Table 1.1.1

The highest field effect mobility values measured from OTFTs as reported in the literature annually from 1986 through 2000.[1.1]

Year	(cm ² V ⁻¹ s ⁻¹)	Material (deposition method) (v) = vacuum deposition (s) = from solution	$I_{on}/I_{off}{}^{a}$	W/L
1983	Minimal, not reported (NR)	Polyacetylene (s) (demonstration of field effect in an OTFT)	NR	200
1986	10 -4	Polythiophene (s)	10^{3}	NR
1988	10^{-4} 10^{-3} 10^{-4}	Polyacetylene (s) Phthalocyanine (v) Poly(3-hexylthiophene) (s)	10 ⁵ NR NR	750 3 NR
1989	$\frac{10^{-3}}{10^{-3}}$	Poly(3-alkylthiophene) (s) α-ω-hexathiophene (v)	NR NR	NR NR
1992	0.027 2×10^{-3}	α-ω-hexathiophene (v) Pentacene (v)	NR NR	100 NR
1993	0.05 0.22 [†]	α-ω-di-hexyl-hexathiophene (v) Polythienylenevinylene (s)	NR NR	100-200 1000
1994	0.06	α-ω-dihexyl-hexathiophene (v)	NR	50
1995	0.03 0.038 0.3	α-ω-hexathiophene (v) Pentacene (v) C _{n0} (v)	>10° 140 NR	21 1000 25
1996	0.02 0.045 0.13 0.62	Phthalocyanine (v) Poly(3-hexylthiophene) (s) α-ω-dihexyl-hexathiophene (v) Pentacene (v)	2×10^{5} 340 $>10^{4}$ 10^{8}	NR 20.8 7.3 11
1997	1.5 0.05	Pentacene (v) Bis(dithienothiophene) (v)	10 ⁸	2.5 500
1998	0.1 0.23 0.15	Poly(3-hexylthiophene) (s) α-ω-dihexyl-quaterthiophene (v) Dihexyl-anthradithiophene	>10 ⁶ NR NR	20 1.5 1.5
2000	0.1	n-decapentafluoroheptyl-methyl- naphthalene-1,4,5,8-tetracarboxylic diimide (v)	10 ²	1.5
	0.1	α-ω-dihexyl-quinquethiophene (s)	NR	NR

Table 1.1.4

The chemical and comparison of mobility of classes of organic and inorganic semiconductors.

[1.22]

Semiconductor	Representative chemical structure	Mobility (cm ² V ⁻¹ s ⁻¹)
	Silicon crystal	300-900
Silicon	Polysilicon	50-100
	Amorphous silicon	~1
Pentacene		~1
α,ω-dihexyl- sexithiophene		10-1
α,ω-dihexylanthra- dithiophene		10-1
Regioregular poly(3-hexylthiophene)		10-1
Organic-inorganic hybrid	Phenethylamine-tin iodide	-1

Table 1.2.2

The values of ON current of different channel length and width in this thesis for constant current method.

Channel width/length [μm/μm]	ON current [A]
26600/50	8.86×10 ⁻⁸
3700/50	1.23×10 ⁻⁸
1200/50	4×10 ⁻⁹
600/100	10 ⁻⁹
600/50	2x10 ⁻⁹
600/25	4x10 ⁻⁹
600/10	10 ⁻⁸