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Two-Dimensional Perfectly Matched Layer
Applied to Multiresolution Time-Domain

Method(MRTD) for optical lithography

simulation

Student: Jian-Zhang Zeng Advisor: Dr. Jen-Chung Lou

Department of Electronics Engineering and Institute of Electronics

National Chiag Tung University; Hsinchu, Taiwan

Abstract

Polarization effects are becoming more pronounced [20] as optical lithography
technique is pushed towards its limit. Photomask topography scattering, and wafer
polarization effects caused by differences in coupling between transverse electric and
transverse magnetic waves degrade image quality.[16] Therefore we need to fast and
rigorous calculation Latent images in wafer by Maxwell’s equations.

To solve this problem,we attempt to apply”’ Perectly Matched Layer” (PML) to
“’Multiresolution Time-Domain Method”. Thus we find a pair of cubic spline
Battle-Lemarie scaling and wavelet functions. In literature[ 1][2],the use of these
functions as a complete set of basis functions is called multiresolution analysis. Thus
we show that the application of multiresolution analysis in the method of moments for

the discretization of Maxwell’s equations leads to new multiresolution time-domain

il



(MRTD) schemes. In this paper, for simplicity, we will use the scaling function
scheme(S-MRTD) only to develop simulation program. In addition, this program is
applied to the rigorous simulation of diffraction from two-dimension open
phase-shifting mask structure. Open boundaries are simulated by the use of a novel

formulation of the perfect matching layer(PML) absorber.
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Chapter 1

Introduction

1.1 Introduction to Optical Lithography

In the manufacture process,[3] the different layout layers are delineated
sequentially onto the silicon wafer by photolithography[4]. This module is the
predominant enabler for the 40% per year increase in transistor count per chip.
Ilustrated in Figure.1-1, the photolithography process starts by coating the silicon
substrate with a layer of photoresist. Transistors or wiring patterns are then imaged
onto the photoresist by optical lithography. After development of the resist latent
image, materials are removed from or deposited.onto the wafer by processing steps
such as etching, deposition, chemical mechanical polishing (CMP), and ion
implantation. The photoresist is subsequently tremoved, leaving the substrate ready for
another cycle of processing steps. Fabrication'is complete after cycling a silicon wafer

through these processing modules 30 to 40 times.

Circuit geometries printed by optical lithography can be generalized into the two
classes illustrated in Figure.1-2(a): line-space and contacts. As a simplification, lines
and spaces are usually assumed periodic with period p and dimension d
[Figure.1-2(b)]. For example, image of a periodic line-space array with a 1 : 1 duty
ratio is shown in Figure.1-3(a). Ideally transition from dark to bright regions should
be sharp so that the photoresist is either exposed or unexposed. But optical diffraction
blurs the transition. Fortunately photoresist development nonlinearity can turn the

rather sloppy images into vertical profiles, as illustrated in Figure.1-3(b).



The photolithography imaging system is shown schematically in Figure.1-4. A
narrowband light source of wavelength A is placed at the focal plane of the
condenser represented by lens L1, illuminating the photomask by Ko”’hler's
method[5]. Image of the photomask, template that contains the layout geometries, is
formed by the projection optics onto the wafer. The projection optics is represented by
the two lenses L2 and L3 in the Figurel-4; in actual systems it can consist of more
than 30 lenses[6]. Because of the Fourier transforming property of lens L2[7], energy
transmitted through the photomask forms a distribution in the pupil plane that is
proportional to the mask spectrum. Low-spatial-frequency components pass closer to
the center of the pupil whereas higher frequency components are nearer the peripheral
of the pupil. The highest frequencies are ¢ut off by the pupil. Observing from the
wafer plane, the image-forming rays are restricted in angular extent by the pupil,
subtending an angle € at the wafer. The sine of the angle € is the numerical
aperture (NA) of the system: NA =sin & . In the pupil plane an image of the source is
formed. For a circular source and pupil in conventional optical lithography, the partial
coherence factor o is defined as the ratio between the sizes of the source image (the

effective source) and the pupil. For the system drawn in Figurel-4.

a
O =—.

b
Mathematically the imaging process can be described by[5]

1) =] [T P(f+f.g+ WP (f+f"g+g"):
O(f',g')é* (fn,gu)e+i27r[(f'—f")x+(g'—g")y]dfvdgvdf "dg "dfdg,

where [(x,y) is the image intensity at location (x,y) on the wafer, J is the

effective source, P is the pupil function, O is the mask spectrum, and the asterisk

* denotes complex conjugation.



Similar to Rayleigh's resolution criterion, resolution of an exposure
system scales with (A /NA). It is customary to represent the critical dimension (CD)

of the printed feature size as

D=k -2,
NA

where k1 is a process-related factor measuring the ease of lithography. Smaller
dimensions can be printed by decreasing the wavelength, increasing the numerical
aperture, and reducing k1. All three measures must be applied to sustain Moore's law

and to achieve the ultimate resolution.

1.2 Motivation

1.2.1 Overview of Optical Imaging System Modeling

A modern, complex optical imaging system.can have several lens, polarizer, mask,
aperture,wafer, and pupil components and is usually very large in relation to the
wavelength of light. Thus it is not practical to simulate the imaging system with the
FDTD method .However, the science of optics can be applied to the imaging system
components for modeling purposes. The Hopkins theory of partially coherent imaging

is commonly used to calculate aerial images in lithography.

To print or inspect smaller features, optics designers build optics with higher
numerical apertures(Figure.1-5). For numerical apertures exceeding 0.5 to 0.6, the
paraxial approximations made in scalar imaging theory are invalid and theory has
been extended by Daniel C.Cole et al.[8] who removed the paraxial ray approximation
in the projection optic model. This led to the “Radiometric Correction Factor” that

extended the usefulness of the projection optic model to numerical apertures in the



range 0.6 to 0.7. But even with the radiometric correction factor, the scalar theory is
deficient for high numerical aperture lithography ( NA) due to the differences in the
way TE and TM plane waves behave, especially at the image plane where highly
oblique plane waves exist. M S.Yeung[9] realized that a vector formulation is
required for high NA imaging inside thin film stacks and generalized the Hopkins’
formula for vector fields. But he then points out that, upon entering the photoresist,
the plane waves bend towards the normal reducing their degree of obliquity, and
reverts back to a scalar theory which he claims is “sufficient” for the practical
simulation of aerial images in planar thin-film structures for numerical apertures at
least as high as 0.6. But the recent interest in immersion lithography rekindles the

need to examine wafer polarization effeets.'With the incident medium being a liquid

of refractive index ~ @ higher:than 1, fésolution 6f immersion lithography is

A
nliquid N A

For 193-nm lithography, a promising immersion liquid is water having a

CD= k-

refractive index of 1.43, giving a 43% resolution improvement. With the
use of an immersion liquid, ray angles in resist becomes larger, resulting

in more severe polarization effects.(see Figure.1-6,7,8 we can known)

1.2.2 Rigorous Electromagnetic Simulation

As device dimensions are pushed deeper and deeper into the submicron
regime ,polarization and other complex electromagnetic effects that arise
because of mask topography are becoming increasingly more important

to model.
(Figure.1-9) The science of Fourier Optics is applied to model the

source, illumination optic and projection optic. Rigorous ElectroMagnetic



Simulation (REMS) may be required to model the object (photomask).
The formation of the aerial image inside a film stack(Latent image) at the

image plane may be model either by REMS or by thin-film-stack theory.[11]

1.2.3 Absorbing Boundary Conditions

In 1994, Berenger published a paper[10] on a new type of boundary condition
which he named “Perfectly Matched Layers” or PML. The boundary condition is
essentially a non-physical material with the special property that it absorbs
electromagnetic radiation without refection for all frequencies and angles of
incidence. In this paper, the new boundary condition was implemented into S-MRTD

and is explained in Chapter 2.

1.2.4 Numerical Solution of Maxwell’s Equations by MRTD

In this paper, the recently developed multiresolution time-domain (MRTD)
method[12] is applied to fast and rigorous mask diffraction simulation, to overcome
the limitations of FDTD. An outline of the MRTD formulation is described in Chapter
3. In addition, In chapter 4, using a 2D scattering example to allow the use of an

extremely fine computational mesh to achieve good convergence.

1.3 Organization of This Thesis

The thesis includes four chapter. In chapter 1, we make an introduction to describe
the background and polarization effects of the optical lithography and the role in the

semiconductor industry that optical lithography is playing. In addition, we make a



brief to describe simple concept of the imaging process mathematically. Then, we
describe the motivation of this thesis. Finally, we introduce PML and MRTD

techniques respectively.

In chapter2, we will first specify a numerical scheme for solving the Maxwell’s
equations, used by Yee.[13] Yee was one of the first to replace Maxwell’s equations
by a set of finite difference equations. Then, we will illustrate PML technique for

two-dimensional problems.

In chapter3, we first explain the most important properties of the multiresolution
analysis. Then, we will only derive the S-MRTD scheme for a homogeneous medium
Finally,in chapter4, we will use S-MRTD and PML schemes to rigorous simulate
two-dimension phase-shifting mask’structure by using matlab. Then, we will make a

conclusion with simulation in the whole thesis:
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Chapter 2

Boundary Conditions for the Finite-Difference
Time-Domain(FDTD) Method

2.1 The FDTD method and the Yee equations

The continuous form of the Maxwell equations for linear, isotropic, non-magnetic,

nondispersive materials are written:

vxi=L.j (1.a)
ot

vxE=_8 (1.b)
ot

with the constitutive relations:

D=¢E
B=uH )
J=cE

Where &,u, and 0O are, respectively, the permittivity, permeability, and
conductivity of the material. In general, the parameters &, 4/, and o are functions

of the frequency of the electromagnetic wave. For the application in hand, however,

they are assumed to be constant because of monochromatic excitation. Using Stokes'

theorem, (1.ab) and (2) can be re-written in the weak form

Lo oD - -
 Hedl = L{E”}'ds 3)
gSE-dT __[9B.5 )
I K at

11



Where q‘)lﬁ edl .and JF «dS represent, respectively, the line integral and

surface integral of a variable F. (1.ab) and (2) also are equivalent to the

following system of scalar equations:

0B, OE. OE,
o oy oz
0B, OE, OE.
o 6z ox
0B, OE, OF,
or oy o
oD, _oH, °H,
o0 oy oz "
5Dy:8Hx_aHZ_J,

o0 o0z ox 7
oD, OH, _OH,
ot ox Oy

_J. 5)

Following the FDTD method proposed by. Yee [6] in which the differential Ot is

replaced by At and by Ax , (3)(4) or (5) are solved using a cubic grid in which

the field components are staggered and occupy distinct locations in space as shown in
Fig. 2.1 The surface integral and line integral are thus evaluated on square surfaces as
shown in Fig. 2.2. This discretization scheme[17] leads to three scalar equations in
two-dimensional analysis for the transverse electric (TE) or the transverse magnetic

(TM) polarization, but six equations in three-dimensional analysis for the field

ExaEyaEzaHxaH Hz:

components Y”and

12



EFTi, g, k)
= aE7(i, j, k) + BIHZTC/2(, j— k)
—H} A 54 L k)
+ HyH 2+ 4, G, k)
— Hyt O/ - 4, k)]
Ejti(i, i+ 3, k+3)
=aBEMi, j+ 3, k+3)
+OHIOP6E - 3+ 5 k+§)
—HMOP (L L i+ 5 k)
+HMOD (G 5+ 1 k+1)
— H;YO(6, 5+ 4, k)]
Er i+l 5 k+ 1)
=aEXi+3, 4, k+1)
+BHGH D1+ 3, 5, k)
—HM A4 L G k+1)
+HP DG L i+ 5 k4 )
~H PO L - L k+ D)
B+, 5+ 1 k+ )
=H WD+ 5,5+ 5, k+3)
— B+ 5 5, k+3)
—~EMi+ i, i+1,k+3)
+Ep(i+1,j+5 k+3)
-EN, i+ 3, k+3)]
HyY (4 3, 4, k)
= H W41 5 k)
— y|E™(i, 5, k) — E™i+1, j, k)
+E(i+ 3,0 k+3) — EX(i+ 4.4, k- 3))
HZt O 5+ 4, k)
= H} Y0, j+ 1 k)= [Er(i, i+ §. k- })
~ErMi, j+ 1, k+1)
+E7(i, 5+ 1, k) — ET(i, 4, k)]

Whereax = (26 —oat)/(2e +oat), S =(at/ax)-[2/(2¢ + o at)], and
y =(at/uax) . The superscript of the field variables stands for the time step

(time = n-At), the subscript represents the direction of the field, and (i, j, k)

13



signifies the node position at (iAx, jAy,kAz).

2.2 A Perfectly Matched Layer for the
absorption of Electromagnetic Waves

2.2.1 The theory and derivation of the PML medium

(a) Definition of the PML medium

We will set the equation of a PML medium for two-dimensional problems,first in
the TE(transverse electric) case. In Cartesian coordinates let us consider a problem
that is without variation along z,withsthe electric field lying in the (x,y) plane(Fig.2.3) .
The electromagnetic field involves three eomponents only,Ex,Ey,Hz,and the Maxwell
equations reduce to a set of three'equations: In the most general case,which is a

medium with an electric conductivity -0 and amagnetic conductivity

O * these equations can be written as

. OF . +OE, = OH .
t oy
OFE oH
& —~+0FE =——= 1
ot Y ox @
OE
u—=+0*H_= OE, &,
t oy  0Ox

2.2 2)

14



is satisfied,then the impendence of the medium (1) equals that of vacuum and no
reflection occurs when a plan wave propagates normally across a vacuum-medium
interface.

We will now define the PML medium in the TE case. The cornerstone of this

definition is the break of the magnetic component Hz into two subcomponents which

we will denote as  H ., and H o In the TE case,a PML medium is defined as a
medium in which the electromagnetic field has four

components, £, E ,H_,H_ connected through the four following equations:

zx? zy ?

X

OE P O(H,, +H_,)

& + 0
Coa U oy
OF oH. +H
&—+0 E =- (., Zy)
ot d Ox 3)
a[—[zx ES aEy
uO — t O-x zx ==
ot ox
oH
uO zy + g % sz _ aEx
ot oy

where the parameters (GX,JX*,Jy 0, *) are homogeneous to electric and magnetic

conductivities.

(b) Propagation of a plane wave in a PML medium

Let us consider a wave whose electric field of magnitude £, forms an angle ¢

with the y axis (Fig2.3). We will denote as H _,and H o the magnitudes of the

magnetic components f1_ and H " If a plane wave propagates in the PML

medium,then the four components of the field can be expressed as
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iw(t—ax—Lfy)

E =-E,singpe

w(t—ax—Ly)

E, =E,cospe
_ iw(t—ax—L£y)
Hzx - Hsze

sz — H eiw(t—ax—ﬂy) (4)

zy0
Where w is the pulsation of the wave, t is the time,and ¢ and ﬂ are complex

constants. Since the magnitude £, is given,the set of Eq.(4)involves four unknown

quantities to be determined, &, f,H__,H_ . Enforcing Ex,Ey JH_,H ., from(4)

zx0? " " zyo

in the PML equations (3) yields the following set of equations connecting the four

unknowns:
: O,
goEOSHl(D_lVEo sing = S(H _;, +H_ ) (5)
&k, cosgo—iov-;“ Eyscosp =al(H_ y+H_;) (6)
o *
uOHsz —1 ;CV Hsz = aEO cos@ (7)
o * ,
uOszO —i - szO = ﬂEO Sln¢ (8)
w

Obtaining 1, and H 20 from (7) and (8) and bringing them respectively into (5)

and (6) yields
e (i )sing = p—2C08¢  Psing ©)
T e T P i * tugw)) 1= i(o, *uyw)
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o, Yoosp = af 'ac03(p N .,Bsm(p ]
EgW (I1-i(o, *uyw)) 1-i(o,*/uw)

(10)

s, (11

This system of two equations connects the unknowns « and /3. It may be solved

by means of writing the ratio (9) over (10),

P _sing 1-i(o,/&w)
a cospl—i(o, /gw)

(11)

And then obtaining « * from (11) and (10) and S ® from (11) and (9). That yields
two sets of (&, ) of opposite signs for two opposite directions of propagation.

Choosing the positive sign we have

_ €l

o
a= I-i—)cos
= ( ‘90W) @
N o
B= “olho (1 Y )sing (12)
G EgW
Where Gz\/wxcosz(p+wysin2¢) (13)

—i 1-i(o,/
W, = 1-i(o, /g,w) (14) - i(o,/gw) as)
1—i(o, */u,w) T 1=i(o, * uyw)

Denoting as {7 any component of the field, y/, its magnitude,and c the speed of

light , with (4)and (12) , we can write

Wy = Woeiw(t—(xcosqusin 9)/¢G) ,~(o cosga/gocG)xe—(O'y sing/gycG)y . (16)

The last two unknowns H_, and szo can be found as functions of @ and [

from (7) and (8) , and then enforcing the & and [ values (12) yields

17



H_,=E,/(& /uo)éwx cos’

1 )
H_,=E, (50/u0)5wy sin® (17)
Taking into account (13), the summation of H_, and H 4o isthen

H,=E,J(¢,/uy)G (18)
and the ratio Z of the electric magnitude over the magnetic one is

1
Z =gl = (19)

For formulas (16) and (19), an importantieecurrence is when both (o _,0 *) and
(Gy .0, *) satisfy the condition(2). Then, the quantities w_, w,, G , equal unity at

any frequency, and so the expression of the wave components (16) and of the
impedance (19) become respectively

o - ) B _ ino/
W= l//oezw(t (xcosp—ysing)/c) X e (o‘xcosgo/goc)xe (oysing/gyc)y (20)

Z=\u,ls,. 1)

(¢) Transmission of a Wave through PML-PML Interfaces

In this section,we will address the problem of a plane wave moving from a PML

medium to another one. We will prove that in particular cases, with adequate sets of
parameters O'X,Gx*, o, ,Gy*, the transmission is perfect and reflectionless at any

incidence angle. These particular cases will be the basis of the perfectly matched

18



layer.

We first consider the case of two PML media separated by an interface normal to

the x axis(fig2-4) . Let us denote €, and 6, the angles of the incident and

transmitted electric fields £, and E, ,with respect to the interface plane. In the case

of (fig.2) we assume the interface to be infinite and incident wave to be plane.
First,both the reflected and transmitted waves must be plane too. Second, the ratios of
these waves over the incident one must be without variation when moving on the

interface. So, for any component | of the incident and transmitted fields, and for

two points A and B of the interface, we can write

v, (B) _v,(4)
w.(B) w,(A)

(22)

Denoting as d the distance from A'to B,and G\, G, as the quantities(13) of each

media, with (16) we have
w.(B)= Wi(A)e—iw(d sin6/cGy)~(,(8ing, / £cG)d (23)

v, (B) = v, ( A)e—iw(d sin6, /¢G,)~(c,, sin b, / £ycG, )d (24)

Since (22) is true for any distance d, the exponential factors of (23) and (24) must be

equal. So the relation

.0, . siné .0, sinf

(I-i—)—2=(1-i—)—= (25)
ew G ew G,

Must be satisfied, where

G, =W, cos*, +w, sin*6, (fork=12). (26)
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Let us now consider the incident, reflected, and transmitted electric and magnetic

fields £, E ,E ,H,,H ,H,(fig.2.4). First, continuity of the fields Ey and
H_+H . lying in the interface yields the following set of equations:

E.cos@ — E cosf, = E cosb, (27)
H +H =H, (28)

Second, denotingas £, ,E | E

02~ ro®to>

the magnitudes of £, E , E ,and setting x=0 in

the interface, with (2.2.11) and (2.2.14) we can write

—iw(ysing, / cG))(1-i(o,, /¢, j
E :E e w(ysing /cG)(1-i(o, W))ezwt

i =L (29)
Er — Eme—iw(ysinﬁl/cGl)(l—i(q‘,l/Sow))eiw; (30)
Et _ Eme—iw( ysind, /¢G,)(1-i(c,, /g,,w))eiwt 31)
H=E/Z, H=E/|Z, H=EIZ, (32)

As a consequence of the Snell-Descartes law: (25),(26),the three exponentials on space
of (29),(30),(31) are equal. So, reporting E.....,H, from (29),(30),(31) into (27),(28)

this system (27),(28)becomes

E, cos@ —E cos6 =E, cosb, (33)
E E _E

10 + ro — o (34)
Zl Zl ZZ

Defining the reflection factor as the ratio of the electric components in the interface,

thatis, —E cos6,/E, cos@, ,and then solving the set (33),(34) for this ratio, the

reflection factor r, for the TE case is

20



. Z,cos8, —Z cosb,

= (35)
Z,co0s6, +Z, cosb,
With (19) , we can rewrite (35) as
_ G,cos0, -G, cosb, 36)

ry =
? G, cosb, +G,cosb,
where G, and G, are functions of &, and 6, through (26)

Let us consider an interface lying between media having same © ) and O';

conductivities, thatis, a (o

sk * * * .
1°0,,0,,0,) and (0,,,0,,,0,,0,) media. Then
the (25) becomes

sing, _sind,
Gl G2

(37)

If, moreover, the two media are matched ones, that is,(c ,,0.,),(0,,,0.,), and
(Gy,O';) satisfying (2), we have . Gji= G5=15:50(37) reduces to

6,=0, (38)

r,=0 39)
The general frame of the PML technique is pointed out on Fig.2.5.
As a summary of this section we can now say that the reflection factor

between two PML media whose conductivities satisfy (2) is null:

These are

+ the reflection factor is null at an interface normal to x lying between a vacuum

anda (0,,0.,0,0) matched medium or between a (0,0, o, ,J;) and a

% % .
(o.,0., o, Gy) matched media.
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+ the reflection factor is null at an interface normal to y lying between a vacuum

anda (0,0, o, ,J;) matched medium or between a (o ,07.,0,0) and a

(o,,0., o, ,G;) matched media.
Let us consider, for instance, the upper-right part of a gridded computational
domain (Fig2-6). With the usual FDTD notations, (3.b) and (3.c) yield the following
equations that can be applied in the whole layer, except in the interface for Ey (see

below),

(1 _ e—ax(i)At/gu)

B j+ 1) =e "N EN G j+1/2) -
o ()ax

H 2 +1/2, j+1/2)+ HOV 2 (i+1/2, j+1/2) (40)
—HIV (i -1/2, j+1/2) - HEV2 (520024, 4+1/2))]

H" i +1/2,j+1/2) = @ EV DA g R2G L1/ 2 i 41/2)
__—oi(i+1/2)At/u,

_(l *e ) (41)
o (i+1/2)ax

XEMi+1,j+1/2) = E'(i, j +1/2)],

Where o and O': are functions of x(I).(on Fig2-6) For the Ey component lying

in the interface, the magnetic field has one component /7_ on one side and two
subcomponents [ ,H_  on the other. That is a result of using the Maxwell

equations in the inner volume, but it has no physical significance. The finite
difference equations have to be modified. So, in the right side interface normal to x,

(40) becomes
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EN(lL j+1/2)=e ™D EN(il, j+1/2)
(1- e—ax(ﬂw/eo)
o (il)ax
(H 2 +1/2, j+1/2)+ E5 2 +1/2, j+1/2) - H 2 (il -1/2, j +1/2)].
(42)

2.3 Numerical Stability Condition

In the two-dimension case

Ar< 1 A
11 N2
c 724‘72
AX" Ay
and Ax=Ay=A

2.4 Numerical Dispersion Relation

In the two-dimension TE(TM) case

g 2 —~ 2
1 . (WAtj ’ 1 . [ kax 1. [ kay
—sin| — || =|—sin +|——sin
cat 2 ax 2 AY 2

where k_ and ky are, respectively, the x- and y-components of the numerical

wavevector, and w is the wave angular frequency. To quantitatively assess the
dependence of numerical dispersion upon FD-TD grid discretization, we shall take as

the case, assuming for simplicity square unit cells (aX =a) =a) and wave
propagation at an angle « with respect to the positive

x-axis( /g ~kcosa ;ky =ksina ). Then numerical dispersion relation () simplifies

to
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2 - P
A . o wat . o akcosa . 2| aksina
— | sin”| — |=sin“| —— |+sin" | —
(CAfj ( 2 j ( 2 ] ( 2 ]

By applying the following Newton’s method iterative procedure:

___ sin’(4k)+sin’(Bk,)-C
" Asin(24k )+ Bsin(2Bk)

. 2
A'COSO asina A . o, wat
=——, B= , C=|— smz(—A)
cat 2

———

So we can obtain the numerical wavevector k& inal that the numerical phase velocity

v, is given by

~ w
v, =—.

k.
final
See figure.2-7 graphs results gbtained using this procedure that illustrate the

variation of the numerical phase velocity with propagation angle in a two-dimensional

FDTD grid.
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t Incident Radiation

—
4 [
ETJ Az
2N A
B E'I'il-'rﬂ?
VxE = — -
FKH - E +1] :74
Ax=Ay=Az
M?
x kﬁﬂiﬂm
Conditions

Fig2.1 Maxwell’s equations are solved over a cubic grid using the FDTD method.
The field components are staggered over the grid.

3 H,wlmm
sl [T

Hy(i-124k) — E.{'i.i,k} — Hyli+lf2jk) —
4 \—o Hyfij-172.k) 4——11 ¥

AxS2 z

3 —Eu:i+1.-‘2,!rl-1h+1.-‘2:|+-—— z
N S

EfiHLON+I) —— 1o Uakele) — BtirLprlakel/) —

4 L" Eqit+1a jh+1d) 41 ¥

— ) e
Ax2 z (b)
Fig2.2-(a)The electric field E (i,j,k) is calculated by summing up the magnetic field
values of the four neighboring nodes. The magnetic field components are assumed to
be constant along the line segments 1-2,2-3,3-4,and4-1,and the electric field EZ is
assumed to be constant over the square surface bounded by 1-2-3-4.

2

X

(a)

(b) The magnetic field Hz(i+1/2,j+1/2,k+1/2) is calculated by summing up the electric
field values of the four neighboring nodes. The electric field components are assumed
to be constant along the line segments 1-2,2-3,3-4,and4-1,and the magnetic field Hz is
assumed to be constant over the square surface bounded by 1-2-3-4.
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Fig-2.3The transverse electric prﬁd - “%
3 —EE “&- 7

Interface

Pl"ﬂ.:{uxlu u)tlrc}'ifﬁﬁft} + M‘{%lu:: lofiro;zl

x =20 x

Fig-2.4 Interface lying between two PML media.
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Fig-2.5 The PML technique. A w%
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vacuum PML
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Fig-2.6 Upper-right part of the FDTD grid




A = ub;m Ideal case

0.98
(]
~ 0.87
[-%
=
0.9
0.95
ﬂ.‘jﬂ i i i L ! i |- I‘ |I|I
n* 10" 20" " a0* 50" BO° it B0 L)

wave propagation

Figure.2-7 graphs results obtaine

the numerical phase velogity with propagation angle in a two-dimensional

FDTD grid.
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Chapter 3

Using Battle-Lemarie Scaling Function Based

Multiresolution time-domain(MRTD) schemes

3.1 Fundamentals Of Multiresolution Analysis

In literature [1], [2], the use of scaling and wavelet functions as a complete set of
basis functions is called multiresolution‘analysis.The most important properties of the
scaling and wavelets functions defining a multiresolution analysis are now
summarized:

1. All scaling and wavelet functions are localized both in the frequency and the
space/time domains.

2. The Fourier transform of a scaling function(Fig.3-1) is a low-pass
function(Fig.3-2), while the Fourier transform of the corresponding mother
wavelet(Fig.3-3) is a bandpass function(Fig.3-4). This implies that, in a
multiresolution expansion, scaling functions can be utilized to sample the
low-frequency content of the field/signal, while wavelets sample the
high-frequency content.

3. The scaling function of one resolution level, m, are orthonormal to the scaling
functions of the same resolution level, but not the scaling functions of other

resolution levels:
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(B> b)) =5, (3-1)

This implies that, when using scaling functions in an expansion, we cannot mix
different resolution levels.
4. The scaling function are orthogonal to all wavelets of any higher-order

resolution level:

(GsWi)=0 m<u (3-2)

while the wavelet function of any resolution level are orthonormal to

all other wavelets at any resolution level:

<l//mn 9 l//uv> = 5mu 5nv (3-3)
The above two properties allow us to mix scaling functions of one resolution level
with wavelets of one or more resolution levels of the same or higher order, m.
5. Any scaling function of m resolution can be expanded in the form of
wavelets of all lower resolution leyels:

b, 0=3 S d™y (x) (3-4)

J=—00 [=—00

3-2 Derivation of the S-MRTD Scheme

The S-MRTD and W-MRTD schemes[12] are derived using cubic spline
Battle-Lemarie scaling and wavelet functions .

At first, for simplicity, we will only derive the S-MRTD scheme for a
homogeneous medium. The derivation is similar to that of Yee’s FDTD scheme which
uses the method of moments|[ 19] with pulse functions as expansion and test functions.
For the derivation of S-MRTD, the field components are represented by a series of

scaling functions in space and pulse functions in time.
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2-D (TE) S-MRTD Scheme:

Maxwell’s vector equation

v —glE (1)
py
o
VxE=—u — 2
U, or (2)

for a homogeneous medium with the permittivity & and the permeability 7, may

be written in the form of three scalar Cartesian equations as

OH oF
Z — g X (3)
oy ot
o, _ % 4
ox ot

e 5)

The electric and magnetic field components incorporated in these equations are

expanded as following
+00

Ex(;’t): Z kElq-ji-xl/Z,mhk(t)¢l+1/2(x)¢m(y)

k,l,m,=—0
E(r)= 2 (Elsh(D(),.0(0)
w7 kEr 12 L)@, na1/2\V
k,lm,=—0

H_(r,t)= Z k+l/2Hl¢j-zl/2,m+l/2hk+l/2(t)¢l+1/2(x)¢m+l/2(y) (6)

k,l,m,=—0
where , E 1¢5 and , H ;'},IZ with K= x, y are the coefficients for the field

expansions in terms of scaling functions. The indexes 1, m, and k are the discrete
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space and time indices related to the space and time coordinates via x =[Ax,

y=mAy and y=kAt,where Ax,Ay and At represent the space and time

discretization intervals in x-, y- and t-direction. The function /4, (x) is defined as

h, (%) =h<§—m) 7

with the rectangular pulse function

1f0r‘x‘<1/2
h(x)=141/2 for|x|=1/2 )
0 for‘x‘>1/2

The function ¢m (x) 1s defined as
4, ()= p(—~m) ©)

where §(x) represents the spling Battle-Lematie scaling function [13], [14] depicted

in Fig. 3-1. Assuming the Fourier transformation

dA)=" p(x)e dx (10)
and
(x)—— [ daeaa (1)

Respectively, the closed-form expression of the scaling function in

spectral domain is given by

ALY
_ [sin) |
W)= —>| - \/ (12)

5 l—ism( )+ n( )——sm( )

3 315
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with the low-pass spectral domain characteristics shown in Fig.3-2.
We insert the field expansions in Maxwell’s equations and sample the equations
using pulse functions as test functions in time and scaling functions as test functions

in space. For the sampling with respect to time, we need the following integrals[10]
~+00
[ h,h, ()dx=05,,Ax (13)

where 5m,m, represents the kronecker symbol

1 for m=m'
o, = (14)
’ 0 for m#m'
and
+o0 oh .. .,(x
[ Lo s 15)
- ox ’ ’
For the sampling with respect to space, we-use the orthogonality
relation for the scaling functions17]
+00
[ 4,08, (x)dx=5,,Ax. (16)

To calculate the integral corresponding to (15) for scaling functions, we
make use of the closed form expression of the scaling function in spectral domain.
According to Galerkin’s method [7], for complex basis functions, one has to choose

the complex conjugant of the basis functions as test functions. We then obtain

[ 6,00 L) +”2(x) j:\;?ﬁ(z)rlsinz(m = m+1/2)dA a7

where ;5(2,) is given by (12). This integral may be evaluated numerically resulting

in
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J ¢ (X) a¢m +1/2(x)dx ia(z) m+,m (18)

The coefficients a(i) for 0 <i <8 are shown in Table I, and the coefficients a(i) for i

< 0 are given by the symmetry relation a(-1-i)=-a(i). The Battle-Lemarie scaling

function does not have compact but only exponential decaying support and thus, the

coefficients a(i) for i > 8 are not zero. However, we found that these coefficients are

negligible, affecting the accuracy of the field computation only for very low values

of the wave vector. We therefore use the approximation

J‘ é (x) 0f,, +1/z(x)dx~ Za(l) . (19)
i=9

in order to obtain a MRTD scheme useful for practical applications.

For sake of simplicity,let us demonstrate the sampling of Maxwell’s
equations by using only scaling functions as expansion and testing functions. By
applying Galerkin’s method,the systemof (3),(4),(5) takes the form:

¢ ¢ At_ B +8

X X . Z

v Erom = v Elom + Za(l)k+l/2Hl+l/2m+z+l/2
EAY | i

oy _ oy At _Z
k+lEl,m+l/2 = kEl,m+l/2 + Ax a(@) . H l+l+l/2m+l/2

L =9

At +8 +8
¢z ¢z . Px . Py
k+1/2Hl+1/2m+1/2 k- 1/2Hl+1/2m+1/2 + WA Za(l) E1+1/2 m+i Za(l) EI-H m+1/2
0

i=—9 i==9
(20)
where 1,m, and k are the discrete space and time indices. In fact, the total field at a
particular space point for the S-MRTD scheme may be calculated from the field

expansions, see (6) , by sampling them with delta test functions in space and time

34



domain. For example, the x-component of the total electric field
E (r,t)=E (x,,y,,t) atanarbitrary space point 7, attime f, with

(k—=1/2)at<t, <(k+1/2)at is given by

EGnt) = [ [[[EF.06(x = x,)8(y - 3,)5(t ~t,)dxdydt

= Z kElq?il/Z,m'¢l'+l/2 (xX)8,. (o)

['\m',n'=—0

E,(7.t,)= [ [ [ [ E,(F,)0(x = x,)8(y = »,)8(t — 1, )dxdydt

= Z kEl?,)r/n'+1/2¢l'(x0)¢m'+1/2(y0)

1 ' —_
[I'm'.n'=—0

H.(7.t,) = [ [ [ [ H.(F,0)0 (e )o@ =900 — 1, )dxdydt
+00
= z k+1/2Hﬁil/z,m'+1/z¢z'+1/2(xo )i, (Vy)
['\m',n'=—0
Due to the exponentially decaying support of the Battle-Lemarie scaling

function (see Figure.3-1), only a few terms of this two-dimensional

summation have to be considered.

3-3 Numerical Stability condition

In the two-dimension case and Ax =Ay =A

1 =O.6371-i

(a4 2

AtS —~MRTD <

ay’
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3-4 Numerical Dispersion

To calculate the numerical dispersion[14] of the S-MRTD scheme, plane

monochromatic traveling-wave trial solutions are substituted in the discretized

Maxwell’s equations. For example, the £ , E| , H_ components for the TE mode has

the form

EN=E, exp(j(lgxle + lgymAx - kat))
EP = E, exp(j(lgxle + /gymAx - kat))

HE=H exp(j(l:rxle + lgymAx = kat)) (21)

~ ~

Where k_and k , are the x- and y-components of the numerical wave vector and w

is the wave angular frequency. Substituting the above expressions into (20), the

following numerical dispersion relation is obtained for the TE mode of the S-MRTD

scheme after algebraic manipulation:

2 n,—1 - 2
i-sin(WTAtD ={Za(i')sin(kcos;zj(iw1/2)A)} +
i'=0

(22)

naz_la( J")sin (sin g( j'+1/2)A)}

L /=0

Where Ax = Ay = Aand wave propagating at ¢ with respect to
_ _— cAt
x-axis(k, =kcos¢@ and k,=k sin @). Defining the Courant number C :T and

the number of cells per wavelength R=A1_ /A and using the definition of the
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wave vector k =(27)/ Ay, , the dispersion relationship can be written as

1 . (=C 2_ S o[ 2m A, y 2
E-sm(?]j —LZ(;a(l )sm((?)(ﬁ—)cosﬂz +1/2)H +

NUM
(23)

fa(j')sin[(%)(j—@“l)ﬁngb(j%1/2)}}

| J'=0 NUM
Upon numerical solution of (23) by applying the bisection-Newton-Raphson hybrid
technique for different values 7,6, and C, we obtain k= 27 Ay -

~ w
Substituting k = (27)/ Ay, into Vi, = T we can obtain the phase error

introduced by the MRTD

algorithm. (Figure.3-5)
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Figure.3-1 Cubic spline Battle-Lemarie scaling function in space domain.

(—-A-—\ é(k)

_15 ~10 -5 0 5 10 15
Figure.3-2 Cubic spline Battle-Lemarie scaling function in spectral domain.
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Figure.3-3 Cubic spline Battle-Lemarie wavelet function in space domain.

1t (ko)
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Figure.3-4 Cubic spline Battle-Lemarie wavelet function in spectral domain.
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a(i)

10

11

12

13

14

15

1.29161604157839
-0.155078843323672
5.9606303324687290E-02
-2.929157759806890E-02
1.53623994574267B0E-02
-8.184462325283712E-03
4.3757585552354B30E-03
-2.342365356649461E-03
1.252877717T042020E-03
-6.716635068590737TE-04
3.583506907489TITE-04
-1.931321684715780E-04
1.01932776705T869E-04
-5.613943183518454E-05
2.834596805928539E-05

-1.700348604873522E-05

Table I Coefficients a(i)
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Chapter 4

Discussion and Conclusion

4.1 S-MRTD formulation

In the PML medium, we can obtain the equations(4.0) from chapter 2.

OF o(H_ + sz)
& to E =
ot oy
oF OH. +H
&——+0 FE =— (H., 2)
ot g Ox “.0)
a]{zx sk aEy
uO + Gx zX -
ot Oox
OH
uo Zy + * HZ — aEx
ot T oy

Upon applying Galerkin’s technique, the fellowing is obtained by S-MRTD method

—oy,(m)At
-0, (m)At _7))( )
g E g lze
X _ . X .
Eliom=e 7 Efa, T o (m)Ay
y 4.1)
+8 s p
. ZX Zy
Z a(i) GnH o minine: T ke 2 mas240)
=
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—o, (At

—o (DAt s
EV o @ . gt _l-e T
k+171,m+1/2 k™~ l,m+1/2 o (Z)AX
x 4.2)
+8 p y
- . ZX Zy
Z a(i) (k+1/2Hl+1/2+i,m+1/2 + o2 imin
=9
—ot(I41/2)At
dzx —e Ho . pzx —
k+1/2551+1/2,m+1/2 k=1/2"%1+1/2,m+1/2
—ot(I+1/2)At (4.3)
8
l-e = i -
: a(i) E”’
* k™ 1+i,m+1/2
o ([ +1/2)Ax | &~
—o (m+1/2)At
¢zy _ H . ¢zy
k120G man =€ ’ ka2 A amin +
—o) (m+1/2)At (4.4)
1_ e & +8 .
*( +1/2)A ) Za(l)k lﬁ);/2,m+i
o,(m ) | =59

In main grid(figure 4-1), we use the equations(4.5) from chapter 3.

Ar [ &
Px _ Px : Pz
k+1EZ+1/2,m = kEl+1/2,m + 2 :a(l)k+1/2Hz+1/2,m+i+1/2
ENy | i =5

At B +8
Py _ Py _ : ¢z
k1 Erpry = v Elpan + Z a(i) Himan
x| =

At +8 +8
¢z _ ¢z . éx _ .
k+1/2Hl+1/2,m+1/2 = k—1/2Hl+1/2,m+1/2 + A Za(l)kEl+1/2,m+i Za(l)k

0 i=—9 i=—9
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4.2 Simulation results

In this thesis, we simulate a new contact hole 2D-PSM design(figure 4-7)[15],
which will be compatible with dense contact-hole. When it is applied together with
QUASAR OALI, we can enhance the printing resolution to achieve an excellent
DOF(figure 4-8).When we proceeding to simulate this 3D-mask(figure 4-9), we can
find the DOF degraded to 50 percent.(figure 4-10)

When we use our program by S-MRTD,we can make the actual reflection waves
are short successfully.(see figure 4-2,3,4,5,6)

Accordingly, we can continue to simulate 2D-mask by the program.
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4.3 Conclusion

The multiresolution time-domain method has been successfully applied to rigorous
2D mask diffraction simulation with PML. MRTD requires only about 3.5 to 3.9
nodes per wavelength to achieve a phase error of two degrees per wavelength or less,
while FDTD requires 19 nodes per wavelength or more to achieve the same phase
error(Table 1). As a result, MRTD is faster than the speed of FDTD for the same

level of accuracy. Figure4- show the dispersion characteristics of FDTD and S-MRTD

Then,the development of the MRTD-PML absorber enhances the applicability of
the MRTD technique to complex 2(3)-D open geometries while maintaining the high

computational efficiency in terms'of memory and exécution time requirements.

After having completed the work related above, one way of further research were

initiated: the implementation of the three-dimensional S-MRTD simulation in order to

achieve a more detailed analysis for the wave-structure(MASK) interaction problem.
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Figure4-2 MRTD simulation result
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Figure 4-3 MRTD simulation result
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Figure 4-5 MRTD simulation result’
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Figure 4-7 A new contact hole 2D<PSM design
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Table 1: FDTD (left) versus MRTD (right) for 2D Quartz Object

Nodes/A in | Phase error || Nodes/Ain | Phase error
air (quartz) per A air (quartz) per A
96.5 (64.3) (0°) 134313 1.4°
19.3 (12.9) 4.3° 3.9 (2.6) 2.0°
15.4 (10.3) 6.9° 35123} 3.20
12.5 (8.3) 11.2° 3.1@1) 3.4
ﬁ: HH - '
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Figure 4-11 Dispersion characteristics of FDTD and S-MRTD, Q= cAt/Ax
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