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ELECTRONIC EXCITATIONS IN
PLANAR AND CYLINDRICAL SYSTEMS

Student : Yu-Hsuan Tu Advisor : Cheng-May Kwei

Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University

ABSTRACT

In this dissertation, the models dealing with the inelastic interactions between a
charged particle and a solid were developed. Based on inelastic-scattering models,
simulations and analyses of electronic excitations were made.

The electronic excitations produced by a charged particle moving near a solid
surface play a crucial role in surface-sensitive spectroscopies. By the use of the
dielectric response theory, these excitations can be described in terms of the dielectric
functions of the materials. The dielectric functions employed in this dissertation
were the extended Drude dielectric functions. All parameters in such function were

determined by fits to the corresponding experimental optical data and electron



energy-loss spectra.  In addition, this function was constrained by sum-rules to

assure the accuracy and examined to confirm critical-point energies in the interband

transitions and plasmon energies in the collective excitations.

In the work for the electronic excitations in planar systems, theoretical

derivations of the differential inverse inelastic mean free path (DIIMFP) and inelastic

mean free path (IMFP) for electrons crossing solid surfaces were made for different

crossing angles and electron distances relative to the crossing point at the surface.

Such inelastic cross-sections comprise mainly the contributions from volume and

surface excitations. \Volume and surface excitations occur when electrons travel,

respectively, inside the bulk of the 'material and near the surface inside or outside the

solid. Due to the rough compensation‘of surface-and volume excitations inside the

solid, one may pay attention to surface excitations in vacuum. The surface excitation

parameters (SEPs) which describe the total probabilities of surface plasmon

excitations by electrons traveling in vacuum before impinging on or after escaping

from several semiconducting 111-V compounds have also been calculated for electrons

crossing the compound surfaces with various crossing angles and with various

energies. The SEPs were then found to follow to a simple formula. Moreover, the

model accounting for the memory effect, which describes the influence of the

previous inelastic interaction on the succeeding inelastic interaction, of a charge



particle between two successive inelastic interactions was established. Formulas of
the induced potential, stopping power, DIIMFP and IMFP considering the memory
effect were derived for a charged particle moving parallel to a solid surface. It was
found that those with the memory effect for energy E lay between the
corresponding values without the memory effect for energy E and previous energy
E,. The memory effect increased with increasing energy loss, E,—E, inthe
previous inelastic interaction.

In the work for the electronic excitations in cylindrical systems, the theories were
developed to deal with inelastic interactions foran.electron moving parallel to the axis
of a cylindrical structure and a clad eylindrical structure. Formulas for the DIIMFP
and inverse IMFP (IIMFP) were derived using dielectric response theory. The
DIIMFPs and IIMFPs were calculated for a Si wire, a cavity in Si, a Si cylindrical
tube, or a Si cylinder clad in a SiO, film.  The calculated results showed that surface
excitations occurred as the electron moved near the boundary either inside or outside
the solid, whereas volume excitations arose only for electron moving inside the solid.
It was found that the probability for surface excitations increases and that for volume
excitations decreases for an electron moving close to the surface. Near the surface,
the decrease in volume excitations is compensated by the increase in surface

excitations. For a cavity in Si, the IIMFP inside the solid can be approximated by a

Vi



constant value equal to the IIMFP for the infinite Si, except in the immediate vicinity
of the cavity boundary. For the Si cylinder clad in the SiO, film, inelastic
interactions were contributed from volume, surface and interface excitations.
Calculated results showed that the relative importance of these excitations depended
on the electron distance from the surface or interface of the cylindrical system, the

radius of the Si cylinder, and the thickness of the SiO, film.

Vi
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Fig.2.1  Aplot of the dielectric functions, £,(0,®), & (0,®), Im[-1/¢(0,®)] and
Im[—1/(£(0, @)+ 1)], for GaN.  Solid curves are results of the present
work. The experimental data (Brockt 2000) (dotted curves) are also
plotted for comparison.

Fig. 2.2  Aplot of the dielectric functions, £,(0,®), & (0,®), Im[-1/&(0,®)] and
Im[—1/(£(0, @)+ 1)], for 4nSk.  Soliéi-curves are results of the present
work. Other calculated results (Kwei1986) (dotted curves) and the
experimental data (Festenberg 1969; Palik 1985) (dashed curves) are also

plotted for comparison.
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Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

A sketch of the problem studied in this work. An electron of velocity v
moves across the interface at time t=0 from medium 1 of dielectric
function gl(R,m) to medium 2 of dielectric function gZ(R,w) with
crossing angle o. The instant position of the electron is T =vt,
relative to the crossing point at interface.

A plot of crossing-angle-dependent SEPs for 800 eV electrons moving
from GaAs to vacuum.  Solid circles are the results calculated using Eq.
(3.12). The solid and dashed curves are, respectively, a fit of the
calculated results using.Eg. (3.15) and.the previous work (Kwei 1998).

A plot of crossing-angle=dependent-SEPs for 800 eV electrons moving
from vacuum to GaSh. - Selid circles are the results calculated using Eq.
(3.14). The solid and dashed curves are, respectively, a fit of the
calculated results using Eqg. (3.15) and the previous work (Kwei 1998).

A plot of energy-dependent total SEPs for electrons moving from vacuum
to GaP with incident angle 50° and then moving from GaP to vacuum
with escaping angle 0°. Solid circles are the results calculated using
Egs. (3.12) and (3.14). The solid and dashed curves are, respectively, a
fit of the calculated results using Eq. (3.15) and the previous work (Kwei

1998). Open circles are the experimental data measured by Orosz et al.
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(Orosz 2003).

Fig. 3.5  Asketch of the problem studied in the present work. A particle of charge
q, velocity v, moves parallel to the interface of two media of dielectric
functions &;(k,®) and &,(k,®). The interface is located at z=0 and
the particle is moving along vy -direction at a distance D above the
interface. Attime t =0, the particle experiences an inelastic interaction

which changes particle velocity to V. Special interest is on the induced
potential and the stopping power at t > 0.

Fig. 3.6  The induced potential for-a proton moving parallel to the surface of Si.

Results (solid curve)-are plotted atproton position for y =5 a.u.,
v, =10 awu.and D=1 au. asafunction of proton velocity v.
Corresponding results without the memory effect are plotted (dotted

curve) for a comparison.

Fig.3.7  Theinduced potential at a distance y-—y, from the proton with y, =5

a.u.and D=1 a.u.from Sisurface. The solid curve is results with the

memory effect for v, =5 a.u.and v=3 a.u. The dotted and dashed

curves are results without the memory effect for v=v, =3 a.u.and5

a.u., respectively.

Fig.3.8  Theinduced potential at a distance y -y, from the proton with D =1
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Fig. 3.9

Fig. 3.10

Fig. 3.11

Fig. 3.12

(solid curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si surface.
Here y,=5 au., v,=5 au.and v=3 au.

Results of the stopping power for a proton moving parallel to with a
distance D =2 a.u. from the Si surface. Solid and dotted curves are for
v, =10 a.u. (with memory effect) and v, =v (without memory effect),
respectively.

A comparison of the DIIMFPs with (solid curve) and without (dotted
curves) the memory effect for electrons moving parallel to the Cu surface
atadistance D=1 a.u.s The DIIMEP with the memory effect is
calculated for preceding-and succeéding electron energies E, =800 eV
and E =500 eV. The DHMFPswithout the memory effect are
calculated for constant electron energies E, =E =500 eV and

E, =E =800 eV.

A plot of the DIIMFPs with the memory effect for electrons of preceding
and succeeding energies E, =500 eVand E =300 eV. These
electrons are moving at various distances D from the Cu surface.

A comparison of the IMFPs with (solid curve) and without (dotted curve)
the memory effect for electrons moving parallel to the Cu surface at a

distance D=1 au. The IMFP with the memory effect is calculated for
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a preceding electron energy E, =800 eV as a function of succeeding

electron energy E. The IMFP without the memory effect is calculated

for constant electron energy E, =E.

CHAPTER 4

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

A sketch of the configuration studied in the present work. An electron of
velocity V. moves parallel to and at a distance p, from the axis of an
infinitely long cylinder of radius a. The media inside and outside the
cylinder have dielectric functions &,(k,») and ¢, (k,®), respectively.
Calculated DIIMFPs fora 500 eV electron moving parallel to the axis of a
Si cylinder (radius a'=20 +a.u.) i vaguum for several electron distances
p, from the axis.

Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a
cylindrical cavity (radius a=20 a.u.) in Si for several electron distances
p, from the axis.

Calculated results of the DIIMFP for an electron moving parallel to and at

a distance p, =21 a.u. from the axis of a Si cylinder (radius a =20

a.u.) in vacuum for several electron energies.
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Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Fig. 4.9

Fig. 4.10

Calculated results of the IIMFP for an electron moving parallel to the axis
of a cylindrical cavity (radius a=20 a.u.) in Si for several electron
energies.

A sketch of the problem studied in the present work.  An electron of

velocity V. moves parallel to and at a distance p, from the axis of an
infinitely long clad cylindrical system with inner radius a and outer
radius b. The mediain the regions p<a, a<p<b and p>b have
dielectric functions ¢,(k,0), &,(k,®) and &,(k,®), respectively.
Calculated DIIMFP for.a500 eV electron moving parallel to and at a
distance p, < 15,& from the axis of a Si tube of inner radius a :15,&

and outer radius b= 25/0\.

Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance 15A <p, <25A from the axis of a Si tube of inner radius

a:lS,& and outer radius b:25,&.

Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance p, >25A from the axis of a Si tube of inner radius a=15A

and outer radius b= 25,&.

Calculated DIIMFP for an electron moving parallel to and at a distance

p, =26 A from the axis of a Si tube of inner radius a=15A and outer
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Fig. 4.11

o]
radius b=25A for several electron energies.

Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance p, =26A from the axis of a Si cylinder clad in a SiO, film,

having outer radius b=25A and inner radius a =0, 15, 22, 24 or 25A.

Results of a=0 and 25A correspond to the SiO, and the Si cylindrical

wires.
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CHAPTER 1
INTRODUCTION

Quantitative information on inelastic interactions between electrons and solids is
important in the surface-sensitive spectroscopies. In these spectroscopies, electron
inelastic cross-sections comprise mainly the contributions from volume, surface and
interface excitations. Thus, the study of electronic excitations is necessary in the
analyses of electron spectroscopies. Note that all quantities are expressed in atomic

units (a.u.) unless otherwise specified:

1.1 Dielectric Function

Electronic excitations can be described using the dielectric response theory. In
this theory, the excitations are characterized in terms of the dielectric function of the
materials. The experimental optical and electron energy-loss measured data and
their extrapolation from the optical limit to other momentum transfers are frequently
used to obtain the full spectrum of the dielectric function (Ritchie 1977; Yubero 1996;
Ding 1998). Previously, an extended Drude dielectric function with spatial

dispersion (Kwei 1993) was established with parameters determined from



experimental data. This function was constrained by sum-rules to assure the
accuracy. In addition, a background dielectric constant was included to account for
the influence of polarized ion cores (Smith 1978).

In this dissertation, the extended Drude dielectric function with spatial dispersion
was adopted to calculate the electronic excitations. The process of determining the
parameters in such function was depicted in chapter 2. Due to the strong
overlapping of oscillator strengths between electrons in the valence band and the
outermost inner shells, fits of parameters in the extended Drude dielectric function
were performed to include the contribution from outermost inner shells.  Measured
optical data were taken from ellipsometric measurements in the infrared spectral
region and from energy loss measurements in the ultraviolet spectral region. Such a
combination of data provided detailed information on the interband transitions and the
plasmon excitations. In all fits, the real- and imaginary-parts of the dielectric
function and the volume and surface energy-loss functions were in good agreement

with experimental data.

1.2 Electronic Excitations in Planar Systems

In the research of the inelastic interactions between a charged particle and a



planar solid surface, much attention have been paid to inelastic cross-sections. Such
cross-sections contain the combined effects arisen from volume and surface plasmon
excitations. Volume excitations occur for electrons traveling inside the solid.
Surface excitations originate from electrons, either inside or outside the solid, moving
at a distance in the order of angstroms from the surface. Within the solid, the
decrease in volume excitations as electrons move close to the surface is compensated
by the increase in surface excitations. This makes the total inelastic cross-sections at
any position inside the solid nearly independent of depth (Chen 1996; Kwei 1998).
For electrons traveling outside the salid, only surface excitations are attainable over
an effective region close to the surface (Kwei-1998). - Many theoretical approaches
(Ritchie 1957; Chiarello 1984; Ohno 1989; Tngham 1990; Yubero 1990, 1992;
Vicanek 1999) have been proposed to describe surface excitations in inelastic
interactions.  Such surface excitations are most conveniently characterized by the
so-called surface excitation parameter (SEP), defined as the average number of
surface excitations by an electron crossing through the solid surface (Chen 1996;
Kwei 1998). For other tilted crossing angle o, the SEP values were approximated
by multiplying the results on SEP for normally crossing angle with (cosa)™ (Kwei
1998; Chen 2002). In their works, however, conservations of energy and momentum

were not completely satisfied due to the treatment of momentum transfer in



cylindrical coordinates that carried no restriction on the normal component (Kwei

2006). Later, Werner et al. (Werner 2001) rescaled the electron momentum in

Oswald’s free electron theory (Oswald 1992) by a material-depedent parameter to

estimate the SEP for arbitrary material. In their model, however, they assumed a

cosine dependence which works only approximately. In section 3.1, the model of

SEP was developed for electrons incident into or escaping from solids.  Spherical

coordinates were employed in the momentum integration to satisfy the energy and

momentum conservations. The dependences of SEP on the crossing angle and the

electron energy were investigated. .sCalculated results of SEPs for several

semiconducting I11-V compounds were fitted-to an‘analytical formula. The

calculated results were compared.with other theoretical results and measured data.

When a charged particle moves close and parallel to the surface of a solid, an

induced potential is produced due to the interaction of the particle and solid. This

potential is then acted on the particle resulting to a stopping power. Theoretical

derivations of the induced potential and stopping power were previously made (de

Abajo 1992, 1993; Kwei 2003; Arista 1994) for a constant velocity, v, , of the particle

until it experienced an inelastic interaction.  After the interaction, the particle

changed its velocity to v and continued to interact with the solid. For a second

inelastic interaction, it was generally assumed that a new induced potential, dependent



onlyon v butnoton v,, was generated. This new potential then determined the
stopping power acting on the particle of velocity v. In section 3.2, the induced
potential and stopping power for the second inelastic interaction were derived using
image charges and dielectric response functions. It was found that the particle
previous velocity v, had also an effect on the second inelastic interaction. Another
words, the particle kept a memory on its previous velocity, v,, in determining the
stopping power for the particle of velocity v. Calculations were made for a proton
moving parallel to Si surface and for an electron moving parallel to Cu surface.
Results were analyzed for the dependences of therinduced potential, stopping power,
differential inverse inelastic mean: free path (B1IMFP) and inelastic mean free path
(IMFP) on particle velocities before and afterthe last inelastic interaction, the distance
from surface, and the distance from previous inelastic interaction. Finally, the
calculated results with memory effect were compared with the corresponding results

without memory effect.

1.3 Electronic Excitations in Cylindrical Systems

In the past few years, new developments in fabrications have allowed the

production of miniaturized devices with typical sizes ranging in the nanometer scale.



The study of the inelastic interactions in these devices has become an active field of

research. In the research of this interaction between an electron and a cylindrical

solid surface, much attention ha been paid to inelastic cross-sections. Several

theoretical approaches have been developed to evaluate these cross-sections in

cylindrical wires and cavities (Chu 1984; Rivacoba 1995; Tokési 1999, 2000; Arista

2001; Zabala 2001; Gervasoni 2003).  Of these treatments, the single plasma

resonance dielectric model was often used. Although this model is a good

approximation for materials that exhibit single pole energy-loss peak, it is not so well

for solids that have complex band structures. “lnrsection 4.1, the extended Drude

dielectric function with spatial dispersion was‘used to-calculate the differential inverse

inelastic mean free path and the total inverse inelastic mean free path (IIMFP) in a

cylindrical system. These calculations were made for an electron moving parallel to

the axis of the cylinder (Si wire and cavity in Si). The dependences of DIIMFP and

IIMFP on electron position and energy were then analyzed.

Besides cylindrical systems, clad cylindrical systems have also attracted some

attentions. Expressions of inelastic cross-sections for electrons in such systems

(Walsh 1989; Zabala 1989) were derived based on the frequency dependent dielectric

function, i.e. neglecting spatial dispersion. The inclusion of spatial dispersion may

be important at short distances from the surface and the interface, where electrons



might couple to short-wavelength modes (de Abajo 1992). In section 4.2, a general
expression for the DIIMFP was derived for electrons moving parallel to the axis of an
infinitely long clad cylindrical system. The extended Drude dielectric function with
spatial dispersion was used to calculate the DIIMFP in this clad cylindrical system.
The present calculations were made for electrons moving parallel to the axis of either
a Si cylindrical tube or a Si cylinder clad in a SiO; film.  The dependences of the

DIIMFP on the electron position and energy were analyzed.



CHAPTER 2
DIELECTRIC FUNCTION

When a charged particle moves inside a solid, the inelastic interaction between
the charged particle and the solid occurs. This interaction results in the energy loss
due to plasmon excitations and interband transitions. The collective excitations are
characterized by the dielectric function. Therefore, the improvement in the analysis
of inelastic interactions is significant when an applicable dielectric function is
considered. In this chapter, the extended Druderdielectric function for

semiconducting III-V compounds will be constructed:

2.1 Drude Dielectric Function

The Drude model work quite well for the conduction band of a free-electron-like
metal (Daniels 1970). In this model, conduction electrons are described by a
free-electron gas constrained by the Fermi-Dirac statistics. The Drude dielectric

function in the optical limit, i.c. momentum k — 0, is given by

£(0,0) =g, (0,®)+ig,(0,0) , (2.1)



where © is the energy transfer. Here, 81(0, 0)) is the imaginary part of the
dielectric function given as

2
O,YO

£,(0,0)= (2.2)

o'+ o'y’
and &, (0, (n) is the real part of the dielectric function given by the Kramers-Kronig

analysis as

2 .2
0,0

SR(O,(O)=1—(D4:—W ; (2.3)
where @ is the free-electron plasmon energy and vy is the damping constant.
For a valence band of n, bound electrons per volume adding to the conduction

band of n, free electrons per volume, the imaginary part of the dielectric function is

given by (Raether 1980)

icozy o)
2 pii
R70) N,

0,m)=
81( CO) 034"'03272 (0)2_0)?)24_602%2

, (2.4)

where v, is the damping constant associated with the valence band, and ®; is the



gap-energy between conduction and valence bands or the critical-point energy for

interband transitions. The real part of the dielectric function is then given by the

Kramers-Kronig analysis as

ol rr:(')cof)(wz —wiz)
2 (0,0)=1- o'+l (-] +0y? 22

2.2 Extended Drude Dielectric Function

For a solid having a compleXx structure, the valence band may be composed of

several subbands. Each ith subband is-characterized by its own oscillator strength

A, , damping constant vy,, and critical-pointenergy ®,. Based on the superposition

of damped linear oscillators, the imaginary part of the extended Drude dielectric

function in the optical limit, is given by (Kwei 1993)

£,(0,0)= Aro . (2.6)

The real part of the extended Drude dielectric function is therefore given by

10



Ale’ ~o?)

2
i (coz—(oiz) +o’y;

b

€r (0, 03)= €p —

where ¢, is the background dielectric constant to account for the influence of

polarizable ion cores (Smith 1978).

2.7)

To extend the dielectric function into k # 0 region of the k —® plane, one can

2

replace o, in Eq. (2.7) to o, +k7 (Ritchie 1977, 1991). Thus, the extended

Drude dielectric function is given by

8(k,0))=SR(k,O))-i-iSI(k,(D):SB—z Aiz

b o’ (o +k2)2 +iwy,

The volume and surface energy-loss function may then be calculated from

REmlR g

and

-1 } (k. 0)

ImL(k,co)+l _[SR(k,co)+1]2+[gl(k,co)]2 ’

11

(2.8)

(2.9)

(2.10)



respectively.

2.3 Optical Data

The experimental optical data and the extrapolation of these data from the optical
limit to other momentum transfers are frequently used to obtain the full spectrum of
the dielectric function (Ritchie 1977; Yubero 1996; Ding 1998). The information on

the optical data will be helpful for obtaining the dielectric function due to

£, (0,0)=n*(0)-k*() (2.11)
and
£,(0,0)=2n(o)k(w) (2.12)

However, optical data are only available for the extinction coefficient, k,in a

limited energy transfer range ®, < ® < ®, and for the refraction index, n, in

®; <0< o,. Due tothelack of informationon k¥ in o<, and ®> o,,

12



extrapolations are applied as

K(o, )ﬂ for o < m,
®,
(o) = '
-2

K((Dzi a)J foro> o, ’ (2.13)
where the parameter p is determined from the f-sum rule
r ox(o)do = Zo,? (2.14)

0 4 ° 7 ’

O, = (4nNZ )”2 is the plasma energy, - N-“is the molecular density, and Z is the

total number of electrons per molecule. | Further, the Kramers-Kronig relation is
applied to obtain the refraction index at any ® in the range of o<, and o> o,.
The validity of the inertial sum rule

[ [n(w)-1}do=0 . (2.15)

is also checked.

13



2.4 Parameters in Extended Drude Dielectric Function

All parameters (e5, A, vy, and ;) of the extended Drude dielectric function
in Eq. (2.8) are determined by fits of &, (0,), &(0,®), Im[-1/¢(0,®)] and
Im[-1/((0,®)+1)] to the experimental data of the semiconducting III-V compounds.
For small energy transfers (o < 6 eV), the experimental data are taken from the
optical ellipsometry (Palik 1985, 1991, 1998). For large energy transfers (®» > 6
eV), the experimental data are taken from the electron energy-loss measurement
(Festenberg 1969; Brockt 2000).

Table 2.1 lists the fitting results of the parameters in Eq. (2.8) for several
semiconducting I1I-V compounds:including AIN, GaN, GaP, GaAs, GaSb, InAs and
InSb. A comparison on g, (0, 0)), 81(0, (n), Im[— 1/ 8(0, (o)] and
Im[— 1/ (8(0, c)) + 1)] for GaN is shown in Fig. 2.1 among the present fittings (solid
curves) and the experimental data (dotted curves). It reveals that the present fittings
are in good agreement as compared to the experimental data for all dielectric
functions plotted. A similar plot for InSb is shown among the present fittings (solid
curves), the previous fittings (Kwei 1986) (dotted curves), and the experimental data
(Festenberg 1969; Palik 1985) (dashed curves). It reveals that the present fittings are

in better agreement than the previous ones as compared to the experimental data for

14



all dielectric functions plotted. The better agreement is due to the considerations of

the polarizable ion cores and partial 4d inner shell electrons in the dielectric functions.

The previous fittings without such considerations produce poor agreement with

optical dataon ¢, and g, atsmall ® and on the volume and surface energy-loss

functions at large ®. Further, the positions and the heights of the resonant plasmon

peaks in the previous fittings are different from experimental data. It should be

noted that care is taken in the present fittings of these dielectric functions against

errors in €, near energy transfers corresponding to &, =—1, where any small

difference in €; could generate a Jatge deviation.in the surface energy-loss function.

15



Table 2.1 Parameters in the dielectric function of Eq. (2.8) for semiconducting I1I-V

compounds.

AIN (e5=1.25)

GaN (gg=1.35)

GaP (eg=1.05)

GaAs (eg=1.01)

AeV?)  1i(eV)  o(eV) AEV) wEeV)  weV) A@V) 1ieV) ofeV) AEV) vEV)  ofeV)

2.30 1.20 5.00 3.90 0.90 3.98 3.40 2.00 2.89 2.08 0.10 2.92
13.00 0.90 8.00  87.00 2.20 6.98  12.50 0.20 373 25.97 0.61 3.16
60.00 1.80 8.20  33.00 6.00 7.00  34.00 0.90 4.02 3190 1.20 3.84
6.00 3.00 9.00  25.00 1.60 8:70: » » 40.90 0.80 4.80  58.80 0.70 4.60
95.00 2.20 9.10  56.00 3.00 9.80 58.70 0.70 510  17.00 0.35 4.90
75.00 3.00 11.50 13.00 3.00~ 10.50.--10.00 2.00 5.45  10.00 1.00 5.60
90.00 5.00 13.00 28.00 1.80:. =11220+540.00 1.70 6.80 43.44 242 6.70
10.00 1.92 14.00  79.00 2.50 128007 45.00 4.00 9.80 48.00 1030  11.10
80.00 7.00 15.00 33.00 3.00 13.20 15.00 5.00 13.20 5.60 2.80 11.50
22.00 6.30 17.00  30.00 3.00 14.80 3.00 3.00 22.00 1.50 2.00 21.00
70.00  14.11 17.10  49.00 440 1730 4.50 3.00 24.00 5.00 320 21.80
3.00 6.40  20.50 1.20 320 1990 16.00 2520 26.00 15.00 2930  30.00
190.00  28.00  34.60 3.60 1.80 2130 19.00 29.40 30.00 25.00 36.70  37.00
23.00 2.00 2280 102.00 39.00 40.00 40.00 3820  39.00

12.00 3.00 25.00

160.00 4.10  29.00
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Table 2.1 (continued)

semiconducting III-V compounds.

Parameters in the dielectric function of Eq. (2.8) for

GaSb (e5=1.02)

InAs (eg=1.05)

InSb (£5=1.02)

AeV?)  1(eV) o(eV) AV) V) oV) A@EV) 1EV) oY)
3.40 0.20 2.10 2.30 0.20 2.50 6.00 0.34 1.89
23.70 0.68 2.50 2250 0.76 2.80  21.50 0.77 2.40
38.90 1.15 330  85.00 2.60 4.15  42.00 1.50 3.35
28.70 0.70 3.80  28.70 0.46 448  34.70 0.68 3.85
27.00 0.48 4.11 5.00 0.90 4.85 5.00 0.90 4.18
7.50 0.80 4.80 4.00 0.60 5.40 7.00 2.00 4.53
8.00 0.70 5.20 5.00 0:60 6.10  16.00 1.20 5.23
5.00 0.80 5.80 8.00 2.00 6.90 8.00 1.20 5.96
15.00 1.80 7.00  45.00 590 8.80  20.00 3.30 8.50
28.00 3.00 8.50  10.00 550  19.50 4.20 7.50 9.50
3.50 2.50 1050  23.00 5.00  23.00 3.60 3.00 10.20
1.30 1.50  11.20  30.00 35.00 32.00 6.00 2.50  19.80
10.10 550 12.00 40.00 36.80 38.00 5.00 3.00 21.00
1.80 1.50  20.20 2.00 2.00 23.50
1.20 1.50  21.30 3.00 2.00 24.50
6.50 3.60  24.00 10.00  29.60  30.00
30.00 30.00 31.00 16.00  33.00  34.00
40.00 35.00 36.00 130.00  35.00 36.00
50.00 38.00 40.00
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Fig. 2.1 A plot of the dielectric functions, &, (0,0), &,(0,®), Im[-1/¢(0,0)] and
Im[-1/(&(0, ®)+ 1)], for GaN.  Solid curves are results of the present work. The

experimental data (Brockt 2000) (dotted curves) are also plotted for comparison.
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Fig. 2.2 A plot of the dielectric functions, &, (0,0), &,(0,®), Im[-1/¢(0,0)] and
Im[-1/(&(0, ®)+ 1)], for InSb. ~ Solid curves are results of the present work. Other
calculated results (Kwei 1986) (dashed curves) and the experimental data (Festenberg

1969; Palik 1985) (dotted curves) are also plotted for comparison.
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CHAPTER 3
ELECTRONIC EXCITATIONS
IN PLANAR SYSTEMS

The information on the electron inelastic interaction cross-sections plays an
important role in the quantitative analysis of surface-sensitive electron spectroscopies.
The most widely studied geometry for these interactions was planar (YYubero 1992;
Jablonski 2000; Kwei 2004; Werner 2005). In this chapter, a theoretical model of
inelastic scattering for charged particles moving across solid surfaces will be
constructed.  After that, the constructed model will be further modified to include the

memory effect for successive inelastic interactions.

3.1 Inelastic Interactions of Electrons

with Planar Systems

As illustrated in Fig. 3.1, an electron of velocity v travels across an interface at
time t=0 from medium 1 of dielectric function gl(R,m) to medium 2 of dielectric
function sz(R,w), where k is the momentum transfer and o is the energy transfer.

The crossing angle o is defined as the angle between the interface normal and the

20



Fig. 3.1 Asketch of the problem studied in this work.  An electron of velocity v
moves across the interface at time t=0 from medium 1 of dielectric function
sl(lz,(o) to medium 2 of dielectric function sz(lz,co) with crossing angle ao. The

instant position of the electron is r =Vt relative to the crossing point at interface.
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electron moving direction.  The instant position of the electron is T =vt, relative to

the crossing point at the interface.

3.1.1 Induced Potential

As the electron crosses the interface, volume and surface excitations are probable
due to electron-solid interactions.  Surface excitations occur when the electron
travels near the interface, while volume excitations arise as the electron moves inside
the media. These two excitations.can be described using the dielectric response
theory (Chen 1996; Kwei 1998). 'By solving'the Poisson equation, the Fourier

components of the scalar potentials in'media 1and 2 are given by (Kwei 1998, 1999)

@l(E,m): _8732 [8(03— kvcosp)+ pS(Q,oa)] (3.1)
kzslik,coi

for t<0, and

(I)Z(IZ,Q)):kT:(E—@)[S(m—kVCOSB)—pS(Q,m)] (3.2)

for t>0, where k =(Q,kz), Q and k, are the parallel and normal components of
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k with respect to the surface, B is the angle between k and v, and pS(Q,oa) is
the induced surface charge density. The signs accompanying the induced surface
charge density are opposite for t <0 and for t >0, which is due to the requirement
for the continuity of the normal component of the electric displacement at the
interface. The other boundary condition, i.e. the continuity of the tangential
components of the electric field at the interface, requires that the induced surface

charge density follows

T(w—@-v”—kzvl){ . }dk
: S o

p.(Q.w)== mq[ . - } ,

Ii 1+ dk
k?| g, (k,m) &, (ko)

—o0

(3.3)

where v, and v, are the normal and parallel components of v with respect to the
surface.

Now the Fourier components of the scalar potentials, CDl(IZ,w) and CDZ(IZ,(D)
on either side of the interface, can be obtained after substituting Eq. (3.3) into Egs.
(3.1) and (3.2). The induced potentials in real space can be derived by the inverse
Fourier transforms of CDl(IZ,w) and CDZ(R,(L)) after removing the potential of the
electron in vacuum. Adopting spherical coordinates in the integration of momentum

transfer, the induced potentials can be written as

23



@, (F1)= ——J'J‘J‘S o kVCOSB){T—(D)—1}8i(kVtC"SB_“’t)sianBdkdco
' (3.4)

T H | I i 5( e'@"-tgksinodpdodkde

for t<0,and

D, (F :——”'[6 - kvcosﬁ){j—w)—1}e‘("Vtc"s““”‘)sianBdkdco
’ (3.5)

o I I] I i 5( e/ (@ otlalZsingdpdOdkda

for t >0, where rz(ﬁ,z), R “and "z  are the parallel and normal components of

r with respect to the surface, and

p.Qo) 1 Qy £,(0,0)-2,0,0)
@) = (©-Q-9f+Q*v? sj(Q’wxﬁl(—,w)ﬁtsz(Q,m)] (36)

for j=1 and 2. Equation (3.6) was derived under the assumption that

e(k,0)~£(Q.0) (Yubero 1992, 1996). The integrations over o in the second

integrals of Egs. (3.4) and (3.5) can be performed by closing the contour in the upper

and lower half planes for t <0 and t >0, respectively. To carry out the contour
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integration in the lower half plane, it is convenient to convert it into the upper half

plane by replacing ¢'@**) in Eq. (3.5) with &'@* = 2cos(wt - Q- R)—e @R,
3.1.2 Differential Inverse Inelastic Mean Free Path

The stopping power, F, can be related to the induced potential, @, (r,t), by

(Flores 1979)

yevnlra] an

where the derivative of the induced~potential is-evaluated at the position of the
electron. And the stopping power can be expressed in terms of the

position-dependent DIIMFP, (o, E,,r), according to

F :Tmu(a, E,O),I’)d(o . (3.8)

0

3.1.2.1 Electrons Moving from Solid to Vacuum

In the case of an electron traveling from solid to vacuum, i.e. s—v, sl(R,m) and
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gZ(R,w) may be replaced by s(R,co) and 1, respectively. The DIIMFP is therefore

given by

2 %1 ~1
(o, E,0,r)=— | dk =1 = Ol—
)= factin o)

kK, w2 2z in2 _ [
2c0330c ok [e fao ksin26cos(k, rcosa Jexp( |r|Qc05a)|m 1 }@(—r)
o 0 0

L ®° +Q*v! _S(Q,oo)
K, nl2 2n in2 _ i —
+4co3sa Idk Ide qu) ksin ecos(kZISOSa)fxzp( |r|Qc03a)|m -1 o)
T v o 0 0" +Q°Vv] _S(Q,OJ) +1

Acosg, s TR 2 ksinzeexp(—|r|Qc03a) 1 I or
i kjdk _([de_([d¢ =100 Im o) +1__2cos(7j—exp(—|r|Qc05a)}®(r)

(3.9)

V2

where ®=w—kvsinfcosdsina , “Q=ksind’, k, =kcosd, v, =vcosa, E =5 and
@(r) is the Heaviside step function. Applying the energy-momentum conservation
relations, the upper and lower limits of k are k, :Jﬁiﬂfm). The terms
involving Im(_—l] are due to the contribution from surface excitations, whereas

e+1
. . -1 . o :
those involving Im(—] are contributed from volume excitations. Equation (3.9)
€
reveals that only surface excitations are possible for the electron traveling outside the
solid. However, both volume and surface excitations may occur for the electron

moving inside the solid. The term exp(—|r|Q cosa) in Eq. (3.9) indicates that the

contribution from surface excitations decreases exponentially with the increase in
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distance from the surface.

volume excitations increases rapidly as the electron moves near the surface.

On the other hand, the reduction in the contribution from

When

electron moves deep inside the solid, i.e. r— —oo, EqQ. (3.9) reduces to the same

expression as that for an electron moving in the infinite solid.

3.1.2.2 Electrons Moving from Vacuum to Solid

Similar derivations can be performed for an electron traveling from solid to

vacuum, i.e. v—>s, by taking &, (ks@)=1 anduz, (K, )=&K, o).

DIIMFP for the incident electron is.given by

nl2 27

ksin ecos(k rcoso.)

In this case, the

exp(—|r/Qcosa) mL(Q’_Tl)JrJ@(_ r)

i

VoS _4COSOLk+
1 (o, E o, 1) = 2 kjdkjdejdq) Qi
k.
+i dkilm{ 1 }@(r)
nv? elk,®
2cos K w2 2z ksinzeexp(—|r|Qc05a) i
|
= L L e
4cos K w2 o2ngein?gexp(—|r/Qcosa) [
5 o oo S SR
k_ 0 1

3.1.3 Surface Excitation Parameter

27
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Surface excitation parameters describe the total probability of surface excitations
by crossing electrons traveling in vacuum. The SEP may be obtained by integrating
the IIMFP over the whole path length of the electron outside the solid. The IIMFP

for an escaping electron can be calculated using

E
us”v(a,E,r)zj.qu(a,E,co,r)d(o . (3.11)

0

The SEP for an escaping electron:is therefore given by

0

P (o, E) = [u (o E,rir (3.12)

0

Similarly, the IIMFP and SEP for an incident electron can be obtained from

[Thine (OL, E, r) [Thine (oc, E, o, r)dw (3.13)

Il
O ey M

and
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0
PY*(ot, E)= [u* (o, E,r)r . (3.14)

The angular dependence of SEP for I11-V semiconducting compounds are then
calculated for both escaping and incident electrons using Egs. (3.12) and (3.14).
These calculated SEPs are found to follow a simple formula

aE™

P*Y(a,E) or Ps""s(a,E)zcosc : (3.15)
(04

where a, b and c are material dependent constants. With E in electron-volts,

the best-fitted values of parameters a, b~and- c are listed in Table 3.1 for all solids

studied.
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Table 3.1 Fitted values of parameters a, b and c in Eq. (3.15) for

semiconducting I11-V compounds.

Escaping electrons

Incident electrons

a b C a b C
AIN 1.2938 0.4491 09173 0.6617 0.4480 1.1551
GaN 1.3820 0.4596 0.9079 0.6996 0.4584 1.1533
GaP 24437 0.4938 0.8844 1.1731 0.4890 1.1541
GaAs 24981 0.4889 _0.8762 1.2382 0.4894 1.1484
GaSh 3.0431 0.5153. 0:8653 . 14387 0.5095 1.1442
InAs 29012 05152 0.8632 1.3759 0.5099 1.1418
InSb 3.2265 0.5241~7.0.8549- 15213 0.5181 1.1360
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Figure 3.2 shows the crossing-angle-dependent SEPs calculated for 800 eV

escaping electrons moving from GaAs to vacuum. Solid circles represent the

calculated data using Eq. (3.12). The results of fitted values using Eqg. (3.15) (solid

curve) and those calculated with the previous model (Kwei 1998) (dashed curve) are

included in this figure for comparisons. It can be seen that the SEP is larger for

larger crossing angle due to the longer time for electron-surface interaction. The

SEP rises slowly with increasing crossing angle until about o =70°, above which

such a rise becomes rapidly. The present results show that the previous work, which

assumed a cosine dependence of SEPS on the crossing angle, works only

approximately. A similar plot for;800 eV incident electrons moving from vacuum to

GaSb is shown in Fig. 3.3. Note that the SEPS for incident electrons exhibit similar

energy and angular dependences as for escaping electrons. However, the SEPs for

incident electrons have smaller values than for escaping electrons.  This is because

the attractive force acting on the incident electron (in vacuum) by the surface induced

charges accelerates the electron.  On the other hand, the attractive force on the

escaping electron (in vacuum) decelerates the electron.  Therefore, the time spent

near the surface for incident electron is less than for escaping electron, thus leading to

less surface excitations for incident electron.
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Fig. 3.2 Anplot of crossing-angle-dependent SEPs for 800 eV electrons moving from
The

GaAs to vacuum.  Solid circles are the results calculated using Eq. (3.12).

solid and dashed curves are, respectively, a fit of the calculated results using Eg. (3.15)

and the previous work (Kwei 1998).
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Fig. 3.3 Anplot of crossing-angle-dependent SEPs for 800 eV electrons moving from
The

vacuum to GaSh. Solid circles are the results calculated using Eq. (3.14).

solid and dashed curves are, respectively, a fit of the calculated results using Eg. (3.15)

and the previous work (Kwei 1998).
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The total electron SEPs of two surface crossings on GaP calculated using Egs.

(3.12) and (3.14) (solid circles) are plotted in Fig. 3.4 as a function of electron energy

fora 50° incidentangleanda 0° escaping angle. The fits using Eq. (3.15) (solid

curve), the previous work (Kwei 1998) (dashed curve) and Orosz et al. (Orosz 2003)

(open circles) are included in this figure for comparisons. It is seen that SEPs

decrease with increasing electron energy because of the less interacting time for

surface excitations. The difference in magnitude between the present work and the

previous work for the SEP is due to the use of spherical coordinates in performing the

momentum integration to satisfy thesmomentum and energy conservations. The

results of Orosz et al. were deduced from a cemparison of the experimental inelastic

scattering cross-section spectra evaluated by the method of Tougaard et al. (Tougaard

1987, 1991) based on REELS measurements. The results from their procedure

contain the contributions of surface excitaions both inside and outside the solid

(Gergely 2002). In the present work, however, the contribution of surface

excitations outside the solid was dealt in the calculations of SEPs. This is because

the approximate compensation of surface and volume excitations inside the solid

(Kwei 1998). The different treatments result in the discrepancies between the results

of the present work (solid circles) and Orosz et al. (open circles).
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Fig. 3.4 Anplot of energy-dependent total SEPs for electrons moving from vacuum to

GaP with incident angle 50° and then moving from GaP to vacuum with escaping

angle 0°. Solid circles are the results calculated using Egs. (3.12) and (3.14). The

solid and dashed curves are, respectively, a fit of the calculated results using Eqg. (3.15)

and the previous work (Kwei 1998). Open circles are the experimental data

measured by Orosz et al. (Orosz 2003).
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3.2 Memory Effect

Figure 3.5 illustrates the problem studied in the present work. A particle of
charge q, velocity Vv, andenergy E, moves parallel to the interface of two media
of dielectric functions &,(k,®) and &,(k,®). The interface is located at z =0,
with z -axis perpendicular to the interface plane and directed from &, (k,®) to
g,(K,m). The particle is moving along y -direction at a distance D above the
interface. At the moment t =0, the particle experiences an inelastic interaction
which changes particle velocity and€nergy to vzand E. Assuming the particle

continues to move along the same direction, the induced potential at t >0 is of

special interest here.

3.2.1 Induced Potential

For z >0, the scalar potential is produced by the particle and a fictitious charge
at z<0 nearthe interface. For z <0, the potential is produced by a fictitious
charge at particle position and by another fictitious charge at z >0 near the interface.
These fictitious charges should be established using boundary conditions that are

satisfied at the interface. Thus the Poisson equations in Fourier space are
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Fig. 3.5 Asketch of the problem studied in the present work. A particle of charge

q, velocity v, moves parallel to the interface of two media of dielectric functions

sl(R,m) and sZ(R,m). The interface is located at z =0 and the particle is

moving along vy -direction at a distance D above the interface. Attime t=0, the
particle experiences an inelastic interaction which changes particle velocity to v.

Special interest is on the induced potential and the stopping power at t > 0.

37



@, (K, 0) = (k )[p(k ©)+p; (Q,0)] (3.16)

for z<0 and

@, (K,0) = (k )[p( ) —p; (Q,0)] (3.17)

for z>0, where R:(kx,ky,kz)z((':),kz) is the momentum transfer and o is the

energy transfer. The Fourier transform of the charge density distribution of the

particle
p(F,t) =q3(x)8(z - D)[3(Y -V 1) O(-1) +3(y — 1) O(t)] (3.18)
is given by
0 o
o(K,®) = ge P jw g g 4 ! ei(m_kyv)rdr} , (3.19)

where 3( ) and ©( ) are the delta- and step-functions, respectively. To satisfy the

boundary conditions at the interface, the fictitious charge in Fourier space is given by
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TP(E"”){ t 1 }dk
k? (k o) gk,o)| °

Q,0) = 3.20
P+ (Q,m) P |: 1 } ( )
J W2 = | k.
2o 2(k ®) el(k’('o)
Combining Egs. (3.19) and (3.20), one gets
. 1 B 1
00 (Q,0) =q[J‘ei(mkyvo)rdT+Iei(mkyv)rdT] SZ(D,?,(D) 81([1),Q,03) ’ (3.21)
—0 0 —— +——=
£ (Q o) &(Q o)
where the effective dielectric function lis‘given by
0 —lk D
1 j K, (3.22)
L(DQC‘)) 2m =, k* 8|_(k 03)

for L=1 and2and %, (Q,0)=¢(0.Q,0).
Substituting Egs. (3.19) - (3.22) into Egs. (3.16) and (3.17), one obtains the
scalar potentials in Fourier space, i.e. ®,(k,0) and ®,(k,»). The induced

potentials in Fourier space, @, (k,®) and D, g (k,®), are then obtained by

removing the vacuum potential of the particle from scalar potentials. One gets
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Dy g (K, @) :F[Sl(k,m) _1]9( ,®) + K gl(k' )Pf (Q ®) (3.23)

for z<0 and

~ dnt 1
D, ing (k’(o):?(sz(k,m) J ( ,®) — 82(k, )Pf (Q ©) (3.24)

for z>0. If the particle is moving'in vacuumji.e. €, =1, one gets

11

- 4nq ‘ i(0—kyVo) T [ ik EZ(D,Q,O)) 51(DaQ'03)
2nd (K )——? Ie dr+Ie dt 1 1 (3.25)

= + —
5 Qo) &(Q v)

after substituting Eq. (3.21) into Eq. (3.24). Since ¢ is weakly dependenton Kk,
than the rest of k components, one may assume g(k,®) =&(Q,®). This
assumption was previously adopted by Yubero et al. (Yubero 1992, 1996) in the
analyses of REELS spectra and by Kwei et al. (Kwei 1998, 1999) in the calculations

of electron elastic backscattering spectra.  Using this assumption, Eq. (3.22) becomes
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1 e
EL(D7Q@) 2Q SL(QaCO) .

(3.26)

Applying the relation (Hoskins 1999) for the product of the step-function and the

delta-function, i.e. ©(s)d(s) = %8(5), Eg. (3.25) may be written as

@, (K,0)=— 4’;‘4 [3( -k Vo) +3(w- kyv)][e_DQ M} (3.27)

sl(Q,m)+1

Applying £(Q,0)=&(Q,») and &(Q,~)=&*(Q,®), the induced potential in real

space is obtained by an inverse Fourier transform as

© o0 T 2n .
@, (F 1) = ;_3 [ doo| i [ sin 66 [ dg(c0—k, v, )e 1 cos(kzz)Re[Me'(k*”kyy“")}
0 0 0 0

81 (va) +1 (3 28)
+__q]gd(o]2dk]£sin GdGTdd)S(w -k V)e“D‘Q Cos(k Z)Re Mei(kxmkﬂ—mt)
nz 0 0 0 3 y z 81 (Q, 0)) +1

Expanding the 8-function according to

1

S(m—kvsinesinq)):\/(k O o
vsin0) — o

- ()
{6(4) —sin "

- ()]
vsine)Jrs{d)_(n_Sln kvsine)}’ (3.29)
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and applying the conservation relations of energy and momentum, it gives

D na (F1) = —n_zij-dmk.rkok-ng COS(Z K -Q ) e Pl cos(iq/(Qvo)2 —mzj

Lo k\/kz—Qz\/(QVO)Z—(DZ N

Vo

. {Re[w} cos(g (y— vot)J - Im[w}sin[g (y —vot)j}
&, (Q,m)+1 Vo & (Qw)+1 Vo . (3.30)

+_n—22qj.d0)k.|:dk.l|ﬁng COS(Z,/k2 _QZ) o 1ol COS(% /(QV)Z _(Dzj
0k ©

K Yk -Q*y(Qv)* -0’

£(Q 0)-1 o ) JaQo-1. (o
'{RE[W}COS(VW vt)) Im{—‘gl(Q’m)Jszm(v(y vt))}

where Q =ksin0, k, =v2ME +,/2M(E - ), ‘M. is the mass of the particle, and
y, =Vt is the position of the particle at time -t.

The induced potential for a proton‘moving parallel to the surface of Si was
calculated using Eq. (3.30). Results at the position of proton for y,=5 a.u.,
V, =10 au.and D=1 a.u.are plotted in Fig. 3.6 (solid curve) as a function of
proton velocity v. These results are compared with corresponding data without the
memory effect (dotted curve), where the abscissa v here may also be interpreted as
V,. Itreveals that both curves show a dip around v=1.5 a.u. The existence of a
dip was also shown for a proton moving parallel to Al surface in the plasmon-pole
dielectric function model (de Abajo 1993). As indicated in the figure, the magnitude

of induced potential decreases with increasing velocity for velocities larger than the
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dip velocity and increases with increasing velocity for velocities smaller than the dip
velocity. Note that there is a significant difference between solid and dotted curves.

At v=2 a.u., forinstance, solid and dotted curves correspond to v, =10 a.u. (with
memory effect) and v, =2 a.u. (without memory effect), respectively. Since the
velocity change, v, —V, in the solid curve is large so that the difference between solid
and dotted curves is also large. At v =8 a.u., on the other hand, solid and dotted
curves correspond to v, =10 a.u. and 8 a.u., respectively. In this case, the velocity
change in the solid curve is small so that the difference is also small.  Thus the
difference in induced potentials calculated with-and without the memory effect
increases with increasing velocity change inthe previous inelastic interaction when
v>15 au.. When v<15 a.u, however, the difference decreases with increasing
velocity change.

The induced potential shown in Fig. 3.6 is at proton position, i.e. y=y,.
Figure 3.7 plots the induced potential at a position, along the trajectory of proton, with
adistance y-vy, from the protonfor y, =5 au.and D=1 au. The solid curve
is results (with memory effect) of the induced potential for v, =5 a.u.and v=3 a.u.
The dotted and dashed curves are corresponding results (without memory effect) for

v=V, =3 a.u.and5 a.u., respectively. In all cases, the induced potential exhibits an

oscillation behavior over the distance from the proton, a behavior which was also
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observed by Arista (Arista 1994). Note that the induced potential for v, =5 a.u.
and v=3 a.u. (with memory effect) lies between induced potentials for v=v, =3
a.u. and 5 a.u. (without memory effect). This indicates that the induced potential
carries a memory effect on proton previous velocity before its last inelastic interaction.

Assimilar plot is made in Fig. 3.8 for a proton moving at distances D=1 (solid

curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si surface with y, =5 a.u.,
V, =5 au.and v=3 au. Itisseen thatas D increases the induced potential
(absolute value) decreases. This reveals that the induced potential is greater for a

proton moving closer to the solid surface.
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Fig. 3.6 The induced potential for a proton moving parallel to the surface of Si.

Results (solid curve) are plotted at proton position for y,=5 a.u., v, =10 a.u.and
D=1 a.u. as a function of proton velocity v. Corresponding results without the

memory effect are plotted (dotted curve) for a comparison.
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Fig. 3.7 The induced potential at a distance y -y, from the proton with y, =5

a.u.and D=1 a.u.from Sisurface. The solid curve is results with the memory

effect for v, =5 a.u.and v=3 au. The dotted and dashed curves are results

without the memory effect for v=v, =3 a.u. and 5 a.u., respectively.
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Fig. 3.8 The induced potential at a distance y-—y, from the proton with D =1

(solid curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si surface.

Yp=5 au, V,=5 au.and v=3 au.
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3.2.2 Stopping Power

The stopping power is related to the derivative of @, ., (F,t) atthe position of

particle, i.e. T, =(X,,Y,,2,)=(0,vt,D), for t>0. One finds

F(yp)z 29° jdm_[dk.[dQQ mCOSQDNkZ ) ool

TVoo & k \/kz Q? \/(Qvo) -’

re 8QO) -1\ G [ o aQo-1i f o (331
{ReLl(Q,w)+Js'n(vov(V V°)y"J+'m{ %@ co)+JCOS[VoV(V V°)yp} o3
*2%1 @IdedQQ ocoloiic - ) &0 [sl(Q,w)—l}

k k2 2Q%4/(Qw)>~ (Q o) +1

Letting v=Vv,, Egs. (3.30) and (3.31) reduce to the same formulas for the induced
potential and the stopping power that were derived without memory effect by Kwei et

al (Kwei 2003).

The stopping power is expressed in terms of the DIIMFP, u, through

Fly,)= [ only, ofo . (3.32)

Therefore, one obtains the DIIMFP as
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(Y, 0)=

2q Idkfd COSQDW i 2) ool

k k@7 (Quy) -0’

Vo

.{Re[%}sin(%(v—vo)yp]+Im{%}cos{%(v—vo)yp} . (3.33)
qjdmjdkde cos(olyk Q) o000 | {sl(Q,co)—l}

k \Jk?-Q%(Qv)? —w? &, (Q w)+1

And the IMFP, A, is given by

1 E
~(—): uly,,odo. (3.34)
7\‘ yp _([ ( p )d

Note that the stopping power in Eg«(3:31)is y, dependent. Thus the stopping

power with memory effect may be obtained by an average over all particles paths

0

Hp—)e el

okyp

Lt "

F=

(3.35)

Yo lh yp

Voo
where —2 g %/*0s)

. is the probability that the particle encounters an inelastic
Yy

interaction in the distance y, (Yubero 1992; Raether 1980).
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Figure 3.9 shows results of the stopping power for a proton moving parallel to

and with at a distance D =2 a.u. from the Si surface. Solid and dotted curves are

for vy =10a.u. (with memory effect) and v, =v (without memory effect),

respectively. The existence of a maximum stopping power at a velocity around 1.5

a.u. was shown. The existence of a maximum was also found for some semi-infinite

solids by Arista (Arista 1994). A notable difference between solid and dotted curves

was shown in the figure. Without the memory effect, the stopping power is solely

determined by v without reference to vy. With the memory effect, however, the

stopping power is affected by both .v-and vy. sThe memory effect reduced the

stopping power for the proton.
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Fig. 3.9 Results of the stopping power for a proton moving parallel to with a

distance D =2 a.u. from the Si surface. Solid and dotted curves are for v, =10

a.u. (with memory effect) and v, =v (without memory effect), respectively.
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3.2.3 Differential Inverse Inelastic Mean Free Path

Letting g=M =1 in Eq. (3.33), one finds the position dependent DIIMFP for

an electron

o | sl T

T Eo k_ J2E, k \/k2 Q \/ZEOQ —(D

£,(Q w)+1 2ESE £Qo)+1] | J2EE

{Re sl(Q ®)- 1 [JE—\/E_O(WP},m[sl(Q,co)—1}0{\@—\/5—0@%}} . (336)

J2 ]‘ Q COSQDMkZ_Qz) e_DQIm[gl(Q,m)—l}

do
R £ -~ o

kmln

The DIIMFP with the memory effect for an electron is then given by

[ el o)

=2 P . 3.37
(o) T — (3.37)

PTI0

DIIMFPs with the memory effect were calculated for electrons moving parallel

to the Cu surface. Figure 3.10 shows a plot of the DIIMFP with the memory effect

as a function of energy transfer for electrons with D =1a.u., E, =800eV and
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E =500eV. Corresponding DIIMFPs without the memory effect for

E,=E=800eV and E,=E=500eV are plotted for comparison. It is seen that

the DIIMFP with the memory effect exhibits a similar shape to that of the DIIMFP

without the memory effect. The magnitude of the DIIMFP with the memory effect

for preceding and succeeding electron energies E, and E lies between the

DIIMFPs without the memory effect for constant electron energies E, and E.

This result indicates that the moving electron keeps some memory of its previous

energy E, inthe nextinteraction. A plot of the DIIMFP with the memory effect is

shown in Fig. 3.11 for electrons with*E, =500eV, E=300eV and D=1,2and3

a.u. above the Cu surface. These'curves show that the DIIMFP decreases with

increasing distance of the electron above the surface owing to the weaker response by

the solid.
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curves) the memory effect for electrons moving parallel to the Cu surface at a distance

D=1 a.u.

succeeding electron energies E; =800 eV and E =500 eV. The DIIMFPs

The DIIMFP with the memory effect is calculated for preceding and

without the memory effect are calculated for constant electron energies E, = E =500

eVand E,=E =800 eV.
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Fig. 3.11 Aplot of the DIIMFPs with the memory effect for electrons of preceding

and succeeding energies E, =500 eV and E =300 eV. These electrons are

moving at various distances D from the Cu surface.
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3.2.4 Inelastic Mean Free Path

The IMFP with the memory effect for an electron may be calculated from

Aot (3.38)

A comparison of IMFPs with (solid curve) and without (dotted curve) the
memory effect is shown in Fig. 3:12 forelectrons moving parallel to the Cu surface at
D=1 au. The IMFP with theememaory-effect.is calculated for preceding electron
energy E,=800eV as a function of suceeeding electron energy E. The IMFP
without the memory effect is calculated for constant electron energy E,=E. At
E =300eV, for instance, the solid and dotted curves correspond to E, =800eV
(with memory effect) and E, =300eV (without memory effect), respectively. It
should be noted that there is a significant difference between the solid and dotted
curves. When the energy difference, E,—E, for the solid curve is large, the
difference between solid and dotted curves is also large. At E =700eV, on the
other hand, the solid and dotted curves correspond to E, =800eV and E,=700eV,

respectively. In this case, the energy difference is small, and the difference between
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the curves is also small.  Thus the memory effect, proportional to the difference
between solid and dotted curves, decreases with decreasing E, —E and approaches
zeroat E=E,. Moreover, the IMFP with the memory effect for given preceding
energy E, and succeeding energy E is between the IMFPs without the memory
effect for these given energies. The IMFP with the memory effect for E, =800eV
and E=500eV (solid curve in Fig. 3.12), for instance, is between IMFPs without
the memory effect for 500 eV and 800 eV (dotted curve). This result indicates that

the previous electron energy has also an effect on the succeeding inelastic interaction.
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Fig. 3.12 A comparison of the IMFPs with (solid curve) and without (dotted curve)
the memory effect for electrons moving parallel to the Cu surface at a distance D=1
a.u. The IMFP with the memory effect is calculated for a preceding electron energy
E, =800 eV as a function of succeeding electron energy E. The IMFP without

the memory effect is calculated for constant electron energy E, =E.
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CHAPTER 4
ELECTRONIC EXCITATIONS
IN CYLINDRICAL SYSTEMS

In the past few years, new developments in fabrications have allowed the
production of miniaturized devices with typical sizes ranging in the nanometer scale.
The study of these devices in surface-sensitive electron spectroscopies has become an
active field of research. Quantitative information on the electron inelastic interaction
cross sections plays a crucial role inssuch surfacerspectroscopies (Tougaard 1987;
Tanuma 1991; Jablonski 2005; Werner 2005):"+ Recently, several theoretical
approaches have been developedto evaluate these cross-sections in cylindrical
systems (Chu 1984; Walsh 1989; Zabala 1989, 2001; Rivacoba 1995; Tokési 1999,
2000; Arista 2001; Gervasoni 2003). In this chapter, a theoretical model of inelastic
scattering for electrons moving parallel to the axis of a cylindrical wire or cavity will
be constructed. After that, a more general model inelastic scattering for electrons

moving parallel to the axis of a clad cylindrical system will be derived.

4.1 Inelastic Interactions of Electrons

with Cylindrical Systems
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Figure 4.1 illustrates the configuration in which an electron with velocity v and

energy E =v?/2 moves parallel to the axis of a cylinder of radius a and dielectric
function ¢,(k,®). This cylinder is embedded in a surrounding medium of dielectric

function ¢,(k,»). Attime t, the electron is at a position %, =(p,,0,vt) in

cylindrical coordinates.

4.1.1 Induced Potential

Considering two different cases,'i.e. p, <d@r.(case l) and p, >a (case Il), the

scalar potential in cylindrical coordinates canbe written as (Jackson 1975)

-1 & ik (z—-vt }+im 1
O, 7 (P, 2,t)=—= 3 [ dkA P L (ke 48, = dg(p0zt) (A1)
1 M=—x0 1
for p<a and
-1 & ik (z—vt J+im 1
©. p0.20)= "1 3 [k, 7K, ok 5, Lopoz) @b
2 M=—xo 2

for p>a. Here A ™ and B_‘" are coefficients to be determined, p=1and Il

are for cases I and Il respectively, 1 and K, are modified Bessel functions, & is

m
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Fig. 4.1 A sketch of the configuration studied in the present work.  An electron of

velocity V. moves parallel to and at a distance p, from the axis of an infinitely long

cylinder of radius a. The media inside and outside the cylinder have dielectric

functions ¢,(k,m) and e,(k,®), respectively.
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the delta function,

D, (., 2,t)= Z j dkl_(kp_ K (kp, Jei(zrime (4.2)

is the potential of the electron in vacuum with p. = max(p, po) and

pc = min(p, po). The Fourier transforms of these potentials are

O, (p,,k, ) = _4“)miAm‘p)(k o)l (kp)e™8(w—kv)+8,, gl(i’m)q)o(l?,(l),k,@) (4.33)

for p<a,and

@, (p, d,k, ®) —475 iB @ (k,0)K,, (kp)e™5(w— kv)+3,, 1 @, (p,0,k,0) (4.3b)

ez(k,(o)

for p>a, where

@, (p, 4.k, ®) —4n2| (kp. K, (kp. e™8(c—kv) . (4.4)

—00

4.1.1.1 Case I. Electrons Moving in Medium 1 (i.e. p,<a)
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Applying boundary conditions, i.e. continuity of the potential and the normal

component of electric displacement at the interface p=a, one finds

(4.53)

(4.5b)

where 1_'(x)=dI_(x)/dx and K_'(x)=dK,(x)/dx. Removing the vacuum

potential of an electron from the scalar potential and taking the inverse Fourier

transform, the induced potential-atyp <a Is.given-by

00

_2 im E
0P, 2,8)=—> " ™ [“do

TEV m=—o0

o e o e

(4.6)

4.1.1.2 Case Il. Electrons Moving in Medium 2 (i.e. p, >a)
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Similarly, applying boundary conditions, one finds

o slkolK, (ka)ly (@)1 (@)K, (ka)lKy (koo a
A o)=L ok (e s, (o)l (kK. (ca) (472

o)kl bty (K, bp,) am

Removing the vacuum potential of an electron from the scalar potential and taking the

inverse Fourier transform, the induced potential at p > a is given by

(D2|nd(”) P, Z, t z elmd)J‘ do

o el )|

4.1.2 Stopping Power

4.1.2.1 Case I. Electrons Moving in Medium 1 (i.e. p,<a)
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Since the stopping power, F | is related to the derivative of (I)l,ind(l)(p’ , z,t)

at the position of electrons. One obtains

Note that this equation contains contributions from all relevant excitations including
volume, surface and interface excitations. For an electron moving inside a
cylindrical cavity, i.e. taking ¢, =1a%, =¢ antd.o=kv in Eq. (4.9), one obtains
the formula derived by Arista (Arista 2001) which-contains only surface excitations

but no volume and interface excitations:

4.1.2.2 Case Il. Electrons Moving in Medium 2 (i.e. p,>a)

Since the stopping power, F " is related to the derivative of CDZde(”)(p,q), z,t)

at the position of electrons. One obtains
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Similarly, this equation contains contributions from all relevant excitations including
volume, surface and interface excitations. For an electron moving outside a
cylindrical wire, i.e. taking ¢, =¢, ¢, =1 and o=kv inEq. (4.10), one obtains
the formula derived by Gervasoni (Gervasoni 2003) which contains only surface

excitations but no volume and interface excitations.

4.1.3 Differential Inverse Inelastic Mean Free Path

The stopping power is expressed in terms-of the DIIMFP, (™, through

F (p) :J'OE op®(E,0)do | (4.11)

where p=1and Il are for cases | and Il respectively. Therefore, one obtains the

DIIMFP for an electron moving inside the cylinder, i.e. p,<a, as
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A similar approach can be made for an electron moving outside the cylinder, i.e.

p, >a. The DIIMFP is given by

Taking a— o and ¢, =¢,=¢ INEQ.(4.12)or a=0 and ¢ =¢,=¢ IinEq.

(4.13), the DIIMFP in an infinite medium is obtained as

u(E,w)=722§Im(ﬂpoij(fpojlm (0)1 j | (4.14)

Using Egs. (4.12) and (4.13), the DIIMFP was calculated for an electron moving
parallel to the axis of a cylindrical structure. In these calculations, a
sum-rule-constrained extended Drude dielectric function with dispersion (Kwei 2003)
was applied. Figure 4.2 shows the results of this DIIMFP as a function of energy
loss o fora 500 eV electron at several distances p, from the center of a Si cylinder

of radius a=20a.u. For an electron moving inside the solid, i.e. p, <a, the

DIIMFP (upper diagram) contains two peaks corresponding to surface and volume
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excitations. As the electron moves closer to the cylinder surface, i.e. py — a, the
volume excitation peak (~ 17 eV) decreases in intensity, whereas the surface
excitation peak (~ 12 eV) increases in intensity. For an electron moving in vacuum,
l.e. p,>a,the DIIMFP (lower diagram) is due entirely to contributions from surface
excitations. The DIIMFP becomes smaller for larger electron distance from the
surface.

Similar results for the DIIMFP of a 500 eV electron moving parallel to the axis
of a cylindrical cavity in Si are plotted in Fig. 4.3.  Again, surface excitations (~ 12
eV) occur for an electron moving either in the cavity (upper diagram) or in Si (lower
diagram), whereas volume excitations (~ 17 V) occur only for an electron in Si.
For an electron outside the cavity.(lower diagram), the contributions from surface and
volume excitations become smaller and larger, respectively, for increasing p,. At
p, ~ 30a.u., the DIIMFP is due entirely to volume excitations.

Figure 4.4 is a plot of the DIIMFP for an electron moving outside the Si cylinder
(a=20a.u.)at p, =21 a.u.for several electron energies. It is seen that the
DIIMFP, contributed only from surface excitations, decreases with increasing electron

energy. The peak surface plasmon energy, however, remains unchanged.
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Fig. 4.2 Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a

Si cylinder (radius a=20 a.u.) in vacuum for several electron distances p, from

the axis.
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Fig. 4.3 Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a

cylindrical cavity (radius a=20 a.u.) in Si for several electron distances p, from

the axis.
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Fig. 4.4 Calculated results of the DIIMFP for an electron moving parallel to and at a

distance p, =21 a.u. from the axis of a Si cylinder (radius a=20 a.u.) in vacuum

for several electron energies.
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4.1.4 Inverse Inelastic Mean Free Path

The IIMFP may be calculated by the integration of differential inelastic mean

free path according to

nP(E)=[ n?(E.0fo | (4.15)

where p=1and Il for the case of an‘electron' moving inside and outside the cylinder,
respectively.

Figure 4.5 shows a plot of the 1IMFP for-an electron moving inside (py <a) or
outside (p, > a) the cylindrical cavity in Si as a function of electron distance from the
cavity center p, for several electron energies. It is seen that the IIMFP decreases
with increasing electron energy. In the region pg > a, the IIMFP is both contributed
from volume and surface excitations. The contribution from surface excitations
confines near the cavity boundary and increases as py —a. On the other hand, the
contribution from volume excitations simultaneously decreases near the boundary.
The decrease in volume excitations is, to a good approximation, compensated by the

increase in surface excitations (Kwei 1998). This makes the IIMFP spatially
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non-varying and approaching the value of an infinite Si until electron is closer within
~ 2 a.u. from the cavity boundary. There, the contribution from volume excitations

becomes negligibly small so that the IIMFP drops abruptly. For pg <a, i.e. electron

inside the cavity, the IIMFP is non-zero due to surface excitations. The IIMFP

decreases with increasing electron distance from the cavity boundary.
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Fig. 4.5 Calculated results of the IIMFP for an electron moving parallel to the axis

of a cylindrical cavity (radius a=20 a.u.) in Si for several electron energies.
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4.2 Inelastic Interactions of Electrons

with Clad Cylindrical Systems

Figure 4.6 illustrates the studied problem. An electron with velocity v and

energy E =v?/2 moves parallel to the axis of two infinitely long, coaxial cylindrical
interfaces of inner radius a and outer radius b. The cylinder has dielectric
functions ¢, (k,®), &,(k,) and e,(k, ) in differentradii p for p<a,

a<p<b and p> Db, respectively. +’Attime t; the electron is at a position

%, = (p,,0,vt) in cylindrical coordinates.

4.2.1 Induced Potential

Considering three different cases, i.e. p, <a (casel), a<p, <b (case Il)and
p, > Db (case Ill), the potential in cylindrical coordinates can be expressed as

(Jackson 1975)

-1 & ik (z—vt J+im 1
O, 7 (p0,2.8)=—= 3 [ dkA, 1 (ko)™ 45, =04 (p.0,2,1) (4.16a)

1 m=—co 1
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Fig. 4.6 A sketch of the problem studied in the present work.  An electron of
velocity V. moves parallel to and at a distance p, from the axis of an infinitely long
clad cylindrical system with inner radius a and outer radius b. The media in the
regions p<a, a<p<b and p>b have dielectric functions ¢,(k,0), ¢,(k,®)

and &,(k,®), respectively.
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for p<a,

(Dz(p)(P,d),Z,t):n_—l i f:odk[Bm(P)Im(kp)+Cm(P)Km(kp)kik(z—vt)Hmd)+6p‘”i®0(p1¢,z,t) (4.16b)

2 M=— 82

for a<p<b,and

0, (p,p,2)=—2 Y [ dkD, K, (kp)e e m 45 8icpo(p,¢, z,t) (4.16c)

7'583 m=—c0 3

for p>b. Here AP, B ¢ ® and” D, -are coefficients to be

determined, p=1, Il and 11l are for cases I, t1'and 1 respectively, 1, and K are
modified Bessel functions, & is the delta function,

-1& - ik (z—vt }+im¢
o(p.0,2,8)=— 37 [kl (kp )K (kp. Je (4.17)

m=—o0

is the potential of the electron in vacuum with p. =max(p, py) and

p. =min(p, py).

The Fourier transforms of the potentials are
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®1‘p)(p,¢,k,w)=8_—) S AP ko)l (k™5 —kv)+5,, gl(i’m)d)o(p,d),k,oo) (4.182)

for p<a,

®,” (p,0,k,») ‘4” Z[B @ (k, ), (kp)+C, P (k, K, (kp )b ™5(co — kv)

(4.18b)
+ap,..@¢o<p,¢,k,m)
for a<p<b,and
®," (p, 0.k, ) i ®(k, 0)K,, (kp)e™5(c—kv)+ 5p‘,,,@®0(9,¢1k,m) (4.18c)
for p>b, where
D (p, .k, ) —4nZ| (kp. K, (kp. e™5(0—kv) (4.19)

4.2.1.1 Case I. Electrons Moving in Medium 1 (i.e. p, <a)
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By matching the boundary conditions, i.e. continuities of the potential and the

normal component of electric displacement at the interfaces p=a and p=hb, one

finds

K, '(ka) K, (ka)
C (')(k 0))— 82(k’(0 Im'(ka) B |m(ka)}lm(kp°)
" ko) kolleko)-a ko)l o Ke'ka) 3 Knlka)
z(k, )Im'(kb) —83(k,0)) |m(kb) 2\ |m'(ka) 1\ Im(ka)

7K _(kb)

where 1_'(x)=dI_(x)/dx and K_'(x)=dK,(x)/dx. Removing the vacuum

potential and taking the inverse Fourier transform, one obtains the induced potential in
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the spatial space as

CI)lmd(')pq)zt—_ e [*do
8 AT e SUED) R
“{ ol o. )7 (imjl [“’(‘tn | o[ (‘”( tD

4.2.1.2 Case Il. Electrons Moving in Medium:2 (ie. a<p,<b)

A similar approach can be made‘forelectrons moving in medium 2.  After some

mathematical manipulations, one finds

A" (k,0)=B," (k,0)+

m (1)
(k) C,"(k,0)+ K, (kp,) (4.222)

o L), X 0 ) )5, (0K, )
R o T e ) e s e ) R
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¢, O (k)= 1Erk: @)= ea K.oY (K, o) (ko )~ e, (K, 0) 25 (K, o)l (kpo )
" X (K, o), (k,0)=[e, (ko) -, (k,0)]e, (k,0)-2s ko))

D, (k. )=tn*D) B e e Ok )t (kp) |

O o)
where
ko) llc0) Ko 08 o) e ) (4232
and
folkio) e,k ) 0o ko) =0 (4.23b)

Therefore, the induced potential in the spatial space is then obtained as
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(4.24)

4.2.1.3 Case Il1. Electrons Movingin Medium:3 (i.e. p, >b)

Again, a similar approach can be made for electrons moving in medium 3.

After mathematical manipulations, the coefficients can be found as

A (k,0)= 8, (ko) Ko K angy ) (4.252)

' (ka) "

. (4.25b)

m

" Sz(k’m{ }Lml.
B, (k,»)= ) I () IR )

K, '(kb) K, (kb)
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0)-¢,(k,0)jB," (ko)

C, " (k,0)= [e. (k,
82(k,0))

Kml(ka)—gl(k, ) Kn(ka)

1, (ka)

o R ORRN o ST RO

m

Therefore, the induced potential in the spatial space is then obtained as

(III
3|nd (I) Z, t

4.2.2 Stopping Power

4.2.2.1 Case I. Electrons Moving in Medium 1 (i.e. p, <a)

The stopping power, F(, is related to the derivative of ®@,,," (p,¢,2,t) atthe

position of electrons. One gets
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)
) Am(l)(,(DJ
=0 _—2 > LEdwwlm(gpoj Im— AV Km[g
Vv

Im 1
(oo) | el
& —O® & —O®
v v
4.2.2.2 Case Il. Electrons Moving in Medium 2 (i.e. a<p,<b)
The stopping power, F is related to the derivative of q)z,ind(“)(p’(l)’ z,t) at
the position of electrons.  One gets
-2 & E
m_ =
FY = 7 mgwjo doo
Bm(”)(m,mj Cm(")(w,(oj
® v 0} v
.m[_pojlm v +Km(_pojum v )
v € ((D oaj v € (m (oj (4.28)
2 V’ 2 Vv . .

4.2.2.3 Case Il1. Electrons Moving in Medium 3 (i.e. p, >b)

The stopping power, F", is related to the derivative of @,,,""(p,¢,2,t) at

the position of electrons.  One gets
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4.2.2.4 Limiting Cases
Taking &, =¢, INEQ(4.27)or g, =¢, inEq (4.29), one obtains the same

formulas of the stopping power as that derived in Eq. (4.9). Taking ¢, =¢, inEq

(4.29) or ¢, =g, inEq (4.27), one-obtains the Same formulas of the stopping power

as that derived in Eq. (4.10).

4.2.3 Differential Inverse Inelastic Mean Free Path

The stopping power is expressed in terms of the DIIMFP, u‘”, through

(P :J'OE op®(E,0)do | (4.30)

where p =1, Il and Ill are for cases I, Il and Il respectively. Therefore, one obtains

the DIIMFPs as
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S
WO (E. o) 22 i |m[ j m_\v +Km(9poj|m ST | (431)
S )

for an electron moving in medium 1,

(g —
n"(E,0) .

I
gl
<
NO‘J
L I
<|e
e
-

L (432)

m

for an electron moving in medium 2, and

D (|||)(0) mj
-2 & 0 m V’ Q)] 1
M(E,0)=— K | = Im————2 |+ | = Im—— . 4.33
u ( (D) ﬂVZm;oo m(vpoj (0) j m(vpoj (O) ) ( )
83 V,(/O 83 V,O)

for an electron moving in medium 3.
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Taking &, =¢, INEq(4.31)or g =¢, inEq (4.32), one obtains the same
formulas of the DIIMFP as that derived in Eq. (4.12). Taking €, =&, in Eq (4.32)
or g =¢, inEq (4.33), one obtains the same formulas of the DIIMFP as that derived
in Eq. (4.13). Taking ¢, =¢, =¢;=¢ inEQs. (4.31), (4.32) or (4.33), one obtains
the DIIMFP for an infinite solid as Eq. (4.14). Equation (4.14) may also be found by
taking a— o inEg. (4.31), a=0 and b—>x inEg.(4.32),or a=b=0 inEq.
(4.33).

Using Egs. (4.31), (4.32) and (4.33), the DIIMFP for an electron moving parallel

to the axis of a Si cylindrical tube of inner radius -a =15A and outer radius

0
b=25A s calculated. In these calculations, a sum-rule-constrained extended

Drude dielectric function with dispersion (Kwei 2003) was applied. Figure 4.7
shows the results for the DIIMFP of a 500 eV electron traveling inside the Si tube, i.e.
p, <a, at several distances p, as a function of energy transfer. It is seen that the
DIIMFP is entirely contributed from surface excitations. The surface excitation peak
(~ 12 eV) decreases in magnitude for decreasing p, due to the weaker response by
the solid surface.

The DIIMFP of a 500 eV electron traveling inside the cylindrical shell of the Si
tube, i.e. a<p, <b,isplotted in Fig. 4.8 as a function of energy transfer for several

values of p,. Since now the electron travels inside the solid, the DIIMFP exhibits
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overlapping peaks due to the contributions from surface and volume excitations.

The relative contributions from surface and volume excitations depend on the location
of the electron.  As the electron moves along the midline between inner and outer
surfaces (solid curve), volume excitations (the peak at ~17 eV) dominate. When the
electron moves near the inner surface (dashed curve) or the outer surface (dotted
curve), surface excitations (the peak at ~12 eV) become more prominent. In the case

0 (0]
of p, =16A, for instance, the electron moves at 1A away from and parallel to the

cylindrical surface where the electron and the cylindrical axis are on opposite sides of
(0]
the surface. In the case of p, = 24/A", on the other hand, the electron moves also at

o
1A away from and parallel to the cylindrical surface where the electron and the
(0]
cylindrical axis are on the same side of the surface..© For p, =16A, the electron

moves along the cylindrical surface bending away from it, leading to reduced surface

- - - - - 0
excitations and increased volume excitations. For p, =24 A, the electron moves
along the cylindrical surface bending towards it, leading to enhanced surface
excitations and decreased volume excitations.

Similar results on the DIIMFP of a 500 eV electron moving outside the Si tube,

l.e. p,>b, forseveral p, are plotted in Fig. 4.9 as a function of energy transfer. It
Is seen that in this case the DIIMFP is totally contributed from surface excitations,

with its value decreasing for increasing electron distance from the surface. Figure
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4.10 shows the DIIMFP for electrons with various energies moving outside the Si tube
at p, = 26,&. It is seen that the DIIMFP decreases with increasing electron energy.
This indicates that the contribution from surface excitations also decreases as electron
velocity increases.

Figure 4.11 shows the DIIMFP for a 500 eV electron moving at p, = 26,&
outside a Si cylinder clad in a SiO; film with outer radius b= 25,& and inner radius
a :15,& : 22,& or 24,& . For comparisons, corresponding results of a SiO,
cylindrical wire (a= 0,&) and a Si cylindrical wire (a = 25,&) are included. Inthe
case of a= 0,& , the DIIMFP exhibits a broad distribution contributed from surface
excitations of SiO,. For a= 255\ , on the ather hand, the DIIMFP is purely

contributed from surface excitations 0f*Si.”For the:Si cylinder clad in a SiO, film of

thickness 1A (a=24A)or 3A (a=22A), the DIIMFP reveals the contributions

from surface (SiO,-vacuum) excitations and interface (Si-SiO,) excitations. For the

case of a Si cylinder clad ina 10A (a=15A) SiO, film, the DIIMFP approaches to

that of the SiO; cylinder wire.  Another words, as the film thickness increases the

DIIMFP gradually changes from a value of the Si cylindrical wire to that of the SiO,

0]
wire.  When the film thickness is greater than 10A, nearly no contribution from

interface excitations is found.
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Fig. 4.7 Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance p, <15A from the axis of a Si tube of inner radius a=15A and outer

radius b= 25,&.
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Fig. 4.8 Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance 15A <p, <25A from the axis of a Si tube of inner radius a=15A and

outer radius b= 25,&.
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Fig. 4.9 Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance p, > 25A from the axis of a Si tube of inner radius a=15A and outer

radius b= 25,&.
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Fig. 4.10 Calculated DIIMFP for an electron moving parallel to and at a distance
p, =26 A from the axis of a Si tube of inner radius a=15A and outer radius

[o]
b=25A for several electron energies.
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Fig. 4.11 Calculated DIIMFP for a 500 eV electron moving parallel to and at a
distance p, =26A from the axis of a Si cylinder clad in a SiO; film, having outer

radius b= 25,& and inner radius a =0, 15, 22, 24 or 252\. Results of a=0

and 25,& correspond to the SiO; and the Si cylindrical wires.
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CHAPTER 5
SUMMARY

In this dissertation, electronic excitations produced by the inelastic interaction
between charged particles and solids were studied theoretically.

Electronic excitations are the important mechanism responsible for the energy
loss of electrons in electron spectroscopies. The description of electronic excitations
was based on the extended Drude model which characterized the dielectric response
functions. Experimental data taken from the optical ellipsometry for small energy
transfers and the electron energy-lass spectra-for large energy transfers were used to
obtain parameters in the model dielectric functions for semiconducting I11-V
compounds. To assure the accuracy of the dielectric functions, sum-rules and
critical-point energies are checked.

In the research on electronic excitations in planar systems, the inelastic response
to a probe electron moving across the solid surface was determined. The angular and
energy dependences of the SEP for electrons moving in vacuum and across the surface
were analyzed. The SEP was fitted to a simple formula for the applications in
electron surface-sensitive spectroscopies. Moreover, a theoretical treatment was

developed to account for the memory effect on the induced potential, stopping power,
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DIIMFP, IMFP for a charged particle moving close and parallel to the surface of a

solid. It was found that the consideration of memory effect was important for the

calculation of inelastic interactions.

In the research on electronic excitations in cylindrical systems, analytic formulas

were derived to deal with the DIIMFP and 1IMFP for an electron moving parallel to

the axis of a (clad) cylindrical structure based on the dielectric response theory. The

dependences of the DIIMFP and IIMFP on the electron position and energy have been

analyzed. All relevant inelastic interactions including volume, surface and interface

excitations were considered. Information on-electron inelastic interactions with

cylindrical structures is essential in'the applications of electron surface spectroscopies,

involving nanowires and microcapillaries.
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