulation-based vector compaction approaches that consider the circuit structures 

or behaviors, they often classify the input pattern pairs according to some power 

characteristics of each pattern pair. In the literatures, many power characteristics have been 

proposed [23,24][27] [30]. For example, Hamming distance (HD) of pattern pairs is adopted 

in [23][27] which use the number of transition bits of the primary inputs to approximate the 

average power consumption. Switching count (SC) is used in [30] to approximate the power 

consumption of a pattern pair using the summation of . Charging and discharging 

capacitance (CDC) is adopted in [40] to approximate the power consumption of a pattern pair. 

Power sensitivity is used in [24,27] as an estimation on the influence of an input to the overall 

power consumption. 
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In the vector compaction approaches, the adopted power characteristics have large 
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impacts on the accuracy of the estimated power and the extra computation overhead for the 

compacted input sequences. In order to determine which power characteristic is most suitable 

for different circuits, we define the average normalized error of a power characteristic as 

below to make a fair comparison between them. 

An average normalized error (AVGNE) is the average error between the normalized 

power characteristics to the normalized real power of all combinations of input vectors. The 

normalized power characteristic is the power characteristic value divided by the average 

power characteristic value. The normalized real power is the power consumption divided by 

the average power. 

For a combinational circuit with n inputs, we can formulate the AVGNE of any power 

characteristic PC as Equation (2-6). In Equation (2-6), Pj,k is the power consumption of the 

transition from pattern j to pattern k, and PCj,k is the power characteristic value of that 

transition. Pavg is the average power consumption of all input pattern pairs and PCavg is the 

average power characteristic value of all input pattern pairs. 
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The AVGNE of a power characteristic can make a fair comparison between the power 

characteristic value and the real power consumption. The power characteristic with smaller 

AVGNE is considered as much closer to the real power. Therefore, we make some 
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experiments to evaluate the AVGNE of some popular power characteristics.  

In our previous work [79], we have compared the AVGNE of CDC and HD. In this work, 

we compare the AVGNE of three popular power characteristics, HD, zero-delay CDC and 

zero-delay SC. In our experiments, we evaluate the AVGNE by three input sequences with 

the same average input signal probability (P=0.5) but different average transition density (D) 

on several ISCAS’85 benchmark circuits. For the input sequence with high average transition 

density, D is set to 0.4. For the input sequence with middle average transition density, D is set 

to 0.25. For the input sequence with low average transition density, D is set to 0.1. For each 

test sequence, 500 pattern pairs are randomly generated according to the desired signal 

probability and transition density. Those patterns are then used in PowerMill to simulate their 

power consumptions. About the corresponding power characteristic values, the CDC and SC 

values are calculated by the Verilog-XL simulator, and the HD values is obtained by a simple 

self-developed C program. The comparison result is shown in Table 2-1. The AVGNEs of 

ISCAS’85 benchmark circuits are estimated by three test sequences and the overall average 

AVGNEs of CDC, SC and HD are 0.1278, 0.1399 and 0.2568 respectively. Therefore, we 

also choose CDC to be the power characteristic in this work. 
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Table 2-1. Average normalized errors for three power characteristics 

 

High D 
(P=0.5, D=0.4) 

Mid D 
(P=0.5, D=0.25) 

Low D 
(P=0.5, D=0.1)  

CDC SC HD CDC SC HD CDC SC HD 
C432 0.1592 0.1933 0.3093 0.2306 0.2501 0.4793 0.2091 0.2424 0.7749 
C499 0.1044 0.1064 0.1334 0.1321 0.1308 0.1641 0.1491 0.1405 0.2662 
C880 0.1044 0.1183 0.1729 0.0841 0.0991 0.2562 0.1016 0.1178 0.3153 
C1355 0.1055 0.1099 0.1402 0.1026 0.1056 0.1579 0.1246 0.1268 0.2112 
C1908 0.1441 0.1515 0.1809 0.1421 0.1597 0.2303 0.1490 0.1551 0.2851 
C2670 0.1018 0.1213 0.1768 0.1067 0.1341 0.2158 0.1121 0.1363 0.3138 
C3540 0.1445 0.1598 0.1750 0.1335 0.1477 0.2396 0.1417 0.1496 0.4756 
C5315 0.0882 0.1003 0.1563 0.0836 0.0963 0.2400 0.1091 0.1190 0.3313 
C6288 0.0982 0.1125 0.1262 0.1532 0.1684 0.1733 0.2096 0.2260 0.2391 
C7552 0.0914 0.0933 0.1667 0.1014 0.1067 0.2699 0.1158 0.1177 0.3286 

Average 0.1142 0.1267 0.1738 0.1270 0.1399 0.2426 0.1422 0.1531 0.3541 
  

 

2.4 Grouping of Pattern Pairs 

If we have a power characteristic that is almost proportional to the real power 

consumption for all pattern pairs, we can easily generate a compacted input sequence for 

estimating the average power consumption of a circuit by a simple random selection. For 

example, if the original input sequence is L and the compacted sequence is C, the power 

consumption of the original input sequence PL can be calculated from PL=PC*(PCL/PCC), 

where PCL is the total power characteristic value of the original input sequence, PCC is the 

total power characteristic value of the compacted sequence, and PC is the power consumption 

of the compacted sequence. However, most of the power characteristics including CDC can 

only model the functional transition power. The glitch power is often not proportional to the 

functional transition power for all pattern pairs such that the power characteristic values may 
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not always be proportional to the real power consumption. 

Therefore, another solution is required instead of random selection to minimize the 

estimation errors. One popular approach is to separate the input pattern pairs into several 

groups according to their power characteristics and then sample pattern pairs from each group. 

This grouping method, which is also applied in this work, is widely used just like [40] with 

very low computation complexity. The variation caused by glitch power can be effectively 

reduced because the average value of each group is used to represent the power consumption 

of all pattern pairs that belong to this group such that the variation can be compensated. 

In order to demonstrate the grouping effects, we perform a simple experiment on C1355 

in ISCAS’85 benchmark circuits with 5,000 random input pattern pairs. The variance 

limitation of each group is set as ±2.5%. The experimental results are illustrated in Figure 2-4 

to show the estimation error between normalized CDC values and normalized real power 

values of all pattern pairs. The estimation error of each pattern pair is defined as Equation 

(2-9), where NCDCi is the normalized CDC value of pattern pair i, and NPi is the normalized 

power consumption of pattern pair i. Without grouping, all pattern pairs are treated as a single 

group with group number 0 in Figure 2-4. We can see that there is a large error distributed 

from 20% to -60%. After divided those pattern pairs into 24 groups with group number 1 to 

24 in Figure 2-4, we can see that the error distribution range of each group is significantly 

reduced if the average value is used to represent the real power value of each pattern pair in 

the same group. 
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Figure 2-4. The effects of grouping 

Figure 2-5 shows an example of the grouping process. Figure 2-5(a) is the distribution of 

the CDC values of 15 pattern pairs. After sorting and grouping, those pattern pairs with 

similar CDC values will be put together into a group as shown in Figure 2-5(b). In this 

example, there are six groups for the input pattern pairs. The group size and the number of 

groups is determined by a user-defined variance limitation, which is the range of CDC values 

in a group from the average CDC value to its maximum or minimum value. 

   

(a). CDC distribution               (b). Sorting and grouping 

Figure 2-5. An example of grouping process 
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Our experience shows that the best variance limitation falls between ±2.5% to ±5%. If 

the variance limitation is smaller than ±2.5%, the number of groups is increased and the 

group sizes are decreased. In this case, it is hard to obtain a high compaction ratio because 

many groups are too small to provide enough samples. If the variance limitation is larger than 

±5%, the grouping process will cause larger errors because the glitch power may be quite 

different between those pattern pairs in a group. Therefore, there is a trade-off between the 

compaction ratio, the estimation error, and the variance limitation, which can only be decided 

according to the characteristics of the circuits. 

In order to demonstrate these effects, we use 50,000 pseudo random vectors to test 

C2670 in ISCAS’85 benchmark circuits with different variance limitation and compression 

ratio by using the two different vector compaction approaches that will be introduced in 

Section 2.5. The experimental results are shown in Table 2-2. In Table 2-2, DCR is the 

abbreviation of desired compaction ratio. From the results, we can see that the estimation 

errors will increase in both approaches when the compression ratio is increased. If we set the 

variance limitation to a smaller value (1%), we can see that the estimation errors are getting 

worst especially for high compression ratio because many groups are too small to provide 

enough samples. When the variance limitation is set to a larger value (5%), the estimation 

error will also increase because the variation in a group is increased. 
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Table 2-2. The relationship between compaction ratio, variance limitation and estimation 

error 
 

Variance Limitation C2670 
±1% ±2.5% ±5% 

Sampling 
Techniques DCR Error (%) Error (%) Error (%)

100 1.84 0.87 2.19
250 4.04 3.83 3.32Single-Sequence 
500 8.64 7.48 7.88
100 2.16 2.82 2.23
250 4.25 3.73 4.77Multi-Sequence 
500 9.56 7.32 7.69

  

The pseudo code of the grouping process is shown in Figure 2-6. The subroutine 

QuickSort() sorts all pattern pairs according to their CDC values. When we try to merge a 

pattern pair into the current group, the subroutine cal_group_avg_cdc() calculates the average 

CDC value of this group. And the subroutine violate_var_limit() will test whether the 

variance limitation is violated due to the added pattern pair. If this group will not violate the 

variance limitation with the added pattern pair, this pattern pair will be merged into the 

current group. Otherwise, a new group will be built in which this pattern pair is the first 

member. The grouping information will be recorded in a data structure group[] and the total 

number of groups will be returned after the whole process is finished. 
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Grouping(pattern_pair[],N, var_limit,group[]) 
{ 
 QuickSort(pattern_pair[],N); 
 group_num = 1; 
 g_h=g_t=N; 
 while(g_h > 0) 
 { 
  group_avg_cdc=cal_group_avg_cdc(pattern_pair[],g_h,g_t); 
  if (violate_var_limit(group_avg_cdc,pattern_pair[g_h].cdc, 
   pattern_pair[g_t].cdc,var_limit)) 
  { 
   group[group_num].size=g_t-g_h; 
   group_num++; 
   g_t=g_h; 
   group_avg = pattern_pair[g_h].cdc; 
   pattern_pair[g_h].group_num=group_num; 
  } 
  pattern_pair[g_h].group_num=group_num; 
  g_h--; 
 } 
 return(group_num); 
} 
  

Figure 2-6. The pseudo code of the grouping algorithm 

2.5 Consecutive Sampling techniques 

2.5.1 Single-Sequence Approach 

After grouping, we can sample a number of pattern pairs from each group according to 

the size of the group divided by a user-defined compaction ratio. It is often called the 

proportional sampling strategy [27]. Instead, we can sample a single pattern pair from each 

group, which is called single sampling strategy [40]. The single sampling strategy can only be 

used if the power characteristic is a very precise approximation of the real power. However, it 

can achieve a very high compaction ratio. The proportional sampling strategy can be used 
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without a very precise power characteristic but the compaction ratio may not be as high as the 

single sampling strategy. 

In traditional sampling methods, people sample some independent pattern pairs from 

each group and concatenate them into a continuous sequence for simulation. Therefore, the 

sequence will include about half useless transitions as shown in Figure 2-1. Using a state 

transition graph and selecting the Euler trails on it with enough samples could be an approach 

to reduce useless transitions. However, it can only be used when most of states and transitions 

have passed many times. In typical cases, not all parts of the state transition graphs will be 

visited many times such that we are hard to obtain enough samples. Therefore, in order to 

reduce the useless transitions in most cases, we propose a single-sequence algorithm to 

sample a sequence of consecutive pattern pairs from the original input sequence with the 

desired distribution and compaction ratio. The single sequence algorithm can be formulated 

as below. 

Problem formulation: Given a sequence S of length N with entries in a set G={g1,g2,…,gm}, 

where gi∈Z+ (1,2,…) for 1 ≤ i ≤ m, and a set T={t1,t2,…,tm} with ti∈  (0,1,2,…) for 1 ≤ i ≤ 

m and t

+
0Z

i ≤ s(gi) for 1 ≤ i ≤ m, where s(gi) represents how many times that gi appears in S, find 

the shortest subsequence S’ in S such that all gi∈G can be found in S’ at least ti times. 

Solution: According to the problem formulation, we can see that the shortest subsequence 

that satisfies the requirements will also satisfy the following two conditions. The first 

condition is that the corresponding group of the start point in the shortest subsequence must 

exactly appear as the requirement in T. If the corresponding group of the start point is larger 
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than the requirement in T, we can drop it to obtain a shorter sequence and the new 

subsequence will still satisfy the requirement in T. The second condition is that the 

corresponding group of the end point in the shortest subsequence must also exactly appear as 

the requirement in T. The reason of this condition is the same as the first condition. Based on 

these two conditions, we propose an algorithm that can find the shortest subsequence from 

the original input sequence to satisfy the requirement in T.  

Step 1: Assume the subsequence starts from index tail and ends at index head. Find a 

subsequence, whose tail is located at the start point of S, to satisfy the requirements in 

T and the second condition. 

Step 2: Trace this subsequence by moving tail forward until the subsequence satisfies the 

first condition. Then, this subsequence is one candidate of the shortest subsequence. 

We will keep tracking the shortest one of all candidates. 

Step 3: Move tail one step forward. This subsequence is now violating the requirements in T. 

Step 4: Find the next subsequence that satisfies the requirements and the second condition by 

moving head forward on S. If head is equal to N and the subsequence still does not 

satisfy the requirements, this procedure will be stopped. Else, go back to Step 2. 

The global shortest subsequence will be the shortest one in those shortest subsequences 

found in Step 2. In our process, the shortest one will be found when the process stops because 

the process keeps tracking the shortest candidate. It is hard to give a formal proof for our 

algorithm, but we can explain it by simple descriptions as follows. If there is a shorter 

subsequence than the one we found, it means that some pattern pairs can be dropped from the 
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subsequence we found. However, the numbers of pattern pairs of the groups for first pattern 

pair and last pattern pair in our subsequence are just satisfying the requirement in T. It 

implies that no pattern pairs could be dropped from our subsequences. Therefore, the 

subsequence is the shortest subsequence that satisfies requirements. 

The pseudo code of this algorithm is shown in Figure 2-7. In Figure 2-7, the subroutine 

Shortest_subsequence() will find the shortest subsequence that satisfies the requirements in T. 

The sub_seq_statisfied() will test whether the subsequence from the index tail to the index 

head in S is satisfied the requirements in T and the first condition. The trace_forward() will 

increase the index tail one by one until the subsequence satisfies the second condition. The 

time complexity of this algorithm is O(n) because it only walks through the sequence S twice 

by head and tail. 

 
Shortest_subsequence(S[],G[],T[],N,f_head,f_tail) 
{ 
 head=tail=f_head=f_tail=1; 
 length=N; 
 while(head <= N) 
 { 
  if(sub_seq_satisfied(S[],G[],T[],head,tail)) 
  { 
    trace_forward(S[],G[],T[],head,tail) 
    if (length > head-tail+1) 
    { 
     length = head – tail + 1; 
     f_head = head; f_tail = tail; 
   } 
    tail++; 

} 
 head++; 

 } 
} 
  

Figure 2-7. The pseudo code of the single-sequence algorithm 
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Figure 2-8 is a simple example for the shortest subsequence searching process that 

samples one pattern pair from each sampled group (G={1,2,3,4}, T={1,1,1,1}). The first step 

is sub_seq_statisfied(), which finds the first subsequence that stratifies the requirements in T 

and the second condition. Two indexes tail and head define the subsequence. The second step 

is trace_forward(), which moves the index tail forward until the subsequence satisfies the 

first condition. This subsequence is one candidate of the shortest subsequence. Therefore, we 

record it by index f_tail and index f_head as the temporal shortest subsequence. The third 

step moves the index tail one step forward and apply the sub_seq_statisfied() to find the next 

subsequence that satisfies the requirement in T and the second condition. The fourth step is 

trace_forward() again which moves the index tail forward until the subsequence satisfies the 

first condition. This subsequence is also one candidate of the shortest subsequence. 

Compared with the recorded temporal shortest subsequence, the existing shortest 

subsequence is shorter than the new one. Therefore, the indexes f_tail and f_head are not 

changed. The fifth step is the same as step 3 that moves the index tail one step forward and 

apply the sub_seq_statisfied() to find the next suitable subsequence. The sixth step is 

trace_forward() again that moves the index tail forward until the subsequence satisfies the 

first condition. This subsequence is also one candidate of the shortest subsequence. 

Compared with the recorded temporal shortest subsequence, this new sequence is shorter than 

the existing shortest subsequence. Therefore, the indexes f_tail and f_head are changed to 

define the new temporal shortest subsequence from tail to head. After the sixth step, we 

cannot find any new subsequence. The recorded temporal shortest subsequence is the final 

shortest subsequence. 
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1 4 1 4 3 3 3 2 4 4 1 2 3 2 1
tail head 

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1
tail,f_tail head,f_head

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1
tail f_head

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1
f_tail head

tail,f_tail head,f_head

tailf_tail f_head head

tail,f_tail head,f_head

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1

sub_seq_statisfied(); 

trace_forward (); 

sub_seq_statisfied(); 

trace_forward (); 

sub_seq_statisfied(); 

trace_forward (); 

 

Figure 2-8. An example of the shortest subsequence searching 

Ideally, we can find a compacted sequence without any useless transitions as shown in 

Figure 2-2. In real cases, however, the compacted sequence may still have some undesired or 

over-sampled transitions. 

2.5.2 Multi-Sequence Approach 

As shown in Figure 2-3, if we relax the limitation a little bit such that multiple 

consecutive sequences are allowed, we can find better solutions for vector compaction 

problem if we minimize the number of sequences instead of setting the number to be one. In 

this section, we will discuss this new extension and propose an algorithm to solve this more 

general problem. 

Problem formulation: Given a sequence S of length N with entries in a set G={g1,g2,…,gm}, 

where gi∈Z+ (1,2,…) for 1 ≤ i ≤ m, and a set T={t1,t2,…,tm}, ti∈  (0,1,2,…)  for 1 ≤ i ≤ m 

and t

+
0Z

i ≤ s(gi) for 1 ≤ i ≤ m, where s(gi) represents how many times that gi appears in S, find 

the minimum number of disjoint subsequences in S such that all gi∈G can be found in those 
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subsequences exactly ti times, for 1 ≤ i ≤ m. 

This problem is very similar to the well-known EXACT COVER BY 3-SETS (X3C) 

problem [80]. The X3C problem is described as follows. 

INSTANCE: Set X with |X| = 3q and a collection C of 3-element subsets of X. 

QUESTION: Does C contain an exact cover for X, i.e., a subcollection C’ ⊆ C such that 

every element of X occurs in exactly one member of C’ ? 

In fact, the X3C problem can be transformed into a special case of our problem in 

polynomial time. Instead the detailed deriving process, we briefly show the transforming 

process in Figure 2-9. If the minimum number of disjoint subsequences in our problem is 

equal to q in X3C problem, we can find that the subcollection C’ will satisfy the requirement. 

 In X3C problem:  
X={1,2,3,4,5,6}, |X|=3*2, q=2 and 
C={{6,2,3}, {5,3,6}, {1,2,4}, {1,5,4}} 

Transfer to multi sequences problem: 
G={1,2,3,4,5,6,0}, s(1)=2, s(2)=2,s(3)=2, s(4)=2, 
s(5)=2, s(6)=2, s(0)=3 and T={1,1,1,1,1,1,0} 

 S  6 2 3 0 5 3 6 0 1 2 4 0 1 5 4
 

Figure 2-9. Transforming a X3C problem into a multi-sequence problem 

Because the X3C problem is a NP-complete problem, our multi-sequence problem is a 

NP-complete problem, too. Therefore, we propose a heuristic algorithm to solve it. First, we 

will find the longest subsequence in which the pattern pairs of each group do not appear more 

than the requirements in T. Of course, this longest subsequence will not include any useless 

transitions. After that, we modify the numbers in T by subtracting the required sample 

number in T with the number of pattern pairs that appear in the first subsequence for each 
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group. Then we can find the next longest subsequence and modify the numbers in T again. 

This process will be iteratively executed until all numbers in T are equal to zero. In order to 

ensure that all subsequences found in this process are disjoint, the subsequence found in each 

iteration will be marked in S. Finally, the sequence that concatenates those subsequences is 

the solution of our algorithm. As a summary, we describe our algorithm step-by-step as 

follows and demonstrate the pseudo code of our algorithm in Figure 2-10. 

Step 1: Find the longest subsequence in which each gi in G appears  times, where ≤ t'
it

'
it i 

for all ti in T. 

Step 2: Mark the longest subsequence in S and set ti=ti-  for all t'
it i in T. 

Step 3: If all ti=0, 1 ≤ i ≤ m, STOP. Then concatenate all subsequences found in Step 1 to be 

the solution. Else go to Step 1. 

In Figure 2-10, the subroutine sub_seq() is the function to find the longest subsequence 

in which the pattern pairs of each group do not appear more than the requirements in T. The 

subroutine concatenate() concatenates the sub-sequence found by the sub_seq() function. The 

subroutine modify() modifies the numbers in T according to the longest subsequence found by 

the subroutine sub_seq(). The subroutine all_zero() tests whether all entries in T equal to zero. 

The number of useless transitions in the final sequence will be the number of subsequences 

minus one. 
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Multi_sequence(S[],G[],T[],N) 
{ 
 S’=NULL; 
 S_tmp=NULL; 
  flag=0; 
 while(flag==0) 
 { 
  S_tmp=sub_seq(S[],G[],T[],N); 
   S’=concatenate(S’,S_tmp); 
    modify(T[],S_tmp); 
  S_tmp=NULL; 
    If(all_zero(T[])) flag=1; 
  } 
 return(S’ ); 
} 
  

Figure 2-10. The pseudo code of the multi-sequence algorithm 

The time complexity of this algorithm is O(n2) that is dominated by the number of 

sub_seq() subroutine being executed. In the worst case, the number of sub_seq() subroutine 

being executed is n divided by the desired compaction ratio. Therefore, the time complexity 

is O(n2) for our proposed multi-sequence algorithm in the worst case because the operations 

in this algorithm are similar to those in the single-sequence algorithm, whose time complexity 

is O(n). 

Figure 2-11 is an example of the detailed searching process in the multi-sequence 

algorithm for G={1,2,3,4} and T={3,1,2,2}. The input sequence S in this example is the same 

as in Figure 2-3 for explaining the improvement of multi-sequence algorithm. The first step is 

sub_seq() that will find the longest subsequence in which the pattern pairs of each group do 

not appear more than the requirements in T. The second step is concatenate(), which 

concatenates the result of the first step into S’. The third step is modify(), which modifies the 

numbers in T according to the subsequence found in the first step and marks those transitions 
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that appear in the subsequence on S. After modified, T becomes to T={1,1,0,0} and passes the 

examination of the all_zero() subroutine, which tests whether all entries in T equal to zero. 

The fourth step is sub_seq() again that finds the longest subsequence in which the pattern 

pairs of each group do not appear more than the requirements in T. The fifth step is 

concatenate(), which concatenates the result of the fourth step into S’. The sixth step is 

modify() again, which modifies T according to the subsequence found in the fourth step and 

makes proper marks on S. After modified, T becomes to T={0,0,0,0}. Because all entries in T 

equal to zero, the all_zero() subroutine will return 1 and the process is stopped. At this 

moment, the sequence S’ is the final result. 

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1

1 4 1 4 3 3 

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1

1 4 1 4 3 3 ? 1 2

S_tmp  sub_seq();

T={3,1,2,2}; S’=NULL; S_tmp=NULL; 

1 4 1 4 3 3 S’  concatenate();

modify(); T={1,1,0,0}; all_zero() != 1; 

1 2S_tmp  sub_seq();

S’  concatenate();

1 4 1 4 3 3 3 2 4 4 1 2 3 2 1 modify(); T={0,0,0,0}; all_zero() == 1; 

1 4 1 4 3 3 ? 1 2S’   

Figure 2-11. An example of the multi-sequence algorithm 

In this example, the compacted sequence S’ is consisted of two subsequences thus still 

having one useless transition. However, compared with the single-sequence approach, we still 

save 2 transitions with the multi-sequence approach. Using the single-sequence algorithm, we 

will find the shortest sequence with 11 transitions as shown in Figure 2-3(a). Using the 

multi-sequence algorithm, the final sequence has only 9 transitions including one useless 
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transition as shown in Figure 2-3(b). 

2.6 Average Power Calculation 

For efficiency consideration, it is not necessary to sample pattern pairs from those 

groups with too few pattern pairs because those groups have only small contribution on the 

overall power consumption. If we put too much effort to sample those pattern pairs, the 

desired compaction ratio may be decreased. Instead, we can directly calculate their 

contribution to the overall power consumption for those non-sampled groups to provide a 

trade-off strategy between efficiency and accuracy. Therefore, we will set the sampling 

numbers to zero for those groups whose sizes are smaller than the desired compaction ratio. 

The detailed equations for deriving the average power consumption of a circuit are shown in 

Equations (2-10), (2-11) and (2-12). 
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In Equation (2-10), N is the number of pattern pairs in the original input sequence, Pavg 

is the average power consumption, Psam is the total power consumption of sampled groups, 

and Pnon is the total power consumption of non-sampled groups. In Equation (2-11), m is the 

number of sampled groups, hi is the number of sampled pattern pairs in group i, CDCavg_i is 
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the average CDC value of group i, CDCj is the CDC value of pattern pair j, Pj is the power 

consumption of pattern pair j, and htotal_i is the total number of pattern pairs in group i. In 

Equation (2-12), CDCtotal_non is the total CDC value of non-sampled groups, and CDCtotal_sam 

is the total CDC value of sampled groups. 

2.7 Experimental Results 

In this section, we will demonstrate the experimental results of our approaches with 

ISCAS’85 benchmark circuits. The estimation environment is a SUN UltraSPARC IIi 

workstation with 512MB memory. The original input sequence contains 50,000 pseudo 

random vectors for each circuit. The variance limitation in the grouping process is set to 

±2.5%. The number of sampled groups is decided by a user-specified parameter “desired 

compaction ratio” (DCR). In our experiments, the desired compaction ratio is set to a high 

number (250) to demonstrate that those sampling techniques could achieve high compaction 

ratio and high speedup without losing too much accuracy. However, with the same DCR, the 

achieved compaction ratio may not as high as expected because the useless transitions may 

exist in the compacted input sequences. Therefore, the effective compaction ratio is also 

calculated to show the effects of reducing useless transitions in the proposed vector 

compaction technique. 

The experimental results are shown in Table 2-3. The first row is the names of circuits. 

The second and third rows are the estimation results and the run time elapsed by PowerMill 

simulator with the original input sequence. The following six rows show the estimation 

results of the random sampling technique and the last twelve rows are the estimation results 
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using the consecutive sampling techniques. The row L/U represents the length of the 

compacted sequence (L) and the useless transitions (U) in the compacted sequence. ECR is 

the abbreviation of effective compaction ratio, which is the number of pattern pairs in the 

original input sequence divided by the number of pattern pairs (including useful and useless 

transitions) in the compacted sequence. The speedup is the elapsed time of PowerMill with 

the original input sequence divided by the elapsed time of the power estimation with vector 

compaction technique that includes Verilog-XL simulation, grouping, sampling, PowerMill 

simulation and average power calculation. 

Table 2-3. A comparison of random, single-sequence and multi-sequence techniques 

 

 Circuit C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552 Avg.

I (uA) 289.6 685.5 411.8 790.9 841.7 939.1 2058.7 2540.5 21936.6 3786.6PowerMill 
(L=50,000) Time (s) 8542 16757 13774 22064 22925 18100 57450 49813 290751 63705

I (uA) 299.4 708.3 437.6 824.2 879.7 981.4 2134.3 2613.3 22603.6 3999.4
Error (%) 3.38 3.33 6.27 4.21 4.51 4.50 3.67 2.87 3.04 5.62 4.14 

L/U 377/187 385/190 390/194 388/192 380/188 388/192 393/195 391/194 388/193 390/193
ECR 132.63 129.87 128.21 128.87 131.58 128.87 127.23 127.88 128.87 128.21 129.22 

Time (s) 93.6 177.8 147.5 232.1 237.9 229.2 563.7 552.3 2640.0 703.4

Random 
Sampling 

Speedup 91.26 94.25 93.38 95.06 96.36 78.97 101.92 90.19 110.13 90.57 94.21 

I (uA) 291.6 694.6 422.0 824.4 891.2 978.4 2160.8 2620.3 22741.0 3887.7
Error (%) 0.69 1.33 2.48 4.24 5.88 4.18 4.96 3.14 3.67 2.67 3.32 

L/U 294/0 245/0 233/0 324/0 228/0 347/0 323/0 272/0 262/0 316/0
ECR 170.07 204.08 214.59 154.32 219.30 144.09 154.80 183.82 190.84 158.23 179.41 

Time (s) 79.6 129.3 103.2 201.4 169.0 214.3 482.9 433.1 1908.5 609.8

Single 
Sequence 

Speedup 107.31 129.60 133.47 109.55 135.65 84.46 118.97 115.02 152.35 104.47 119.08 

I (uA) 301.7 699.2 430.1 824.3 886.9 975.3 2143.6 2616.9 22829.2 4036.3
Error (%) 4.18 2.00 4.44 4.22 5.37 3.85 4.12 3.01 4.07 6.59 4.19 

L/U 195/5 201/6 202/6 200/4 196/4 198/2 202/4 200/3 197/2 201/4
ECR 256.41 248.76 247.52 250.00 255.10 252.53 247.52 250.00 253.81 248.76 251.04 

Time (s) 62.3 115.2 94.5 148.9 153.2 160.4 343.0 362.8 1530.4 463.1

C
on

se
cu

tiv
e 

Sa
m

pl
in

g 

Multi 
Sequence 

Speedup 137.11 145.46 145.76 148.18 149.64 112.84 167.49 137.30 189.98 137.56 147.13 
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Table 2-4. Consecutive sampling techniques for LFSR input sequences 

 

 Circuit C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552 Avg.

I (uA) 293.3 668.1 383.9 772.4 847.1 963.9 1944.6 2341.7 19912.7 3867.8PowerMill 
(L=50,000) Time (s) 8206 15296 13655 21123 21139 19741 52857 46819 273940 64931

I (uA) 307.3 683.4 408.2 794.6 883.4 1007.4 2033.9 2434.1 21290.4 3948.1
Error (%) 4.77 2.29 6.33 2.87 4.29 4.51 4.59 3.95 6.92 2.08 4.26 

L/U 380/188 386/192 395/195 386/191 382/189 387/192 383/189 391/193 388/192 390/193
ECR 131.58 129.53 126.58 129.53 130.89 129.20 130.55 127.88 128.87 128.21 129.28 

Time (s) 94.1 178.8 144.2 219.4 242.1 238.1 547.7 544.3 2458 701.4

Random 
Sampling 

Speedup 87.21 85.55 94.69 96.28 87.32 82.91 96.51 86.02 111.45 92.57 92.05 
I (uA) 311.1 697.4 398.6 795.3 878.7 1000.8 2047.3 2430.8 20973.8 3957.5

Error (%) 6.07 4.39 3.83 2.96 3.73 3.83 5.28 3.80 5.33 2.32 4.15 
L/U 260/0 357/0 240/0 306/0 285/0 263/0 266/0 254/0 473/0 244/0

ECR 192.31 140.06 208.33 163.40 175.44 190.11 187.97 196.85 105.71 204.92 176.51 
Time (s) 69.4 157.6 96.3 187.9 180.1 195.1 385.6 406.2 2971 528.4

Single 
Sequence 

Speedup 118.24 97.06 141.80 112.42 117.37 101.18 137.08 115.26 92.20 122.88 115.55 

I (uA) 315.2 704.5 403 781.3 891 999.9 2059.2 2460.4 21238.4 3956.4
Error (%) 1.57 3.83 6.41 0.17 6.7 3.73 5.89 5.07 6.66 2.29 4.23

L/U 196/4 198/4 205/5 199/4 197/4 198/3 198/4 201/3 200/4 200/3
ECR 255.10 252.53 243.90 251.26 253.81 252.53 252.53 248.76 250.00 250.00 251.04 

Time (s) 56.5 106.1 85.4 138.9 140.8 164.3 319.4 358.7 1517.3 467.3

C
on

se
cu

tiv
e 

Sa
m

pl
in

g 

Multi 
Sequence 

Speedup 145.24 144.17 159.89 152.07 150.13 120.15 165.49 130.52 180.54 138.95 148.72 
 

 

According to the experimental results, the speedups of three methods are 94.21, 119.08 

and 147.03 respectively. The multi-sequence approach improves 56% on speed compared to 

random sampling approach. The single-sequence approach only improves 26% on speed. It 

shows that we can obtain the highest speedup using the multi-sequence approach for all test 

cases in the benchmark. The average compaction ratio achieved in random sampling 

approach is 129.22 and the average error is 4.14%. The average compaction ratio achieved in 

single-sequence approach is 179.41 and the average error is 3.32%. The average compaction 

ratio achieved in multi-sequence approach is 251.04 and the average error is 4.19%. It shows 

that the multi-sequence approach can dramatically reduce the useless transitions in the 

random sampling method such that it can almost keep the desired compaction ratio exactly. In 
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our experiments, the useless transitions in the multi-sequence approach for all cases are not 

larger than 6. In random sampling approach, the useless transition is at least 187. Compared 

to the single-sequence approach, the compaction ratio in the multi-sequence approach is still 

much higher, especially when the pattern pairs of some groups are not uniformly distributed 

in the original sequence, such as C2670. About the compaction error, the average errors of all 

three approaches are less than 5%. It shows that this multi-sequence approach can improve 

the speedup much more with reasonable accuracy. 

In order to verify the effects of our approach on those input patterns that are not pure 

random, we perform another experiment that uses the input sequences generated from a linear 

feedback shifter register (LFSR) because a LFSR sequence is easier to generate and has 

highly spatial correlation that is quite different to pure random patterns. The experimental 

results are shown in Table 2-4. Compared with the results in Table 2-3, we can see that the 

proposed approach can still be effective with different input distribution. 

2.8 Summary 

In this work, we proposed a multi-sequence sampling technique to reduce the useless 

transitions in the compacted sequence and improve the over sampling problem of our 

previous single-sequence approach. By relaxing the limitation a little bit such that multiple 

consecutive sequences are allowed, we can find better solutions for vector compaction 

problem if we minimize the number of sequences instead of setting the number to be one. Of 

course, the number of sequences could be one as handled in the original single-sequence 

approach, but it is just a special case in the multi-sequence approach. As demonstrated in the 
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experimental results, the multi-sequence approach improves 56% on speed compared to the 

random sampling approach. The single-sequence approach only improves 26% on speed. It 

shows that this multi-sequence approach can improve the speedup much more with 

reasonable accuracy. 
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Chapter 3 

Gate-Level Power Modeling with 1-D LUT 

3.1 Power Modeling with Lookup Table 

In SoC designs, power models may provide an efficient solution to estimate the power 

consumption of IPs because the transistor-level simulation is only required at the 

characterization step. The power model of a design, which is built from a power 

characterization process, describes the relationship between power characteristics and real 

power consumption with specific input sequences or input signal statistics. Lookup tables are 

the most commonly used power models. Once the required power characteristics are obtained, 

the estimated power consumption can be easily found in the table. 

Because the power dissipation of a combinational circuit depends on the previous and 

present input patterns, a fully characterized lookup table for an n-input combinational circuit 

will have 22n entries. For a sequential circuit with n-input and s internal state registers, a fully 

characterized lookup table will have 22n+s entries. It is obviously infeasible for complex 

circuits because the table size is too large to be stored and the characterization process will 

consume too much time. Efficient reduction methods are definitely required to make this 

approach become feasible. 

In this approach, the chosen power characteristics have large impacts on the table size 

and accuracy of the estimated power consumption. Therefore, many power characteristics are 
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proposed in the literature [19][65~69][71], such as the signal statistics (probability, transition 

density, correlation coefficient, etc.) of primary inputs and outputs, the active information of a 

design (switching count, charging and discharging capacitance, etc.), the power sensitivity of 

primary inputs, the Hamming distance of the pattern pairs at primary inputs, etc. The methods 

proposed in [19][71] are building the lookup tables according to the signal transitions at the 

primary inputs. In [71], the authors use a clustering algorithm to compress the input vectors 

with similar power consumption as a cluster such that the table size can be reduced. The 

experimental results show that the method is useful for the test circuits but there is no clear 

evidence about the effects on large circuits. The method in [19] operates on the state 

transition graphs (STGs) of macrocells with merging transition compatible nodes to reduce 

the sizes of lookup tables. However, it can only be used on the designs with small input 

numbers because the table size will increase rapidly when the number of primary inputs is 

increased. 

The methods in [65~68] use the signal statistics of primary inputs and outputs to be the 

indexes of lookup tables. In [65], the lookup tables with 2 dimensions (average input signal 

probability, average input signal transition density), 3 dimensions (average output zero-delay 

transition density as the third dimension) and 4 dimensions (average spatial correlation 

coefficient as the fourth dimension) are compared. The results show that the estimation errors 

are decreased when the dimensions of tables are increased, but the sizes of tables are also 

increased. The increase of table size will require extra characterization time that may become 

a non-neglectable overhead. In [66], a power model based on the hamming distance of input 

pattern pairs is proposed. The model could be parameterized according to the input bit-width 
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of the function unit. The method in [67] builds a five-dimension lookup table with average 

signal probability of high-switching inputs and low-switching inputs, average transition 

density of high-switching inputs and low-switching inputs and average output transition 

density. The estimation errors are close to the estimation errors of 4-D lookup table in [65]. In 

[68], they build a 3-D lookup table, which is similar to the 3-D table in [65], for soft macros 

with some different parameters such as the bit-width of inputs and the target manufacturing 

technologies. However, because the distribution of the average output transition density is 

hard to control, the characterization time to fill the lookup tables is hard to control in those 

approaches [65~68]. 

The method in [69] uses the power surface based on the power sensitivity of primary 

inputs to be the power models. They proposed an efficient method to approximate the surface 

with a finite number of points. They compared their results with logic simulation results 

under zero-delay and unit delay model but they did not show the comparison with 

transistor-level simulation results. 

Based on above observations, we can recognize that the size of lookup table is a primary 

concern for the power models of complex designs such as commercial IPs. Therefore, we 

propose a table-based power modeling method in this work for combinational circuits in 

which the table size is very small and almost independent to the number of primary inputs. In 

order to reduce the table size, we build a one-dimension lookup table to map the zero-delay 

charging and discharging capacitance (CDC) to the real power consumption of input pattern 

pairs, which are obtained from gate-level simulation and transistor-level simulation 

individually. In order to simplify the description, we will use CDC to represents the 
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zero-delay charging and discharging capacitance in the rest of this paper. The CDC of a 

pattern pair is the summation of charging and discharging capacitances of the nodes whose 

signals change from 0 to 1 or 1 to 0 during the transition of input patterns under zero-delay 

model. Using CDC as the index of the lookup tables is decided by our previous comparison 

results of the average normalized error between the three power characteristics, CDC, 

zero-delay switching count (SC) of internal nodes and Hamming distance (HD) of input 

pattern pairs in Section 2.3. Among those power characteristics, the CDC has the minimal 

average normalized error, which may provide more precise estimation results. Therefore, we 

choose CDC as the only one index of lookup tables to reduce the errors of power models. As 

shown in the experimental results, our CDC-based power models can still provide accurate 

results although the table size has been greatly reduced. 

3.2 Proposed Power Modeling Methodology 

In this work, the power model is represented by a lookup table, which maps the CDC 

values to real power consumption of input pattern pairs. According to Equation (2-5), it 

implies that we use the Pfunc_trans to indicate the trend of real power consumption, which is the 

dominated part of power consumption. The building flow of the lookup table is shown in 

Figure 3-1. We will first divide the input pattern pairs into several groups according to their 

CDC values that are calculated by a logic-level simulator. Those pattern pairs within an 

interval of CDC values will be grouped together and the average power of them, which is 

estimated by PowerMill, will be recorded in the corresponding entry of the lookup table. The 

input sequence for power characterization is randomly generated such that the pattern pairs in 
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the same group can be viewed as randomly distributed. Therefore, we can use the Monte 

Carlo approach to reduce the characterization time for the average power consumption of 

those groups. In the following sections, the proposed approaches for grouping the pattern 

pairs and the power characterization of each group will be explained in detail. 

 

Figure 3-1. The block diagram for building the power model 

3.3 Dynamic Grouping 

Using the CDC values of pattern pairs to be the index of a lookup table may still require 

huge table size if we set a table entry for each different CDC value. Although the table size 

will be much smaller than 2n+n, where n is the number of primary inputs of the circuit, it is 

still very huge. In order to reduce the table size, we can collect those pattern pairs with 

similar CDC values to be a group and only set one entry in the lookup table for each group. A 
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similar grouping method was used in pattern compaction techniques for power estimation 

[39][44]. They calculate the CDC values of the pattern pairs in the input sequence by a 

logic-level simulator such that they can collect those pattern pairs with similar CDC values as 

a group. Then, the pattern compaction can be done by selecting some pattern pairs as 

representatives from each group because those pattern pairs in the same group have similar 

power consumptions. In [40][76], however, the compacted sequence is generated for a 

specific input sequence. In other words, the input sequence is deterministic and the 

distribution of CDC values is deterministic, too. Therefore, they can separate the pattern pairs 

into finite groups in their grouping algorithm. Unfortunately, when we build the lookup table 

for the proposed power model in our work, the CDC distribution is non-deterministic until we 

simulate all pattern pairs, which is almost impossible for large circuits even using a 

logic-level simulator. 

In order to handle this situation without simulating all possible cases, we propose a 

method to dynamically increase the entries of the lookup tables to cover the current CDC 

distribution of designs when we characterize the average power of each entry in the table. As 

illustrated in Figure 3-2, the CDC values of pattern-pairs have been sorted before grouping. 

The X-coordinate is the number of pattern pairs and the Y-coordinate is the CDC value of 

each pattern pair. In the first iteration, we randomly generate several pattern pairs and the 

dynamic grouping in this step is similar to the grouping process in [40][76] as shown in 

Figure 3-2(a). Each group is defined with an interval of CDC values and the neighborhood 

groups have continuous CDC values. This is different to the grouping process [40][76] which 

defines a group with the CDC values of two boundary pattern pairs and the neighborhood 
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groups may not have continuous CDC values. With continuous interval definition, we can 

easily find the corresponding groups for the pattern pairs with CDC values between existing 

ranges in the following iterations. 

 

Figure 3-2(a). The dynamic grouping process after the first iteration 

 

Figure 3-2(b). The dynamic grouping process after the second iteration 

In the second iteration, we generate more random patterns and the number of group is 

spread because the CDC distribution area is increased as shown in Figure 3-2(b). The range 

of each group in Figure 3-2(a) is not changed but new groups are generated from the 

boundaries of the first and last groups in Figure 3-2(a). It implies that the size of the lookup 
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table in our power model is determined by the number of groups in the dynamic grouping 

process, which can be controlled by the user-defined group interval. The larger group interval 

will lead to fewer table entries. This group interval is defined by a percentage of the range 

from the maximum CDC value to the minimum CDC value of each group and set as 5% of 

the maximum CDC value in this work. If the interval is smaller than the minimum load 

capacitance of the nodes, the interval will be set as the minimum load capacitance of nodes 

because it is impossible to have such CDC values. If the group interval is defined as 5% of 

the maximum CDC value in the group, the table will only increase 45 entries when the CDC 

distribution region is spread 10 times to the previous distribution region. Therefore, even the 

circuit size are increased, the table entries are only increased linearly. 

In order to explain the dynamic grouping process more clearly, the pseudo code of the 

proposed algorithm is shown in Figure 3-3. In the first iteration, the grouping process is 

performed according to the CDC range of the first random sequence. Those groups are 

defined one by one from the minimum CDC value of the input sequence until the range of 

groups cover the maximum CDC value of the input sequence. Note that the interval of each 

group, which is defined by its minimum CDC value and maximum CDC value, cannot be 

smaller than the parameter MIN_NODE_CDC in the circuit. After all groups are defined, the 

allocate() function allocates each pattern pair in the input sequence into the corresponding 

group. In the following iterations, the number of groups may be increased by insert_group() 

or expand_group() functions if their CDC distribution is out of the range of current groups. 

The insert_group() and expand_group() functions will perform similar operations like the 

process in the first iteration to cover the CDC distribution of new input sequence. The only 
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difference is that the two functions start with the boundary values of the previous iteration. 

The allocate() function will again allocate those pattern pairs in the new input sequence into 

corresponding groups as in the first iteration. After each iteration, the group information of 

each pattern pair can be obtained for the following power characterization process. 

 
Dynamic_grouping(group[], seq[], iteration, p_n, group_num) 
{ 

if(iteration == 1)  /*Grouping for initial CDC distribution*/ 
{ 

max_cdc = Max(seq[]); min_cdc = Min(seq[]); 
/*max_cdc and min_cdc define the range of CDC distribution of current input sequence*/ 
group_num=0; 
While( min_cdc < max_cdc) 
{ 

group[group_num].min_cdc = min_cdc; 
if ((min_cdc*5/95) < MIN_NODE_CDC) 
{ 

group[group_num].max_cdc = min_cdc + MIN_NODE_CDC; 
} else 
{ 

group[group_num].max_cdc = min_cdc*100/95; 
} 
min_cdc = group[group_num].max_cdc; 
group_num++; 

} 
allocate(group[], group_num, seq[], p_n); 

} else /*Group increasing if CDC distribution spread*/ 
{ 

max_cdc = Max(seq[]); min_cdc = Min(seq[]); 
if (max_cdc > group[group_num-1].max_cdc) 
{ 

group_num=expand_group(group[], group_num, max_cdc); 
} elseif (min_cdc < group[0].min_cdc) 
{ 

group_num=insert_group(group[], group_num, min_cdc); 
} 
allocate(group[], group_num, seq[], p_n); 

} 
} 
  

Figure 3-3. The pseudo code of dynamic grouping process 

3.4 Power Characterization 

In our power model, the corresponding power for each table entry is determined by the 

average power consumption of all pattern pairs located in the corresponding CDC interval. 

Therefore, we use a random input generator to generate a number of pattern pairs such that 
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they can distribute over different groups. Figure 3-4 gives an illustration of this power 

characterization flow. The power characterization process will stop when one of the following 

two conditions is satisfied. 

(a). The average power consumption of each group has reached the desired confidence level. 

(b). The total pattern pairs have reached the constraint of maximum number of pattern pairs. 

 

Figure 3-4. An illustration of the power characterization 

The maximum number of characterized pattern pairs is used to control the 

characterization efforts. It can be decided by users to make a trade-off between accuracy and 

characterization efforts. If criterion (b) is used to stop the characterization process, the 

average power of those groups that do not have enough pattern pairs will be estimated with 

interpolation or extrapolation because the current samples may not have enough 
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representatives. 

In order to further improve the efficiency of the characterization process, we use the 

Monte Carlo approach to check the stop criteria (a) such that we can finish the 

characterization process as soon as possible. The Monte Carlo simulation [40] has been used 

to reduce the simulation efforts for estimating the average power of circuits in [31,32][37]. 

Under the assumption that the mean of any sample is normal distribution, the end of 

simulation can be decided according to the statistical stopping criterion shown in Equation 

(3-1). In Equation (3-1), ε is the maximum percentage of acceptable error, N is the number of 

sample, ηT is the sample mean and sT is the sample standard deviation. For (1-α) confidence 

level, tα/2 is t-distribution coefficient with (N-1) degrees of freedom. 

 ε
η
α <

N
st

T

T2/  (3-1) 

The proposed dynamic grouping process will categorize all pattern pairs of the input 

sequence into several groups. We can assume that the pattern pairs in a group are also 

randomly distributed because the input sequence is randomly generated. Therefore, the Monte 

Carlo approach can also be applied to speed up the estimation for the average power of each 

group. After the estimation of average power has converged according to the Monte Carlo 

stop criteria, we will not simulate the following pattern pairs for these groups in the 

transistor-level simulator because the current results already have the desired accuracy. More 

samples will not improve the accuracy too much. Therefore, we can skip those samples to 

save a considerable computation time. 

Of course, this grouping-based power characterization process may induce some errors 
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in the power model because of the variation in each group. However, if the adopted power 

characteristic represents the real power consumption very well, the induced errors can be very 

small. Therefore, we perform a simple experiment on ISCAS’85 benchmark circuits with 

0.35um cell library to discuss the possible variation of various power characteristics. In this 

experiment, the group interval is set as 5% of the maximum CDC value. In characterization 

process, the random input generator generates a sequence with 5,000 pattern pairs in every 

iteration and the maximum number of characterized pattern pairs is set as 100,000. The 

confidence level in the Monte Carlo criteria is set as 0.99 (α = 0.01) under the maximum 

acceptable error ε is set as 0.05. The sample size is set as 30. 

In Table 3-1, we show the differences between the characterized power value of each 

group and the real power consumption of the pattern pairs belong to the corresponding group 

with three power characteristics, CDC, SC, and HD. The first column shows the percentage 

of the pattern pairs whose errors are smaller than 10%. The second and third columns show 

the percentage of the pattern pairs whose errors are large than 10% and 40% respectively. The 

same grouping method and characterization process are applied for each power characteristic. 

And the real power consumptions of those pattern pairs are obtained by transistor-level 

simulation in the characterization process. According to the experimental results, it is very 

clear that using CDC as the power characteristic is the best choice to minimize the errors of 

power models. 
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Table 3-1. The distribution of the variance in the groups 

<10% 10% ~ 40% >40% 
Circuits 

CDC SC HD CDC SC HD CDC SC HD 
C432 65.67 58.54 28.46 27.39 34.13 53.73 6.94 7.33 17.81
C499 93.33 90.43 73.76 6.67 7.36 21.43 0 2.21 9.81
C880 82.84 83.21 36.33 16.9 16.34 44.27 0.26 0.45 19.4

C1355 98.71 93.88 82.20 1.29 6.12 15.92 0 0 1.88
C1908 72.41 70.22 35.40 25.68 27.37 59.42 1.91 2.41 5.18
C2670 68.50 53.79 38.27 28.88 39.64 44.31 2.62 6.57 17.42
C3540 60.31 60.21 34.89 38.51 37 61.68 1.18 2.79 3.43
C5315 90.19 88.77 29.44 9.47 9.43 43.05 0.34 1.8 27.51
C6288 59.43 46.6 27.27 37.88 45.1 64.58 2.69 8.3 8.15
C7552 78.91 61.9 57.48 19.77 30.95 31.89 1.32 7.15 10.63

Average 77.03 70.76 44.35 21.24 25.34 44.03 1.73 3.90 12.12
  

3.5 Power Estimation with the Power Model 

After the power model of a circuit is built, the average power consumption for any test 

sequence can be estimated as shown in Figure 3-5. First, we use a logic-level simulator (e.g. 

Verilog-XL) to calculate the CDC values of pattern pairs in the test sequence. With the CDC 

values, we can find their corresponding groups in the lookup table for those pattern pairs in 

the sequence. If a pattern pair belongs to a CDC interval, its power consumption will be set as 

the value of the corresponding table entry in the lookup table, and the total power is equal to 

the summation of total values of every pattern pairs. For the average power, it can be 

obtained from dividing the total power by the number of pattern pairs in the test sequence. 
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Figure 3-5. Block diagram of average power calculation 

The lookup table may not cover whole CDC distribution of all possible pattern pairs 

because we did not simulate all pattern pairs in the characterization process. In this case, we 

can use extrapolation to estimate the power consumption of those pattern pairs whose CDC 

values are out of the range of the lookup table. The average power consumption can be 

expressed as Equation (3-2). In Equation (3-2), N is the total number of pattern pairs in the 

test sequence. g is the number of entries of the lookup table. Pi is the average power recorded 

in the ith entry of the lookup table. ni is the number of pattern pairs in the test sequence whose 

CDC values are involved in the CDC interval of ith entry. Pout_of_range is the total power 

consumption of those pattern pairs whose CDC values are out of the range of the lookup table. 

As shown in Equation (3-3), we can use extrapolation to estimate the power consumption of 

those pattern pairs. P1, P2, Pg-1 and Pg are defined as Pi in Equation (3-2). CDC1, CDC2, 

CDCg-1 and CDCg are the largest CDC values of entries 1, 2, g-1 and g in the lookup table. kr 

and kl are the numbers of pattern pairs which are out of the smallest and largest range of CDC 

values in the lookup table. 

 
N

PnP
P

rangeofout

g

i
ii

avg

__
1

+×
=
∑
=  (3-2) 

 63



 (∑
=

⎥
⎦

⎤
⎢
⎣

⎡
−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
rk

i
irangeofout CDCCDC

CDCCDC
PPPP

1
1

12

12
1__ )   

 ( )∑
= −

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
++

lk

i
gi

gg

gg
g CDCCDC

CDCCDC
PP

P
1 1

1                   (3-3) 

3.6 Experimental Results 

In this section, we will show some experimental results about the accuracy and 

efficiency of the proposed power model. The experiments are obtained on a SUN 

UltraSPARC II workstation. The test circuits are ISCAS’85 benchmark circuits with 0.35um 

cell library. The experimental results are shown in Table 3-2. The table sizes for the 

benchmark circuits are listed in the 2nd row under the names of circuits in the 1st row. 

According to the results, table sizes are only 42 to 107 for those circuits. It is very small and 

almost independent to the circuit size. 

In order to show that our approach can be applied to various input sequences, we test the 

accuracy of our method by estimating the average power consumption of circuits with 3 

different sequences. They are pseudo random sequence, counter sequence (up/down counter) 

and LFSR (Linear Feedback Shift Register) sequence with 50,000 pattern pairs respectively. 

The 3rd row to 7th row give the comparison between the simulation results with PowerMill 

and the estimation results from table lookup for pseudo random sequence. The next 5 rows 

give the comparison results with counter sequence and the last 5 rows give the results with 

LFSR sequence. The estimation time listed in Table 3-2 for table-lookup method includes the 

Verilog-XL simulation time and average power calculation time. The maximum error is 
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7.48% for C2670 with LFSR sequence. The overall average error is only 2.99%. The 

experimental results show that our power model still has high accuracy for different input 

sequences. 

Table 3-2. The experimental results 

 

Circuits C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552
 

Table Size 63 45 75 51 42 90 65 103 107 103

I (uA) 56.135 149.718 106.480 161.386 144.083 261.945 340.913 611.173 4841.000 830.832
PowerMill 

Time (Sec) 3072 8626 5826 9494 7649 14667 19017 33918 290751 43169

I (uA) 57.083 148.698 103.818 158.006 141.921 253.659 327.412 598.521 4722.450 816.488 
1-D Table 

Time (Sec) 23.4 70.3 46.2 65.9 54.5 112.5 114.9 205.4 388.5 267.3

R
an

do
m

 S
eq

ue
nc

e 

Error (%) 1.69 0.68 2.50 2.09 1.50 3.16 3.96 2.07 2.45 1.73 

I (uA) 13.243 34.493 38.119 38.270 50.477 6.402 191.720 20.911 351.290 68.626
PowerMill 

Time (Sec) 690 1958 1773 2163 2417 479 9347 1275 19385 3631

I (uA) 13.971 33.468 37.153 37.456 53.483 5.923 192.283 20.703 355.533 70.526 
1-D Table 

Time (Sec) 19.7 61.9 39.4 57.2 48.6 84.9 105.1 159.3 257.6 210.5

C
ou

nt
er

 S
eq

ue
nc

e 

Error (%) 5.50 2.97 2.53 2.13 5.96 7.48 0.29 1.00 1.21 2.77 

I (uA) 71.436 167.103 118.619 182.053 169.728 286.910 374.463 669.812 5014.680 975.568
PowerMill 

Time (Sec) 4050 9496 6786 11007 9460 16789 21914 38744 309071 52882

I (uA) 66.274 161.111 114.371 178.741 162.510 282.068 361.522 652.722 4820.264 936.464 
1-D Table 

Time (Sec) 24.4 71.8 47.5 68.4 56.4 117.1 117.3 210.9 398.3 279.3

LF
SR

 S
eq

ue
nc

e 

Error (%) 7.23 3.59 3.58 1.82 4.25 1.69 3.46 2.55 3.88 4.01 
 Average Error (%) 4.80 2.41 2.87 2.01 3.90 4.11 2.57 1.87 2.51 2.83 
 

 

3.7 Summary 

In this work, we proposed an efficient IP-Level power model with a small lookup table 

for complex CMOS circuits. The lookup table has only one-dimension that maps the 
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zero-delay charging and discharging capacitance (CDC) to the real power consumption of 

input pattern pairs but still has high accuracy. This power characteristic is selected according 

to several experimental results shown in this work within three popular power characteristics. 

In order to reduce the table size, we proposed a dynamic grouping algorithm to collect those 

pattern pairs with similar CDC values to be a group and only set an entry in the lookup table 

for each group. For improving the efficiency of characterization process, the Monte Carlo 

approach is used during the estimation for the average power of each group to skip the 

samples that will not increase the accuracy too much. The experimental results show that our 

power model can estimate the average power of IP-level complex designs very efficiently and 

accurately for various test sequences. 
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Chapter 4 

High-Level Power Modeling with Neural 
Networks 

4.1 High-Level Power Modeling 

Lookup table (LUT) is the most commonly used high-level power model. In order not to 

increase the table size too much, most of the LUT-based approaches [65~68] use the 

aggregate signal statistics (average input signal probability, average input signal transition 

density, average output signal transition density, input signal correlation coefficient, etc.) of 

the primary inputs and outputs of circuits to be the indexes of lookup tables. In [65], the 

lookup tables with 2 dimensions, 3 dimensions and 4 dimensions were compared. The results 

showed that the estimation errors are decreased when the dimensions of tables are increased, 

but the sizes of tables are also exponentially increased. For large circuits, the table size may 

increase very fast in order to meet the accuracy requirement. 

In Chapter 3, we proposed a one-dimension lookup table using the zero-delay charging 

and discharging capacitance as table index. An efficient method is proposed to divide power 

characteristics of pattern pairs into several groups and fill the lookup table with the average 

power consumption of each group. Although this approach can build smaller lookup tables 

with reasonable accuracy, it still requires gate-level descriptions and node capacitance 

information to obtain the total charging and discharging capacitance in the circuits, which 
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may not provided by IP vendors. 

There are also some approaches [73~75] that use equations instead of lookup tables to 

be the power models. After identifying suitable variables for the power equations of a circuit, 

those equation-based approaches will use some numerical methods such as linear regression 

to find out the best parameter for each variable to form the equations. Compared to 

LUT-based approaches, equation-based approaches often have fewer data to be recorded for a 

power model because the distribution of an equation often requires many points to describe. 

However, because the power distribution is often a very irregular curve as illustrated in 

Figure 4-1, it is hard to use only a single equation to describe this curve. Therefore, in order 

to improve the accuracy of their power models, those equation-based approaches may 

increase the order of the power equations (more variable) or use piece-wise power equations 

(more equations) to approximate the power distribution, which will significantly increase the 

complexity of the power models. 

 

Figure 4-1. Irregular power distribution and piece-wise approximation 

Most of the above techniques focus on estimating the average power consumption over a 

long input sequence, which are referred to as cumulative power models. However, in some 

applications, the average power is not sufficient. One of the other important tasks is to 
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understand the power consumption of a circuit due to a given pattern pair, which is often 

referred to as cycle-accurate power models [74,75]. This information is crucial for circuit 

reliability analysis, dc/ac noise analysis, and design optimization. Of course, those 

cycle-accurate power models can also provide the information of average power consumption 

by just computing the average of the power consumed at each cycle in the given input 

sequence. Therefore, cycle-accurate power models are considered to have more use than 

cumulative power models. Because it is not feasible to build a lookup table for every possible 

combinations at each cycle, most of those cycle-accurate power models use equation-based 

approaches to record the power distributions. 

In other research areas, neural networks play as a powerful tool in many applications 

such as classification, clustering, pattern recognition, control application, etc. Because of the 

self-learning capability of neural networks, they can recognize complex characteristics by 

using several simple computation elements with proper training. For irregular distributions 

such as the power distribution shown in Figure 4-1, neural networks can still have good 

efficiency because they use the combination of some non-linear curves to fit the 

multi-dimensional non-linear surface instead of increasing the recording points to reduce the 

errors as in the traditional power models. Therefore, several researches [72][81] tried to use 

neural networks to solve the power estimation problem. The authors in [81] proposed a 

symbolic neural network model to estimate the power consumption of circuits. Based on 

Hopfield neural network [82], they built another representation for the gate-level description 

of circuits and stored the structure information of the neural networks in algebraic decision 

diagrams [83] to reduce the memory usage. In that approach, neural networks were only used 

 69



to replace the gate-level structures and to perform a gate-level simulation for estimating the 

power consumption of circuits with fewer resources. Therefore, the simulation time was only 

similar to the gate-level simulation, which will be very slow for large circuits. 

The authors in [72] proposed a power modeling approach for library circuits using 

Bayesian inference and neural networks. They divided the leakage and switching power 

distributions of circuits into a limited number of classes and trained two neural networks to 

classify an input state or transition into the corresponding class. After classification, the 

leakage power of an input state and the switching power of an input transition can be 

estimated by the average power consumption of that class, which has been stored in a 

lookup-table as in the traditional table-based approaches. Although the classification of an 

input state or transition can be more accurate by using neural networks, the number of classes 

may limit the accuracy of this power modeling approach over the entire power spectrum. 

Therefore, they may also have to increase the number of table entries to reduce the estimation 

error, which is similar to the problem of traditional table-based approaches. In addition, if the 

table entries are increased, the number of outputs of the neural networks is also increased. If 

there are too many outputs in a neural network, it will often become much harder to converge 

and sacrifice the classification accuracy. However, the authors did not show the experimental 

results for the cases with wide power distribution and large number of classes. 

In this work, we propose a quite different approach for high-level power modeling of 

complex digital circuits that uses a 3-layer fully connected feedforward neural network [84] 

to learn the power characteristics during simulation without any lookup tables. By 

considering all possible types of state transitions separately in the input data, both the 
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state-dependent leakage power and transition-dependent switching power are still recorded 

well in our power model. In addition, because the numbers of input and output neurons in our 

neural power model are fixed as 8 and 1 respectively, the complexity of our neural power 

model has almost no relationship with circuit size and the numbers of primary inputs and 

outputs such that this power model can be kept very small even for complex circuits. Unlike 

the piece-wise equations in the equation-based approaches, only one simple neural model is 

enough for those test circuits to provide similar accuracy thus reducing the modeling 

complexity. 

4.2 Background about Neural Networks 

4.2.1 Feedforward Neural Networks 

The basic unit in a neural network is an artificial neuron as shown in Figure 4-2. In 

Figure 4-2, x1 to xN are the input data for the neuron, w1 to wN are the weights of input x1 to xN 

individually that represent the contribution from each input, and s is the summation of x1w1 to 

xNwN and the bias factor x0w0 as represented in Equation (4-1). In most cases, x0 is fixed as 1 

such that the training algorithm only adjusts the weight w0 to wN. Function f is the transfer 

function that converts s into output y as represented in Equation (4-2). According to the 

relationship between input data and output data, users can choose different transfer function f 

for different cases. 
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Figure 4-2. An artificial neuron 
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A neural network is a set of interconnected neurons, where the outputs of neurons act as 

the inputs of other neurons or the final outputs of the neural network. Feedforward neural 

network [84] is one of the most popular models of neural networks. Although any architecture 

of neural network with learning capabilities can be used in this work, we use the 3-layer fully 

connected feedforward neural network, as shown in Figure 4-3, to learn the relationship 

between power consumption and statistic information of input patterns because the 3-layer 

feedforward neural network has a quite simple structure with good performance in many 

applications. In addition, the fully connected configuration can automatically consider the 

correlation between all inputs by properly adjusting the weights for their interconnections. 

The accuracy of this power model can thus be improved because the correlation is also an 

important factor that affects power consumption. 
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Figure 4-3. A fully connected 3-layer feedforward neural network 

In Figure 4-3, xl:i represents the ith neuron in the lth layer, wl:i,j represents the weight of 

the interconnection between neuron xl:i and xl+1:j, and y is the final output of this neural 

network. The number of input neurons is n and the number of hidden neurons is h. In order to 

simplify the graph, the biases, the summations, and the outputs of all neurons are not labeled 

in Figure 4-3. The weight of the bias in neuron xl+1:j is denoted as wl:0,j, the input of the bias 

in neuron xl+1:j is denoted as al:0,  the summation s in neuron xl:i is denoted as sl:i, and the 

output of neuron xl:i is denoted as al:i. The output y in this neural network, which is denoted as 

a2:1, is defined as Equation (4-3). 
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4.2.2 Training Process 

Before using a neural network, we have to train the neural network with proper 

strategies such that it can learn as many experiences as it needs. Given a 3-layer neural 

network η with N input neurons, H hidden neurons and 1 output neuron, we can denote the 

training set as T={(xi, ti), i=1:P}, where xi is a column vector of the ith input vector, ti is the 

expected output for the ith input vector, and P is the size of training set. The target of this 
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training process is going to minimize an error function or metric using this training set and 

the corresponding weight matrix in the neural network. In this work, the error function is 

chosen as the mean square error defined in Equation (4-4) because it is widely used in many 

applications and there are many existing training algorithms for minimizing this error 

function. In Equation (4-4), W = [w1 w2 … wQ ]T consists of all weights including biases of 

the network, yi is the output value of the ith input vector and Q is the number of weights. 
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There are many training algorithms for feedforward neural networks that can select 

suitable weights to minimize the error function in Equation (4-4). Some methods such as 

steepest descent algorithms, conjugate gradients algorithms and quasi-Newton algorithms [84] 

are general optimization methods. In this work, we choose Levenberg-Marquardt algorithm 

[84~86] to train our neural power models because it is very suitable to minimize the error 

functions that arise from a squared error criterion. 

Typically, the training process will minimize the user-specified error function iteratively 

until the neural network can satisfy user-specified error criterion. When this criterion is 

satisfied, the neural network is considered as having learned the behavior between the input 

data and the expected output values. In some cases, it is very possible that the learning 

capability of this neural network is not enough to learn the required behavior such that the 

training process cannot satisfy the stop criterion even the network has been trained for many 

iterations. In such cases, we have to stop the training process and enhance the learning 

capability of the neural network such as increasing its hidden neurons. 
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In some cases, the neural network is probably over fitting the training set thus producing 

a neural network that has poor generalization performance. Typically, an extra validation set 

V={(xi, ti), i=1:M} will be used to prevent this situation. A validation set is similar to a 

training set, but its size M is larger than the size of training set P. In general, it is 

stochastically independent of the training set but has the same distribution. This set is used to 

determine when to stop the training process according to the value of a user-defined 

validation error function Fv(V, W). In each training iteration, say the rth iteration, we will hold 

the weight matrix Wr and calculate the value of Fv(V, Wr), which is also called the validation 

error. When the validation error starts to increase gradually but the value of error function is 

still decreasing, it is considered as over fitting. At that moment, the training process should be 

stopped and the complexity of this neural network may have to be reduced. In this work, we 

start from a small neural network architecture and increase the complexity of the neural 

network until it can satisfy the error requirement. According to our experiences in those 

benchmark circuits, this strategy seldom results in over fitting. The details of this strategy 

will be described in Section 4.3 with several preliminary experimental results. 

Since those training algorithms have been extensively discussed in neural network 

researches with many good solutions, the most important problems for us about the training 

process are designing a good training set and setting a good stop criterion such that the 

trained neural network can be applied to most cases in the input space. Because it is hard to 

train a neural network with the entire input space in many applications, the size and 

distribution of the training set and the stop criterion will have great influence on the accuracy 

of the trained neural network. We will discuss the details of this problem and our strategies in 
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Section 4.3. 

4.2.3 Evaluating the Accuracy of a Trained Neural Network 

In order to evaluate the accuracy of a trained neural network, we also need a test set that 

is independent to the training set and the validation set if it is used. We denote the test set as 

Z={(xi, ti), i=1:K}, where xi and ti are the same as defined in the training set and K is the size 

of this test set. The output of neural network for input xi is denoted as yi. In order to verify 

our power model can be used on a wide distribution on the input space, the test set is 

composed of many short test sequences. Those short test sequences are denoted as Sj={(xi, ti), 

i=1:Kj}, where j=1:L and K1+K2+…+KL=K, which are widely distributed in the input space. 

The details of our strategies to generate those test sequences will be discussed in Section 4.3. 

Because our neural power models are used to estimate the average power consumption 

of circuits under a specific input sequence, we will use typical evaluation criterion for power 

estimation instead of traditional methods in neural networks to evaluate the quality of our 

power model. We define the error in estimating the power consumption of the jth test 

sequence (ESPj) as Equation (4-5). The average error AESP, which is the average of ESPj and 

the maximum error MAXESP, which is the maximum value of ESPj, are defined as Equation 

(4-6) and (4-7). The root mean square error (RMSESP) and standard deviation errors 

(STDESP) of those test sequences are defined as Equation (4-8) and (4-9) to show the 

distribution of the estimation errors. Those metrics will be used to evaluate the quality of our 

neural power models in the following experiments. 
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4.3 Power Model Construction with Neural Networks 

Since neural networks have been used for many years in other areas, determination of 

those parameters in neural networks is still mostly done by heuristic approaches. In typical 

experience, these parameter determinations are application-oriented problems. Different 

applications might have different suitable parameters of modeling construction. Therefore, 

the primary goal in this work is trying to build a systematic procedure to build the power 

models using neural networks. The best parameters in the neural networks might still be 

different from circuit to circuit. 
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Figure 4-4. The workflow of building a neural power model 

The overall construction procedure of the proposed neural power model is illustrated in 

Figure 4-4. This procedure consists of three major steps: building a neural network, 

generating training sets, and training the neural network. In order to make good decisions at 

each step, we will use several simple experiments to explain the decision strategies in the 

following discussions. 

Because there are a lot of good training methods for neural networks, we will directly 

use them and focus our discussions in the first two phases in the following sections. The only 

two things that have to be decided are the target error and the maximum number of iterations 

in the training process. Because our target is to use the neural power model to estimate the 

average power of a test sequence, we decide to use the mean square error (MSE) as the 

validation error function. During the training phase, we will hold the temporal weight matrix 
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after each iteration and estimate the validation error according to this weight matrix. If the 

validation error is smaller than 0.0036, which can roughly imply that the estimation error 

using the validation set is near 6%, we will stop the training process. Otherwise, we will train 

the neural network again using the same training set. According to our experiences, the 

validation errors are often saturated after 15 training iterations for those benchmark circuits. 

Therefore, we set the upper bound of training iterations as 15. If the stop criterion is still not 

satisfied after 15 iterations, we will add more hidden neurons and train the new neural 

network again using the same training set. 

4.3.1 Building Neural Network 

As described in Section 4.2, we decide to use the 3-layer fully connected feedforward 

neural network structure and the Levenberg-Marquardt training algorithm with the mean 

square error function in our power model. In the first step, we have to decide the input data 

type of this neural network, the number of hidden neurons and the transfer function of 

internal neurons. In typical experiences, the best decisions might be different in different 

cases, which are hard to be theoretically analyzed. Therefore, we will use a simple 

experiment on the circuit C1355, which is arbitrarily chosen in ISCAS’85 benchmark circuits, 

to explain our decisions for those parameters. Because it is not feasible to show all detailed 

analysis for each circuit, we will try to verify the feasibility of our approach with complete 

benchmark set in Section 4.4 by using the metrics defined in Section 4.3. 

A. Input Data Type and Transfer Function 

In this work, the input data type of neural networks and the transfer function of internal 
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neurons are decided together because the most suitable transfer function depends on the 

behavior between the input data and the output values of the training set. If the relationship 

between input data and output values has non-linear characteristics, the accuracy of the 

trained neural networks would be lost when using a linear transfer function for internal 

neurons because it is similar to use a piece-wise linear curve to fit a non-linear curve as 

illustrated in Figure 4-1. 

Since we are building a high-level power model, the input data of this neural power 

model can only use primary input and output information of circuits. The most 

straightforward idea is to use the complete 4 states of bit transitions (0→0, 0→1, 1→0, 1→1) 

at the input and output pins of circuits as the input data of the neural networks because the 

effects of both state-dependent leakage power and transition-dependent switching power can 

be considered. If we use such bit-level transition data (bit-level statistics) to be the input data 

of our neural power model, the number of neurons in the input layer will be fixed as 4*(n+m) 

for a circuit with n inputs and m outputs, which are TIi,00, TIi,01, TIi,10, TIi,11, TOj,00, TOj,01, 

TOj,10 and TOj,11. Here, TIi,xy=1 represents that the ith input pin changes from logic state x to y 

and TOj,xy=1 represents that jth output bit changes from logic state x to y in a pattern pair. 

Instead of using bit-level statistics, we could use the word-level statistics as the input data of 

our neural power model. If we consider the input statistics and the output statistics separately, 

the number of neurons in the input layer will be fixed as 8, which are TI00, TI01, TI10, TI11, 

TO00, TO01, TO10 and TO11. Here, TIxy represents the ratio of input signals change from logic 

state x to y in a input pattern pair and TOxy represents the ratio of output signals change from 

logic state x to y in a output pattern pair. For example, given a circuit with 10 inputs and 10 
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outputs, we assume that its corresponding output signals will change from 0101101100 to 

0110110111 when the input signals change from 0001110101 to 1010101011.  For this 

pattern pair, both the bit-level and word-level statistics are shown in the 4th to 7th rows in 

Figure 4-5(a) and Figure 4-5(c) respectively. According to the definitions, their input data 

will be formed as shown in Figure 4-5(b) and Figure 4-5(d). 

 Input vectors 
Bit i 0 1 2 3 4 5 6 7 8 9
Patternt 0 0 0 1 1 1 0 1 0 1
Patternt+1 1 0 1 0 1 0 1 0 1 1
TIi,00 0 1 0 0 0 0 0 0 0 0
TIi,01 1 0 1 0 0 0 1 0 1 0
TIi,10 0 0 0 1 0 1 0 1 0 0
TIi,11 0 0 0 0 1 0 0 0 0 1

Corresponding output vectors 
Bit j 0 1 2 3 4 5 6 7 8 9 
Patternt 0 1 0 1 1 0 1 1 0 0 
Patternt+1 0 1 1 0 1 1 0 1 1 1 
TOj,00 1 0 0 0 0 0 0 0 0 0 
TOj,01 0 0 1 0 0 1 0 0 1 1 
TOj,10 0 0 0 1 0 0 1 0 0 0 
TOj,11 0 1 0 0 1 0 0 1 0 0  

Figure 4-5(a). An example of the bit-level statistics characterization 

total length=40         bit-level statistics 
Input vector part Corresponding output vector part

TI0,00 TI0,01 . . . TI9,10 TI9,11 TO0,00 TI0,01 . . . TI9,10 TI9,11 

0 1 … 0 1 1 0 … 0 0 
 

Figure 4-5(b). Input data format with bit-level statistics 

 Input vectors 
Bit i 0 1 2 3 4 5 6 7 8 9  
Patternt 0 0 0 1 1 1 0 1 0 1  
Patternt+1 1 0 1 0 1 0 1 0 1 1  
TI00 √       1/10
TI01 √  √    √  √ 4/10
TI10   √  √  √ 3/10
TI11    √    √ 2/10

Corresponding output vectors 
Bit j 0 1 2 3 4 5 6 7 8 9  
Patternt 0 1 0 1 1 0 1 1 0 0  
Patternt+1 0 1 1 0 1 1 0 1 1 1  
TO00 √ 1/10 
TO01 √ √ √ √ 4/10 
TO10 √ √ 2/10 
TO11 √ √ √ 3/10  

Figure 4-5(c). An example of the word-level statistics characterization 

total length=8 (fixed)      word-level statistics 
Input vector part Corresponding output vector part

TI00 TI01 TI10 TI11 TO00 TO01 TO10 TO11 

0.1 0.4 0.3 0.2 0.1 0.4 0.2 0.3 
 

Figure 4-5(d). Input data format with word-level statistics 

If we use bit-level statistics to be the input data of our neural power model, the neural 

network may recognize the individual contribution to the total power consumption from each 
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input transition such that the estimation error of the power model is more possible to be 

reduced. However, the size of this power model will increase very fast especially for the 

circuits with large amount of I/O pins. Moreover, because the complexity of bit-level 

statistics is too high, it will become much harder to learn such complex relationship between 

the bit-level statistics and the power consumptions for a neural network. If we use word-level 

statistics as the input data of neural power model, some individual characteristics of each 

possible input transition may be lost, especially for the control-dominated circuits with 

significantly different power modes. However, it is a common heuristic method used in many 

power models [46][65,66][73] to reduce the modeling complexity with reasonable error loss. 

According to their experimental results, the induced errors are indeed in an acceptable range 

in most cases. 

When we are selecting the transfer function, we also have to consider the output format 

of our neural power model. The output of our neural power model is expected to represent the 

estimated power consumption of pattern pairs. Because the values of power consumptions 

often continuously distribute on a wide range, those transfer functions that use discrete values, 

such as the unit-step or the sign functions are not suitable. In our observations, the three 

commonly used functions, logarithmic sigmoid (logsig), hyperbolic tangent sigmoid (tansig) 

and linear (linear) functions, are more suitable for our application, which are defined in 

Equation (4-10), (4-11) and (4-12) respectively. However, it should be noted that the values 

of power consumption have to be normalized between 0 to 1 in both the training set and the 

test set if logarithmic sigmoid and hyperbolic tangent sigmoid functions are used in the 

output neuron. In order to save the normalization effort, we use the linear function as the 
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transfer function of the output neuron. In the following discussions, we will focus on the 

comparison between those three transfer functions for hidden neurons. 

logsig transfer function:      se
sf −+
=

1
1)(  (4-10) 

tansig transfer function:      1
1

2)( 2 −
+

= − se
sf  (4-11) 

linear transfer function:      ssf =)(  (4-12) 

In order to help us making better decisions, we perform an experiment to compare the 

accuracy and performance of 6 combinations between 2 input data types (bit-level and 

word-level statistics of the input and output pattern pairs) and 3 transfer functions (logsig, 

tansig, linear). Because this experiment is only used for evaluating the input data types and 

suitable transfer functions, many parameters in the neural network are arbitrarily chosen and 

fixed in this experiment. All the training process will be stopped after 15 iterations instead of 

using the validation error checking as the stop criterion. The number of hidden neurons is 

fixed as 4. The training set includes 20 sequences, which are uniformly distributed over the 

population of the average signal probability (Pin) and the average signal transition density 

(Din) and each sequence includes 1,000 random input pattern pairs with the chosen PD 

combination. The comparison using AESP and STDESP for those test cases on C1355 is 

shown in Table 4-1. 

The neural power model using bit-level statistics has higher complexity than that of the 

neural power model using word-level statistics, which can be observed in the number of 

weight |W| and the constructing time. However, as shown in the experimental results, the 

neural power model using bit-level statistics does not have many improvements in terms of 
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AESP and STDESP. According to the analysis above, we select word-level statistics as the 

input data of our neural power model. While checking the neural power model using 

word-level statistics, we can find that the neural power model using tansig function as the 

transfer function of hidden neurons provides better results on AESP and STDESP. Therefore 

we select tansig function as the transfer function of internal hidden neurons in this work. 

Table 4-1. Comparison of input data types vs. transfer functions 
 

Average Power
Circuits Input Data  f(s) Construction

& |W| AESP
(%) 

STDESP
(%) 

Time (sec)

linear 4.40 6.32 443.53
logsig 4.92 4.68 704.73Bit-Level 

|W|=1177 
tansig 4.38 7.80 555.81
linear 5.09 7.19 54.17
logsig 4.71 4.16 55.83

C1355 
 

PI=41 
PO=32 Word-Level 

|W|=41 
tansig 3.81 2.81 57.17

  

B. Number of Hidden Neurons 

Another issue to be decided is the number of hidden neurons required in the neural 

power model. Typically, the minimal number of hidden neurons depends on the complexity of 

the relationship between the input data and output values in the training set. However, 

according to the experience in neural network researches, there is no easy or general way to 

determine the optimal solution for the number of hidden neurons to be used [87]. As 

mentioned in Section 4.2, our strategy is initially using a neural network with a small number 

of hidden neurons and increasing the hidden neurons until the stop criterion has satisfied. In 

the following discussions, we will explain the reason of using this strategy through a simple 

experiment. 

We first build a neural power model for C1355 and set the initial number of hidden 
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neurons as 2. The training set is the same one as used in the experiment of Section 4.3.1.A. 

The validation set includes 20 sequences with the same PD distribution as in the training set, 

but and the size of each sequence is increased to 3,000. In the following experiment, we 

increase the number of hidden neurons from 2 to 15 and test the accuracy of the neural 

networks after 15 training iterations using the same test set as used in the experiment of 

Section 4.3.1.A. The experimental results about the effects of number of hidden neurons are 

shown in Table 4-2. 

Table 4-2. The effects of the number of hidden neurons 
 

Average Power
Circuits Hidden 

Neurons AESP
(%) 

STDESP
(%) 

Validation 
Error 

Construction 
Time (sec)

2 4.96 3.57 0.004264 50.51 
3 4.92 3.56 0.004255 53.25 
4 3.81 2.81 0.004098 57.17 
5 3.93 3.06 0.004272 59.78 
6 5.67 3.21 0.004550 62.97 
7 3.25 3.38 0.004252 66.41 
8 3.62 3.30 0.004205 71.49 
9 3.20 2.24 0.004011 73.14 
10 2.96 2.64 0.003969 78.99 
11 3.79 2.89 0.004406 81.83 
12 3.72 2.65 0.004357 88.52 
13 3.36 2.81 0.004675 90.28 
14 3.26 2.41 0.004179 96.56 

C1355 
PI=41 
PO=32 

15 3.31 2.59 0.004163 99.76 
  

According to the results in Table 4-2, increasing the number of hidden neurons does 

improve both AESP and STDESP when the number is small. However, when the number of 

hidden neurons is larger than 10, we could find that the validation error, AESP, and STDESP 

may become worse due to the over fitting problem mentioned in Section 4.2.2. Therefore, for 

this case, the best choice is to set the number of hidden neurons as 10. 
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4.3.2 Design of Training Sets 

Typically, a power model is expected to be used for different test sets with various input 

distributions. In order to achieve this target, the neural power model should be trained over a 

wide range in the input space such that it can learn enough experiences. Therefore, we will 

randomly decide the Pin and Din while generating each test sequence. Because an input signal 

is assumed to make at most one single transition per cycle, there is a relationship between Pin 

and Din as shown in Equation (4-13), whose detailed proof can be found in [65]. Therefore, 

while generating those training sets over a wide range of Pin and Din distribution, we can use 

only the PD combinations that satisfy Equation (4-13) such that neural networks could learn 

the correct characteristics between the input signal statistics and the power consumption of 

circuits. 
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in
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The size of a training set is also an important issue while training the neural power 

model. According to the related study [88], it suggested to determine the size of training set 

according to Equation (4-14), in which P is the number of samples, |W| is the number of 

weights to be adjusted and a is the expected accuracy. In this work, our target is set as a ≥ 

95%. According to this error requirement, we suggest generate the training set with size P >> 

20 |W|. A larger training set is supposed to produce a more accurate neural power model. 

However, the characterization time of this power model is also increased. In the following 

experiment, we will show the observation of the relationship between the size of training set 

and the modeling accuracy. 
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In this experiment, we use the best neural network structure for C1355 decided in 

Section 4.3.1, which is a neural network that uses 10 hidden neurons and word-level statistics. 

As mentioned above, the samples of the training sets should be distributed over the space 

with a wide range of Pin and Din. Therefore, we generate 4 training sets consisting of 20 

sequences in each, which have the same uniformly distribution on the input space that 

satisfies the Pin and Din constrains in Equation (4-13). However, the length of each sequence 

is different, which are 500, 1,000, 2,000 and 5,000 pattern pairs respectively. In other words, 

the total sizes of the training sets are 10,000, 20,000, 40,000 and 100,000 respectively. The 

validation sets consist of 20 sequences that have the same distribution as those test sequences 

but their sequence lengths are multiplied by 3. Therefore, the sizes of validation sets are 

30,000, 60,000, 120,000 and 300,000 respectively. The experimental results of those 4 neural 

networks under different training conditions after 15 training iterations, which are evaluated 

using the same test set that consists of 20 sequences with 3,000 pattern pairs are shown in 

Table 4-3. 

Table 4-3. The effects of the size of training set 

Circuit C1355 
Average Power Size of 

Training Sets AESP 
(%) 

STDESP 
(%) 

Validation 
Error 

Construction
Time (sec)

10,000 4.05 2.20 0.003952 59.47
20,000 2.63 2.43 0.003804 99.67
40,000 2.05 1.99 0.003510 114.21

100,000 3.67 2.86 0.004203 233.95
  

The experimental results show that the size of training set will not affect the accuracy 

too much on accuracy if the training set is large enough. According to this observation, we 
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generate 20 sequences with 3,000 pattern pairs in each sequence to be the training set of our 

neural power model in the following experiments to make a trade off between the size of test 

sequences and accuracy. Of course, those 20 sequences will have a distribution that covers a 

wide range of the input space. 

4.4 Experimental Results 

In this section, we will demonstrate the accuracy and efficiency of our power model 

with ISCAS’85 benchmark circuits and one real design, a combinational divider with 32-bit 

dividend/quotient and 12-bit divisor/remainder. All circuits in our experiments were 

synthesized by using 0.35μm cell library. The accuracy will also be compared with 

traditional 3D-LUT power modeling methodology, which uses Pin, Din and average output 

signal transition density (Dout) as its three dimensions, and the interval size of each dimension 

is set to 0.1. Our neural power models including the training algorithms were all constructed 

on MATLAB by using an Intel Pentium III 1GHz mobile CPU and 384M RAM. 

In the model construction phase, the input training sequences are generated over a wide 

range of input distribution as described in Section 4.3.2. The real power of those input 

sequences is simulated by a transistor-level simulator, PowerMill such that the measured 

power consumptions can include switching power and leakage power and can be 

characterized in the power model. In order to show that the power models can be used for 

various input distribution, we test those models by using 200 test sequences with 3,000 

pattern pairs. Each sequence has different Pin and Din that are randomly selected over a wide 

range satisfies the condition in Equation (4-13). After simulation, the estimated average 
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power consumption with this power model is also compared to the simulation results from 

PowerMill. 

All the test circuits will be tested using the two power estimation approaches with the 

same information: traditional 3D-LUT power model and our neural power model. The same 

training and test sequences will be used for both approaches to make a fair comparison. The 

performances of both power models are summarized in Table 4-4. The construction time of 

neural power models includes the data pre-loading time of training and validation sets, the 

establishing time of neural network and the elapsed time of network training process. The 

simulation time of transistor-level simulation is not included. 

According to Table 4-4, the average values of AESP and STDESP are 17.58% and 

18.59% respectively while we use the traditional 3D-LUT power models. The convergences 

of this approach are quite poor that can be observed from the large values of STDESP. It 

implies that using the LUT-based power model may have large errors in some cases. 

Compared to the traditional 3D-LUT power model, we only have 4.72% error for all cases on 

average, and the largest AESP is only 8.93% for the 32-bit divider. The improvement of our 

neural power model can be shown in the STDESP. The largest STDESP is only 5.88% for the 

32-bit divider using our approach, which shows a good agreement with real powers. The 

combined scatter plots of all ISCAS’85 circuits by using our approach and the 3D-LUT 

approach are shown in Figure 4-6 and Figure 4-7 respectively. In order to examine all circuits 

on the same plot, the power consumptions of all circuits are normalized with the circuit size 

and operating frequency. Comparing the two plots, we can see that our approach can really 

provide better trend of estimation accuracy. 
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Table 4-4. The comparison between traditional 3D LUT power model and our neural 
power model 

 

Circuits C432 C499 C880 C1355 C1908C2670C3540C5315C6288C7552 Divider |Average|

Input 36 41 60 41 33 233 50 178 32 207 44 - I/O Pin 

Number Output 7 32 26 32 25 140 22 123 32 108 45 - 

Gate Count 116 324 245 362 328 447 700 1102 1640 1135 2726 - 

# of table 

entries 
500 

MAXESP 

(%) 
77.63 27.66 68.39 36.71 71.24 65.76 99.05 44.46 88.71 71.08 43.94 63.28 

AESP (%) 18.56 11.72 22.81 11.19 16.81 14.14 24.41 16.60 29.57 15.00 12.46 17.58 
STDESP 

(%) 
17.21 9.09 23.92 9.72 16.32 17.50 24.38 14.08 35.37 18.64 18.07 18.59 

3D
 L

U
T 

Po
w

er
 M

od
el

 

RMSESP 

(%) 
24.22 14.37 30.39 14.16 22.82 21.86 32.41 20.34 39.23 22.51 18.44 23.72 

Neurons in 

Hidden 

Layer 

8 6 8 8 7 9 9 7 8 8 8 7.82  

|W| 81 61 81 81 71 91 91 71 81 81 81 79.18 
Construction 

Time (sec) 
313.07 216.28 310.83 323.51 262.48 390.29 391.53 267.34 320.19 324.29 325.23 313.19 

Training 

Iterations  
102 36 101 105 90 120 120 88 105 105 105 97.91 

MAXESP 

(%) 
15.13 -11.19 32.72 11.83 22.09 24.74 24.14 -17.28 16.34 -17.49 26.63 20.06 

AESP (%) 3.36 2.92 5.34 2.10 5.29 5.72 4.57 3.83 4.14 5.47 8.93 4.72  

STDESP 

(%) 
3.11 2.31 5.07 1.66 4.45 6.07 3.15 3.99 3.47 2.82 5.88 3.85  

O
ur

 N
eu

ra
l P

ow
er

 M
od

el
 

RMSESP 

(%) 
3.80 3.72 7.39 3.82 6.81 6.60 7.68 3.91 3.95 7.28 9.13 5.85  
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Figure 4-6. Scatter plot of neural power model estimation versus PowerMill simulation 

in ISCAS’85 benchmarks 

 

f 3D-LUT estimation versus PowerFigure 4-7. Scatter plot o Mill simulation in 

The storage requirements are also much less in our approach. According to the results 

shown in Table 4-4, the maximum number of hidden neurons is 9 in our experiments. It 

means that we only use up to 9 hidden neurons structure with 91 elements in the weight 

matrix |W| to record the power characteristics, which is quite small compared to the lookup 

tables, which require 500 (=10*10*10/2) numbers to record the tables. These experimental 

results have also shown that the complexity of our neural power model has almost no 

relationship with circuit size and number of inputs and outputs. Even for large circuits such as 

ISCAS’85 benchmarks 
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the 32-bit divider, the complexity of its power model is still the same as the complexity of 

smaller circuits such as C432. Besides, the construction of neural power model is rapid that 

can be observed from the short construction time and the total training iterations of each 

neural power model in Table 4-4. Therefore, using such a power model can be very efficient 

even for complex circuits and also has high accuracy. 

Another important information not shown in Table 4-4 is the estimation time while using 

our power model. Actually, the estimation time of our neural power model is dominated by 

the functional simulation time with a logic simulator, which simulates the circuits with 

specific input vectors to obtain the corresponding output vectors. If we assume that the 

corresponding output values under specific input sequences are also provided by users, the 

estimation time of our neural power model is always less than one second for all ISCAS’85 

circuits. Therefore, the estimation time is not shown in Table 4-4 because it is almost equal to 

the logic simulation time, which is quite small compared with low-level power estimation 

methods such as PowerMill. 

In order to demonstrate that the neural power model can handle specific functional 

patterns in practical use, we also test the practical design, the 32-bit divider design, with 

user-given functional patterns. The functional sequence consists of 1,000 pattern-pairs only. 

However, the average estimation error is only 5.98% compared to the PowerMill results. 

4.5 Summary 

In this work, we propose a novel power model for complex digital circuits, which uses 

neural networks to learn the power characteristics during simulation including both leakage 
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power and switching power. Unlike the power characterization process in traditional 

approaches, our characterization process is very simple and straightforward. The complexity 

of our neural power model is also smaller than that of the traditional 3D LUT power model 

which is almost no relationship with circuit size and the number of inputs and outputs. More 

importantly, using the neural power model for power estimation does not require any detailed 

circuit information of the circuits, which is very suitable for IP protection. In this work, we 

have tested our neural power model on all ISCAS’85 benchmark circuits and one real design. 

The experimental results demonstrate that our neural power model can accurately estimate 

the power consumption of combinational circuit for different test sequences with wide range 

of input distributions. 
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Chapter 5 

Conclusions and Future Works 

In this dissertation, we proposed a series of power estimation and power modeling 

methods for combinational IPs. Because IP vendors may release only limited design 

information to protect their knowledge, we proposed corresponding methods for the designs 

with different information. We divide the design information into three levels. The first level 

is transistor-level information. The second level is gate-level information. The third level is 

functional-level information. 

In Chapter 2, we proposed two consecutive sampling techniques to improve the losing of 

performance in those vector compaction methods with random sampling techniques. 

According to the experimental results on ISCAS’85 benchmark circuits, the speedups of 

random sampling, single-sequence sampling and multi-sequence sampling approaches are 

94.21, 119.08 and 147.03 respectively. The multi-sequence approach improves 56% on speed 

compared to random sampling approach. The single-sequence approach only improves 26% 

on speed. The average compaction ratio achieved in random sampling approach is 129.22 and 

the average error is 4.14%. The average compaction ratio achieved in single-sequence 

approach is 179.41 and the average error is 3.32%. The average compaction ratio achieved in 

multi-sequence approach is 251.04 and the average error is 4.19%. It shows that the 

multi-sequence approach can dramatically reduce the useless transitions in the random 

sampling method such that it can almost keep the desired compaction ratio exactly. 
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In Chapter 3, we proposed a power model for IPs with only gate-level design 

information. We build a lookup table for each IP that maps the zero-delay charging and 

discharging capacitance during an input pattern transition to an estimative value of real power 

consumption. The experimental results on ISCAS’85 benchmark circuits show that the table 

sizes are only 42 to 107 for ISCAS’85 benchmark circuits. It is very small and almost 

independent to the circuit size. We test the accuracy of our method by estimating the average 

power consumption of circuits with 3 different sequences, which are pseudo random 

sequence, counter sequence (up/down counter) and LFSR (Linear Feedback Shift Register) 

sequence with 50,000 pattern pairs respectively. The maximum error is 7.48% for C2670 with 

LFSR sequence. The overall average error is only 2.99%. The experimental results show that 

our power model still has high accuracy for different input sequences. 

In Chapter 4, we proposed a quite different approach for high-level power modeling of 

complex digital circuits that uses a 3-layer fully connected feedforward neural network to 

learn the power characteristics during simulation without any lookup tables. According to the 

experimental results on ISCAS’85 benchmark circuits and a 32-bit divider circuit, the 

average values of AESP and STDESP are 17.58% and 18.59% respectively while we use the 

traditional 3D-LUT power models. Our proposed neural network power model has 4.72% 

error for all cases on average, and the largest AESP is only 8.93% for the 32-bit divider. The 

improvement of our neural power model can be shown in the STDESP. The largest STDESP 

is only 5.88% for the 32-bit divider using our approach, which shows a good agreement with 

real powers. Our experimental results have also shown that the complexity of our neural 

power model has almost no relationship with circuit size and number of inputs and outputs. 
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Besides, the construction of neural power model is rapid and it can be observed from the 

short construction time and small number of the total training iterations of each neural power 

model in our experimental results. Therefore, using such a power model can be very efficient 

even for complex circuits to achieve high accuracy. 

In the future, we have to extend our experiments on sequential circuits and asynchronous 

input signals. We will also try to integrate the neural network power model into HDL 

simulator such that the power estimation could be done in only one simulator. We also have 

to think about how our methods could be applied on memory block. If those issues can be 

solved, the power estimation flow for a system will be more complete.
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