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Abstract

The communication receiver can be divided into the-signalsprocessing unit and the
data processing unit. The signal processing unit.is mainly used to solve problems of
the signal synchronization, the channelequalization -and.the-channel estimation. The
topic of this thesis is design of the signal processing algorithms and discusses various
issues in synchronization, equalization and channel estimations. According to the
application of ‘the systems, this work is divided into three parts. Part'| is the receiver
design in wired single carrier (SC) system; Part Il is the receiver design of
multi-carrier orthogonal frequency-division _multiplexing (OEDM) systems over a
wireless channel:Parti11 is the transceiver design of the wide-band MIMO systems.

In Part 1, the topics of the receiver design in SC systems; we address the carrier
recovery and the blind decision-feedback-equalization. (DFE). In carrier recovery
issue, we discuss two techniques: ithe carrier ‘frequency estimation and the carrier
recovery loop. For the carrier frequency estimation, we study the frequency estimator
using the delay correlation, derive the performance of the Fitz’s algorithm, propose a
low-complexity and high-accuracy multi-resolution algorithm, and then apply the
proposed algorithm for the frequency estimation in QAM system. For the carrier
recovery loop, we propose a series of the blind phase detections (PDs) according to
the reduced-constellation concept, which can enhance the acquisition range of the
carrier frequency offset. In addition, when considering the acquisition speed and the
tracking stability, we furthermore derive a hybrid PD, which combines the
decision-directed PD and the reduced-constellation PD, and the mechanism of the
dynamic control of the loop bandwidth. In the design topic of blind DFE, we focus on
the improvement of the convergence speed of the blind adaptive algorithm and



propose a variable stepsize (VSS) algorithm, which is applicable to blind algorithms.
In addition, we suggest the soft-switching concept of the adaptive mode and present a
hybrid adaptive algorithm, which combines the blind algorithm and the DD-LMS
algorithm, to speed up the operation mode switch of the adaptive algorithm. At final
of this part, we discuss several operation strategies of the joint carrier recovery and
the DFE.

In Part 11, the topics of the receiver design in multi-carrier systems, we discuss the
issues of the channel estimation and the joint estimation of the Cell-ID and integral
CFO in WIMAX system. First, for the synchronization issue in joint estimation of the
cell-ID and integral CFO, we derive an optimal detection algorithm according to
theoretical derivation. Moreover, from the simplification of the optimal detection
algorithm, we suggest the concépt of the frequéncy domain filtering and propose
several simple detection®algorithms according to the concept. In the topic of the
channel estimation, we.propose two kinds of the channel estimation algorithms. First,
we study the optimization of the estimate mean-square “error, of the polynomial
interpolation. We introduce a window shift concept, derive the optimal window shift,
and propose the estimation method of the value under a.given interpolation order.
Besides, we apply the approximate minimal mean-square error (MMSE) estimator to
the channel ‘estimation.  In this topic; in order to derive the approximate
cross-correlation.function in frequeney domain, we propose the simple estimation of
the root-mean-square delay spread and.the mean delay of the channel. We apply the
estimators in the'channel estimation of the comb-type OFDM and WiMAX systems.

In part 1, the topic of the.transceiver design in-wide-band MIMO systems, we
address the design of the optimal transmittersand the corresponding receiver. For the
coded MIMO OFDM transmission, we insert a space-frequency transform (SFT) to
maximize the diversity gain and the coding gain. The transform is realized in a
two-step process: the orthogonal transform and then the space-frequency interleaving
(SFI). At the receiver, for the design of the channel equalization and demodulation,
we adopt the turbo-DFE as the iterative decoding process. In the algorithm realization,
we use the frequency domain equalization to reduce the receiver implementation cost
and propose the separable SFI design. By this way, the SFI can be moved outside the
turbo-DFE loop. In addition, we propose the algorithm of joint channel estimation and
the data detection to reduce the utilization of the pilot symbols.
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Chapter 1

Thesis Introduction

This thesis studies the digital signal process algorithms for the communication system designs
and focuses on the inner transceiver design, which.includes the synchronization, the equalization,
the channel estimation, and the space-time transceiver idesigns. The studied systems cover
the single carrier cable system, the multi-carrier wireless system and the wide-band MIMO
system. Although the topics. are multifarious, we still-present the studied algorithms using
several viewpoints including the design issues, the design.targets, the. methods, and the receiver
structures. The design issues cover the synchronization issues and the channel effects. The
design targets includg:the receiver performance! the latency, the stability, the cost, and the joint
consideration of these factors. We-also introduceithe problem:solving methods to achieve the
targets. The opensleop 'and closed-loop structures arespresented with the examples in carrier
recovery, data detection,'and channel estimation.

1.1 Communication Systems

Communication system requiresithe innérreceiver tocompensate the mismatch between trans-
mitter and receiver and-to eliminate the channel interference. Thereceiver design is the succes-
sive signal processes mainly including the signal analyses and signal reconstructions. This thesis
focuses on these signal precesses in communication systems.

Three communication techniques.are studied in thesis.including the single carrier (SC) trans-
mission, the multi-carrier or the orthogonal frequency division multiplex (OFDM) transmission,
and the wide-band multiple-input-mutiple-output(WB-MIMO) transmission. The SC transmis-
sion advantages in the low peak-to-average power ratio (PAPR) and the low cost transmitter
requirement. However, it takes the great price in receiver design over multi-path environment.
The OFDM system can provide flexible multiplexing and has lower cost receiver design over
multi-path environment than SC system. However, it requires better RF properties, such as
better linearity of power amplify, better phase noise property. In advanced communication,
multi-antenna transceiver provides larger capacity and/or better diversity with spatial multi-
plexing schemes or space-time code.

Several real communication systems are given as the examples for the receiver designs. In
SC communication, we study the receiver design in quadrature amplitude modulation. For
examples, this modulation scheme is adopted in DVB-C and J. 83B. In OFDM communication,
the pilot-aided scheme is most popular currently due to the low-cost implementation of the
channel estimation in receiver. In this scheme, we take 802.16e mobile WiMAX as the example.
In WB MIMO, we consider the joint design of the transmitter and the receiver to maximize the
diversities under given channel codes.



1.2 Issues of Receiver Design

In the end-to-end communication, we need to consider three major issues, which can be classified
as the synchronization, the channel compensation and the radio-frequency (RF) calibrations.
The synchronization deals with the mismatch between the transmitter(Tx) and the receiver (Rx)
and estimate unknown Tx parameter at Rx. The channel compensation considers the removal
and elimination of the channel distortion. The channel compensation issues include channel
equalization and the channel estimation. The RF calibrations compensate the RF distortions in
digital domain. The RF calibrations are the practical issues in realization of the communication
receiver; however, this study mainly discusses the fist two issues only.

The Tx-Rx mismatch problem happens mainly due to different oscillators at Tx and Rx,
which yields the sampling mismatch, the timing mismatch and the carrier mismatch. In addi-
tion to oscillator issue, the mobility of Tx and Rx also introduces the frequency offset due to
Doppler effect. The distance uncertainty yields the propagation and introduces the symbol time
uncertainty.

The unknown parameter estimation is thespecial function requirement at the receiver. For
example in 802.16e mobile WiMAX [48, 98], the mobile station(MS) may need to estimate the
cyclic-prefix ration, the occupied bandwidth, and the cell'identification (ID-Cell) of the serving
base station(BS) before entering the system and sending register,message.

The data detection process mainly takes care of the channel distortion problems including
the multipath propagation, thel[time-varying channel fading, the interference and the additive
white noise. It mainly includes the equalizer| the| channel estimator, and the forward-error-
correct(FEC) decoder. The equalizer is used to compensate the multi-path propagation effect;
whereas the channel estimator is used to get the chahnel state information.for the equalizer. The
FEC code is used to protect the information bitsin_the AWGN and interference environments.

Besides the synchronization and the channél compensation, the radio-frequency (RF) imper-
fect effects are also_the receiver design issue;which effects includes the«l(Q) imbalance, the LO
leakage, and the nonlinearity effects.-However, the calibration algorithms are not included in
this thesis.

The thesis discusses both the, time-division=multiplexing SCand :OFDM since the time-
frequency duality yields similar properties in both system. Thus, the same signal processing
concept can be used to deal with different issues in different demains. For example, the equalizer
originally is used in SC system to eliminate the ISI issue over multipath channel; this technique
now is applied in OFDM system to combat the ICI issue due to frequency offset and Doppler
effect. As another example, the spectrum analysis concept of the temporal signal can be used to
estimate the delay paths of the channel in OFDM system. Besides, the delay correlation concept
is used to estimate both the frequency offset and time shift in our studies.

1.3 Design Target of Receiver Algorithms

The algorithm design should consider the optimization objectives. These factors: the accuracy,
the latency, the robustness and the cost are typically considered in the receiver design targets.
The accuracy is the Rx performance measure. The commonly used accuracy indications include
the error rate (such as the bit error rate and symbol error rate), the mean-square error (MSE),
and the signal to noise/interference ratio (SNR/SIR). The latency is the wait time from the
start to the steady state. In the adaptive process, the convergence time can be viewed as the
latency of the process. Thus, the optimization of the latency in adaptive process is to improve
the convergence speed. The robustness is the stability of the design in different environment or
in the track of the process, that the target performance can be achieved. In fact, it is hard to
quantify the robustness factor, but can be evaluated via the simulation or the test over different



conditions. The cost is the required operations or the hardwares to realize the design. For a
signal processor, the requirements of the operations can be the indication of the cost; whereas,
for the hardware design, the gate count is typically used as the indication. In addition, the
storage requirement is another cost factor.

In practice, these factors may have collisions. We may consider the selection of the algorithm
to meet the target consideration. For example, in the adaptive filter algorithms, the recursive
least-square (RLS) algorithm can provide fast convergence but needs large computation cost;
whereas, the least-mean-square (LMS) algorithm requires cost much fewer than the RLS but
it also has slower convergence speed. Thus, one issue in selection of the adaptive algorithm
is the trade-off between the convergence and the cost. The choice of the stepsize parameter
is another typical constrain in the selection between the convergence speed and the steady-
state performance. When the large stepsize is used, the algorithm has fast convergence but
poor steady-state performance; in contrast, small stepsize yields better performance but poor
convergence.

The optimization target sometimes is the joint cost function or the constrained objective
function. We may consider reducing. the implementation cost such that the performance degra-
dation is acceptable, or we try.to increase the convergence speed of the adaptive filter under the
condition of the same final -steady-state performance and limited:complexity increase. Another
example considers the algorithm design to obtain both the stability and the convergence speed
with the reasonable cost:

1.3.1 Methods to Achieve-Design Target

The design process to achieve the design target is somehow the modifications of the existing
methods or the simplifications of the optimal-algorithms. In the summary of the thesis, we
adopt the methods to modify the existing algorithms to achieve the design target, which are
given as follows:

1. dynamic controlled parameters; that-the-parameters-are changed ‘according to the status
of the estimators

2. functional approximation; that the reasonable and simplefunction is used to approximate
the complicated or poer-formmulated functions;

3. reduced solution space, that the solutionspace is constrained in the finite or quantized
elements to simplify the solving“process of theloptimization problem;

4. multistage increasing accuracy, that, for the convex problem, the solution accuracy is
increased with stage-by-stage reducing the search region and increasing the resolution;

5. iterative process, that the optimization is formulated in a recursion process to reduce the
implementation complexity;

6. hybrid function, that the function mixed with several functions/methods is used to take
the advantages of those functions/methods in different purposes.

1.4 Structure of Receiver

The structure of the receiver design can be classified into two types: the open-loop structure and
the closed-loop structure. For example in parameter estimator, the structures are illustrated in
Fig. 1.1. In the left part, the open-loop estimator uses averaging filter to smooth the sampled
observations and feeds the produced material to the parameter estimator to calculate the value
in one-shot process. Whereas, the closed-loop estimator uses the closed-loop adaptation that
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Figure 1.1: Comparisonsef the structures of open-loop estimatorsand closed-loop estimator.

iteratively adjusts the. estimated . parameter, according to the difference of the reconstructed
result(s) and the new income(s).—The use jof the structures depends on the property of the
estimation/detection target and the realization cost.

We consider a simple example of the estimate of the'sample mean torexplain the difference
between the openiloop estimator and the closed-loop estimator. Let xgyzi,- - ,xny_1 be the
input samples. Werwant to calculate the mean value of these samplesii From the open-loop
structure, we have

o e
= oy (1.1)

If the closed-loop structure is considered, we iteratively update:the estimation via
Xnf1i Kbl (zn— Xn).= (=X iy (1.2)

A effective factor of the closed-loop estimator is the selection of the stepsize p. The selection of
the stepsize depends on two factors: the convergence time constant and the steady-state accu-
racy. Smaller one provides smaller estimation mismatch but requires longer time to converge.
To achieve the same accuracy as the open-loop structure, the stepsize should be set to p = Niﬂ
Another factor affects the convergence property is the initial condition. Good initial points
yield good convergence properties as well as the final estimate results. Need to notice that the
closed-loop estimator may not guarantee the optimal estimate results with the arbitrary initial
conditions.

We give the examples of the estimator/detector structures for the carrier frequency estima-
tion, the data detection and the channel estimation as follows.

1.4.1 Carrier Frequency Estimation

Consider the problem in carrier frequency estimation that we find out the w form the observed
signal samples, which are given by

r(n) = e +3% 4 ap(n) (1.3)



forn =0---N — 1, where 0 is the phase offset and w(n) is the Gaussian noise. The maximally
likely solution of the w satisfies that

(1.4)

In the open-loop structure, we may directly calculate the matrics of the quantized solution

candidates as
N—-1

: (1.5)

n=0
and find out the w which has the maximal J(w). The metric calculations corresponding to the
w can be accomplished via the spectrum analysis with Fourier transform [68, Sec. 8.2.1].

In the closed-loop structure, we adopt the carrier recovery loop to estimate both the phase
and the frequency offsets. One feasible recursions of the carrier recovery loop are given by

w(pfl) = o) +Kig(n);
Bn+1) = 0(n)+ Kpop(n)

where ¢(n) = Zr(n) — (d)(n)n 5 é(n))2 is the phase error function, in the recursion and (-)a2r

denotes the module operation with respeet to & 2z interval: With suitable selection of Kj, Kp
and the initial condition, the recursion-of @(m) would achieve the ML result.

1.4.2 Data Detection

Consider the datagdetection of the binary shift-keying modulation over-the two-path channel
with path gains =4[l hy]. Let [#(0)&(1) .+= (N — 1)] be the transmitted sequence, where
z(n) € {1, —1}. Thereceived signal can be represented by

r(n) = x(n) + hix(n — 1) + w(n) (1.8)

for n > 1 and r(0) = z(0) +av(0).
We can adopt the maximal likelihood sequence estimation(MESE) by finding out the se-
quence which minimizes the ' metrie:

N-1
J(&(0) -+ &(N — 1)) = [r/(0) = BO)P o B r(n) — &(n) — had(n — 1) (1.9)
n=1

One structuralized search scheme of the MLSE is the Viterbi detector/decoder, which is widely
adopted in the decoder of the convolutional code (CC).

Beside the MLSE approach, another feasible way is the linear equalizer. In matrix view, the
received vector is presented by

r=Hz+w (1.10)
where _ -
1 0 0
hy 1 0
H=| 0 h -~ 0 (1.11)
L0 - hy 1|

is the toeplitz channel matrix. Assume W be the equalization matrix, the equalized output is
given by
=Wr (1.12)
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and the detected data is obtained by performing the decision:

#(n) = sgu(i(n)). (1.13)

According to the minimal mean-square error criterion, the equalization matrix has the formula-
tion:
W = (H'H + o21)~'H (1.14)

where 02 is the noise variance. Both the MLSE and the linear equalizer obviously have the
open-loop structures.

For complexity reason, we may adopt the interference cancellation (IC) to remove the inter-
symbol interference (ISI) caused by the second path of the channel. One of the IC successively
deletes the ISI terms generated by the prior tentative decided symbols. This kind IC is called
as the successive IC (SIC), or the decision-feedback equalization in single carrier system. The
recursion of the SIC/DFE is given by

Z(n) =Asgn (r(n) — hii(n — 1)) (1.15)

where sgn(+) is the sign operation or the decision in general, and. (n) is the detection of z(n).
The DFE would cause theterror propagation effect when the prioritentative decision is wrong.
Thus, this is a sub-optimal detéction scheme:

In addition to SIC;"another IC-scheme.treats the sequence detection as the signal restoration
problem and adopts the iterative process to recovery the sequence. This kind IC is named as the
parallel IC (PIC) since it operates in a parallel manner. ‘One familiar PIC is the (constrained)
gradient descent algorithm [24] as well as the projected Landweber iteration [82]. Let z,_; be
k — 1st tentatively detected vector. The constrained gradient descent algorithm in kth iteration
is given by

& = sguidp+p R (P —Hz,_,)) (1.16)
= sgu(Fr+Bz,_,) (1.17)

where F = yH” B = 1= uH"H and 11 is the stepsize of the recursion, which should satisfy the
non-expansive (NE) property [24]. This recursion does still not guarantee the optimal solution
since the solution constrain'(or the-sign operation) does.not satisfy the convex property. This
kind PIC is also named as the iterative block-decision feedback equalization (IBDFE) [13] in
the viewpoint of the channel equalizer. Moreover, if the tentative detections are regenerated by
the forward error correcting (FEC) decoder, this kind PIC is specially called the turbo DFE
(TDFE), which is a simple version of the turbo equalization [56]. Both the SIC and PIC have
the closed-loop structures.

1.4.3 Channel Estimation

Consider the coefficient estimation in the single path channel. Let x = [2(0) (1) --- x(N —1)]T
be the transmitted pilot signal, which is known at the receiver. Let o be the channel gain to be
identified. The received signal vector can be expressed as

r=gza+w (1.18)

where w is the noise vector. If the noise has Gaussian distribution, the maximal likelihood
estimation of the channel gain is to determine the & such that |r — z&||? is minimal. The
well-known least square (LS) solution of the estimation is given by

a=(a"z)" 2r. (1.19)



The LS estimation in this case has the open-loop structure, which collects all the received samples
and performs one-shot process to determine the channel coefficient.

Besides the LS estimation, we can adopt the adaptive least-mean square algorithm to
train the channel coefficient. The cost function of the LMS adaptor in this case is J =
E|r(n) — z(n)al®. By taking gradient of J with respect to a and replacing a as &, which
is the tentative solution at nth iteration, we have the recursion of the LMS estimator as

Qpt1 = Gy + p(r(n) — ax(n)) z(n)* (1.20)

where 4 is the stepsize in the recursion. Obviously, the LMS for the channel estimation is a kind
of the closed-loop structure in this case.

1.5 Thesis Organization And Studied Algorithms

The thesis is divided into three parts. Part I presents the receiver design in SC system over fixed
multipath channel. The carrier synchrénization, the channel equalization, and the joint process
of these two functions are studiédiin this chapter. Part Il considers the receiving algorithms in
wireless OFDM system. In this part, we mainly study the Cell-IDidetection problem in WiMAX
system and the channel estimation issue. Part III discusses the transmitter and receiver designs
over wide-band MIMO.

Part I contains Chapter 2-4. Chapter 2 studies the carrier synchronization in SC system®.
Two algorithms with different structure arespropesed in ‘this chapter. The first algorithm op-
erated in open-loop.structure is an-extreme low complexity algorithm fer the single frequency
estimation. We also'address its application in frequency offset estimation in QAM system.
The second algorithm is the closed-loop carrier recovery loop. We suggest a class of the blind
phase detection and:the hybrid operation of the blind and decision-direected phase detection.
Besides, we also prepose a dynamic|loop-bandwidth control algorithm te.provide both the fast
convergence and goed tracking stability. The design target of the firstralgorithm is to reduce
the implementation ¢ost. . The applied design method is-the “multistage increasing accuracy”.
The second algorithmris to ‘provide fast. convergénce and robust, tracking. Besides, we also con-
sider enlarging the estimate range of'the frequency offset. The. used design method is including
“dynamic controlled parameters™;. “functional approximation”, “iferative process”, and “hybrid
function”.

Chapter 3 studies the blind channel equalization in SC system?. T'wo algorithms are proposed
in this chapter. The first one establishes ‘the variable stepsize concept in the blind adaptive
algorithm to enhance the convergence speed of the blind equalizer. In the second algorithm, we
consider the soft-switching mechanism from the blind to decision-directed LMS tracking. We
propose the hybrid operation concept in this algorithm. Both algorithms operate in close-loop
structure and provide the fast convergence and stability in tracking operation. The used design
methods comprise “dynamic controlled parameters”, “multistage increasing accuracy”, “iterative
process”, and “hybrid function”.

Chapter 4 studies the joint startup process of the carrier synchronization and the blind
channel equalization. We present a new operation process using the proposed blind phase
irrelevant decision-feed equalizer (nDFE), which can provide convergence of the blind equalizer
under received signal with frequency offset. The variable stepsize concept is also applied in
the 7DFE algorithm. The design target and the design methods are similar to previous two
chapters. Both the open-loop and close-loop structures are used in this chapter.

!The corresponding publication is the reference [35]
2The corresponding publications are the references [34, 36].



Part II includes Chapter 5-7. Chapter 5 is an intrroduction to WiMAX receiver design.
Chapter 6 studies the synchronization in mobile WiMAX system®. The main issue in this
chapter is the IDCell identification problem. According to the theoretical derivation, we propose
the frequency domain filtering concept and develop several simplified algorithms in the issue.
The performance analysis is also addressed. The design target in this chapter is to reduce
the complexity under acceptable performance. The design methods is mainly the “functional
approximation”. The proposed detector works in open-loop structure.

Chapter 7 studies the channel estimation problem in comb-type OFDM and mobile WiMAX
systems®. We propose two pilot-aided channel estimation algorithms. These two algorithms both
use the interpolation to estimate the missing channel response. The first algorithm improves the
polynomial interpolative channel estimation algorithm by introducing the time-domain window-
shift concept. We derive the optimal window shifts under arbitrary interpolation orders and
propose the corresponding estimation scheme. The second algorithm considers the realization
of the Wiener interpolation. Instead of the estimation of the channel correlation, we use the
model-based approximation of the correlation. To generate the correlation approximation, we
propose a simple estimation scheme offthe channel mean delay and the delay spread. The design
target of the first algorithm is,the performance improvement with some computation increase,
and the used methods are including “functional approximation” and “reduced solution space”.
The first algorithm operates in open-loop structure. For the second algorithm, the goal is to
reduce the realization complexity. We adopt the samefmethods.and structure as fist algorithm.

Part III includes €hapter 8-9. Chapter 8 presents the optimal transmission process for FEC
coded system over the correlated WB-MIMQ@?. We derive'the condition of the transform design
to optimize the diversity gain in the-coded-system and then propose a simple near-optimal space-
frequency transformation to achieve the condition. #Then, in Chapter 9,swe study the receiver
design®. We adoptsthe block turbo DFE to detect the transmitted information. To improve the
convergence and toireduce the cost, we propese asshaped turbo DFE and its simplification using
fixed shaping filter tio reduce the implementation cost. Then, we consider the joint problem of
the channel estimation and the datasdetection and propose the joint iterative algorithm. The
design of the receiveriis targeted-at the low.complexity-and good;convergence property. The
used methods includest “iterative process™; “functional approximation”; and “dynamic controlled
parameters”.

3The corresponding publication is the reference [37].

4The corresponding publications are the references [41, 42, 43, 44, 45].
5The corresponding publication is the reference [38].

5The corresponding publications are the references [38, 39, 40].
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Figure 1.2: Prototypical transmission system block diagram.

The single carrier modulation seheme is widely adopted in recent communication system,
such as the DVB-C and the J,83B for cable TV broadcasting, ATSC for wireless TV broadcast-
ing, GSM for cellular mobile,communication. This modulation scheme is not a fresh one since it
has been studied over 4 decades: There are mass literatures and technical contributions for the
scheme; however, we still present several techniques to accelerate the convergence of the receiver
and to provide more accuracy of the synchronizer.

The quadrature amplitude modulation (QAM )is one of the popular modulation in the single
carrier system. Forjexample, the DVB-C adopts 16-QAM:32-QAN 64-QAM, 128-QAM and 256-
QAM according to-data'rate of the TV program and, the channel bandWidth. The 16-QAM,
64-QAM and 256-QAM aresquare QAMs, but,;32-QAM and 128-QAM are cross QAMs which
have square constellation but lack the cornet. ‘I'he shortage of the corneriin cross QAM makes
the poor performance with larger agquisition time in synchronization, especially for the carrier
frequency synchronization. In this part,.we-mainly.consider the réceiving techniques for the
square QAM formatiibut the presented techniques still can be applied to the cross QAM with
longer training period"

A typical transmissienssystem structure is shown in Fig.”1.2.+We consider the equivalent
low-pass discrete model of the transceiver system. Thus, we:émit-the digital-to-analog converter
(DAC) and analog-to-digital eonverter (ADC) modules. At transmitter, the information bits,
which may be protected by the forward error correcting (FEC) code, are mapped into the QAM
symbol constellation by the modulator and then the modulated sources is fed into the pulse-
shaping filter (PSF). After the PSF, the samples are corrupted due to the multipath channel
and perturbed by additive white Gaussian noise (AWGN). At receiver, the sampled signal first
is filtered by the matched filter and then passes into the distortion compensator and the signal
detection module. The distortion compensator, what we consider, contains the functionality
of the synchronization and the channel equalization. The part focuses on the design of the
distortion compensator and especially the carrier frequency synchronization and the channel
equalization.

This part addresses the carrier synchronization issues and the blind equalization; to en-
hance, we focus on the high-order QAM environment. In high-order QAM system, the decision-
aided/decision-directed(DD) carrier recovery loop (CRL) can not provide high acquisition range
of the frequency offset since the high SNR requirement is required for the CRL to achieve better
acquisition capability and this is not the case when the blind adaptive equalizer is used in initial
training. Therefore, we consider two approaches to enlarge the acquisition range. First, we use
the open-loop frequency estimator to estimate frequency offset at first stage. We first study the
Fitz’s algorithm [23] to provide high accuracy estimator and analyze its performance. However,
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the Fitz’s algorithm has two drawback. First, it exists the wrap effect in the angle of high-order
correlation; second, it requires heavy complexity in the estimation of the delay correlations.
For this, we propose a low complexity and high accuracy frequency estimation using high order
delay correlation. Key issue in the proposed frequency estimation is also the unwrap process.
According to the unwrap algorithm suggested in [22], we propose a multi-stage unwrap process
to reduce the probability of unwrap error. To resolve the frequency in QAM system, we integrate
the times four process [96, 10] with the proposed frequency estimator to provide high accuracy
and low complexity frequency estimator in high order QAM system.

Then, the CRL circuit is studied. Similarly, to enlarge acquisition range in high-order QAM,
we suggest a series of the reduced-constellation phase detectors (RCPD). But, this RCPD type
has poor locking capability due to its large phase noise in tracking operation. Thus, we fur-
thermore propose a hybrid phase detector, which is a combination the DDPD and the RCPD,
to provide both advantages of the DDPD in good tracking capability and the RCPD in wide
acquisition capability. In addition, we propose a dynamic loop bandwidth control mechanism
to adjust the loop bandwidth according to the lock indicator [58]. However, the lock indicator
has poor resolution in high-order QANL; thus, we furthermore suggest a modification of the lock
indicator for high-order QAM.,

The blind adaptive algerithm [49, 104] is used for initial training of the decision-feedback
equalizer in the low-order: QAM system. However, its convergence’ behavior is poor when the
high-order QAM system'is considered. To speedup the convergence, we consider the variable
stepsize (VSS) approach. ‘The VSS algorithm requires two factors: the convergence indicator
and the stepsize control function.-Eor-the convergence indication, we propose a low complexity
and high accuracy boundary mean-square error estimator to estimate the decision-point MSE
directly and use this ‘'value as the convergence indicator. Then, the stepsize control function,
we propose two types including the multistage: gear function and the proportional function.
The proposed algorithm can provide speedy,convergence of theblind DEE in high-order QAM.
Beside the improvement of the blind adaptive algorithm, we consider the'operation mode switch
for the blind acquisition to the decision-direct LMS tracking. The dual'mode or soft-switching
concept is consideredsyin [65; 30, 12]. We follow the VISS approach and propose a hybrid algorithm
to provide the soft-switching- functionality, which directly combines two error functions of the
adaptive algorithms. The proportional stepsize function is alsoused.in blind part; whereas, two
stepsize functions are propoesed for the DD part. The propesed-hybrid algorithm provide fast
and stable convergence in high-order @AM system:

Final chapter in this part discusses the joint startup -process of the CRL and the blind
DFE. We suggest three approaches. First onelis the conventional multi-stage separate training
procedure; the second one is the jointly mixed training procedure. The first stage requires an
additional training period in blind linear equalization using CMA for purpose of the estimation
of frequency offset and CRL; whereas, the second approach do not guarantee perfectly conver-
gence in the co-training of the DFE and the CRL especially when the CFO is large. Thus,
we furthermore suggest a phase-irrelevant DFE(7m-DFE) structure and a jointly startup proce-
dure based on the m-DFE. The proposed algorithms are all used in this process including the
frequency estimator, the CRL with dynamic bandwidth control and hybrid VSS algorithm.
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Chapter 2

Carrier Synchronization

The communication receiver contains the synchronization circuits. The tasks of the synchronizer
is to deal with the timing mismatch and the carrier mismatch. In this chapter, we discuss the
carrier synchronization design. Theré are two factors'in.the carrier mismatches including the
carrier frequency offset and the carrier phase offset. In.mathematic, the received signal in
equivalent model can be formulated as

r(t) = s(t)ed?ra 49 (2.1)

where Af is the frequency offset-and € is|the phase offset.” The carrier synchronization is to
compensate the factor Af and 6.

Two approaches are typically used in the carrier ‘synchronization. .One is the open-loop
estimation and then compensation; the other is;the direct closed-loop recovery of the signal.
The advantage of the open-loop estimation and compensation is the large estimation range of
the offsets; whereas,  the closed-loop recovery can track the time-variation of the offset and
finely adjust the mismatch. Both types afe used according to the modulated signal property.
For example, In OFEDM system;, the ;earrier frequency estimator ‘using; the correlation of the
cyclic-prefix is a typical approachsof open-loop estimation and compensation. In single carrier
(SC) system, the closedslooped carrier recovery loop (CRL) is typically used. Besides, the two
approaches may be used jointly-in.a two-stage manner. Forfinstance, at first stage, the open-
loop estimation is used to acquire the mismatch since it has large estimation range; next, the
closed-loop recovery is used to proyvide more accuracy estimation and tracking capability.

In this chapter, we consider both" approaches of the carrier synchronization in the QAM
system. In the first half part, we present the design of the frequency estimator and the application
in the QAM signaling. We introduce the Fitz’s algorithm [23] and extend to a mult-resolution
algorithm. According to observation and theoretical derivation, we can estimate the frequency
using high-order correlation to improve the accuracy. However, the estimator using high-order
correlation would face the angle wrap effect; thus, the unwrap process is necessary. But, high-
order unwrap process would make error easily and yield great estimate mismatch. For this issue,
we propose the multiple stage multi-resolution algorithm to reduce the probability of unwrap
error. Then, we apply the proposed algorithm in the QAM system.

Next, we present the design of the closed-loop carrier recovery. By introducing new class of
the blind phase detector (PD) based on reduced-constellation concept, we widen the acquisition
capability of the closed-loop estimator. In addition, we proposed the hybrid PD, which com-
bines the decision-directed PD(DDPD) and reduced constellation PD(RCPD), and the dynamic
loop bandwidth control to provide advantage of both the fast acquisition and stable tracking
capability.
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2.1 Open-loop Frequency Estimator

The open-loop frequency estimator is studied in past four decades [22, 23, 51, 79, 85, 93]. The
approaches typically can be classified as the frequency analysis [79, 85] and the cross-correlation
based estimation [93, 51, 23, 22]. The advantage of the spectrum analysis is its accuracy;
however, the accuracy is gained in the price of the complexity of the discrete Fourier transform,
even if the fast Fourier transform (FFT) is used. The cross-correlation estimator has lower
complexity, but also poor accuracy. To improve the accuracy and widen the estimation range,
additional signal process schemes are required to reduce the noise effect [68, 51, 23].

In this section, we first give a brief introduction of the FFT based frequency analysis ap-
proach. Then, we mainly focus on the low-complexity close-correlation approach. We start
from the Fitz’s algorithm [23], which is a modification of Kay’s estimator [51]. From the survey
of papers, as far as we know, it is lack of the performance analysis in the Fitz’s algorithm in
terms of the amounts of used correlation items. Therefore, we give the theoretical analysis of
the estimator.

According to the analysis, we observe the property of the frequency accuracy of the cor-
relation items, and propose the multiple resolution algorithin to exact the frequency via fewer
correlation items. We also give the performance analysis'of the proposed algorithm. And then,
we adopt the multiple resolution approach to estimate the.frequency offset component in the
QAM system with the operation of times-four {10, 11,:15,.16, 71, 96].

2.1.1 Spectrum Analysis using FE'LF

We first give the mathematical modeling of the single frequency waveform. It can expressed as
i(oml
z(t) = AT L) (2.2)

where Fj is the sampling frequency, @ is-an.unknown phase offset and n(#) is the additive noise.
Based on the maximal likelihood (ME)-eriterion={85}z=the-optimal frequency is derived via

s 2

f = arg max :U(t)ej(ﬂﬂFist) (2.3)

t=

The ML estimation can be derived via the-spectrum analysis process; therefore, the FFT
can be used to the single frequency estimation in'low cest manner as follows [68, 85]:

1. if T'> K, the FFT size, divide the observed signals into several segments with length =
K; else, pad zeros after observed signal to the length of K;

2. perform the FFT of the segments and calculate its power spectrum;

3. sum up these power spectrum of each segments if number of the segments is great than
one and find out the frequency of peak power location denoted as k;

4. translate k into f via f = %FS.

The accuracy of the estimator is bounded by the size of FFT or the CRB if resolution of
FFT is larger than the bound. Therefore, in order to provide higher accuracy of the estimator,
the larger size FF'T is required; however, it also costs great implementation complexity. The art
of single frequency estimator is using less cost to achieve the CRB, and this is the goal what we
present in next subsections.
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2.1.2 Fitz’s Algorithm

The frequency information f can be acquired from the correlation z(t) and its delayed version
x(t — 1) as given by

Ro(1) = —— S a(t)a*(t — 1) = 2227 F 4 (2.4)

and
;_ FoZ{R,(1)}
= 2
™
where 71 is the noise caused from AWGN. The implementation of the correlation method is
much less than the FFT based spectrum analysis; however, its accuracy is also severely poor
than spectrum analysis approach.
For this, Fitz [23] suggests using multiple correlations to improve the accuracy. With the
k-th delay correlation estimated by

(2.5)

(2.6)
the truncated version e
1
- (2.7)
in which C(K, k)
consider the unwra
Now, we explain i 3 i . ngle of the correlation
is given by
(2.8)
where €, is the phase noise it | . hat ingle is perfectly unwrapped. In
the matrix form representatio i i m is presented by
] 2.
: (2.9)
where
Q = [ - Q]
vV =1 K",
T
€ = [61 . GK]
Based on the least square solution, we have that
. F F, vTQ
f=2(vTv)y i = 2 (2.10)
2 2 EkK: k2

and that yields the Fitz’s algorithm in (2.7).
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2.1.3 Performance Analysis of the Fitz’s Algorithm
According to [85], the Cramer Rao bound of the estimation is given by

6FZp
(2m)2T(T2 — 1)

Var(f) < (2.11)

where p = Z—% is the reciprocal of single to noise ratio (SNR), T is the sample length and F is
the sampling frequency. We try to evaluate the Fitz’s algorithm in which condition to achieve
CRB.

Property of Phase Noise of the Correlation Estimation

we first consider the phase noise ¢, of the estimation of k-th correlation. For simplification,
we assume A = 1 and the actual f = 0; but, the derivation result still holds in the general
case. Now,we have the signal model: z(¢) = 1 + n(¢). The estimation of kth correlation can be
expressed as

®
x

Ra(k) = 1+ 2 3= (n(t) +n*(t = k) + (@Rl =) = 1+ V (k). (2.12)

I
=

According to [93], if ¥ (k) is'small enougly, we have the approximation:

V; (k)

Ru(k) = &2 () s oIVilh), (2.13)

in which V;(k) is the imaginary part of V (k). Thercfore, we have that e.= V;(k).
There are two cases in the derivation of variance of V;(k). Whenk > T

5, there are no
overlapped terms ofm(t) and n*(¢ — k). ‘Thus, we have

Vi(k) =Va(k) + Va(k) + Va(k), (2.14)
with
| Tkl
i) = ——— Sl
1t_0T_1
Va(k) = T—% 2 n(t)
;| T
and V3(k) = T—% Z n(t)n*(t — k).

t=

Based on LLN, we have that Vi (k), Va(k) and V3(k) are all zero-mean complex Gaussian random

variables, and the variances correspondingly o7, (k) = ot (k) = =P, ot (k) = L+ p?. Thus,

T—k
the variance of ¢ is given by

1 (P+0°/2)  p
2 2 2 2 ~
where the approximation holds if p is small enough.
Now, if k < %, there are overlapped noise terms in (2.12). We have that
V(k) = Vo(k) + Vi(k) + Va(k) + Vs(k), (2.16)
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in which

T—k-1

k—
Vo(k) = 7t > (ale) +n0).

1 k—1 1 T-1
Vi(k) = T % tz:;n*(t)»‘/é(k) = T—_kt:z:r;kn(t)

1 T-1
and Vs (k) = ~— > n(t)n*(t — k).

t=

Similarly, Vi (k),Va(k) and V3(k) are also complex Gaussian random variable and Vp(k) is real

Gaussian. The variances are given by o, (k) = %})p, ot (k) = op, (k) = ﬁgﬂ and
0"2/3(]6) = ﬁ p? correspondingly. Then, we have the variance

(2.17)
Performance of Fitz’s
Then, we analyze the ithm j vhen K < %, since its

performance can co omparative study later
shows this result.

Since K < %, t

€= (2.18)
where V; = i{:l ] S RV nd-V3 ] over, we have that
K
ney
where
5k
M = —_— 1
k=t
Thus, we can get that
K
of =, = py MP(Kk), (2.20)
k=1
) s
Ayl 221
k=1
and the variance of € is obtained by
oZ(K) = A(K)p + B(K)p” (2.22)
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[ A(K) 7
= = = CRB/(T(T*-1))|;
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K
Figure 2.1: The comparisons of A(JK).and the;CRB;constant W% = 4.8 %107 when T = 500.
where # 5
M= (K, k
AL 2 M 5 ) (2.23)
K
(Zi#)
and % !
B(k)= LTT% (2.24)
2 (1 12)
Thus, we have
x F2
o7 (K) = Bl fie- 1t = o5 (A(K)p + B(K)p?) (2.25)

When p is small, A(K) dominates the variance of estimation error. Thus, we compare A(K)
with the CRB constant ﬁ when 7' = 500. Fig.2.1 illustrates the results. As shown, A(K)

decays with the increase of K. It shows the convergence of A(K) is slow when K is large and
A(K) approaches the CRB constant at K = 170 which is near % As shown, the performance
of Fitz’s algorithm is built on the price of the number of the correlators.

Fig.2.2 shows the simulation studies of the Fitz’s algorithm. The simulation parameters are
setting as T' = 60, K € [5,10,20] and Fis = 0.2. As illustrated, the analytical results almost
perfectly match the simulated ones when the SNR is larger than 0 dB. The figure also illustrates
the Fitz’s algorithm can approach the CRB if K is large enough such as the results in the case
of K =20 = % The great drift of the simulated result at extreme low SNR is due to the error

caused by the unwrapping process, which we assume perfect.
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Figure 2.2: MSE of.angle frequency-w L 27 f | Fs ffor "the [Fitz’s algorithm with 7" = 60 and
K € [5,10,20].

2.1.4 Multi-resolution Algorithm and Modified Fitz’s Estimator
In absence of the wrap effect of the angle; we can use k-th delayed correlation to estimate the

frequency by
o Fs Fseg

T ) K ; 2.26
. o R (2.26)
According to the phasemoise analysis'in previous section, the estimation variance is
212 F20%(k)
2] s
== ‘ _ l — O 2.27
Uf f fk (277)2k2 ( )
Ifk < %, we have
F2p
2 _ .
%1 = PR R (2.28)
else )
F
o3 = 14 (2.29)

(2m)2k2(T — k)
The accuracy of estimator using kth order correlation is increasing with the increment of k.
Thus, we can use high order correlation to estimate the frequency. However, if the frequency
offset is greater than Fy/k, the ambiguity occurs due to the angle wrap of the correlation.

To prevent the ambiguity and enlarge the acquisition range, we can use the multi-stage and
multi-resolution approach. At first stage, the first correlation is used to maintain the estimation
range. Then, the higher order correlation in stage-by-stage is used to diminish the uncertainty
and keep the correct region of the frequency. Let k() be the order of the used correlation at lth
stage and (;(;) be the angle after unwrapping operation. The estimated frequency at [th stage
is given by
; Fsyqy

= S (2.30)
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The key operation of the multi-resolution approach is the “unwrapping” operation that
locates the correct estimating interval at the current stage. Let () = ZR.(k(l)) be the angle
of R;(k(l)) before unwrap. According to [22], the angle after unwrap at [ stage is given by

Dy = oy + Q- (k(l)le_l) - ka(l)> (2.31)
= O +Q Mg -Q (2.32)
= \ri-1) k(l—1) k(1) | 5 .

where Q. (x) = 27| 5= + 0.5] is the rounded quantization of = with quantization step-size = 27

(=1 _ 2§ _ Sea-
and Q) = Ffi1 = k]zl(ill)).
Besides the multi-resolution approach, the similar concept can directly be applied to the
Fitz’s algorithm since wy,;)s for all [ are available at the I-th stage. If there are total L stages,

the modified Fitz’s algorithm is derived by substituted k(l) for k of the entries in V; then, we

have .
Fs2 e b ()2
2 k)

folk (2.33)

2.1.5 Optimization ef Multi-resolution Algorithm

Two issues should be considered in the realization of the proposed algorithms. First, the used
orders of the correlations affect both the complexity and the accuracys Secondly, the ratio of
the orders of the correlations between-two stagesywill constrain the correctness of the unwrap
process. The propesed design flow first selects the last stage correlatien order, which would
optimize the estimation accuracy. Then, we decide the numbers of the stages and the ratios of
the orders betweensany two successive stages.. Therefore, there are two questions for the design
flow. First is whatthe optimal correlation ordersis; the second is the selection of the best ratio
that minimizes thepjunwrap error.

Selection of Optimal Correlation Order

To answer first question we consider the performance of the éstimator using k-th correlation.
It has two cases: k < T/27and K > T'/2.
If £ < T/2, from (2.28),"we havesthe cost function

2

d p p
T = Gy <k(T TR 2RA(T - k)) (2:34)

From 0 J(k) = 0, we get that the optimal &k should satisfy

)
3(1— g)k2 —(1- ?p)k;T —pT? =0. (235)

The solutions are given by

T2 5p++/1+28p 1 2
po=_2"2P e/l (2.36)

6 2—p
If p is small, we can get the approximate optimal value of k as
T
kS ~ 3 (2.37)

and the optimal MSE is given by

o F2 (27(p+p?)\ _ 6.75FZp
L™ (2n)2 AT ~ (2m)2T3

(2.38)
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which is roughly 12.5% larger than the CRB.
IfK > %, similar derivation gives the results that

kS ~ — 2.39
g (2:39)

and

FZ [6.75 2/2 6.75F2
(2m)? T3 (2m)2T3

which is less than the J7.

Therefore, k(L) = % or % at final stage is recommend. The choice of % or % is the trade-off

between the operations of the correlator and the length of the buffer size. When % is used, it

requires % operations of correlator and % buffer sizes; on contrast, if k(L) = %, it only requires

% operations of correlator but % buffer sizes.
Selection of Ratio of Orders between Two Stages

The selection of the ratio of orders between two stages deperids.on the correctness of unwrapping
operation. Let Q7 (1) = Qp(l) = €y and Q(1 — 1) = Q(li= 1) = €,4_1) be the true values of
Qi (1) and Qi (1 — 1). We have that

QSR Q01 =2l (2.41)

where r; = k() /k(l— 1), M is an integer and 2w is the correct region of Q7 (7).

Substituting Q1) = Q2(1) + epy and Qp(l — 1) =0 — 1) + €,y into (2.31), we can get
that

Q) = %)+ Q- (WQZ(Z = 1) — () + repg1y — Gk(z))
= (1) + 20 Moot Qer(€pg=ry—eqr)) - (2.42)

Let £(1) 2 T1€k(1—1) —€k(1)e LThe unwrapping error occurs if @, (£(1)) # 0,0r equivalently [£(1)| > 7.
If £(1) has a Gaussian distribution, which condition holds when thémnoise is Gaussian and T is
large, the probability of the incorrect unwrapping at [th stage is given by

2
N 1 _2:2(1) T
P(l) =2 Dt — 20 (1 9.43
0 /,r 27T0§(l)e oe(l) ( )

where ®(z) is the Q function of Gaussian distribution and ag (1) is the variance of £(I). The full
error probability is given by

L t—1 L
Po=>" (Pe(t) [1a- Pe(l))> ~ > P(l). (2.44)
=2

=1

Moreover, we have P.(1) = 0 since the first order delayed correlation is used at first stage.

There are some comments on the derivation. First, the incorrect unwrap occurs if one error
at any stage happens at least, so the overall error probability is approximately the summation
of the error probabilities at each stage. Besides, The Q function is dramatic increasing with
its argument; therefore, the error probability is minimized by the selecting those r;s that have
balanced ag (I)s. Therefore, a sub-optimal heuristic choice is considered to use “near-constant”
ratios.
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To give more insights of the unwrap error probability, we need to analyze the variance of
(). When k(1) < £, we have

() = mea-1) — e
= nS{Vi(k(l - 1)) + Va(k(l — 1)) + V3(k(l — 1))}

S {VAGK) + Va(h(D) + Vak()) (2.45)
and
k(l—1)—1
A=) =) = (- ) L w0
t=0
) k(l)—1
TR o n*(t); (2.46)
, . T—k(l)—1
nVa(k(L ~ 1)) ~ Va(k(D) va) L )
- ] =T —k(I—1)

- (2.47)
l
rVa(k(l - (1-1))
(2.48)
Therefore, the varianc
(2.49)
where
) (2.50)
and | ]
D(l) = (T— FI=T1) + T k(l)) /2. (2.51)

Then, when k(l) > Z and k(I — 1) < L, similar derivation yields the same formulation of

02 (1) in (2.49), but its coefficient C(I) is different. There are two cases in this condition. When
T <k(l—1)+k(l), we have

B r 1 2Tkl -k(1-1)
Cl) =kl =1) (T - k(ll —1) T-— k:(l)) * (T — k()2 (2:52)
otherwise,
r 1 2o (k) 4+ k(I —-1)=T)
C(l) = (T — k(1)) (T—k(ll—l)_T—k(l)) + TS (2.53)

Finally, when k(l) > k(I — 1) > £, we have

2 2 B .
oW = =+ (=~ ) + LR sy
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Figure 2.3: The simulated and analytic.variance ofithe unwrap error Jg for T' = 100 and different
r.

If the SNR p is high, we can omit the p? in'(2.49); thus, ratio setup mainly depends on the
C(l). The minimization of C() yields minimization of ag(l) as well as P.(l). But, when p is
low, such as p > 1,'the parameter D({):becomes the dominated term and the ratio setup in this
situation mostly relies on D(!) rather thamC(1):

Verification of Unwrap Error Probability

We first compare the analytical derivation and the simulated result of ag. We fix the first stage
as k(1) = 1, and test different, second stage order as follows £(2) = 2,4,8 and 16 for T' = 100.
The variance of imagine part of 7Ry(1) — Rz(k(2)), denoted-as ag,, is also provided in this study
when f = 0. Fig.2.3 illustrates the comparisons. We can find that the ag, perfectly matches the
analytical results in any cases of any SNRs, which demonstrates the correctness of the analysis.
However, the actual ag approaches the analytical results only if the SNR is high. This is because
of the mismatch of the linear approximation of the phase noise in the analysis.

Next, consider the scenario of the constant ratio settings. We use the pairs of different
stage orders as follows: (k(1),k(2)) = (1,3),(k(1),k(2)) = (3,9) and (k(1),k(2)) = (9,27), but
constant ratio r = 3 with 7" = 100. As illustrated in Fig.2.4, the difference of the variances
Ug with different simulation settings are not significant. Thus, the heuristic near constant ratio
assignment is reasonable in the system design.

We now consider a study of two stages approach to verify the derivation of the error prob-
ability. The parameters are given as follows: T € [100 200 400], k(1) = 1, k(2) = 66. The
frequency used in the testing is f = 0.2F;. From numerical calculation, the ratio ro = 66 and
the variance of £(2) is 07(2) = 0.4346p + 22.0147p* for T' = 100, o(2) = 0.1088p + 10.9485p°
for T' = 200 and 02(2) = 0.027p + 5.4601p? for T = 400. Fig.2.5 illustrates the comparisons of
the error probabilities of the setups. As shown, the analytic results almost perfectly match the
simulated ones.
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Figure 2.4: The simulated and analytic-variance ofithe unwrap error O'g for 7' = 100 and constant
ratio r; = 3.

The choice of tetal stages relies on the length of observations and longer one requires more
stages. Fortunately, the number of stages has alog relationship with the total length in the near
constant ratio scheme. The stage ratio.depends on both the length of observation and the target
operation environment. Kor examplé, as-thercasestgivenrabove, the stage ratios of the cases all
are 66. If P, = 10~*"is the near error=free condition, the threshold is roughly 8 dB for 7" = 100,
6.5 dB for T'= 200 and less than 5 dBfor T" = 400.

Design Example and Performance Study

Now, we present a design example ofl the parameter setup-when 7' = 200. First of all, we set
final stage order as k = [%1 = 134. Then, we consider the designs using 3 stages, 4 stages and 5
stages. The constant ratio is equal to r; = /134 = 11.52 for L = 3, r; = 1341/3 = 5.12 for L = 4,
and r; = 134"/% = 3.402 for L = 5. After theoretical error probability test, we set k = [1 12 134]
for L =3, k=1[1527134] for L =4 and k = [1 4 13 40 134] for L = 5, which are the optimal
settings of each design. The required complexity in the estimation of the correlations, which is
the major cost of the correlation-based estimators, is given

L

L
N =) (T-k(l)=LT-> k(). (2.55)
=1

=1

Therefore, the complexities of the setups are given as follows: 453 for L = 3, 633 for L = 4, and
808 for L = 5.

Fig.2.6 shows the simulated and the theoretical results. As shown, all of the settings can
approach the bound at the SNR higher than 0 dB. The threshold in 3 stage approach is -1 dB,
in 4 stage approach is -4 dB and in 5 stage approach is -5 dB, which are related to the unwrap
error probability. As shown in Fig.2.7, the analytical error probabilities versus different settings
demonstrate the thresholds of the SNR. For example, in 5 stages approach, the error probability
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Figure 2.5: fLhe simulated-and analytic probabilities of the unwrapping error.

is less than 10~* when SNR is larger than -5.5 dB whichi is close to the SNR threshold in 5 stages
approach. The same result holds on the thresholdsand the analytical unwrap error probabilities
for 3 stages approach and 4 stages approach.

2.1.6 Fourth Power Frequency/Estimator in QAM System

Now, we present the CFO estimation.inQAM systems. Since the expectation value of the QAM
signals is 0, we can not directly apply the correlation-based estimator in QAM system. There
are literatures addressed thig issues. Moeneclaey and de Jonghe [71] show that the fourth-power
estimator can provide an approximate ML phase estimator for any arbitrary two-dimensional
rotationally symmetric constellations, such as the QAM system. Cartwright [10, 11] also present
the phase estimators based on the similar concept. Ciblat et al. [15] study the blind phase
and carrier frequency offset estimate using the fourth power estimator in the QAM system
through frequency selective channel. Wang et al. [96] give the optimal nonlinear transform of
the received signal for the purpose of the phase and frequency estimation based on the fourth
power estimator. The performance of the blind nonlinear least square approach of the frequency
estimator is studied in the literature [16]. However, the analysis is aimed at the FFT based
approach.

In this section, we present the frequency estimation for QAM system over AWGN channel
based on the fourth power estimator and the multi-resolution algorithm. We first introduce the
system structure of fourth power single frequency estimator (X*-SFE). Then, we give an design
example and its performance study after the analysis of the variance of x(t)*.

Structure of Fourth Power Single Frequency Estimator (X*-SFE)

Consider the received single model
() = s()d @O L a(p), (2.56)
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Figure 2.7: The analytic probabilities of the unwrapping error for multi-resolution approach.
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where s(t) € C and C is the constellation of the QAM signaling. The expectation value of the
correlation of the received signal is given by

Ez(t)z" @ TRl B s(e)s @-1) 5. (2.57)

Since E[s(t)s*(t —1)] = Bl€]* = 0 for the IID assumption of"s(t), the correlation can not
resolute the frequency offset.

We consider the fourth power of the received signal; the correlation of fourth power of the
signal is given by

E [a =] = B [c #Cr), (2.58)
which holds f information since E [Cﬂ # 0. Furthesmore, because 4./x(t), appears in the z(t)*
naturally, the acquisition range is limited in [—%, %], but the accuracy,is improved 4 times
better than conventional single frequency estimator.

According this property, Fig.2.8 shows the proposed structure of thesearrier frequency esti-
mation using the fourth power of the'received signal. The received signal =(t) first is fed into
fourth power function:to obtain ®m*(¢):“Then, #*(¢) signal passes to/the bank of the correlators
to get the correlation{R;. . Thel frequéncy estimator collects those correlations and performs
the frequency estimation algorithm. Both the multi-resolution algorithm or the modified Fitz’s
algorithm is the possible ‘candidate in our approach.

Analysis of the Variance of r*(t)

From the literature note [16], the signal 2*(¢) can be decomposed as
A\ _ o jeritiag)
x*(t) = Se’VFs + e(t) (2.59)

with S = FE[s(t)4] and e(t) is a zero-mean white noise but not a complex Gaussian random
variable. The variance of e(t) is derived in the literature [16] as given by

02 = Sg + 165N + 3654 Ny + 165, Ng + Ng — S* (2.60)
where S,,, = E|s(t)|™ and N,,, = E|n(t)|™, and the SNR inverse of x*(¢) here is given by
e . (2.61)
Further derivations gives that

2
Ny = %n Ny =20t Ng =605, and Ny = 2405,

n’
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in which o2 is the variance of AWGN.
Fig.2.9 illustrates the SNR :%2 of z*(t) relative to the input SNR! (% for 4QAM, 16QAM,

64QAM and 256QAM systems. As |showx in-the figure, the SNR of 2%(t) exists error floor for
16QAM, 64QAM and 256QAM|system which is introduced by s*(t) itself, but this does not
happens in QPSK system since it has constant modulus constellation. TFhe saturated SNRs are
-7.59, -9.72 and -10.21dBfor 16QAM,64QAM-and 256QAM correspondingly, and the input
SNR achieving the saturation is roughly 20 dB of all.

Design Example of X*-SFE Using Multi-resolution Algorithm

Now, we give a design example of thetCFO estimator using multi-resolution algorithm in QAM
system. The operation setting is the 256 QAM system over 15 dB AWGN channel, which is
equivalent to theoretical p = 13.3 from (2.61). There are four correlators with k(I) = [1 3 9 30]
in the estimator. We try the different lengths of the total observed samples and compare the MSE
of estimated frequency with the analytical result in (2.28) and the unwrapping error probability.

Fig.2.10 shows the error probability of the unwrapping process. It shows the error probability
has a constant slope in log domain, which is not the property of the Q function. It is reasonable
because the estimation error is not Gaussian random variable. After T' > 4000, the errors do not
occur anymore in our simulated runs. Fig.2.11 illustrates the MSE of the frequency estimator
versus 7' in the condition of correct unwrap process. As shown, the simulated results match the
analytical ones and the curves also present near constant slopes in log domain after T° > 4000,
and it appears that increase of T linearly improves the accuracy if the order of the final stage is
fixed. However, to avoid the unwrapping error, the T > 4000 is suggested in this case.
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Figure 2.11: Simulated and analytical MSE of the frequency estimator versus 7.
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Figure 2.12: Typicalstructure of carrier recovery, loop in the receiver design.

2.2 Carrier Recovery Loop

The closed-loop carrier recovery loop not only estimates the carrier frequency offset but also
tracks and compensates the carrier phase rotation. 1t.is-typically adoptedin the digital receiver
hardware due to its low implementation cost. This section presents the carrier recovery loop
design for the QAM system. The main focused topics are the phase detector in the recovery
loop, which acquires the ‘phase offset between the observed and the synthesis reference, and the
advanced loop bandwidth control, which adjusts the loop bandwidth according to current status
of the CRL.

2.2.1 Carrier Recovery Loop

As shown in Fig.2.12(a), the earrier recovery loop (CRL) issan closed-loop parameter estimator.
It typical includes the components: the phase detector (PD), the loop filter (LF), the numerical
control oscillator (NCO) and the compensator-the complex multiplier.

The output of the CRL is the frequency and phase compensated signal, which is what we
want. The purpose of the PD is to acquire the phase difference information between the input
and compensated signal and it is the reference of the phase adjustment mechanism. The LF is
to reduce the noise of the detected phase information from the PD. The NCO is a lookup table
that maps the estimated phase into actual sinusoidal waveform. In addition, the multiplier is
used to compensate the estimated phase and frequency offset.

As shown in Fig.2.12(b), the two-branched II structure is used typically in the LF design.
The coefficients in the integral part K; and the fractional part Kp are given by [6]

Kp = 2 (1 — e cos(wy/1 — (2)) : (2.62)
K = e % _-14+Kp, (2.63)

which are parameterized by the damping factor ¢ and the normalized nature frequency w. Typ-
ically, the filter behavior is controlled by the loop bandwidth w only, and the damping factor ¢
is set to % ~ 0.71 for the stabilization. Furthermore, to simplify the hardware design, the loop
coeflicients typically is quantized into 2’s power.
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The PD is the key design in the CRL. We consider two type PDs in this section. If the
training signals are available or the good tentative detected data in high decision-point SNR,
the data aided PD (DAPD) or the decision-directed PD (DDPD) is considered to provide high
accuracy of the phase information. However, when the reference constellation points are not
available in low SNR environment or the tentative decision is not reliable, we consider the blind
PD and propose a set of reduced constellation based PD (RCPD) to provide large acquisition
range at low SNR.

2.2.2 Data Aided/Decision Directed Phase Detector

When the training data is available or the good tentative detected data in high decision-point
SNR, the optimal estimate of the phase error is given by

o(y) = L{ay} (2.64)

where a is the actual or the decided reference constellation point and y is the compensated
signal. However, this PD needs the costlon angle findings If the angle is not large, the alternative
estimate can be approximated by

¢D(y> ~ ‘S{(a’|a_‘2y) CL} _ yiar|a_’2yrai (265)

where y, and y; are the real and imagine-parts of z, and so are a, and.a;. To simplify, we can
use Fla|? replacing |a|?; thus we get

ép(Yy) = Yiar — yra. (2.66)

In absence of noise, assume y = ae’’ with small'residual angle rotation 6. From (2.65) we
can derive that

(Y =S {1 - ej"} 0. (2.67)

Therefore, the detector presents'the phase information.

When the tentativesdecision of y is used as the reference, the DAPD becomes the decision-
directed PD (DDPD). But, when the noise term or the phase offset is large, the decision error
occurs. This would limit thejacquisition capability of the CRL.

2.2.3 Reduced-Constellation Phase Detector
Basic RCPD

In low SNR, we consider a reduced-constellation alternative. Specifically, since the decision-
point SNR is low, the value of a cannot be trusted, but its sign may still be reliable. Hence, we
may consider using sgn(a,) and sgn(a;) in place of a, and a; in (2.66). Since sgn(a,) = sgn(yr)
and sgn(a;) = sgn(y;), we then have the PD as

¢ (y) =yi-sgn(yr) — yr -sgn(yi) - (2.68)

A similar technique has been proposed in the literature [14].

For convenience in comparing different PDs, we (approximately) normalize their detection
gains; that is, we normalize the slopes of their S curves at zero phase error. For this we first
obtain the expected value of the PD output when 6 is small. Because the QAM constellation
has 7/2 symmetry, we only need to analyze the case when y is in the first quadrant.

In this case, the output y can be described as

Yr = apcosf —a;sinf + n,; (2.69)
yi = arsinf + a;cosf + n;. (2.70)
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Table 2.1: Some phase detector functions

’ ‘ Weighting Function ‘ PD Function ‘
0 wo(y) =1 $0(y) = 357279W)
1 wi(y) = [yl $1(y) = spatag 2 W)
2| wy) =y’ 22) = sprima o)
3| ws) = lwl + il | 6s(v) = 5o 0 W)

Then, we have

E{o(y)|0} = E{yi — .| 0}

= FE{a;+a,}sin0+ E{a, —a;}cosd + E{n; —n}

~2F {a,} 0, (2.71)
where n, = ®{n} and n; = I{n pwith n being the additive noise, and we have omitted the time

indices for notational simplicity. Hence the basic RCPD; after normalization, is given by

A o(y)
0 @)= 5Ere 3

(2.72)

Weighted RCPD

Note that all input'samples.do-not have the same reliability for phase error estimate. Better PD
performance may result if we emphasize the samples that are more reliable. Hence we consider
modifying the (unnormalized) PD to

by(y) =w(y) - 9(y), (2.73)

where ¢(y) is as given in (2.68) and w(y)-is-a-weighting-function that emphasizes the more
reliable samples. Intuitively, the weighting function-Should be symmetric about the +45° lines
in the 2-D space to effect unbiased estimation.

To obtain the proper mormalization factor under a given-w(y), we again derive E{¢,(y)|0}
for small . Again, by symmetrys we only need to analyze the ease when y(n) is in the first
quadrant, which gives

E{oy) 03" = [E{w(y) Har + ai)} sin b
+E{w(y) - (a; — ay)} cosd (2.74)

By symmetry of the weighting function to the +45° lines, i.e., w(y, + jyi) = w(y; + jyr), we
have E{w(y)a,} = E{w(y)a;}. Hence

E{¢4(y)|0} =2E{w(y)a,}sinf ~ 2E {w(a)a,}siné, (2.75)

where the second equality has been obtained through first-order approximation of the weighting
function. Therefore, to get unity PD gain, the normalization factor is given by

k=2E{w(a)-a,}. (2.76)

Some easily conceivable weighting functions and the corresponding weighted PDs are listed
in Table 2.1. All three weighting functions w1, we, and w3 emphasize larger signal values, which
should give more reliable phase error estimates. Incidentally, the PD proposed by Kim and Choi
[54] can be viewed as a weighted reduced-constellation PD with the weighting function being
w(y) = u(ly| — 7)/|y|?, where u(z) is the unit step function and 7 is a pre-calculated threshold.
(That is, only the corner samples are considered trustworthy and used in phase error estimates.)
We omit further discussion of this PD.
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2.2.4 Characterization of Reduced-Constellation Phase Detectors

In this section, we derive and verify the S curves of the proposed PDs under QAM. They give
indications to the acquisition capability of the CRL.

PDs with Rotation-Invariant Weighting Functions

The weighting functions of PDs 0, 1, and 2 are rotation-invariant. We only need to consider
symbols in the first quadrant. For a large QAM constellation, we may assume that, in absence
of phase error and the decision-point signal samples are approximately uniformly distributed
over a square area of dimension 24 x 24 where A = F [a,] = E [a;]. For convenience, let z be
the phase-correct version of y; that is,

Yr = zp o8l — z;8inf, y; = z.sinf + z; cos 6. (2.77)

Then for the rotation-invariant weighting functions, w(y) = w(z). In addition, we have the PD
normalization factor

k~2E{w(z)- 2z} z 24 (2.78)

Consider the case wheré0.< @ < /4. The situation with negative 6 is complementary. For
y located in the first quadrant;.the PD output,is. given by

oity) T (i)
= ;UX;? “[(zr + zi)sin +(2; — 2z,) cos 6]. (2.79)

In contrast, for y located in the second quadrant;the sign of i, becomes negative and the PD
output becomes

b (y) 2 TAGF [(2i=2p)8i00 — (29 2, ) cOs 0] . (2.80)
24,
Define
Xre = FElw(z)- 2|y € first quadrant], (2.81)
Xre =" Biw(z) - 2|y € second quadrant], (2.82)
Xic = Ew(z)- 2|y € first quadrant], (2.83)
Xie = FE[w(z)- 2|y € second quadrant] . (2.84)

Figure 2.13 illustrates the meaning of these quanties, which shows that (X,., X;.) is the weighted
center of mass of the signal samples that are located in the correct quadrant and (X, Xje) is
that located not in the correct quadrant. The S curve is then

5(0) =E{o(y)|0} = E{¢c(y)|0} Pc + E{de(y)| 0} Fe

sin 0
= 24 (X’I'CPC + XicPc + Xiepe - Xrepe>
w
cos
+ﬁ (Xicpc - Xiepe - X’rcpc - X’rePe) ) (285)
w

where P. and P. are the probabilities of the correct and the incorrect cases, respectively. Since
the weighted center of mass of the decision input constellation in the first quadrant in absence
of phase error is (A, Ay), it is easily shown that

Ay = XpePe + Xpe P = X P + X Pe. (2.86)
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Figure 2.13: Illustration of signal distributions and various quantities used in the analysis of
PD.

Substituting it into (2.85) yi S curve as

(2.87)

Specializing it to PD

(2.88)

(2.89)

(2.90)

The weighting function associated with PD 3 is rotation-variant. Nevertheless, a similar ap-
proach as the above can be used to obtain the corresponding S curve. The result is

S3(y) = %sin 20 (1 —tan®6) + %cos 20 - (tan® 0 — 3tan¥) . (2.91)

Numerical Results

Figures 2.14 and 2.15 show the approximate S curves derived above and the actual ones in
(large) additive noise. As expected, they match better with increase in modulation order. For
1024-QAM, PD 2’s curve peaks at a somewhat bigger value of phase error. This indicates that
PD 2 may have a larger lock range in frequency errors than the other PDs. Simulation results
confirm this conjecture.
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Figure 2.14: S curves associated with different PDs, both theoretical (approximate) and actual
(in noise). (a) PD 0. (b) PD 1.
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Figure 2.15: S curves associated with different PDs, both theoretical (approximate) and actual
(in noise). (a) PD 2. (b) PD 3.
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Figure 2:16: Steady-state variances of DDPD and RCPD.

Comparison of DDPD and RCPD

Now, consider the variancerof the output noise of'the DDPD and the basic RCPD when 6 = 0.
When p is large (such as larger than -5dB SNR) for high order QAM, it.is hard to analyze the
variance of ¢p(y) and @p(y) since a great quantity of the decision errors and sign errors happen.
However, since we concern the réasonable QAM operation SNR region, we consider that p is not
large.

First, Consider DDPD.;Assume decision be correct.s Since E {¢p(y)} = 0 when 6 = 0, the
output variance is giveni by,

o2, (0) g B 1)) = 2F () BB E (a2) . (292)

Next, consider the RCPD. Assume the sign value be correct. Since E (¢o(y)) = 0 when § = 0,

we have that ) )
(2E(a?) — 2E(|a;])? + p)

02, (0)lo=o = E (83(y)) = P . (2.93)

Fig.2.16 shows the simulated and analytical comparisons. Several observations are given as
follows. First, the analytical results fit in with simulated ones only at high SNR as what we claim
previous. Then, fortunately, the simulation results are better than the analytical predictions
at low SNR. Finally, maybe the most important one is that the RCPD faces saturated noise
variance introduced by the QAM constellation itself, but noise variance of DDPD performs a
linear decrease with the increase of SNR. Now, we adjust the detection gain of the DDPD to
match the same output noise variance with the RCPD, when 6 = 0 in a 64QAM system over
15dB SNR AWGN channel. Fig.2.17 illustrates the simulated S-curve of the DDPD and basic
RCPD based on this setting, and it demonstrates the better acquisition ability of RCPD.
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Figure 2:17:-S-curves of DDPD and RCPD.

2.2.5 Hybrid PD

Now, we present a_technique combines the advantages of DDPD and RCPD. The hybrid PD
(HPD) is formulated by

o ()= Horcly), op(y)) (2.94)

where ¢rc is one of*any kind RCPD and ¢p is=the DDPD. This combination of the RCPD
and DDPD tents to obtain both advantages of the RCPD in large acquisition range and fast
convergence, and the DDPD in good lock capability.

Consider a combined cost function as given by

o (y) = U(lyl = T)dre(y) + U(T ~1y))¢p(y) (2.95)

where U(t) is an unit-step function and T is the threshold to determine which mode is used.
According to this cost function, when |y| >= T the RCPD is used; otherwise, the DDPD is
used. This setting is reasonable since larger |y| provides more reliability of phase information
for RCPD. Thus, the outer constellation points are used to provide acquisition range, and the
inner ones are used to maintain tracking stability.

Now, we give an example of the hybrid PD design in the 64QAM system. According to try-
and-error selection of threshold value, Fig. 2.18 shows the S-curves of DDPD, the basic RCPD
and the HPD with T'= 1.2 at 15dB SNR. The curves of RCPD and HPD are almost overlapped
and the peak values are better than of DDPD. However, as shown in Fig. 2.19, the variance of
the HPD is smaller than that of the RCPD but larger than that of the DDPD.
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Figure 2.20: Structure of the proposed dynamic loop bandwidth control.

2.2.6 Dynamic Loop Bandwidth Control

Beside the phase detector design, the approach using dynamic loop bandwidth control is an-
other feasible way [52] to provide large acquisition rangerand good tracking stability. Fig.2.20
illustrates the structure of theyproposed dynamic loop bandwidth control. Unlike the scheme
proposed by Ke et al. [52],"the proposed scheme comprises a loek indicator and a lookup table
of the LF parameters. In mathematical, the loop parameters k; = fi(p) and k, = f,(p) are both
function of the lock value p.

Lock Indication

The lock detector is an indicator of the locking qualityrand used to monitor and control the
synchronizer and equalizer! Lee et al. [58] propose.a simplification of the detector in [69] for
QPSK constellationgand it is give by

p="E {(\/5 + 1)¥Ymin — ymax} : (2.96)

where Ymax = max {|%/, |[9i]} and Ymin = min { |y}, [y} However, this indicator can not provide
precise accuracy for high-order QAMs.

Based on the concept that g with larger |y| provides better reliability of the angle information,
we modify the lock indicator(2.96) by.a conditional expectation as

P = E{ (\/5 it; 1)ymin — Ymax Hyl > TP} : (2'97)

We only count the lock indication value when'ly|is larger than a predefined threshold T),.

The selection of T}, depends on the conditions including the mean behavior of p, its variance
and the percentages of the useful samples. Figs.2.21 shows the experimental results of the
different thresholds. We try the thresholds from 0 to 1.4 with 0.1 step-size. Part(a) demonstrates
the mean curve of the lock value. As shown, the larger thresholds yield larger peak values.
Part(b) is the variance of the lock value when 6 = 0, which presents the reliability of the
estimated lock value. Part(c) is the used percentages of the total samples; straightforwardly,
the lock indicator with larger threshold can use fewer samples and the part(c) results supports
this inference.

To choice the threshold, we should take into consideration of the decision among the peak
value, the variance and useful samples. In this case, T}, = 1.3 is a considerable selection because
of its large peak value, small variance and acceptable sample utility.

Dynamic Loop Bandwidth Control

The proposed dynamic loop bandwidth control is achieved via the changes of the (k;, k) accord-
ing to the lock value p. We consider a simple multi-step function to implement this function set.
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Figure 2.21: Selection of the threshold (T') of proposed lock detector in 64QAM system with
18dB SNR. (a) Mean behavior of the lock value versus 6. (b) Variance of the lock value when
6 = 0 versus T'. (c¢) Useful percentages of the samples versus 7.
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Let L be the total stages of the multi-step function. The control maintains L step thresholds P
and L sets of (kj, kp). When p value locates at the region P(l) =< p < P(l+ 1), [-th parameter
pair: (k;, kp); is the output. To design the coefficient pairs, we fix the damping ratio to 0.707,
and decide nature frequency w(l) in each stage.

Now, we give a design example in the 64QAM system. The function with four steps is used.
For convenience, we assume P (1) = —oo; thus, the step thresholds are P = [—00 0.25 0.5 0.7] and
the nature frequency are w = [0.05 0.01 0.003 0.001] which yield &, = [0.0707 0.0141 0.0042 0.0014]
and k; = [2.41 0.0993 0.009 0.001] x 10~ accordingly. The threshold of lock indication value
estimator is 1.3. We use the exponential average filter with 0.99 forgetting factor to smooth the
estimation of p.

We now present the simulation studies for the proposed algorithms. The experimental set-
tings are given by: SNR = 15 dB, 64QAM system, f = 0.11 normalized to sampling rate. We
test four cases as follows:

case 1, the CRL using RCPD without dynamic loop bandwidth control;

case 2, the CRL using HPD. without dynamie loop jbandwidth control;

case 3, the CRL usingg RCPD with dynamic loop bandwidth control;

case 4, the CRL using HPD with dymamiciloop bandwidth control.

Figs. 2.22, 2.23,842.24:and| 2:25-illustrate the simulation resultsrof the case 1 to case 4
sequentially. First, when comparing the steady-state performances of all; the steady-state MSE
of the frequency estimations are given by UJ% =6.52 x 10~ for case 1, 0]2c = 1.52 x 1075 for case
2, a]% = 5.06 x 10~ ™ for case 3, and a]% = 6.55 x 10712 for case 4.

It shows the case 4 is superior than others: Considering the comparison of the HPD and
RCPD, the tracking stability of HPD is muchs better than the RCPD as compared in case 1
and case 2, and the'HPD can previde much-faster stabilized transition from initial step to final
step as compared in'case 3 and case 4. Considering therability of the dynamic loop bandwidth
control, no matter case.3 or case 4, the CRL with dynamic loop bandwidth control has more
better stability than that without dynamic loop bandwidth control in case 1 and case 2, which
is demonstrated in the trajectory. of the frequency estimation/and its steady-state MSE. Thus,
we get a brief conclusion: the CRL.using HPD with dynamic loop bandwidth control provides
the superiority in both acquisition ability and-tracking stability.

41



Est. freq.

0.1

0.05

0 . . i

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations
Lock value

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 2.22: Simulatédiresults of Case 1, the ERL using RCRPD. without dynamic loop bandwidth
control. At top: estimated frequency normalized' to sampling frequency. At bottom: lock
indication value.
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Figure 2.23: Simulated results of Case 2, the CRL using HPD without dynamic loop bandwidth
control. At top: estimated frequency normalized to sampling frequency. At bottom: lock
indication value.
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Figure 2.24: Simulated results of Case3, the CRE using RCPD with dynamic loop bandwidth

control. At top: estimated frequency normalized' to sampling frequency. At bottom: lock
indication value.

Est. freq.

0.1

0.05f

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations
Lock value

-0.2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 2.25: Simulated results of Case 4, the CRL using HPD with dynamic loop bandwidth

control. At top: estimated frequency normalized to sampling frequency. At bottom: lock
indication value.
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2.3 Conclusions

This chapter introduced the carrier frequency and phase synchronization. We consider both
the open-loop and the closed-loop structures. In the open-loop structure, we study the Fitz’s
algorithm for the signal frequency estimation and then propose a multi-resolution algorithm
and the modified Fitz’s algorithm according the analysis of the Fitz’s algorithm. Analytical and
simulated results illustrate the proposed algorithms can reach near CRB in a low cost manner.
The X* SFE is also studied to solve the frequency estimation in QAM system.

In the other part of this chapter, we study the closed-loop synchronize. The main topic in
this section focuses on the design of blind PDs and the dynamic loop bandwidth control scheme.
We first propose a set of the PD based on the reduced constellation concept; then, a hybrid
combination of the RCPD and the DDPD is used to provide both the better acquisition ability
and the tracking stability. Besides, the dynamic loop bandwidth control is also presented using
the lock indication triggered manner. Final simulations demonstrate that the CRL using HPD
and the dynamic loop bandwidth control provide superior capability in both the acquisition
ability and tracking stability.
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Chapter 3

Blind Adaptive Decision Feedback
Equalization

The equalizer is used to combat thejinter-symbol-interference (ISI) channel distortion. There are
many equalization structuresgsuchias the linear equalization, the maximal likelihood sequence
estimation, the turbo-equalization. However, the implementation cost and the performance have
made the decision feedback equalizer the mest.commonlysused structure for the application over
static channel environment.

A typical equalizet eontains two properties: thesstructure and the coefficients. In the example
of the DFE, its strueture includes a feed forward filter (FEF); a feedback filter (FBF) and a
decision circuit, as'illustrated.in Fig. 3.1. The FFFE isito shorten the channel response and the
FBF is to remove the residual IST term. The responses of the filters are‘the filter coefficients
which are determined by the channel responses. #As shown in Fig. ' 3.1 the coefficients are
generated by the coefficient adapter. The réalization of the coefficient adaptor depends on the
available materials'and the implementationscosts.

Feed-forward Feed-back
Filt. Filt.

‘ i
_y| Coefficient Y (n) Decision a&z)
Adapter <_| ‘T(n)

r(n)
T

Figure 3.1: The structure of the decision feedback equalizer that is composed by a feed forward
filter, a feedback filter, a decision circuit and a filter coefficient adapter.

This chapter mainly focuses on the coefficient adaptation. We adopt the blind adaptive filter
[29] to realize the adaptor. The key issue in blind adaptive process is tradeoff between the steady-
state and training speed. We suggest the variable stepsize (VSS) algorithm to compromise this
tradeoff. After the blind start operation, the DFE is worked in the tracking mode to provide
small mean-square error when the tentative decisions are near error-free.

Switch time of the operation mode is another critical issue in adaptor design. For this,
we introduce a soft-switching concept that the operation mode smoothly transfers from blind
acquisition to decision-directed tracking. To achieve this soft-switching, we suggest the hybrid
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blind algorithm that combines directly the decision-directed least-mean square algorithm [29]
and the blind VSS adaptive algorithm.

3.1 Optimal Coefficient and LMS Algorithm

Before the description of the blind mode operation of the DFE, we first consider the minimal
mean-square error (MMSE) coefficients of the equalizer. We first consider the coefficient adaptor
in linear equalizer and extend to the adaptor of the DFE.

Let H be the Toeplitz matrix of the “composite” channel (which includes the responses of
the transmitting filter, the channel and the receiving filter), ax be the k-th input signal, and
be the k-th output sample of the channel. The received signal r; can be expressed as

where 1, = [rg -1 - Tk_L+1]T is received vector, a; = [ag ag—1 --- ak_M+1]T is the trans-
mitted vector, and n;, is AWGN vectorl

Now, consider the equalizer Operation. If w is the L Xl coefficient vector of the equalizer
and z is the input vector ofjthe equalizer, we have that

I
Yk = (wyag) = > w(k = Dy . (3.2)
|

|
—

Il
=)

If the linear equalization structure is used, we have that x; = ;. The target of the channel
equalization is to inverse the channel effect. In MMSE manner, we want.to minimize the cost
function that

J = E |y — arrdl (3:3)

in which d is the ptocess delay of the equalizer. If the channel response and the noise variance
are available, from the Wiener filters the-coefficients-of-dinear-MMSE equalizer are given by [29]

w= (H'H + o21) ' b, (3.4)

where h,; is the Hermitian of the.d-th row of H.

In practice, we can estimate the channel response_and the mnoise variance for the coefficient
calculation. Alternatively, if considering low-cost implementation, we can adopt the adaptive
signal process to realize the coefficient adaptor. When'the training data or the correctly tentative
decisions exist, the least-mean-square (LMS) algorithm [29] is feasible and widely adopted one
to train the coefficients, which adaptation is given by

Wi = Wy, — fekTy, (3.5)

where p is the stepsize, and
er = ap — Yk (3.6)
is the error function. In steady-state of the LMS adaptor, the performance of the LMS adaptor
approaches the MMSE equalizer when eliminating the excess error due to the LMS adaptation
algorithm or when the stepsize is small enough [29].
When the DFE structure is considered, we can let

B (3.7)

T
T T T ~T
we = [fT6E] o= [of

where f and b are the coefficient of the FFF and FBF relatively, and a is the tentative decision.
Thus, the above LMS algorithm can be directly applied in the DFE coefficient adaptor.
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3.2 Blind Adaptive Algorithms

If there are lack of the training sequence, we can adopt the blind adaptive algorithm in the
initial training of the equalizer. Recently, the most popular blind adaptive algorithms are the
stochastic gradient descent type, such as the constant modulus algorithm (CMA) [49] and the
multi-modulus algorithm (MMA) [104]. Both the CMA and MMA can be realized in the gradient

descent recursion as

Wey1 = W — B V¥ (y)
= wy, — pY(Yr)zy, (3.8)

where W(yg) is the cost function and the 1 (yg) is the relative error function.

3.2.1 Constant Modulus Algorithm

Omit the time index k, the CMA attempts to.minimize the distance of the radius of the equalizer
outputs and a constant parameter swhich eost function isgiven by [89, 104]

Ve(y) =E [(!yl2 - RC)Z] (3.9)
with 5 |4
R. = Elf (3.10)

Taking the gradient of W (y) with respect to y, we can derive that

be(y) = y (Iy]* — Re) - (3.11)

When the kurtosis 'of the complex signal is.non negative and the channel'is perfectly equalized,
the cost function ofithe CMA can reach minimal-value-{89}:

3.2.2 Multi-Modulus Algorithm
The MMA [104] seeks to minimize a cost function given by

V()= Bl =Re)? + (@1 =R’ (3.12)

with
E(at") _ E(ai")

]

E(lal®) B ()

where y, and y; are the real and imaginary parts of y respectively, a, and a; are the real part and
the imaginary part of a, L is a positive integer, and R,, is the constant value of the algorithm.
In practice, L = 2 is a good choice to compromise between implementation complexity and
performance [104]. Letting L = 2 and taking the gradient of W(y) with respect to y yield

RL = (3.13)

Um(y) =yr (yr — R3y) + iy (v7 — R2) - (3.14)

As shown in [104], the optimal cost function exists only if the residual ISI terms of the combined
channel are zero, i.e. the case of ISI-free channel.
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Automatic Phase Recovery Property of MMA

We introduce an interest property of the MMA. Unlike the requirement of the phase recovery
circuit in the CMA, it can provide the “automatic phase recovery” if there is no frequency offset.
The same result is presented in the paper [106]. However, we give a short and simple proof of
this property in this subsection.

To prove this property, we need to prove that the optimal cost function of the MMA happens
only if the phase rotation 6 is % for integer N. First, assume y = ael? is the rotated version
of a. Expanding the cost function of the MMA, we have that

Uar(y) = —2E [y7y;] + Blyl* — 2R3, Ely[* + 2R;,. (3.15)
Since |y|? is independent with @, the cost function is minimal if
V'(0) = E [yy7] (3.16)

is maximal. Now, expressing y2y? in terms of @ andsf), we have that

. 2
yzyg = (%(aejg + a*e_je)(aeje = a*e_ja))
o Lo o oy gt el (| 4 _ja6
7 (a e (a*)%e ) =i (\a| §R{a e }) (3.17)
Therefore, the modified cost function-is given by
Blal* " Ela’|oy
! T R 740
v(0) = <2 g §R{e } (3.18)

Since E[a] is areal negative value for all QAMs, we have the maximal value of W/(6) and
minimum of the MMA cost function if 46'= 2N, or equivalently 6 = %

3.2.3 Steady-state MSE Caused by Blind~Algorithm

This subsection analyze§ the steady=state mean-square error of the'blind algorithm. In the
following derivation, we ¢onsider. the case in absence of the AWGN] and also assume that the
correct decisions always happen.

Let w,, be the optimal filter coefficient vector and w; "= w,, — w,;. A priori and the a
posteriori estimation errors are given by, respectively,

ealk) = Tp Wy, _4, (3.19)

ep(k) = 23, @y, = ea(k) — ||z l|* ¥ (). (3.20)

In the steady state when E{w,} = E{w;_,}, the mean-squares of the estimation errors are

related by [67]
) 2
E { leq (k)| } _ B { lea(k) = pllag | * (yr) | } : (3.21)

[EAl [ENI

which can be simplified to

E{Rlea (k)0 (y)]} = SE{llzy]* () ). (3.22)

Assume that the residual errors are small when the equalizer is converged. Then first-order
approximation as in [60] gives

P(yr) = P(ar) + ¢’ (ar) ea(k), (3.23)
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(Without loss of generality, the transmission and filtering delays are disregarded.) Substituting
(3.23) into (3.22) and assuming independence among v(ay), eq(k), and ||z;|? as in [67], we
obtain the MSE as

E(z)?) - E(¥(a))
E{le?} = £ . 3.24
{lea"} = 3 B (a)]} (3.24)
We first consider the case of LE. Since E(||z|*) = L o2} where 02 = E {[a|*} is the QAM
symbol energy and o7 = ||hy||? is the channel energy and hy is the first column of H, we have
E([¢(a))?)
Bflea?y = £ ARV p2 527 3.25
Heals =5 BoREar)y 7o 3:29)

We turn to the case of DFE. Substituting x = [[T @T]T and w = [iT bT]T

i B{[(a)?}
2 B{R[y(a)]}

where L; is the number of the FFI coefficients and Lj is the number of the FBF coefficients.
Considering the 1/(y) ofithe CMA and MMA, simple derivations give that

v (PE=plglis R (3.27)

into (3.24), we have

E{lea*} = ol (o5 Ly + Ly) (3.26)

for the CMA case, and
3
V)= 5= Ry (3.28)

for the MMA case/"Substituting (3.27) and (3.28) into (3.26), we have the steady-state MSE
performances of the DFE with CMA and MNLA correspondingly.

Simulation Comparison

The simulation settings are givén by: channel response hy = [L 0070 0.5ei™/ 3], 16-QAM,
Ly = Ly = 20, no additive noise We_ test two configurations of the DFE. One uses the realistic
decisions as the inputs‘of the. FBF: the other case uses the.true data as the inputs. Fig. 3.2
shows the comparison of thessimulation and analysis of MMAradaptation. In Fig. 3.2, the results
of realistic DFE are close to the DEEwith perfect FBswhen stepsize is large, but has gap when
stepsize is small enough. Besides, the simulated results in perfect feedback condition agrees the
analytical ones when stepsize is small.

3.3 Variable Stepsize Algorithm and Hybrid Algorithm

A well-known design issue of stochastic-gradient type of adaptive algorithms is the choice of
the adaptation step size, which has to strike a balance between convergence speed and steady-
state MSE. In QAM-based transmission, this issue is more acute for higher-order modulations
than for lower-order ones, because the former require higher SNR values to attain a given error
performance than the latter and thus the convergence speed has to be sacrificed more. A way to
alleviate this problem is to employ a variable stepsize (VSS) [55], [95]. For automatic adjustment
of the stepsize, we need a metric that indicate the convergence property. For example, Ueng
and Su [95] suggest using the residual ISI or the MSE as the metric.

Herein lies another problem that is more serious for blind equalization under higher-order
QAMSs than under lower-order ones. That is, the equalizer output errors are relatively large
before final convergence. Thus, for higher-order QAMs, tentative decisions are liable to greater
error probabilities and simplistic MSE estimates may suffer greater inaccuracy.
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Figure 3.2: The simulated and analytical steadyzstate: MSEs.of the DFE with MMA versus
different stepsize pu.

Another issue in the blind equalizer is the switching opportunity from ‘the blind acquisition
to DD-LMS tracking. Now blind equalization-is usually employed only in the initial phase of
receiver startup. After the equalizer coefficients are sufficiently converged, the receiver may cut
over to decision-direeted (DD) operation'employing; g the LMS-type algorithm for continued
adaptation of the equalizer and tracking of channel variation. The selection of the cutover point
presents another design.ssue, which has to be resolved balanéing between convergence speed
and algorithm stability. Tar fact; when the channel may vary greatly in time, such as the wireless
channel, there may be a need to réturn to the blind mode from time to time. Hence it appears
appropriate to consider a “soft combination’sef-blind and DD-LMS adaptations to sidestep the
design issues associated with hard switching between blind and DD-LMS operations.

Some have proposed algorithms in this vein [65, 12, 30, 108]. The blended CMA [65] algo-
rithm dynamically decides the use of DD-LMS or CMA based on whether the distance of the
equalizer output and its hard decision is smaller than a certain threshold or not. The concurrent
algorithm (CCA) [12] generates the equalizer output by combining the outputs of two filters; one
adapted using CMA and the other using DD-LMS. If the decision output of the equalizer and
the so-called “perturbed output” are the same, then the decision is declared reliable. When the
MSE is sufficiently low, the adapter turn off the CMA and only keep the DD-LMS working. The
complexity of CCA is approximately twice that of conventional SGA algorithms. In modified
CMA (M-CMA) [30], a hybrid cost function called the “constellation matched error (CME)” is
used in equalizer adaptation. To speed up the convergence, the authors of [30] further consider
dynamic adjustment of the weighting factor in the hybrid cost function to result in the so-called
“data-dependent cost function (DDCF)” [108]. However, the speed gain of DDCF M-CMA is
obtained at the price of about five to six times the complexity of M-CMA.

In this section, we propose the blind VSS algorithm and the combination of blind VSS and
DD-LMS, the hybrid VSS algorithm. The Key feature of the proposal is the convergence metric:
the boundary MSE (BMSE), which is inspired from the observation of the PDF of the equalizer
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output. Besides, we present two kinds of the stepsize function. The first kind stepsize control
is the multistage gear-based function that a smaller stepsize is used if the BMSE reaches the
predefined threshold. The other control considers the seamless design that the stepsize is a linear
continuous function of the BMSE. On the combination of the blind algorithm and the DD-LMS,
we also present two types based on the seamless design. The difference of the types is at the
stepsize of the DD-LMS. We first use the complementary of the blind stepsize function as the
stepsize control of the DD-LMS part; then, we import the reliability concept from the CCA [12]
and adopt the “stop-and-go” function as the control.

3.3.1 MSE Measurement: Boundary Mean-Square Error

Key in this procedure is the estimation of actual SNR, or equivalently, the estimation of the
actual MSE given by E{|yr — ax|*}, the mean-square difference between equalizer filter output
and the transmitted QAM symbol. To see how this can be accomplished, consider Fig. 3.3
which illustrates the situation of 4-PAM (applicable also to 16-QAM), where the signal points
are at £1 and £3. In the figure, theydashed linesrillustrate the PDF's of the equalizer filter
output yi corresponding to different values of a; and the solid line is their sum. An estimator
of the MSE can be obtained from analyzing the PDF ‘of yi! However, when the SNR is not
high, the center part of the PDF is relatively flat. The variationsin this part with changes in
MSE is relatively smalli. Thus this part deesTmot contribute significantly to the ability of MSE
estimation. Numerical'results also-verify this-obseryvation., PDF variation outside the boundary
symbol values is greater. Thus we base our MSE"estimation on "analysis of values of y; that
fall outside the boundary symhol values: 'Accordingly, we call this approach boundary MSE
estimation.

From Fig. 3.3, we also see that only about 1 /M of the equalizer input samples will be used
in performing the estimate, but not all samples. This is a price we pay to have good sensitivity
in MSE estimation.

Treat a QAM symbol as the.direet sum of two PAM “symbols. Let.y denote the value of
either dimension of the equalizer filter . output y. The boundary MSE, for PAM, is defined as

B=KE { (g o dmax)ﬂ |g| > amax} 5 (329)

where amax is the largest-8ymbol value in the PAM constellation.

For convenience, let the constellation points of M-PAM haye values +£1,+3,--- ,+(M —1).
Due to symmetry, in theoretical’analysis we only need to consider the positive side. Let P, be
the probability that the transmitted symbol value is (M — 1 — 2n) but § > Gpax. Then

< 1 (z +2n)? 2n
Po= | ———exp (- =g (), .
/0 2mo? P ( 202 ) ! ( o > (3:30)

where we have assumed that the sum of the residual intersymbol interference (ISI) and additive
noise is Gaussian and let o2 denote its variance. Note that o2 is the target of estimation. The
corresponding mean-square boundary error is given by

g2 (z + 2n)?
Vi = / €X <—> dx
0 V2mo? P 20
2 2n?
= (4n®+o0?)P, — \/7710 exp <—712) . (3.31)
v o

Assume all constellation points are transmitted with equal probability. Then the total bound-
ary error probability and total mean-square boundary error, on the positive side, are given by

1 M-—1 1 M-—1
P:M;Pn and V:M;:%Vn, (3.32)
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Figure 3.3: Motivatiofisand principle of -boundary MSE estimation,. illustrated for the case of
4-PAM (applicable also to.16-QAM). The constellation peints are at #£1 and +3. Dashed lines
illustrate PDF's of equalizer filter output y(n) corresponding to:different values of ay; solid line
their sum.

respectively. The BMSE is thus given by

B L L 4 53, n?0@2n fo) V2/med,n exp(—2n2/02)‘ (3.33)

P 2n ®(20/0) > ®(2n/9)

Fig. 3.4 plots the ratios of 0> toBMSE in log scale for QPSK, 16QAM, 64QAM, 256QAM
and 1024QAM over a ramge of SNR values (where SNR = FE{|al?}/0?). The length of the
simulated symbols at each SNR points is 5 x 10* for all the QAMs. As shown, the simulation
ratios satisfy the analytic ones with only small. variations inlog domain. Beside, the ratios are
nearly unity in large SNR. This is bacause, when the tmie MSE o is small, the last two terms
in the RHS of (3.33) are close to zero. Even for an SNR as low as 0 dB, the difference is only
about 1.65 dB for 1024QAM and smaller for other QAMs.

Practical estimation of the BMSE, for QAM, may be effected by time averaging, such as

Bk = /8 : Bk—l + (1 - ﬂ) : 2(|gk| - dmax)2a (334)

where [ is the forgetting factor, the factor 2 is to account for the difference between QAM and
PAM, and the recursion is executed only when |yx| > Gmax.

3.3.2 Variable Stepsize Algorithm

Besides the MSE measurement, the stepsize control is another design issue in the VSS approach.
This subsection introduces two kinds of the stepsize control functions. Similar to the dynamic
loop bandwidth control, first kind design is the gear-based design that adopts the multiple
step function to implement the control function. The other considers the seamless design that
employs a continuous function for the stepsize control. We first present the multistage VSS
(MS-VSS) approach, and then the linear decayed VSS (LD-VSS) approach.
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Figure 3.4: Simulated fand analytic ratioswofi MSE; to#BMSE forsQPSK, 16QAM, 64QAM,
256QAM, and 1024QAM.

Multistage Stepsize Function

The multistage VSSicontrol function can be represented by

S
s (B Js= Z psu(Ts = By) (3.35)
s=1

where S is the number of total stagess us is the stepsize at sth stage, T is its threshold value
and u(t) is the unit step function'which satisfies w(t) =L if ¢ > 0; else'u(t) = 0. Conveniently,
we set Tg = 0, and us == fimax, the maximal acceptable stepsize:

The selections of the“stepsizes-and the corresponding thresholds should content with the
conditions: the threshold at next .stage must be a reachable value at the setting of the previous
stepsize. Based on the analytical steady-state MSE formula n (3.26), we have that

Top1 > Kpus+ 02 (3.36)

where o2 is the variance of the AWGN and

1 E{[¢(a)*} 2/ 2
K=|-—r—F—=" Le+ L 3.37

(2 o s+ o 337
is a constant value, which depends on the DFE settings. However, when considering those
effects: the noise due to AWGN and the decision error, the mismatch between BMSE and actual
MSE, and the variation of the BMSE estimator, we should keep a achievable backup margin;
for example, a possible selection of 50% backup margin yields that

Tor1 = 15K, + o2 (3.38)

Proportional Stepsize Function

The proportional stepsize function is given by

Ml(Bk> = Hmax min{l,Kb Bk} (339)
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where pmax i the maximal acceptable stepsize of the adaptive filter, K is a constant, which is
the slope of the decayed stepsize function. To avoid the saturation effect, the suitable selection
of the K should satisfy the condition that

o2(k) = ju(By) - K < o2(k —1). (3.40)

Roughly replacing o2 (k) by By, we have that

1
NmaxK ‘

Ky < (3.41)
Actually, we can treat the proportional function as a special case of the multistage function with
infinite stages.

3.3.3 Hybrid Algorithm: Combination of Blind and DD-LMS

To facilitate soft switching between blindsequalization and DD-LMS operation, we consider the
soft-combined error function

V(W)= 1 (k)p(yr) + na(k)Palye), (3.42)

where 1y (y) is the emor function associated with the blind algorithm, y(yx) = dr — yg is
the error function asgeciated with the DD-LMS algorithm, a; is the decision of y, and up(k)
and pg(k) provide the relative weighting betweenithe blind part and the DD-LMS part of the
adaptation at timefk. The step size p in the stochastie gradient algorithm herein becomes a
redundant since it can bé represented in the hybrid error function.

Note that the fabove only modifies the errer function without changing the fundamental
adaptive filter structure; Hence it is of low complexity if the ‘'stepsize functions of uy(k) and
pa(k) are also implemented in simple.manner. On the selection of the blind part stepsize
function, we adopt the linear decayed funetion-sinee-it=is-simpler than the multistage approach
and easy to determirle the single parameter Kj. TheFefore, we have that 1, (k) = p(By).

Anti-proportional Stepsize Function

Now, we present the selection/of thé blind part stepsizesfunction. To provide a propoert of the
similar fade-out of the blind part and fade-in of the DD-LMS part, we can straightforwardly
adopt the “complementary” function of the linear decayed function in (3.39), which is a linearly
increased function given by

,ud(k) = Hd,max Max {0, 1-— Kd Bk} y (343)

in which Ky is the control parameter similar to K3 and pigmax is the maximal stepsize in the
tracking mode. Herein, to prevent the ambiguity of the notation, we redefine pimax in pp as
b, max

“Stop-And-Go” Stepsize Function

The “stop-and-go” (SAG) stepsize function comes from the CCA proposed in [12] that the
DD-LMS is turned on if the current decision is reliable.

The CCA adopts two adaptive filters to maintain update of the filter coefficient in the blind
acquisition and the DD-LMS tracking. At each iteration, the blind adaptation works before
the DD-LMS part. After the adaptation in blind mode, the equalizer with the same input
samples and newest updated coefficients derives the so-called perturbed output. The DD-LMS
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adaptation is a conditional update that executes only if the decision values of the equalizer
output and the perturbed equalizer output are the same.

The main drawback of the CCA is the price of the twice complexity in the adaptive filters.
For CCA, the reason why the two adaptations can not execute in one-shot per iteration is because
of the requirement of the perturbed output in DD-LMS adaptation. Actually, it is possible to
use only one adaptive filter. With simple derivation, we have that

U = (wi — wts(yi)zy, 1)
= yr — et (yr) 2l (3.44)

therefore, we can directly derive the perturbed output via the error function ¢y (yx). Besides,
a furthermore simplification can be achieved by replacing ||lz;||* with its expectation value
Ez|* =02 (67Ls + Lp).

From the description above, we use the same concept of the conditional update in the DD-
LMS part and yields the SAG stepsize function as given by

fa(k) = ftdmaxd (ax — ai) (3.45)

where ay, is the decision of. gk = yp-— upC¥p(yx) and 6(x) is the discrete delta function. The C
here may not be restrictied as a2 (U%L r+ Lb), but-can bé.a control parameter of the design.

3.3.4 Simulation Studies
Comparisons of Proposed Algorithms

We adopt the 256 QAM system over the fixed twopaths channel with 33 dB input SNR, which
path gains are 1 and 0.6; and path delays are 0.and 20 samples. There are 16 taps FFF and
32 taps FBF both operated at symbol spacing in the DFE design. We.compare five kinds of
the adaptive algorithm, which ineludethe conventional MMA , the MMA: based multistage VSS
(MS-VSS), the MMA based continuous VSS (denoted as “VSS”), the MMA based hybrid VSS
with anti-proportional function of.the DD part (denoted.as “HVSS?), and hybrid VSS with SAG
function of the DD partf(denoted as“HVSS-SAG”).

The parameters of thé algorithms are given as follows: g = 2.5¢~* for the pure adaptive,
B = 0.025 for the BMSE estimator, fmax = [bmax = Hdpiax = 2 X 103 for the VSS, HVSS and
HVSS-SAG, K = K, = K4 = 15 for the VSS; HVSS and HVSS-SAG, C = (Ly + L;) for the
HVSS-SAG. There are four stages used in the MS-VSS with stepsizes = 2e73, 2e™4, 2¢7°, and
2¢6 and the corresponding thresholds = 0.0181, 0.023, 0.007, 0 which are following the formula
in (3.38).

Fig.3.5 illustrates the comparisons of simulation results in terms of the decision point SNR.
The convergence of the pure MMA algorithm is extremely slower than other ones and even
though the steady-state SNR is poor than others. The VSS based algorithms (including the
VSS and MS-VSS) provide good convergence speed, but it is difficult to reach the good steady-
state SNR. The HVSS and the HVSS-SAG both achieve the best steady-state SNR in a very
fast convergence speed. The best convergence time is roughly 16000 iterations when the HVSS
algorithm is used in this case.

Now we consider a realistic channel model, the “SPIB chanl0,” an outdoor channel model
whose parameters are available at http://spib.rice.edu/spib/microwave.html. We also consider
256-QAM signaling with normalized symbol energy. The input SNR to the equalizer is 36 dB.
We employ a DFE with T'/2-spaced FFF of length Ny = 5 x 2 and T-spaced FBF of length
Ny = 10. The highest reachable equalizer output SNR is about 30 dB under MMSE DFE with
these parameters.
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Figure 3.5: Comparisons of the.proposed blind-adaptive algorithms which include the pure blind,
the VSS MMA, the MS-VSS-MMA, thetHVSS MMA and the HVSS-SGA MMA.

Comparisons with Other Algorithms

We consider both the CMA class and the MMA: class of algorithms and their SNR conver-
gence results are shown in Figs. 3.6 and 3.7, reSpectively. For CMA, the adaptation algorithms
simulated are the hybrid VSS CMA (H-VSS CMA), the concurrent CMA"(CC-CMA) [12], the
M-CMA [30], and the DDCF M-CMA. {30} For MMA  we-carry out a similar simulation with
CC-CMA modified to use the MMA algorithiminTplacesf"CMA (thus named CC-MMA), M-
CMA modified to M-MMA, and BDCE M-CMA modified:to DDCE M-MMA, all compared with
our hybrid VSS MMA (H-VSS MMA)). Recall that the complexity ofithe M-CMA and M-MMA
algorithms are similar to.that of H-VSS CMA and H-VSS MMA, respectively. The concurrent
algorithms have about twice the complexity, and the DDCF algorithms have about five to six
times the complexity.

The cosine square function is usediin' the CME parts of the modified algorithms (DDCF M-
CMA, DDCF M-MMA, M-CMA and M-MMA). The blind part of the concurrent algorithms and
of the modified algorithms are turned off after the MSE reaches 0.0045 to reduce the adaptation
noise, where the threshold is as suggested in [12]. Other parameters of these algorithms are
determined by trial and error from simulations to provide the fastest convergence speed and
yield a steady-state SNR of approximately 30 dB. The parameters for the CMA algorithms are
as follows: for H-VSS CMA, fipmaz = ftamaez = 1072, K = K4 =5, and 3 = 0.975; for CC-CMA,
blind step size up = 1073 and DD step size pg = 1072; for M-CMA, = 1073 and f =2 x 1072;
and for DDCF M-CMA, p = 1072, 3 =2 x 1073, and v = 1073. The parameters for the MMA
algorithms are as follows: for H-VSS MMA, ftpmaz = 2 X 1072, ftgmaez = 1072, K = K4 = 5,
and 3 = 0.975; for CC-MMA, 1 = 1.5 x 1072 and g = 1072; for M-MMA, = 2 x 1072 and
B = 1072; and for DDCF M-MMA, = 2 x 1072, 8 = 1073, and v = 1073. (The parameters
for the modified algorithms are quitely different from those given in [30], becuase we have used
QAM with E; =1.)

The figures show that the H-VSS CMA and the H-VSS MMA are the fastest algorithms in
their respective classes. They converge about equally fast for this channel. As a group, the
MMA class of algorithms converge faster than the CMA in this case.
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3.4 Conclusions

This chapter introduced the blind adaptive decision feedback equalizer for the cable application.
The key factors in the design are the selection of the blind algorithm and the choice of the
stepsize. We mainly focus on the choice of the stepsize that exists the compromise between the
convergence speed and the steady-state MSE. To enhance the convergence speed without loss of
the steady-state performance, we adopted the VSS approach and proposed a BMSE metric for
the convergence measurement. We then proposed two kinds of the VSS algorithms.

Another issue of the DFE startup is the switching point from the blind adaptation to DD-
LMS. Instead of the conventional hard switching, we considered the soft switching process, which
smoothly translates the operation mode from blind startup to tracking. For this, we proposed
the hybrid adaptive algorithm based on the VSS approach, which is the directly combination of
the blind error function and DD error. We also present two kinds of the stepsize function in the
DD part. One adopted the complementary behavior of the blind stepsize function; the other
adopted the stop-and-go concept that the DD part works only 1f the current de(:181on is rehable
The reliability follows the CCA algorithm :

58



Chapter 4

Jointly Operation of Carrier
Synchronization and Blind Adaptive
DFE

So far, we introduce indiyidually. the CFO synchronization and the blind adaptive equalizer.
However, it is necessarylto.consider the jointroperation of'the synchrénization and the equaliza-
tion. There are two types of the joint CRL and DEE design as illustrated in Fig. 4.1. It can be
classified as the post*FFE CRL and the pre-FFE CRL designs according to the placement of the
CRL. This chapter ‘gives several procedures to deal with the joint operation. We first present
two procedures existed in typical receiver design; then, we present a new approach adopting the
phase irrelevant convergenge property of the CIMA:

4.1 Conventional Procedure

4.1.1 Multi-stage Procedure

The first startup procedureiconsiders the individual training periods for each modules. The
process is given as follows:

1. Start linear equalizer (LE) with €MA algorithms The purpose of the blind LE startup is
to equalize the channel and reduce the ISI effect of the received signals coarsely , since the

Post-FFF CRL Design

->FFF>(?->G)<FBF4

CRL —»| Slicer [
g S

Pre-FFF CRL Design

*(?*PFF*G)*FBF*

CRL —»| Slicer —{»
P

Figure 4.1: The structure of the joint CRL and DFE, which can be classified as left part:the
post-FFF CRL design and right part: the pre-FFF CRL design
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IST would affect acutely the performance of the carrier frequency estimation and synchro-
nization. The CMA is only the candidate of the blind algorithm since it has the property of
the phase irrelevant convergence, which the phase rotation would interfere the convergence
of the CMA. The MMA can not work in this scenario.

2. Start CFO synchronization after convergence of LE, and/or keep on the blind LE. After
the coarse ISI reduction, the carrier synchronizer turns on to acquire the CFO and combat
the CFO effect. Either the open loop SFE or the close loop CRL can be used to estimate
the CFO. However, if the SFE is used in prior, we still need a close loop CRL to track
the phase and its variation due to the residual CFO. The adaptive filter in this period can
still keep on for the stabilization of the equalizer; however, it also can be turned off if the
channel is quasi-static.

3. Keep on CFO synchronizer and start blind DFE after the lock of the CRL. When the CRL
is locked, the CFO is tracked; thus, we train the DFE coefficient using the blind adaptive
filter. Herein, the blind algorithm can:beseither the CMA or the MMA.

4. Switch to DD-LMS tracking. when the equalizer is converged. Finally, to derive minimal
steady-state MSE, the adaptive-filter switches to the. LMS eperation.

To guarantee the convergence in each stagey we may.set.a long training period for each stage;
however, this consumes the training time.. If'we want to shorten the training periods, we should
involve the convergenee indicators. For example, in the, CRL training stage, we use the lock
indication as mentioned in [58] or its modification. In the blind DFE training stage, the BMSE
can be the convergence indication. However, for the:convergence of LE with blind CMA, one
way is to observe the convergence of the tap weights..However, it is just a conception.

The advantage of this approach is the independénce of the convergence of each module, but it
pays the price of the long training time, since the first LE stage is used only for the environment
of the CRL convergence and we retrain the"DFE when the-CRL is stabilized.

4.1.2 Multi-module Co-training

One way to shorten the waiting time is directly to co-train the multiple modules. We can imme-
diately turn on both the CRL and the adaptive DFE. In this'case, the CRL first should adopt the
PD that has the blind component, since the pure. DDPD has poor convergence property in large
ISI environments. Besides, to shorten the convergence time and to provide the stabilization,
the concept of multiple stages with different parameters is applied that the coarse parameters
are used in prior to fast converge and the fine parameters used later to reduce the excess MSE
due to the adaptations. From our experience, it can be converged in the conventional cable
environment. However, there are no strong supports to guarantee the convergences.

4.2 Approach based on Phase Irrelevant DFE

The conventional multistage procedure takes first LE stage for the purpose to create a roughly
ISI-eliminated environment for CFO synchronization, which is just the intermediary stage. If we
can directly train the DFE coefficient in the CFO environment, the intermediary stage can be
omitted. That is we first startup the DFE training before the CFO synchronization, and then
synchronizes the CFO after the DFE convergence, which can provide a better ISI-eliminated
environment. What we need is the DFE training over the CFO environment. For this, we
suggest the phase irrelevant DFE by modifying the tentative decision module in the DFE and
using the CMA to train the DFE blindly.
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4.2.1 Phase Irrelevant DFE (rDFE)

The phase rotation causes critical decision errors and makes the DFE unable to get convergence.
To prevent this decision error, we may directly remove the decision circuit in the feedback loop,
and this yields the infinite impulse response (IIR) equalizer. In additional to the stability issue
of the IIR filter, the major drawback is the significant noise propagation in feedback loop.
Therefore, removing the decision circuit is harmful in the DFE structure since it causes massive
noise in feedback path.

On the other way, we may consider the functionality of the phase irrelevant decision (7D),
which the decision is independent with the phase rotation. Equivalently, we consider jointly the
phase estimation and the symbol decision for the equalizer output. Let y = 7e’? + n be the
equalizer output with the phase rotation. When additive noise is complex Gaussian, the ML
metric of the joint detection and estimation is given by

. 12
{'F,H} =arg min |y — reje’ (4.1)
0,r<lal

where a is the alphabet of the constellation. Algebraical derivation yields that
Po= arg n?al‘n [yl = Talls (4.2)
0 = Ly, (4.3)

and the 7D

a=1(y) =re. (4.4)

4.2.2 Startup Procedure Using 71DFE
The startup procedure based on wDFE is given as follows.
1. Start 71DFE tzaining with CMA'algorithm.
2. After the convergence of 7DFE; start CFO estimation with SFE:
3. Translate the filter coefficients from frequency-offset version te normal version.

4. Start CRL to compensate phase.offset and operaté DEE in normal mode with the blind
adaption.

5. Start DD-LMS/CRL tracking after stabilization of the CRL/DFE.

The procedure is similar to conventional one except for the stage 1 and stage 3. In stage 1,
this is the particular feature of the proposed flow. The only one needed to be explained is the
translation of the coefficients from the frequency-offset version to normal version.

Now we explain the translation with the example of the LE, which can be easily extended
to the DFE case. Assume that the optimal LE output can be expressed as

K-1
y(n) =Y wpr(n— k), (4.5)
k=0

where w = [wow; -+ wi—1] is the optimal weight vector trained by the CMA algorithm.
If the received signal exists the CFO effect, we have that '(n) = e/“*"r(n) where w, is the
residual CFO. The LE output in this condition is given by

K-1
y'(n) = Z wir' (n — k). (4.6)
k=0
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If the perfect equalization holds in this scenario, we have that /(n) = y(n)e/(@o"+%) Therefore,
we can obtain that

K-1 K-l '
D> wir'(n—k) = ey (e Hr(n = b); (4.7)
k=0 k=0
thus, to maintain the equivalence, we have that
wy, = whel ok, (4.8)

which is the translation from the offset version into normal version. Besides, the additional
constant rotation factor e 7% in the equation can be compensated by the CRL.

If the post-FFF CRL (as illustrated in left part of Fig. 4.1) is used, the FFF is always
operated in offset version; therefore, we just need to translate the coefficients of the FBF after
the normal operation of the DFE. However, if the pre-FFT CRL (as illustrated in right part of
Fig. 4.1), we need to translate both the FFF and the FBF.

4.2.3 Radius BMSE for VSS Algorithm in 71DEE

The (hybrid) VSS for the normal DFE shortens the startup titne. We now adopt the same
concept to speed up the convergence of the tDFE. To achieve this 'goal, we should redefine the
convergence metric for the stepsize control, which is equivalent to the BMSE for the conventional
DFE. Although BMSE can not work well'when/the constellation is rotated with time, its basic
concept is still workable. It means-that-we canmadopt the equalizer outputs that excess the
boundary of the radius of the constellation to estimate the instantaneous:MSE.

The radius boundary: MSE(RBMSE) is defined by

B, = 2B (W) | > 7] (49)

where rmax 1S the maximal radius, offthe constellation. When the noise variance is small and
ly| > rmax happens iffgy = r..e’% wethave that

Y] |1y 1> e = Tmax + S {nejéy} ; (4.10)

Therefore, we get
] 2
5~ ae|@ | = o2 (@.11)

where o2 is the variance of the noise.

To estimate the RBMSE, we still use the exponential average as in BMSE estimator. Al-
though the RBMSE can represent the instantaneous MSE, its accuracy is still not good enough
due to long updating period for the RBMSE.

4.2.4 Simulation Studies

We give an example of the proposed design. Consider a 64QAM over two-path static channel,
which discrete response is given by h(n) = d(n) + 0.7 7™/4§(n — 10). The input SNR is 33
dB. The post-FFF structured joint CRL and DFE is adopted with 32-tap FFF and 32-tap FBF
operated in symbol space. We adopt 3-stage approach. At first stage, the 7DFE is trained
with the HVSS CMA algorithm; then, when the B, reaches the threshold, the SFE with multi-
resolution algorithm works to estimate the CFO. In the CFO estimation stage, the adaptive
keeps on training the DFE. Final, both the CRL and normal DFE work after the estimation of
the CFO and the translation of the FBF coefficients.
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Figure 4.2: Top: (R)BMSE estimation-trajectoryybotton: gy and jig normalized to ju max and
fd,max correspondingly

The detail parameters are given by iy max™ Mdmax = 279 K, = K4 = 10 for HVSS DFE;
K; =25 x 1075, 'K, = 7.1 x 10~? for the loop filter of the CRL; K = [1 3 9 30]-th delay
correlations, 4096 average samples for the multi-resolution algorithm; the switching threshold of
the BMSE value (from stage 1 to stage:2)"="0;03""The eonventional DDPD is used only in the
CRL.

Figs. 4.2, 4.3 and 4.4 illustrate the convergence behaviors 0f théxdesign example. Fig. 4.2
shows the estimation trajectory of the (R)BMSE and the dymamic variations of p and pug.
As shown, the (R)BMSE reaches the switching thresholdroughly after 8500 iterations and ap-
proaches the steady state in additional 7800-iterations when'the operation begins the 3rd stage.
The BMSE happens the sudden jump-from the operation switch of the 7DFE to normal DFE.
The g variation is similar to the (R)BMSE trajectory, whereas the u; variation is complemen-
tary to the (R)BMSE trajectory. Fig. 4.3 demonstrates the estimation of the CFO. The actual
CFO in this simulation is set to 0.11 baud rate. It shows that the estimation from CRL meets
the actual CFO roughly at 12700 iterations which is the transition from stage 2 to stage 3.
Fig. 4.4 shows the snapshots of the constellations of the DFE inputs (at left-top part), the DFE
outputs in starting stage (at right-top), the DFE outputs in stage 2 (at left-bottom), and the
DFE outputs in final stage (at right-bottom). The simulation shows the fast convergence of the
proposed flow since it only takes overall 20500 iterations to achieve the steady-state tracking
mode.

4.3 Conclusions

This section proposed the startup procedure of the joint CRL and DFE design. We first intro-
duce two conventional approaches. Then, to improve the convergence speed, we suggest a new
approach based on the proposed 71DFE with HVSS CMA algorithm. In addition, to achieve the
HVSS algorithm in phase rotated environment, we investigate the RBMSE metric to represent
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the convergence of the DFE. The SFE with multi-resolution algorithm is used to directly esti-
mate the CFO in a open-loop manner. The CRL with DDPD is finally used to lock the phase
offset of the equalizer.
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Two major issues are considered in multi-carrier OFDM receiver. One is the synchronization
and the other is the channel estimation. The synchronization issue includes the mismatch com-
pensation and the unknown parameter estimation at the receiver. The mismatch compensation
in OFDM system requires the synchronization of the carrier frequency offset and the sampling
frequency offset, and the symbol time estimation. The unknown parameter estimation in OFDM
includes the CP ratio detection, the bandwidth estimation and the cellular identification in cel-
lular system. In recent OFDM system, the pilot-aided channel estimation is major considered.
Two-step approach is common used in pilot-aided OFDM. First step estimates channel frequency
response(CFR) at pilot subcarriers using least-square manner ; then, second step estimates CFR
at data subcarriers using the interpolations with the estimated CFR at pilots.

In this part, we study the OFDM synchronization problems of WiMAX system [48, 98] in
the estimation of the carrier frequency offset and the symbol time, and the identification of
the Cell-ID. The CP-correlation based estimator [64] is used to jointly estimate fractional part
CFO and the symbol time. The integral CFO estimation is required when the CP-correlation
based estimator is used. For this, some integral CFO estimation schemes using one OFDM
training symbol are proposed in [33; 53] aceording to l€oherence bandwidth concept. However,
there are limited theoretical explanations.  We consider the joint detection of the Cell-ID and
integral CFO in WiMAX system. By treating the integral-offset preamble as another Cell-
ID, the problem of joint “detection is formulated as the matching of the candidate sequence
with the received signal‘over multipath channel. We/derive the maximal likelihood detection
criterion. With furthermore simplification iof the detection, we propose the general concept in
the frequency domain. filtering, which-can-explainithe differential detection scheme presented in
[53]. In addition, wealso propose several furthermore simplified detectorsbased on the frequency
domain filtering. The performance analyses of the propesed algorithms are also studied.

Pilot-aided channel estimation methods can’ besclassified reughly inte three types: chan-
nel model-based, channel statistics-dependent, and channel statistics-independent. The model-
based methods trysto identify the channél path delays, which define'thesso-called “delay sub-
space.” The channelscan then be estitnated (in a least-square manner) ¥ia projection onto the
subspace, which alsoséliminates the néise outside the subspace. A;main concern with this ap-
proach consists in the ¢omplexity and rfobustness of delay Subspace estimation [103, 78, 91, 101],
especially when the channel delays are not sample-spaced. For.the channel statistics-dependent
methods, the most commonsappreach is Wiener or linear minimum mean-square (LMMSE) fil-
tering [18, 61, 72, 19]. The filtering'may be one-dimensional (along the frequency dimension
only) [18] or two-dimensional (along both the frequency and-the time dimensions) [61]. Approxi-
mations and computational techniques can be used to reduce the high computational complexity
in some situations [72, 19]. However, Wiener filtering requires knowledge of channel correlation
function and noise variance, which raises problems not only in the complexity of their estima-
tion but also in the impact of the estimation accuracy on channel estimation performance. A
suboptimal solution is to use a predefined shape of correlation function in place of real-time esti-
mates. The predefined shape is usually that associated with a uniform or a negative exponential
power-delay profile [18, 3]. The channel statistics-independent methods use interpolation to
reconstruct the channel responses at the data subcarriers based on the initial channel estimates
at pilot subcarriers. The simplest of these methods is low-order polynomial interpolation in the
frequency domain [32]. The maximum-likelihood interpolator of [72], by its channel-independent
nature, can also be categorized into this class, but it is substantially more complicated.

In this thesis, we study two channel estimation algorithms using the polynomial interpolation
and the approximate LMMSE estimation for the comb-type pilot-aided OFDM and the WiMAX.
For the polynomial interpolation, we study the performance in large delay spread environment
and present a window shift concept to minimize the interpolation MSE in such environments.
The key contributions are the derivation and the estimation of the optimal window shift. In the
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approximate LMMSE CE, the mean delay and the root-mean-square delay spread are required.
We propose simple estimators of the mean delay and RMS delay spread in frequency domain and
study the performances of the estimators. The application of the delay estimators in approximate
LMMSE CE and its performance analysis are also presented.
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Chapter 5

Introduction to Receiver Design in
WiMAX System

This part presents the receiver design in erthogonal frequency division multiplexing (OFDM)
system. OFDM modulation_séheme is widely adopted in eurrént transmission system since its
orthogonal property in frequency makes it easily to combat. the multipath distortion with the
single tap equalizer. Tomaintain the orthogenality.after.the multipath channel, the modulation
scheme inserts a cycliésprefix (CP) in-the front of the symbol as a guiard interval, which is a
copy of the symbol tail. The duration of the guard interval (as well asithe CP length) should
be larger than the expected maximal channel delay spread for ‘the ‘avoidance of the inter-block
interference (IBI) that the prior OFDM symbol interferes with the current one.

Orthogonal frequency division multiple access (OFDMA) is a kind of the OFDM application,
which supports multiuser communications within an OFDM symbol. Currently, a well-discussed
example of the OFDMA system is the specification of IEEE 802.16e OFDMA [48], which is also
called the Worldwide Interoperability for Microwave Access (WiMAX) system. In this part, we
take the WiMAX OFDMA receiver-as therexamplesyand=imtroduce several synchronization and
channel estimation algorithms in  OEDM receiver and their applidations in WiMAX. We first
introduce the frame strueture and the subchannel organization .of the.WiMAX OFDMA system
and the signal processing functions in OFDMA receiver in this'chapter. After the introduction,
we present the issues in the synchronization and the channelestimation in the following chapters.

5.1 Frame Structure and Types of Subchannel Organization

The WiMAX OFDMA PHY defines four selectable FFT sizes: 2048, 1024, 512 and 128. The
subcarriers are divided into three types: null (guard bands and DC), pilot, and data. The data
subcarriers are organized into subchannels, which form the basic units of allocation for user
data transmission. A data stream can be borne over one or more subchannels depending on its
rate. The spec [48] defines three basic types of subchannel organization including partial usage
of subchannels (PUSC), full usage of subchannels (FUSC), and adaptive modulation and coding
(AMC); among them, the PUSC is mandatory and the other two are optional.

In PUSC DL, the entire channel bandwidth is divided into three segments, which are used
separately for each directional sector. More details of the PUSC DL and UL are given in the next
subsection. The FUSC is employed only in the DL and it uses the full set of available subcarriers
to maximize the throughput. In both PUSC and FUSC, the subcarriers that constitute a
subchannel are pseudo-randomly distributed to attain frequency diversity. In AMC, in contrast,
the subchannels are formed using adjacent subcarriers. A key idea is that, if the transmitter
does not know the channel response, then by distributing the transmitted data randomly over
the subcarriers, it can maximize the frequency diversity. However, if the relative quality of
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Figure 5.1: OFDMA TDD frame exanmpleé,ishowingsmandatory Zone only [48, Fig. 218].

different subcarriers=can be aware;-then-tliere lies the option of transmitting the data over
the better subcarrigrs to maximize the efficiency. Now since the channel variation is typically
smooth across subearriets within the coherence bandwidth, it is naturalito form subchannels
using adjacent subgarriers.

In what follows,"we concentrate on SIS@ transmission instead of MIMO transmission. In
addition, we concentrate on the mandatory PUSC subchannel organization.

5.1.1 Subchannel Organization in PUSC

Fig. 5.1 illustrates the gtructure of a TDD frame containing.only the mandatory PUSC zone.
Excluding the preamble, the DL subframe consists of 2n OFDMA symbols and the UL subframe,
3m, where n and m are some jintegers.

The DL subframe starts with a preamble, which is an OFDM symbol that can use one of
three disjoint subcarrier sets. In each set; the indexes of the used subcarriers are given by 3k+n
where n € {0,1,2} indicates the subcarrier set and k runs over a range of values excluding
the guard bands and DC. The preamble subcarrier set is BPSK-modulated with one of a set
of selectable PN (pseudo-noise) sequences. The number of selectable sequences is 114, which is
used to indicate the local ID of the BS to the MSs. The power level of each modulated subcarrier
is 9 dB above the normal average data

Following the preamble, the FCH, DL-MAP, and UL-MAP contain broadcast messages in
PUSC mode that inform the MSs about how the subsequent DL and UL bursts are organized in
time and in frequency, the associated coding and modulation schemes, and for which MS each
burst is intended.

Except for the preamble, the subcarriers of both DL and UL are grouped into subchannels
in a pseudo-random fashion. The brief permutation process is presented in our previous work
[109, Chap. 3] and we omit it herein. However, need to be mentioned, the basic reception unit
of the DL has a cluster structure as illustrated in Fig. 5.2, which carriers 4 pilots and 24 data
samples within a region of two successive OFDM symbols and 14 adjacent subcarriers; similarly,
the unit of the UL is the tile shown in Fig. 5.3, which contains 4 pilots and 8 data samples in a
region of three successive OFDM symbols and 4 adjacent subcarriers. In both DL and UL, the
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pilot subcarriers are BPSK-modulated with ‘a pseudo-random binary sequence (PRBS). The DL
pilot subcarrier power'is 2.5 dB higher than the average data subcarrier power, whereas the UL
pilot subcarrier power is the same as the average data subearrier power.

5.2 Main Signal Processing Functions in OFDMA Receiver

Fig. 5.4 depicts a typical OFDMA baseband’receiver structure. Among'its functions, the syn-
chronizer, the channel estimator; and‘the. demodulator-decoder block are more complex in algo-
rithm and play a major rele in signal reception. -'The synchronizer; estimates and compensates
any offsets in carrier, sampling time,?OFDMA symbol time, and frame time in the receiver in
reference to the transmitter. The channel estimator acquires;the channel response for use in
data detection. And the demodulator-decoder block does the data: detection.

In summary, the key tasksito/'be completed in the-MS receiver in the DL subframe upon its
initial entrance to the network arelas follows:

1. Synchronization of the MS carrier and timing (including estimation and compensation of
offsets), and identify the preamble index.

2. Channel estimation in the broadcast message part of the signal.

3. Decoding of the broadcast message to identify the locations of the allocated data bursts.
4. Channel estimation or tracking for the allocated DL burst locations.

5. Decoding of data received in the allocated DL burst locations.

The key tasks in UL data reception performed in the BS receiver during normal data trans-
mission are:

1. Synchronization in carrier and timing for each MS.
2. Channel estimation for each MS, for the allocated UL burst locations only.

3. Decoding of data received from each MS in its allocated DL burst locations.

71



Demodulator-Decoder Block

1

E Demod- Bit De— FEC |'| De-
DFT | ulator [interleaved | Decoder | T|randomizef

1

1 L1& -------------------
Synchron- Channel

izer Estimator

Receiver
Filter

Figure 5.4: Typical OFDMA baseband receiver structure.

In the following sections, except for the demodulator-decoder block, which is briefly intro-
duced in our previous work [109, Chap. 3], we discuss the initial synchronization and channel
estimation respectively. For the synchronization, we mainly focus on the acquisition of the
preamble ID and its joint operation with the integer CFO estimate. For the channel estimation,
we propose two estimation schemes including the time shifted polynomial mterpolator and the
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Chapter 6

Synchronization in WiMAX System

Synchronization in cellular system contains the cases in both DL and UL, which deals with the
oscillator mismatch between the sender and the receiver, and acquires the parameters used in
the communication. In DL, the osgillator mismatch résults the carrier frequency offset (CFO)
and the sampling frequency offset (SFO), which is the typical issue in the receiving process for all
the system. In WiMAX OFDMA system, as conventional OFDME receiver, the synchronization
needs to deal with CFQ, SFO" and the symbol time that points out the start position of the
OFDM symbol. Additionally, the main parameter is the preamble index as well as the IDCell,
which indicates the indicates the potential|serving BS and the associated permutation scheme
used in the downlink«(DL) transmissien burst.

The WiMAX isga point_to multiple point (PMP) structure which one BS will serve several
MSs. Thus, all MSs-are forced to synchronize to the serving BS. Unlike syinchronization in DL,
the UL synchronization mainly concerns the transmission power; the propagation delay, and the
residual CFO. The estimated parameters in BS side should be adjusted in'MS side; therefore, the
UL synchronizationgperforms in a closed-loop'manner and the entire synchronization mechanism
is called the ranging process. Besidés the.ranging process..the BSlalso need to estimate the
symbol time of the raceived OFDM symbols in UL, whichis the only parameter adjusted in BS.

In what follows, we only focus ‘on the DL synchronization in the ‘initial phase and mainly
on the preamble search process. The normal phase of the DI..synchronization is similar to the
initial phase except that thepreamble is available in normal:phase.”We first introduce the initial
synchronization and present the ‘commonly adopted-scheme.using the CP correlation for the
estimation of the CFO and the symbol time. Then, we pay more attention to the preamble
search techniques.

6.1 Initial Synchronization

As mentioned, in OFDMA DL, initial synchronization (at the MS) involves carrier recovery,
timing recovery, and preamble index identification, where carrier recovery involves estimation
and compensation of the carrier frequency offset (CFO) and timing recovery, in principle, should
include estimation and compensation of the sampling frequency offset (SFO) and the OFDMA
symbol time offset. The carrier phase offset may be considered part of the channel response and
taken care of in channel estimation. The sampling time offset can also be absorbed into the
channel response if the CP is long enough.

Now, note that the IEEE 802.16e OFDMA requires not only that the MS carrier frequency
be synchronized to the BS to within 2% of subcarrier spacing, but also that the transmitted
center frequency and the sampling frequency of the MS be derived from one reference oscillator.
When these are true, the sampling phase difference from the beginning of an OFDMA symbol
to the end of it will only differ by at most 2% x (1 + 1/4) of the true sample period, where the
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Figure 6.1: Two stage synchronization structure includes pre-FFT synchronization to acquire
the fractional CFO and symbol time and post-FFT synchronization to estimate the integral
CFO and the preamble index.

factor 1/4 accounts for the largestyallowed' CP time ratio. Therefore, it appears unnecessary
to perform separate SFO recoverysin either the MS or the BS if the CFO can be accurately
recovered. In addition, this*certainly would be the case-after thestartup period. What remain
to be synchronized, besides preamble index identification.in the DL, are therefore the CFO and
the OFDMA symbol timing.

In abstraction, the. initial synchronization |scheme has.a two-stagesapproach as illustrated
in Fig.6.1. First stage performs in-time domain before the discrete Fourier transform (DFT),
which is called the pre-FF'T synchronization. Then, theisecond works'in frequency domain after
the FFT; thus it iscattributed as the post-FFT synchronization. The présFFT synchronization
adopts the widely used cyclie prefixing correlation scheme [5, 64} to estimate the symbol timing
and the CFO. However, the CP correlation can.énly appear the fractionallsubcarrier spacing of
the CFO, so we need additional to deal.with'the integer part. Therefore,ibesides the preamble
index search, the post-FE'T synchronization-also-takes-care-with the integer CFO. In following
subsection, we first iatroduce the blind CP correlation scheme in pre-FET synchronization and
then, present the post’FET synchronization that is a joint operation of the preamble search and
the integer CFO estimation in.next section.

6.1.1 Pre-FFT Synchronization Using €P Correlation

There are several approaches for the CFO estimation in OFDM system. One is the data-aided
approach [88, 73], applicable when the preamble consists of known signal (or when a reliable
decision on the preamble contents can be made). In the case of IEEE 802.16e OFDMA, it
is not suitable because in DL, the preamble can be one of 114 choices. The second approach
is based on subspace analysis, e.g., via the ESPRIT algorithm. While the resolution in CFO
estimation of these methods can be high, the computational complexity can also be high. The
third approach is completely blind estimation relying solely on the repetitive signal structure of
OFDMA symbols, e.g., the presence of CP [5, 64]. This appears simplest and suitable for use
in IEEE 802.16e OFDMA.

Likewise, there are multiple approaches to symbol timing estimation. However, again, one
simplest and appropriate for IEEE 802.16e OFDMA is blind estimation based on the CP struc-
ture. Indeed, the DL preamble in IEEE 802.16e OFDMA, by having its nonzero subcarriers
spaced regularly in the frequency domain, gives rise to a quasi-periodic signal structure in the
time domain. This quasi-periodicity may also be exploited for the benefit of CFO and symbol
timing estimation. However, the following discussion considers use of CP only.

Fig. 6.2 illustrates the method. Let IV be the FFT size and L be the CP length in number of
samples. Under the assumption that the received samples are jointly Gaussian, quasi-maximum-
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Figure 6.2: Pre-FFT synchronization usesblind CP corrélation to estimate CFO and symbol
time.

likelihood (ML) estimators'in Rayleigh fading for symbel timing and CFO have been derived as
[64]

n = arg max{|Y (n)|} (6.1)
and LY ()
0
e = 2
e=-=, (6.2)
respectively, where
n+L—1
Y (= ST rOrEEN). (6.3)
t=n

A similar structure has alse -beentderived in [5]: We"can employ average over the symbols to
obtain a more accurate ‘estimate of the CFO and the symbol.timing.

In applying the above method.to multipath channels, note that (6.1) tends to be determined
by the strongest path rather than the'first significant path. Therefore, starting at n, one should
search in the direction of smaller giming offsets to find the earliest significant path (e.g., by
finding the smallest offset where |Y'(n)|is above ‘a sizable fraction of |Y'(72)|) in order to avoid
lag-error.

Note that (6.2) can only obtain the fractional part (normalized by subcarrier spacing) of the
CFO. The integer part of the CFO needs to be estimated by another means. Now, for simplicity,
consider estimating the DL CFO separately from the preamble index. Without knowing the
preamble index, no data-aided methods can be used. The natural resort is blind estimation by
finding which integer CFO value results in the highest total power in any of the three preamble
subcarrier sets. Since the three preamble subcarrier sets are (nearly) indistinguishable in power
content, there is a three-value ambiguity in the estimated integer CFO. One will need to wait
until after having found the preamble sequence to determine the precise integer CFO. In fact,
it may be better off to consider a joint search of the integer CFO and the preamble index and
we present this scheme in next section.
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6.2 Joint Operation of Preamble Search and Integral CFO Es-
timate

This section discusses two major variables in the post-FFT process of the initial synchronization
for WIMAX DL. One is the integer subcarrier-spacing shift of the carrier frequency and the
other is the preamble index as well as the IDCell [48] in the WIMAX system. The residual
integer CFO is the ambiguity part of the pre-FFT synchronization using the CP correlation, so
the additional process is required to identify this integer offset. The preamble index points out
the serving BS identification and the corresponding reception parameters; thus, in the post-FFT
synchronization, we need to detect the most possible IDCell of the serving BS as well as the
preamble indexing from the pools of the 114 possible candidates.

Several literatures [88, 33, 53| for the integer CFO estimation in data-aided manner typically
adopt the concept of the coherence time/bandwidth of the channel that the channel responses
in successive symbols or at the nearby subcarriers does not vary significantly. By adopting the
coherence time concept, Schmidl and Cox [88] suggest using two successive training symbols
to detect the integer CFO with a manner of the interssymbol differential detection. However,
their approach requires the knewledge of the inter-symbol cross correlation of the two symbols.
Later, from the coherence bandwidth concept, Kim et al “propose the estimator adopting the
inter-subcarrier differential detection to identify the integer CFO. Similarly, the inter-subcarrier
cross correlation must beraware in their approach. Hsieh and Wei [33] also adopt the coherence
bandwidth concept torestimate the.integer CEO. Unlike the manner of the differential detection,
they suggest the detection criteria~via-the difference of the channel, responses at the adjacent
subcarriers. With this difference metric, it is possible t6 realize therinteger CFO estimation in
a multiplier-free fashion.!' However, all of them are déveloped in a heuristiciway by following the
coherence time/bandwidth concepts.

Logically, in mathematical formulation, the problems of the‘integer CEO and the preamble-
indexing search aregequivalent to the problem that, either in time or'in frequency, we want to
detect the most possiblel symbol from the.received.signal,.which is passed over the multipath
channel. The preamble symibols are different witl the:IDCell [48]; thus; it is naturally presented
in the problem formulation.. 'When "considering the problem of the integer CFO estimation, we
can treat the symbols with different integer shifts as the different symbols; therefore, the same
problem representation can also be;applied in this issue. Moréover,'the joint consideration of the
integer CFO estimation and the preamble index search now: is Teasonable in the same problem
formulation when we regard the combinations of the integer shifts and the preamble sequences
as the candidates.

This section mainly derives the maximal likelihood (ML) criteria of the sequence detection
over multipath Rayleigh fading channel and gives the furthermore simplifications in the applica-
tion in the post-FFT synchronization. We first analyze the likelihood function of the sequence
searching problem and give the ML criteria. Then, some complexity reduced manners and real-
izations in joint preamble search and integer CFO estimation are proposed and analyzed in the
following discussions. Finally, we show some numerical analysis and simulative comparisons of
the proposed algorithms as the performance study.

6.2.1 Maximum Likelihood Symbol Detection

The maximal likelihood criterion of the symbol detection problem is to select the symbol that
has the highest probability from the observed samples, which are the channel outputs interfered
by the AWGN.

Before the derivation of ML criterion, we first consider the multipath Rayleigh fading channel
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in discrete equivalent low-pass model as given by
L
h(n) = Z a;d(n —dp) (6.4)
=1

where d; is the [th path delay in units of %, T is the symbol period and N is the number
of samples in a complete symbol herein. For simplification in the derivation, we assume d; be
integer number which means that the delay paths are located in the “sample spacing”. However,
the derived results should be still applicable in the practical condition. We furthermore assume
that the path gains a; has the complex Gaussian distribution. Based on the equivalent low-pass
channel model, the received data in discrete can be formulated by

L
r(n) =Y oux(n — d;) + w(n) (6.5)

=1

where w(n) is additive white noise, which hasithe cemplex Gaussian distribution and z(n) is a
sequence of the candidates.
Assume that two candidatesymbols z;(n) and x;(n) have the following properties

N1 L o
% ; wj(t)x;k((t = n)N) = { Rm(n)nw 5(n) Oglier_wijse ’ (6'6)

where ()n denotes the module operation corresponding te N. and, n.is a complex Gaussian
random variable based on law of large number (LLN) when N is large emough.

The problem of the $ymbol detection is to recognize the most possible symbol x;(n) form
the observed samples 7(n). "Additionally, we consider the detection problem on the condition
that the channel st@te information is not available but just parts of its information are aware.

Maximal Likelihood Criteria

On the condition whensthe,channel response h(n)-and the symbol'z;(f) are given, we have the
likelihood function

N-1 y: 2
Yon—o |7(n) = > aqzi(n — dy)
L (R’X]7 H) = €exp iy 9 2 ) (67)
Ua

since the noise have the Gaussian distribution. Moreover, if the symbol energies of the candidates
are the same, we have the same > 1| S ayz;(n — d)|? for all symbols. Thus, the likelihood
function can be furthermore simplified as

L(R|X;, H) = exp { Ziea Rofyins) } , (6.8)

o;
where
N-1
Ynj = r(n+t)zj(b). (6.9)
t=0

If the system has cyclic prefix extension, we can rewrite yy, ; as

N-1

yng = > r((t+n)n)z}(t) (6.10)

t=0

where (-), denotes the module operation with respect to N.
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Case in Knowing Power-Delay Profile

In previous equations, we have assumed that the channel parameters are available; however, in
the practical situations, this assumption is not valid. Once, if we have the probability model of
the channel, for example the power-delay profile (PDP), we can eliminate the uncertainty of the
channel. Now, assume the channel response has the model that

L
h(n) =Y AiBis(n — dy), (6.11)
=1

where ) has zero-mean complex Gaussian distribution with variance = 1, and A; is the square
root of the power of [th path. Based on this, the sufficient likelihood function now becomes

L(R|X;,H) = exp { Zica R (A v} } : (6.12)

o
Averaging the unknown randem parameter G; yields the,likelihood function

ox { Sy R A v i H

2
a;

L 2 2
A 3
= exp { 2121 1 Iydla.7| } 1 (613)

2
Oa

L(R|X;) = Ep

Therefore, the detectionirule is to find out the symbol that has the largest likelihood function
or equivalently thesone has the metric

L
M(X)=D"AF lya 5%, (6.14)
(F=1]

which is the weighted sum of |yd17j|2.

In actual condition,“the PDP is not aware at receiver, but weican adopt the possible as-
sumption of the PDP in the metrie.calculation. For example, we ‘can assume that the PDP has
uniform distribution within a‘spread duration 7' and it results in

2, (6.15)

T-1
M(XJ) = Z |yn,j
n=0

Besides, another alternative assumption is the exponential decayed PDP, which is given by

T-1
M(X5) = e yn (6.16)

n=0

where 7 is the time constant of the exponential weighting function.

Case in Deterministic Channel Assumption

If we a treat the channel responses as unknown but deterministic parameters, the ML detector
now becomes a joint optimization problem. The ML criterion for the joint optimization problem
is given by

j’:argmax{mng(MXj,H)‘Xj}. (6.17)
J
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Figure 6.3: Two-stage Implementation of the post-FFT synchronization comprises the coarse
integer CFO estimate and the fine joint detection.

It is a two-stage approach. First; we acquire the maximal: likelihood estimation of the channel
response corresponding to,the.given alternative symbol. ‘Then;wé pick up the symbol that has
the largest likelihood when, the associated optimal channel response.is applied.

From derivation, the ML channel estimation for X is given by

o By 1, (6.18)
where
Rw(o) Raz(l) Rx(T_ 1)
R.(1 R, (0 - Ry (T —2
Ry = .( ) .( / _ ( . ) (6.19)
Ry(T=1) Ro(L =2) .. R(0)
is the auto-correlation matrix of X  and Y = {[yoy Y15 = yT_l,j]T. Substituting H,; into (6.8)
we have the metric
M(X;) = YR (6.20)

Moreover, if the autocorrelation function.of X; is a.delta function, it results in the same metric
of the uniform PDP in (6.15).

6.2.2 Joint Preamble Search and Integer CFO Estimation

Now, we apply the ML symbol detection in the post-FFT synchronization. As mentioned, we
treat the same preamble sequences with different integer CFOs as different symbols. We first
review the preamble structure in WiMAX OFDMA. In frequency, the preambles are pseudo-
random binary sequences modulated by the boosted BPSK. A preamble comprises several bits
which are placed in the sectored carrier sets. The preamble carrier set is defined by s +3 x n
where s € [0, 1, 2] is the sector index and k is the running index; specially, the bit located in DC
subcarrier must be discarded. For the case of 1024 point FFT system, the length of preamble
sequence is 284 and placed in the subcarrier index (86 : 3 : 935) + s.

The proposed implementation of the joint detection algorithm comprises a two-stage process
as shown in Fig.6.3. When we directly adopt the joint detection algorithm, the candidate
pool from the combinations of the preamble sequences and the integer CFOs would be large.
Therefore, to eliminate the realization cost, we can narrow down the search candidates via the
coarse integer CFO estimation. Thus, the received signal is first down-sampled in the factor of

79



three via the coarse integer CFO estimation and the carrier set detection. Then, the fine joint
detection algorithm is realized by the metric calculation and the maximal metric selection.
The carrier set detector is to recognize the most possible carrier set. Let R(k) be the received
symbol in frequency domain, IV, be the length of the preamble sequence. The straightforward
approach is to select the set that has the largest received signal strength, which is given by

N—1
s:argmgx{z ]R(3k—|—s)]2} . (6.21)

n=0
For simplified realization, we can consider the one-norm detector by replacing |R(k)|? with
Rl = [R{R} + [S{R}]. (6.22)

The coarse integer CFO estimate adopts the edge detection to find out the most interest of
the region of the received symbol. The coarse integer CFO estimator is given by

AK = argm’?x{A\R(k)P R A|R(k + 3N,) 2} (6.23)

where A|R(k)|> = |R(k)|? — {R(k= 1)|?. Similarly, the one-fiorm edge detection also can be
applied. We now present several approaches from the simplification. of the ML symbol detection.

Time Domain Windewing After Frequency Domain Correlation

Based on the joint eptimization in_deterministicchannell assumption, the first decision metric
adopts the equation in (6.15) when we apply the assumption that, Rx.~ I. Due to the CP
insertion, the correlation values y, ; can be derived in.(6.10). Naturally, we set the window
width 7" to the maximal expected channel delay,spread, for example, the . CP duration.

However, for thedirect implementation, it takes N multiplications for-am observing point yy, ;
and N x T ones for-a metric calculation:#Tossimplify this, we can adoptithe frequency domain
approach to derive the correlations. After the coarse integer CFO estimation and compensation,
the received symbolsin frequency-is point-wisely -multiplied by the testing sequence to get the
frequency domain corrélations. Then;‘taking the inverse FET, we can obtain the time domain
correlations. Therefore, the main price in the metric calculation nowis‘the inverse FFT operation
per candidates.

Concept of Frequency Domain Filtering

In the given PDP approach, the metric is the weighted sum of |y, j|* as given in (6.14). If we
assume that the PDP has the following formulation

2

Ntap_l 2 k
B j2mn
A, = kgzo F(k)exp ( N ) (6.24)

where F'(k) is the square root of the power spectrum density (PSD) of the channel, we can
directly calculate the metric in frequency domain. From the metric calculation in (6.14), we can

obtain that )

N—1 |Ntap—1 .
M(xz;)=> | Y F(k)exp <‘72WNkn)ym . (6.25)
n=0 | k=0
Now, based on Parseval’s theorem, the metric is equivalent to
Np—1
M(zj) = Y |F(k) @ Y;(k)[, (6.26)
k=0
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where ® denotes the circular convolution, Yj(k) is the adjusted frequency response of y, ; after
the coarse integer CFO estimation, and N, is the number of the preamble sequence. Moreover,
it is equivalent to use the linear convolution for the circular convolution since the preamble
symbol exists the guard band in both sides of the spectrum.

We can adopt a pre-defined low-pass filter for the reference PSD as well as the PDP since
the channel has the decayed PDP in nature. For low cost implementation, we can consider the
simplest moving-average filters (MAF's) as the pre-defined filter, which are multiplier-free filters.
Let Nyqp be the number of the filter taps, the metric with Ny, order MAF is given by

2
Np—Ntap—1 |Niap—1

Mj)= > | > Yilk+/) . (6.27)

k=0 =0

Furthermore reduction suggests that we can use parts of the filter outputs instead of all. For
example, if we adopt the averages of the successive V;q;, segmentations of the samples to replace
the MAF outputs, we have the

[Np/Ntap]=1 | Ntap—1

MEPHTS > Y (Niaph +if)| - (6.28)

k=0 f=0
Alternatively, the oné-norm approximation of the |- |? in the metrie calculation can provide
furthermore simplifications:and results-in-the multiplier-free implementation.

Differential Detection

Now, we consider the simplest two-tap moving average (MA) filter with impulse response given
by
1 1
(k)= 50(k) + 50(k =.1) (6.29)
to implement the frequency domain filter based metric calculation! Employing this filter, we
obtain the following metric:
] Np—1
M) = 5 > R{Y ()Y
k=1

1 Np—1
*5 > k). (6.30)
k=0

Since the preamble sequences have constant amplitude and the maximum possible integral CFO
is relatively small compared to Np, the second term in the right-hand-side (RHS) of (6.30) is
nearly constant over all j. Thus, the detection metric can be further simplified to

Np—1
M(z;) = > R{Y;(0)Y](k-1)}
o
= > R{RMK)R (k- 1)D;(k)} (6.31)
k=0

where D;(k) = X;(k)X; (k—1). Additionally, D;(k) is real and binary(=+1) since we have BPSK
modulated preamble sequences in WiMAX OFDMA. Thus,

Np—1

M(zj) = Y Dj(t)R{R(k)R*(k - 1)}. (6.32)

k=0
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The detection metric M (z;) easily reminds one of the detection variable used in differential
detection. Indeed, the final approach above can be interpreted as a kind of differential detection
in the frequency domain, which concept has been proposed in [63, 37]. And this interpretation
is complementary to the LPF view given previously.

If the spacing of the nonzero subcarriers in the preamble is much smaller than the coherence
bandwidth of the channel, then the channel responses at neighboring preamble subcarriers are
approximately equal, i.e., H(k 4+ 1) = H(k) + AH (k) where |AH (k)| < |H (k)| and k is index

for nonzero preamble subcarriers. Hence, from definition of R(k) with the noise term neglected,
R{R(F)E"(k = 1)}
= R{HK)X;(k)H*(k—1)X;(k—1)}

~ |H(k)]* Dj(k). (6.33)
Therefore,
Np—1
M(zj) ~ > ol H(k)2D; (k) Djo(k), (6.34)
k=0

which certainly is maximized shen'j’ = 7.

Hardlimiting of the Differential Signal

Simplified to the extreme, we may consider hardlimiting the “differential signal” R{R(k)R*(k —
1)}. Then the computation of] M, becomes equivalent to computing the Hamming distance
between the sequence Dj(k) and the hardlimited R{R(k)R*(k —1)}. The D; with the smallest
Hamming distance.will be the winner. This method .is particularly useful for reducing the
complexity of hardware implementation.

Early Dropping of Bad Candidates;by . Dynamic Metric Thresholding

Another way to reduce the computational'éomplexity iSto drop the:bad candidates early on. For
example, we may consider dividing the summation-over 1V, subcarriérs in the metric computation
into a number of fixed-length sectiois (or windows). Rather than finish computing the metric
for each X; over the total number of IV, subcarriers and then compare for the best, we may
set a threshold after each window. The z; that perform below the threshold are dropped. This
continues until only one z; remains or until-we-come to the end of the last window when all
the surviving z;’s will be compared. “T'he method resembles, to some extent, certain reduced-
complexity breadth-first tree search methods.

Several detailed design issues exist in this method. First, comes the window size. We will
give some examples in the section on simulation results. Second, there is the threshold for each
window. We consider setting it to a fraction of the current best (largest) metric of all the retained
x;’s. Needless to say, the detection performance depends on the choice of the window size and
the threshold, so is the computational complexity. And third, considering that the channel may
be subject to multipath fading, it may not be good to let each window consist of contiguous
preamble subcarriers. Rather, the windows should be interleaved, with the subcarriers in each
window spaced, for example, beyond the coherence bandwidth.

6.3 Performance Studies of Joint Detection Schemes

This evaluates the performance of the proposed algorithms over single-path and multi-path
channels from the mathematical analysis and the simulative studies and comparisons. We first
present the mathematical analysis of the false detection probability; then, simulate and gather
the statistics of the probability in the numerical experiments with the presented detectors.
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6.3.1 Mathematical Analysis

We analyze the performance of the joint detection algorithms via the mathematical derivations
and the simulation comparisons. We mainly discuss the false detection probability where a false
detection happens if the transmitted symbol is different the detected one. Let P. be the false
error probability when jth symbol is sent and ith symbol is detected, and assume P. be nearly
the same for different pairs of ¢ — j. If there are total J candidates, the entire FDP can be
expressed

Pr=1-(1-P) '~ (J-1)P (6.35)

where the last approximation holds if the P, is small enough.

Property of x? distribution

Before the analysis of the FDE, we introduce some used properties and distribution in the
probability. First, we consider the detection error probability in x? distribution. If a random
variable z has a x? distribution with 2 L.degree of freedom (DOF), its probability density function
(PDF) is respectively given by

L
Foa(x;2L) = (;/(QL))xL—le—f/Q, (6.36)

and cumulative distribution function (CDE )uis

L, 1/2)

L) 1
F2(x;2L) = B (6.37)
where v(L, ) is the lower incomplete Gamma function defined by
Y= / Pt (6.38)
0

and I'(L) = (L, c0) 1§ the Gamma'funiction.

Now, we consider the general case of the error detection prébability in x? distribution. Let
two random variable X; and Xg have the X% 1, distributions" M be known number and V; and
V5 are two positive value, the probability of “M + 14 X; < V5Xs ” can be calculated via the
integration :

P(M+ V1X1 < V2X2;2L)

© IMA4WX
_ / p <+V“ < Xo| X1 = :1:> fz (2 2L) dz
0 2

o M + Viz
= / <1 — F\2 (‘/1;2L>) fy2(x;2L0)dx
0 2

1 o M+ Viz
= 1- L2——— | a" e "da. :
T(L)2 /0 ~ ( , V2 ) x” e tdr (6.39)

However, this integration may not exist the closed-form; thus, to evaluate the probability, we
may perform the integrations via the numerical programs; for examples, the C language, the
MATLAB or the Mathematical.
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Distribution of |y ;|

Next, we consider the statistic property and distribution of the cross correlation of r and x;.
Recall the definition of the correlation, we refine the correlation as

N-1

Yn,j = % Z r(t)z;(t + n). (6.40)

t=0

For simplified derivation, we assume the candidate symbol is white where its autocorrelation
is a delta function and the cross correlations between two symbols are uncorrelated zero-mean
complex Gaussian random variable; thus, we have

N—

H

1 d(n) ifj=i
= — 41
N — zj(B)zi(t —n) = { n  otherwise ’ (6.41)
and 7 has zero-mean (complex) Gaussiamdistribution. Additionally, without lost of generality,
we let that the averaged samplespower -of the candidates issnormalized to 1, which yields the

symbol energy being N. Based on this assumption, the wariance of 7 is given by
2
> rconta(R)G (R, 1

2 .
0'77 N2 = N (642)

The statistic property of y, ;.depends en the ¢orrectness of the testing symbols and the
existence of the delay path. If the-testing.symboliis theicorrect one,, we have

Yn,e = Yn,jimgi= ettt (A (6.43)

and we(n) = Et - Y (t)x *(t + n)/is & zero-mean complex Gaussian variable with 5 variance.

If h(n) is an non-zere path gain}i|y,.é* has the non-central y? distribution. Moreover, if [hg|?
is much larger than the wg(n), |yn.e|” can be expressed: as

nel” ~ )+ 22X, () (6.44)
where X,(n) has a x? distribution with 2-DOE..On contrast; if h(n) is zero or not significant,
we have

[Yn.el” = X (n). (6.45)

2N
If the testing symbol is incorrect, y, ; contains only the noise term as given by

L
Unjiti = Yoe =Y _ am(d; —n) + wa(n) = we(n) (6.46)
=1

Ui—l—a?u
N

where we(n) is the zero-mean complex Gaussian variable with variance and the o7 =

Zlel |oy|? herein is the channel energy. Similarly,

Uh+0

S Xe(n) (6.47)

Yn,e|® =

where X.(n) also has the same distribution as X4(n).
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Detector Using Uniform PDP Assumption

To evaluate the false detection probability, we need to analyze the error probability P,. In the
following, we first evaluate the P, in given channel energy O'}QL and then extend to the fading
channel by averaging all possible ‘7}21- Let that the observation window 7' is larger than the
multipath delay spread and the delays are located at the sample spacing. The decision metric

of the correct and incorrect events are given by

T—1 9
o
M. = Z |yn,C|2 = O'}QL + ﬁXC (6.48)
n=0
T-1 ) 2
oy +0
Me = Z Ynel* = %XE (6.49)
n=0

where X and Xg both the random variables that have the x? distribution with 27" degrees
since they are both the summations of , T:xx? randoem; variables with 2 DOF.

Now, if h is deterministic andigiven, by substituting M = JZ, Vi = % and Vo = # into
(6.39), we have the error probability that

1 = No? 802 x .
P. (TR~ I‘(T)2/0 ol (T7 ﬁ) w2l e 2da. (6.50)

When h(n) is a fading channel, we may average thel previous given probability over all possible
h(n) to get the averaged error probability. Alternativelyy if the PDF 'of ofiis given by f5(x), the
averaged false detection probability is given by

Pr=118 /0oo @ = Pe(@)”! fu(x)da. (6.51)

Actually, both the integrations in Pe(a,%) and Py may not exist the closed form solutions; there-
fore, to evaluate the theoretical performance, we shouldsconsider the mumerical solution via the
programs.

Detector Using Frequency Domain Filter

Now, we consider the performance of the detector using the frequency domain filter concept.
Likewise, we first derive the error probability in the given channel condition; then, extend to
the case of the fading channel.

If Z, ; = F(f)®Y;(f —k) is the filter output, we first evaluate the probability distribution of
|Z)..j|*. Consider the cases of correctness and incorrectness of the testing symbols. If the symbol
is correct, we have

Zig = F(f) @ H(f — k) + Wa(k) (6.52)
where W, (k) = Z;V;“Op*l F(f)we(f — k), which is a zero-mean complex Gaussian variable with
variance = (3. F(f)?)o2. By summation over all k, we have the correct metric given by

1 MNa1 Co?
_ 2 o 52
Me = k} 12~ o+ =0 Ko (6.53)

=0

where Ny = N, — Nyqp is the total sample used in metric calculation, O'}QL‘F = N%l JkV:dgl |F(f)®

H(f —k)|? is the average power of the channel filtered by F(k), C =Y. F(f)?, and X¢ here has
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the x? distribution with 2N, degrees. Besides, from Parseval’s theorem, we furthermore have

that
Ny—1

ohp = F Z F(f)® H(f — k)| ZA oy |2 (6.54)

where A,, is the time domain weight of F'(k) as given in (6.24). Moreover, if we consider the
partial usages of the filter outputs, we approximately have the same result whereas Ny meanwhile
is the number of used samples.

On contrast, when the testing symbol is incorrect, we similarly have that

C(o? + o2
M, = (’12“’)XE (6.55)

where Xg is the random variable that has the same distribution as X¢.

Now, if h(n) is given, the error probability is given by

5 1
1 G T Ow® L
2 2 Ng—1
Pe(oj, ohp) = 1 — (N2 /0 y (Nd, = F T e . (6.56)

In additional, when the N;q, moving average filter is adopted, we furthermore have that % = Niap

and
1 00 Ntapa,% rt Ufux L
Pe(O'fZL,O'IQl[F) =1-— W/O‘ W (Nd, 0_’27’ |-f— 0_2 .'L'Nd 16 Tdx. (657)
w

When h(n) is a fading lchannel, to derive the average false detection probability, we further-
more require the PDF of U,% and the mapping function from O'g to 0,21‘ g At fu(x) is the PDF of

o? and 0}21‘ = g(o,%), the average false detectionsprobability is derived by

ry = L trgtopyisie (o) (6.58)

Also, the integrations should:not exist the closed form solutionsand we still run the numerical
integration to derive the theorétical result.

Performance in Single Path/Channel

We now consider the case over the simplest single path channel. We firstly evaluate the per-
formance of the cases over AWGN channel; then, average the error probability with respect to
the channel energy in x? distribution with 2 DOF to derive the performance of the cases over
Rayleigh channel.

Assume ideal synchronization in symbol time and fractional CFO. For the cases of the detec-
tors adopting the uniform PDP assumption and adopting the frequency domain filter, the error
probabilities are derived via the integrations in (6.50) and (6.56) correspondingly, and the false
error probability is obtained via substituting the derived error probability into (6.35). Further-
more, the performances over the single-path Rayleigh channel are calculated via the integrations
in (6.51) and (6.58) correspondingly with respect

fn(x) = Bo? fx ( 2) (6.59)

E27

and “g(07) = (3 F(n))o}” in (6.58), where Fo} = E [o7] is the average channel energy.
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Additionally, we consider the performance in the case when the PDP is aware. Straightfor-
wardly, letting "= 1 in (6.50), we can obtain the error probability in this case. Performing the
integration, it exists the closed-form solution as given by

9 024—0,21 _(;VG%LQ)
P.(o}) = —4—"e \"0F%) 6.60
e(o3) 202 + O’%L ( )
which can approximate to
o _ 1 23
Pe(op) = 5e 7, (6.61)

if o2, is larger than 0,%; i.e., in the extreme low SNR condition. When the channel response
is a single-path Rayleigh channel, by averaging the false detection probability with respect to

fu(0?) = 25 f 2(ﬁ 2), we have that
h EO'}QL X Eaﬁ’ ’

P :1—Am@—gwﬁ§y4&mﬁmx

1+p I+p i+p
1o |—,1-J1+—-—— 6.62
2 1<N ’ ) + N’Z—I-p ’ ( )

%

where 2F)(a,b, ¢, d) is the standard -Hyper-geometric series(function) and p = 5—723 herein is the
h
averaged SNR reciprocal. If o2, is-much larger than Ea,%, we can obtain the approximated Py
given by
Pra1-28,F (£, 2 4514 £ 1), 6.63
6.3.2 Numerical Studies and Comparisons

In this section, we present the simulative.comparisons-of-the, proposed algorithms and the ver-
ification with the arfalytical results. . We consider ‘thie [situation when the received signal only
contains one significanit preainble from the nearest BS: The detections of the multiple preamble
sequences require a threshold.mechanism; however, it is outgof the scope in this discussion.
Besides, one main purpose;/of the initial synchronization_is'to find the BS that has the best
communication quality, whichiis somehow. equivalent t6 have the best signal strength in pream-
ble symbol. Thus, we just consider detecting the preamble symbol that has the largest signal
strength.

In the simulation, consider an OFDMA WiMAX system with channel bandwidth = 10 MHz,
FFT size = 1024, and CP length = 128. Recall that there are 114 selectable preamble sequences,
which are divided into three segments, and the nonzero subcarriers in each sequence are spaced
three subcarriers apart. Since we have no idea about integral carrier offset before estimation
and so do the preamble code sequences with largest energy belong to which set, we need to test
all the 114 candidates for each alternative integral CFO.

Study in Single Path Channels

We first adopt the single path channels, which includes the AWGN and the single path fading
channel, to verify the simulated results with the analytical ones and to exam the correctness
of the analysis. The adopted algorithms in this comparison is listed by: case 1, the optimal
detection with awareness of the PDP; case 2, the detection with uniform PDP assumption, in
which T' = 128; case 3, the detection adopting the frequency domain filter, where the metric
adopts the averages of the successive four samples as in (6.28); case 4, the detection adopting
the differential detection.
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Analytic and Simulated Results of Algorithms over AWGN Channel
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Figure 6.4: Performance comparison of propased algorithms over AWGN channel.

Fig. 6.4 illustrates the performances over AWGN:channel. As shown in the performance
curves, the simulated and analytic results are’quite matching for all algorithms when SNR is
“high” (herein, high SNR is still really low enough). The SNR definition is the ration of the
received preamble signal power relative to-the noise powers The results show that, except case
1, case 3 using four'taps average in frequency domainThasTthe besti performance; then, case 4
adopting differential "detection performs better the-detection with' assumption of the uniform
PDP.

Fig. 6.5 illustrates thefresults-over single path Rayleigh channel.’ The simulated results also
agree with the analytical ones' in this  channel conditionss However, in this channel condition,
the detectors of case 3 and case 4 have no significant difference and they both perform roughly
2 dB better than detector of case 2.

Comparisons in Multipath Rayleigh Fading Channel

Now, we compare the algorithms over the multipath fading channel via the simulations. We
consider jointly detecting the preamble sequence and the integer CFO in the second phase of the
initially post-FFT synchronization. Assume that the true carrier set is detected, the true integer
part of the CFO becomes zero after the coarse integer CFO estimation. The additional search
range of the integer CFO is £3 subcarrier spacings. However, due to the preamble structure,
we only need to perform three different candidates of the integer CFO in [—3,0,3]. Therefore,
there are total 114 x 3 = 342 combinations of the integer CFOs and the preamble sequences to
be tested in one reception.

The compared algorithms are listed as follows: case 1, the detector with uniform PDP
assumption, in which 7" = 128; case 2, the detector adopting the four samples frequency domain
average as in (6.28); case 3, 1-norm version of case 2 where the detector is the same as case 2
except for replacing |- |2 by |- |1 in (6.28); case 4, the detector adopting the differential detection;
case 5, the detector adopting the hard-limited differential detection; case 6, the detector adopting
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Analytic and Simulated Results of Algorithms over Rayleight Channel
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Figure 6.5: Performance comparison-of-proposed jalgorithms.over Rayleigh fading channel.

the differential deteetion with early dropping scheme in/d maximal iterations; case 7, the detector
same as 6 except for 10 maximal iterations. sWertest these algorithms over the block static
Rayleigh fading channel that has the Vehicular=A PDP [21]. Furthermore, in the early dropping
scheme, we set the length of the comparative samples to | N,/ K | where K is the number of the
maximal iterations. "For example, in case 6y thelengthis 284 /5] = 56. Besides, the dropping
threshold is arbitrarily_set'to 1/2.0f thefmaximal-metric‘in current'iteration.

Fig. 6.6 depicts thessimulation Tesults. If the false detection probability in 1072 is the
comparative margin, the.case 2 has the minimal requirement of the SNR. The sorting of the
performances are given by: ‘case 2 >.case 3 = case 4 > case 1 > case 5 = case 6 > case 7. In the
sort, of the differential detection algorithms; the-poor performances in case 57 are the penalties
of the lower cost implementations. In the sort of the frequency domain filter, the |- |; version has
just little performance loss than | - |? version, whereas it has fewer cost from the multiplier-free
realization.

6.4 Conclusions

This chapter presented the initial synchronization of the 802.16e OFDMA DL. We proposed the
two-stage process of the initial synchronization. First stage performs before the FFT to acquire
the symbol time and fractional CFO using the CP correlation. The second stage works after the
FFT, which jointly estimates the integer CFO and the preamble index.

We mainly discussed the post-FFT synchronization step and specially focused on the problem
of the symbol identification over multipath channel. We formulated the joint detection problem
as the symbol identification. For this, we proposed the ML criteria of the symbol detection,
which is the weighted sum of the cross-correlations of the reception and the candidate symbols,
as well as several implementations of the joint detections in low-cost manners. One major con-
tribution in this place is the concept of the frequency domain filter, which gives direct detection
in frequency domain instead of the detection after translating into time domain. Additionally,
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Chapter 7

Channel Estimations in Pilot-Aided
Multi-Carrier System

Channel estimation in pilot-aided multi-carrier system is an important and well-discussed issue.
The estimation algorithms mainly can be classified as the modelsbased, the statistical-dependent
and the statistical-independent approaches. The subspace least-square method is one of the
first class, which uses the projection onto the.delay-subspace to eliminate the noise out-side the
channel delay subspacés The major issue.in this approach is the estimation of the channel delay
subspace [103, 78, 915:101]; which takes great costs in realization, especially when the channel
delays are not integer-spaced.

The Wiener MMSE estimator [18, 61, 72] is the mosticommon statistical-dependent approach.
The MMSE channelfestimation may perform in 1.D [18] if the channel is'estimated individual
per symbol or 2-D [61] if joint frequency and temporal channel correlation‘are used. The Wiener
filter requires additional computation cost.in the estimation of the channel correlation and the
noise variance. A sub-optimal approach is:to use the pre-defined correlation matrix instead of
the real-time estimation. The used.assumptionrof-therpre=defined power-delay profile is usually
the uniform or the expomnential [decayed distribution [18, 3]. However, the root-mean-square
(RMS) delay of the channelis additionally required when the exponential decayed power-delay
profile is used [3, 99].

The third approach uses the interpolation concept- tosreconstruct the missing channel re-
sponses. One of this approach'is the transform-based interpolation, such as the maximal likeli-
hood interpolator [72]. To reduce the implementation cost, the discrete Fourier transform (DFT)
based interpolator are typically used [19]. However, it is only applicable in equal-pilot-spacing
multi-carrier system. Besides the transform-based interpolator, the frequency filtering interpo-
lator is mostly popular scheme in low-cost consideration. The polynomial interpolation is the
well-established approach in the frequency-domain interpolator [32].

This chapter presents two CE approaches. We first consider the interpolative channel esti-
mation. Following the phase-shift concept in [32], we present the MMSE optimal window shift of
the interpolation and its estimation. Then, we consider the approximate Wiener interpolation
using predefined channel channel correlations. To generate the correlations, we investigate a
simple estimation scheme of the mean delay and the root-mean-square delay spread. The pro-
posed estimators are applied in the comb-type pilot-aided multi-carrier system and the 802.16e
mobile WiMAX system.
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7.1 MMSE Optimization of Polynomially Interpolative Channel
Estimate

Pilot-aided channel estimation is widely adopted in orthogonal frequency division multiplexing
(OFDM) and multiple access (OFDMA) systems. And frequency-domain polynomial interpo-
lation is an often considered approach for such channel estimation. However, for channels that
exhibit large delay spreads, the performance of polynomial interpolators suffers due to model-
ing error. Some have proposed to remedy the problem by increasing the interpolation order
or by adding a linear phase shift to linear interpolation. The linear phase shift is equivalent
to window shift in time domain. We thus derive a method to estimate the optimal window
shift, in the minimum mean-square error (MMSE) sense, for polynomial-interpolative channel
estimation of arbitrary order. As a practical application, we show how to apply phase-shifted in-
terpolative channel estimation to Mobile WiMAX downlink transmission and propose a method
to automatically select the interpolation order based on some MSE estimation.

7.1.1 Introduction

The polynomial interpolation is the well-established approach in the frequency-domain inter-
polator [32]. The most advantage of the polynomial interpolation’is the low cost in hardware
realization due to the properties. First, the coefficients are real that requires half complexity
less than the same size filter with-complex coefficients. | Then, the coefficients are fixed and
independent to channel state information. | Lhe fixed-coefficient multipliers can be used to re-
duced hardware complexity. In addition, unlike MMSE estimator, we do not need the coefficient
generator in the realization.

No matter what kind of'the channel estimation; the timing estimation is a critical factor that
affects the performance of the estimation [2, 74]. .In the MMSE channel estimation, the authors
[2] takes notice of the timing estimation error;and presents enhanced MMSE channel estimation
according to timing statistic. Infthe FET transform based estimation, seme literatures [57, 97]
consider to jointly estimate the symbol:timing and the.channel response.in OFDM based wireless
local area network (WEAN) -system. Besides; Mostofi and Cox [74] analyze the impairment of
timing error in the inter=block interference (IBI) and the inter-c¢arrier interference (ICI) effects
over large delay-spread channel and investigate the estimation ofithe robust symbol time with
the OFDM system using pilot-aided ehannel estimations

The interpolative channel estimation is also affected by the symbol timing. For instance,
linear interpolation may suffer great performance loss in poor symbol synchronization [80] or
under a large channel delay spread [41]. As a result, some have proposed to alleviate the
problem by resorting to high-order interpolation [32]. The reason why different interpolation
orders may give different performance can be interpreted via some well-known results in signal
processing theory, which not only provide a useful perspective for understanding and analysis
of the phenomenon but also hint at improved interpolator design. Specifically, polynomial
interpolation is effectively a linear filtering operation [87]. Since convolution in the frequency
domain corresponds to multiplication in the time domain [76], different orders of interpolation
for the frequency response correspond to different kinds of windowing on the channel impulse
response. Fig. 7.1 is a conceptional illustration of the situation. Linear interpolation (dashed
line) has a smaller window size than quadratic interpolation (dash-dot line) and hence results
in a greater distortion of the channel response. However, the figure also indicates that, if one
can shift the window corresponding to linear interpolation by some amount to better capture
the time range of the significant channel response samples (solid line), then one could expect an
improved performance. The same also applies to higher-order interpolation.

In this section, we mainly consider the optimal (time-domain) window-shift of the polynomial
interpolative channel estimation under given interpolation order, where the “window-shift” may
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refer to the shifting of the zeroth index of the OFDM symbol or the frequency linear phase-
rotation. As a linear phase shift amounts to modulating the time-domain signal with a single
complex exponential, Hsieh and Wei [32] adopt the single frequency estimators proposed in [51]
directly to find the desired offset. Unfortunately, for channel estimation this is not optimal in the
mean-square error (MSE) sense, as later derivation will show. We will derive the optimal window
shift that achieves minimum MSE (MMSE) in channel estimation for arbitrary polynomial order.
Besides, the window-shifting operation can be performed in frequency domain as the phase-
rotation or phase-compensated interpolation. The simplest phase-compensated/-rotated linear
interpolation is presented in these papers [32, 41]. An alternative is to (circularly) shift the
received signal before it is discrete-Fourier transformed (DFT) in the receiver.

Moreover, it is instinctively expected (and will be confirmed in later analysis) that the MMSE
in channel estimation should depend on the amount of channel noise. In fact, analysis will show
that, in high channel noise, higher-order interpolation may be affected so more adversely than
lower-order interpolation as to yield worse channel estimates. Therefore, it would be desirable if
the interpolation order can be selected adaptively according to the channel condition to attain
best possible channel estimation performance. We willtalso address this issue.

The contribution of this section are given as follows. We consider the optimization of the
polynomial interpolative channel estimation in multi-carrier system. We observe the symbol
timing issue and analyze the MSE with the factor of timing offset.“According to the analytical
result, we derive the MMSE optimization criterion of the symbol timing and propose a subopti-
mal estimation of thejoptimal window shift.| We further, than analyze the performance in additive
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Figure 7.1: Comparison of different ways of interpolation in terms of the equivalent time-
windowing effects.
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noise environment. Then, the application of the proposed algorithm in mobile WiMAX system
is also addressed and analyzed. According to the analytical result, we propose the adaptive
selection of the interpolation order to minimize the MSE.

In what follows, we first consider the determination of MMSE window shift under given
polynomial order in Section 7.1.2. We formulate the problem by expressing the MSE in poly-
nomial channel interpolation in terms of the amount of window shift. Then we derive a way to
estimate the optimal window shift approximately. Subsequently, we evaluate the performance
of the resulting estimate in noisy channel, both by approximate theoretical analysis and via
computer simulation, in Section 7.1.3. The Mobile WiMAX system [48, 98] provides an interest-
ing and practically meaningful context to examine algorithm application. In Section 7.1.4, we
adapt the proposed channel estimation technique to suit this context and examine the resulting
performance. We also investigate the adaptive selection of interpolation order in this context,
where the interpolation order is determined based on a predicted partial MSE of channel esti-
mation. While adaptive order selection can be treated more broadly, the underlying principles
are sufficiently borne out in the Mobile WiMAX context.

7.1.2 MMSE Window Shifting

Consider a generic discretestime, equivalent lowpass multipath Rayleigh wireless channel impulse
response

L
ht) = > e/t~ m) (7.1)
=1

where L is the number of paths, o; is the complex Gaussian gain' of the /th path, and 7; is
the associated path'delay.| Both ¢ and 7; are integers.whose unit is the sampling period. The
corresponding (normalized) frequency responseris given by

L
H(fy=>> " eyWnS (7.2)
=1

where W = exp(—j2a/Ng) -and «1( ) has period 4Vis,pwith N, being the DFT size used in
multicarrier transformation.

Consider comb-type pilotf allocation and let the mth pilotsSubcarrier be located at frequency
po + mF where F is the spacing of pilot subcarriers..#Let H (po + mF') be some estimated
channel responses at the pilot locations; how they are estimated is immaterial at this point.
Then conventional polynomial interpolation between two pilot locations p and p + F' can be
written as

N
Hp+k) =Y CorH(p+zn) (7.3)
n=0
where 0 < k < F, N is the interpolation order, z, defines the nth pilot location used in
interpolation, and C,, j, is the corresponding interpolation coefficient. While the pilots used in
interpolation are usually chosen to be those nearest to p+k, their choice does not matter for now.
The interpolation coefficients are real and are well-known [7] to be given in the Vandermonde
form by

Cr=2[Cox Crg -+ Cngl
1 oz - 2 !
1 oz - 2
[k w0 (7.4)
—— |
2y 1oy e ol

£x
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or in the Lagrange form by
N

Cor= ]I k= Tm (7.5)

Tp — T
m=0,m#n n m

Now consider phase-rotated interpolation that corresponds to a window shift (i.e., time delay)
of 7. units of sample time, where 7. is some value to be determined. The interpolator coefficients
are given by WTC(’“*“)C,%;C, yielding

N
A(p+k) =3 Wm0, ] F(p+ )
n;O
—wreth Y ¢, [W—rc(p+zn) Hp+ xn)] , (7.6)
n=0

The right-hand side (RHS) of the last equation adopts a useful intuitive interpretation as follows.
If we advance the channel impulse response by 7, thengwe obtain an altered channel frequency
response as

Ho(fy2 W/ H(f ZazWA”f (7.7)

where A1, = 7;—7, is the 7.-early version of the [th path delay. Comparing with the last bracketed
term in (7.6), we see that the latter represents a 7.-advanced channel estimate, but only for the
pilot subcarriers. This channel estimate is inferpolated 'in the conventional way, as indicated
by the last summation in (7.6). The result is then.phase-rotated, through premultiplication
with W7tk by an amount corresponding to.a time delay of 7. to undo the earlier time
advancement. With_this we obtain the window-shifted channel estimate.

To recapitulate, we have arrived jat the-following procedure for channel estimation, assuming
that a proper value for 7. has been found:*1) obtain chanmel estimates-at the pilot subcarriers
using an appropriate method, 2) phase-rotate the above channel estimates by an amount cor-
responding to time advance by 7g '3) perform conventional polynémial interpolation to obtain
channel estimates at the'data subcarriers, and 4) phase-derotatethe ¢hannel estimates to undo
the effect of the earlier timeladvance. As indicated previously, when 7. is an integer, a simple
time-domain equivalent existsfor steps 2) and 4) that can eliminate the need of phase rotation
and derotation. But for theoretical derivation below we stay with the above formulation.

Note that, though we have limited' the treatment to comb-type pilot allocation, the results
can be readily extended to noncomb-type pilot allocation. But the equations become somewhat
cumbersome, and thus we omit the discussion.

Now we turn to the key issue of determining 7.. For this we first find how the channel
estimation MSE depends on 7. under arbitrary polynomial interpolation order. Then in the
next subsection we derive a suboptimal solution for 7.

MSE As Function of Window Shift

For convenience, let

He(f) = W H(f). (78)
Then by (7.6) we have

H(p+k)= chkH P+ n). (7.9)

The MSE in H,(p + k) (as an estimate of H,(p + k)) is the same as that in H(p + k) (as
an estimate of H(p + k)), for the two estimates are related by mere phase rotation. Hence
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we derive the former. To concentrate on the modeling error due to 7.-advanced Nth-order
polynomial interpolation, we ignore the effect of channel noise for the moment. That is, we
assume temporarily that the channel estimates at the pilot subcarriers are perfect, so that

Hr(p + xn) = HT(P + xn)
The Nth-order Taylor series expansion of H,(p + k) about a subcarrier p is given by

N (n) n
H; k
H (p+k) = E %—FRN(I)-FIC) (7.10)
n=0 ’

where H" (p) is the nth derivative of H-(p) and Ry(p + k) is the remainder term. By the
integral form of the remainder term,

k H—gNH) (p+u)
; NI

Ry(p+k) = (k—u)Ndu

(7.11)
From (7.9) and (7.

(7.12)

where
(7.13)
Since no error arises ating. a N a Ot N or below, all errors in

(7.12) are from the remainder ) ,1,...,N. Hence

i (7.14)

where
Ry(p) = [Bn(p : : (7.15)

From (7.11), if subcarriers p and p+ k are spaced closely compared to the coherence bandwidth
such that WA % ~ 1 for 0 < u < k, then

k AT u N+1
WA k

k—w)"dum~ —— 1
T Fmwtdus e (7.16)

and thence

EN+L L —jorAn\ VY
RN(p—l— k) ~ m o <¥> WAT[P
Tl=1

A kN-i-l
R En(p). (7.17)
Assume that the approximation (7.17) also holds for k = z,, and substitute it into (7.14). We

get
1

oy FT VRN ] v () (7.18)

e(p+k) =~
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where

T
£_[é\fﬂ eV N+1} . (7.19)

In the Appendix, we show that

N
G(k) = [KN = V()X '] = [] (k- 2n). (7.20)
n=0
As a result, the MSE is given by
720 = e ) (v @)1
1 2N+2 L 2N+2
ZWG N2N+2 Z|a!A
2 A (721)

where ((-)) denotes averaging over-all pilot subcarriers, that is, (o(p))) = >_,_, 1 mrwm v(0)/M
with M being the number of pilot subcarriers. The second equality in,the last equation indicates
that the MSE is dominated by the channel paths with larger values of |qy |2A 2N+2 each of which
in turn is proportional.to the 2N + 2nd power of the associated differential delay ATy

Estimation of Optimal Window Shift

From previous results, we'see that the channel estimation MSE is minimized by minimizing
ag (N, 7). Hence by elementary ealculus, the optimal window shift can be obtained by solving
the equation

daz(N, 7) _ e eN Y
2N+1
dr, N2 Z |l* (@ =0 (7.22)
However, this requires knowing the-multipath gains and delays, which are usually unknown until
after channel estimation. Below we present a techniquesthat sidesteps this dilemma.
A key to solving the problem‘is'to note that since

L
HNH(f) =Y a(=j2mAn /N VWA, (7.23)
=1
by Parseval’s theorem we get
oF (N, o) = (|HND(f)?) (7.24)

where (-) denotes averaging over all frequencies. Thus minimizing ag (N, 7.) is equivalent to min-

imizing <|H§N+l) (£)?). While gy (f) is usually not available, either, it can be approximated
by the N + 1st order difference.
For example, consider approximating it by the NV + 1st forward difference given by

DN+1H ()
N+1

FN+1 Z <N+1>H7(p+(N+1_n)F)~ (7.25)
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The approximate cost function is then given by

ag(N, 7o)~ J

s 1
T F2N+2

Some algebraic manipulations result in

N+1

S0 (M s -

n=0

>> | (7.26)

Py Ry + 2JN(9)] (727)

1

J = F2N+2 [

where Py = 2V (2N + )II/(N + 1)1, § = 20 Fr. /N,
Ry, = (H(p+nF)H*(p))), and

In(0) =R { f(—l)mANme_jmeRm} (7.28)

m=1
with m!! = m(m — 2)(m —4) - - -« where z = 24for even m and z = 1 for odd m, and
L Ni N4 1\ (N 41
g = n n—m

o 2NELON 1)V + 1)! (7.20)

(N1 -m)Y(N + 1+ m)! ‘
Noting that only Jx(#) depends on 7., we may obtain an estimate of the optimal window shift
as

~

N "
Te = 5 argmin In(0). (7.30)

For linear, quadratic and cubic interpolators, we have
J1(0) = R {e—ﬂ"R2 - 4e_j0R1} ,
J3(0) = R {—e*j?’f’Rg T6cIPR, = 15e’j9R1} !
J3(0) = R {e_j49R4 — 8¢ 3Ry + 28¢ 4R,
—566*3'9}%1} . (7.31)

To actually compute (7.30), one way is to solve the equation d.Jy (6)/df = 0 and find the solution
that minimizes Jy (). Note that the desired @ must lie in the interval [0, 27 F'Typax/Ns] where
Tmax 1S the maximum path delay. Unfortunately, algebraic solution exists only in the case of
linear interpolation, for it is the only case where the equation to be solved has order less than
5 [41]. Numerical solutions have to be resorted to in other cases. This being so, one might
as well search over [0, 27 FTimax/Ns] directly for value of 6 that minimizes Jy(6) rather than
find it indirectly through solving dJn(0)/df = 0. The density of searched points can be chosen
according to the desired accuracy. Indeed, direct search may even require less computation than
equation solving when the searched points are not excessively many. By experience, we find
that a suitable search granularity is roughly 2 to 6 times 2w F /Ny, or equivalently, 2 to 6 sample
periods.

Moreover, in current systems the channel path delays usually do not vary significantly over
several multicarrier symbols. Nor do the path gains vary violently over consecutive multicarrier
symbols. These have several implications. First, after proper initialization, it is reasonable to
perform incremental search for optimal § within a small range around the previous solution,
instead of conducting a full search over the entire interval. And secondly, if the optimal window
shift should not vary significantly over multiple multicarrier symbols, then we may update the
shift only once every few symbols. Thus the computational complexity can be further reduced.
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7.1.3 Performance With Comb-Type Pilots

Now consider the overall MSE in channel estimation by the proposed method. The estimation
error arises from three sources, namely, 1) error from interpolation (i.e., the modeling error
analyzed in Section 7.1.2), 2) use of the suboptimal window shift given by (7.30), and 3) the
channel noise (which has been ignored thus far). The effect of source 2 (suboptimal estimation of
window shift) defies an easy and general characterization as, from (7.21), it not only enters the
modeling error in a complicated way but also depends on the channel property. Fortunately, in
the simulated conditions presented later where the pilots are relatively densely spaced, it turns
out that this error source contributes a minor amount in the total MSE. So we omit its effect
and assume perfect estimation of the (approximately) optimal window shift defined by (7.22).
In the following analysis, assume that the channel noise is additive white Gaussian, i.e., AWGN,
and that it is independent of the modeling error.

For simplicity, let the pilot spacing F' be an integer fraction of Ns. Then from (7.21), the
average MSE due to modeling error is given by

B

2 5 1 2
O S
k=1
1 F-1
- 2 . o
@ - DV+1)2 kZG (k) oc (N, 7¢) (7.32)
=
QN F)

where 7¢ is the (approximately) optimal delay defined by (7.22). To caleulate specific values
for Q(N, F'), we need to define x,, specifically. +For this, consider letting =, lie in the range
—|N/2|F to [(IN 441)/2]F so that it is as;small in magnitude as peossible. And discard the
nonpilot subcarriets.that are too near a.bandedge that there do not'lexist N + 1 pilots in the
above range for interpolation use., Then for linear, quadratic, and cubié interpolation we get,
respectively,

QI E) = LF(FH)(F?H),

120
1
Q2 F) & Zgs B (F +1)(2F — L(2F + IY4F? +5),
1
F)= F(R+1
-(103F5 + 103F* 4 61F? + 21). (7.33)

The value of O'?(N ,72) is channel-dependent and no general formulas can be given.

For the contribution of the AWGN, consider (7.3). Let the pilots have unity magnitude and
let the frequency response H(p + x,) be estimated by the least-squares (LS) method, that is,
by simply dividing the received signal value at subcarrier p 4+ x,, by the transmitted pilot value
there. Then the MSE in H(p + x,) is equal to the AWGN variance, which we denote by 2.
Hence, the AWGN contribution in the channel estimation MSE at subcarrier p + & is given by
ohk) 2 02 |Chll* = o2 V(k) (XXT) T V(R (7.34)

w

and the average over all data subcarriers is given by o2 = Zi\[;ll o2 (k)/(F —1). In particular,
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we have

o2 = (0.667 - 05;?’) o2,

2 2
Ow <08_F+F2+F3>O—n’

0.224  0.058 0.058 0.013 0.013
ai:<0.776 - - - ) :

7 72 73 7 + 75 o, (7.35)

for linear, quadratic, and cubic interpolations, respectively.
The overall approximate channel estimation MSE is given by 2 + ¢2.

Numerical Examples

As an example, consider an OFDM system with comb-type pilot arrangement. Let bandwidth =
10 MHz, DFT size Ny = 1024, CP length = N, /8 = 128, and pilot spacing F' = 4 subcarriers. We
compare phase-shifted linear, quadratie, and cubic interpolation with conventional interpolation.
In phase-shifted interpolations the amount of shift is obtained'by search over the interval [0, 7]
for the best 0 value at 32 uniformly spaced points. That is, the search granularity is 2 sample
periods. The SUI-4 and. SUI-5 power-delay.profiles, (PDPs) are simulated [20], whose power
profiles are [0, —4, —8JJand [0, -5, —10} (in dB) and delay profiles are 0, 14, 36] and [0, 45, 112]
(in sample periods),/respectively. In our simulation, ‘we let the pathrcéoefficients be Rayleigh
distributed and change from symbolto symbel (i.e., subject to:block-static fading). A total of
2000 simulation runsiare used.to obtain the MSE statistics for each; signal-to-noise (SNR) value.

Figs. 7.2 and 7.3"show histograms of the estimatedswindow shifts for different interpolation
orders over SUI-4 and SUI-5] respectively. Figs:7.4'and 7.5 illustrate the eorresponding channel
estimation performance, where the normalization of MSE is relative to'channel power gain.
In the case of SUI-4 (Fig. 7.4),.the approximate analysis. for phase-shifted interpolation and
the corresponding simulation results arevalmostrindistinguishable. [The figure also shows that
conventional interpolation'suffers.significant loss at high SNR values from the MSE floor caused
by higher modeling error comparedsto phase-shifted interpolation, which can maintain a —1
slope in the performancé eurves to much higher SNR values.”In theicase of cubic interpolation,
the range of —1 slope goes up to as. high as approximately’50 dBin SNR.

For SUI-5, which has a greater delay spread-than SUI-4, the approximate analysis for phase-
shifted interpolation overestimates the MSHE by some amount. And the slopes of the MSE curves
level off at lower SNR values in comparison to SUI-4. Conventional interpolation again performs
significantly worse than phase-shifted interpolation, by roughly 5, 9, and 13 dB in MSE floor
for linear, quadratic, and cubic interpolations, respectively.

For comparison, Figs. 7.4 and 7.5 also show the performance of four-tap linear MMSE channel
estimation under two conditions. One of them has the filter coefficients calculated using the exact
channel correlation function (the “exact MMSE” curves) and the other has them calculated
using the channel correlation function corresponding to a uniform PDP of length equal to the
CP (the “approximate MMSE” curves). Not surprisingly, the “exact MMSE” case has the
best performance among all, but it is not practical. Moreover, in a channel with reasonably
short delay spread, such as SUI-4, phase-shifted cubic interpolation can provide comparable
performance. Regarding the approximate MMSE solution, it is quite poor in SUI-4 compared to
phase-shifted polynomial interpolation, but is comparable to phase-shifted cubic interpolation
in SUIL-5 that has a longer delay spread.
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Periodic Update of Window Shift

Near the end of Section 7.1.2, we indicated the possibility of updating the window shift at a
longer period than one multicarrier symbol for reduced computational complexity. Its impact is
increased suboptimality in the estimated window shift 7.. However, as pointed out towards the
beginning of this section, we are unable to obtain a simple and more general characterization of
the effect on channel estimation MSE of such suboptimality beyond that already characterized,
e.g., in (7.21). Hence we resort to simulation to investigate the effect.

For this, consider the SUI-5 PDP again. Let the carrier frequency be 2.5 GHz. Other
system parameters are the same as before. We consider three update periods (7'): 1, 10, and
20 OFDM symbol times. Figs. 7.6(a)-7.6(c) depict the simulation results with the channel
subject to block-static fading at rates corresponding to mobile speeds of 30, 100, and 200 km /h,
respectively. (The corresponding peak Doppler shifts are 0.008, 0.0267, and 0.0533 per OFDM
symbol, respectively.) At 30 km/h, the update period of 10 symbols degrades the performance
by only very little compared to updating every symbol. Even a period of 20 symbols causes only
a small loss. The degradations due to longer updategperiods are more pronounced at the higher
speeds of 100 and 200 km/h. At:100 km/h, about'1 dB loss in the MSE floor is incurred with
a 10-symbol update period and:about 2 dB loss with a 20-symbol period, for all interpolation
orders. At 200 km/h, the loss inereases to roughly 1.5 and 2°dB; respectively, for update periods
of 10 and 20 symbols forall interpolation erders:

Fig. 7.6(d) shows the results under the SUI-4 PDP at 200 km/h of mobile speed. With the
smaller delay spread-of this' channel comparéd to SUIL-5, the loss due to'increased update period
becomes significantly smaller. In particular, no perceivable degradation occurs in the case of
cubic interpolation.

In summary, the limited simulation results demonstrate that the performance loss due to an
increased update period of the window shift is'dependent on the mobile speed and the channel
delay spread. It also depends on the interpolation order, but maybe to a lesser degree. A more
exact characterization of these dependencies is outside thesscope of the present work and is left
to potential future work.

103



—O— Linear, T=1
—@—Quad., T=1
~22| =@ Cubic, T =1
= © = Linear, T=10
[| = € =Quad, T=10
|| = B = Cubic, T=10
+=Q= " Linear, T =20
28| =0~ Quad., T=20

—O— Linear, T=1
—@—Quad., T=1
~22[| =@ Cubic, T=1
= @ = Linear, T=10
[| =€ =Quad, T=10
[ | = B = Cubic, T=10
+=Q="Linear, T = 20
28| =0=Quad., T=20

NMSE (dB)
N
o

~B- Cubic, T = 20 n e -0~ Cubic, T = 20 |
30 ‘ ; ; ; ‘ ~30 , ; ; ; ‘
10 15 20 25 30 35 40 10 15 20 25 30 35 40
SNR (dB) . ENR (dB)
(a) SUI-5"PDP,[30 Km/Hr = (b) SUI-5 PDE’I 100 Km/Hr
-10 -10 T

-20

U
N
o

=
NMSE (dB)

—O— Linear, T=1
——Quad., T=1
=8 Cubic, T=1
= © = Linear, T=10

—O— Linear, T=1
—@—Quad., T=1
—22[| =@ Cubic, T=1
= @ = Linear, T=10

NMSE (dB)
N
o

)
w
=]

T

©O—00

241 - @ -Quad. T=10 -351| = ¢ = Quad., T=10
_ogl| = B = Cubic, T=10 - B = Cubic, T=10
+=Q="Linear, T =20 —a0lH| " =0~ Linear, T = 20
—28}| ' =0=Quad., T=20 == Quad., T =20
=O- Cubic, T =20 =O- Cubic, T = 20

_30 T | | | | _45 T i i i i

10 15 20 25 30 35 40 10 15 20 25 30 35 40
SNR (dB) SNR (dB)
(¢) SUI-5 PDP, 200 Km/Hr (d) SUI-4 PDP, 200 Km/Hr
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Figure 7.7: Cluster structure in Mobile WiMAX downlink and corresponding channel estimation
method.

7.1.4 Application te- WiMAX Downlink

The Mobile WiMAX specifications furnish an interesting example to test the performance of the
proposed technique. In the WiMAX downlink (DL), the subearriers in an orthogonal frequency-
division multiple acgess (OF DM A)-symbol-are divided into, “clusters” ‘that.contain 14 consecutive
subcarriers each. Alternating patterns of pilot subcarriers are placed instemporally successive
symbols. Fig. 7.7 illustrates how pilots are placed in a cluster, where €ach circle indicates a
subcarrier and thegl4 subcarriers in the cluster-arciordered from left to right. The dark circles
indicate pilot subcarriers, For convenience, in this section let H (s, k) denote the channel response
at the kth subcarrier of some cluster in'symbol s. In the following, we tailor the proposed
channel estimation ‘technique to suit the. WiMAX downlink signal structure and investigate
the resulting channel estimation ‘performance, assuming. perfect carrier frequency and symbol
timing synchronization.” We.also propose a method to adaptively select the interpolation order
for minimizing the channel estimation MSE.

Channel Estimator Design

Since the assignment of clusters to users is pseudo-random, two nearest clusters of a user may
not be adjacent in frequency. Thus it is simplest to let the channel estimator handle the clusters
at different frequency positions separately. In each cluster, there are only two pilot subcarriers
whose distance varies with symbol index. In a typical system with 10 MHz bandwidth and Ng =
1024, two adjacent subcarriers are approximately 10 kHz apart [48, 98]. Hence in odd-numbered
symbols the pilots are spaced by over 100 kHz, which is about the same order of magnitude as
the coherence bandwidth of a typical urban outdoor channel [84]. Linear interpolation, even
with optimal window shift, is not expected to yield good performance over this distance. But
with only two pilots, we cannot perform higher-order interpolation. In even-numbered symbols,
extrapolation is needed to estimate the channel at the data subcarriers on the outersides of the
pilots. Such extrapolation amplifies the noise because at least one extrapolation coefficient is
greater than 1. Therefore, for better performance, a channel estimator should not limit itself to
using the two only pilots in the current cluster, but should avail itself of the channel information
at the two other pilot frequencies in temporally close clusters. This prompts the following basic
design. For convenience, we describe it for symbols 2 and 3 (enclosed in the dashed box in
Fig. 7.7) together.

105



1. Do LS channel estimation for all pilot subcarriers in symbols 1 to 4.

2. Linearly interpolate in time to obtain H(2,0), H(2,12), H(3,4) and H(3,8) (indicated by
vertical arrows in Fig. 7.7).

3. Do phase-shifted polynomial interpolation in frequency to obtain channel estimates for the
remaining subcarriers in symbols 2 and 3 (indicated by horizontal arrows in Fig. 7.7).

Now, we mentioned previously that the phase-shifting effect in step 3 can be achieved in
several ways. In particular, if the corresponding amount of window shift 7, is a known integer,
then the effect can be achieved by circular shifting of the received signal by —7, before DFT. In
this regard, earlier discussion indicates that we need not go to a fractional-sample accuracy in the
value of 7.; rather, a granularity of 2 to 6 samples can be enough. Therefore, we may let 7, be an
integer. In addition, to save computation, we estimate 7. only once per DL subframe, employing
the preamble symbol that begins the subframe. Thus 7, is known for all later OFDMA symbols
in the subframe. The final channel estimation method (for symbols 2 and 3) is as follows.

1. Recall the value of 7. thatzas been estimated using the preamble symbol by the method
of Section 7.1.2.

2. Circularly shift the ‘signal samples in.symbols 1 te 4 by —7ebefore taking their DFT.
This is equivalent. to having a channel with phase-rotated frequency response H, (s, k) =
W—7f(F) H (s, kjswhere f(k) denotes the normalized frequency ofsubcarrier k. (We have
used an adapted version of the notations in (7.7) here.)

3. Do LS channel.estimation for pilot subcarriers ini Syinbols 1 to 4. This yields, for each pilot
with time-frequency index (s, k), a phase-rotated channel estimate Ho(s, k) = W7/ (*) [ (s, k).
(We have usedran adapted version of the notations in (7.8) here.)

4. Linearly interpolate in time to obbain H-(2,0), H-(2:12), H,(3,4)-and H.(3,8).

5. Perform conventional interpolation (and extrapolation) in frequency to obtain channel
estimates for the remaining subecarriers in symbols 2 and 3...This corresponds to the
operation described in (7.9), or equivalently, that in the last summation in (7.6).

Note that we do not have to carry 6ut the phase-derotation indicated by the premultiplication
with W7e(®+5) in the RHS of (7.6), for by the circular signal shifting in step 2, the phase-rotated
channel becomes what is needed for signal detection; not the phase-derotated one. Note also
that step 4 (temporal interpolation) results in four reference data points per cluster. Hence
in step 5 we may employ an interpolation order up to three. For Nth-order interpolation, to
minimize the modeling error in step 5, we use the N + 1 nearest pilots of each data subcarrier
to interpolate for its channel response.

Performance Analysis

Four factors contribute to the channel estimation error. They are, in order of their appearance in
the channel estimation steps, 1) suboptimality in the estimated window shift (introduced in step
1), 2) the AWGN (introduced in step 3), 3) modeling error due to time-domain interpolation
(introduced in step 4), and 4) modeling error due to frequency-domain interpolation (introduced
in step 5). Compared to the earlier analysis done in Section 7.1.3, the only additional item is
item 3. However, due to this item, the AWGN propagates among the subcarriers in a different
way than in the previous analysis. The time-domain interpolation error itself propagates through
algorithm step 5, too. Moreover, the pilots used for interpolation at a data subcarrier are chosen
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somewhat differently than in Section 7.1.3 and the bandedge subcarriers are not discarded as
before. Therefore, we will need to redo some analysis.

Again, item 1 is difficult to analyze but, fortunately, constitutes a minor contribution in the
total MSE. Thus only the other three factors need to be analyzed. Assume that these three
kinds of error are uncorrelated.

First, consider the AWGN. It enters the channel estimator computation through the LS
channel estimation conducted at the pilot subcarriers. Since the pilots are BPSK-modulated,
let the estimation noise variance at a pilot be denoted o2 as in the previous analysis. This
estimation noise propagates to other subcarriers in the temporal interpolation of step 4 and
the frequency interpolation of step 5. Via the temporal 1nterpolat10n it contaminates H,(s, k)
where (s, k) € {(2,4),(2,8),(3,0), (3,12)}. Since H,(s,k) = [Hy(s—1,k)+Hy(s+1, k)]/2 where
H,(s—1,k) and H,(s+ 1, k) contain independent additive noise, the noise variance in Hy (s, k)

is given b
S 1\? 1)\ 2 1
o2 (s, k) = <2> o2+ <2> 02 = 50721. (7.36)

Via the frequency interpolation, it Tésults in an estimation noise variance

Z (s, Tn) (7.37)
where s € {2,3}, kfe {1,2,3,5,6,7,9,10,11,13} and x, € {0,4,8;12}, with C, indexed
similarly to (7.3). Aweraging all data subcarriers, we obtain the average noise variance as

oa, 1 = 0.51300%, s, 5 = 0.66990%, 0s 3 = 0.812107; (7.38)

where the second subseript to o denotes interpolation order.
Secondly, consider the modeling errorfinstemporal interpolation. | Its.mean-square value is
defined by

2
WG = Eipials. )= % (E=(4= LE) 4 H, (LR (7.39)
for (s, k) € {(2,0),(2,12),(3,4),(3,8)}. Assume Rayleigh faded paths. Then [84, 41]
L
i 1
= ZAl |:§ = 2J0(27Tfl) 1= 2J0(47Tfl):|
=1
37T Z flAL = ot (7.40)

where Al2 = E|o|?, f; is the peak Doppler shift of path [ times the OFDMA symbol period,
Jo(+) is the Bessel function of the first kind of order 0, and the approximation is obtained
by expanding the Bessel function into a second-order Taylor series. Assume that the channel
responses at different subcarriers are uncorrelated. Then a relation similar to (7.37) exists
concerning the propagation of the temporal modeling error in the frequency domain via channel
estimation step 5. Noting that the temporal interpolation error is zero at the pilot locations, we
get the average MSE of temporal interpolation over all data subcarriers as

o5, = 045310}, 07, = 0.55770%, 043 = 0.652507, (7.41)

where the second subscript to o again indicates the interpolation order.
Finally, consider the modeling error in frequency interpolation. The MSE at any data sub-
carrier is as given in (7.21), except that the averages are different from that given in (7.32) and
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(7.33) due to the difference in choice of interpolating pilots as well as the presence of extrapola-
tion for subcarrier 13. Straightforward numerical calculation yields the following average MSE
of frequency interpolation over all data subcarriers:

1 _2645806(1 Te ),
12 — 12.812502(2,79),
025 = 93.082002(3,79), (7.42)

where the second subscript to o once again indicates the interpolation order.
Putting all together, we obtain the overall average channel estimation MSE as

o1 = 0.513007 + 0.453107, + 2.6458 07 (1,72),
0% = 0.669902 + 0.55770% + 12.8125 53(2,72),
0% 5 = 0.81210% + 0.65250% + 93.0820 02(3, 72), (7.43)

respectively, for linear, quadratic, andl cubic interpolations.

Simulation Examples

We simulate a system with-carrier frequency = 2.5 GHzybandwidth =10 MHz, DF'T size = 1024,
and cyclic prefix length =128.F We-let a.DI: subframe contain 24 OFDMA symbols following
the preamble. Again, we simulate the SUI-4 and SUI-5:PDPsswith hlock-static fading at a rate
corresponding to 100 km /h of mobile speéd.

The histograms ‘'of estimated window shifts for-different interpolation orders are similar to
that in Fig. 7.2 and 7.3, and are thus omitted.- Figs. 7.8(a) and 7.8(b) show some channel
estimation performance results.” In the caseof SUI-4, the approximate analysis matches the
simulation results almost exactly. [For linear interpolation, the MSE floor due to frequency
interpolation starts tomanifest at:about-30"dB of pilot SNR; which is lower than either quadratic
or cubic interpolation. But, it performs:somewhat better in lower SNR values where the AWGN
effect is more prominent. For.SUI-5; which hasa larger-delay spread than SUI-4, the approximate
analysis is less accurate; but: still follows the general behaviorgsof the simulation results. The
MSE performance of the‘three different interpolation orders; theugh poorer than under SUI-
4, shows characteristically similar relation. In particular, higher-order interpolations perform
better at higher pilot SNR values by having lower frequency interpolation errors, but lower-
order interpolations are somewhat better at lowerl pilot SNR values due to smaller AWGN
contributions there.

Adaptive Selection of Interpolation Order

That lower-order interpolators are less prone to AWGN whereas higher-order ones have smaller
modeling errors suggests adaptive selection of the interpolator order. This can be accomplished
if we can estimate o2, U?(N, 72), and 0% and use the results to predict the MSE via (7.43). The
interpolation order that yields the least MSE can then be chosen.

It is relatively easy to estimate o2 using the null subcarriers in the preamble symbol. But it
is hard to estimate U% using only the preamble symbol, because it is a function of the channel
variation over time. Fortunately, a% is the least dominating term of three and its coefficient
varies the least with interpolator order. Thus we disregard it in the selection of interpolation
order. What remains is the estimation of ag(N 72). From (7.26) and (7.27), we can estimate it
from the preamble symbol as

GE(N,78) = PyRy+ 2min{Jy ()} (7.44)

F2N+2

108



-5 T T
=g Simulation: Linear
= ® = Analysis: Linear
==@==Simulation: Quad.
~10} = @ = Analysis: Quad. H
Simulation: Cubic
= @ = Analysis: Cubic
_15 -
& -20
z
w
%)
=
Z o5l
_30 -
_35 L
-40 1 1 Il
10 15 20 25 30 35 40
Pilot SNR (dB)
n _ -
R (a) SUL-4 . =" _'I
1
-5 T T

I
==g¢== Simulation: Linear
= ¥ = Analysis: Linear
==@== Simulation: Quad.
= @ = Analysis: Quad.

Simulation: Cubic
= @ = Analysis: Cubic

NMSE (dB)
AN
(¢,
T

_20 -
_25 1
10 15 20 25 30 35 40
Pilot SNR (dB)
(b) SUI-5

Figure 7.8: CE performance in WiMAX DL transmission at 100 km/h mobile speed with different
orders of interpolation.

109



where Ry = (|H(f)|?) — 62 with 2 being estimate of 02. Note that P; = 6, P, = 20, and
P3 =T10.
In summary, for each DL subframe, we determine the interpolation order by comparing the
following predicted partial MSEs for linear, quadratic, and cubic interpolations, respectively:
Ora £ 0.513062 + 0.01034 [6Ro + 2mein{J1(9)}] ,
&%172 £ 0.669962 4 0.003128 [2OR0 +2 rrgn{JQ(O)}] ,

%5 2 0.812162 4 0.001420 [701%0 +2 moin{Jg(e)}] , (7.45)

where the estimates are calculated using the received preamble of the DL subframe. The inter-
polation order with the smallest predicted partial MSE is selected.
Fig. 7. 9( ) compares the MSE performance of adaptive 1nterpolat10n with that of fixed
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7.2 Approximate LMMSE CE with Estimations of Mean Delay
and RMS Delay Spread

This section considers the mean delay and the root-mean-square delay spread estimation prob-
lem in multi-carrier system for the purpose of the channel estimation. Wiener channel estimation
yields good performance, but requires the knowledge of the channel correlation. An alternative
suboptimal approach uses the pre-defined correlation model, such as the correlation shape ac-
cording to exponential decayed power-delay profile (PDP) [75, 18] or the uniform distributed
PDP. However, this approach requires the delay-spread and the mean delay parameters to gen-
erate the correlation function. In this section, we present a simple estimation scheme for the
delay parameters and apply this scheme to the channel estimations for the multi-carrier system
with typical comb-type pilot assignment and the WiMAX systems.

7.2.1 Introduction

Wiener filtering or linear minimum miean-square érror (LMMSE) estimation can yield good
performance in multicarrier chanfiel estimation [18, 61, 72]. Given estimated frequency responses
of the channel at some pilotssubcarriers, standard LMMSE optimization leads to the LMMSE
channel estimate at any subcarrier d as [18]

A~

Hy=w'H, (7.46)

with
w=(Rp+ UTQLI)_lfdp, (7.47)

where Hy is the desired LMMSE channel estimate, w'is the Wiener filter, superscript H denotes
Hermitian transpose, E p is the vector of givenschannel estimates at pilet subcarriers, R, =
E(H,H f ) is the amfocorrelation matrix of channel responses at the pilot subcarriers, 1,4, =
E(H,H}) is the vector of crosscorrelations.between-the.channel responses at the pilot subcarriers
and that to be estimated, o2 is the variance of the additive channel' noise (assumed to be white
Gaussian, i.e., AWGN), and.1 dénotes an identity matrix.

To generate the LMMSE coefficients, we need the knowledge of thie autocorrelation function
of the channel frequency response: In convention, we mayséther use the all pilot-aided or the
decision-aided estimation of the correlation function.. Fhis constrain may not be available or may
take great computation in estimation, of the correlation function. Alternative to measuring the
correlation, A way using a predefined shape for the correlation has been proposed in [75, 18].
Typically, the shape using exponential decayed power-delay profile (PDP) and the uniform
distributed PDP are widely considered. For the exponential PDP, the correlation Ry(k) is given
by [75] .

Rf(k) o 1 +j27TTrmsk/N

where N is the discrete Fourier transform (DFT) size used in the OFDM or the OFDMA system,
and we have assumed that the first path has zero delay. If the first path has delay 7, (which
may arise, for example, from OFDM symbol synchronization error or variation in the uplink
transmission timing of different users in OFDMA), then the correlation function is

(7.48)

e—jQwTok/N
Re(k) = . 7.49
s) L+ j2nmrmsk/N (7.49)
In addition, we have the mean-delay of the channel profile
Te = To + Trms- (750)
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Alternatively, in the case of a uniform PDP of width T', we have

e~ 9277ek/N gin (7 Tk /N)

Ry (k) = 7Tk/N ’

(7.51)

with 7. = 7, + T7/2 and T = V/127ms. In these approaches, the factors: root-mean-square
(RMS) delay spread and the mean delay are necessary. To perform better correlation model,
we need to estimate the RMS delay spread as well as the mean delay for the channel estimation
using the approximate LMMSE.

Before the estimation issue, we formulate the definition of the RMS delay and the mean
delay. Consider a discrete-time multipath channel impulse response

L
h(n,t) = ay(t)d(n —7) (7.52)
=1

where 77 is the [th path delay in units.of the sampling period T and «y is its complex path gain.
When only one OFDM symbol is; available, we may consider the “instantaneous” RMS delay,
which is defined by

Brms(t) — | aekchlot =0 (7.53)

Sy lou(d)]2

with “instantaneous™ mean delay

u Zlel |Oél (t)|27'l

e
2or=rlon(®)?

However, if there exists multiple samples of the' OFDM symbols, the (“averaged”) RMS delay
spread is given by

Te(t) (7.54)

e, ZIL:1 Effan*yri=m)* (7.55)

ity Efleql?}

in which .
2l Bl

i L
> i Etlaal?}

(7.56)

is the (“averaged”) mean delay.

Several RMS delay spread estimation methods have been proposed in the literature [99, 100,
3, 107]. Witrisal [99] proves that the RMS delay spread is proportional to the level crossing
rate of the channel frequency response. However, accurate estimation of the level crossing rate
requires dense frequency sampling of the channel response, which is not provided by typical
OFDM and OFDMA systems that employ widely spaced pilots. Athaudage and Jayalath [3]
elaborate on the relation between the cyclic prefix (CP) correlation and the power-delay profile
and apply this relation to RMS delay spread estimation. But to calculate the CP correlation
may take many OFDM symbols and the search procedure used to solve for the RMS delay spread
may cost much computation. Moreover, the algorithm is derived for a single-transmitter scenario
and is not suitable for the uplink of an OFDMA system where different users may have different
RMS delay spreads. The paper [107] suggests using multiple cross-correlations of the channel
frequency responses to estimate the RMS delay. However, there are several constrains in their
algorithms. First, multiple correlations are required; Second, the inverse Fourier transform is
used to derive the time domain correlations, both of which take great computations in practice.

In follows, we first review the LMMSE channel estimation and derive the performance loss
due to in-accurate auto-correlation. Then, as the key contribution in this section, we present
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a extreme low complexity estimation of the RMS delay spread and the mean delay, and the
estimation accuracy analyses. We also present the application of the delay spread estimations
in the OFDM channel estimation with the approximate LMMSE estimator. Finally, we adopt
this estimator in WiMAX system.

7.2.2 LMMSE Channel Estimation with Approximate Channel Correlation

Let R¢(k) be the autocorrelation function of the discrete channel frequency response as would
be encountered in an orthogonal frequency-division multiplexing (OFDM) or an orthogonal
frequency-division multiple access (OFDMA) system. Typical LMMSE channel estimation may
be decomposed into a two-step process where one first obtains the least-square (LS) channel
estimate at some pilot subcarriers and then interpolates for the channel response at each desired
subcarrier using a Wiener filter with coefficients [18]

= Ry +02D) 1y, (7.57)

where R, = F [ﬁ o f } is the autocovariance matrix of channel frequency responses at the
pilot positions, rg, = E [H aH p] is'the cross-correlation vector between the channel frequency
responses at the pilots and the data subcarrie to be estimated,.and o2 is the variance of the
additive white Gaussian noise. The estimation formula is given by

Hy=wlH

! (7.58)

where H » is the chanmel responses at pilots using LS estimator. "The entries of R, and rg,
are defined by Rf(k). However, the real correlation function is not available. One way to
approximate the MMSE Wiener coefficients is adopting the per-defined correlation matrix, for
example, the exponential power-delay profile as givenin (7.48).

Performance Evaluation in Approximate LMMSE CE

We evaluate the theoretical estimaterMSE-of thelMMSE-CE adopting the approximate power-
delay profile. At lea$t two factors cause the estimatée MSE, whichrare the minimal MSE with
the true correlations and the additional perturbation due to approximate correlations.

Assume R, , and r,, be the true correlation matrices of pilotssand data, whereas R;, and
rqp be the approximations. Firstiswhen the true correlations are known, the minimal MSE of
the LMMSE CE is given by

o W .
Oho = B |Ho— Aol = By o, (Ry o + 021) ' 14, (7.59)

where fAId’o is the estimated response, Py = E|Hg4|?, Ry, is the true correlation matrix of the
pilot responses, and R, is the cross-correlation vector of the pilot responses and the desired
data response. Now, the estimate MSE of the approximate LMMSE CE is given by

2 _ gl f," = Py — 2R {w! i 2
op = a—Ha| =Py {w"ry,} +w"” (Rpo+03I) w. (7.60)
Let w, = ( po+ O I) , be the optimal coefficient vector of the true LMMSE CE, and
AwEw—w,= (R, + cr,%I)_1 rg— (Rpo+ 07211)_1 Tdo- (7.61)

Since
w (Rpo+opl)w = wy (Ryo+onl) w, + Aw' (Ryo + 071) Aw
2R {Awlr,,}; (7.62)
= Aw’ (Rp,o + U?LI) Aw + 2R {QHfdjo}
-1

—rl, Rpo+ 021) 14, (7.63)

114



we have that

o2 = 0’%{70 + Ao (7.64)

where

2
Aok = Aw'! (Ry, +021) Aw = || RY?Au (7.65)

is the perturbation and R(l,/ 2 is the square-root matrix of the positive definite matrix Ry, , + 021
The derivation in [62] yields the same result in the perturbation.

7.2.3 Simple Estimation Scheme of RMS Delay Spread and Mean Delay
Estimation Schemes

The (normalized) frequency response of the channel in (7.52) is given by
L .
= D jeult)e 7PN, (7.66)

Consider advancing the channel response by 7 time units. “The corresponding frequency response
is given by

Hp(f,t) =2 HH(f, 1) Zal e 2 m=DR/N (7.67)

Differentiating H,(f,t) with respect to f, we get

dHT(fa _]27T j270T fIN
T Zal Sy — 7)e” )2 —T)FIN, (7.68)

(The above is a manifestation of the well-known Fourier transform property —j2nF{nh(n)} =
H(f)/df.) From Parseval’s theorem, we have

J (5 t)—<‘d};;f > Zlaz @ )’ (7.69)

and thence

2
J(r) =E<’d}1;;f)

ar & )
= N2 > lealP(m =) (7.70)
=1

where (-) denotes frequency averaging, and {-} and E{} denote expectation by ideal time-
averaging.

The above provides an alternative characterization of the mean delay and the RMS delay
spread. First, J(7) is a quadratic function in 7. It is minimized when 7 = 7.. And secondly,
the minimum value of J(7) is proportional to the mean-square delay spread 7&ys. Therefore,
we have that

7, = argmin J(7), (7.71)
and N2 j()
a min J (7
am ZZ:O‘O‘”

Similarly, when only one OFDM symbol is used, we also have the instantaneous delays

Tc(t) = arg HEH J(T,t) (7.73)
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and
N2min J(r,t)

42 301 la (D
The novelty of the present proposal consists in the solution for 7/7(¢) and 7rms/7rms(t) via a
frequency-domain formulation.

Specifically, let f and f + Fs be two adjacent pilot subcarriers and let H,(f) and H.(f + F)

be the LS channel estimates at these positions. Ignore the effect of the AWGN for the moment.
Using first-order difference to approximate dH-(f)/df in (7.70), we get

)

TI?mS (t) = (7.74)

APH(f + Fy, t) — H(f, 1)
F,

J(r)~J(r)2 E <

_2(B — R{R))

7 (7.75)
where ¢ = 277 F, /N, Ry = (|1 BB 5 9P~ (H(F D) ~ S laa®)?, R =
(H(f + Fy, t)H*(f, t)), and ) ati averages over all available pilot subcarriers

only. In writing the above, v e ;
can be easily extended i ually s ilots. ‘Space, does not allow additional
details. . ‘

Straightforward alg |:
i
rg (7.76)
(7.77)
Substituting into (7
(7.78)
Similarly, the estimation of
SrF, (7.79)
. _ N | R
Trms(t) = o F. 2 ( Fo) (7.80)
From (7.50), we also obtain an estimation of the initial delays:
7%0 = ’Ii'c — ’%rms, and ’;'\'O(t) = 7A'c(t) — ’?I'ms(t) (781)
Now consider the effect of the AWGN. All we need to do is to modify Ry to
Ro = (|H(f)]*) = No (7.82)

where N, is the estimated noise variance. The estimation of N, can be achieved by estimating
the power of the subcarriers in the guard band and those that have a null value.
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Estimate Accuracy of the RMS Delay

The accuracy depends on two factors: the approximation of the differential equation and the
estimation of Ry and R; in (7.75). Assume estimation parameters are derived over T OFDM
symbols and Z denotes the expectation of z. Let Ry — Ny = Ay + ARy and Ry = A; + ARy,
where now A = Zl | |ag[2e772mMkEs are the actual values of Ry’s respectively, and ARy and
ARy are the estimate errors of Ag and A; correspondingly. Substituting the assumptions into
(7.78), we have that

R 2N* |A1\
v A |E(R)]
A1| E{R; )
AJ, = | = — . 7.84
( Ay E{Ro} (784)

Now, we consider the expansion of [R;|. Since we have |A;| = max® {7794} and

. § 2 2 Ey T,

= (7.85)

maximizes R {e*j ¢I1}, weget [A| =R {e*j ¢OA71}. Furthermore, fourth order Taylor expansion
of e=79° A gives that

Z joul? (= 7+ AaAJq (7.86)

where AJ, = 2”223141\]) ST Jaa? (7, — 7)*. Applying the eXpansion into (7.88), we have that

1 5 2N?
s — TemsE A == 2F2 (AJy +AJd), (7.87)

where AJ, is the erzor term due to the difference approximation and A.J, is the term due to
estimation errors of Ry and. R, .
Next, we analyze the property of'AJ.. From derivation, weshave the approximation

|A1|AR0 R { ARye 79}

AJe —
AO Ag

(7.88)

which is corresponding to the properties of ARy and AR;. We assume that the pilots have the

. . . A .
comb-type assignment that the samples for estimation are located at f fo + kFs for integer
k. In addition, we assume perfect estimated noise variance that Ny = o2 . Then,

ARy = Ro - G — Ao =3+ 10+ €0 (7.89)
with

b = (HPP) -4,
m = 2R{{HHw (D)},
o = (w(fP) - ol (7.90)

ARy =Ry — A1 =01 +m +e1 (7.91)
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with

61 = (H(f+Fs)H*(f)) — Au,
m = (H(f + F)w(f) + H*(/)w(f + Fy)),
g1 = (w(f+ Fs)w*(f)). (7.92)

Since 7, and &, for n € {0,1} are composed by AWGN and Rayleigh channel assumption
yields that 8y = 41, we have that AJ, = 0 and

AP (5 ==
ATE= (B+e3+m)
1 N
2 2 ,—92¢° 2 2 2
+pr (B (F ) e P+ i+ TP
Ay — "
—2% : %{(5051 + Tiom) e 1? } (7.93)
Ao
where 02 = 0,2 = (el , - 5901 = > (Jau|?)2e 72 /N gy
2N/(Fay) is x* of degrog RNF, = [P = 2F A0 /(NT),

n? = (A2/Ap)n, and Hogm = (A1/Ao)|m
given by, respectively, .

(7.94)
(7.95)
The results simplify considera [ ] ate tl g s parameters from one
OFDM(A) symbol: t ]
(7.96)
and
N3o2
2 _ w 2 2\ 2
TAmtms ~ 8riF3T AL (402141 o
A, (Ag oA+ Aoé)?{Age_j2¢°})] : (7.97)

where Ay, = Zle |al(t)|26_j27mkps

Estimate Accuracy of the Mean Delay

According to estimation of 7, in (7.76), the accuracy of mean delay relies on the estimation of
E{R;}. Following the suggestion in [93] , we have that

- N ARy
~ __ o Cx -
T~ o (gb —|—\s{ T }) (7.98)

when AR; << A;.
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According to third order Taylor expansion of A, we have that

- - —  _mF?%A, 471'3F
Al ~e j2mFsTe /N (AO -2 N2 0?%1115 Z |Oél\ =T ) (7.99)

and
@° ~ =2wFT/N — Ady (7.100)

. 43 F3 L 2 -
with Adar = greas 2ie |l (n = 7)°.
Next, consider the perturbation due to noise and fading as given

1 A
& 1 J¢° j¢°
Adey = |A1| <\9{|A1|51} —I-\s{e 171} +\s{e 51}) (7.101)

in which & {e_j¢on1} and & {e_j¢ 51} are zero-mean real Gaussian and

(7.102)
where Cp =3, |o
We have that
(7.103)
with
(7.104)
(7.105)
(7.106)
Hence, the mean and variance of A7, are given by, respectively,
_ NAJ, 87T3F — _\3
AT = e~ 3NOAL Z |ou|*(m — 7) (7.107)
and g
N2AJ2
=2 _ el
AT, PSR (7.108)
Moreover, when instantaneous mean-delay is considered, we have that
_ 8miF? .3
AT, = 3NTA, Z lag(t)|” (7 — 7) (7.109)
and No2
3 __ Y% (2 _ —j¢°
A2 = cop T (an +24g — 2R{ Ase }) (7.110)

where Ay, = S35 | |ay(t)[2e=32mmkEs
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7.2.4 Numerical Evaluation and Simulation Study

We first evaluate the analytical result of the delay estimator accuracy, and then apply the
proposed delay estimator in the channel estimation for the OFDM system with comb-type pilot
assignment.

Evaluation of Delay Estimation Accuracy

We simulate OFDM transmission with the following parameters: bandwidth = 10 MHz, DFT
size = 1024, CP length = 128, pilot spacing = 8, and carrier frequency = 2.5 GHz. The channel
has 6 Rayleigh paths with power profile [0,—1, -9, —10,—15,—20] (in dB) and delay profile
[10,13,17,21,27,35] (in samples), which follow ETSI’s Vehicular A channel model except that
the path delays are rounded to integer sample numbers and that an initial delay of 10 samples
(approximately 0.9 us) is added.

We consider estimating the instantaneous delay parameters based on one OFDM symbol
only, i.e., K = 1. This is useful, for example, in channel estimation based on only one received
OFDM symbol. By using the least; amount of data possible, the estimation should be most
prone to noise effects, as is alse confirmed by (7.110) for the mean delay and by (7.97) for the
RMS delay spread where the leading factors are both inverse proportional to K.

We consider SNR values between 10 and 40 dB, total 100 Rayleigh distributed channels and
perform 100 simulation runs per channel for each SNR value simulated. Fig. 7.10 shows the
probabilities of the amalytical mean-estimation errors of Az, and Azg,g, and the simulated
means of 100 channels at 20 dB SNR=It shows peérfect matehes between the analytical and the
simulated mean errors. In addition; we get that the mean estimation'errors are not significant in
all the channels. Figs 7.11 shows results for the averaged standard deviatiohs of A7, and Arfyg
of total 100 channels. The theory and the simulation results agree well over the large range of
SNR values tested,where the estimator performance also varies over a largé range. Note that, in
both plots, the curves roughly show a —1 slope at lower SNR values and a —0.5 slope at higher
SNR. This agrees with the presence of a.g2-term-in-the-brackets in both (7.110) and (7.97),
whose effect is moreprominent in lower SNR but négligible in higher"SNR. Together with the
o2 term outside the brackets in ‘eithet lequation, it yields a —1 slope in lower SNR and a —0.5
slope in higher SNR after taking.the square root.

Apply to Channel Estimation

We simulate OFDM transmission with' comb type pilot assignment. The system parameters are
as follows: carrier frequency = 2.5 GHz, bandwidth = 10 MHz, DFT size = 1024, length of
CP = 128, pilot spacing = 4 subcarriers. The ETSI Vehicular A and SUI-4 channel models are
used in the simulation. The channel estimator uses four-tap Wiener filter. Both the exponential
PDP and the uniform distributed PDP are used as the correlation models. In addition, the
optimal Wiener filter with true correlation model is also studied as the optimal reference. In
this simulations, the mean delay and delay spread is estimated once per OFDM symbol and all
samples at pilot subcarriers are used to estimate the delays.

Fig. 7.12(a) shows the simulation result over ETSI Vehicular-A channel; whereas, Fig. 7.12(b)
shows the result over SUI-4. Both the simulation and analysis results are illustrated, and we
can see the perfect matches of the simulation and analysis results in both channel. In ETSI
Vehicular-A channel, the performances of the approximate filters are near the optimal one. In
SUI-4 channel, they are a little far away from the optimal one at high SNR region. When
compare to the adopted correlation model, the exponential PDP assumption is more suitable
than uniform distributed assumption in these two cases.
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Periodic Update of Wiener Coefficients

In actual system realization, the delays can be updated in a period to reduce the implementation
complexity. Consider the system described previous as an example. We give a design example
to realize the proposed estimator. Recall the required parameters of the channel estimator.
We divide the process into three steps. First, we need to estimate the noise variance and the
correlations Ry and R;. Second, the Wiener coefficients are updated according to the noise
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Figure 7.12: Normalized MSE in channel estimation for multi-carrier system with comb-type
pilot assignment.
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variance and estimated delay parameter, which is generated by estimated Ry and R;. Finally,
the channel response is estimated via the approximate Wiener filtering. At first step, in frequency
dimension, we use 16 interleaved sample pairs to estimate instantaneous Ry and Rjp; then, in
temporal dimension, we adopt the exponential average to smooth the correlations with forgetting
factor f = 1 — 278, In addition, the noise variance is estimated via the null subcarrier of the
OFDM symbols and also smoothed by the exponential average filter. At second step, the Wiener
coeflicients are updated per 64 symbols. With the proposed design, the cost in generating the
coefficients is extremely lower than the channel estimation.

The Vehicular-A and SUI-4 channel models are also used in the following simulations. In
addition, the channel responses are generated symbol-by-symbol according to Jakes model and
the mobility speeds of each paths are all set to 100 KM/Hr. Figs. 7.13(a) and 7.13(b) illustrate
the simulated NMSEs of the estimators over the Vehicular-A and SUI-4 correspondingly. The
optimal Wiener estimator is also given as the benchmark. As shown, in Vehicular-A channel,
the NMSEs of both approximate estimators are closed to the optimal one. In SUI-4 model,
the NMSE of the approximate estimator according exponential model is also quite close to the
benchmark. But, the estimator using uniform /model isya little bit poor.

7.2.5 Appilcation in WiMAX Channel Estimation

We apply the approximate LMMSE channel estimation in the WiMAX UL and DL. Unlike
the classic comb-type “based-pilot-structure-in OFDM system, the WiMAX adopts the cluster
structure in downlink and-the tile structure in uplink.. These. discrete pieced structure makes
the common transform based estimation not feasible in WiMAX, Thus, the per piece estimation
is considered. The approximate LMMSE is one suitable approach.

WiMAX DL Channel Estimations

We consider two approaches using four taps LMMSE CE._in DL channel estimation. At first
approach, the delay parameters areipdatedsinsevery=timesslots of the receptions using the pilot
responses of the assoeiated cluster for the user. The-second approach estimates the parameters
once per subframe adopting the preamble symbol. In complexity issues the first approach is more
complicate than the second due.to the updating of the delay parameters and Wiener coeflicients;
whereas, in performance issue, thesecond approach has-poer performance than the first one due
to time-varying parameters.
In the first approach, referring to [Fig.7.7, we have the following process:

1. estimate noise variance using the null subscarrier in the preamble symbol;
2. do least-square channel estimation at existing pilots of the clusters;
3. do time domain average to acquire the responses of H(2,0), H(2,12), H(3,4) and H(3,8);

4. estimate RMS delay and mean delay, and generate the associated coefficients for the in-
terpolator; and

5. perform the interpolation to obtain the residual responses.

For the second approach, it is similar to the first, except for skipping the step 4 and using
preamble to generate the delay parameters and coefficients in step 1.

We study the proposed estimators and compare to the optimal MMSE estimator with true
correlation. Four-tap estimators are used in the simulation. Besides, we also compare to phase-
shifted polynomially interpolator with the adaptive selection scheme proposed in section 7.1.4.
The simulated system parameters are given as follows: FFT size = 1024, bandwidth = 10 MHz,
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Figure 7.13: Simulation studies of the periodic update scheme for multi-carrier with comb-type
pilots at 100 KM /Hr mobility speed.
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center frequency = 2.5 GHz and 6 subchannels for a specified burst. The ETSI Vehicular-A [21],
SUI-4 and SUI-5 channel are used in the comparisons, and the mobility is set to 100 Km/Hr.

Figs. 7.14(a), 7.14(b) and 7.14(c) show the comparisons of the approaches over ETSI
Vehicular-A, SUI-4 and SUI-5 channel profile correspondingly. As shown in Figs. 7.14(a), the
proposed estimators are closed to the optimal benchmark, except for the adaptive selection in
low SNR region. In SUI-4 channel, the approximate MMSE approaches have good performance
near the optimal at low SNR condition; however, the performances are far away from the opti-
mal one at high SNR due to the correlation model error. At high SNR, the adaptive selection
scheme is better than the approximate MMSE approaches, but poorer at low SNR. In SUI-5
channel, the proposed algorithms perform significantly poorer than the optimal estimator. The
SUI-5 has much larger delay spread than SUI-4 and ETSI Vehicular-A. As shown, the proposed
estimators have bad estimation quality in the large delay spread, especially when the SNR is
high. However, the performances of the approach 1 using exponential correlation model and the
adaptive selection scheme are similar and better than others.

WiMAX UL Channel Estimations

According to the pilot assignment in the tile structure, the two-tap Wiener filter is used to
estimate the channel response. We assume that carrier and symbel: timing synchronization are
done in UL subframe during the ranging Pprocess: Theproposed channel estimation works in
the unit of the tile. First, the channel responses at pilot subcarrieriis' estimated via the least
square estimator. Then, the delay parameters are estimated by thé estimated channel responses
associated to the user and the corresponding Wiener coefficients are generated. At third step,
the LMMSE channel“estimation is performed in frequency dimension to generate the responses
at the first and third symbels. Finally, the time domain interpolation is performed to estimate
the responses at the second symbol.

We compare the proposed estimators,to others methods. The conventional linear interpo-
lator and the phase-compensated. linear interpolator [32] are studied in-the comparisons. Both
the exponential and_the uniform distributed PDPs_are used for ‘generating the approximate
correlation models. Besides,, the eptimal MMSE- estimator with truescorrelation model is also
performed as the optimal benchmark. The system profile and.channel condition is similar to
previous. Besides, we consider that an additional 0.8 useconds propagation delay occurs in the
propagation, which roughly yields 9ssamples in a OFDMasSymbol.

The simulation results according to the channel models:| ETSI, Vehicular-A, SUI-4, and SUI-
5 are illustrated in Figs. 7.15(a), 7.15(b) and 7.15(¢) correspondingly. For all channel models,
the approximate MMSE with exponential correlation model has best performance, which is
nearest one to the optimal benchmark. The secondary one is the approximate approach with
uniform distributed correlation model, but it does not have significant difference to the phase-
compensated linear interpolator [32]. As we expect, the poorest one is the conventional linear
interpolation. When compare to different channel models, the SUI-5 have poorest simulation
results for all estimators. This is because the delay spread of SUI-5 is much larger than others.

7.3 Conclusions

This chapter considered the factors of the symbol timing and the channel delay parameters
in the channel estimation issue. We studied two commonly used channel estimation schemes:
the polynomial interpolation and the LMMSE estimation. For polynomial interpolation, we
presented the time-shifted interpolation scheme and the estimate of the associated optimal shift.
Several cost-reduced implementations were proposed to realize the WiMAX DL CE. Besides, we
also proposed the scheme of adaptive selection of the interpolation order in the DL subframe to
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minimize the estimate MSE. In LMMSE channel estimation, we proposed a simple estimation
scheme of the mean delay and RMS delay spread. And, we apply this estimator to the suboptimal
LMMSE channel estimator by generating the correlation function according to the predefined
channel model and the estimated delay parameters. The realizations of the channel estimators
for the comb-type multi-carrier system and the WiMAX are also innovated.

Appendix: Derivation of G(k)

Let G = [G(x0), G(x1), -+ ,G(zy)]". Then

G =z V()" V()" V)] X'z
=z—-XX'z=0 (7.111)
Thus z,, is a root of G(k) Vn € {0, ---, N}. Now that G(k) is an N + Ist-order polynomial in
k by definition, we have .

(7.112)

for some K. Further, sine iént by definition, K = 1.
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Orthogonal frequency-division multiplexing (OFDM) with multiple transmit and receive an-
tennas has drawn much recent attention in research on high-speed transmission over multipath
fading channels. To exploit more fully the inherent diversity under multi-input multi-output
(MIMO) OFDM in fading channels, one usually needs to employ space-time and/or space-
frequency coding [92, 1]. There is now abundant literature on space-time/frequency coding.
Taking space-time coding as an example, the approaches can be divided into two broad cate-
gories: the coding approach (as represented by space-time trellis coding and space-time block
coding) and the linear preprocessing approach (as represented by linear constellation precoding
for signal space diversity [102, 8]).

It has been shown that a key factor influencing the performance of space-time/frequency
coded transmission is the determinant of the correlation matrix of pairwise codeword differences
[105, 31] In this part, we show that the determinant is maximized when the correlation matrix is
a multiple of the identity matrix; or in other words, when the codeword differences are “white.”
In attempting to use this result in system design, however, we find that, when the block size of
the system is large (the meaning of “block size” will become clear later), there is difficulty in
achieving such whiteness. As a resultfwe resort to anl@pproximately white design.

For signal reception, we consider block-based turbo decision-feedback equalization (TDFE)
[56, 13, 47] to exploit the available diversity while keeping the ¢omplexity under guard. More-
over, we propose a multi-stage technique for turbo DFE to. further reduce the complexity. In
association with the reduced-complexity turbo DFE. fve propose a particular space-frequency
transform (SFT) technique for quasi-whitening of the transmitted signal. The SFT combines
an orthogonal transform (for which fast computational algorithms exist) and a certain way of
space-frequency interleaving (SEI)-whose details will beigiven later.

For channel estimation, we give a pilot-data separated frame structure for the proposed
scheme and presentya joint channel estimation(CE) and data detection(DD)yscheme to iteratively
estimate channel and detect data.” With the coeperation of the ‘channel prediction scheme, we
greatly reduce the pilot' utilization in the‘frame structure. For jointly itérative CE and DD, we
formulate the data reception as the censtrained least square problem and'adopt the jointly block
gradient descent algoerithm to solve the problem, whieh is a TDFE-like iterative solution.
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Chapter 8

Space Frequency Transformed
MIMO OFDM System

8.1 System Model

8.1.1 Transmission System Structure

Fig. 8.1 illustrates the,structure of the considered traiismission. system. There are N transmit
and M (> N) receive antennas. The binary source data S are grouped into blocks containing
rK N logy(Q) bits each, where r.is-the channel code rate,, K is the IDFT size, and @ is the
modulation order. After channel coding and modulationsmapping, therefore, each block contains
K N signal samples...In principle, the channel codingis net restricted to any particular type. For
example, it could be:bit-interleaved coded modulation (BICM) employing ¢onvolutional coding,
trellis coded modulation, or turbo coding. The coded signal samples then pass through the
transform block whese design lies at the'hedrt of the present study. After the transform, the
signal samples are divided into [V, streams _of K samples each, with each stream undergone a
K-point IDFT and eyeclic prefixing prior to being transmitted through éne of the N antennas.
In the receiver, the K received 'samples at each of the M antennas for each signal block are
subject to de-cyclic prefixing and DF'T before entering the signal detector. Several approaches
to signal detection are maximum-likelihood (ML) detectionfand turbo equalization (including
turbo DFE) [56, 13, 47].

8.1.2 Channel Model

Assuming perfect synchronization and disregarding the cyclic prefix, the signal samples in each
block can be organized several ways for mathematical manipulation. For example, we may
arrange the concurrently transmitted or received samples into a column vector, or we may
arrange the K-sample sequence transmitted or received by one antenna into a column vector.
Each of the two representations has its advantage, and we consider both of them below.

First, consider representing the sample sequence at each antenna by a column vector. Let

—p»| OFDM Tx = — »! OFDM Rx = }
§ CI Teansh K N K | Data §
KN log, (le FEC 7] i Ve = Detector ’
—Kb OFDM Tx = » OFDM Rx —>

Figure 8.1: Structure of the MIMO OFDM system considered.
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z,, be the vector transmitted by antenna n and r,, that received by antenna m. Then

N
n=1
= Hpz+n,, (8.1)

where, assuming that the channel stays unchanged over one signal block period and that the
cyclic prefix is long enough to cover the delay spread, H,,, is a circulant matrix whose first
column gives the channel impulse response from transmit antenna n to receive antenna m,
n,, is the vector of additive noise, Hy, = [Hm1, Hp2, .-, Hun), and z = [z, 28, ... 25T
with superscript T denoting matrix transpose. We assume that the noise is white Gaussian.
Alternatively, since Hy,nx,, = X,h,,, where X, is the circulant matrix whose first column is
given by z,, and h,,,,, is the first column of H,,, (i.e., the channel impulse response from transmit

antenna n to receive antenna m), we have

)

N
T'm = Z X'flhmn Fil L,
n=1
— Xh,, +n, (8.2)
where X = [X), Xa, .. 3Xn} andl b= [RE - Hns o BN
Assume that the length of the channel response is L samples where I. < K. Then the last
K — L elements of each of h,,,;, 1 = 1,2, ..., N, are zero.; These zeros can be excised from h,, to

result in a vector, denoted h,,, of smaller dimensionyielding
Iy = XDl + 1, (8:3)

where D = Ig. ® Inyiwith Iy beingthe Nox N identity matrix,| Ixy; the K x L matrix
composed of the first L columns of I7;-andr®@ the"Kronecker product. Stacking up r,,, h

Ny
and n,, into higher-dimensional|wectors' as r = [K{’EQT, =3 ,Zf/[]T, S [th7hg, - 7@}\% and
o= [ﬂlTszTv e ,Eﬂ}T, we obtain

Now consider representing the concurrently transmitted or received samples by a column
vector. Then the input-output relation of the MIMO channel can be written as

L—-1
r(k) =Y Hx(k 1)+ n(k) (8.5)
=0

where r(k) is the received M-vector sequence, x(k) is the transmitted N-vector sequence, H; is
the M x N matrix channel impulse response (whose (m,n)th element is the [ + 1st element in
hpn), and n(k) is the M-vector sequence of noise. For quasi-static correlated multipath Rayleigh

fading channels, H; can be modeled as [77, 86]
H, =R/°AT? 1=01,...,L—1, (8.6)

where A; is an M x N matrix with zero-mean complex Gaussian entries, T; is the NV x N matrix
summarizing the pairwise correlations between the channel responses associated with different
transmit antennas at delay [, and R; is the M x M matrix summarizing the pairwise correlations
between the channel responses associated with different receive antennas at delay [.

132



8.2 Condition for Maximum Diversity Gain

In this section, we look into the condition on transmitted signals which would yield the maximum
diversity gain under multipath MIMO Rayleigh fading. We approach this by minimizing the
pairwise codeword error probability (PEP). The result will be used to guide the system design
in later sections.

8.2.1 PEP of Coded and Transformed MIMO OFDM under Multipath Rayleigh
Fading

In designing coded transmission systems, one often seeks to minimize the worst PEP rather than
the average error probability because the latter is often difficult to compute and because the
transmission performance is often dominated by the worst PEP.

Consider two codewords ¢ and ¢. With slight abuse of the notation X defined in the last
section, let X(c) and X(¢) denote the transmitted signal blocks associated with these codewords,
respectively. After channel transmission, the PEP-between these codewords under ML detection

is given by [92]
Be% ¢ = Q (\/550 | (ED & IMH) (8.7

where Ej is the average symbol energy,;#Vp is the power spectral density (PSD) of the additive
white Gaussian noise®(AWGN), and E = X{(e) — Xi(€).  The matrix E has been termed the error
matrix of the codeword pair. Therefore, maximizing the Euclidean distance

d(c,&) 2 || (ED ® Iy) b (8.8)

will minimize the worst PEP.
To continue, letfi(l) = vec{H;} and @(l) = vec{A;} (where vec{:} means stacking up of the
columns of its matrix argument into.a vector). Then from (8.6) we have

1
2

hiip= (T? HR; ) a (). (3.9)

Now let
B = [T (0),47 (D K )]
= L_lGl% [7(0),a7(1),...,a" (L~ 1)]"
s gza (8.10)

(SIS

h=17G2qa (8.11)

where Z is an M N L x M N L permutation matrix. We remark that the above way of decomposing
a correlated channel response h into the product of a vector of i.i.d. (independent and identically
distributed) random elements and a matrix that characterizes the correlation has been adopted
in some researches addressing channel conditions closely related to that considered in the present
work.
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Putting the above results together, we have
d*(c,&) = || (ED ® Iyr) hlf?
= 1" (D"YEYED ® I/) h
=dfC.a (8.12)
where superscript H denotes Hermitian transpose and
C. 2 G:7z" (DYEYED ® I)/) ZG2. (8.13)

Taking average over all channel realizations and applying known results about the Chernoff
bound of the PEP under Rayleigh fading, we have [92]

P(c—¢)=Ey{P(c—¢&)}
r(Ce)

[T 1+ een)

i=1

IN

.
2, | e
| + e,
where 7(C,.) denotes theirank of C., \;(C.) denotes theé ¢th eigenvalue of C., and the last
equality holds if C, hasfull rartk. Moreover, when C, has full rank'and the signal-to-noise ratio

(SNR) is high, we haye the approximate Chenoff bound

| B —MNL
Plc—&)< (4]\;0) [eRF (8.15)

; (8.14)

8.2.2 Principle of Design for Maximum Diversity (Gain

Now consider how to design the system to minimize the average PEP munder a given channel
coding scheme. From the above results, we see that it is appropriate to consider maximizing
|Ce|. Now, given any unitary linear transform, if d(e,c) = ||c — ¢|| =dp, then it can be easily
shown that tr (DF EFED).= Ld§ where tr(-) takes thétrace ofjits argument. Therefore, the
optimization problem can be stated as

max |Ce| - s.t. tr (D"EYED) = Ldj. (8.16)
Towards a solution, note first that

C.| = |G#7Z72G? | [D"ETED @ 1|

— |G||D”E"ED|" . (8.17)
Hence maximization of ’DH EH ED‘ maximizes |Ce|. Now, the Hadamard inequality gives
NL
IDYE"ED| <[] ¢ (8.18)
j=1

where ¢; is the jth diagonal term of D¥E#ED and the equality holds if and only if DYE#ED
is diagonal. By the arithmetic-geometric inequality, we have

NL 1 NL NL
[To=<{m2o
7j=1 7=1
NL
_ (= (DYEPED)\ " a3\ (5.19)
N NL N ’ ‘
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where the first equality holds if and only if €; is the same for all j. In summary, therefore,
d2 NL d2 NL L-1
cl= (%) lei=(T) TR, (8:20)
=0

where the first equality holds iff D¥E”ED is a constant times the identity matrix or equivalently
iff EYE is a constant times the identity matrix.

In conclusion, to attain the maximum diversity and coding gain, the system should be
designed such that E”E is a constant times the identity matrix.

8.2.3 Performance of Coded MIMO OFDM Without Transform

In light of the above results, we comment on the performance of coded MIMO OFDM that
does not have a transform between channel coding the the IDFT units in the transmitter.
Alternatively, such a system can be interpreted as employing an identity transform. This design
can be shown to yield relatively poor performance.

First, when there is no transform,the highest rank'of EE is given by the minimum Ham-
ming distance of the channel gode: If this distance is smaller than N L, then C,. does not have
full rank and the system cannot achieve maximum diversity gain. Second, if the IDFT size
is large and the Hamming distance between codewords_is small; then the nonzero elements of
the corresponding error. matrix are located sparsely in'the space-frequency domain. This makes
the eigenvalues of DEE#ED highly uneven in magnitude, which deviates significantly from the
optimal condition that the eigenvalues-be-identicali [Therefore, the performance of coded MIMO
OFDM without tramsform can be-highly suboptimal.

8.3 Principles of Practical Transform Design

We have shown that the optimal transform is a “white®.one in the sense that E/E = d2J.
When the transform order is large; howeveryronesmay=notrbe able to find a transform that
satisfies the equality“exactly. Henceswe seek for-an- ‘tapproximatély white” design that gives
EfE - @31 < d31.

In fact, several transformed. transmission methods have been proposed in different contexts
to achieve different objectives, for example, the the energy-spreading transform (EST) for MIMO
transmission [47, 46] and the linear constellation precoding (LCP) for MIMO or multi-carrier
CDMA transmission [102]. In our context, eyelic-prefixed block single-carrier transmission can
also be treated as a transformed OFDM system. Here we present a transform design that has
relatively low complexity and can help lower the complexity of the receiver.

The upper part of Fig. 8.2 illustrates the proposed transmitter structure, where the transform
has a two-stage architecture. The first stage involves NV orthogonal transforms and the second
stage involves a space-frequency interleaving (SFI) operation. For ease of implementation, the
first stage may employ a simple orthogonal transform (such as the Hadamard transform) or one
for which fast computation methods exist (such as the FFT). Ideally, the orthogonal transforms
should spread the coded symbols over all the subcarriers so that any differential codeword c — ¢
is not contained in a few subcarriers but is spread over the entire transmission band. Then, the
SFI randomizes the distribution of the codeword energy (already spread across the frequencies
by the orthogonal transform) in the spatial dimension to further exploit the spatial as well as
the multipath diversity. Through this two-stage transform we attain the approximate whitening
effect on the transmitted signal.

Mathematically, the transmitted signal “super-vector” z (see Section II for its definition)
with the proposed SFT is given by

r=(WIRIy)P(Tely)X2 (W ely)SX (8.21)
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Figure 8.2: Proposed transform design and associated receiver structure.

where X is the modulated version.of ¢, W and T are the/ DET and the orthogonal transform
matrices, respectively, and P.is the SFI permutation matrix.

Fig. 8.2 also illustrates the proposed receiver structure "(exeluding the subsequent channel
decoder and the iteration loop between the turbo DFE and the channel decoder) in its lower
part. Following the @QFDM receiver frontend and space-frequency deinterleaving (DeSFI), we
can employ block turbo DFE for signal deteetion’y We now.turn to its discussion.
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Chapter 9

Receiver Design In Transformed
MIMO OFDM System

9.1 Block Turbo DFE

In this section, we first consider how block turbo DFE operates under MIMO OFDM in general.
Then in the next sectionywe consider howitsworks-togethier with SEL: It will become clear that,
unlike the conventionaliturho equalizersthat operates in the time domain, the proposed block
turbo DFE operates-in the frequency domain.

9.1.1 Block Turbo DFE as Iterative Solution to Constrained Least-Square
Problem

Employing earlier motations, the signal propagation behavior of a coded MIMO OFDM system
can be described as
e=Ha b (9.1)

where (with slight abuse of the notation) & = x(¢) for seme codeword e and

T (9:2)
Hypn Hypp .2 Hyn

with the entries H;; being circulant matrices. When n is white Gaussian and H is known, the
ML detection can be formulated as a constrained least-square (CLS) problem which seeks to
minimize the cost function

J (¢) = |lr — Hz(c)| (9.3)

subject to the constraint that c is a valid codeword.
A block turbo DFE estimates the transmitted signal in the following way:

ik = Fr 4+ Bz ! (9.4)

where k is the iteration count, zF~! is the decision output of the k — Ist iteration (which could
be the soft output from the channel decoder), ¥ is the signal estimate of the kth iteration,
and F and B are the feedforward filter (FFF) matrix and the feedback filter (FBF) matrix,
respectively. Taking the gradient descent approach [26, 24], we obtain the DFE coefficients as

F=uH? B=1-,H"H, (9.5)
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where [ is an identity matrix and p = KN/| H||% with |[H||% = tr{HHH}, i.e., the Frobenius
norm of H. With this set of DFE coefficients, the kth iteration equalizer output can also be

written as
i* =g ! (- H ). (9.6)

If the decision output of the k — st iteration is error-free, i.e., if Z¥~! = z(c), then the block
DFE cancels the intersymbol interference (ISI) completely.

In beginning iterations, however, zF~! may contain many or large decision errors. Such
errors would affect adversely the signal estimate 2" in the kth iteration, especially if ||B||% is
large. To alleviate such effects, therefore, we consider the generalized gradient descent approach
which improves the convergence property by “conditioning” the iterative updates with a shaping
filter or precondition filter as [82]

iF =z 4 cHH (z - H@’f—l) . (9.7)
In other words, we modify the DFE filters to
F=CHY B-=7-CH"H, (9.8)

According to [82], C should:be Hermitian symmetric, positive semi-definite, and commute with
H”H. An example is given by the quasi-Newton method [50] where

C—p(HABF D), (9.9)

with a being some ‘constant:

9.1.2 MMSE Shaping Filtering

We consider using aishaping filter that minimizes the means=square error. Let e*~1 = zF1 —z(c).
Then the error in equalizer output is givensby:

whE i* =p(e) = CH a4+ (I = CH H) e 1 (9.10)

In minimum mean-squareerror (MMSE) shaping filtering, we seek‘to minimize E{||w*|?}. In
addition, in order to avoid direct error feedback, we should constrain the average of the diagonal
elements of B to zero.

To proceed, let a = 02 /02, i.e., the ratio of moise variance to the variance of the decision
error ¢*~1. Note that both ¢ and « are functions of k. But for notational convenience we
have omitted explicit indication of this dependence. In the Appendix, we show that the MMSE
shaping filter is given by

C=u(HH+al) (9.11)
where

KN

o tr{(a[—i—HHH)*lHHH}' (812

We see that the MMSE shaping filter has the same form as the quasi-Newton shaping filter.

In the case of single-input single-output systems, the above result is the same as that in [13].
But our result is more general in that it applies to MIMO systems. Note, in addition, that when
the various quantities converge with iterations, o2 reduces to zero and « approaches infinity.
Then the shaped DFE coefficients also approach that without shaping.

A major drawback of MMSE shaped turbo DFE is, of course, the heavy complexity burden
associated with changing the filter coefficients with each iteration. We consider reducing the
computational complexity in the next subsection.
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9.1.3 Employing Fixed Shaping Filter for Reduced Complexity

To reduce the computational complexity, we consider fixing the shaping filter during the iter-
ations. This results in a three-stage algorithm: 1) Initialization: Perform MMSE block linear
equalization (i.e., let B = 0), because no decision output is available at this time. 2) Middle
stage: Use a fixed shaping filter that can tolerate a large range of decision error power. 3) Final
stage: Use the unshaped DFE filters.

Based on the foregoing results, the determination of the shaping filter for the second stage
reduces to the choice of a suitable operating value for «. For this, we do not have a theoretically
optimal formula, but only some rules of thumb. Experience shows that underestimation of «
would not cause significant enhancement of total MSE when the true « is large enough. In
contrast, if the true « is small, then overestimation of it would cause great increase of the
MSE. This phenomenon is heuristically reasonable, because (true) « is defined to be equal to
02 /o?. Assuming a smaller value for o than its true value is tantamount to assuming a less
converged state, which may result in some slowdown in the convergence speed but would not
likely cause stability problems. On the other hand,passuming a larger value for v than its true
value means being over-optimisgiclon the convergence status, which would more likely cause
performance degradation. Therefore, we choose to use a reasonably small value in the place of
a. By experiment, we findithat a suitable range of its values'is 0.5+2, with the unity value being
a good choice.

To decide whether o switch from the second stage to the:final stage, we observe the variance
of the likelihood ratio/ (LLR) of the decodéd codeword. ~When the variation in the variance
over two successive iterations is small, we assume that the'equalizer has converged sufficiently
and make the switch. Notethat the LLR variance-indicates thewreliability of the decoded bits
[59]. When its value over a number of iterations i stage 2 (shaped block turbo DFE) is even
smaller than that in stage 1 (block linear equalization), we may ‘safely conclude that the channel
condition is very bad and the turbo DFE may.mot provide any advantage. In this case, we may
simply use the linear equalizer output.for decoding.

9.1.4 Benefit of Whitening Transform-to Turbo DFE Performance

Similar to the EST (energy-spreading transform) [47], the proposeds MIMO OFDM with trans-
form can benefit the noise performance of block turbo DFE:by reducing error propagation. This
is due to its ability to spreadithe symbol.energy . over the whole block. As a result, any sym-
bol decision error is also so spread. This reduces the interference contribution of each symbol
decision error to all other symbols, thereby lowering the probability of error propagation and
benefiting the convergence of turbo DFE. Note that the benefit applies not only to uncoded
systems, but also to coded systems, because in typical channel codes the difference between two
nearby codewords (in Hamming distance or Euclidean distance) is concentrated in only a few
locations rather than having its energy spread over a large signal block. The mechanism can be
compared to how coded MIMO OFDM with transform excels over coded MIMO OFDM without

transform as discussed in an earlier section.

9.2 Design for Receiver Complexity Reduction

Thus far, we have described the operating principles of the transform (a transmitter component)
and the block turbo DFE (a receiver component). We now present a particular design that
enables receiver implementation at a reduced complexity. We first consider how the turbo DFE
can operate in the frequency domain. Then we present a particular design of the SFI suited to
the proposed way of receiver operation. And lastly, we discuss the computational complexity.
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9.2.1 Turbo DFE in Frequency Domain

By the circulant nature of the channel matrix in (9.2), we may decompose it as

A Ao M
A.21 A22 P A.2N

H=Wao. (WaT)

Aart Moo oo  Ayw
=(WoD)T.A- (W) (9.13)

where W is the DFT matrix and each A;; is a K x K diagonal matrix of the frequency response of
the channel from transmit antenna j to receive antenna i. By permutation, the “super-matrix”

A can be reorganized into
K
A=QT (@ A(k)) Q (9.14)
k=1

where Q is a permutation matrix, A(k)ds the MIMO channel response at subcarrier k, and recall
that @szl A(k) denotes the bloek diagonal matrix with diagonal entries A(1), A(2),...,A(K).
The FFF and FBF can be likewise decomposed as

K
F=(Woen".QF (@F(k)) Q (WaI, (9.15)
k=1
K
B=Wah?.qQ" (@B(k)) Q- (W), (9.16)
fa=al
where for unshaped.turbo DFE we have, for the & subcarrier,
F(k) = pA(k), #BK) = I — pA7 (K)A(k). (9.17)
Similarly, for the shaping filter we have
O(k).= p (A (bya() trad) (9.18)

for the kth subcarrier. ‘Phese .equations show that both the shaped and the unshaped DFE can
be performed in the frequéncy domain, independently over the subcarriers. The complexity can
be lower than performing equalization in the time domaiu:

9.2.2 The Equalizer-DecoderLoop

Thus far, we have omitted the details of the equalizer-decoder loop. To this subject we now turn.
Let x = (W ® ) - z be the frequency spectrum of z, and let X and X be the DFE output and
the FBF input in the frequency domain, respectively. Since the transmitted signal is spread by
the space-frequency transform S, we must apply the inverse transform S™' to the DFE output
before feeding it to the channel decoder. In addition, we also need to apply the transform S
to the decoder output to obtain the FBF input for the next iteration. The structure of the
equalizer-decoder loop is illustrated in Fig. 9.1, where we have assumed the use of a soft-output
decoder.
Mathematically, the decoder input is given by

X=(T'oI) P'x (9.19)
and the FBF input is obtained from the decoder output X by
x=P(TeHX (9.20)

where P corresponds to deinterleaving, TH? ® I to inverse orthogonal transform, T ® I to
orthogonal transform, and P to interleaving.
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Figure 9.2: The illustration of separable spacesfrequency interleaving.

9.2.3 Design of Space-Frequency Interleaving

We note that the complexity of the equalizer-decoder loop can be reduced by moving the inter-
leaving and deinterleaving functions outside the loop. This can be achieved by a proper design
of the SFI method. Specifically, we employ a “separable SFI” in which the permutations in the
spatial and the frequency domains are separable. Then in the receiver, the SFI and the inverse
SFI can be replaced by equivalent operations on the received signal and the estimated channel
response outside the equalizer-decoder loop.

The SFI is separable in the spatial and the frequency dimensions if the permutation matrix
P can be decomposed into the product of a spatial permutation matrix ® and a frequency
permutation matrix ®, such as P = ©@®. As illustrated in Fig. 9.2, in frequency interleaving,
signal samples at the same subcarrier are moved to another subcarrier as a group, and in spatial
interleaving, signal samples at the same subcarrier are permuted in a pseudo-random manner
to different antennas.

Disregard the additive noise. Then the received signal after DFT and inverse SFI is given
by

Plr=PTAP(T®IX (9.21)
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where PT AP is the space-frequency interleaved channel frequency response. With P = @®, we

have
PTAP = #707A0® 2 TAT® 2 AL (9.22)

Note that AT and A* have a similar structure as A, because the two pairs of interleaving and
deinterleaving operations amount to mere re-ordering of the spatial and the frequency indexes.
Therefore, the frequency domain turbo DFE can be made to operate on A! in exactly the same
way as on A without any modification. In other words, the inverse SFI and SFI functions can
be omitted in the equalizer-decoder loop.

9.2.4 Computational Complexity

We now consider the computational complexity of the proposed system. We only consider the
receiver for it is much more complicated than the transmitter.

To start, we examine the complexity of equalization. Recall that the equalization process
is divided into three stages: MMSE block linear equalization, shaped DFE, and basic DFE.
Assume that the channel response s known. Assume also,that, in each stage, we calculate the
filter coefficients first (the setup phase) and then use the results in equalization (the processing
phase). We use the number, of complex multiplications to'measure the complexity. In MMSE
block linear equalization, the setup phase needs approximately (ZM N2+ N 3) K computations
and the processing phase M?NK computations. In the shaped DFE stage, the setup phase
requires a similar amount of computation fer the, FFF coefficients and, M/ N?K computations
for the FBF coefficients. In the processing phasefithe FEF output only-needs to be calculated
once per signal bloek, which costs M2NK computations. Each iteration then needs N3K
computations for FBF filtering. In the basic DFE stage, the FFF needs no computation for
setup, and the setup of FBFE takes M N?K computations. Again, the EBF output only needs
to be calculated once per signal block, and it takes M N?K computations! The complexity per
iteration in the processing phase is the same as the shaped DFE stage.

Next, we examine the complexity associatedswith-the transform. “In the receiver, an in-
verse orthogonal trafisform®and an orthogonal transforni are needed for'each turbo DFE itera-
tion. Different transforms have different computational complexities. “If the Hadamard or fast
Hadamard transform (FHT) is.employed, then there is no complex multiplication but only some
complex additions (2N K logg(K) for FHT). IF the DFT isaised (which applies to MIMO block
single-carrier transmission with ¢yelic prefixing, or CPBSC), then the amount is 2N K logy (K)
computations for IDFT and DFT.

9.3 Simulation Results

In this section, we present some simulation results to illustrate the performance of the proposed
system and compare it with the performance of the coded MIMO OFDM and the coded MIMO
block single-carrier transmission with cyclic prefixing (CPBSC). All simulations are run with
the following conditions: 1) the channel code is the rate-1/2 recursive systematic convolutional
code (RSC) with generator vectors (23,35); 2) the coded bits are randomly interleaved before
being subjected to QPSK modulation; 3) two transmit antennas (N = 2) and two receive
antennas(M = 2) are used; 4) the DFT size (K) is 1024; 5) the MIMO channel response and
the noise variance are known exactly; 6) a = 1 in the second equalization stage (shaped block
turbo DFE); and 7) the channel decoder is of the soft-in soft-out type, employing the soft-
output Viterbi algorithm (SOVA) [28], and the QPSK symbols are regenerated based on the ML
criterion.
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Results of MIMO Systems over Proakis—C PDP
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Figure 9.3: Simulatien case 1: BER-performance’of different systems under a difficult channel.

9.3.1 Simulation Case 1: A Difficult Channel

In this set of simulations, we use the power-delay profile of the Proakis-Gychannel given by
[0:227 40.460 0.688 0.460 0:227]. (9.23)
MIMO channels are generated based on the corrélationanatrices

1 0.5

P - [0.5 1

} , 1=0,1,2,3,4. (9.24)
This channel may not be realistic but'is a difficult one to deal with.

Figs. 9.3 and 9.4 depict the simulated ‘bit error rate (BER) and block error rate (BLER)
performance of the different systems under several different conditions. The results show that
the DFT and the FHT variants of the proposed system (both labeled SFI TDFE in the figures)
perform close to each other and both exhibit superior performance compared to MIMO OFDM
and MIMO CPBSC. At BLER = 1072 and with a maximum of 10 equalizer iterations, the
proposed system outperforms MIMO CPBSC by more than 2 dB and it outperforms MIMO
OFDM by more than 6 dB.

9.3.2 Simulation Case 2: The ETSI Vehicular A Channel

Next, consider the power-delay profile of the ETSI Vehicular A channel. The channel has 6
paths. Let the channel bandwidth be 10 MHz. Then the path delays are equal to 0, 3.03, 6.93,
10.64, 16.89, and 24.51 sample spacings, respectively. The average power levels are 0, —1, —9,
—10, —15, and —20 dB, respectively. The spatial correlation is the same as in the last case.

Fig. 9.5 and 9.6 depict the simulated BER and BLER, performance. Very similar observations
as for the last case can be made of this set of results.
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9.4 Joint Channel Estimation and Data Detection

9.4.1 Frame Structure and Initial Channel Estimation

Note that in performing TDFE, the channel responses need be estimated first. For this, consider
the frame structure illustrated inwFig. 9:7 which-we call-a-pilot-data separated frame structure.
A frame consists of a number of bursts where each burst startSswith an all-pilot symbol as the
preamble. It is then followed by a number of OFDM symboels. . The pilot symbol is used to
obtain an initial estimate of the channel response. During subsequent data symbols, adaptive
channel prediction is used to track channel variation. For each symbol, iterative joint CE-DD
is carried out, as described in more detail helow.
For the pilot symbol, an LS channel estimation (LSCE) can be obtained by minimizing the
cost function
J(h) = s — Xy (9.25)

The solution is .
by = (z"z)" z''r, (9.26)

where Z = XG. To achieve the minimum mean-square error in the estimate, the pilot symbol
should be such that [4]
XX =521 (9.27)

For channel prediction in subsequent symbols (which yields the initial channel estimate for
each data symbol), we can employ block-based linear filtering whose basic form is

Ntap
a(t) =Y wpalt — k) £ wa(t) (9.28)
k=1
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Figure 9.7: The pilot-data separated frame structure considered.

where «(t) represents one tap of the estimated channel response at time ¢ and &(t) is one tap
of the predicted channel response.~If the mobile speed is known and the fading follows Jakes’
model, then the optimal prediction coefficientcan be shown to be

w = (Red o) 'Ry (9.29)

where R,, is the aufiocorrelation matrix of the channel response and R, j7is the crosscorrelation
of the channel response and its delayed version. Under Jakes’ model, the minth element in Ry, is
given by R (m, n) = Jo(27 fin(m—n)) and the nth clement in 12, | by R, 1(#) = Jo(27 fim(n+1)),
where Jy(z) is zeroth-order modified Bessel function and f,, ‘is the maximum Doppler shift
normalized to sample spacing.

In practice, the mobile speed may notsbe-knewnsandsthe-fading may not follow Jake’s model.
In this case, we may "use an adaptive prediction filterin place of the filter above. By minimizing
the cost function E{|&(k) = (k)|?};the simplest LMS adaptive algorithm yields the following
adaptive prediction filter for wx

wit +1) 2w (t) + po) 2 (@lt) =a(t)) . (9.30)

9.4.2 Jointly Iterative Channel Estimation and Data Detection

For each data symbol, following the initial channel estimation, we perform jointly iterative CE-
DD. In each iteration, the TDFE output can be used to re-estimate the channel responses in the
LS manner as in (9.26). However, the pseudo-inverse operation costs a very large computational
effort. Hence, herein we propose performing the channel re-estimation using the projected
gradient descent algorithm and combining it with the TDFE to yield the desired jointly iterative
CE-DD.

For this, note first that the projected gradient descent algorithm is an iterative approach to

solving the convex CLS problem such as that given in (9.25). Let Ef " be the estimate of h;
in iteration k — 1. By applying a similar recursion as in TDFE, we can obtain an iteration for
channel estimation as

s

—1 X2

XA (zz- _ XEH) (9.31)

and § . .
h; = G'h; = Gl . (9.32)
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Combining the above with the TDFE, we obtain the jointly iterative CE-DD procedure as

= -XT (9.33)
~k . .1\ H
by =B+ (Xk 1) ef, (9.34)
L \H
=g (HT) (9.35)
ki kT kT kT 7k _ @ik —k _ 17 (k) o ) . .
where " = [ef " ,e5 cex ', hy = Gh;,and ¥ =11 (g ) with II(-) denoting the combined

actions of the inverse SFT, the soft-output FEC decoding, and the SFT. In the initial pass
through the iterative loop, the channel estimate used is the output of the channel predictor and
the TDFE output is that from linear MMSE equalization.

If shaping filtering is considered in the earlier iterations as discussed previously, (9.35) is
replaced by

— . 1\H
=14 C (Hk 1) e*. (9.36)

To reduce the complexity, one may use a constant shaping filter C calculated using the predicted
channel responses.

Note also that, since the super-matrices X and H are composedrof circulant matrices whose
FFTs are diagonal matrices, many computations cansbe simplified by using this property as
mentioned previous chapter.

9.4.3 Simulation Study

We illustrate the performance of the proposed SET MIMO OFDM and compare it with that
of the conventional MIMO OEDM [17] and the MIMO CP BSC [17, 90, all with FEC coding,
by way of simulatien. In fact, the MIMO.CPBSC can be considered a particular kind of SF'T
MIMO OFDM. For'the SFT, we.use EET for the orthogonal transform.

The profile of the simulated [system-is-the sameas described one in above simulations. In
addition, a frame contains'y bursts; with each burst made of 5 MIMO OFDM symbols following
1 short pilot symbol. The EFT sizejof the pilot symbol is 256" enly.= Therefore, the pilot-data
ratio is 1/20 in terms of bandwidth consumption. The pilot symbolicontains BPSK-modulated
sequences that are mapped o the subcarriers of each antenna in an interleaved manner [4].

In the receiver, the adaptive channel predictor-has five predictor taps. The maximum number
of iterations of the joint CE-DD is 10 and the iteration may stop early if the decoder output
contains no error. Shaping filtering is used in the earlier iterations of the TDFE and the switching
from shaped to unshaped operation depends upon the convergence of the output log-likelihood
ratio (LLR) of the FEC decoder.

Consider a 2 x 2 MIMO block time-varying channel with the same profile in section 9.3.2. Let
the carrier frequency be 2.5 GHz and the channel bandwidth be 10 MHz. Consider three mobile
speeds: 50, 100, and 200 km/h, which correspond roughly to maximum normalized Doppler
shifts of 0.0125, 0.025, and 0.05, respectively.

Figs. 9.8 and 9.9 illustrate the block error rate (BLER) and the bit error rate (BER) perfor-
mance of the three transmission schemes, where a block means the period of one OFDM symbol.
At the two slower mobile speeds, the channel estimation mechanism proposed in this work can
track the channel variation well. Its tracking ability is reduced at the highest mobile speed, as
indicated by the error floors in the plots. In all cases, the SF'T MIMO OFDM performs better
than the conventional MIMO OFDM and the MIMO CPBSC. The performance gain is roughly
4 dB over conventional MIMO OFDM and 2 dB over MIMO CPBSC at the lower mobile speeds.

The error floor happens when mobile velocity is 400 Km/Hr, since the prediction error floor
introduces large error of the initial channel estimation and the outage occurs frequently in high
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Figure 9.8: Block (symbol) error rates.of different transmission schemes over block time-varying
channel.

velocity, which yields poor tracking ability for the receiver. To eliminate this floor, one way is to
insert pilot symbolifrequently; howeyer, this'reduice the bandwidth efficiency. Another way may
consider temporal domain interpolativeschannel estimation instead of the channel forecasting;
which can be treated as a extrapolation and-yields-more-error due to' AWGN. Besides, the more
accurate estimation ‘of the delay. subspace will provide darger noigse reduction factor and give
more clear channel estimation results to avoid the floor due to estimation error.

9.5 Conclusions

In this part, we showed the optimal design criteria ofithe coded MIMO OFDM transmission and
proposed the design of the MIMO OFDM system, which involves the space-frequency transform,
the frame structure and the receiver design. We suggested the SF'T design to achieve the optimal
design criteria, which is a two-step transform. The first step performs the orthogonal transform
to spread the coded symbols and the second step interleaves the spread samples over frequent
and spatial dimensions. For the frame design, we presented a simple pilot-data separated design
to improve the spectrum efficiency by eliminating the pilot utilities. The receiver employs the
IS process to jointly estimate the channel and detect the data. The prior channel references are
required in the IS process. Thus, the LSCE from the pilot symbol and the channel prediction
scheme are used to obtain these references. Simulations shown that the proposed SFT is superior
to the conventional MIMO OFDM and the MIMO SC with CP in terms of the BER and the
BLER.

For future researches, it is interest in the design to support multiuser based on the proposed
SET MIMO OFDM system. It could be a CDMA-like or a OFDMA-like schemes in either
the uplink or the downlink, which depends on the position of the SFT in the transmission
structure. Besides, another design issue is the receiver structure of the multiple access system.
The performance, the complexity and the spectrum efficiency all are the design constrains in
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Figure 9.9: Bit error rates of different-transmission schemes over block.time-varying channel.

the realization.

Appendix
Derivation ofithe MMSE Shaping-Filter

First, let the singular value decomposition (SVD) of the channel matrix be given by
H=UAV. (9.37)

Since the desired C commutes with H, we may let C = ViTA. V. As in typical adaptive filter
analysis, assume that eF=1 is white and uncorrelated with n. Then

T B{lut|?)
=02 (a]|CH"|[} + |cBH - 1];)

_J2Z< (k)|?

where A(k) and A.(k) are the kth singular values of H and C, respectively.
Now, constraining the average of the diagonal elements of B to zero amounts to requiring

Aek) AR — 1\2) (9.38)

tr {CH"H} = KN, (9.39)

or 1 KN
N D (k) AR =1. (9.40)

k=1
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Employing the Language multiplier method, we consider the modified cost function

A 1 X 2
Jn 2 J+p (1 - N ;)\c(k) IA(K)| ) (9.41)

and set 0.Jy,/OAc(k) = 0, which leads to the solution

. p
MN(k)= ——— 9.42
(W) = (942
and )
C'=pH"H+al) . (9.43)
Substituting C* into the constraint on B, we obtain
(9.44)
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Chapter 10

Thesis Conclusions and Future
Topics

Several algorithms are proposed. for the design of the communication receivers in SC QAM,
OFDM, and MIMO-OFDM systems. A communication receivér contains two major processing
modules. The synchronization calibrates the mismatches-between the transmitter and the re-
ceiver, and estimates the unknown parameters. ., The.channel distortion compensator is used to
remove the channel effects. It can be-divided into two parts: the equalization and the channel
estimation. In SC QAM systems, we consider the-issues in the carrier frequency recovery, the
channel equalizationjrand the joifit “6peration. Beoth the'open:loop! fréquency estimation and
closed-loop carrier tecovery. loop are studied in the carrier recovery problem. The blind adap-
tive DFE is used and studied in the channel equalization. In OFDM system, we consider the
synchronization issues in the estimation of the ¢arrier frequency offset and the symbol time, and
the cell search of the mobile-WiMAX system. ‘T'he issue in OFDM channel'estimation is studied
in the work. We propose two estimationsschemes and apply.these algorithms in mobile-WiMAX
system. In wide-band MIMO system, wesstudy-thestransformrdesign jat the transmitter, propose
a space-frequency transform, and use the turbo-DFE as the data/detector at the receiver. In
summary, the designed algorithms for the corresponding receiverissues are given in Table 10.1.

10.1 Future Research Topics

Some potential research topics are given as follows. Hirst, the adaptive system parameters of the
OFDM system can be realized with the knowledge of the channel parameters. Specifically, the
CP is used to prevent the IBI effect. If the system has the delay spread of the channel profile,
the CP length can be optimized. Besides, the utilization of the pilots also can be optimized
if the performance of the channel estimator can be predicted. For example, consider channel
estimation with polynomial interpolation in the comb-type OFDM system. If ag(N ,72) and
the noise variance can be estimated in advance, the estimate MSE is a function of the pilot
subcarrier spacing F. Thus, the optimization of the pilot subcarrier spacing can optimize the
pilot utilization.

Secondly, what is a good interpolator of the channel estimation according to the pilot struc-
ture? Specifically, consider the approximate LMMSE CE approach. The pre-defined PDP shape
is constructed according the estimated delay spread and the mean delay of the channel, but it
may not be the optimal approximation of the PDP event if the same profile model is used. It is
interesting to estimate the optimal parameters of the profile model to match the true channel
PDP or to optimize the channel estimate MSE. Besides, according to the window shift concept,
what is a suitable interpolator for the given pilot assignment and what is the optimal window
shift corresponding to the suitable interpolator?
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Finally, the relay extension system in MIMO communication currently is a popular research
topic. We may apply the transform MIMO-OFDM in such scenarios. The design of the trans-
form, the receiving process, and the practical realization are potential topics.
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Table 10.1: Proposed algorithms for the corresponding issues

] Algorithm \ System \ Issue \ Properties/Functionalities
Multi-resolution al- | SC QAM carrier frequency high accuracy and low complexity fre-
. estimation quency estimator
gorithm
Reduced- SC QAM | carrier recovery loop | large frequency acquisition range
constellation  phase
detector
Hybrid phase detec- | SC QAM | carrier recovery loop large - frequency acqulsltlop range and
tor small steady-state phase noise
Dynamic loop band- | SC QAM | carrier recovery loop | good tracking stability
width control
Boundary mean- | SC QAM _| channel equalization hlg}.l. accuracy MSE - estimator atlow
decision-point SNR,
square error
Blind variable step- | SC QAM | channel equalization | fast convergence
size algorithm
. ) Wi ft switchi f op-
Hybrid VSS algo- |#SC QAM . | channel equalization i CORTEE and soft switching of op
. eration mode
rithm
Phase-irrelevant SC QAM| | channel equalization e o falind DFF in CFO envi-
.. ronment
decision feedback
equalizer
- OFDM, low complexity estimators in frequency
Freql.lency domain WIiMAX cell search domain
filtering
Phase-shift polynos OEDM’ channel estimation SEISE: thlmlzatlon of the polynomial in-
. . WiMAX terpolation
mial interpolation
. . OFDM, ) 2 , : . . .
Adaptive selection of . channel estimation optimal interpolation-order estimation
. WiMAX
interpolator
Mean delay and \?\71?1\]?[%)7( channel estimation }Cci)c\;complemty frequency-domain estima-
RMS delay spread
estimator
Approximate \ONP;l\]:/)[lXIg( channel estimation L%v;nﬁglrigéieél;forand high - performance
LMMSE channel
estimator
MIMO- . . . . . . .
Space-frequency OFDM transmitter design maximal coding and diversity gain
transform
Separable Space. MIMO- receiver desien separation of de-interleaver outside turbo-
P . P OFDM & DFE loop
frequency interleaver
MMSE Shaped MIMO- channel equalizer better convergence property of iterations
OFDM in turbo-DFE
turbo-DFE
. . | MIMO- channel estimation | low pilot utilization and joint estimation
Joint channel esti- .
. . OFDM and equalization of channel and data
mation and equaliza-
tion
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