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ABSTRACT

In this report, we present a study-on the addition-energy of interacting electrons for a
realistic three-dimensional (3D) model of semiconductor nano-scale InAs/GaAs
quantum dots under an external magnetic field. We supposed the interaction between
electrons are totally caused by Coulomb effect. Here we use the exact diagonalization
method to obtain the confined energy states of few electrons that exists in a quantum
dot as a function of external magnetic fields. The first step is to find the eigenstates of
a single electron. The model formulation includes (i) the energy and position
dependent effective mass and Lande’ factor for electrons (ii) finite hard wall
confinement potential (iii) the Zeeman effect caused by interaction between the
mesoscopic angular momentum and the magnetic field. We apply the non-linear

iterative method to obtain self-consistent solutions of this 3D problem. The interaction



between electrons has important effects on the magnetic field dependence of the
energy spectrum. After finding out the energy states of single electron confined in

the dot and corresponding wave function dependence on an external magnetic field,
we make use of these results to evaluate the Coulomb potential between electrons and
construct the Hamiltonian of multi-electrons quantum dot. Then we obtain the energy
states of few electrons confined in a dot and take all these data to get the addition
energy for different applied magnetic field. All the results will be presented. We found
that there are some values of addition energy are slightly negative when the external
magnetic field is zero. However, the addition energy in a quantum dot should be
always positive. This is because the states which are used to create the Hamiltonian of
multi-electrons quantum dot are: not diagonal to.each other. We expect that the

addition energy will shift up if we diagonalize the states.
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Chapter 1

Introduction

During the past years, the application of new and extraordinary experimental
tools to nano-science has generated great intérest in some special semiconduc-
tor electronic systems, called'quantumn dots: Because of the impressive devel-
opments in nano fabrication technology, quantum dots and coupled quantum
dots can be designed at thé nano scale-and much of their behavior can be
precisely tuned by using standard fabrication methods. Quantum dots can
contain electrons from only one to more than thousands. The number of elec-
trons in a quantum dot,denoted N, can be controlled precisely via external
potential experimentally, affect many physical properties of the quantum dot.
[1, 2] There is a strong interest in the study of quantum dots both from the
technological and theoretical point of view. From the technological point of
view, quantum dots are related to the field of quantum computing, especially
after being shown that two-electron quantum dots have the potential to form
the basis of scalable quantum bits in a future quantum computing. They also
offer the potential to build faster electronic devices, such as single-electron
transistors [3]. Moreover, quantum dots become more and more interesting

topics in physics, especially in the field of lasers and photonics. From the



theoretical point of view, they represent a unique opportunity to study fun-
damental quantum phenomena in a tunable atomic-like energy level and this
is the reason why, sometimes, they are referred to as artificial atoms [4].

In this report, we will consider a quantum dot with more than one elec-
tron confined in an external magnetic field. The electron-electron interaction
is highly important and leads to unusual magnetic-field dependence of the
ground state and it’s excitations. Since the interaction between electrons is
mostly caused by Coulomb effect, here we ignore the other kinds of interaction
such as weak interaction, gravitation and strong nuclear interaction. Studies
of quantum dots with even few confined electrons meet many challenges, for
the simple reason that, sometimes, standard techniques of condensed mat-
ter physics, such as Hartree-Foek' metheds: [5], are not sufficiently accurate.
Therefore, a more accurate.gquantum mechanical treatment is needed, and
inevitably this requires the-use of numerical méthods. The first pioneering
work on such systems is done by Bryamnt={6] in‘which the electronic structure
of up to N < 6 electrons confined-in a 2D+ infinite rectangular potential well
was calculated. A Coulomb potential screened by the background dielec-
tric constant was chosen as the form of the electron-electron interaction. In
particular, the problem of two interacting electrons in a 2D parabolic well
confinement potential both in the absence and in the presence of a perpen-
dicular magnetic field has previously been studied by using several methods.
Then the exact closed-form solution for the problem of two interacting elec-
trons in both uniform magnetic field and external 2D parabolic potential has
been reported. Recently, the problem of electrons in a three dimensional(3D)
parabolic confinement potential has also been studied.[7]

There are two ’exact’ (in the numerical sense) methods have been success-

fully applied to multi-electrons quantum dots: one is the exact numerical di-



agonalization technique[8, 9], and the other one is the quantum Monte Carlo
(QMC)[10, 11] method. Here, we choose the exact numerical diagonalization
method to solve our problem. Though there are some researches investigat-
ing interacting electrons in a quantum dot by the same method. Most of
them consider the dot with parabolic confinement potential. However, the
quantum dot more likely form the finite hard-wall confinement potential.
Especially when we make the size of the dot quite small. Therefore, in our
case, we assume that electrons in the quantum dot are confined with finite
hard-wall potential. It is worth noting that, not only does the results get
from each kind of confinement potential diverse, but also the approximation
we make in our computation is different. According to exact diagonalization
method, the Hamiltonian of multi-electrons,system is represented in the ba-
sis which is constructed by eigenfunetions of the single electron Hamiltonian.
But there is some limitation of this method which may result in somewhat
inaccuracy. That is, the eigenfunctionstwerget from single electron problem
do not span all the space of the.multi-eléctrons’ problem. In the case of
parabolic confinement potential, infinite energy states will be found confined
in the dot when there is one electron inside. Therefore, the basis set we build
for multi-electron problem is infinite. However, we can select the lowest few
eigenfunctions and build a finite basis set to achieve the desired accuracy. It
is different in the case of hard wall confinement potential where there would
be finite energy states confined in the dot. Moreover, the number of the
states would be less if we make the size of the dot smaller. Therefore, we
can only build finite basis set for multi-electron Hamiltonian in this case.
The accuracy and the complexity of our computation depends on the size of
the dot(the interaction between electrons) we decide, so we will compare the

interaction energy to the energy of single electron in this report.



In the creation of quantum dots with a molecular beam epitaxy chamber,
by spraying a surface with layers of atoms under high temperature, a residue
is produced on the surface called wetting layer, which can interfere with the
stimulation of the dots in order to control their state for quantum computa-
tion. In our model, the size of the dot is so small that we can not neglect
the wetting layer. However, we supposed that the length of wetting layer is
long enough and we made an approximation that the the length extends to
infinity.

In this report, we propose a model of InAs/GaAs quantum dot with
wetting layer. Figl.1 is the 3D configuration of the dot. We supposed the
quantum dot is of cylindrical symmetry about z axis. The cross-section of
z-axis is an ellipse.

This report is organized &s follows: in chapter 2, we present the essential
formalism for our study and the numerical approach we use to calculate the
tunnelling transmission probabilityzrThercalculation results and discussions

are shown in chapter 3. Finally; swve summarize our work in chapter 4.



Figure 1.1: the figure of the 3D quantum dot with wetting layer



Chapter 2

Theory

The objective of our work is to study few interacting electrons in a quantum
dot by using the exact numerical'diagonalization technique. We are interested
in confined energy states which are exact solutions (or good approximations)
to them of the many-body problem defined by the Hamiltonian
N < i o

H= ;Ho(ri) + égwri,m), (2.1)
Where H, is the Hamiltonian of single electron. V (77, 77;) is the energy due to
the interaction between electrons. 7; is the position vector of the i’th electron
in the quantum dot. We supposed V (77, 77) is totally decided by Coulomb
potential. The first step is to find the energy states and the corresponding
wave function of single electron problem. In the presence of an external
magnetic field B, by including the Zeeman term, an approximate effective

Hamiltonian can be obtained in the form

N 1 02 0? 0? e2p? eh 0
H=-—— — )+ B? — B—
N T - v R T g R
(EYuB
$HEWE i1, (22)



Where i=1 represent the Hamiltonian inside the dot and i=2 represent the
Hamiltonian outside the dot. The coordinate system of the above eqation
is cylindrical coordinate. The quantum dot we consider is ploted in Figl.1.
Where p is the length of the projection of 7; on the x-y plane, ¢ is the
angle between the axis x and the projection of 75 on the x-y plane. V.(p, z)
is the finite confinement potential, and is set for 0 inside the dot. So the
Ve(p, z) outside the dot is the potential difference between the conduction
band of GaAs and InAs. The first two terms of the Hamiltonian are due to

the interaction of the orbital motion and the magnetic field. The last terms

represent the energy caused by Zeeman effect. Where p = 22’;‘0 is the Bohr
magneton, and my is the free-electron mass. g(F, p, z) and m(E, p, z) stand
for the energy and position dependent mass and Lande factor, respectively.

It is given by

1 — 1 Eg(Eg 5 A) 2 1
o(E) =201~ = ), (2.4)

m(E)3(E, + E) +2A
m(0) is free electron mass of designated material which is made by InAs
inside the dot and GaAs outside in this report. A is spin-orbit splitting in
the valence band , E, is energy band.

The Ben Daniel-Duke boundary conditions for the electron and hole wave

functions ¥(r) are given by

Uy (r3) = Wa(ry) and

1 (3@(p,Z) L 4(p) 02(p, 2)
m(E)"  Op dp 0z

)2=f(p) = const, (2.5)



75 is an arbitrary position of the surface of the dot. f(p) is a function that
shows how z is dependent upon rho on the surface. Solutions of these eigen-
systems provide the single-electron energies and the spinor wave functions.
By the cylindrical symmetry of the system, the energy eigenfunction takes

the well-known form

\Dn,l,s(r) = 6$p(il¢>(pn,l,s(pa Z); (26)

where [ = 0,1, 2, ...is the quantum number of the projection of the angular
momentum on to the magnetic field B axis, n is the main quantum number,

with @, (p, z) that satisfies

o1 O? 92 2
T m®) 7, 7 e

W(I)n,l,s(p? z) +

2 2

5 €°p ehl sgi(E)uB
BOq.(p, _

8m;(F) * 2m;(E) falp,2) + 2

(I)n,l,s(p; Z) + V::(p7 Z)(I)n,l,s(pa Z) = E(I)n,l,s(pv Z),Z = 1a 2 (27)

The Ben Daniel-Dukeboundary conditions can be written as

<I>1(,0,z):<I)2(p,z), Z:f(p)
1 (aq)l(pv Z) + df(p) aq)l(ﬂ? Z)) _ 1
mi(E)" dp dp 0z IO T (B

0a(p2) | df(p) 9%a(p, 2)

( 9 0 )2=1(0)»

(2.8)



To solve this 2D non-linear problem ,we apply the non-linear iterative method
to obtain self-consistent solutions.

After we get the energy states and the corresponding wave function of
single electron confined in a quantum dot, we use theses results to construct
the Hamiltonian of multi-electrons system. The Hamiltonian is given by
equation (2.1).

In order to obtain the mathematical form of H, we use exact diagonaliza-
tion method and make an approximation that any wave function of H can

be given as

U(ry,ra,. .. ,T) = Z Cp1p2,... pk U1 (T1) Wpa(r2) - Wpp (i)

P1,P2;---,Pk

= Z Cpl,p2,... ,pklepl,pZ,... ,pk(rla ra,..., I'k)a (29)

pl,p2,... ,pk

Where W, (r) is the normalized eigenfunction ofsingle electron Q.D. in equa-
tion 2.6. Here, for simplicity, we use pi=n,ks to collect all the three quan-
tum number n,l,s of the ith electron confined in the dot. For example, p1=1
represent the quantum number (n,l,s)=(1,0,1) of the first electron, p1=2 rep-
resent the quantum number (n,1,s)=(1,0,-1) of the first electron, and so on.
Cp1p2,..pk 1s an arbitrary constant, k is the number of the electrons confined
in the dot. Since we suppose the finite hard-wall confinement potential here,
the maximum of k must be finite. There are finite numbers of m because we
only consider the states confined in the Q.D.

If ¥,(r) is orthogonal to W,(r), ¢ # p. V,1 2. pk(r1,T2, ... ,Tk) has the

property

(Upr o, pk(T1,T2, . Tk) | Wor g0 qr(T1,T2, 0 Tk)) = Op1.g10p2,02 - * - Opleghs

(2.10)



Where 6,, =1, =p and 6,, = 0,q # p
We can express H approximately by matrix form with the orthonormal

basis

{vqlv q27 qk | \Iqu,q2 ..... qk(rla ra,... 7rk)}7 (211)

And the multi-electron Hamiltonian is

H = Z | \ijl,pQ,...,pk;(rla ra,... ark)><\11q1,q27---7qk(rla ra,... ,I'k) |

q1,q2,... ,qk,pl,p2,...pk

<\Ilp1,p2,...,pk<r17 ra,... 7rk) i H | \Ilql,q2,...,qk(r17 ra,... 7rk)>7 (212)

However, since the Hamiltonian lof single eletctron quantum dot in our prob-
lem depends on the electronic energy, the wavefunctions of the Hamiltonian
with different energy level are not orthogonal to each other. Therefore, the
eqation (2.10) can not be appliedshere. This results is overlap between the
wavefunctions which we use to create the Hamiltonian of milti-electron quan-
tum dot and may make the eqation (2.12) inccurate. However, this is our first
step to analyze the addition energy of multi-electrons quantum dot. We just
want to see a trend of the results here and supposed that all the wavefunc-
tions we get from single electron problem are diagonal with each other. We
will tell how to solve the problem of un-diagonalization of the wavefunctions
in chapter 3 and will investigate more in the future.

Since

HO(ri) | \Ilql,qQ,...,qk<r17 ra,... 7rk)> - Eqi | \I;ql,qQ,...,qk(rla ra,... 7rk>>7

(2.13)

10



The problem reduces to the calculation of the matrix elements of each

V(rj,rj), Where

62

V(rj,r;) = (2.14)

dre|r; — 15|’
The formulation of the energy of Coulomb interaction between electrons i

and j written as

Vaigiwipi = <\ijl,p2 ,,,,, pk(rlvr% ., TK) ’ V(ﬁ,f}) | Vorg2,.., qk(rlar% .. ark)>

/dr dry @ () D) () VAxi B5) s (17) Dy ()

62

/ drsdr; @, (23) @ (i) By (r1) Dy (x5), (2.15)

4relry — 1|

For convenient, we rewrite the above equation with simple symbol.

* * 1
(pi,ps |V | ¢i. qj) //\If ;)W ln—mklfqi(ri)llqu(rj)dridrj,
(2.16)

Consider equaton (2.6).
Here, we use the well-known presentation by Bessel functions of first kind

Jm(X)

> / dke™ ) I (kp)Tm(kpy)e M550 (2.17)

m=—00

_r.l|

We can transform (2.16) into

11



pi,pj | V | qi,qj) = (27) 01,0100 / pipjdpidp;dzidz;®pi(pi, 2i) Pgi (i 2:) Ppi (05 25) Ps (P 25)

/ dk‘]Lpiqi(kpi)Jijqj (kpj)e_HZi_Zjl? (218)
0

Where L, is the angular momentum of the state p minus the angular mo-
mentum of the state q. By means of equations (2.1), (2.13), and (2.18). We
construct the matrix form of the Hamiltonian with the basis given in equa-
tion (2.11). Then we solve the eigenvalue problem of the matrix, and get the
energy states of multi-electrons confined in the dot. Finally we calculate the
addition energy when we add+another electron to a quantum dot.

The addition energy is.defined by the difference of chemical potential
when we add an electron into a quantum dot. The chemical potential for N

electrons is given by

U(N) = BE(N) — E(N — 1), (2.19)

where E(N) is the total energy of N electrons confined in a dot. Therefore,

the formula of the addition energy is given as

Ap =U(N) = U(N —1)

=FE(N+1)—2E(N)+ E(N —1) (2.20)

Where Ag is the addition energy of the system and N the number of the

electrons confined in a dot.

12



Chapter 3

Results and discussions

We simulate the InAs/GaAs dot when the material parameters for InAs inside
the dots are g(E = 0) = 0.42,.A'= 0.38, Vi= 0eV, m(E = 0) = 0.0665m..
me is free electron mass. The parameters for GaAs outside of the dots are
g(E =0) =152, A =034, V. = 0.77eV,; m(E = 0) = 0.0665m.. The
geometry of the dot is like Figure L.1."And thesize for the dot is radius (x-y
plane) : 7.5- 107 m ; radius (z-axis)=1:5+-10"% m ; thick : 5-1071% m.
First we solve the energy states and the corresponding wave functions of
single electron confined in the dot with different magnetic field. The results
with zero external magnetic field are plotted below. In our case, there are only
8 states confined. They are (n,l,s) = (1,0,1),(1,0,—1),(1,1,1),(1,1, 1),
(1,-1,1),(1,-1,-1),(2,0,1),(2,0,—1). For simplicity, we use the symbol

p to substitute for each combination of (n,l,s) and q=1,2,3,...,8 represent

(n7l7 5) = (1707 1)7 (1707 _1>7 (17 17 1)7 (17 17 _1>7 (17 _17 1)? (17 _17 _1>7 (2707 1)7 (2707

respectively. The case which magnetic field differ from 0 is similar. Fig 3.1 to
Fig 3.3 shows the wave function of single electron quantum dot with external
magnetic field B=0, and (n,1)=(1,0),(1,1),(2,0). The corresponding energy
states are 0.5158 eV, 0.6350eV, and 0.71434 V. Where n is main quantum

13
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number and | is angular quantum number. Since the energy states are irrel-
evant to the spin and the sign of the angular quantum number when B=0.
These three cases represent all the states confined in the dot.

After we get all the wavefunctions and the corresponding energy levels of
an electron confined in the dot with specified magnetic field. We use these
datas to calculate the coulomb energy with each specified normalized states.
Table.3.1 shows the energy caused by the Coulomb effect of two electrons
with specified normalized states confined in the quantum dot with magnetic
field zero. We can see that the Coulomb energy between electrons is two order
less than the energy states of single electron confined in a dot. Therefore, the
approximation we make for the exact diagonalization method is negligible in
our problem.

Finally, by means of exaét diagonalization inethod and the above datas,
we get the enegy states of this multi-electrons system and calculate the addi-
tion energy which is shown ‘in Fig3#to-Fig3.6.- We can see from the figures
that : when the external magnetic field equals to zero, the addition en-
ergy appears to be slightly negative at some value of N. This is because the
Hamiltonian of single electron Q.D. in our problem depends on the elecronic
energy, so the eigenstates of the Hamiltonian with different energy level are
not orthogonal to each other. This result in overlap of the stateswhich we
use to create the Hamiltonian of multi-electrons quantum dot and make our
results inaccurate especially when external magnetic field B=0. However, if
we diagonalize these states, we can shift the addition enrgy up and turn the

negative part to positive.

14



Table 3.1: The energy (Unit :eV ) caused by the Coulomb effect of pair

electrons with specified normalized states confined in the quantum dot.

(pi,pj)/(gs,q®) | (L) | 3D | (7.1) | (1,3) | 33) | (73 | 37 | (7.7
(1,1) 00273 0 [0.0042| 0 [0.0231| 0 0 |0.0222
(3,1) 0 | 0.0060 | 0 0 0 0 | —0.0023| 0
(7,1) 0.0042| 0 [0.0038| 0 [0.0010| 0 0 | 0.0021
(1,3) 0 0 0 | 0.0060 | 0 |-0.0023] 0 0
(3,3) 00281 0 [00010| 0 [0.026] 0 0 |0.0198
(7,3) 0 0 0 |—-0.0023| 0 | 0.0024 0 0
(3,7) 0 | —-0.0023] 0 0 0 0 0.0024 | 0
(7,7) 0.0222| 0 400021 | 0% [0.0198| 0 0 |0.0197

Table 3.2: Ground state energy of multi-electrons confined in a quantum

dot with zero magnetic field. Num‘is'the number of the electrons. E is the

ground states energy.

Num

E(ev)

0.4094954

0.8453178

1.4003105

1.9552513

2.5522374

3.1490976

N | O | O W N

3.8976914

15




Table 3.3: Ground state energy of multi-electrons confined in a quantum dot

with magnetic field B=1T.

Num | E(ev)

1 0.4094308
0.8453020
1.3993759
1.9724783
2.5685960
3.1837163
3.9322930

N O | O W N

Table 3.4: Ground state energy of multi-electrons confined in a quantum dot

with magnetic field B=5T.

Num E(ev)

0.40927362
0.8455553
1.3959370
1.9679039
2.5655613
3.1847322
3.9334867

N[O | O W N

16



Table 3.5: Addition energy of multi-electrons confined in the quantum dot

with Magnetic field B=0T. Agp means addition energy

Num | Ag(ev)
0.119170
—0.000052
0.042045
—0.00013
0.151734

S| O | =W N

Table 3.6: Addition energy of multi-¢lectrons confined in the quantum dot

with Magnetic field B=1T.

Num | Ag(ev)

0.118203
0.019029
0.023015
0.019003
0.133456

S| O W N

17



4.00E-009

2.00E-009

0.00E+000

®

-2.00E-009%.
-4.00E-009

0.0 0.00E+00@.00E-0094.00E-0096.00E-00%8.00E-0091.00E-008

X Axis

Figure 3.1: the wave functién of single electron quantum dot with external

magnetic field B=0T, and {n,l)

(1,0)> n is angtlar quantum number and 1

is angular quantum number’

Table 3.7: Addition energy of multi-electrons confined in the quantum dot

with Magnetic field B

=oT.

0.114100
0.021585
0.025691
0.021513
0.129584

Num | Ag(ev)

2
3
4
3
6

18



4.00E-009

2.00E-009

-2.00E-009“46

0.00E+000 L

-4.00E-009
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Figure 3.2: the wave function of singleselectron quantum dot with external

0T, and (n,h)=(1,1):

magnetic field B

X Axis

Figure 3.3: the wave function of single electron quantum dot with external

0T, and (n,1)=(2,0).

magnetic field B
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Addition Energy in B=0

im. dot with magnetic field B=0T

Addition Energy in B=1

0.2

0.15

0.1

0.05

Figure 3.5: the addition energy of quantum dot with magnetic field B=1T
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Addition Energy in B=5

Figure 3.6: the addition energy of quantum dot with magnetic field B=5T
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Chapter 4

Conclusions

We can find from the addition energy spectrum that structure in the addition
energy for electrons in an extetnal magnetic field as a function of electron
number shows a clear progréssion from:peaks consistent with shell structure
to those consistent with the eleetrostatics of point particles. This should be
observable in Coulomb blockaderconductance measurements.

In this report, the basis we msed-to create the Hamiltonian of multi-
electrons quatum dot are not diagonal. we will revise this in our next re-
search. In addition, we will also find the addtion energy of the system with

more than one quantum dots, even with the dots of different size.
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