Contents

Abstract (Chinese)	i
Abstract (English)	iii
Acknowledgment	v
Contents	vi
Table Lists	ix
Figure Captions	x

Chapter 1 Introduction

1.1 Overview of Organic Semiconductor1
1.1.1 Introduction
1.1.2 Carrier Transport model of Organic Semiconductors
1.1.3 The Crystal Structures of Pentacene Thin Film
1.1.4 Applications of Organic Semiconductor to Organic Field Effect Transistors6
1.2 Electrical Characteristics Analyses of OTFTs
1.2.1 The Basic Operation Mode and Principles of OTFTs7
1.2.2 Threshold Voltage and Constant Current Method
1.2.3 Extraction Method of Mobility and Subthreshold Swing9
1.2.4 Contact Resistances10
1.3 Surface Treatment
1.4 Motivation of thesis
1.5 Thesis Organization

Chapter 2 The Effects on the Performance of Pentacene Active Layer

.1 Introduction

2.2 Motivation	
2.3 Experimental Procedures	,
2.3.1 The Effects of Deposition Conditions of Pentacene Active Layer17	
2.3.1.1 Experiments	,
2.3.1.2 Results and Discussion17	
2.3.2 The Effects of Thicknesses of Pentacene Active Layer	3
2.3.2.1 Experiments	
2.3.2.2 Results and Discussion	
2.3.3 The Degradation effect of Pentacene TFTs	
2.3.3.1 Experiments	1
2.3.3.2 Results and Discussion	
Chapter 3 The Effects on Metal Contact and Surface Treatment	
3.1 Introduction	
3.2 Motivation	<u>)</u>
3.3 Experimental Procedures	
3.3.1 The Influences of Thicknesses of Ti Adhesion Layer	
3.3.1.1 Experiments23	
3.3.1.2 Results and Discussion	3
3.3.2 The Influences of contact materials24	1
3.3.2.1 Experiments	
	•
3.3.2.2 Results and Discussion	5
3.3.2.2 Results and Discussion	5

3.3.3.2 Results and Discussion	
3.4 Summary	

Chapter 4 Pentacene TFTs with Novel Material Source and Drain

4.1 Introduction	
4.2 Motivation	28
4.3 Experimental Procedures	29
4.3.1 MWCNT Deposition Times and Thicknesses of Buffer Layer	30
4.3.1.1 Experiments	30
4.3.1.2 Results and Discussion	30
4.3.2 Pentacene TFTs with MWCNT and Only Pre-Treatment S/D	32
4.3.2.1 Experiments	32
4.3.2.2 Results and Discussion	32
4.3.3 Pentacene TFTs with MWCNT and Pd/Ti S/D	
4.3.3.1 Experiments	
4.3.3.2 Results and Discussion	33
4.4 Summary	34

Chapter 5 Conclusions

5.1 Conclusions

Tables	
Figures	42
References	91
Vita	

Table Lists

Chapter 1

- Table 1.1.1The highest field effect mobility values measured from OTFTs as reported in
the literature annually from 1986 through 2000.[1.1]
- Table 1.1.4
 The chemical and comparison of mobility of classes of organic and inorganic semiconductors.

 semiconductors.
 [1.22]
- Table 1.2.2The values of ON current of different channel length and width in this thesis
for constant current method.

Figure Captions

Chapter 1

- **Figure 1.1.3** The schematic plots of (a) pentacene molecular and (b) single crystal pentacene.
- **Figure 1.1.4-1** The schematic configurations of (a) top contact and (b) bottom contact pentacene TFTs structure with bottom gate.
- Figure 1.1.4-2 Performance of organic and hybrid semiconductor.[1.22]
- Figure 1.2.1-1 The schematic plots of (a) the Fermi level of electrodes and HOMO-LUMO levels of pentacene and (b) conducting channel form proportional to the gate voltage.

Chapter 2

- Figure 2.3-1 The Fabrication Procedures of Pentacene TFTs.
- Figure 2.3-2 A schema of chamber of thermal evaporator
- **Figure 2.3-3** The schematic plots of linear like and finger type layout for bottom contact OTFTs.
- Figure 2.3.1-1 The Id-Vg electrical characteristics of pentacene TFTs with different deposition rates. The channel width/length of devices are (a) 75/50 μm/μm and (b) 600/50 μm/μm.
- **Figure 2.3.1-2** The (a) Id-Vg and (b) Id-Vd electrical characteristics of pentacene TFTs with different deposition rates. The channel width/length of devices are 26600/50 μ m/ μ m.
- **Figure 2.3.1-3** The Id-Vg electrical characteristics of pentacene TFTs with different deposition temperatures. The channel width/length of devices are (a) 75/50

 μ m/ μ m and (b) 600/50 μ m/ μ m.

- Figure 2.3.1-4 The Id-Vg electrical characteristics of pentacene TFTs with different deposition temperatures. The channel width/length of devices are 26600/50 μ m/ μ m.
- **Figure 2.3.1-5** The extractions of saturation mobility of pentacene TFTs with different deposition temperatures and different device scales
- Figure 2.3.1-6 The SEM images of surface morphologies of pentacene active layer deposited on gate dielectric and contact metal.[1.1]
- **Figure 2.3.2-1** The Id-Vg electrical characteristics of pentacene TFTs with different pentacene thicknesses. The channel width/length of devices are (a) 75/50 μ m/ μ m and (b) 600/50 μ m/ μ m.
- **Figure 2.3.1-2** The Id-Vg electrical characteristics of pentacene TFTs with different pentacene thicknesses. The channel width/length of devices are 26600/50 μm/μm.
- **Figure 2.3.2-3** The mobility extractions of pentacene TFTs with different device scales and varied thickness of pentacene film.
- Figure 2.3.3-1 The degradation on electrical characteristics of pentacene TFTs with different deposition temperatures which are (a) RT and (b) 90 °C. The channel width/length of devices are 26600/50 μm/μm.
- **Figures 2.3.3-2** The degradation on mobility of pentacene TFTs with different pentacene deposition temperatures and device scales.

Chapter 3

- **Figure 3.3-1** The Fabrication Procedures of Pentacene TFTs with different contact materials and thicknesses of adhesion layer.
- Figure 3.3.1-1 The Id-Vg electrical characteristics of pentacene TFTs with different

thicknesses of adhesion layer, and the contact material is Au. The channel width/length of devices are (a) $75/50 \ \mu m/\mu m$ and (b) $600/100 \ \mu m/\mu m$.

- Figure 3.3.1-2 The Id-Vg electrical characteristics of pentacene TFTs with different thicknesses of adhesion layer, and the contact material is Au. The channel width/length of devices are $26600/50 \ \mu m/\mu m$.
- **Figure 3.3.1-3** The Id-Vg electrical characteristics of pentacene TFTs with different thicknesses of adhesion layer, and the contact material is Pd. The channel width/length of devices are (a) 75/50 μm/μm and (b) 600/50 μm/μm.
- Figure 3.3.1-4 The Id-Vg electrical characteristics of pentacene TFTs with different thicknesses of adhesion layer, and the contact material is Pd. The channel width/length of devices are 26600/50 μm/μm.
- Figure 3.3.2-1 The Id-Vg electrical characteristics of pentacene TFTs with different contact materials, and the thickness of adhesion layer is 2.5 nm. The channel width/length of devices are (a) 75/50 μm/μm and (b) 600/50 μm/μm.
- Figure 3.3.2-2 The Id-Vg electrical characteristics of pentacene TFTs with different contact materials, and the thickness of adhesion layer is 2.5 nm. The channel width/length of devices are $26600/50 \ \mu m/\mu m$.
- Figure 3.3.2-3 The AFM images of surface morphologies of (a) Pd and (b) Au.
- Figure 3.3.2-4 The AFM images of surface morphologies of pentacene active layer deposited on (a) Pd and (b) Au.
- Figure 3.3.3-1 The schema of cross section of HMDS surface treatment process, pentacene TFTs is fixed on top of the cover of vitric container.
- **Figure 3.3.3-2** The Id-Vg electrical characteristics of pentacene TFTs with and without HMDS surface treatment. The channel width/length of devices are (a) 75/50 μ m/ μ m and (b) 600/50 μ m/ μ m.

Figure 3.3.3-3 The Id-Vg electrical characteristics of pentacene TFTs with and without

HMDS surface treatment. The channel width/length of devices are $26600/50 \ \mu m/\mu m$.

Figure 3.3.3-4 The extractions of mobility of pentacene TFTs with different device scales and HMDS surface treatment or not.

Chapter 4

- **Figure 4.3-1** The schematic cross-section plots of fabrication procedure of a BC pentacene TFT possessing an MWCNT S/D.
- **Figure 4.3-2** The MWCNT growth recipe of T-CVD.
- Figure 4.3.1-1 The Id-Vg electrical characteristics of pentacene TFTs with MWCNT S/D and different MWCNT growth times. The channel width/length of devices are (a) 75/50 μm/μm and (b) 600/50 μm/μm.
- Figure 4.3.1-2 The Id-Vg electrical characteristics of pentacene TFTs with MWCNT S/D and different MWCNT growth times. The channel width/length of devices are 26600/50 μm/μm.
- **Figure 4.3.1-3** The SEM images to observe the lengths of MWCNTs which are (a) 300nm and (b) 1μm for 3-minute and 5-minute of growth times, respectively.
- Figure 4.3.1-4 The SEM images of top view of MWCNT S/D which is at the junction of S/D and gate dielectric. The MWCNT growth times are (a) 3 minutes and (b) 5 minutes.
- **Figure 4.3.1-5** The SEM images of cross-section view of MWCNT S/D after pentacene deposition which is at the junction of S/D and gate dielectric. The MWCNT growth times are (a) 3 minutes and (b) 5 minutes.
- **Figure 4.3.1-6** The SEM images of cross-section view of MWCNT S/D after pentacene deposition. The MWCNT growth times are (a) 3 minutes and (b) 5 minutes.

Figure 4.3.1-7 The Id-Vg electrical characteristics of pentacene TFTs with MWCNT S/D and

different buffer layer thicknesses. The channel width/length of devices are (a) $75/50 \ \mu m/\mu m$ and (b) $600/50 \ \mu m/\mu m$.

- **Figure 4.3.1-8** The Id-Vg electrical characteristics of pentacene TFTs with MWCNT S/D and different buffer layer thicknesses. The channel width/length of devices are 26600/50 μm/μm.
- **Figure 4.3.1-9** The R_{tot}-L diagram of pentacene TFTs with MWCNT S/D. The MWCNT growth times are (a) 3 minutes and (b) 5 minutes and thickness of Ti buffer layer is 10 nm.
- Figure 4.3.2-1 The I_d -V_g characteristics of the OTFTs prepared with and without MWCNTs coverage on the S/D region. The channel width/length are (a) 600/100 and (b) 600/10 μ m/ μ m.
- Figure 4.3.2-2 The I_d - V_g characteristics of the OTFTs prepared with and without MWCNTs coverage on the S/D region. The channel width/length are 26600/50 μ m/ μ m.
- **Figure 4.3.2-3** The AFM images to observe the morphologies of pentacene active layer on (a) S/D and (b) junction of S/D and gate dielectric.
- **Figure 4.3.3-1** The I_d -V_g characteristics of the OTFTs with MWCNT and Pd/Ti S/D, and the channel width/length are (a) 75/50 and (b) 600/50 μ m/ μ m.
- Figure 4.3.3-2 The I_d -V_g characteristics of the OTFTs with MWCNT and Pd/Ti S/D, and the channel width/length are 26600/50 μ m/ μ m.
- **Figure 4.3.3-3** The R_{tot}-L diagrams of pentacene TFTs with (a) MWCNT and (b) Pd/Ti S/D which pentacene deposition temperature is 90 °C.
- **Figure 4.3.3-4** The extractions of mobility of pentacene TFTs with different device scales and pentacene deposition temperatures which are RT and 90 °C.