r /

24 S T LR - ; ‘
O ARG SRR T 2 2 g

On Power Estimation Methods for
Silicon Intellectual Properties

E A R
hEEE Y R Y L
gl 2 7 4



A
D
3K
3&
b
\_.
pd
b
30
Zﬁ'_?:;’
J.
N
(w.
o+

R HEFEY R L
Flaz g L

g

hihwme? AP e S BB RO E HE AT - | enw 5 AL B R
SPEP S SR /ﬂ%ﬁ‘ 3—'“'°r4] E’%ﬂﬁi l——ﬁ% 0 1% 'Efblj’ﬂm‘y{)""}"i,u fe B3 E E’fgﬂ){i 3

PEFOUTR TR F A PR T R s W a2 PRk Rl RRR TR
B A TGRSR M AR

FHEETHMAE SK G TADPRECTE-PATARY F7 UET THUA %
SRR S A 0 A RIRR R © AR k@ T HMA Bhs F 4 Rl
Bt AR N E - B ABRZ T T BABIRR? S IREE T SR B E ¢ B )
PR ZI OB ARRR B GFITE o X L8 - BN I A ABARZ L HE - BB
i i R Pk ihdk gl o

F R TR B TR OTER APRD - BRSO SRR 2B S

PR E TR R GREEP TR U BT RTTE B R T HRE



AR R F ERT LA @IR E AR e A B R AP T A RN

It

FHRCLERE o DA TR RN GE S HEBE SR c RRIRESH
T iR FHCA ST ok~ R RARE G B R BRI
WRFFAERT PRARES LR AIRPFTICRNPTARY R EFTR
g 2 g O R Do AT R - B A SR RS 2 AT 5O
FACA] o Boe# A BT R R F R PP AR Y R AR R N
R oA W BT B~ 2 D TR T A B TR L SO B ek R & S % TR

R PES R  TERC Y SRS ST

il



On Power Estimation Methods for
Silicon Intellectual Properties

Student: Chih-Yang Hsu Advisor: Dr. Jing-Yang Jou
Dr. Chien-Nan Liu

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

In this dissertation, we develop several*power estimation and power modeling methods
for combinational IPs. Because IP vendors may release only limited design information to
protect their knowledge, we propose corresponding methods for the designs with only
transistor-level, gate-level and function-level design information.

For complex digital circuits with transistor-level design information, users can
estimation the power consumption of designs using transistor-level simulation. In order to
reduce the simulation time on transistor-level simulation, we propose a single-sequence
sampling approach to improve the performance of vector compaction techniques by reducing
the useless transitions in random sampling techniques. A multi-sequence sampling approach
is also proposed to improve the over sampling problem in the single-sequence sampling

approach.
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For the designs with only gate-level design information, we propose a smaller power
model approach that only needs a 1-diemension lookup table for each design to map the
zero-delay charging and discharging capacitance (CDC) during an input pattern transition to
an estimative value of real power consumption. Therefore, IP users can estimate the power
consumption according to the CDC values obtained from gate-level simulation. The dynamic
grouping method is applied to reduce the size of lookup tables for circuits and Monte-Carlo
simulation strategy is applied to reduce the characterization time. The experimental results
show that our power model still has high accuracy for different input sequences.

If IP vendors only provide the function-level design information, we propose a novel
power model based on neural network that only requires the input and output information of
each IP. If IP vendors provide such a power model,"IP users can estimation the power
consumption of IPs with only input and output-information under a function-level simulation.
As shown in the experimental results, our power-model can have much smaller size with

better accuracy.

v



4\.‘§ }&%J_L

RO BRI E FIE T Fog o 2 G WPk S B
hE AT RRIEhRWY Y XFA L AT IRAAF IR By Ap ¥
FY22RERY ST N ay o FlRREn Ay a7 g4 {3 eh
W B ISTIER S RET B FE DL
PR P T - gt v 5 1(1952~2002), #1995 £ 3] 2002
EPF-EFEEA D ERRBREEZARFIAPE LR R LA R iTh
ErRir) o AR e AL T D N A
Ay BRHBASCHME A 5 G WP AT T ALBEER K E R o
AR AR S N E o A a b ERHRLG S R o o R YRS R
BE > A i it RIEGAVR A iR T R AR A e AL B R H k) LB R
o NI E L E R DRSS
A RHIZRETFIELY 2 FFHRPE R c Rdrr e L
L fREFE - FERFLEEN AT 2T
G BB AEA S T
BRALER-F&E
W

H A RE
B L IEX 4 Rl BBrY LA F T
WP r T LR EBROEL ( RIRFI Y 5
MR SR B PRI A R R
R AT Y A e

L

@ﬁ]’yé

F=3

'-Jzo
p
ﬁég:urﬂ’( o



Contents
iF &
Abstract
Contents
List of Tables

List of Figures

Chapter 1 Introduction

1.1 Power ConSumption...........ooeeueveinuiniieitiniineeeeenienaene.
1.2 Power Estimation............ 5 .o s e e e eeeneeneenenn,
1.2.1 Simulation-Based Methods......co...... .0t
1.2.2 Statistics-Based Methods.:. oo i
1.3 Approaches for Different Design Information.....................
1.3.1 Power Estimation at Transistor Level......................
1.3.2 Power Estimation at Gate Level............................
1.3.3 Power Estimation at Behavior Level.......................

1.4 Organization............ouuiuiiuiti i

Chapter 2 Improved Vector Compaction Methods

2.1 Vector Compaction Techniques...........c.ovvvvviiiiiiiniininnn.n.
2.2 Useless TranSitionsS. ......o.ueeeueeeeee et eieeaiteeieeeieeeineenneanns

2.3 Selection of Power CharacteristiCs. .....uuueeeeeeeeeiieeeeeeennnnn.

vi

II1

VI

IX

14

14

15

16

18

19



2.4 Grouping of Pattern Pairs............cocoiiiiiiiiii e, 29

2.5 Consecutive Sampling Techniques..............coooiiiiiiiiiiiiiiiiiiiin, 34
2.5.1 Single-Sequence Approach............ccooeiiiiiiiiiiiiiiiiiiiieea. 34
2.5.2 Multiple-Sequence Approach...........c.coovvviiiiiiiiiiiiiiiiiinenn. 39

2.6 Average Power Calculation..............ccooeiiiiiii i 44

2.7 Experimental Results......... ..o 45

2.8 SUIMIMATY . .ttt ettt et e et e e et et e e e et et e e e et e et e eaeeaaaas 48

Chapter 3 Gate-Level Power Model with 1-D LUT 50

3.1 Power Model with Lookup Table.............coooiiiiiiii e, 50

3.2 Proposed Power Modeling Methodology.ca,........oovvneviiiiiiiiiinan 53

3.3 Dynamic GrOUPING........ 500, nvessathi cdenhe b et e eneeteaneeeeneeaneeneanaenns 54

3.4 Power Characterization. .. d. .. s it e e 58

3.5 Power Estimation with the PowerMeodel:.:.......................o. 62

3.6 Experimental Results.............coooiiiiii 64

3.7 SUMMATY ..ottt e e e e e e e e 65

Chapter 4 High-Level Power Model with Neural Network 67

4.1 High-Level Power Modeling.............cooviiiiiiiiiiiiiiei e, 67

4.2 Background about Neural Networks. ..o, 71
4.2.1 Feedforward Neural Networks...........cocoviiiiiiiiiiiiiiiiininn 71
4.2.2 Training ProCesS. .. ..oouiiiiitii i 73
4.2.3 Evaluating the Accuracy of a Trained Neural Network................ 76

4.3 Power Model Construction with Neural Networks.............................. 77

vii



4.3.1 Building Neural Network.............c.oooiiiiiiiiii e, 79

4.3.1.A Input Data Type and Transfer Function......................... 79

4.3.1.B Number of Hidden Neurons..............cooeviiiiiiiiiniinnnnn. 84

4.3.2 Design of Training SetS..........coevvriiiiiiiiiiiiiiieieeeeeenaen, 86

4.4 Experimental Results.............oooiiiiiiii e, 88
4.5 SUMIMATY . ..ot e e e e 93
Chapter 5 Conclusions and Future Works 94
Reference 97

viii



List of Tables

Table 2-1. Average normalized errors for three power characteristics.................. 29

Table 2-2. The relationship between compaction ratio, variance limitation and estimation

Table 2-3. A comparison of random, single-sequence and multi-sequence techniques

................................................................................. 46
Table 2-4. Consecutive sampling techniques for LFSR input sequences............... 47
Table 3-1. The distribution of the variance in the groups....................oooeeeninn. 62
Table 3-2. The experimental results............ooeiiiiiiiiiiiiii e 65
Table 4-1. Comparison of input data types vs. transfer functions....................... 84
Table 4-2. The effects of the number ofthidden neurons.................................. 85
Table 4-3. The effects of the size of trainingmset=rrm. . oot i 87

Table 4-4. The comparison between traditional 3D LUT power model and our neural

POWET MOAEL. ...t 90

X



List of Figures

Figure 1-1. Dynamic tranSition CUITENt. ..........vviriiineeite et e et e eneeeiaeennennnn 4
Figure 1-2. Short-CirCuit CUITEeNt. ... ....oiuiniiiit i 5
Figure 1-3. Leakage Current..........o.oouiiiiiiiiiiiii e, 5
Figure 1-4. StatiC CUITENL. ....o.uiit it 6
Figure 2-1. Random sampling with useless transition.................c.ccevviennneann.... 22
Figure 2-2. Consecutive SAmMPIINgG. ......o.ouviuiitiitiiiiiiii i 23
Figure 2-3(a). The result of single-sequence approach....................coovviiiii. 24
Figure 2-3(b). The result of multi-sequence approach....................ooooviiinnin. 24
Figure 2-4. The effects of grouping. ...« i e, 31

Figure 2-5. An example of grouping process

(2). CDC diStribution.......... 0. . T ri e e e e e e et et e et e eenaeenns 31

(b). Sorting and grouping. .......... e s it 31
Figure 2-6. The pseudo code of the grouping algorithm.................................. 34
Figure 2-7. The pseudo code of the single-sequence algorithm.......................... 37
Figure 2-8. An example of the shortest subsequence searching.......................... 39
Figure 2-9. Transforming a X3C problem into a multi-sequence problem............. 40
Figure 2-10. The pseudo code of the multi-sequence algorithm......................... 42
Figure 2-11. An example of the multi-sequence algorithm............................... 43
Figure 3-1. The block diagram for building the power model............................ 54
Figure 3-2(a). The dynamic grouping process after the first iteration................... 56
Figure 3-2(b). The dynamic grouping process after the second iteration............... 56



Figure 3-3. The pseudo code of dynamic grouping process............cevveeereennnnnn. 58

Figure 3-4. An illustration of the power characterization.........................ooeeee.. 59
Figure 3-5. Block diagram of average power calculation........................ocoent. 63
Figure 4-1. Irregular power distribution and piece-wise approximation................ 68
Figure 4-2. An artificial neuron............ooooiiiiiiiiii i e 72
Figure 4-3. A fully connected 3-layer feedforward neural network...................... 73
Figure 4-4. The workflow of building a neural power model............................. 78
Figure 4-5(a). An example of the bit-level statistics characterization................... 81
Figure 4-5(b). Input data format with bit-level statistics...................ccoovin..n. 81
Figure 4-5(c). An example of the word-levél statistics characterization................ 81
Figure 4-5(d). Input data format with word-level statistics............................... 81

Figure 4-6. Scatter plot of neural power model estimation versus PowerMill simulation
in ISCAS’85 benchmarks:, eseesasli o 91
Figure 4-7. Scatter plot of 3D-LUT estimation versus PowerMill simulation in

ISCAS’85 benChmarks. . ..., 91

X1



Chapter 1

Introduction

With the advance of semiconductor technology, the size of devices and the minimal
width of metal lines are decreasing rapidly. Therefore, IC designers could integrate many
functions, even a whole system, into a single chip. In fact, System-on-a-chip (SoC) is a trend
of system integration in recent years. Meanwhile, the operating frequency of designs also
rapidly grows up when the semiconductor technology getting advances. Unfortunately, after
more devices are integrated into a chip and.the opération frequency is increased, the power
consumption of a chip is also increasing rapidly.

For SoC designs, most design teams will'not design all circuit blocks in the system by
themselves. Instead, they integrate many’ well-designed circuit blocks called intellectual
properties (IPs) and some self-designed circuit blocks to build up the complex system in a
short time. While designing such complex systems, power consumption is also a very
important design issue because of the increasing requirement of portable devices.
Traditionally, power estimation is often performed at transistor-level by SPICE-liked
simulation. However, this approach is unpractical for SoC designs because the transistor-level
description of the whole designs is often too large to be simulated and the IP venders may not
provide such low-level description for an IP to protect their knowledge.

For this application, the power estimation method should consider the design

information of IPs that IP vendors want to explore to IP users. For example, if the



transistor-level descriptions of IPs are provided to IP users, IP users can estimate the power
consumption with a transistor-level simulation. The only problem is the efficiency of the
estimation. If the gate-level descriptions of IPs are the only design information provided to IP
users, [P vendors should provide some information such that IP users can estimate the power
consumption of IPs from some power characteristics, which can be calculated from a
gate-level simulation. If IP vendors only want to provide the design information for function
checking such that IP users can only get the primary input and primary output signals, IP
vendors should provide a high-level power model in which IP users can estimate the power
consumption of their designs using only the primary input and output information.

In this dissertation, we develop several. power estimation and power modeling methods
according to the design information that IP vendors will ptovide to IP users. We divide the
design information into three levels. The first level is transistor-level information. The second
level is gate-level information. The third Ievelis-behavior-level information. For those three
levels, we develop three corresponding power estimation methods.

For the complex digital circuits with transistor-level and gate-level design information,
we propose two consecutive sampling techniques to improve the losing of performance in
those pattern compaction methods with random sampling techniques. IP users can apply our
proposed pattern compaction method to reduce the simulation time on a transistor-level
simulator with reasonable accuracy.

For the IPs with only gate-level design information, we propose a power model in which
a lookup table is built for each IP that maps the zero-delay charging and discharging

capacitance during a input pattern transition to an estimative value of real power consumption.



Therefore, IP users can estimate the power consumption according to the zero-delay charging
and discharging capacitance from gate-level simulation. The grouping method is applied to
reduce the size of lookup tables for circuits and Monte-Carlo simulation strategy is applied to
reduce the characterization time.

If IP vendors only provide the behavior-level design information, we propose a power
model based on neural network in which only the input and output information of an IP is
required to obtain the estimated power. Therefore, IP users can estimation power
consumption of IPs with the input and output information obtained from a function-level
simulation. Compared to the state-of-the-art 4-D lookup table, our approach requires much
less memory but still has competitive accuracy:

Before discussing how the power estimation-can be.done, we would like to introduce the
power consumption of CMOS digital ‘circuits‘and the incurred problems by the increasing

power consumption.

1.1 Power Consumption

The power consumption of a CMOS digital circuit comes from four major types of
current, which are dynamic transition current, short-circuit current, leakage current and static
current. We will briefly explain the four kinds of current resources in the following
descriptions.

The dynamic transition current is resulted from the charge and discharge of the node
capacitance. In Figure 1-1, an inverter circuit is used to explain the dynamic transition current.

The power consumption of dynamic transition current on output node is often formulated as

3



Equation (1-1), when logical value of output node is changed from 0 to 1. The same power
consumption will be consumed during the logical value of output node is discharged from 1
to 0. In Equation (1-1), f'is the frequency of signal transition on output node. In general, the

dynamic power is the largest part of the total power consumption in a circuit.

Vad

Vi — Vout

A\ A
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Figure 1-1= Dynamic transition current

1 2
denamic =E*CL *Vdd *f

(1-1)

The short-circuit current is the current from Vg4 to ground at the period that both PMOS
and NMOS transistors turn on together during the input signal transitions. As illustrated in
Figure 1-2, both PMOS and NMOS transistors are turned on together during the gray circle
period of input signal Vj,, and the short-circuit current occurs at that moment. The power
consumption of short-circuit current can be formulated as Equation (1-2), in which I is the
mean value of short-circuit current. The short-circuit current could be minimized by matching

the rise/fall times of the input and output signals.
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The leakage current is the current from V44 to ground even when the PMOS path or the
NMOS path is “OFF”. It is often consisted of the leakage current in the reverse biased P-N
junction diode between n-wall and substrate and the sub-threshold current from sub-threshold
conduction, as illustrated in Figure 1-3. The leakage power consumption can be formulated as

Equation (1-3), in which Ijcaxage 15 the mean value of leakage current.

Vo
Vin q | leakage
\ 4 Vout
| Sub-threshold | | Drain Junction
Ju— | Current Leakage
v L\

Figure 1-3. Leakage current

Pleakage = Ileakage * Vdd (1_3)



Another power source is the static current that occurs in some special logic family, such
as the pseudo-NMOS logic family. In such kind of circuits, there is always a constant current
from the Vg4 to ground, as illustrated in Figure 1-4. The static power consumption can be

formulated as Equation (1-4), in which Iy is the mean value of static current.

Vad

| static

Vout

I
o

Vi="High”

Figure 1-4; Static current
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1.2 Power Estimation

The demand of portable devices and the functions integrated in those devices are both
dramatically increasing day-by-day. However, those portable devices are often
battery-operated. Increased power consumption means reduced operating time. In addition,
increased power consumption also increases the heat generation of chip. In order to remove
the extra heat to protect inner circuits, special packaging, cooling and fans are required,
which lead to higher cost. Furthermore, larger power consumption may increase the current
density of the metal lines in a chip and the temperature of the chip such that several silicon

failures, such as electromigration, junction fatigue, and gate dielectric breakdown [1,2], may
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become more likely to happen. Therefore, the power consumption has also become one of the
most important design constraints beside timing and area constraints in present designs.

At the design stage, various low-power design techniques have been proposed at each
different level of abstraction, such as system-level, architecture-level, register-transfer level,
gate-level and transistor-level. Many surveys on those low-power design techniques could be
found in [3~9]. However, before using those low-power design techniques, we have to know
the power consumption of current designs. Based on the power estimation results, designers
can understand whether any low-power techniques are required and where to apply those
low-power techniques to reduce the power consumption of the circuit.

In the literature, many power estimation’techniques have been proposed. They can be
roughly categorized as simulation-based methods| and statistics-based methods, according to
the used information while calculating the final‘ power consumption of circuits. In this section,
we will introduce those two techniques briefly. Earlier surveys for those power estimation

techniques could be found in [9~12].

1.2.1 Simulation-Based Methods

Basically, simulation-based techniques will use simulators to perform power estimation.
In those techniques, the most straightforward method of power estimation is to perform
circuit simulation to obtain the current information and the resulted power consumption.
SPICE is the transistor-level simulator that can provide the most accurate estimation to date.
It solves the combination of KVL and KCL equations for the voltages of all nodes and the

currents of some certain branches. Although it can provide more accurate results, it will suffer



from severe memory and execution time constrains, especially for large VLSI circuits.

In order to alleviate the memory and speed issues for power estimation, PowerMill
[13,14], which is a transistor-level power simulator for CMOS and BiCMOS VLSI designs,
applies an event-driven simulation algorithm to increase the speed by two or three orders of
magnitude over SPICE. Moreover, it uses a nonlinear device model instead of resistor model
to model the transistors such that it can maintain the SPICE accuracy while increasing the
simulation speed. Estimating power consumption at switch level is another idea to have faster
simulation speed, such as the well-known tool IRSIM [15]. Because it only counts the
switching power dissipation, which is the transition counts of the circuit nodes weighted by
physical node capacitances, the simulation:’speedzis often much faster than that of a
transistor-level simulation. However, the estimation results of such tools may not as accurate
as those of transistor-level tools.

If the simulation can be done at higherslevel of abstraction, such as gate-level, the
simulation speed could be improved much more. Therefore, many gate-level simulation
techniques are proposed to estimate the power consumption of cell-based designs based on
the characterization results of library cells. In general, the characterization results include the
power model and delay model of basic cells. The power model could be a lookup table or an
equation such that the power consumption of a circuit could be calculated by summarizing
the power consumption of each basic gate in the circuit. In [16~20], the characterization flow
for the cells in a cell library is proposed and the power consumption of circuits is calculated
using a gate-level simulator according to the characterization result. The differences between

those approaches are the accuracy of the delay model and power model of basic cells, or the



accuracy on estimating glitch power. For example, in [18], the authors include a glitch filter
to reduce the over estimation on glitch power. In [21, 22], the basic unit of power
characterization is extended to complex logic blocks or some functional units on datapath
such that their performance is much more improved. Although the gate-level simulation
speed is much faster, most of those techniques have to make a tradeoff between the accuracy
and the storage complexity.

Besides increasing the simulation speed, another approach is to reduce the number of
input patterns for power estimation such that the transistor-level simulation time can also be
reduced. Such kind of power estimation methods can be roughly divided into two directions:
regeneration and sampling. Regeneration_approach /[23~30] is to generate a new input
sequence that is shorter than the original input sequence:but has the similar average power as
that of the original one. Some characteristics Of the original sequence, such as the pattern
transition probabilities [23], the pattern transition probabilities of those input pins with higher
power sensitivity values and the average transition probability of rest input pins [24], and the
ratio of state transition number of each state [25,26], are preserved during the generation
process. In order to reduce the complexity of the generation process, some approaches [27,28]
only preserve the input characteristics between clustered inputs. There are also some methods
trying to preserve the toggling behavior of the internal nodes [29~30] between the original
input sequence and the regenerated input sequence.

Instead of generating new input patterns, the sampling approach chooses some input
patterns from the original sequence to estimate the average power. The Monte Carlo approach

for power estimation is proposed in [31,32]. These methods estimate the average power by



sampling some input vectors with certain length / from the original sequence and feeding
them into the simulator to derive a sample value of the average power. The average power
consumption can be estimated with the average of several sample values. From Central Limit
Theorem [33~36], the sample values can be assumed as a normal distribution when /
approaches infinity. The probability that the estimated mean value is within a certain error
range of the real mean value can also be derived under this assumption. In [31], only
combinational circuits are considered and sequential circuits are considered in [32].

Sampling techniques can be further optimized through stratification of the population.
Proper stratification of the population can reduce the sample variance such that the number of
sampled input vectors can be further reduced: In"otder to stratify the input vectors, various
indicator functions are proposed to provide a rough estimation of the power consumption of
each input vector. According to the results of indicator functions, we can put the input vectors
with similar power consumption into the same group and sample only a few patterns from
each group. Therefore, the key point of this approach is to choose a good indicator function.
In [37], the power characteristic is chosen as the zero-delay switching activity multiplied by
the loading capacitance of each node. Those power characteristics of input pattern pairs are
used to divide input pattern pairs into clusters such that the Monte Carlo simulation [36]
could randomly sample the same number of pattern pairs from each cluster. This stratified
random sampling could improve the convergence speed of the Monte Carlo simulation.

In [38], the transition numbers of primary inputs, primary outputs, latches and selective
internal nodes are used as the indicator function. Only when the indicator function has

enough value changes, this input pattern pair will be used in the transistor-level simulation to
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plot the power waveform of the input sequence. In [39], the zero delay switching conditions
at gate level is used as the indicator function and the modules in the design is also clustered to
improved the performance again. In [40], a cycle-based characteristic, the real-delay charging
and discharging capacitance, is used as the indicator. They divide all pattern pairs into groups
and select only one pattern pair from each group. This approach may not suitable for the
designs with very deep logic level because the small delay time error will cause large power

variance due to glitch.

1.2.2 Statistics-Based Methods

Statistics-based techniques can be categorized into several different levels. Some of
them use the entropy [41~45] for high-level power estimation and modeling because the
required information in this approach is independent of the wire loading, transistor sizes, gate
types or even circuit structure. Using the’analytical results between entropy and real power,
we can obtain rough power estimation using only high-level or behavior-level information.
Since the simulation at such a high level can be completed very fast, we can have a quick
indicator about power consumption in early design stages. However, the power estimation
results of this approach will not be very accurate due to the lack of real circuit information. In
[46], the entropy is also used to estimate gate counts or area of Boolean functions, and the
power consumption of the design could be calculated from switching activity and loading
capacitance of each node in the circuit. The basic entropy calculation of logic circuit could
refer to [47].

If gate-level design information is available, many researches will calculate the signal

11



transition density [48] or switching activity of each node in the circuit to estimate the power
consumption. The estimation results can be more accurate because the power consumption of
CMOS digital circuits are dominated by the currents that charge and discharge load
capacitances and the short circuit currents. In early researches, gate-level power estimation
focuses on combination circuits [49~51]. They assume that the primary inputs are spatially
and temporally independent and the propagation delay of each gate is zero. In order to
improve the accuracy of power estimation results, the spatial and temporal correlations are
included for switching activity estimation in [52~54]. However, the computational
complexity to consider spatial correlation may become too high to be adopted.

In [55~59], they start to extend the gate-lével power estimation to sequential circuits. In,
[56, 57], the BDD (Binary Decision Diagram) 18 used for the switching activity estimation.
In [58, 59], the OBDD (Ordered Binary Decision Diagram)-is used for the switching activity
estimation. However, the complexity of building-BDD will grow exponentially when the
number of primary inputs is increased. The work proposed in [60], which uses an ordered
BDD method, can alleviate the complexity problem of those BDD-based approaches a little
bit while estimating the switching activity. Another technique that uses the Bayesian
networks is also proposed to calculate the switching activity of circuit [61].

In order to improve the accuracy of power estimation results, the idea of using transition
density is proposed in [62]. It models the lag-1 temporal correlation about the density that an
input makes a 0-to-1 or 1-to-0 transition. Based on the input probability and input transition
density, a series of researches are conducted to study the sensitivity of the power

consumption to the input probabilities and the input transition densities [63,64]. For most
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combinational circuits, this approach can have more accurate estimation results.

Since there are a lot of signal statistics values of inputs and outputs proposed to be the
indicators of the power consumption at gate level, such as the input transition probability,
input transition density, output transition density, and spatial correlation coefficient, some
approaches use parts or all of the four mentioned indexes to form a look-up table of power
consumption, which is often called the table-based power model [65~70]. In [68], the power
model also considers the parameter of data width for arithmetic block and the process
parameter of the technology. In [69,70], the power model is built based on the power
sensitivity values of primary inputs. For each combination of those power indicators, there is
a corresponding power value that is estimated in‘advance using many input sequences with
similar indicator values. Therefore, once the values of those indicators for an input sequence
are calculated, we can obtain a power éstimation result directly from the table. In general, the
accuracy of estimation results will increase ‘when the dimensions of the lookup table are
increased. However, the computation efforts for building the table will grow very fast when
its dimensions are increased. The table size of the table-based power model is another
important issue. A technique is proposed to reduce the table size of table-based power model
in [71]. Another technique [72] can also reduce the table complexity by using neural
networks to recognize the input pattern such that the power consumption of pattern pair could
be estimated according to its class.

Besides the table-based power models, some researches use equations to represent their
power model [73~75]. In equation-based power models, the major work is to decide the

format, variables and factors of the equation. For example, if the equation of power is a
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quadratic function of 4 variables as in [73], there are 15 factors to be found out during the
characterization process. Although the estimation results might be more accurate, the required

characterization time is also much longer to find out those parameters.

1.3 Approaches for Different Design Information

In this section, we will discuss the useful power estimation techniques and relative
power models at each level of abstraction for an IP. According to the commonly provided
design information, the following discussion is made from three different levels, transistor
level, gate level, and behavioral level. At each different design level, we also propose
corresponding techniques to improve thé traditional power estimation methods. Those

improvements and their advantages will also be briefly introduced in this section.

1.3.1 Power Estimation at Transistor Level

If transistor-level design information of the IP is provided, the common approach is to
perform a transistor-level simulation to estimate the power consumption of a circuit because
of its high accuracy. Actually, in this case, almost all simulation-based techniques [13~32]
[37~40] could be used for power estimation because it is very possible that gate-level and
behavior-level design information is provided, too. Users can choose a technique from them
that is most suitable to their applications.

In simulation-based approaches, especially transistor-level simulation, the simulation
time is the most critical concern. If we cannot improve the simulation speed too much, we

can use another approach to reduce the number of input patterns for power estimation such
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that the simulation time can also be reduced. In traditional vector compaction techniques,
many useless transitions often exist in the compacted input sequence because they have to
concatenate all selected input pattern pairs into a new input sequence. Therefore, we propose
an improved vector compaction method with grouping and multiple-sequence consecutive
sampling approach [76]. An algorithm to reduce the number of sequences is proposed such
that the number of useless transitions and the length of the final compacted input sequence
can be minimized together, thus greatly improving the efficiency and accuracy of traditional

vector compaction approaches.

1.3.2 Power Estimation at Gate Level

If gate-level design information of -the IP. is sprovided, users can still use
simulation-based approaches to estimate power consumption-in gate-level simulation [16~20].
Although the simulation speed is much faster, those techniques often have worse accuracy
because they cannot estimate leakage power and short-circuit power and cannot deal with
glitch power accurately. Besides the simulation-based approaches, users can also use the
statistics-based approaches that do not require transistor-level design information.

In order to provide more accurate power estimation results to users without
transistor-level information, IP vendors can provide corresponding gate-level power models
in which those power characteristics can be obtained from gate-level simulation such as
[65~68]. In those approaches, different lookup tables with 2 dimensions, 3 dimensions, and
4-dimensions are proposed. In general, the accuracy of estimation results will increase when

the dimensions of the lookup table are increased. However, the characterization time to fill up
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the lookup tables will grow very fast when its dimensions are increased. Therefore, we
propose a one-dimensional table-based power modeling method for combinational circuits
[77] in which the table size is very small and almost independent to the number of primary
inputs. Using this approach, designers can build the required power model more efficiently

with little accuracy loss.

1.3.3 Power Estimation at Behavior Level

If only behavior-level design information of the IP is provided, users can see only input
and output values during the simulation. Therefore, most of those simulation-based
techniques cannot be used to estimate power consumption because there are no
implementation details in behavior-level design information. In the literature, a number of
high-level power estimation techniques [41~45]}-have been-proposed to estimate the power
consumption at a high level of abstraction; such as when the circuit is represented only by
Boolean equations. This will provide more flexibility to explore design tradeoffs early in the
design process and reduce the redesign cost and time to fix power problems. Those high-level
techniques can be roughly divided into two categories: top-down and bottom-up. In the
top-down techniques [41,42], a combinational circuit was specified only as a Boolean
function without any information on the circuit implementation. Therefore, top-down
techniques are useful when users are designing a logic block that is not previously designed
because they can provide a rough measurement about the trend of power consumption before
implemented. However, they may not have very good accuracy due to lack of implementation

details.

16



For SoC designs, bottom-up approaches [62~68] are more useful when one is reusing
previously designed circuit blocks such as IPs. Since all internal structural details of the
circuit are known, they can build a power model for this block to estimate its power
consumption in the target system at function level. Building those power models often
requires a power characterization process that uses low-level simulations of modules under
their respective input sequences to record the relationship between high-level power
characteristics and real power consumption. Because the power consumptions are measured
in the low-level simulations with internal circuit information, the power models can provide
more accurate estimations than those in the top-down approaches. After the characterization
step, no more low-level simulations are required in'the. estimation step. Users can obtain the
power consumption of the circuits by-only providing the high-level power characteristics
obtained in function-level simulations thus having a very fast estimation time.

Different to the gate-level power models;;behavioral-level power models can only use
input and output information. In this case, the proposed 1-dimension lookup table power
model cannot be used because it requires gate-level structure and node capacitance
information. Although those table-based power models in [62~68] can still be used in
behavioral level, the table size and the characterization time to fill the lookup table are still
the issues that can be further improved. Therefore, we propose a neural-network-based power
model [78] using only the statistic information of primary inputs and outputs. The size of the
selected neural network is quite small and is almost independent to the number of
input/output pins and the size of the circuit. With such a simple structure, we can still have

similar accuracy compared to the results of the most complete 4-dimensional table-based
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power model.

1.4 Organization

The remainder of this dissertation is organized as follows. First, the improved vector
compaction method using sampling techniques is presented in Chapter 2. Both the
single-sequence and multiple-sequence consecutive sampling techniques will be presented in
this chapter. In Chapter 3, the gate-level power model using only 1-dimensional lookup-table
will be presented. The proposed tableless power model using feed-forward neural network for
behavioral-level simulation will be explained in Chapter 4. Finally, we will give our
conclusions and make some discussions about the futuré works in Chapter 5 to complete this

dissertation.
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Chapter 2
Improved Vector Compaction Methods

2.1 Vector Compaction Techniques

Traditionally, power estimation is often performed at transistor-level by SPICE-liked
simulation. However, it is impractical to simulate a complex design with a large number of
test vectors by a transistor-level simulator because it may require too much simulation time.
For efficiency consideration, many vector compaction techniques [23~32][37~40] have been
proposed. The compacted input sequences are generated according to some characteristics of
the original input sequences or the aetivity of the circuitsswhile triggered by those input
vectors. Therefore, the power characteristics. can still bé.maintained because those statistics
are carefully kept during the compaction process. Based on the vector compaction techniques,
we can estimate the power consumption of a circuit with a much smaller input vector set thus
reducing the power estimation time dramatically with little accuracy loss.

The vector compaction techniques can be roughly classified into two categories. The
regeneration approaches [23~30] generate a new input sequence that is shorter than the
original input sequence but has the similar average power as that of the original one. In [23],
the pairwise transition probabilities of inputs are used to approximate the joint transition
probabilities of the primary inputs. Those probabilities in the original input sequences will be

the target to be kept in the compacted sequence.
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In [24], the authors build an incomplete state transition graph, in which the primary
inputs with higher power sensitivity are used as the state bits, to generate a smaller sequence
after compacting the activity number of each edge in the state transition graph by the Eulerian
walk algorithm. The average hamming distance of unselected primary inputs will also be
considered when they regenerate the compacted sequence. Based on grouping and sampling
techniques, the authors of [27] separate the primary inputs of the circuit into several groups
according to their power sensitivity values. The input pattern pairs are also divided into
several subsets such that they can generate a smaller input sequence by randomly sampling
from each subset according to the size of each subset and the compaction ratio. In [24,27], the
power sensitivity values of the inputs are obtaihed from.a simulation. Those power sensitivity
values may become inaccurate under different distribution of input signal probability and
switching activity.

In [25], the authors build a transition graph of the original input sequence to model the
transitions between vectors. With the transition graph, they can obtain the active numbers of
all edges and keep their ratios in the compacted input sequence. In [26], the authors analyze
the input sequence with the Markov chain model and generate a smaller input vector set that
keeps the characteristics on the Markov chain model. In [28], the spatial correlation of input
bits is used to cluster the input pins and the compacted sequence can be generated more easily
compact input sequence because those bit clusters are treated as independent. In [29], the
authors generate a compacted sequence that has the similar transition profile on the internal
signals. In [30], the authors separate the input vectors into several vector sets based on the

transition counts of internal nodes and generate a smaller sequence according to the fractal
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compaction algorithm. However, the backward weight propagation in [29] and the fractal
algorithm in [30] have high computational overhead such that the speedup is limited.

Another category of the vector compaction techniques is the sampling approaches
[31,32][37~40]. The sampling approach chooses some input patterns from the original
sequence to estimate the average power. The Monte Carlo simulation method is proposed in
[31] and [32] for combinational circuits and sequence circuits. In [37], the stratified random
sampling technique is used to improve the convergence speed of the Monte Carlo simulation
method. In [38], the gate-level simulation is used to draw the waveform of the indicator
function. The transistor-level simulation is used to estimate the pattern pair only when its
power variation is large enough. Finally, the power waveform could be used to estimate the
power consumption of the original input sequence: In [39], the sampling process is done for
module groups with similar power behavior. - In"this case, the sample size of Monte Carlo
simulation could be reduced and the performance could be improved.

According to the cycle-based power information obtained from logic-level simulations,
the authors of [40] separate input pattern pairs into to several groups and select the largest
energy cycle per group to be simulated by a transistor-level simulator such as PowerMill.
According to the power consumption of each sampled cycle and the size of each group, they
can calculate the average power consumption of the circuit under the original input sequences.
Because they select the largest energy cycle in each group as sampled cycle, those cycles
might be randomly distributed in the original input sequence. Therefore, their method is

called a random-liked sampling method.
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2.2 Useless Transitions

For large circuits, vector compaction techniques could provide a faster solution for
power estimation with reasonable accuracy. However, the random-liked sampling method
may lose the compaction ratio and speedup as shown in Figure 2-1. Those group numbers in
Figure 2-1 present different range of power characteristic values. After compaction, only 4
pattern pairs are randomly selected, one from each group. However, when those 4 pattern
pairs are serially concatenated to be the compacted sequence, 7 pattern pairs will be found in
the compacted sequence. That means the compaction ratio and speedup are lost because the

compacted input sequence includes 3 useless transitions.

Figure 2-1. Random sampling with useless transition
Therefore, we propose a single-sequence consecutive sampling technique to reduce
those useless transitions. Using the single-sequence consecutive sampling technique as shown
in Figure 2-2, we can sample a single period of patterns instead of individual pattern pairs to
reduce the loss of compaction ratio caused by the useless transitions. Compared to the
example shown in Figure 2-1, there is no useless transition in the compacted sequence so that

we can keep the compaction ratio as desired and shorten the length of the sequence.
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Figure 2-2. Consecutive sampling

However, due to non-uniform distribution of pattern pairs in some groups, it is very
possible that we cannot find a perfect consecutive sequence without any undesired transitions
as shown in Figure 2-2. Using single-sequence consecutive sampling technique, we will
over-sample some groups in such cases to,find an intact single sequence that have enough
samples for all groups. Therefore, the.compaction ratio* of the sequence length may not be
improved too much. In those cases, if we canrelax-thejimitation a little bit such that multiple
consecutive sequences are allowed, we may ‘generate a shorter sequence that still has the
desired distribution. For example, if the desired distribution is G1:G2:G3:G4 = 3:1:2:2 for the
input vectors shown in Figure 2-3, the compacted sequence found in single-sequence
approach will include at least 11 transitions as shown in Figure 2-3(a). However, as shown in
Figure 2-3(b), we can find two subsequences that also satisfy the requirements but the
number of transitions is only 9 after concatenated. It implies that we can find better solutions
for vector compaction problem if we minimize the number of sequences instead of setting the
number to be one. Of course, the number of sequences could be one as handled in the original
single-sequence approach, but it is just a special case in the multi-sequence approach.
Therefore, in this work, we focus on discussing this new extension and perform some
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experiments to show the improvements of this new approach.

]4]1]4]3]3]3]2]4]4]1][2][3]2]1]

[1[4]1]4]3]3[3[2]4]4]1]| €—Single sequence

Figure 2-3(a). The result of single-sequence approach

[1[4[1]4[3[3[3[2[4[4]1][2]3]2]1]
N—p T y 2
[1]4]1[4]13[3][?]1]2<—Multi sequences

Figure 2-3(b). The result of multi-sequence approach

In this work, our focus is to reduce useless transitions in random-liked sampling method
for vector compaction. Although thosé vector compaction methods including previous
approaches and the proposed approach-only focus on combinational circuits, they can still be
applied to sequential circuits with full scan. The only différence is that we have to record the
internal states of all flip-flops (FFs) when we estimate logic-level power characteristics of
each input transition. This FF information will then be used in the transistor-level simulation
for the compacted input sequence to set the internal states at the beginning of each composing
subsequence. Therefore, if the compacted input sequence is composed of only one
subsequence, we only have to set the initial condition once, which requires very little

overhead.

2.3 Selection of Power Characteristics

The power consumption of a CMOS digital circuit is often formulated as Equation (2-1).
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The static power (Pyasic) 1s often much smaller than the dynamic power (Paynamic). The Paynamic
is the summation of the functional transition power (Ppinc mans), the glitch power (Pgjirer) and
the short-circuit power (Psuore-circuir), Which is represented as Equation (2-2). The Pguorr-circuir 18
consumed when short-circuit current flows from Vpp to ground at the period that both PMOS
and NMOS transistors turn on together during the signal transitions and is often smaller than
the summation of the Ppnc srans and the Pgicp. The proportion between Plime rans and Pgiircn
depends on the circuit behavior and the design skill. Given a circuit with # nodes in its netlist,
we could express the power consumptions of Py srans and Pgjiren as Equation (2-3) and (2-4),
where i denotes the index of each internal node, C; is its load capacitance of node i, V ; is
supply voltage of the circuit, f; s, is the frequency-of functional transition at node i and
fi giiren 1s the frequency of glitch at node-i. Note that-a node 10 the netlist is defined as the input
or output of a logic gate in the circuit. Generally speaking, a functional transition only
considers the signal transition from 0 to 1"or 1 te-0:"On the contrary, a glitch is the signal
transition from 0 to 1 to 0 or 1 to 0 to 1 such that it is not multiplied by a factor 1/2. 7; is the

factor of the width of glitch to the glitch power and should be between 1 and 0.

P= 1)static + ])a'ynamic (2-1)
dynamic = f)ﬁmcitrans + F?glitch + thart—circuit (2_2)
1, <&
Pﬁmcﬁtrans = E ’ Vdd ’ z Ci ’ f;‘ifunc (2-3)
i=1
) n
P glitch = Via Z C; - fi7 glitech " Ti (2-4)
i=l
P= Pfunc_trans + Pglitch + I)Short—circuit + ])static (2_5)
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In Equation (2-3), the term Zn:Cl. *fi sme 18 often defined as the charging and
i=l

discharging capacitance (CDC) during an input transition, where f; s, =1 if node i has signal
transition and f; s =0 if node i has no signal transition. The C; of node i is the summation of
output capacitance for driving gate and the input capacitances of driven gates at node i. For
commercial cell libraries, the vendors will provide the output loading capacitance and input
loading capacitances of cells. If such loading information is not provided, users can easily
characterize the loading capacitances by themselves using the characterization process
proposed in [19]. Therefore, to calculate the CDC values of an input pattern pair only have to
sum the loading capacitances of those nodes whose logic values are changed during the input
transitions. Only a logic-level simulator is #équired to obtain the node transition information
for calculating CDC values.

In the simulation-based vector compactiohsapproaches that consider the circuit structures
or behaviors, they often classify the input pattern pairs according to some power
characteristics of each pattern pair. In the literatures, many power characteristics have been
proposed [23,24][27] [30]. For example, Hamming distance (HD) of pattern pairs is adopted
in [23][27] which use the number of transition bits of the primary inputs to approximate the
average power consumption. Switching count (SC) is used in [30] to approximate the power
consumption of a pattern pair using the summation of Zn: Ji jine - Charging and discharging

i=1
capacitance (CDC) is adopted in [40] to approximate the power consumption of a pattern pair.
Power sensitivity is used in [24,27] as an estimation on the influence of an input to the overall

power consumption.

In the vector compaction approaches, the adopted power characteristics have large
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impacts on the accuracy of the estimated power and the extra computation overhead for the
compacted input sequences. In order to determine which power characteristic is most suitable
for different circuits, we define the average normalized error of a power characteristic as
below to make a fair comparison between them.

An average normalized error (AVGNE) is the average error between the normalized
power characteristics to the normalized real power of all combinations of input vectors. The
normalized power characteristic is the power characteristic value divided by the average
power characteristic value. The normalized real power is the power consumption divided by
the average power.

For a combinational circuit with » inputs;'we can. formulate the AVGNE of any power
characteristic PC as Equation (2-6). In-Equation- (2-6), ‘P;x is the power consumption of the
transition from pattern j to pattern k- and,PCj; is _the power characteristic value of that
transition. P, is the average power consumption-of all input pattern pairs and PC,,, is the

average power characteristic value of all input pattern pairs.

1 2"-12"-1 PC ‘ P .
AVGNE,. = —— (=) (2-6)
2 Jj=0 k=0 PCavg Pavg
]y
PC”Vg = 2n+n . PCj,k (2-7)
Jj=0 k=0
] 24 )
avg = 2n+n . I)j,k ( _8)
j=0 k=0

The AVGNE of a power characteristic can make a fair comparison between the power
characteristic value and the real power consumption. The power characteristic with smaller
AVGNE is considered as much closer to the real power. Therefore, we make some
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experiments to evaluate the AVGNE of some popular power characteristics.

In our previous work [79], we have compared the AVGNE of CDC and HD. In this work,
we compare the AVGNE of three popular power characteristics, HD, zero-delay CDC and
zero-delay SC. In our experiments, we evaluate the AVGNE by three input sequences with
the same average input signal probability (P=0.5) but different average transition density (D)
on several ISCAS’85 benchmark circuits. For the input sequence with high average transition
density, D is set to 0.4. For the input sequence with middle average transition density, D is set
to 0.25. For the input sequence with low average transition density, D is set to 0.1. For each
test sequence, 500 pattern pairs are randomly generated according to the desired signal
probability and transition density. Those patterns'are then used in PowerMill to simulate their
power consumptions. About the corresponding power characteristic values, the CDC and SC
values are calculated by the Verilog-XL simulator, and the HD values is obtained by a simple
self-developed C program. The comparison result-is'shown in Table 2-1. The AVGNEs of
ISCAS’85 benchmark circuits are estimated by three test sequences and the overall average
AVGNEs of CDC, SC and HD are 0.1278, 0.1399 and 0.2568 respectively. Therefore, we

also choose CDC to be the power characteristic in this work.
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Table 2-1. Average normalized errors for three power characteristics

High D Mid D LowD
(P=0.5, D=0.4) (P=0.5, D=0.25) (P=0.5, D=0.1)
CDC] SC | HD | CDC] SC | HD | CDC] SC | HD

C432 10.1592]0.1933]0.3093| 0.2306| 0.2501| 0.4793] 0.2091| 0.2424| 0.7749
C499 [0.1044|0.1064|0.1334| 0.1321|0.1308| 0.1641] 0.1491| 0.1405| 0.2662
C880 ]0.1044|0.1183{0.1729| 0.0841]0.0991| 0.2562| 0.1016| 0.1178| 0.3153
C1355 | 0.1055| 0.1099]0.1402] 0.1026| 0.1056| 0.1579] 0.1246| 0.1268| 0.2112
C1908 | 0.1441|0.1515/0.1809] 0.1421| 0.1597| 0.2303] 0.1490| 0.1551| 0.2851
C2670 |0.1018]0.1213{0.1768| 0.1067| 0.1341| 0.2158] 0.1121| 0.1363| 0.3138
C3540 ]0.1445]0.1598]0.1750] 0.1335| 0.1477| 0.2396| 0.1417| 0.1496| 0.4756
C5315 | 0.0882| 0.1003]0.1563] 0.0836| 0.0963| 0.2400] 0.1091| 0.1190| 0.3313
C6288 | 0.0982| 0.1125]0.1262] 0.1532| 0.1684| 0.1733] 0.2096| 0.2260| 0.2391
C7552 | 0.0914| 0.093310.1667|0.1014| 0.1067| 0.2699] 0.1158| 0.1177| 0.3286

Average| 0.1142(0.1267|0.1738] 0.1270| 0.1399| 0.2426| 0.1422| 0.1531| 0.3541

2.4 Grouping of Pattern Pairs

If we have a power characteristic that 1s”almost proportional to the real power
consumption for all pattern pairs, we can easily generate a compacted input sequence for
estimating the average power consumption of a circuit by a simple random selection. For
example, if the original input sequence is L and the compacted sequence is C, the power
consumption of the original input sequence P can be calculated from P =Pc*(PCL/PCc),
where PCy is the total power characteristic value of the original input sequence, PCc is the
total power characteristic value of the compacted sequence, and P¢ is the power consumption
of the compacted sequence. However, most of the power characteristics including CDC can
only model the functional transition power. The glitch power is often not proportional to the

functional transition power for all pattern pairs such that the power characteristic values may
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not always be proportional to the real power consumption.

Therefore, another solution is required instead of random selection to minimize the
estimation errors. One popular approach is to separate the input pattern pairs into several
groups according to their power characteristics and then sample pattern pairs from each group.
This grouping method, which is also applied in this work, is widely used just like [40] with
very low computation complexity. The variation caused by glitch power can be effectively
reduced because the average value of each group is used to represent the power consumption
of all pattern pairs that belong to this group such that the variation can be compensated.

In order to demonstrate the grouping effects, we perform a simple experiment on C1355
in ISCAS’85 benchmark circuits with 5,000 random input pattern pairs. The variance
limitation of each group is set as +£2.5%. The experimental results are illustrated in Figure 2-4
to show the estimation error between normalized CDC values and normalized real power
values of all pattern pairs. The estimation‘erfor of each pattern pair is defined as Equation
(2-9), where NCDC,; is the normalized CDC value of pattern pair i, and NP; is the normalized
power consumption of pattern pair i. Without grouping, all pattern pairs are treated as a single
group with group number 0 in Figure 2-4. We can see that there is a large error distributed
from 20% to -60%. After divided those pattern pairs into 24 groups with group number 1 to
24 in Figure 2-4, we can see that the error distribution range of each group is significantly
reduced if the average value is used to represent the real power value of each pattern pair in
the same group.

NCD](\;,. =N, 100 (2-9)

Error, =

i
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Error %

Figure 2-5 shows an example of the grouping process. Figure 2-5(a) is the distribution of
the CDC values of 15 pattern pairs. After sorting and grouping, those pattern pairs with
similar CDC values will be put together intol a|group as-shown in Figure 2-5(b). In this
example, there are six groups for the input pattérn pairs. The group size and the number of

groups is determined by a user-defined variance limitation, which is the range of CDC values

10 15

Group Number

Figure 2-4. The effects of grouping

in a group from the average CDC value to its maximum or minimum value.

9 9
CDC . . CDC
6re , * o . 6
3% ) 3t @
' ) >
0 0
1 Pattern Pair Number 15 ]

(a). CDC distribution

Pattern Pair Number

(b). Sorting and grouping

Figure 2-5. An example of grouping process
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Our experience shows that the best variance limitation falls between +2.5% to £5%. If
the variance limitation is smaller than +2.5%, the number of groups is increased and the
group sizes are decreased. In this case, it is hard to obtain a high compaction ratio because
many groups are too small to provide enough samples. If the variance limitation is larger than
+5%, the grouping process will cause larger errors because the glitch power may be quite
different between those pattern pairs in a group. Therefore, there is a trade-off between the
compaction ratio, the estimation error, and the variance limitation, which can only be decided
according to the characteristics of the circuits.

In order to demonstrate these effects, we use 50,000 pseudo random vectors to test
C2670 in ISCAS’85 benchmark circuits with'diffefent variance limitation and compression
ratio by using the two different vector compaction approaches that will be introduced in
Section 2.5. The experimental resultstare shown in Table'2-2. In Table 2-2, DCR is the
abbreviation of desired compaction ratio. From the tesults, we can see that the estimation
errors will increase in both approaches when the compression ratio is increased. If we set the
variance limitation to a smaller value (1%), we can see that the estimation errors are getting
worst especially for high compression ratio because many groups are too small to provide
enough samples. When the variance limitation is set to a larger value (5%), the estimation

error will also increase because the variation in a group is increased.
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Table 2-2. The relationship between compaction ratio, variance limitation and estimation

error
Variance Limitation

€2670 +1% +2.5% +5%

Sampling o o o
Techniques DCR | Error (%) | Error (%) |Error (%)
100 1.84 0.87 2.19
Single-Sequence | 250 4.04 3.83 3.32
500 8.64 7.48 7.88
100 2.16 2.82 2.23
Multi-Sequence | 250 4.25 3.73 4.77
500 9.56 7.32 7.69

The pseudo code of the grouping process is shown

in Figure 2-6. The subroutine

QuickSort() sorts all pattern pairs according to their CDC values. When we try to merge a

pattern pair into the current group, the subroutine cal group avg cdc() calculates the average

CDC value of this group. And the subroutine' vielate var limit() will test whether the

variance limitation is violated due to the added pattern pair. If this group will not violate the

variance limitation with the added pattern.pair, this-pattern pair will be merged into the

current group. Otherwise, a new group will'be built in which this pattern pair is the first

member. The grouping information will be recorded in a data structure group// and the total

number of groups will be returned after the whole process is finished.
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Grouping(pattern_pair[],N, var_limit,group[])

{
QuickSort(pattern_pair[],N);
group num = I;
g h=g t=N;
while(g 7> 0)
{
group _avg cdc=cal_group_avg_cdc(pattern_pair[],g h.g t);
if (violate_var_limit(group _avg cdc,pattern_pair[g h].cdc,
pattern_pair[g t].cdc,var limit))
{
group[group num].size=g t-g h;
group num-+-+;
g =g I
group _avg = pattern_pair[g h].cdc;
pattern_pair[g h].group num=group num,
/
pattern_pair[g h].group num=group num,
g h--
/
return(group num),;
/

Figure 2-6. The pseudo code of the grouping algorithm

2.5 Consecutive Sampling techniques

2.5.1 Single-Sequence Approach

After grouping, we can sample a number of pattern pairs from each group according to
the size of the group divided by a user-defined compaction ratio. It is often called the
proportional sampling strategy [27]. Instead, we can sample a single pattern pair from each
group, which is called single sampling strategy [40]. The single sampling strategy can only be
used if the power characteristic is a very precise approximation of the real power. However, it

can achieve a very high compaction ratio. The proportional sampling strategy can be used
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without a very precise power characteristic but the compaction ratio may not be as high as the
single sampling strategy.

In traditional sampling methods, people sample some independent pattern pairs from
each group and concatenate them into a continuous sequence for simulation. Therefore, the
sequence will include about half useless transitions as shown in Figure 2-1. Using a state
transition graph and selecting the Euler trails on it with enough samples could be an approach
to reduce useless transitions. However, it can only be used when most of states and transitions
have passed many times. In typical cases, not all parts of the state transition graphs will be
visited many times such that we are hard to obtain enough samples. Therefore, in order to
reduce the useless transitions in most cases; ‘we propose a single-sequence algorithm to
sample a sequence of consecutive pattérn pairs-from the original input sequence with the
desired distribution and compaction ratio. The single sequence algorithm can be formulated

as below.

Problem formulation: Given a sequence S of length N with entries in a set G={g,,2,...,2n},
where g;eZ" (1,2,...) for 1 <i <m, and a set T={t,,t,,....tn} With ;e z; (0,1,2,...)for I <i <
m and ¢; <s(g;) for I <i <m, where s(g;) represents how many times that g; appears in S, find

the shortest subsequence S’ in S such that all g;eG can be found in S’ at least ¢ times.

Solution: According to the problem formulation, we can see that the shortest subsequence
that satisfies the requirements will also satisfy the following two conditions. The first
condition is that the corresponding group of the start point in the shortest subsequence must

exactly appear as the requirement in 7. If the corresponding group of the start point is larger
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than the requirement in 7, we can drop it to obtain a shorter sequence and the new
subsequence will still satisfy the requirement in 7. The second condition is that the
corresponding group of the end point in the shortest subsequence must also exactly appear as
the requirement in 7. The reason of this condition is the same as the first condition. Based on
these two conditions, we propose an algorithm that can find the shortest subsequence from

the original input sequence to satisfy the requirement in 7.

Step 1: Assume the subsequence starts from index tail and ends at index head. Find a
subsequence, whose tail is located at the start point of S, to satisfy the requirements in

T and the second condition.

Step 2: Trace this subsequence by moying tail-forward until the subsequence satisfies the
first condition. Then, this subsequence is oné candidate of the shortest subsequence.

We will keep tracking the shortest one of all candidates.

Step 3: Move tail one step forward. This subsequence is now violating the requirements in 7.

Step 4: Find the next subsequence that satisfies the requirements and the second condition by
moving head forward on S. If head is equal to N and the subsequence still does not

satisfy the requirements, this procedure will be stopped. Else, go back to Step 2.

The global shortest subsequence will be the shortest one in those shortest subsequences
found in Step 2. In our process, the shortest one will be found when the process stops because
the process keeps tracking the shortest candidate. It is hard to give a formal proof for our
algorithm, but we can explain it by simple descriptions as follows. If there is a shorter

subsequence than the one we found, it means that some pattern pairs can be dropped from the
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subsequence we found. However, the numbers of pattern pairs of the groups for first pattern
pair and last pattern pair in our subsequence are just satisfying the requirement in 7. It
implies that no pattern pairs could be dropped from our subsequences. Therefore, the
subsequence is the shortest subsequence that satisfies requirements.

The pseudo code of this algorithm is shown in Figure 2-7. In Figure 2-7, the subroutine
Shortest subsequence() will find the shortest subsequence that satisfies the requirements in 7.
The sub_seq statisfied() will test whether the subsequence from the index fail to the index
head in § is satisfied the requirements in 7" and the first condition. The trace_forward() will
increase the index tail one by one until the subsequence satisfies the second condition. The
time complexity of this algorithm is O(n) because it'only walks through the sequence S twice

by head and tail.

Shortest_subsequence(S/}, G/, T[],N,f headf tail)
{
head=tail=f head=f"tail=I;
length=N;
while(head <= N)
{
if(sub_seq_satisfied(S//,G/], T[], head, tail))
{
trace_forward(S//,G/[],T[] head,tail)
if (length > head-tail+1)
{
length = head — tail + 1;
f head = head; f tail = tail;
/
tail++;
/
head—++;
/
/

Figure 2-7. The pseudo code of the single-sequence algorithm
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Figure 2-8 is a simple example for the shortest subsequence searching process that
samples one pattern pair from each sampled group (G={1,2,3,4}, 7={1,1,1,1}). The first step
is sub_seq _statisfied(), which finds the first subsequence that stratifies the requirements in 7
and the second condition. Two indexes fail and head define the subsequence. The second step
is trace forward(), which moves the index fail forward until the subsequence satisfies the
first condition. This subsequence is one candidate of the shortest subsequence. Therefore, we
record it by index f tail and index f head as the temporal shortest subsequence. The third
step moves the index tail one step forward and apply the sub seq statisfied() to find the next
subsequence that satisfies the requirement in 7 and the second condition. The fourth step is
trace_forward() again which moves the index tail f6rward until the subsequence satisfies the
first condition. This subsequence is-also one candidate of the shortest subsequence.
Compared with the recorded temporal ;. shortest -subsequence, the existing shortest
subsequence is shorter than the new one. ‘Therefore; the indexes f tail and f head are not
changed. The fifth step is the same as step 3 that moves the index fail one step forward and
apply the sub seq statisfied() to find the next suitable subsequence. The sixth step is
trace_forward() again that moves the index fail forward until the subsequence satisfies the
first condition. This subsequence is also one candidate of the shortest subsequence.
Compared with the recorded temporal shortest subsequence, this new sequence is shorter than
the existing shortest subsequence. Therefore, the indexes f fail and f head are changed to
define the new temporal shortest subsequence from tail to head. After the sixth step, we
cannot find any new subsequence. The recorded temporal shortest subsequence is the final

shortest subsequence.
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[114]1[4[3[3[3[2[4[4[1]2[3]|2]1]| sub_seq_ statisfied(),

tail head

[114]1[4]3[3[3[2[4[4[1[2[3]|2]1] trace forward (),
tail,f tail hea(If_head

[1T4T1T41313[3[2]4]4[1]2[3]2]1] sub_seq_statisfied();
f tail tail f head head

|1|4|1|4|3|3|2|2|4|4|$|2|3|2|1| trace_forward ();

tail,f tail  head,f head
[1[4[1[4]3]3][3]2]4]4] l|2|$|2|1| sub_seq statisfied(),

frail ¢ head head

[1[4]1]4]3[3[3]2]4[4]1]2]3]2][1] trace_forward ();
tail,f tail head,f head

Figure 2-8. An example of the shortest subsequence searching
Ideally, we can find a compacted sequence without any useless transitions as shown in
Figure 2-2. In real cases, however, the compactedisequence may still have some undesired or

over-sampled transitions.

2.5.2 Multi-Sequence Approach

As shown in Figure 2-3, if we relax the limitation a little bit such that multiple
consecutive sequences are allowed, we can find better solutions for vector compaction
problem if we minimize the number of sequences instead of setting the number to be one. In
this section, we will discuss this new extension and propose an algorithm to solve this more
general problem.

Problem formulation: Given a sequence S of length N with entries in a set G={g;,2>,...,2n},
where g;eZ" (1,2,...) for I <i <m, and a set T={t,,ts,....tn}, ie 2z (0,1,2,...) forl <i<m
and t; <s(g;) for I <i <m, where s(g;) represents how many times that g; appears in S, find

the_minimum number of disjoint subsequences in S such that all g;eG can be found in those
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subsequences exactly ¢ times, for 1 <i <m.
This problem is very similar to the well-known EXACT COVER BY 3-SETS (X3C)

problem [80]. The X3C problem is described as follows.

INSTANCE: Set X with |X] = 3¢ and a collection C of 3-element subsets of X.

QUESTION: Does C contain an exact cover for X, i.c., a subcollection C’ < C such that

every element of X occurs in exactly one member of C’?

In fact, the X3C problem can be transformed into a special case of our problem in
polynomial time. Instead the detailed deriving process, we briefly show the transforming
process in Figure 2-9. If the minimum number;of disjoint subsequences in our problem is

equal to ¢ in X3C problem, we can find-that/the' subcollection C’will satisfy the requirement.

In X3C problem:
X={1,2,3,4,5,6}, |X|=3%2g=2 and
C={{6,2,3}, {5,3,64,{1,2,4},{1,5,4}}
Transfer to multi sequences problem:
G={1,2,3,4,5,6,0}, s(1)=2, s(2)=2,5(3)=2, s(4)=2,
s(5)=2, s(6)=2, s(0)=3 and T={1,1,1,1,1,1,0}
S>|6(2[3]|0|5[3]6|0|1({2]|4]|0|1|5|4

Figure 2-9. Transforming a X3C problem into a multi-sequence problem
Because the X3C problem is a NP-complete problem, our multi-sequence problem is a
NP-complete problem, too. Therefore, we propose a heuristic algorithm to solve it. First, we
will find the longest subsequence in which the pattern pairs of each group do not appear more
than the requirements in 7. Of course, this longest subsequence will not include any useless
transitions. After that, we modify the numbers in 7 by subtracting the required sample

number in 7 with the number of pattern pairs that appear in the first subsequence for each
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group. Then we can find the next longest subsequence and modify the numbers in 7 again.
This process will be iteratively executed until all numbers in 7 are equal to zero. In order to
ensure that all subsequences found in this process are disjoint, the subsequence found in each
iteration will be marked in S. Finally, the sequence that concatenates those subsequences is
the solution of our algorithm. As a summary, we describe our algorithm step-by-step as

follows and demonstrate the pseudo code of our algorithm in Figure 2-10.

Step 1: Find the longest subsequence in which each g; in G appears 1, times, where ¢, <t

forall ¢,in 7.

Step 2: Mark the longest subsequence in S and set #;=¢;-¢, for all ; in T.

i

Step 3: If all =0, I <i <m, STOP. Then concatenate all subsequences found in Step 1 to be

the solution. Else go to Step 1.

In Figure 2-10, the subroutine sub_seq() is the function to find the longest subsequence
in which the pattern pairs of each group do not appear more than the requirements in 7. The
subroutine concatenate() concatenates the sub-sequence found by the sub_seq() function. The
subroutine modify() modifies the numbers in 7 according to the longest subsequence found by
the subroutine sub_seq(). The subroutine all zero() tests whether all entries in 7 equal to zero.
The number of useless transitions in the final sequence will be the number of subsequences

minus one.
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Multi_sequence(S//,G/[],T[],N)
{
S’=NULL;,
S tmp=NULL;
flag=0;
while(flag==0)
{
S tmp=sub_seq(S/],G[],T[],N);
S’=concatenate(S’,S tmp);
modify(T/],S tmp),
S tmp=NULL;
If@all_zero(T/[])) flag=1;
/
return(S’);

Figure 2-10. The pseudo code of the multi-sequence algorithm

The time complexity of this algorithmyis ' @@@?) that is dominated by the number of
sub_seq() subroutine being executed. Il the worst case, the number of sub seq() subroutine
being executed is n divided by the desired compaction ratio. Therefore, the time complexity
is O(n’) for our proposed multi-sequence algorithm-n the worst case because the operations
in this algorithm are similar to those in the single-sequence algorithm, whose time complexity
is O(n).

Figure 2-11 is an example of the detailed searching process in the multi-sequence
algorithm for G={1,2,3,4} and 7={3,1,2,2}. The input sequence § in this example is the same
as in Figure 2-3 for explaining the improvement of multi-sequence algorithm. The first step is
sub_seq() that will find the longest subsequence in which the pattern pairs of each group do
not appear more than the requirements in 7. The second step is concatenate(), which
concatenates the result of the first step into S’. The third step is modify(), which modifies the

numbers in 7" according to the subsequence found in the first step and marks those transitions
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that appear in the subsequence on S. After modified, 7" becomes to 7={1,1,0,0} and passes the
examination of the all zero() subroutine, which tests whether all entries in 7" equal to zero.
The fourth step is sub_seq() again that finds the longest subsequence in which the pattern
pairs of each group do not appear more than the requirements in 7. The fifth step is
concatenate(), which concatenates the result of the fourth step into §’. The sixth step is
modify() again, which modifies 7" according to the subsequence found in the fourth step and
makes proper marks on S. After modified, 7 becomes to 7={0,0,0,0}. Because all entries in T
equal to zero, the all zero() subroutine will return 1 and the process is stopped. At this

moment, the sequence S is the final result.

(414333241411 2[3]2 1} « F={3:1,2,2}; S=NULL; S_tmp=NULL;

S tmp=> sub_seq();

N d concatenate();
[IT4T1T413[3 3 [2[4141112[3[2[ T]- modify(); T={1,1,0,0}; all_zero() = 1;
S tmp=> sub_seq();

S [1T4]1741313[?]1]2] concatenate();

[1[4]1]4]3[3[3[2]4]4[1]2][3]2]1] modifi(); T={0,0,0,0}; all zero() == 1;

S>> [1[4]1[4[3[3][?]1]2]

Figure 2-11. An example of the multi-sequence algorithm
In this example, the compacted sequence S’ is consisted of two subsequences thus still
having one useless transition. However, compared with the single-sequence approach, we still
save 2 transitions with the multi-sequence approach. Using the single-sequence algorithm, we
will find the shortest sequence with 11 transitions as shown in Figure 2-3(a). Using the

multi-sequence algorithm, the final sequence has only 9 transitions including one useless
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transition as shown in Figure 2-3(b).

2.6 Average Power Calculation

For efficiency consideration, it is not necessary to sample pattern pairs from those
groups with too few pattern pairs because those groups have only small contribution on the
overall power consumption. If we put too much effort to sample those pattern pairs, the
desired compaction ratio may be decreased. Instead, we can directly calculate their
contribution to the overall power consumption for those non-sampled groups to provide a
trade-off strategy between efficiency and accuracy. Therefore, we will set the sampling
numbers to zero for those groups whose sizes are smaller than the desired compaction ratio.
The detailed equations for deriving the:average power consumption of a circuit are shown in

Equations (2-10), (2-11) and (2-12).

Pavg = (Psam + Ijnon )/N (2'10)
n o CDC, h,..
P = —— T xp)x—eed i 2-11
;[(;CD%_,- Rl (2-11)
cDC

Pnun — Psam x CDCtOtal_nOn (2_12)

total _sam

In Equation (2-10), N is the number of pattern pairs in the original input sequence, Pg,q
is the average power consumption, Py, is the total power consumption of sampled groups,
and P,,, is the total power consumption of non-sampled groups. In Equation (2-11), m is the

number of sampled groups, 4; is the number of sampled pattern pairs in group i, CDClyg ; 1S
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the average CDC value of group i, CDC; is the CDC value of pattern pair j, P; is the power
consumption of pattern pair j, and /.. ; 1s the total number of pattern pairs in group i. In
Equation (2-12), CDCjtai non 1s the total CDC value of non-sampled groups, and CDCirar sam

is the total CDC value of sampled groups.

2.7 Experimental Results

In this section, we will demonstrate the experimental results of our approaches with
ISCAS’85 benchmark circuits. The estimation environment is a SUN UltraSPARC IIi
workstation with 512MB memory. The original input sequence contains 50,000 pseudo
random vectors for each circuit. The variance limitation in the grouping process is set to
+2.5%. The number of sampled groups is decidedby a user-specified parameter “desired
compaction ratio” (DCR). In our experiments, the desired.compaction ratio is set to a high
number (250) to demonstrate that those sampling techniques could achieve high compaction
ratio and high speedup without losing too much accuracy. However, with the same DCR, the
achieved compaction ratio may not as high as expected because the useless transitions may
exist in the compacted input sequences. Therefore, the effective compaction ratio is also
calculated to show the effects of reducing useless transitions in the proposed vector
compaction technique.

The experimental results are shown in Table 2-3. The first row is the names of circuits.
The second and third rows are the estimation results and the run time elapsed by PowerMill
simulator with the original input sequence. The following six rows show the estimation

results of the random sampling technique and the last twelve rows are the estimation results
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using the consecutive sampling techniques. The row L/U represents the length of the
compacted sequence (L) and the useless transitions (U) in the compacted sequence. ECR is
the abbreviation of effective compaction ratio, which is the number of pattern pairs in the
original input sequence divided by the number of pattern pairs (including useful and useless
transitions) in the compacted sequence. The speedup is the elapsed time of PowerMill with
the original input sequence divided by the elapsed time of the power estimation with vector
compaction technique that includes Verilog-XL simulation, grouping, sampling, PowerMill
simulation and average power calculation.

Table 2-3. A comparison of random, single-sequence and multi-sequence techniques

Circuit | C432 | C499 | C880 | C1355 | €1908. C2670 | C3540 | C5315 | C6288 | C7552 | Avg.
. I (uA) 289.6| 685.5| 411.8f 790.9 8417 | 939.1| 2058.7| 2540.5|21936.6| 3786.6
PowerMill
(L=50,000) | Time (s) 8542 16757 13774| 22064|= 22925[. 18100 57450| 49813| 290751| 63705
I (uA) 299.4| 708.3| 437:6| " 824.2| ~879.7| - 981.4| 2134.3| 2613.3]22603.6| 3999.4
Error (%) 3.38 3.33 6.27 421 4.51 4:50 3.67 2.87 3.04 562 4.14]
Random L/U | 377/187]385/190 | 390/194 | 388/192| 380/188 | 388/192 | 393/195 | 391/194 | 388/193 | 390/193
Sampling ECR 132.63| 129.87] 128.21] 128.87| 131.58] 128.87| 127.23] 127.88] 128.87] 128.21]129.22]
Time (s) 93.6] 177.8] 1475 232.177237.9] 229.2| 563.7| 552.3| 2640.0| 703.4
Speedup | 91.26] 94.25] 9338] 95.06] 9636] 78.97] 101.92] 90.19] 110.13] 90.57] 94.21]
1 (uA) 291.6] 694.6| 422.0| 824.4| 891.2| 978.4| 2160.8| 2620.3|22741.0| 3887.7
Error (%) 0.69 1.33 2.48 424 5.88] 4.8 4.96 3.14|  3.67| 267 3.32|
o | Single L/U 294/0| 245/0| 233/0| 324/0| 228/0| 347/0| 323/0| 272/0| 262/0| 316/0
% Sequence|  pcR 170.07] 204.08| 214.50] 154.32] 21930] 144.09] 154.80] 183.82] 190.84] 158.23]179.41]
£ Time (s) 79.6] 129.3| 1032 201.4| 169.0| 214.3| 482.9| 433.1| 1908.5| 609.8
§ Speedup | 107.31] 129.60| 133.47| 109.55| 135.65| 84.46| 118.97| 115.02| 152.35] 104.47 119.08|
‘§ 1 (uA) 301.7| 699.2| 430.1| 824.3| 886.9| 9753| 2143.6] 2616.9]22829.2| 4036.3
% | Error (%) 418 200 444| 422 537  3.85 4.12 3.01 4.07 659 4.19]
S | Mul L/U 195/5| 201/6| 202/6| 200/4| 196/4| 198/2| 202/4| 200/3| 197/2| 201/4
Sequence|  ECRr 256.41] 248.76| 247.52] 250.00] 255.10] 252.53| 247.52] 250.00| 253.81] 248.76]251.04]
Time (s) 623 1152 945 1489| 1532 160.4| 343.0| 362.8| 15304 463.1
Speedup | 137.11] 14546] 145.76| 148.18] 149.64] 112.84] 167.49] 137.30] 189.98] 137.56] 147.13]
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Table 2-4. Consecutive sampling techniques for LFSR input sequences

Circuit | C432 | C499 | C880 |C1355 |C1908 | C2670 | C3540 | C5315 | C6288 | C7552 | Avg.
powerMill LA 2933 668.1| 383.9| 772.4| 847.1| 963.9| 1944.6| 2341.7| 19912.7| 3867.8
(L=50,000) | Time (s) 8206| 15296| 13655| 21123 | 21139| 19741| 52857| 46819| 273940| 64931
[ (uA) 307.3| 683.4| 408.2| 794.6| 883.4| 1007.4| 2033.9| 2434.1| 21290.4| 3948.1
Error (%) 477 229| 633| 287 429 451| 459 395 692 2.08] 4.26]
Random L/U  1380/188|386/192 |395/195|386/191 | 382/189 | 387/192 | 383/189 | 391/193 | 388/192 | 390/193
Sampling ECR 131.58| 129.53| 126.58| 129.53| 130.89] 129.20| 130.55| 127.88| 128.87| 128.21] 129.28]
Time (s) 94.1| 178.8| 1442| 2194| 242.1| 238.1| 547.7| 5443 2458| 7014
Speedup | 87.21] 8555] 94.69] 9628] 8732] 8291] 9651] 86.02] 11145 92.57] 92.05]
I (uA) 3111 697.4| 398.6| 795.3| 878.7| 1000.8| 2047.3| 2430.8| 20973.8| 3957.5
Error (%) 6.07| 439 3.83| 296| 373| 3.83| 528 3.80 5.33 2.32]  4.15]
Single L/U 260/0( 357/0| 240/0| 306/0| 285/0| 263/0| 266/0| 254/0| 473/0| 244/0
2 [Sequence | e | 19231] 140.06] 208.33] 163.40] 17544 190.11] 187.97| 196.85] 105.71] 204.92] 176.51]
E Time (s) 69.4| 157.6| 96.3| 187.9| 180.1| 195.1| 385.6| 4062| 2971| 5284
§ Speedup | 11824 97.06| 14180 11242] 11737] 101.18] 137.08] 11526] 9220 122.88] 11555]
§ 1 (uA) 3152 7045 403| 781.3 891| 999.9| 2059.2| 2460.4| 21238.4| 3956.4
3 Error (%) 157 383 641| 017 6.7 373] 589 5.07 6.66] 229] 4.23|
§ Multi L/U 196/4| 198/4| 205/5| 199/4| 197/4| 198/3| 198/4| 201/3| 200/4| 200/3
Sequence | gCR 255.10| 252.53] 243.90| 25126] 253.81] 252.53] 252.53] 248.76] 250.00] 250.00] 251.04]
Time (s) 56.5| 106.1|  85.4|% 13891y 140.8 | 164:3| 319.4| 358.7| 1517.3| 4673
Speedup | 145.24| 144.17] 159.89] 152:07] 150.13] 120.15] 165.49] 130.52] 180.54| 138.95] 148.72]

According to the experimental results, the speedups of three methods are 94.21, 119.08

and 147.03 respectively. The multi-sequence approach improves 56% on speed compared to

random sampling approach. The single-sequence approach only improves 26% on speed. It

shows that we can obtain the highest speedup using the multi-sequence approach for all test

cases in the benchmark. The average compaction ratio achieved in random sampling

approach is 129.22 and the average error is 4.14%. The average compaction ratio achieved in

single-sequence approach is 179.41 and the average error is 3.32%. The average compaction

ratio achieved in multi-sequence approach is 251.04 and the average error is 4.19%. It shows

that the multi-sequence approach can dramatically reduce the useless transitions in the

random sampling method such that it can almost keep the desired compaction ratio exactly. In
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our experiments, the useless transitions in the multi-sequence approach for all cases are not
larger than 6. In random sampling approach, the useless transition is at least 187. Compared
to the single-sequence approach, the compaction ratio in the multi-sequence approach is still
much higher, especially when the pattern pairs of some groups are not uniformly distributed
in the original sequence, such as C2670. About the compaction error, the average errors of all
three approaches are less than 5%. It shows that this multi-sequence approach can improve
the speedup much more with reasonable accuracy.

In order to verify the effects of our approach on those input patterns that are not pure
random, we perform another experiment that uses the input sequences generated from a linear
feedback shifter register (LFSR) because aiLFSR'sequence is easier to generate and has
highly spatial correlation that is quite-different t0- pure, random patterns. The experimental
results are shown in Table 2-4. Compared with the results in Table 2-3, we can see that the

proposed approach can still be effective with different input distribution.

2.8 Summary

In this work, we proposed a multi-sequence sampling technique to reduce the useless
transitions in the compacted sequence and improve the over sampling problem of our
previous single-sequence approach. By relaxing the limitation a little bit such that multiple
consecutive sequences are allowed, we can find better solutions for vector compaction
problem if we minimize the number of sequences instead of setting the number to be one. Of
course, the number of sequences could be one as handled in the original single-sequence

approach, but it is just a special case in the multi-sequence approach. As demonstrated in the
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experimental results, the multi-sequence approach improves 56% on speed compared to the
random sampling approach. The single-sequence approach only improves 26% on speed. It
shows that this multi-sequence approach can improve the speedup much more with

reasonable accuracy.
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Chapter 3
Gate-Level Power Modeling with 1-D LUT

3.1 Power Modeling with Lookup Table

In SoC designs, power models may provide an efficient solution to estimate the power
consumption of IPs because the transistor-level simulation is only required at the
characterization step. The power model of a design, which is built from a power
characterization process, describes the relationship between power characteristics and real
power consumption with specific input sequences or input signal statistics. Lookup tables are
the most commonly used power models. Once the required power characteristics are obtained,
the estimated power consumption can be easily found in the table.

Because the power dissipation of a combinational circuit depends on the previous and
present input patterns, a fully characterized lookup table for an n-input combinational circuit
will have 2*" entries. For a sequential circuit with n-input and s internal state registers, a fully

2’5 entries. It is obviously infeasible for complex

characterized lookup table will have
circuits because the table size is too large to be stored and the characterization process will
consume too much time. Efficient reduction methods are definitely required to make this
approach become feasible.

In this approach, the chosen power characteristics have large impacts on the table size

and accuracy of the estimated power consumption. Therefore, many power characteristics are
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proposed in the literature [19][65~69][71], such as the signal statistics (probability, transition
density, correlation coefficient, etc.) of primary inputs and outputs, the active information of a
design (switching count, charging and discharging capacitance, etc.), the power sensitivity of
primary inputs, the Hamming distance of the pattern pairs at primary inputs, etc. The methods
proposed in [19][71] are building the lookup tables according to the signal transitions at the
primary inputs. In [71], the authors use a clustering algorithm to compress the input vectors
with similar power consumption as a cluster such that the table size can be reduced. The
experimental results show that the method is useful for the test circuits but there is no clear
evidence about the effects on large circuits. The method in [19] operates on the state
transition graphs (STGs) of macrocells withwhergifigrtransition compatible nodes to reduce
the sizes of lookup tables. However, it can only be used on the designs with small input
numbers because the table size will increase.rapidly when the number of primary inputs is
increased.

The methods in [65~68] use the signal statistics of primary inputs and outputs to be the
indexes of lookup tables. In [65], the lookup tables with 2 dimensions (average input signal
probability, average input signal transition density), 3 dimensions (average output zero-delay
transition density as the third dimension) and 4 dimensions (average spatial correlation
coefficient as the fourth dimension) are compared. The results show that the estimation errors
are decreased when the dimensions of tables are increased, but the sizes of tables are also
increased. The increase of table size will require extra characterization time that may become
a non-neglectable overhead. In [66], a power model based on the hamming distance of input

pattern pairs is proposed. The model could be parameterized according to the input bit-width
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of the function unit. The method in [67] builds a five-dimension lookup table with average
signal probability of high-switching inputs and low-switching inputs, average transition
density of high-switching inputs and low-switching inputs and average output transition
density. The estimation errors are close to the estimation errors of 4-D lookup table in [65]. In
[68], they build a 3-D lookup table, which is similar to the 3-D table in [65], for soft macros
with some different parameters such as the bit-width of inputs and the target manufacturing
technologies. However, because the distribution of the average output transition density is
hard to control, the characterization time to fill the lookup tables is hard to control in those
approaches [65~68].

The method in [69] uses the power surface based on the power sensitivity of primary
inputs to be the power models. They proposed an-efficient method to approximate the surface
with a finite number of points. They compared their results with logic simulation results
under zero-delay and unit delay model* but.they did not show the comparison with
transistor-level simulation results.

Based on above observations, we can recognize that the size of lookup table is a primary
concern for the power models of complex designs such as commercial IPs. Therefore, we
propose a table-based power modeling method in this work for combinational circuits in
which the table size is very small and almost independent to the number of primary inputs. In
order to reduce the table size, we build a one-dimension lookup table to map the zero-delay
charging and discharging capacitance (CDC) to the real power consumption of input pattern
pairs, which are obtained from gate-level simulation and transistor-level simulation

individually. In order to simplify the description, we will use CDC to represents the
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zero-delay charging and discharging capacitance in the rest of this paper. The CDC of a
pattern pair is the summation of charging and discharging capacitances of the nodes whose
signals change from O to 1 or 1 to 0 during the transition of input patterns under zero-delay
model. Using CDC as the index of the lookup tables is decided by our previous comparison
results of the average normalized error between the three power characteristics, CDC,
zero-delay switching count (SC) of internal nodes and Hamming distance (HD) of input
pattern pairs in Section 2.3. Among those power characteristics, the CDC has the minimal
average normalized error, which may provide more precise estimation results. Therefore, we
choose CDC as the only one index of lookup tables to reduce the errors of power models. As
shown in the experimental results, our CDCsbased power models can still provide accurate

results although the table size has been greatly reduced.

3.2 Proposed Power Modeling Methodology

In this work, the power model is represented by a lookup table, which maps the CDC
values to real power consumption of input pattern pairs. According to Equation (2-5), it
implies that we use the Pfc sans to indicate the trend of real power consumption, which is the
dominated part of power consumption. The building flow of the lookup table is shown in
Figure 3-1. We will first divide the input pattern pairs into several groups according to their
CDC values that are calculated by a logic-level simulator. Those pattern pairs within an
interval of CDC values will be grouped together and the average power of them, which is
estimated by PowerMill, will be recorded in the corresponding entry of the lookup table. The

input sequence for power characterization is randomly generated such that the pattern pairs in
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the same group can be viewed as randomly distributed. Therefore, we can use the Monte
Carlo approach to reduce the characterization time for the average power consumption of
those groups. In the following sections, the proposed approaches for grouping the pattern

pairs and the power characterization of each group will be explained in detail.

Random Input

Pattern Number
Generator

Exceed? or All Groups
Convergent?

Pattern Pairs

Logic-Level
Simulation
Table Entry
Too. Real P ;
(Verilog-XL) cal fower Calculation

Transistor-Level
CDC Values Simulation for

i

Non-Converged
Group
(PowerMill)

Group Info.
and
Lookup Table

Dynamic Grouping

Figure 3-1. The block diagram for building the power model

3.3 Dynamic Grouping

Using the CDC values of pattern pairs to be the index of a lookup table may still require
huge table size if we set a table entry for each different CDC value. Although the table size
will be much smaller than 2"™, where n is the number of primary inputs of the circuit, it is
still very huge. In order to reduce the table size, we can collect those pattern pairs with

similar CDC values to be a group and only set one entry in the lookup table for each group. A
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similar grouping method was used in pattern compaction techniques for power estimation
[39][44]. They calculate the CDC values of the pattern pairs in the input sequence by a
logic-level simulator such that they can collect those pattern pairs with similar CDC values as
a group. Then, the pattern compaction can be done by selecting some pattern pairs as
representatives from each group because those pattern pairs in the same group have similar
power consumptions. In [40][76], however, the compacted sequence is generated for a
specific input sequence. In other words, the input sequence is deterministic and the
distribution of CDC values is deterministic, too. Therefore, they can separate the pattern pairs
into finite groups in their grouping algorithm. Unfortunately, when we build the lookup table
for the proposed power model in our work, the!CDC distribution is non-deterministic until we
simulate all pattern pairs, which is :almost impossible’ for large circuits even using a
logic-level simulator.

In order to handle this situation without simulating all possible cases, we propose a
method to dynamically increase the entries of the lookup tables to cover the current CDC
distribution of designs when we characterize the average power of each entry in the table. As
illustrated in Figure 3-2, the CDC values of pattern-pairs have been sorted before grouping.
The X-coordinate is the number of pattern pairs and the Y-coordinate is the CDC value of
each pattern pair. In the first iteration, we randomly generate several pattern pairs and the
dynamic grouping in this step is similar to the grouping process in [40][76] as shown in
Figure 3-2(a). Each group is defined with an interval of CDC values and the neighborhood
groups have continuous CDC values. This is different to the grouping process [40][76] which

defines a group with the CDC values of two boundary pattern pairs and the neighborhood
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groups may not have continuous CDC values. With continuous interval definition, we can
easily find the corresponding groups for the pattern pairs with CDC values between existing

ranges in the following iterations.
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Figure 3-2(a). The dynamige grouping process after the first iteration
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Figure 3-2(b). The dynamic grouping process after the second iteration
In the second iteration, we generate more random patterns and the number of group is
spread because the CDC distribution area is increased as shown in Figure 3-2(b). The range
of each group in Figure 3-2(a) is not changed but new groups are generated from the

boundaries of the first and last groups in Figure 3-2(a). It implies that the size of the lookup

56



table in our power model is determined by the number of groups in the dynamic grouping
process, which can be controlled by the user-defined group interval. The larger group interval
will lead to fewer table entries. This group interval is defined by a percentage of the range
from the maximum CDC value to the minimum CDC value of each group and set as 5% of
the maximum CDC value in this work. If the interval is smaller than the minimum load
capacitance of the nodes, the interval will be set as the minimum load capacitance of nodes
because it is impossible to have such CDC values. If the group interval is defined as 5% of
the maximum CDC value in the group, the table will only increase 45 entries when the CDC
distribution region is spread 10 times to the previous distribution region. Therefore, even the
circuit size are increased, the table entries areonly increased linearly.

In order to explain the dynamic grouping process more clearly, the pseudo code of the
proposed algorithm is shown in Figute 3-3..In the first iteration, the grouping process is
performed according to the CDC range of the first random sequence. Those groups are
defined one by one from the minimum CDC value of the input sequence until the range of
groups cover the maximum CDC value of the input sequence. Note that the interval of each
group, which is defined by its minimum CDC value and maximum CDC value, cannot be
smaller than the parameter MIN_NODE CDC in the circuit. After all groups are defined, the
allocate() function allocates each pattern pair in the input sequence into the corresponding
group. In the following iterations, the number of groups may be increased by insert_group()
or expand_group() functions if their CDC distribution is out of the range of current groups.
The insert_group() and expand_group() functions will perform similar operations like the

process in the first iteration to cover the CDC distribution of new input sequence. The only
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difference is that the two functions start with the boundary values of the previous iteration.
The allocate() function will again allocate those pattern pairs in the new input sequence into
corresponding groups as in the first iteration. After each iteration, the group information of

each pattern pair can be obtained for the following power characterization process.

Dynamic_grouping(group/], seq[], iteration, p_n, group_num)
{
if(iteration == 1)  /*Grouping for initial CDC distribution™/

s
t

max_cdc = MaX(seq[]); min_cdc = Min(seq[]);
/*max_cdc and min_cdc define the range of CDC distribution of current input sequence®/
group num=0;
While( min_cdc < max_cdc)
{
group[group num].min_cdc = min_cdc;
if ((min_cdc*5/95) < MIN_NODE_CDC)
/
¢
group[group _num].max_cdc = min_cdc + MIN_NODE_CDC,
} else

{
group[group num].max_cdc = minZcde*100795,

min_cdc = group[group numj.max_cdc;
group _num++;

/
allocate(group/], group_num,.seq[], p_n);
Jelse /*Group increasing if CDCdistribution spread*/

{
max_cdc = Max(seq[]); min_cdc:=Min(seq[]);
if (max_cdc > group[group num-1J.max.cdc)
{
group_num=expand_group(group[], group_num, max_cdc);
} elseif (min_cdc < group[0].min_cdc)
{

group_num=insert_group(group[], group_num, min_cdc);
)

/
allocate(group/], group num, seq[], p_n);

Figure 3-3. The pseudo code of dynamic grouping process

3.4 Power Characterization

In our power model, the corresponding power for each table entry is determined by the
average power consumption of all pattern pairs located in the corresponding CDC interval.

Therefore, we use a random input generator to generate a number of pattern pairs such that
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they can distribute over different groups. Figure 3-4 gives an illustration of this power
characterization flow. The power characterization process will stop when one of the following

two conditions is satisfied.

(a). The average power consumption of each group has reached the desired confidence level.

(b). The total pattern pairs have reached the constraint of maximum number of pattern pairs.

cpC 7

Gouping: according to CDC

Group 1 Group 3

Average power Average power Average power Average power
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Figure 3-4. An illustration of the power characterization
The maximum number of characterized pattern pairs is used to control the
characterization efforts. It can be decided by users to make a trade-oft between accuracy and
characterization efforts. If criterion (b) is used to stop the characterization process, the
average power of those groups that do not have enough pattern pairs will be estimated with

interpolation or extrapolation because the current samples may not have enough
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representatives.

In order to further improve the efficiency of the characterization process, we use the
Monte Carlo approach to check the stop criteria (a) such that we can finish the
characterization process as soon as possible. The Monte Carlo simulation [40] has been used
to reduce the simulation efforts for estimating the average power of circuits in [31,32][37].
Under the assumption that the mean of any sample is normal distribution, the end of
simulation can be decided according to the statistical stopping criterion shown in Equation
(3-1). In Equation (3-1), ¢ is the maximum percentage of acceptable error, N is the number of
sample, 7y is the sample mean and sz is the sample standard deviation. For (1-a) confidence

level, ¢, is t-distribution coefficient with (N-1) degrees,of freedom.

Ll Lides - (3-1)

Y \/ﬁ

The proposed dynamic grouping process will cateégorize all pattern pairs of the input
sequence into several groups. We can assume that the pattern pairs in a group are also
randomly distributed because the input sequence is randomly generated. Therefore, the Monte
Carlo approach can also be applied to speed up the estimation for the average power of each
group. After the estimation of average power has converged according to the Monte Carlo
stop criteria, we will not simulate the following pattern pairs for these groups in the
transistor-level simulator because the current results already have the desired accuracy. More
samples will not improve the accuracy too much. Therefore, we can skip those samples to
save a considerable computation time.

Of course, this grouping-based power characterization process may induce some errors
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in the power model because of the variation in each group. However, if the adopted power
characteristic represents the real power consumption very well, the induced errors can be very
small. Therefore, we perform a simple experiment on ISCAS’85 benchmark circuits with
0.35um cell library to discuss the possible variation of various power characteristics. In this
experiment, the group interval is set as 5% of the maximum CDC value. In characterization
process, the random input generator generates a sequence with 5,000 pattern pairs in every
iteration and the maximum number of characterized pattern pairs is set as 100,000. The
confidence level in the Monte Carlo criteria is set as 0.99 (a = 0.01) under the maximum
acceptable error ¢1is set as 0.05. The sample size is set as 30.

In Table 3-1, we show the differences.between the characterized power value of each
group and the real power consumption of the pattern pairs belong to the corresponding group
with three power characteristics, CDC, SC,and“HD. The first column shows the percentage
of the pattern pairs whose errors are smaller than 10%: The second and third columns show
the percentage of the pattern pairs whose errors are large than 10% and 40% respectively. The
same grouping method and characterization process are applied for each power characteristic.
And the real power consumptions of those pattern pairs are obtained by transistor-level
simulation in the characterization process. According to the experimental results, it is very
clear that using CDC as the power characteristic is the best choice to minimize the errors of

power models.
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Table 3-1. The distribution of the variance in the groups

Circuits <10% 10% ~ 40% >40%
CDC SC HD CDC SC HD CDC SC HD

C432| 65.67| 58.54| 28.46| 27.39| 34.13] 53.73 6.94 7.33] 17.81
C499| 93.33] 90.43| 73.76 6.67 7.36| 21.43 0 2.21 9.81
C880| 82.84| 83.21| 36.33 16.9] 16.34| 44.27 0.26 0.45 19.4
C1355| 98.71| 93.88| 82.20 1.29 6.12| 15.92 0 0 1.88
C1908| 72.41| 70.22| 35.40{ 25.68] 27.37| 5942 1.91 2.41 5.18
C2670| 68.50] 53.79| 38.27| 28.88| 39.64| 44.31 2.62 6.57| 1742
C3540| 60.31| 60.21| 34.89| 38.51 37 61.68 1.18 2.79 3.43
C5315| 90.19] 88.77| 29.44 9.47 9.43| 43.05 0.34 1.8 27.51
C6288| 59.43 46.6| 27.27| 37.88 45.1| 64.58 2.69 8.3 8.15
C7552| 7891 61.9] 57.48| 19.77| 3095 31.89 1.32 7.15| 10.63
Average | 77.03] 70.76| 44.35| 21.24] 25.34| 44.03 1.73 3.90] 12.12

3.5 Power Estimation with the:Power-Model

After the power model of a circuit.is built, the average power consumption for any test

sequence can be estimated as shown in Figure 3-5. First, we use a logic-level simulator (e.g.

Verilog-XL) to calculate the CDC values of pattern pairs in the test sequence. With the CDC

values, we can find their corresponding groups in the lookup table for those pattern pairs in

the sequence. If a pattern pair belongs to a CDC interval, its power consumption will be set as

the value of the corresponding table entry in the lookup table, and the total power is equal to

the summation of total values of every pattern pairs. For the average power, it can be

obtained from dividing the total power by the number of pattern pairs in the test sequence.
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Figure 3-5. Block diagram of average power calculation
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The lookup table may not cover whole CDC distribution of all possible pattern pairs
because we did not simulate all pattern pairs in the characterization process. In this case, we
can use extrapolation to estimate the power consumption of those pattern pairs whose CDC
values are out of the range of the lookup table. The average power consumption can be
expressed as Equation (3-2). In Equation (3-2),#V-is.the total number of pattern pairs in the
test sequence. g is the number of entries of the lookup table. P; is the average power recorded
in the " entry of the lookup table. n; is the number of pattern pairs in the test sequence whose
CDC values are involved in the CDC interval of i” entry. Pou of range 18 the total power
consumption of those pattern pairs whose CDC values are out of the range of the lookup table.
As shown in Equation (3-3), we can use extrapolation to estimate the power consumption of
those pattern pairs. P;, P, P,.; and Py are defined as P; in Equation (3-2). CDC,;, CDC;,
CDCq.;and CDC, are the largest CDC values of entries /, 2, g-1 and g in the lookup table. &,
and k; are the numbers of pattern pairs which are out of the smallest and largest range of CDC
values in the lookup table.

g

ZRX”f+P
1

out _of _range

B, == m (3-2)
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3.6 Experimental Results

In this section, we will show some experimental results about the accuracy and
efficiency of the proposed power model. The experiments are obtained on a SUN
UltraSPARC 11 workstation. The test circuits are ISCAS’85 benchmark circuits with 0.35um
cell library. The experimental results are.shown'in.Table 3-2. The table sizes for the
benchmark circuits are listed in the 2°¢ row under the mames of circuits in the 1% row.
According to the results, table sizes aré only. 42 to 107 for those circuits. It is very small and
almost independent to the circuit size.

In order to show that our approach can be applied to various input sequences, we test the
accuracy of our method by estimating the average power consumption of circuits with 3
different sequences. They are pseudo random sequence, counter sequence (up/down counter)
and LFSR (Linear Feedback Shift Register) sequence with 50,000 pattern pairs respectively.
The 3™ row to 7™ row give the comparison between the simulation results with PowerMill
and the estimation results from table lookup for pseudo random sequence. The next 5 rows
give the comparison results with counter sequence and the last 5 rows give the results with
LFSR sequence. The estimation time listed in Table 3-2 for table-lookup method includes the

Verilog-XL simulation time and average power calculation time. The maximum error is
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7.48% for C2670 with LFSR sequence. The overall average error is only 2.99%. The

experimental results show that our power model still has high accuracy for different input

sequences.
Table 3-2. The experimental results
Circuits C432 | C499 | C880 | C1355 | C1908 | C2670 | C3540 | C5315 | C6288 | C7552
Table Size 63 45 75 51 42 90 65 103 107 103
o 1 (uA) 56.135[149.718|106.480| 161.386( 144.083(261.945|340.913| 611.173|4841.000( 830.832
= PowerMill
g Time (Sec) 3072 8626 5826 9494 7649 14667 19017| 33918| 290751| 43169
=
i I (uA) 57.083|148.698|103.818(158.006|141.921|253.659|327.412(598.521|4722.450| 816.488
1-D Table
é Time (Sec) 23.4 70.3 46.2 65.9 54.5 112.5 1149 2054 388.5| 2673
<
a7
Error (%) 1.69 0.68 2.50 2.09 1.50 3.16 3.96 2.07 2.45 1.73
1 (uA) 13.243| 34.493| 38.119[,38.270( 50.477| 6.402|191.720| 20.911| 351.290| 68.626
§ PowerMill
g Time (Sec) 690| 1958 41773| _2163} 2417 479 9347\ 1275| 19385 3631
=
f%: 1 (uA) 13.971| 33.468[= 37.153] 1 37.456]'53.483| 5.923|192.283| 20.703| 355.533| 70.526
8 |1-D Table
§ Time (Sec) 19.7 61.9 394 5°7.2 48.6 84.9( 105.1 1593 257.6] 210.5
@)
Error (%) 5.50 2.97 2.53 2.13 5.96 7.48 0.29 1.00 1.21 2.77
1 (uA) 71.436(167.103]| 118.619]182:053169.728(286.910(374.463|669.812|5014.680( 975.568
8 PowerMill
5 Time (Sec) 4050| 9496 6786 11007 9460| 16789| 21914| 38744| 309071| 52882
=]
=
A 1 (uA) 66.274| 161.111| 114.371|178.741|162.510{282.068|361.522|652.722|4820.264|936.464
e |1-D Table
% Time (Sec) 24 .4 71.8 47.5 68.4 56.4( 117.1 117.3] 210.9 398.3] 2793
-
Error (%) 7.23 3.59 3.58 1.82 4.25 1.69 3.46 2.55 3.88 4.01
Average Error (%) 4.80 2.41 2.87 2.01 3.90 4.11 2.57 1.87 2.51 2.83

3.7 Summary

In this work, we proposed an efficient IP-Level power model with a small lookup table

for complex CMOS circuits. The lookup table has only one-dimension that maps the
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zero-delay charging and discharging capacitance (CDC) to the real power consumption of
input pattern pairs but still has high accuracy. This power characteristic is selected according
to several experimental results shown in this work within three popular power characteristics.
In order to reduce the table size, we proposed a dynamic grouping algorithm to collect those
pattern pairs with similar CDC values to be a group and only set an entry in the lookup table
for each group. For improving the efficiency of characterization process, the Monte Carlo
approach is used during the estimation for the average power of each group to skip the
samples that will not increase the accuracy too much. The experimental results show that our
power model can estimate the average power of IP-level complex designs very efficiently and

accurately for various test sequences.
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Chapter 4

High-Level Power Modeling with Neural
Networks

4.1 High-Level Power Modeling

Lookup table (LUT) is the most commonly used high-level power model. In order not to
increase the table size too much, most of the LUT-based approaches [65~68] use the
aggregate signal statistics (average input signali probability, average input signal transition
density, average output signal transition density,-input'signal correlation coefficient, etc.) of
the primary inputs and outputs of circuits to bethe indexes of lookup tables. In [65], the
lookup tables with 2 dimensions, 3 dimensions and 4 dimensions were compared. The results
showed that the estimation errors are decreased when the dimensions of tables are increased,
but the sizes of tables are also exponentially increased. For large circuits, the table size may
increase very fast in order to meet the accuracy requirement.

In Chapter 3, we proposed a one-dimension lookup table using the zero-delay charging
and discharging capacitance as table index. An efficient method is proposed to divide power
characteristics of pattern pairs into several groups and fill the lookup table with the average
power consumption of each group. Although this approach can build smaller lookup tables
with reasonable accuracy, it still requires gate-level descriptions and node capacitance

information to obtain the total charging and discharging capacitance in the circuits, which
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may not provided by IP vendors.

There are also some approaches [73~75] that use equations instead of lookup tables to
be the power models. After identifying suitable variables for the power equations of a circuit,
those equation-based approaches will use some numerical methods such as linear regression
to find out the best parameter for each variable to form the equations. Compared to
LUT-based approaches, equation-based approaches often have fewer data to be recorded for a
power model because the distribution of an equation often requires many points to describe.
However, because the power distribution is often a very irregular curve as illustrated in
Figure 4-1, it is hard to use only a single equation to describe this curve. Therefore, in order
to improve the accuracy of their power .models, those equation-based approaches may
increase the order of the power equations (mere vatiable) or use piece-wise power equations
(more equations) to approximate the power distribution, which will significantly increase the

complexity of the power models.

Figure 4-1. Irregular power distribution and piece-wise approximation
Most of the above techniques focus on estimating the average power consumption over a
long input sequence, which are referred to as cumulative power models. However, in some

applications, the average power is not sufficient. One of the other important tasks is to
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understand the power consumption of a circuit due to a given pattern pair, which is often
referred to as cycle-accurate power models [74,75]. This information is crucial for circuit
reliability analysis, dc/ac noise analysis, and design optimization. Of course, those
cycle-accurate power models can also provide the information of average power consumption
by just computing the average of the power consumed at each cycle in the given input
sequence. Therefore, cycle-accurate power models are considered to have more use than
cumulative power models. Because it is not feasible to build a lookup table for every possible
combinations at each cycle, most of those cycle-accurate power models use equation-based
approaches to record the power distributions.

In other research areas, neural networks’play ‘as-a powerful tool in many applications
such as classification, clustering, patterii recognition, control application, etc. Because of the
self-learning capability of neural networks they can-recognize complex characteristics by
using several simple computation elements with-proper training. For irregular distributions
such as the power distribution shown in Figure 4-1, neural networks can still have good
efficiency because they use the combination of some non-linear curves to fit the
multi-dimensional non-linear surface instead of increasing the recording points to reduce the
errors as in the traditional power models. Therefore, several researches [72][81] tried to use
neural networks to solve the power estimation problem. The authors in [81] proposed a
symbolic neural network model to estimate the power consumption of circuits. Based on
Hopfield neural network [82], they built another representation for the gate-level description
of circuits and stored the structure information of the neural networks in algebraic decision

diagrams [83] to reduce the memory usage. In that approach, neural networks were only used
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to replace the gate-level structures and to perform a gate-level simulation for estimating the
power consumption of circuits with fewer resources. Therefore, the simulation time was only
similar to the gate-level simulation, which will be very slow for large circuits.

The authors in [72] proposed a power modeling approach for library circuits using
Bayesian inference and neural networks. They divided the leakage and switching power
distributions of circuits into a limited number of classes and trained two neural networks to
classify an input state or transition into the corresponding class. After classification, the
leakage power of an input state and the switching power of an input transition can be
estimated by the average power consumption of that class, which has been stored in a
lookup-table as in the traditional table-based ‘@pproaches. Although the classification of an
input state or transition can be more accurate by using neural networks, the number of classes
may limit the accuracy of this powerimodeling approach over the entire power spectrum.
Therefore, they may also have to increase the humber of table entries to reduce the estimation
error, which is similar to the problem of traditional table-based approaches. In addition, if the
table entries are increased, the number of outputs of the neural networks is also increased. If
there are too many outputs in a neural network, it will often become much harder to converge
and sacrifice the classification accuracy. However, the authors did not show the experimental
results for the cases with wide power distribution and large number of classes.

In this work, we propose a quite different approach for high-level power modeling of
complex digital circuits that uses a 3-layer fully connected feedforward neural network [84]
to learn the power characteristics during simulation without any lookup tables. By

considering all possible types of state transitions separately in the input data, both the
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state-dependent leakage power and transition-dependent switching power are still recorded
well in our power model. In addition, because the numbers of input and output neurons in our
neural power model are fixed as 8 and 1 respectively, the complexity of our neural power
model has almost no relationship with circuit size and the numbers of primary inputs and
outputs such that this power model can be kept very small even for complex circuits. Unlike
the piece-wise equations in the equation-based approaches, only one simple neural model is
enough for those test circuits to provide similar accuracy thus reducing the modeling

complexity.

4.2 Background about Neural Networks

4.2.1 Feedforward Neural Networks

The basic unit in a neural network is “anartificial neuron as shown in Figure 4-2. In
Figure 4-2, x; to xy are the input data for the neuron, w; to wy are the weights of input x; to xy
individually that represent the contribution from each input, and s is the summation of x;w; to
xywy and the bias factor xywyas represented in Equation (4-1). In most cases, xy is fixed as 1
such that the training algorithm only adjusts the weight wy to wy. Function f is the transfer
function that converts s into output y as represented in Equation (4-2). According to the
relationship between input data and output data, users can choose different transfer function f

for different cases.
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s = ZWixi (4-1)
y=f(s) (4-2)

A neural network is a set of interconnected neurons, where the outputs of neurons act as
the inputs of other neurons or the final outputs of the neural network. Feedforward neural
network [84]1s one of the most popular models of meural networks. Although any architecture
of neural network with learning capabilities can be used.in this work, we use the 3-layer fully
connected feedforward neural network, as shown in Figure 4-3, to learn the relationship
between power consumption and statistic’information of input patterns because the 3-layer
feedforward neural network has a quite simple structure with good performance in many
applications. In addition, the fully connected configuration can automatically consider the
correlation between all inputs by properly adjusting the weights for their interconnections.
The accuracy of this power model can thus be improved because the correlation is also an

important factor that affects power consumption.
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Layer 0 Layer 1 Layer 2

Figure 4-3. A fully connected 3-layer feedforward neural network

In Figure 4-3, x;; represents the i neuron in the /™ layer, w;.;;represents the weight of
the interconnection between neuron x;; and x;1;;, and y is the final output of this neural
network. The number of input neurons is » and the number of hidden neurons is 4. In order to
simplify the graph, the biases, the summatiens, and the'eutputs of all neurons are not labeled
in Figure 4-3. The weight of the bias il neuron X718 denoted as wy.g, the input of the bias
in neuron x4, is denoted as a;y, the;summationsyin neuron x;; is denoted as s;,;, and the
output of neuron x;; is denoted as a;.;. The output y in this neural network, which is denoted as

as.1, 1s defined as Equation (4-3).

y=ay = f(sy)= f(Z Wi 1y, (4-3)

4.2.2 Training Process

Before using a neural network, we have to train the neural network with proper
strategies such that it can learn as many experiences as it needs. Given a 3-layer neural
network 7 with N input neurons, H hidden neurons and 1 output neuron, we can denote the
training set as T={(x;, f,), i=1:P}, where X; is a column vector of the i/ input vector, # is the

expected output for the /™ input vector, and P is the size of training set. The target of this
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training process is going to minimize an error function or metric using this training set and
the corresponding weight matrix in the neural network. In this work, the error function is
chosen as the mean square error defined in Equation (4-4) because it is widely used in many
applications and there are many existing training algorithms for minimizing this error
function. In Equation (4-4), W = /w; w> ... wg ] consists of all weights including biases of

the network, y; is the output value of the i input vector and Q is the number of weights.
S 2
F(V\/)=Z(yi_ti) (4-4)
i=1

There are many training algorithms for feedforward neural networks that can select
suitable weights to minimize the error function in Equation (4-4). Some methods such as
steepest descent algorithms, conjugate gradients algofithms-and quasi-Newton algorithms [84]
are general optimization methods. In this work, Wwe choose-Levenberg-Marquardt algorithm
[84~86] to train our neural power models because it is very suitable to minimize the error
functions that arise from a squared error criterion.

Typically, the training process will minimize the user-specified error function iteratively
until the neural network can satisfy user-specified error criterion. When this criterion is
satisfied, the neural network is considered as having learned the behavior between the input
data and the expected output values. In some cases, it is very possible that the learning
capability of this neural network is not enough to learn the required behavior such that the
training process cannot satisfy the stop criterion even the network has been trained for many
iterations. In such cases, we have to stop the training process and enhance the learning

capability of the neural network such as increasing its hidden neurons.
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In some cases, the neural network is probably over fitting the training set thus producing
a neural network that has poor generalization performance. Typically, an extra validation set
V={(x;, t;), i=1:M} will be used to prevent this situation. A validation set is similar to a
training set, but its size M is larger than the size of training set P. In general, it is
stochastically independent of the training set but has the same distribution. This set is used to
determine when to stop the training process according to the value of a user-defined
validation error function F,(V, W). In each training iteration, say the " iteration, we will hold
the weight matrix W, and calculate the value of F\(V, W;), which is also called the validation
error. When the validation error starts to increase gradually but the value of error function is
still decreasing, it is considered as over fitting:’At that moment, the training process should be
stopped and the complexity of this neural network may have to be reduced. In this work, we
start from a small neural network architecture _and increase the complexity of the neural
network until it can satisfy the error requirement:-According to our experiences in those
benchmark circuits, this strategy seldom results in over fitting. The details of this strategy
will be described in Section 4.3 with several preliminary experimental results.

Since those training algorithms have been extensively discussed in neural network
researches with many good solutions, the most important problems for us about the training
process are designing a good training set and setting a good stop criterion such that the
trained neural network can be applied to most cases in the input space. Because it is hard to
train a neural network with the entire input space in many applications, the size and
distribution of the training set and the stop criterion will have great influence on the accuracy

of the trained neural network. We will discuss the details of this problem and our strategies in
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Section 4.3.

4.2.3 Evaluating the Accuracy of a Trained Neural Network

In order to evaluate the accuracy of a trained neural network, we also need a test set that
is independent to the training set and the validation set if it is used. We denote the test set as
Z={(X;, t;), i=1:K}, where X; and ¢; are the same as defined in the training set and K is the size
of this test set. The output of neural network for input X; is denoted as y;. In order to verify
our power model can be used on a wide distribution on the input space, the test set is
composed of many short test sequences. Those short test sequences are denoted as S;={(X;, t),
i=1:K;}, where j=1:L and K;+K,+...+K; =K, which are widely distributed in the input space.
The details of our strategies to generate those test sequences will be discussed in Section 4.3.

Because our neural power models-are used-to estimate-the average power consumption
of circuits under a specific input sequence, we will use-typical evaluation criterion for power
estimation instead of traditional methods in neural networks to evaluate the quality of our
power model. We define the error in estimating the power consumption of the jth test
sequence (ESP;) as Equation (4-5). The average error AESP, which is the average of ESP; and
the maximum error MAXESP, which is the maximum value of ESP;, are defined as Equation
(4-6) and (4-7). The root mean square error (RMSESP) and standard deviation errors
(STDESP) of those test sequences are defined as Equation (4-8) and (4-9) to show the
distribution of the estimation errors. Those metrics will be used to evaluate the quality of our

neural power models in the following experiments.
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ESP, === (4-5)
“,
i=1
1 L
AESP = —Z\Espj\ (4-6)
L4
MAXESP =Max(ESPj) where j=1...L (4-7)
1 L ) %
RMSESP:(Z (ESP) j (4-8)
i=1
2\
1 ¢ 1 ¢
STDESP = [ZZ[ES i —ZZESPJJ } (4-9)
i=1 Jj=1

4.3 Power Model Construction with Neural Networks

Since neural networks have been used“for many yeats in other areas, determination of
those parameters in neural networks is still mostly done by heuristic approaches. In typical
experience, these parameter determinations are application-oriented problems. Different
applications might have different suitable parameters of modeling construction. Therefore,
the primary goal in this work is trying to build a systematic procedure to build the power
models using neural networks. The best parameters in the neural networks might still be

different from circuit to circuit.
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Figure 4-4. The wotkflow of building a néural power model

The overall construction procedure.of the proposed neural power model is illustrated in
Figure 4-4. This procedure consists of three” 'major steps: building a neural network,
generating training sets, and training the neural network. In order to make good decisions at
each step, we will use several simple experiments to explain the decision strategies in the
following discussions.

Because there are a lot of good training methods for neural networks, we will directly
use them and focus our discussions in the first two phases in the following sections. The only
two things that have to be decided are the target error and the maximum number of iterations
in the training process. Because our target is to use the neural power model to estimate the
average power of a test sequence, we decide to use the mean square error (MSE) as the

validation error function. During the training phase, we will hold the temporal weight matrix
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after each iteration and estimate the validation error according to this weight matrix. If the
validation error is smaller than 0.0036, which can roughly imply that the estimation error
using the validation set is near 6%, we will stop the training process. Otherwise, we will train
the neural network again using the same training set. According to our experiences, the
validation errors are often saturated after 15 training iterations for those benchmark circuits.
Therefore, we set the upper bound of training iterations as 15. If the stop criterion is still not
satisfied after 15 iterations, we will add more hidden neurons and train the new neural

network again using the same training set.

4.3.1 Building Neural Network

As described in Section 4.2, we decide to use the 3-layer fully connected feedforward
neural network structure and the Levenberg-Marquardt training algorithm with the mean
square error function in our power model. In the first step, we have to decide the input data
type of this neural network, the number of hidden neurons and the transfer function of
internal neurons. In typical experiences, the best decisions might be different in different
cases, which are hard to be theoretically analyzed. Therefore, we will use a simple
experiment on the circuit C1355, which is arbitrarily chosen in ISCAS’85 benchmark circuits,
to explain our decisions for those parameters. Because it is not feasible to show all detailed
analysis for each circuit, we will try to verify the feasibility of our approach with complete

benchmark set in Section 4.4 by using the metrics defined in Section 4.3.
A. Input Data Type and Transfer Function

In this work, the input data type of neural networks and the transfer function of internal
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neurons are decided together because the most suitable transfer function depends on the
behavior between the input data and the output values of the training set. If the relationship
between input data and output values has non-linear characteristics, the accuracy of the
trained neural networks would be lost when using a linear transfer function for internal
neurons because it is similar to use a piece-wise linear curve to fit a non-linear curve as
illustrated in Figure 4-1.

Since we are building a high-level power model, the input data of this neural power
model can only use primary input and output information of circuits. The most
straightforward idea is to use the complete 4 states of bit transitions (0—0, 0—1, 150, I—>1)
at the input and output pins of circuits as the’input'data of the neural networks because the
effects of both state-dependent leakage-power and transition-dependent switching power can
be considered. If we use such bit-level transition data (bit-level statistics) to be the input data
of our neural power model, the number of neurons-in'the input layer will be fixed as 4*(n+m)
for a circuit with »n inputs and m outputs, which are 77; 09, 11; 01, T1; 10, T1; 11, TO; 00, TO; 01,
10;,;9 and T0; ;. Here, T1;,,=1 represents that the i input pin changes from logic state x to y
and 70, =1 represents that jth output bit changes from logic state x to y in a pattern pair.
Instead of using bit-level statistics, we could use the word-level statistics as the input data of
our neural power model. If we consider the input statistics and the output statistics separately,
the number of neurons in the input layer will be fixed as 8, which are Tly, T1y;, T1;9, T1;;,
109, TOy1, TO;p and TOy;. Here, T1,, represents the ratio of input signals change from logic
state x to y in a input pattern pair and 70,, represents the ratio of output signals change from

logic state x to y in a output pattern pair. For example, given a circuit with 10 inputs and 10
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outputs, we assume that its corresponding output signals will change from 0101101100 to
0110110111 when the input signals change from 0001110101 to 1010101011. For this
pattern pair, both the bit-level and word-level statistics are shown in the 4™ to 7" rows in
Figure 4-5(a) and Figure 4-5(c) respectively. According to the definitions, their input data

will be formed as shown in Figure 4-5(b) and Figure 4-5(d).

Input vectors Corresponding output vectors
Biti o[1]2[3]4][5]6]7]8]9] |[Bit; o[1]2[3]4]5]6]7]8]9
Pattern, 0001 110101| |Pattern, 0101101100
Pattern;s))]1 01 010101 1| |PatternsyJ0 110110111
1100 0100000000| [TOw 1000000000
o 1010001010| |TOn 0010010011
11 10 0001010100f [TO;1 0001001000
Tl 0000100001 70; 11 0100100100

Figure 4-5(a). An example of the bit-level statistics characterization

total length=40 bit-level statistics
Input vector part Corresponding output vector part
Tlooo | Tloor | - .. | Floso |\ TTo 11 [ TOb 0o " Tho01 | - .. | Tloso | Tlo1s
0 1 .. 0 1 1 0 .. 0 0

Figure 4-5(b). Input‘data format with bit-level statistics

Input vectors Corresponding output vectors
Bit i o[1]2]3]4]5]6]7]8]9 Bit 0]1]2]3]4]5]6]7][8]9
Pattern, 10001110101 Pattern, 10101101100
Pattern;+;)]1 010101011 Pattern;+;)/01 10110111
Ty N 1/10 TOy N 1/10
Tly, R \ oA [4/10 TOy; NN 410
Tl N NN 3/10 TOy N 2/10
Tl N J[2/10]  [1O4 v N N (310

Figure 4-5(c). An example of the word-level statistics characterization

total length=38 (fixed) word-level statistics
Input vector part Corresponding output vector part

Ty Ty i Tl | TOp | TOo | TOy | TOn
0.1 0.4 0.3 0.2 0.1 0.4 0.2 0.3

Figure 4-5(d). Input data format with word-level statistics
If we use bit-level statistics to be the input data of our neural power model, the neural

network may recognize the individual contribution to the total power consumption from each
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input transition such that the estimation error of the power model is more possible to be
reduced. However, the size of this power model will increase very fast especially for the
circuits with large amount of I/O pins. Moreover, because the complexity of bit-level
statistics is too high, it will become much harder to learn such complex relationship between
the bit-level statistics and the power consumptions for a neural network. If we use word-level
statistics as the input data of neural power model, some individual characteristics of each
possible input transition may be lost, especially for the control-dominated circuits with
significantly different power modes. However, it is a common heuristic method used in many
power models [46][65,66][73] to reduce the modeling complexity with reasonable error loss.
According to their experimental results, the induced errors are indeed in an acceptable range
in most cases.

When we are selecting the transfer funetion, we also have to consider the output format
of our neural power model. The output of our heural power model is expected to represent the
estimated power consumption of pattern pairs. Because the values of power consumptions
often continuously distribute on a wide range, those transfer functions that use discrete values,
such as the unit-step or the sign functions are not suitable. In our observations, the three
commonly used functions, logarithmic sigmoid (/ogsig), hyperbolic tangent sigmoid (tansig)
and linear (/inear) functions, are more suitable for our application, which are defined in
Equation (4-10), (4-11) and (4-12) respectively. However, it should be noted that the values
of power consumption have to be normalized between 0 to 1 in both the training set and the
test set if logarithmic sigmoid and hyperbolic tangent sigmoid functions are used in the

output neuron. In order to save the normalization effort, we use the linear function as the
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transfer function of the output neuron. In the following discussions, we will focus on the

comparison between those three transfer functions for hidden neurons.

logsig transfer function: f(s)= o (4-10)
+e-
. . 2
tansig transfer function: f(s)= T -1 (4-11)
+e
linear transfer function: f(s)=s (4-12)

In order to help us making better decisions, we perform an experiment to compare the
accuracy and performance of 6 combinations between 2 input data types (bit-level and
word-level statistics of the input and output pattern pairs) and 3 transfer functions (logsig,
tansig, linear). Because this experiment is only used for evaluating the input data types and
suitable transfer functions, many parameters in the neural network are arbitrarily chosen and
fixed in this experiment. All the training process will be stopped after 15 iterations instead of
using the validation error checking as the stop criterion. The number of hidden neurons is
fixed as 4. The training set includes 20 sequences, which are uniformly distributed over the
population of the average signal probability (P;,) and the average signal transition density
(Din) and each sequence includes 1,000 random input pattern pairs with the chosen PD
combination. The comparison using AESP and STDESP for those test cases on C1355 is
shown in Table 4-1.

The neural power model using bit-level statistics has higher complexity than that of the
neural power model using word-level statistics, which can be observed in the number of
weight |W/| and the constructing time. However, as shown in the experimental results, the

neural power model using bit-level statistics does not have many improvements in terms of
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AESP and STDESP. According to the analysis above, we select word-level statistics as the
input data of our neural power model. While checking the neural power model using
word-level statistics, we can find that the neural power model using tansig function as the
transfer function of hidden neurons provides better results on AESP and STDESP. Therefore
we select tansig function as the transfer function of internal hidden neurons in this work.

Table 4-1. Comparison of input data types vs. transfer functions

Average Power .

L Input Dat Construct
Circuits n%?\WT | fiy |[AESP[STDESP| po- (gelc(;n

(%) (%)
Bit-Level linear 4.40 6.32 443.53
C1355 WI=1177 Iogs!g 4.92 4.68 704.73
tansig 4.38 7.80 555.81
PI=41 linear | 5.09 7.19 54.17
-Level -

PO=32 sz 1 [ogsig.{siaa1l. 416 55.83
tansig 3.81 2.81 57.17

B. Number of Hidden Neurons

Another issue to be decided is the number of ‘hidden neurons required in the neural
power model. Typically, the minimal number of hidden neurons depends on the complexity of
the relationship between the input data and output values in the training set. However,
according to the experience in neural network researches, there is no easy or general way to
determine the optimal solution for the number of hidden neurons to be used [87]. As
mentioned in Section 4.2, our strategy is initially using a neural network with a small number
of hidden neurons and increasing the hidden neurons until the stop criterion has satisfied. In
the following discussions, we will explain the reason of using this strategy through a simple
experiment.

We first build a neural power model for C1355 and set the initial number of hidden
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neurons as 2. The training set is the same one as used in the experiment of Section 4.3.1.A.
The validation set includes 20 sequences with the same PD distribution as in the training set,
but and the size of each sequence is increased to 3,000. In the following experiment, we
increase the number of hidden neurons from 2 to 15 and test the accuracy of the neural
networks after 15 training iterations using the same test set as used in the experiment of
Section 4.3.1.A. The experimental results about the effects of number of hidden neurons are
shown in Table 4-2.

Table 4-2. The effects of the number of hidden neurons

. Average Power . .
Circuits ﬁéjf:;g AESP | STDESP Vagfritrlon CTOEZSL(‘;:SC(;H
(%) (%)
2 4.96 3.5717.0.004264 50.51
3 4.92 3156+ 0.004255 53.25
4 3.81 2,81 0.004098 57.17
5 3.93 3.06[ 0.004272 59.78
6 5.67 3.21 0.004550 62.97
7 3.25 3.38=.0.004252 66.41
(1':'11:32? 8 3.62 3.30| . .20.004205 71.49
PO=32 9 3.20 2.24[°70.004011 73.14
10 2.96 2.64] 0.003969 78.99
11 3.79 2.89] 0.004406 81.83
12 3.72 2.65| 0.004357 88.52
13 3.36 2.81 0.004675 90.28
14 3.26 241 0.004179 96.56
15 3.31 2.59(  0.004163 99.76

According to the results in Table 4-2, increasing the number of hidden neurons does
improve both AESP and STDESP when the number is small. However, when the number of
hidden neurons is larger than 10, we could find that the validation error, AESP, and STDESP
may become worse due to the over fitting problem mentioned in Section 4.2.2. Therefore, for

this case, the best choice is to set the number of hidden neurons as 10.
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4.3.2 Design of Training Sets

Typically, a power model is expected to be used for different test sets with various input
distributions. In order to achieve this target, the neural power model should be trained over a
wide range in the input space such that it can learn enough experiences. Therefore, we will
randomly decide the P;, and D;, while generating each test sequence. Because an input signal
is assumed to make at most one single transition per cycle, there is a relationship between P;,
and D, as shown in Equation (4-13), whose detailed proof can be found in [65]. Therefore,
while generating those training sets over a wide range of P;, and D;, distribution, we can use
only the PD combinations that satisfy Equation (4-13) such that neural networks could learn
the correct characteristics between the input signal statistics and the power consumption of

circuits.

Du pi 21D
2 T 2

(4-13)

The size of a training set is also an important issue while training the neural power
model. According to the related study [88], it suggested to determine the size of training set
according to Equation (4-14), in which P is the number of samples, |W| is the number of
weights to be adjusted and a is the expected accuracy. In this work, our target is set as a >
95%. According to this error requirement, we suggest generate the training set with size P >>
20 |W|. A larger training set is supposed to produce a more accurate neural power model.
However, the characterization time of this power model is also increased. In the following
experiment, we will show the observation of the relationship between the size of training set

and the modeling accuracy.
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(4-14)

In this experiment, we use the best neural network structure for C1355 decided in
Section 4.3.1, which is a neural network that uses 10 hidden neurons and word-level statistics.
As mentioned above, the samples of the training sets should be distributed over the space
with a wide range of P;, and D;,. Therefore, we generate 4 training sets consisting of 20
sequences in each, which have the same uniformly distribution on the input space that
satisfies the P;, and D, constrains in Equation (4-13). However, the length of each sequence
is different, which are 500, 1,000, 2,000 and 5,000 pattern pairs respectively. In other words,
the total sizes of the training sets are 10,000, 20,000, 40,000 and 100,000 respectively. The
validation sets consist of 20 sequences that have the same-distribution as those test sequences
but their sequence lengths are multiplied by 3. Therefore, the sizes of validation sets are
30,000, 60,000, 120,000 and 300,000 respectively.“The experimental results of those 4 neural
networks under different training conditions after 15 training iterations, which are evaluated
using the same test set that consists of 20 sequences with 3,000 pattern pairs are shown in
Table 4-3.

Table 4-3. The effects of the size of training set

Circuit C1355

Size of Average Power Validation |Construction
Training Sets AESP | STDESP Error Time (sec)
(%) (%)

10,000 4.05 2.20( 0.003952 59.47
20,000 2.63 2.43| 0.003804 99.67
40,000 2.05 1.99( 0.003510 114.21
100,000 3.67 2.86] 0.004203 23395

The experimental results show that the size of training set will not affect the accuracy

too much on accuracy if the training set is large enough. According to this observation, we
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generate 20 sequences with 3,000 pattern pairs in each sequence to be the training set of our
neural power model in the following experiments to make a trade off between the size of test
sequences and accuracy. Of course, those 20 sequences will have a distribution that covers a

wide range of the input space.

4.4 Experimental Results

In this section, we will demonstrate the accuracy and efficiency of our power model
with ISCAS’85 benchmark circuits and one real design, a combinational divider with 32-bit
dividend/quotient and 12-bit divisor/remainder. All circuits in our experiments were
synthesized by using 0.35 ¢ m cell library. The accuracy will also be compared with
traditional 3D-LUT power modeling methodology, which uses P;,, D;, and average output
signal transition density (D,,,) as its three dimensions, and the interval size of each dimension
is set to 0.1. Our neural power models including the training algorithms were all constructed
on MATLAB by using an Intel Pentium III 1GHz mobile CPU and 384M RAM.

In the model construction phase, the input training sequences are generated over a wide
range of input distribution as described in Section 4.3.2. The real power of those input
sequences is simulated by a transistor-level simulator, PowerMill such that the measured
power consumptions can include switching power and leakage power and can be
characterized in the power model. In order to show that the power models can be used for
various input distribution, we test those models by using 200 test sequences with 3,000
pattern pairs. Each sequence has different P;, and D;, that are randomly selected over a wide

range satisfies the condition in Equation (4-13). After simulation, the estimated average
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power consumption with this power model is also compared to the simulation results from
PowerMuill.

All the test circuits will be tested using the two power estimation approaches with the
same information: traditional 3D-LUT power model and our neural power model. The same
training and test sequences will be used for both approaches to make a fair comparison. The
performances of both power models are summarized in Table 4-4. The construction time of
neural power models includes the data pre-loading time of training and validation sets, the
establishing time of neural network and the elapsed time of network training process. The
simulation time of transistor-level simulation is not included.

According to Table 4-4, the average values 0frtAESP and STDESP are 17.58% and
18.59% respectively while we use the traditional 3D-LUT power models. The convergences
of this approach are quite poor that can be. observed- from-'the large values of STDESP. It
implies that using the LUT-based power model-may have large errors in some cases.
Compared to the traditional 3D-LUT power model, we only have 4.72% error for all cases on
average, and the largest AESP is only 8.93% for the 32-bit divider. The improvement of our
neural power model can be shown in the STDESP. The largest STDESP is only 5.88% for the
32-bit divider using our approach, which shows a good agreement with real powers. The
combined scatter plots of all ISCAS’85 circuits by using our approach and the 3D-LUT
approach are shown in Figure 4-6 and Figure 4-7 respectively. In order to examine all circuits
on the same plot, the power consumptions of all circuits are normalized with the circuit size
and operating frequency. Comparing the two plots, we can see that our approach can really

provide better trend of estimation accuracy.
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Table 4-4. The comparison between traditional 3D LUT power model and our neural

power model

cireuits  |C432| C499 |(C880|C1355/C1908/C2670/C3540C5315/C6288|C7552|Divider| |Average|
vopinl mput | 36 | 41 | 60 | 41 33 | 233 | 50 | 178 | 32 | 207 44 -
Numberl o out| 7 32 | 26 | 32 25 140 | 22 123 | 32 108 45 -
Gatecount | 116 | 324 | 245 | 362 | 328 | 447 | 700 | 1102 | 1640 | 1135 | 2726 -
# of table
_ 500
entries
© | MAXESP
é o 77.63|27.66168.39/36.71|71.24|65.76199.05|44.46 | 88.71|71.08| 43.94 63.28
g AESP (%) | 18.56 | 11.72 | 22.81 | 11.19 | 16.81 | 14.14 | 24.41 | 16.60 | 29.57 | 15.00 | 12.46 17.58
o
§ ST(?/E)SP 1721 9.09 [23.92| 972 | 1632 | 17.50 | 2438 | 14.08 | 3537 | 18.64 | 18.07 18.59
D 0
® RMSESP
" 24.22/14.37130.39/14.1622.82 [ 21186132.41|20.34|39.2322.51| 18.44 23.72
Neurons in
Hidden 8 6 8 8 7 9 9 7 8 8 8 7.82
Layer
W] 81 61 81 81 71 91 91 71 81 81 81 79.18
% C;mm(m(;"313.o7 216.28 |310.83| 323.51 | 262.48 |1390.29 | 391,53 | 267.34 | 320.19 | 32429 |325.23] 313.19
s 1me (sec
s If”‘ii‘_i“g 102| 36 | 101| 105 | 90 | 120 | 120 | 88 | 105 | 105 | 105 | 97.91
o erations
® | MAXESP
3 o 15.13]-11.1932.72/ 11.83(22.09|24.74 | 24.14 |-17.28/16.34 |-17.49| 26.63 20.06
P %
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Figure 4-6. Scatter plot of neural power model estimation versus PowerMill simulation
in ISCAS’85 benchmarks
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Figure 4-7. Scatter plot of 3D-LUT estimation versus PowerMill simulation in
ISCAS’85 benchmarks

The storage requirements are also much less in our approach. According to the results
shown in Table 4-4, the maximum number of hidden neurons is 9 in our experiments. It
means that we only use up to 9 hidden neurons structure with 91 elements in the weight
matrix |W| to record the power characteristics, which is quite small compared to the lookup
tables, which require 500 (=10*10*10/2) numbers to record the tables. These experimental
results have also shown that the complexity of our neural power model has almost no

relationship with circuit size and number of inputs and outputs. Even for large circuits such as
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the 32-bit divider, the complexity of its power model is still the same as the complexity of
smaller circuits such as C432. Besides, the construction of neural power model is rapid that
can be observed from the short construction time and the total training iterations of each
neural power model in Table 4-4. Therefore, using such a power model can be very efficient
even for complex circuits and also has high accuracy.

Another important information not shown in Table 4-4 is the estimation time while using
our power model. Actually, the estimation time of our neural power model is dominated by
the functional simulation time with a logic simulator, which simulates the circuits with
specific input vectors to obtain the corresponding output vectors. If we assume that the
corresponding output values under specific.input séquences are also provided by users, the
estimation time of our neural power model is-always less than one second for all ISCAS’85
circuits. Therefore, the estimation time'is not shown in-Table 4-4 because it is almost equal to
the logic simulation time, which is quite small.compared with low-level power estimation
methods such as PowerMill.

In order to demonstrate that the neural power model can handle specific functional
patterns in practical use, we also test the practical design, the 32-bit divider design, with
user-given functional patterns. The functional sequence consists of 1,000 pattern-pairs only.

However, the average estimation error is only 5.98% compared to the PowerMill results.

4.5 Summary

In this work, we propose a novel power model for complex digital circuits, which uses

neural networks to learn the power characteristics during simulation including both leakage
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power and switching power. Unlike the power characterization process in traditional
approaches, our characterization process is very simple and straightforward. The complexity
of our neural power model is also smaller than that of the traditional 3D LUT power model
which is almost no relationship with circuit size and the number of inputs and outputs. More
importantly, using the neural power model for power estimation does not require any detailed
circuit information of the circuits, which is very suitable for IP protection. In this work, we
have tested our neural power model on all ISCAS’85 benchmark circuits and one real design.
The experimental results demonstrate that our neural power model can accurately estimate
the power consumption of combinational circuit for different test sequences with wide range

of input distributions.
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Chapter 5

Conclusions and Future Works

In this dissertation, we proposed a series of power estimation and power modeling
methods for combinational IPs. Because IP vendors may release only limited design
information to protect their knowledge, we proposed corresponding methods for the designs
with different information. We divide the design information into three levels. The first level
is transistor-level information. The second level is gate-level information. The third level is
functional-level information.

In Chapter 2, we proposed two consecutive sampling techniques to improve the losing of
performance in those vector compaction. methods- with- random sampling techniques.
According to the experimental results on"ISCAS’85 benchmark circuits, the speedups of
random sampling, single-sequence sampling and multi-sequence sampling approaches are
94.21, 119.08 and 147.03 respectively. The multi-sequence approach improves 56% on speed
compared to random sampling approach. The single-sequence approach only improves 26%
on speed. The average compaction ratio achieved in random sampling approach is 129.22 and
the average error is 4.14%. The average compaction ratio achieved in single-sequence
approach is 179.41 and the average error is 3.32%. The average compaction ratio achieved in
multi-sequence approach is 251.04 and the average error is 4.19%. It shows that the
multi-sequence approach can dramatically reduce the useless transitions in the random

sampling method such that it can almost keep the desired compaction ratio exactly.
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In Chapter 3, we proposed a power model for IPs with only gate-level design
information. We build a lookup table for each IP that maps the zero-delay charging and
discharging capacitance during an input pattern transition to an estimative value of real power
consumption. The experimental results on ISCAS’85 benchmark circuits show that the table
sizes are only 42 to 107 for ISCAS’85 benchmark circuits. It is very small and almost
independent to the circuit size. We test the accuracy of our method by estimating the average
power consumption of circuits with 3 different sequences, which are pseudo random
sequence, counter sequence (up/down counter) and LFSR (Linear Feedback Shift Register)
sequence with 50,000 pattern pairs respectively. The maximum error is 7.48% for C2670 with
LFSR sequence. The overall average error is only 2:99%. The experimental results show that
our power model still has high accuracy for differént input sequences.

In Chapter 4, we proposed a quité different approach for high-level power modeling of
complex digital circuits that uses a 3-layer fully connected feedforward neural network to
learn the power characteristics during simulation without any lookup tables. According to the
experimental results on ISCAS’85 benchmark circuits and a 32-bit divider circuit, the
average values of AESP and STDESP are 17.58% and 18.59% respectively while we use the
traditional 3D-LUT power models. Our proposed neural network power model has 4.72%
error for all cases on average, and the largest AESP is only 8.93% for the 32-bit divider. The
improvement of our neural power model can be shown in the STDESP. The largest STDESP
is only 5.88% for the 32-bit divider using our approach, which shows a good agreement with
real powers. Our experimental results have also shown that the complexity of our neural

power model has almost no relationship with circuit size and number of inputs and outputs.
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Besides, the construction of neural power model is rapid and it can be observed from the
short construction time and small number of the total training iterations of each neural power
model in our experimental results. Therefore, using such a power model can be very efficient
even for complex circuits to achieve high accuracy.

In the future, we have to extend our experiments on sequential circuits and asynchronous
input signals. We will also try to integrate the neural network power model into HDL
simulator such that the power estimation could be done in only one simulator. We also have
to think about how our methods could be applied on memory block. If those issues can be

solved, the power estimation flow for a system will be more complete.
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