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平面及圓柱系統之電子激發效應 
 

研究生：杜宇軒                             指導教授：桂正楣 

 

國立交通大學電子工程學系電子研究所 

 

摘要 

 

 本論文在探討運動之帶電粒子與固體間的非彈性交互作用，研究相關的理論

模式，針對電子激發所產生的效應加以模擬與分析。 

 當帶電粒子在靠近固體表面移動時，其所產生的電子激發效應，對表面靈敏

性散射能譜有很大的影響。根據電磁介電理論，這些激發效應可以用物質的介電

函式來描述。在本論文中，所採用的是延伸式德魯特介電函式，在此函式中的所

有參數是由實驗所量測到的光學數據及電子能量損失能譜來決定的。除此之外，

建立介電函式時也考慮總和率的限制來確保精確性，並檢驗在能帶躍遷關鍵點之

能量轉移及集體激發之電漿子能量以確認無誤。 

 在平面系統的電子激發效應方面，本研究推導之電子微分倒數非彈性平均自

由行徑及非彈性平均自由行徑模式，可以適用在以任意入射角或出射角穿越固體

表面並且離穿越點任意距離之電子。體及表面激發效應對於非彈性散射截面貢獻
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甚大，體激發效應只在固體裡面發生，而表面激發效應則會在靠近固體表面的兩

側發生。由於在固體內部的表面激發效應和體激發效應會互相抵消，所以在真空

中之表面激發效應就變得格外重要，而此真空部分之表面電漿子總激發機率通常

以表面激發參數來描述。本研究主要探討當電子穿越 III-V 半導體固體表面的表

面激發參數，其與穿越角、電子能量之關係。結果顯示，表面激發參數滿足一個

簡單的算式。更進一步地，本研究也建立了非彈性交互作用的記憶效應模式，此

一記憶效應詮釋了前次的非彈性交互作用會影響到下次的非彈性交互作用之現

象。對於帶電粒子沿固體表面平行移動時，其感生電位、阻擋本領、微分倒數非

彈性平均自由行徑和非彈性平均自由行徑之模式均被建構，研究顯示對某特定粒

子能量，其考慮記憶效應的結果會座落在不考慮記憶效應之此粒子能量及上次非

彈性作用前粒子能量的結果之間，而記憶效應會隨前次非彈性交互作用能量損失

增加而變大。 

 在圓柱系統的電子激發效應方面，本研究推導出可以適用在平行於一般或鍍

層圓柱結構之軸運動的電子和系統間的非彈性交互作用之模式。利用電磁介電理

論，微分倒數非彈性平均自由行徑及倒數非彈性平均自由行徑的模式均被推導，

且被應用在矽圓柱、矽空腔、矽圓柱管、長有二氧化矽膜之矽圓柱…等情況。結

果顯示，表面激發效應會在表面兩側發生，而體激發效應只會在固體內部發生。

且靠近表面時，表面激發效應會增加而體激發效應會減少，而能互補抵消。對於

矽空腔來說，除了在極靠近表面的地方以外，其他地方的倒數非彈性平均自由行
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徑幾乎是固定值，大概等於無限大矽塊材之倒數非彈性平均自由行徑。對於長有

二氧化矽膜之矽圓柱來說，非彈性交互作用則包含了體、表面和介面激發效應。

而這些激發效應與電子跟表面或介面之距離、矽圓柱之半徑、二氧化矽膜之厚

度…等有關。 
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ELECTRONIC EXCITATIONS IN 
PLANAR AND CYLINDRICAL SYSTEMS 
 

Student：Yu-Hsuan Tu                 Advisor：Cheng-May Kwei 

 

Department of Electronics Engineering and Institute of Electronics 

National Chiao Tung University 

 

ABSTRACT 

 

 In this dissertation, the models dealing with the inelastic interactions between a 

charged particle and a solid were developed.  Based on inelastic-scattering models, 

simulations and analyses of electronic excitations were made. 

 The electronic excitations produced by a charged particle moving near a solid 

surface play a crucial role in surface-sensitive spectroscopies.  By the use of the 

dielectric response theory, these excitations can be described in terms of the dielectric 

functions of the materials.  The dielectric functions employed in this dissertation 

were the extended Drude dielectric functions.  All parameters in such function were 

determined by fits to the corresponding experimental optical data and electron 
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energy-loss spectra.  In addition, this function was constrained by sum-rules to 

assure the accuracy and examined to confirm critical-point energies in the interband 

transitions and plasmon energies in the collective excitations. 

 In the work for the electronic excitations in planar systems, theoretical 

derivations of the differential inverse inelastic mean free path (DIIMFP) and inelastic 

mean free path (IMFP) for electrons crossing solid surfaces were made for different 

crossing angles and electron distances relative to the crossing point at the surface.  

Such inelastic cross-sections comprise mainly the contributions from volume and 

surface excitations.  Volume and surface excitations occur when electrons travel, 

respectively, inside the bulk of the material and near the surface inside or outside the 

solid.  Due to the rough compensation of surface and volume excitations inside the 

solid, one may pay attention to surface excitations in vacuum.  The surface excitation 

parameters (SEPs) which describe the total probabilities of surface plasmon 

excitations by electrons traveling in vacuum before impinging on or after escaping 

from several semiconducting III-V compounds have also been calculated for electrons 

crossing the compound surfaces with various crossing angles and with various 

energies.  The SEPs were then found to follow to a simple formula.  Moreover, the 

model accounting for the memory effect, which describes the influence of the 

previous inelastic interaction on the succeeding inelastic interaction, of a charge 
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particle between two successive inelastic interactions was established.  Formulas of 

the induced potential, stopping power, DIIMFP and IMFP considering the memory 

effect were derived for a charged particle moving parallel to a solid surface.  It was 

found that those with the memory effect for energy E  lay between the 

corresponding values without the memory effect for energy E  and previous energy 

.  The memory effect increased with increasing energy loss, 0E EE −0 , in the 

previous inelastic interaction. 

 In the work for the electronic excitations in cylindrical systems, the theories were 

developed to deal with inelastic interactions for an electron moving parallel to the axis 

of a cylindrical structure and a clad cylindrical structure.  Formulas for the DIIMFP 

and inverse IMFP (IIMFP) were derived using dielectric response theory.  The 

DIIMFPs and IIMFPs were calculated for a Si wire, a cavity in Si, a Si cylindrical 

tube, or a Si cylinder clad in a SiO2 film.  The calculated results showed that surface 

excitations occurred as the electron moved near the boundary either inside or outside 

the solid, whereas volume excitations arose only for electron moving inside the solid.  

It was found that the probability for surface excitations increases and that for volume 

excitations decreases for an electron moving close to the surface.  Near the surface, 

the decrease in volume excitations is compensated by the increase in surface 

excitations.  For a cavity in Si, the IIMFP inside the solid can be approximated by a 
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constant value equal to the IIMFP for the infinite Si, except in the immediate vicinity 

of the cavity boundary.  For the Si cylinder clad in the SiO2 film, inelastic 

interactions were contributed from volume, surface and interface excitations.  

Calculated results showed that the relative importance of these excitations depended 

on the electron distance from the surface or interface of the cylindrical system, the 

radius of the Si cylinder, and the thickness of the SiO2 film. 
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Fig. 3.2 A plot of crossing-angle-dependent SEPs for 800 eV electrons moving 
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(Orosz 2003). 

Fig. 3.5 A sketch of the problem studied in the present work.  A particle of charge

, velocity  moves parallel to the interface of two media of dielectric 

functions  and 

q 0vr

),(1 ωε k
v

),(2 ωε k
v

.  The interface is located at  and 

the particle is moving along 

0=z

y -direction at a distance  above the 

interface.  At time 

D

0=t , the particle experiences an inelastic interaction 

which changes particle velocity to vv .  Special interest is on the induced 

potential and the stopping power at . 0>t

Fig. 3.6 The induced potential for a proton moving parallel to the surface of Si.  

Results (solid curve) are plotted at proton position for  a.u., 

 a.u. and  a.u. as a function of proton velocity .  

Corresponding results without the memory effect are plotted (dotted 

curve) for a comparison. 

5p=y

100 =v 1=D v

Fig. 3.7 The induced potential at a distance pyy −  from the proton with  

a.u. and  a.u. from Si surface.  The solid curve is results with the 

memory effect for 

5p =y

1=D

50 =v  a.u. and 3=v  a.u.  The dotted and dashed 

curves are results without the memory effect for 30 == vv  a.u. and 5 

a.u., respectively. 

Fig. 3.8 The induced potential at a distance pyy −  from the proton with  1=D
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(solid curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si surface.  

Here  a.u., 5p =y 50 =v  a.u. and 3=v  a.u. 

Fig. 3.9 Results of the stopping power for a proton moving parallel to with a 

distance  a.u. from the Si surface.  Solid and dotted curves are for 

 a.u. (with memory effect) and 

2=D

100 =v vv =0  (without memory effect), 

respectively. 

Fig. 3.10 A comparison of the DIIMFPs with (solid curve) and without (dotted 

curves) the memory effect for electrons moving parallel to the Cu surface 

at a distance  a.u.  The DIIMFP with the memory effect is 

calculated for preceding and succeeding electron energies  eV 

and 

1=D

8000 =E

500=E  eV.  The DIIMFPs without the memory effect are 

calculated for constant electron energies 5000 == EE  eV and 

8000 == EE  eV. 

Fig. 3.11 A plot of the DIIMFPs with the memory effect for electrons of preceding 

and succeeding energies 5000 =E  eV and 300=E  eV.  These 

electrons are moving at various distances  from the Cu surface. D

1=D

Fig. 3.12 A comparison of the IMFPs with (solid curve) and without (dotted curve) 

the memory effect for electrons moving parallel to the Cu surface at a 

distance  a.u.  The IMFP with the memory effect is calculated for 
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a preceding electron energy 8000 =E  eV as a function of succeeding 

electron energy E .  The IMFP without the memory effect is calculated 

for constant electron energy EE =0 . 
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cylinder have dielectric functions 

a

),(1 ωε k  and ),(2 ωε k , respectively. 

Fig. 4.2 Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a 

Si cylinder (radius 20=a  a.u.) in vacuum for several electron distances 

 from the axis. 0ρ

Fig. 4.3 Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a 

cylindrical cavity (radius 20=a  a.u.) in Si for several electron distances 

 from the axis. 0ρ

Fig. 4.4 Calculated results of the DIIMFP for an electron moving parallel to and at 

a distance  a.u. from the axis of a Si cylinder (radius  

a.u.) in vacuum for several electron energies. 

210 =ρ 20=a
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Fig. 4.5 Calculated results of the IIMFP for an electron moving parallel to the axis 

of a cylindrical cavity (radius 20=a  a.u.) in Si for several electron 

energies. 

Fig. 4.6 A sketch of the problem studied in the present work.  An electron of 
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a
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o

0 A15<ρ
o
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o
A25=b

Fig. 4.8 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 
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o

0

o
A25A15 <ρ<

o
A15=a

o
A25=b

Fig. 4.9 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 

distance  from the axis of a Si tube of inner radius  

and outer radius . 

o

0 A25>ρ
o
A15=a

o
A25=b

Fig. 4.10 Calculated DIIMFP for an electron moving parallel to and at a distance 

 from the axis of a Si tube of inner radius  and outer 
o

0 A26=ρ
o
A15=a
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o
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Fig. 4.11 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 

distance  from the axis of a Si cylinder clad in a SiO
o

0 A26=ρ 2 film, 

having outer radius  and inner radius 
o
A25=b =a 0, 15, 22, 24 or . 

Results of  and correspond to the SiO

o
A25

 0=a
o
A52 2 and the Si cylindrical 
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CHAPTER 1 

INTRODUCTION 

 

 Quantitative information on inelastic interactions between electrons and solids is 

important in the surface-sensitive spectroscopies.  In these spectroscopies, electron 

inelastic cross-sections comprise mainly the contributions from volume, surface and 

interface excitations.  Thus, the study of electronic excitations is necessary in the 

analyses of electron spectroscopies.  Note that all quantities are expressed in atomic 

units (a.u.) unless otherwise specified. 

 

1.1 Dielectric Function 

 

 Electronic excitations can be described using the dielectric response theory.  In 

this theory, the excitations are characterized in terms of the dielectric function of the 

materials.  The experimental optical and electron energy-loss measured data and 

their extrapolation from the optical limit to other momentum transfers are frequently 

used to obtain the full spectrum of the dielectric function (Ritchie 1977; Yubero 1996; 

Ding 1998).  Previously, an extended Drude dielectric function with spatial 

dispersion (Kwei 1993) was established with parameters determined from 
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experimental data.  This function was constrained by sum-rules to assure the 

accuracy.  In addition, a background dielectric constant was included to account for 

the influence of polarized ion cores (Smith 1978). 

 In this dissertation, the extended Drude dielectric function with spatial dispersion 

was adopted to calculate the electronic excitations.  The process of determining the 

parameters in such function was depicted in chapter 2.  Due to the strong 

overlapping of oscillator strengths between electrons in the valence band and the 

outermost inner shells, fits of parameters in the extended Drude dielectric function 

were performed to include the contribution from outermost inner shells.  Measured 

optical data were taken from ellipsometric measurements in the infrared spectral 

region and from energy loss measurements in the ultraviolet spectral region.  Such a 

combination of data provided detailed information on the interband transitions and the 

plasmon excitations.  In all fits, the real- and imaginary-parts of the dielectric 

function and the volume and surface energy-loss functions were in good agreement 

with experimental data. 

 

1.2 Electronic Excitations in Planar Systems 

 

 In the research of the inelastic interactions between a charged particle and a 
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planar solid surface, much attention have been paid to inelastic cross-sections.  Such 

cross-sections contain the combined effects arisen from volume and surface plasmon 

excitations.  Volume excitations occur for electrons traveling inside the solid.  

Surface excitations originate from electrons, either inside or outside the solid, moving 

at a distance in the order of angstroms from the surface.  Within the solid, the 

decrease in volume excitations as electrons move close to the surface is compensated 

by the increase in surface excitations.  This makes the total inelastic cross-sections at 

any position inside the solid nearly independent of depth (Chen 1996; Kwei 1998).  

For electrons traveling outside the solid, only surface excitations are attainable over 

an effective region close to the surface (Kwei 1998).  Many theoretical approaches 

(Ritchie 1957; Chiarello 1984; Ohno 1989; Ingham 1990; Yubero 1990, 1992; 

Vicanek 1999) have been proposed to describe surface excitations in inelastic 

interactions.  Such surface excitations are most conveniently characterized by the 

so-called surface excitation parameter (SEP), defined as the average number of 

surface excitations by an electron crossing through the solid surface (Chen 1996; 

Kwei 1998).  For other tilted crossing angle α , the SEP values were approximated 

by multiplying the results on SEP for normally crossing angle with ( ) 1cos −α  (Kwei 

1998; Chen 2002).  In their works, however, conservations of energy and momentum 

were not completely satisfied due to the treatment of momentum transfer in 

 3



cylindrical coordinates that carried no restriction on the normal component (Kwei 

2006).  Later, Werner et al. (Werner 2001) rescaled the electron momentum in 

Oswald’s free electron theory (Oswald 1992) by a material-depedent parameter to 

estimate the SEP for arbitrary material.  In their model, however, they assumed a 

cosine dependence which works only approximately.  In section 3.1, the model of 

SEP was developed for electrons incident into or escaping from solids.  Spherical 

coordinates were employed in the momentum integration to satisfy the energy and 

momentum conservations.  The dependences of SEP on the crossing angle and the 

electron energy were investigated.  Calculated results of SEPs for several 

semiconducting III-V compounds were fitted to an analytical formula.  The 

calculated results were compared with other theoretical results and measured data. 

 When a charged particle moves close and parallel to the surface of a solid, an 

induced potential is produced due to the interaction of the particle and solid.  This 

potential is then acted on the particle resulting to a stopping power.  Theoretical 

derivations of the induced potential and stopping power were previously made (de 

Abajo 1992, 1993; Kwei 2003; Arista 1994) for a constant velocity, , of the particle 

until it experienced an inelastic interaction.  After the interaction, the particle 

changed its velocity to  and continued to interact with the solid.  For a second 

inelastic interaction, it was generally assumed that a new induced potential, dependent 

0v

v
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only on  but not on , was generated.  This new potential then determined the 

stopping power acting on the particle of velocity .  In section 3.2, the induced 

potential and stopping power for the second inelastic interaction were derived using 

image charges and dielectric response functions.  It was found that the particle 

previous velocity  had also an effect on the second inelastic interaction.  Another 

words, the particle kept a memory on its previous velocity, , in determining the 

stopping power for the particle of velocity .  Calculations were made for a proton 

moving parallel to Si surface and for an electron moving parallel to Cu surface.  

Results were analyzed for the dependences of the induced potential, stopping power, 

differential inverse inelastic mean free path (DIIMFP) and inelastic mean free path 

(IMFP) on particle velocities before and after the last inelastic interaction, the distance 

from surface, and the distance from previous inelastic interaction.  Finally, the 

calculated results with memory effect were compared with the corresponding results 

without memory effect. 

v 0v

v

0v

0v

v

 

1.3 Electronic Excitations in Cylindrical Systems 

 

 In the past few years, new developments in fabrications have allowed the 

production of miniaturized devices with typical sizes ranging in the nanometer scale.  

 5



The study of the inelastic interactions in these devices has become an active field of 

research.  In the research of this interaction between an electron and a cylindrical 

solid surface, much attention ha been paid to inelastic cross-sections.  Several 

theoretical approaches have been developed to evaluate these cross-sections in 

cylindrical wires and cavities (Chu 1984; Rivacoba 1995; Tökési 1999, 2000; Arista 

2001; Zabala 2001; Gervasoni 2003).  Of these treatments, the single plasma 

resonance dielectric model was often used.  Although this model is a good 

approximation for materials that exhibit single pole energy-loss peak, it is not so well 

for solids that have complex band structures.  In section 4.1, the extended Drude 

dielectric function with spatial dispersion was used to calculate the differential inverse 

inelastic mean free path and the total inverse inelastic mean free path (IIMFP) in a 

cylindrical system.  These calculations were made for an electron moving parallel to 

the axis of the cylinder (Si wire and cavity in Si).  The dependences of DIIMFP and 

IIMFP on electron position and energy were then analyzed. 

 Besides cylindrical systems, clad cylindrical systems have also attracted some 

attentions.  Expressions of inelastic cross-sections for electrons in such systems 

(Walsh 1989; Zabala 1989) were derived based on the frequency dependent dielectric 

function, i.e. neglecting spatial dispersion.  The inclusion of spatial dispersion may 

be important at short distances from the surface and the interface, where electrons 
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might couple to short-wavelength modes (de Abajo 1992).  In section 4.2, a general 

expression for the DIIMFP was derived for electrons moving parallel to the axis of an 

infinitely long clad cylindrical system.  The extended Drude dielectric function with 

spatial dispersion was used to calculate the DIIMFP in this clad cylindrical system.  

The present calculations were made for electrons moving parallel to the axis of either 

a Si cylindrical tube or a Si cylinder clad in a SiO2 film.  The dependences of the 

DIIMFP on the electron position and energy were analyzed. 
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CHAPTER 2 

DIELECTRIC FUNCTION 

 

 When a charged particle moves inside a solid, the inelastic interaction between 

the charged particle and the solid occurs.  This interaction results in the energy loss 

due to plasmon excitations and interband transitions.  The collective excitations are 

characterized by the dielectric function.  Therefore, the improvement in the analysis 

of inelastic interactions is significant when an applicable dielectric function is 

considered.  In this chapter, the extended Drude dielectric function for 

semiconducting III-V compounds will be constructed. 

 

2.1 Drude Dielectric Function 

 

 The Drude model work quite well for the conduction band of a free-electron-like 

metal (Daniels 1970).  In this model, conduction electrons are described by a 

free-electron gas constrained by the Fermi-Dirac statistics.  The Drude dielectric 

function in the optical limit, i.e. momentum , is given by  0→k

 

( ) ( ) ( ωε+ωε=ωε ,0,0,0 i )IR  ,          (2.1) 
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where  is the energy transfer.  Here, ω ( )ωε ,0I  is the imaginary part of the 

dielectric function given as 

 

( ) 224

2

I ,0
γω+ω

γωω
=ωε p              (2.2) 

 

and  is the real part of the dielectric function given by the Kramers-Kronig 

analysis as  

( ωε ,0 )R

 

( ) 224

22

R 1,0
γω+ω

ωω
−=ωε p  ,           (2.3) 

 

where  is the free-electron plasmon energy and pω γ  is the damping constant. 

 For a valence band of  bound electrons per volume adding to the conduction 

band of  free electrons per volume, the imaginary part of the dielectric function is 

given by (Raether 1980)  

in

0n

 

( ) ( ) 22222

2

0
224

2

I ,0
ii

ip
i

p n
n

γω+ω−ω

ωγω
+

γω+ω

γωω
=ωε  ,        (2.4) 

 

where iγ  is the damping constant associated with the valence band, and  is the iω
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gap-energy between conduction and valence bands or the critical-point energy for 

interband transitions.  The real part of the dielectric function is then given by the 

Kramers-Kronig analysis as 

 

( )
( )

( ) 22222

222

0
224

22

R 1,0
ii

ip
i

p n
n

γω+ω−ω

ω−ωω
−

γω+ω

ωω
−=ωε  .       (2.5) 

 

2.2 Extended Drude Dielectric Function 

 

 For a solid having a complex structure, the valence band may be composed of 

several subbands.  Each ith subband is characterized by its own oscillator strength 

, damping constant iA iγ , and critical-point energy iω .  Based on the superposition 

of damped linear oscillators, the imaginary part of the extended Drude dielectric 

function in the optical limit, is given by (Kwei 1993) 

 

( ) ( )∑
γω+ω−ω

ωγ
=ωε

i ii

iiA
22222I ,0  .          (2.6) 

 

The real part of the extended Drude dielectric function is therefore given by  
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( ) ( )
( )∑

γω+ω−ω

ω−ω
−ε=ωε

i ii

iiA
22222

22

BR ,0  ,         (2.7) 

 

where  is the background dielectric constant to account for the influence of 

polarizable ion cores (Smith 1978). 

Bε

To extend the dielectric function into 0≠k  region of the ω−k  plane, one can 

replace  in Eq. (2.7) to iω 2

2k
i +ω  (Ritchie 1977, 1991).  Thus, the extended 

Drude dielectric function is given by  

 

( ) ( ) ( ) ∑
ωγ++ω−ω

−ε=ωε+ωε=ωε
i

ii

i

ik
Akikk

2
2

2
BIR

)
2

(
,,,  .    (2.8) 

 

The volume and surface energy-loss function may then be calculated from  

 

( )
( )

( )[ ] ( )[ ]2I
2

R

I

,,
,

,
1Im

ωε+ωε
ωε

=⎥
⎦

⎤
⎢
⎣

⎡
ωε

−
kk

k
k

          (2.9) 

 

and 

 

( )
( )

( )[ ] ( )[ ]2I
2

R

I

,1,
,

1,
1Im

ωε++ωε
ωε

=⎥
⎦

⎤
⎢
⎣

⎡
+ωε

−
kk

k
k

 ,       (2.10) 

 11



 

respectively. 

 

2.3 Optical Data 

 

 The experimental optical data and the extrapolation of these data from the optical 

limit to other momentum transfers are frequently used to obtain the full spectrum of 

the dielectric function (Ritchie 1977; Yubero 1996; Ding 1998).  The information on 

the optical data will be helpful for obtaining the dielectric function due to 

 

( ) ( ) ( )ωκ−ω=ωε 22,0 nR             (2.11) 

 

and 

 

( ) ( ) ( )ωκω=ωε n2,0I             (2.12) 

 

 However, optical data are only available for the extinction coefficient, , in a 

limited energy transfer range 

κ

21 ω≤ω≤ω  and for the refraction index, , in 

.  Due to the lack of information on 

n

43 ω≤ω≤ω κ  in 1ω<ω  and , 2ω>ω
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extrapolations are applied as 

 

( )
( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

ω>ω⎟
⎠
⎞

⎜
⎝
⎛
ω
ω

ωκ

ω<ω
ω
ω

ωκ

=ωκ

2
2

2

1
1

1

for               

for                     

p

 ,        (2.13) 

 

p  is determined from the f-sum rule where the parameter 

 

( )∫
∞

ω
π

=ωωωκ
0

2

4 pd  ,            (2.14) 

 

( ) 2/14 NZp π=ω  is the plasma energy,  is the molecular density, and N Z  is the 

total number of electrons per molecule.  Further, the Kramers-Kronig relation is 

applied to obtain the refraction index at any ω  in the range of 3ω<ω  and .  

The validity of the inertial sum rule  

4ω>ω

 

( )[ ]∫
∞

=ω−ω
0

01 dn  .            (2.15) 

 

is also checked. 
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2.4 Parameters in Extended Drude Dielectric Function 

 

 All parameters ( , , Bε iA iγ  and iω ) of the extended Drude dielectric function 

in Eq. (2.8) are determined by fits of ( )ωε ,0R , ( )ωε ,0I , ( )[ ]ωε− ,0/1Im  and 

 to the experimental data of the semiconducting III-V compounds.  

For small energy transfers (  eV), the experimental data are taken from the 

optical ellipsometry (Palik 1985, 1991, 1998).  For large energy transfers (  

eV), the experimental data are taken from the electron energy-loss measurement 

(Festenberg 1969; Brockt 2000). 

( )([ 1,0/1Im +ωε− )]

6<ω

6≥ω

 Table 2.1 lists the fitting results of the parameters in Eq. (2.8) for several 

semiconducting III-V compounds including AlN, GaN, GaP, GaAs, GaSb, InAs and 

InSb.  A comparison on , ( )ωε ,0R ( )ωε ,0I , ( )[ ]ωε− ,0/1Im  and 

 for GaN is shown in Fig. 2.1 among the present fittings (solid 

curves) and the experimental data (dotted curves).  It reveals that the present fittings 

are in good agreement as compared to the experimental data for all dielectric 

functions plotted.  A similar plot for InSb is shown among the present fittings (solid 

curves), the previous fittings (Kwei 1986) (dotted curves), and the experimental data 

(Festenberg 1969; Palik 1985) (dashed curves).  It reveals that the present fittings are 

in better agreement than the previous ones as compared to the experimental data for 

( )([ 1,0/1Im +ωε− )]
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all dielectric functions plotted.  The better agreement is due to the considerations of 

the polarizable ion cores and partial 4d inner shell electrons in the dielectric functions.  

The previous fittings without such considerations produce poor agreement with 

optical data on  and  at small Rε Iε ω  and on the volume and surface energy-loss 

functions at large ω .  Further, the positions and the heights of the resonant plasmon 

peaks in the previous fittings are different from experimental data.  It should be 

noted that care is taken in the present fittings of these dielectric functions against 

errors in  near energy transfers corresponding to Rε 1R −=ε , where any small 

difference in  could generate a large deviation in the surface energy-loss function. Rε
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Table 2.1  Parameters in the dielectric function of Eq. (2.8) for semiconducting III-V 

compounds. 

 

AlN (εB=1.25) B GaN (εB=1.35) B GaP (εB=1.05) B GaAs (εB=1.01) B

Ai(eV2) γi(eV) ωi(eV) Ai(eV2) γi(eV) ωi(eV) Ai(eV2) γi(eV) ωi(eV) Ai(eV2) γi(eV) ωi(eV)

2.30 1.20 5.00 3.90 0.90 3.98 3.40 2.00 2.89 2.08 0.10 2.92

13.00 0.90 8.00 87.00 2.20 6.98 12.50 0.20 3.73 25.97 0.61 3.16

60.00 1.80 8.20 33.00 6.00 7.00 34.00 0.90 4.02 31.90 1.20 3.84

6.00 3.00 9.00 25.00 1.60 8.70 40.90 0.80 4.80 58.80 0.70 4.60

95.00 2.20 9.10 56.00 3.00 9.80 58.70 0.70 5.10 17.00 0.35 4.90

75.00 3.00 11.50 13.00 3.00 10.50 10.00 2.00 5.45 10.00 1.00 5.60

90.00 5.00 13.00 28.00 1.80 11.20 40.00 1.70 6.80 43.44 2.42 6.70

10.00 1.92 14.00 79.00 2.50 12.80 45.00 4.00 9.80 48.00 10.30 11.10

80.00 7.00 15.00 33.00 3.00 13.20 15.00 5.00 13.20 5.60 2.80 11.50

22.00 6.30 17.00 30.00 3.00 14.80 3.00 3.00 22.00 1.50 2.00 21.00

70.00 14.11 17.10 49.00 4.40 17.30 4.50 3.00 24.00 5.00 3.20 21.80

3.00 6.40 20.50 1.20 3.20 19.90 16.00 25.20 26.00 15.00 29.30 30.00

190.00 28.00 34.60 3.60 1.80 21.30 19.00 29.40 30.00 25.00 36.70 37.00

  23.00 2.00 22.80 102.00 39.00 40.00 40.00 38.20 39.00

  12.00 3.00 25.00   

  160.00 4.10 29.00   
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Table 2.1 (continued) Parameters in the dielectric function of Eq. (2.8) for 

semiconducting III-V compounds. 

 

GaSb (εB=1.02) B InAs (εB=1.05) B InSb (εB=1.02) B

Ai(eV2) γi(eV) ωi(eV) Ai(eV2) γi(eV) ωi(eV) Ai(eV2) γi(eV) ωi(eV) 

3.40 0.20 2.10 2.30 0.20 2.50 6.00 0.34 1.89 

23.70 0.68 2.50 22.50 0.76 2.80 21.50 0.77 2.40 

38.90 1.15 3.30 85.00 2.60 4.15 42.00 1.50 3.35 

28.70 0.70 3.80 28.70 0.46 4.48 34.70 0.68 3.85 

27.00 0.48 4.11 5.00 0.90 4.85 5.00 0.90 4.18 

7.50 0.80 4.80 4.00 0.60 5.40 7.00 2.00 4.53 

8.00 0.70 5.20 5.00 0.60 6.10 16.00 1.20 5.23 

5.00 0.80 5.80 8.00 2.00 6.90 8.00 1.20 5.96 

15.00 1.80 7.00 45.00 5.90 8.80 20.00 3.30 8.50 

28.00 3.00 8.50 10.00 5.50 19.50 4.20 7.50 9.50 

3.50 2.50 10.50 23.00 5.00 23.00 3.60 3.00 10.20 

1.30 1.50 11.20 30.00 35.00 32.00 6.00 2.50 19.80 

10.10 5.50 12.00 40.00 36.80 38.00 5.00 3.00 21.00 

1.80 1.50 20.20 2.00 2.00 23.50 

1.20 1.50 21.30 3.00 2.00 24.50 

6.50 3.60 24.00 10.00 29.60 30.00 

30.00 30.00 31.00 16.00 33.00 34.00 

40.00 35.00 36.00 130.00 35.00 36.00 

50.00 38.00 40.00   
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Fig. 2.1 A plot of the dielectric functions, ( )ωε ,0R , ( )ωε ,0I , ( )[ ]ωε− ,0/1Im  and 

, for GaN.  Solid curves are results of the present work.  The 

experimental data (Brockt 2000) (dotted curves) are also plotted for comparison. 

( )([ 1,0/1Im +ωε− )]
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Fig. 2.2 A plot of the dielectric functions, ( )ωε ,0R , ( )ωε ,0I , ( )[ ]ωε− ,0/1Im  and 

, for InSb.  Solid curves are results of the present work.  Other 

calculated results (Kwei 1986) (dashed curves) and the experimental data (Festenberg 

1969; Palik 1985) (dotted curves) are also plotted for comparison. 

( )([ 1,0/1Im +ωε− )]
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CHAPTER 3 

ELECTRONIC EXCITATIONS  

IN PLANAR SYSTEMS 

 

The information on the electron inelastic interaction cross-sections plays an 

important role in the quantitative analysis of surface-sensitive electron spectroscopies.  

The most widely studied geometry for these interactions was planar (Yubero 1992; 

Jablonski 2000; Kwei 2004; Werner 2005).  In this chapter, a theoretical model of 

inelastic scattering for charged particles moving across solid surfaces will be 

constructed.  After that, the constructed model will be further modified to include the 

memory effect for successive inelastic interactions. 

 

3.1 Inelastic Interactions of Electrons  

with Planar Systems 

 

 As illustrated in Fig. 3.1, an electron of velocity vv  travels across an interface at 

time  from medium 1 of dielectric function 0=t ( )ωε ,1 k
v

 to medium 2 of dielectric 

function ( )ωε ,2 k
v

, where k
v

 is the momentum transfer and ω  is the energy transfer.  

The crossing angle  is defined as the angle between the interface normal and the  α

 20



 

 

 

 

 

Fig. 3.1 A sketch of the problem studied in this work.  An electron of velocity vv  

moves across the interface at time 0=t  from medium 1 of dielectric function 

( )ωε ,1 k
v

 to medium 2 of dielectric function ( )ωε ,2 k
v

 with crossing angle .  The 

instant position of the electron is 

α

tvr vv = , relative to the crossing point at interface. 
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tvr vvelectron moving direction.  The instant position of the electron is = , relative to 

the crossing point at the interface. 

 

3.1.1 Induced Potential 

 

 As the electron crosses the interface, volume and surface excitations are probable 

due to electron-solid interactions.  Surface excitations occur when the electron 

travels near the interface, while volume excitations arise as the electron moves inside 

the media.  These two excitations can be described using the dielectric response 

theory (Chen 1996; Kwei 1998).  By solving the Poisson equation, the Fourier 

components of the scalar potentials in media 1 and 2 are given by (Kwei 1998, 1999) 

 

( ) ( ) ( ) ([ ωρ+β−ωδ
ωε

π−
=ωΦ ,cos

,
8,
1

2

2

1 Qkv
kk

k s

v
v

v )]       (3.1) 

 

for , and  0<t

 

( ) ( ) ( ) ([ ωρ−β−ωδ
ωε

π−
=ωΦ ,cos

,
8,
2

2

2

2 Qkv
kk

k s

v
v

v )]       (3.2) 

 

for , where 0>t ( )zkQk ,
vv

= , Q
v

 and k  are the parallel and normal components of z
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k
v

 with respect to the surface, β  is the angle between k
v

 and vv , and ( )ωρ ,Qs

v
 is 

the induced surface charge density.  The signs accompanying the induced surface 

charge density are opposite for 0<t  and for , which is due to the requirement 

for the continuity of the normal component of the electric displacement at the 

interface.  The other boundary condition, i.e. the continuity of the tangential 

components of the electric field at the interface, requires that the induced surface 

charge density follows  

0>t
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 ,    (3.3) 

 

where  and  are the normal and parallel components of ⊥v ||v vv  with respect to the 

surface. 

 Now the Fourier components of the scalar potentials, ( )ωΦ ,1 k
v

 and ( )ωΦ ,2 k
v

 

on either side of the interface, can be obtained after substituting Eq. (3.3) into Eqs. 

(3.1) and (3.2).  The induced potentials in real space can be derived by the inverse 

Fourier transforms of ( )ωΦ ,k1

v
 and ( )ωΦ ,k2

v
 after removing the potential of the 

electron in vacuum.  Adopting spherical coordinates in the integration of momentum 

transfer, the induced potentials can be written as 
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for , and 0<t
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for , where 0>t ( )zRr ,
vv = , R

v
 and  are the parallel and normal components of z

rv  with respect to the surface, and 
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    (3.6) 

 

for  and 2.  Equation (3.6) was derived under the assumption that 1=j

( ) ( )ωε≈ωε ,, Qk
vv

 (Yubero 1992, 1996).  The integrations over ω  in the second 

integrals of Eqs. (3.4) and (3.5) can be performed by closing the contour in the upper 

and lower half planes for  and , respectively.  To carry out the contour 0<t 0>t
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integration in the lower half plane, it is convenient to convert it into the upper half 

plane by replacing )  in Eq. (3.5) with ( tRQie ω−⋅
vv ( ) ( ) ( )tRQitRQi eRQte ω−⋅−ω−⋅ −⋅−ω=

vvvv vv
cos2 . 

 

3.1.2 Differential Inverse Inelastic Mean Free Path 

 

 The stopping power, , can be related to the induced potential, F ( trind , )vΦ , by 

(Flores 1979) 
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∂
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=  ,           (3.7) 

 

where the derivative of the induced potential is evaluated at the position of the 

electron.  And the stopping power can be expressed in terms of the 

position-dependent DIIMFP, ( rE ,,, )ωαμ , according to 

 

(∫ ωωαωμ=
E

drEF
0

,,, )  .            (3.8) 

 

3.1.2.1 Electrons Moving from Solid to Vacuum 

 

 In the case of an electron traveling from solid to vacuum, i.e. s v, → ( )ωε ,k1

v
 and 

 25



( )ωε ,2 k
v

 may be replaced by ( )ωε ,k
v

 and 1, respectively.  The DIIMFP is therefore 

given by 
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(3.9) 

 

where αφθ−ω=ω sincossin~ kv , θ= sinkQ , θ= coskkz , α=⊥ cosvv , 
2

2vE = , and 

 is the Heaviside step function.  Applying the energy-momentum conservation 

relations, the upper and lower limits of  are 

( )rΘ

k ( )ω−±=± EEk 22 .  The terms 

involving ⎟
⎠
⎞

⎜
⎝
⎛

+ε
−

1
1Im  are due to the contribution from surface excitations, whereas 

those involving ⎟
⎠
⎞

⎜
⎝
⎛
ε
−1Im  are contributed from volume excitations.  Equation (3.9) 

reveals that only surface excitations are possible for the electron traveling outside the 

solid.  However, both volume and surface excitations may occur for the electron 

moving inside the solid.  The term ( )α− cosexp Qr  in Eq. (3.9) indicates that the 

contribution from surface excitations decreases exponentially with the increase in 
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distance from the surface.  On the other hand, the reduction in the contribution from 

volume excitations increases rapidly as the electron moves near the surface.  When 

electron moves deep inside the solid, i.e. −∞→r , Eq. (3.9) reduces to the same 

expression as that for an electron moving in the infinite solid. 

 

3.1.2.2 Electrons Moving from Vacuum to Solid 

 

 Similar derivations can be performed for an electron traveling from solid to 

vacuum, i.e. v→ s, by taking ( ) 1, =ωε k1

v
 and ( ) ( )ωε=ωε ,, kk2

vv
.  In this case, the 

DIIMFP for the incident electron is given by 
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                (3.10) 

 

3.1.3 Surface Excitation Parameter 
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 Surface excitation parameters describe the total probability of surface excitations 

by crossing electrons traveling in vacuum.  The SEP may be obtained by integrating 

the IIMFP over the whole path length of the electron outside the solid.  The IIMFP 

for an escaping electron can be calculated using 

 

( ) ( )∫ ωωαμ=αμ →→
E

drErE
0

vsvs ,,,,,  .         (3.11) 

 

The SEP for an escaping electron is therefore given by 

 

( ) ( )drrEEPs ∫
∞

→→ αμ=α
0

vsvs ,,,  .          (3.12) 

 

Similarly, the IIMFP and SEP for an incident electron can be obtained from 

 

( ) ( )∫ ωωαμ=αμ →→
E

drErE
0

svsv ,,,,,          (3.13) 

 

and 
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( ) ( )drrEEPs ∫
∞−

→→ αμ=α
0

svsv ,,,  .          (3.14) 

 

 The angular dependence of SEP for III-V semiconducting compounds are then 

calculated for both escaping and incident electrons using Eqs. (3.12) and (3.14).  

These calculated SEPs are found to follow a simple formula 

 

) or ( )
α

α c

b

s
aEEP
cos

,sv
−

→ =  ,         (3.15) ( EPs ,vs α→

 

where ,  and  are material dependent constants.  With a b c E  in electron-volts, 

the best-fitted values of parameters ,  and  are listed in Table 3.1 for all solids 

studied. 

a b c
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Table 3.1  Fitted values of parameters ,  and  in Eq. (3.15) for 

semiconducting III-V compounds. 

a b c

 

 Escaping electrons Incident electrons 

 a b c a b c 

AlN 1.2938 0.4491 0.9173 0.6617 0.4480 1.1551 

GaN 1.3820 0.4596 0.9079 0.6996 0.4584 1.1533 

GaP 2.4437 0.4938 0.8844 1.1731 0.4890 1.1541 

GaAs 2.4981 0.4889 0.8762 1.2382 0.4894 1.1484 

GaSb 3.0431 0.5153 0.8653 1.4387 0.5095 1.1442 

InAs 2.9012 0.5152 0.8632 1.3759 0.5099 1.1418 

InSb 3.2265 0.5241 0.8549 1.5213 0.5181 1.1360 
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 Figure 3.2 shows the crossing-angle-dependent SEPs calculated for 800 eV 

escaping electrons moving from GaAs to vacuum.  Solid circles represent the 

calculated data using Eq. (3.12).  The results of fitted values using Eq. (3.15) (solid 

curve) and those calculated with the previous model (Kwei 1998) (dashed curve) are 

included in this figure for comparisons.  It can be seen that the SEP is larger for 

larger crossing angle due to the longer time for electron-surface interaction.  The 

SEP rises slowly with increasing crossing angle until about , above which 

such a rise becomes rapidly.  The present results show that the previous work, which 

assumed a cosine dependence of SEPs on the crossing angle, works only 

approximately.  A similar plot for 800 eV incident electrons moving from vacuum to 

GaSb is shown in Fig. 3.3.  Note that the SEPs for incident electrons exhibit similar 

energy and angular dependences as for escaping electrons.  However, the SEPs for 

incident electrons have smaller values than for escaping electrons.  This is because 

the attractive force acting on the incident electron (in vacuum) by the surface induced 

charges accelerates the electron.  On the other hand, the attractive force on the 

escaping electron (in vacuum) decelerates the electron.  Therefore, the time spent 

near the surface for incident electron is less than for escaping electron, thus leading to 

less surface excitations for incident electron. 

o70=α
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Fig. 3.2 A plot of crossing-angle-dependent SEPs for 800 eV electrons moving from 

GaAs to vacuum.  Solid circles are the results calculated using Eq. (3.12).  The 

solid and dashed curves are, respectively, a fit of the calculated results using Eq. (3.15) 

and the previous work (Kwei 1998). 
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Fig. 3.3 A plot of crossing-angle-dependent SEPs for 800 eV electrons moving from 

vacuum to GaSb.  Solid circles are the results calculated using Eq. (3.14).  The 

solid and dashed curves are, respectively, a fit of the calculated results using Eq. (3.15) 

and the previous work (Kwei 1998). 
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 The total electron SEPs of two surface crossings on GaP calculated using Eqs. 

(3.12) and (3.14) (solid circles) are plotted in Fig. 3.4 as a function of electron energy 

for a  incident angle and a  escaping angle.  The fits using Eq. (3.15) (solid 

curve), the previous work (Kwei 1998) (dashed curve) and Orosz et al. (Orosz 2003) 

(open circles) are included in this figure for comparisons.  It is seen that SEPs 

decrease with increasing electron energy because of the less interacting time for 

surface excitations.  The difference in magnitude between the present work and the 

previous work for the SEP is due to the use of spherical coordinates in performing the 

momentum integration to satisfy the momentum and energy conservations.  The 

results of Orosz et al. were deduced from a comparison of the experimental inelastic 

scattering cross-section spectra evaluated by the method of Tougaard et al. (Tougaard 

1987, 1991) based on REELS measurements.  The results from their procedure 

contain the contributions of surface excitaions both inside and outside the solid 

(Gergely 2002).  In the present work, however, the contribution of surface 

excitations outside the solid was dealt in the calculations of SEPs.  This is because 

the approximate compensation of surface and volume excitations inside the solid 

(Kwei 1998).  The different treatments result in the discrepancies between the results 

of the present work (solid circles) and Orosz et al. (open circles). 

o50 o0
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Fig. 3.4 A plot of energy-dependent total SEPs for electrons moving from vacuum to 

GaP with incident angle  and then moving from GaP to vacuum with escaping 

angle .  Solid circles are the results calculated using Eqs. (3.12) and (3.14).  The 

solid and dashed curves are, respectively, a fit of the calculated results using Eq. (3.15) 

and the previous work (Kwei 1998).  Open circles are the experimental data 

measured by Orosz et al. (Orosz 2003). 

o50

o0
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3.2 Memory Effect 

 

 Figure 3.5 illustrates the problem studied in the present work.  A particle of 

charge , velocity q 0vr  and energy  moves parallel to the interface of two media 

of dielectric functions 

0E

),(1 ωε k
v

 and ),(2 ωε k
v

.  The interface is located at , 

with -axis perpendicular to the interface plane and directed from 

0=z

z ),(1 ωε k
v

 to 

),(2 ωε k
v

.  The particle is moving along y -direction at a distance  above the 

interface.  At the moment , the particle experiences an inelastic interaction 

which changes particle velocity and energy to 

D

0=t

vr  and E .  Assuming the particle 

continues to move along the same direction, the induced potential at  is of 

special interest here. 

0>t

 

3.2.1 Induced Potential 

 

 For , the scalar potential is produced by the particle and a fictitious charge 

at  near the interface.  For 

0>z

0<z 0<z , the potential is produced by a fictitious 

charge at particle position and by another fictitious charge at  near the interface.  

These fictitious charges should be established using boundary conditions that are 

satisfied at the interface.  Thus the Poisson equations in Fourier space are  

0>z
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Fig. 3.5 A sketch of the problem studied in the present work.  A particle of charge 

, velocity q 0vr  moves parallel to the interface of two media of dielectric functions 

),(1 ωε k
v

 and ),(2 ωε k
v

.  The interface is located at 0=z  and the particle is 

moving along y -direction at a distance  above the interface.  At time , the 

particle experiences an inelastic interaction which changes particle velocity to 

D 0=t

vv .  

Special interest is on the induced potential and the stopping power at . 0>t
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[ ),(),(
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4),( f
1

21 ωρ+ωρ
ωε

π
=ωΦ Qk

kk
k ]vv

v
v

        (3.16) 

 

for  and 0<z

 

[ ),(),(
),(

4),( f
2

22 ωρ−ωρ
ωε

π
=ωΦ Qk

kk
k ]vv

v
v

        (3.17) 

 

for , where 0>z ),(),,( zzyx kQkkkk
vv

==  is the momentum transfer and  is the 

energy transfer.  The Fourier transform of the charge density distribution of the 

particle  

ω

 

)]()()()()[()(),( 0 tvtyttvyDzxqtr Θ−δ+−Θ−δ−δδ=ρ v      (3.18) 

 

is given by 

 

⎥
⎦

⎤
⎢
⎣

⎡
τ+τ=ωρ ∫∫

∞
τ−ω

∞−

τ−ω−

0

)(i
0

)(ii dedee),( 0 vkvkDk yyzqk
v

 ,       (3.19) 

 

where  and ( )δ ( )Θ  are the delta- and step-functions, respectively.  To satisfy the 

boundary conditions at the interface, the fictitious charge in Fourier space is given by 
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Combining Eqs. (3.19) and (3.20), one gets 
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where the effective dielectric function is given by 

 

z
L

2

i

L

d
),(

e
2
1

),,(
1 k

kkQD

Dkz

∫
∞

∞−

−

ωεπ
=

ωε
vv          (3.22) 

 

for  and 2 and 1L = ( ) ( )ωε=ωε ,,0, QQ LL

vv
. 

 Substituting Eqs. (3.19) - (3.22) into Eqs. (3.16) and (3.17), one obtains the 

scalar potentials in Fourier space, i.e. ),(1 ωΦ k
v

 and ),(2 ωΦ k
v

.  The induced 

potentials in Fourier space, ),(,1 ωΦ kind

v
 and ),(,2 ωΦ kind

v
, are then obtained by 

removing the vacuum potential of the particle from scalar potentials.  One gets 
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for  and 0<z
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for .  If the particle is moving in vacuum, i.e. 0>z 12 =ε , one gets 
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after substituting Eq. (3.21) into Eq. (3.24).  Since ε  is weakly dependent on  

than the rest of 

zk

k
v

 components, one may assume ),(),( ωε=ωε Qk
vv

.  This 

assumption was previously adopted by Yubero et al. (Yubero 1992, 1996) in the 

analyses of REELS spectra and by Kwei et al. (Kwei 1998, 1999) in the calculations 

of electron elastic backscattering spectra.  Using this assumption, Eq. (3.22) becomes 
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Applying the relation (Hoskins 1999) for the product of the step-function and the 

delta-function, i.e. )(
2
1)()( sss δ=δΘ , Eq. (3.25) may be written as 
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Applying ),(),( ωε=ωε QQ
v

 and ),(*),( ωε=ω−ε QQ , the induced potential in real 

space is obtained by an inverse Fourier transform as 
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Expanding the δ-function according to 
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and applying the conservation relations of energy and momentum, it gives  
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where , θ= sinkQ ( )ω−±=± EMMEk 22 , M  is the mass of the particle, and 

 is the position of the particle at time . vty =p t

 The induced potential for a proton moving parallel to the surface of Si was 

calculated using Eq. (3.30).  Results at the position of proton for  a.u., 

 a.u. and  a.u. are plotted in Fig. 3.6 (solid curve) as a function of 

proton velocity .  These results are compared with corresponding data without the 

memory effect (dotted curve), where the abscissa  here may also be interpreted as 

.  It reveals that both curves show a dip around 

5p=y

100 =v 1=D

v

v

0v 5.1=v  a.u.  The existence of a 

dip was also shown for a proton moving parallel to Al surface in the plasmon-pole 

dielectric function model (de Abajo 1993).  As indicated in the figure, the magnitude 

of induced potential decreases with increasing velocity for velocities larger than the 
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dip velocity and increases with increasing velocity for velocities smaller than the dip 

velocity.  Note that there is a significant difference between solid and dotted curves.  

At  a.u., for instance, solid and dotted curves correspond to  a.u. (with 

memory effect) and  a.u. (without memory effect), respectively.  Since the 

velocity change, , in the solid curve is large so that the difference between solid 

and dotted curves is also large.  At 

2=v 100 =v

20 =v

vv −0

8=v  a.u., on the other hand, solid and dotted 

curves correspond to  a.u. and 8 a.u., respectively.  In this case, the velocity 

change in the solid curve is small so that the difference is also small.  Thus the 

difference in induced potentials calculated with and without the memory effect 

increases with increasing velocity change in the previous inelastic interaction when 

 a.u..  When  a.u., however, the difference decreases with increasing 

velocity change. 

100 =v

5.1≥v 5.1<v

 The induced potential shown in Fig. 3.6 is at proton position, i.e. .  

Figure 3.7 plots the induced potential at a position, along the trajectory of proton, with 

a distance  from the proton for 

pyy =

pyy − 5p =y  a.u. and 1=D  a.u.  The solid curve 

is results (with memory effect) of the induced potential for 50 =v  a.u. and  a.u.  

The dotted and dashed curves are corresponding results (without memory effect) for 

 a.u. and 5 a.u., respectively.  In all cases, the induced potential exhibits an 

oscillation behavior over the distance from the proton, a behavior which was also 

3=v

30 == vv
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observed by Arista (Arista 1994).  Note that the induced potential for  a.u. 

and  a.u. (with memory effect) lies between induced potentials for  

a.u. and 5 a.u. (without memory effect).  This indicates that the induced potential 

carries a memory effect on proton previous velocity before its last inelastic interaction.  

A similar plot is made in Fig. 3.8 for a proton moving at distances  (solid 

curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si surface with  a.u., 

 a.u. and 

50 =v

3=v 30 == vv

1=D

5p =y

50 =v 3=v  a.u.  It is seen that as D increases the induced potential 

(absolute value) decreases.  This reveals that the induced potential is greater for a 

proton moving closer to the solid surface. 
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Fig. 3.6 The induced potential for a proton moving parallel to the surface of Si.  

Results (solid curve) are plotted at proton position for 5p=y  a.u.,  a.u. and 

 a.u. as a function of proton velocity .  Corresponding results without the 

memory effect are plotted (dotted curve) for a comparison. 

100 =v

1=D v
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Fig. 3.7 The induced potential at a distance pyy −  from the proton with  

a.u. and  a.u. from Si surface.  The solid curve is results with the memory 

effect for  a.u. and  a.u.  The dotted and dashed curves are results 

without the memory effect for 

5p =y

1=D

50 =v 3=v

30 == vv  a.u. and 5 a.u., respectively. 
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Fig. 3.8 The induced potential at a distance pyy −  from the proton with  

(solid curve), 2 (dotted curve) and 3 a.u. (dashed curve) from Si surface.  Here 

 a.u.,  a.u. and  a.u. 

1=D

5p =y 50 =v 3=v
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3.2.2 Stopping Power 

 

 The stopping power is related to the derivative of ),(,2 trind
r

Φ  at the position of 

particle, i.e. ),,0(),,( pppp Dvtzyxr ==v , for .  One finds  0>t
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Letting , Eqs. (3.30) and (3.31) reduce to the same formulas for the induced 

potential and the stopping power that were derived without memory effect by Kwei et 

al (Kwei 2003). 

0vv =

 The stopping power is expressed in terms of the DIIMFP, μ , through 

 

( ) ( )∫ ωωωμ=
E

dyyF
0 pp ,  .           (3.32) 

 

Therefore, one obtains the DIIMFP as  

 48



 

( ) ( )

( )
⎥
⎦

⎤
⎢
⎣

⎡
+ωε
−ωε

ω−−

−
ω

π
+

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ω
⎥
⎦

⎤
⎢
⎣

⎡
+ωε
−ωε

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ω
⎥
⎦

⎤
⎢
⎣

⎡
+ωε
−ωε

⋅

ω−−

−
π

=ωμ

−

ω

−

ω

∫∫∫

∫ ∫

+

−

+

−

1),(
1),(Im

)(

cos2

)(cos
1),(
1),(Im)(sin

1),(
1),(Re

)(

cos2,

1

1
2222

22

0
2

2

p0
01

1
p0

01

1

22
0

22

22

0
2

2

p

0

Q
Qe

QvQk

QkD
k
QdQdkd

v
q

yvv
vvQ

Qyvv
vvQ

Q

e
QvQk

QkD
k
QdQdk

v
qy

QD
k

v

k

k

E

QD
k

k

k

v

 . (3.33) 

 

And the IMFP, , is given by  λ

 

( ) ( )∫ ωωμ=
λ

E

dy
y 0

p
p

,1 .            (3.34) 

 

 Note that the stopping power in Eq. (3.31) is  dependent.  Thus the stopping 

power with memory effect may be obtained by an average over all particles paths  

py
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where ( )
( )pp /

p

p yye
y

y λ−

λ
 is the probability that the particle encounters an inelastic 

interaction in the distance  (Yubero 1992; Raether 1980). py
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 Figure 3.9 shows results of the stopping power for a proton moving parallel to 

and with at a distance  a.u. from the Si surface.  Solid and dotted curves are 

for  (with memory effect) and 

2=D

a.u. 100 =v vv =0  (without memory effect), 

respectively.  The existence of a maximum stopping power at a velocity around 1.5 

a.u. was shown.  The existence of a maximum was also found for some semi-infinite 

solids by Arista (Arista 1994).  A notable difference between solid and dotted curves 

was shown in the figure.  Without the memory effect, the stopping power is solely 

determined by  without reference to .  With the memory effect, however, the 

stopping power is affected by both  and .  The memory effect reduced the 

stopping power for the proton. 

v 0v

v 0v
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Fig. 3.9 Results of the stopping power for a proton moving parallel to with a 

distance  a.u. from the Si surface.  Solid and dotted curves are for  

a.u. (with memory effect) and 

2=D 100 =v

vv =0  (without memory effect), respectively. 
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3.2.3 Differential Inverse Inelastic Mean Free Path 

 

 Letting  in Eq. (3.33), one finds the position dependent DIIMFP for 

an electron  

1== Mq
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The DIIMFP with the memory effect for an electron is then given by  
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 DIIMFPs with the memory effect were calculated for electrons moving parallel 

to the Cu surface.  Figure 3.10 shows a plot of the DIIMFP with the memory effect 

as a function of energy transfer for electrons with a.u. 1=D , eV 8000 =E  and 

 52



eV 500=E .  Corresponding DIIMFPs without the memory effect for 

 and  are plotted for comparison.  It is seen that 

the DIIMFP with the memory effect exhibits a similar shape to that of the DIIMFP 

without the memory effect.  The magnitude of the DIIMFP with the memory effect 

for preceding and succeeding electron energies  and 

eV 8000 == EE eV 5000 == EE

0E E  lies between the 

DIIMFPs without the memory effect for constant electron energies  and 0E E .  

This result indicates that the moving electron keeps some memory of its previous 

energy  in the next interaction.  A plot of the DIIMFP with the memory effect is 

shown in Fig. 3.11 for electrons with 

0E

eV 5000 =E , eV 300=E  and 1, 2 and 3 

a.u. above the Cu surface.  These curves show that the DIIMFP decreases with 

increasing distance of the electron above the surface owing to the weaker response by 

the solid. 

=D
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Fig. 3.10  A comparison of the DIIMFPs with (solid curve) and without (dotted 

curves) the memory effect for electrons moving parallel to the Cu surface at a distance 

 a.u.  The DIIMFP with the memory effect is calculated for preceding and 

succeeding electron energies 

1=D

8000 =E  eV and 500=E  eV.  The DIIMFPs 

without the memory effect are calculated for constant electron energies  

eV and  eV. 

5000 == EE

8000 == EE
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Fig. 3.11 A plot of the DIIMFPs with the memory effect for electrons of preceding 

and succeeding energies  eV and 5000 =E 300=E  eV.  These electrons are 

moving at various distances  from the Cu surface. D
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3.2.4 Inelastic Mean Free Path 

 

 The IMFP with the memory effect for an electron may be calculated from  

 

( ) ωωμ
=λ

∫ d
E

0

1  .             (3.38) 

 

 A comparison of IMFPs with (solid curve) and without (dotted curve) the 

memory effect is shown in Fig. 3.12 for electrons moving parallel to the Cu surface at 

 a.u.  The IMFP with the memory effect is calculated for preceding electron 

energy  as a function of succeeding electron energy 

1=D

eV 8000 =E E .  The IMFP 

without the memory effect is calculated for constant electron energy .  At 

, for instance, the solid and dotted curves correspond to  

(with memory effect) and  (without memory effect), respectively.  It 

should be noted that there is a significant difference between the solid and dotted 

curves.  When the energy difference, 

EE =0

eV 300=E eV 8000 =E

eV 3000 =E

EE −0 , for the solid curve is large, the 

difference between solid and dotted curves is also large.  At eV 700=E , on the 

other hand, the solid and dotted curves correspond to eV 8000 =E  and , 

respectively.  In this case, the energy difference is small, and the difference between 

eV 7000 =E
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the curves is also small.  Thus the memory effect, proportional to the difference 

between solid and dotted curves, decreases with decreasing EE −0  and approaches 

zero at .  Moreover, the IMFP with the memory effect for given preceding 

energy  and succeeding energy 

0EE =

0E E  is between the IMFPs without the memory 

effect for these given energies.  The IMFP with the memory effect for  

and  (solid curve in Fig. 3.12), for instance, is between IMFPs without 

the memory effect for 500 eV and 800 eV (dotted curve).  This result indicates that 

the previous electron energy has also an effect on the succeeding inelastic interaction. 

eV 8000 =E

eV 500=E
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Fig. 3.12 A comparison of the IMFPs with (solid curve) and without (dotted curve) 

the memory effect for electrons moving parallel to the Cu surface at a distance  

a.u.  The IMFP with the memory effect is calculated for a preceding electron energy 

 eV as a function of succeeding electron energy 

1=D

8000 =E E .  The IMFP without 

the memory effect is calculated for constant electron energy EE =0 . 
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CHAPTER 4 

ELECTRONIC EXCITATIONS  

IN CYLINDRICAL SYSTEMS 

 

 In the past few years, new developments in fabrications have allowed the 

production of miniaturized devices with typical sizes ranging in the nanometer scale.  

The study of these devices in surface-sensitive electron spectroscopies has become an 

active field of research.  Quantitative information on the electron inelastic interaction 

cross sections plays a crucial role in such surface spectroscopies (Tougaard 1987; 

Tanuma 1991; Jablonski 2005; Werner 2005).  Recently, several theoretical 

approaches have been developed to evaluate these cross-sections in cylindrical 

systems (Chu 1984; Walsh 1989; Zabala 1989, 2001; Rivacoba 1995; Tökési 1999, 

2000; Arista 2001; Gervasoni 2003).  In this chapter, a theoretical model of inelastic 

scattering for electrons moving parallel to the axis of a cylindrical wire or cavity will 

be constructed.  After that, a more general model inelastic scattering for electrons 

moving parallel to the axis of a clad cylindrical system will be derived. 

 

4.1 Inelastic Interactions of Electrons  

with Cylindrical Systems 
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 Figure 4.1 illustrates the configuration in which an electron with velocity vv  and 

energy  moves parallel to the axis of a cylinder of radius  and dielectric 

function .  This cylinder is embedded in a surrounding medium of dielectric 

function .  At time t , the electron is at a position 

2/2vE = a

( ωε ,1 k )

)( ωε ,2 k ( )vtx ,0,00 ρ=v  in 

cylindrical coordinates. 

 

4.1.1 Induced Potential 

 

 Considering two different cases, i.e. a<ρ0  (case I) and a>ρ0  (case II), the 

scalar potential in cylindrical coordinates can be written as (Jackson 1975) 
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for  and  a<ρ
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ε
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for .  Here  and  are coefficients to be determined, a>ρ )( p
mA )( p

mB =p I and II 

are for cases I and II respectively,  and  are modified Bessel functions,  is  mI mK δ
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Fig. 4.1 A sketch of the configuration studied in the present work.  An electron of 

velocity  moves parallel to and at a distance vr 0ρ  from the axis of an infinitely long 

cylinder of radius .  The media inside and outside the cylinder have dielectric 

functions  and , respectively. 

a

),( ωε k1 2 ),( ωε k
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the delta function,  
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is the potential of the electron in vacuum with ( )0,max ρρ=ρ>  and 

.  The Fourier transforms of these potentials are  ( 0,min ρρ=ρ< )
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for , where >ρ
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4.1.1.1 Case I. Electrons Moving in Medium 1 (i.e. a<ρ0 ) 
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 Applying boundary conditions, i.e. continuity of the potential and the normal 

component of electric displacement at the interface a=ρ , one finds 
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where  and ( ) ( ) dxxdIxI mm /' = ( ) ( ) dxxdKxK mm /' = .  Removing the vacuum 

potential of an electron from the scalar potential and taking the inverse Fourier 

transform, the induced potential at a<ρ  is given by 
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4.1.1.2 Case II. Electrons Moving in Medium 2 (i.e. a>ρ0 ) 
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 Similarly, applying boundary conditions, one finds 
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Removing the vacuum potential of an electron from the scalar potential and taking the 

inverse Fourier transform, the induced potential at a>ρ  is given by 
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4.1.2 Stopping Power 

 

4.1.2.1 Case I. Electrons Moving in Medium 1 (i.e. a<ρ0 ) 
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Since the stopping power, , is related to the derivative of  

at the position of electrons.  One obtains 
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Note that this equation contains contributions from all relevant excitations including 

volume, surface and interface excitations.  For an electron moving inside a 

cylindrical cavity, i.e. taking 11 =ε , ε=ε2  and kv=ω  in Eq. (4.9), one obtains 

the formula derived by Arista (Arista 2001) which contains only surface excitations 

but no volume and interface excitations. 

 

4.1.2.2 Case II. Electrons Moving in Medium 2 (i.e. a>ρ0 ) 

 

 Since the stopping power, , is related to the derivative of  

at the position of electrons.  One obtains 
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Similarly, this equation contains contributions from all relevant excitations including 

volume, surface and interface excitations.  For an electron moving outside a 

cylindrical wire, i.e. taking ε=ε1 2, 1=ε  and kv=ω  in Eq. (4.10), one obtains 

the formula derived by Gervasoni (Gervasoni 2003) which contains only surface 

excitations but no volume and interface excitations. 

 

4.1.3 Differential Inverse Inelastic Mean Free Path 

 

The stopping power is expressed in terms of the DIIMFP, , through )( pμ

 

( )∫ ωωωμ=
E pp dEF

0

)()( ,  ,          (4.11) 

 

where =p I and II are for cases I and II respectively.  Therefore, one obtains the 

DIIMFP for an electron moving inside the cylinder, i.e. a<ρ0 , as  
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A similar approach can be made for an electron moving outside the cylinder, i.e. 

.  The DIIMFP is given by a>ρ0
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 Taking ∞→a  and ε=ε=ε 21  in Eq. (4.12) or 0=a  and ε=ε=ε 21  in Eq. 

(4.13), the DIIMFP in an infinite medium is obtained as 
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 Using Eqs. (4.12) and (4.13), the DIIMFP was calculated for an electron moving 

parallel to the axis of a cylindrical structure.  In these calculations, a 

sum-rule-constrained extended Drude dielectric function with dispersion (Kwei 2003) 

was applied.  Figure 4.2 shows the results of this DIIMFP as a function of energy 

loss  for a 500 eV electron at several distances ω 0ρ  from the center of a Si cylinder 

of radius a.u.  For an electron moving inside the solid, i.e. 20=a a<ρ0 , the 

DIIMFP (upper diagram) contains two peaks corresponding to surface and volume 
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excitations.  As the electron moves closer to the cylinder surface, i.e. , the 

volume excitation peak (~ 17 eV) decreases in intensity, whereas the surface 

excitation peak (~ 12 eV) increases in intensity.  For an electron moving in vacuum, 

i.e. , the DIIMFP (lower diagram) is due entirely to contributions from surface 

excitations.  The DIIMFP becomes smaller for larger electron distance from the 

surface. 

a→ρ0

a>ρ0

 Similar results for the DIIMFP of a 500 eV electron moving parallel to the axis 

of a cylindrical cavity in Si are plotted in Fig. 4.3.  Again, surface excitations (~ 12 

eV) occur for an electron moving either in the cavity (upper diagram) or in Si (lower 

diagram), whereas volume excitations (~ 17 eV) occur only for an electron in Si.  

For an electron outside the cavity (lower diagram), the contributions from surface and 

volume excitations become smaller and larger, respectively, for increasing .  At 

 ~ 30 a.u., the DIIMFP is due entirely to volume excitations. 

0ρ

0ρ

 Figure 4.4 is a plot of the DIIMFP for an electron moving outside the Si cylinder 

( ) at  a.u. for several electron energies.  It is seen that the 

DIIMFP, contributed only from surface excitations, decreases with increasing electron 

energy.  The peak surface plasmon energy, however, remains unchanged. 

a.u. 20=a 210 =ρ
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Fig. 4.2 Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a 

Si cylinder (radius  a.u.) in vacuum for several electron distances  from 

the axis. 

20=a 0ρ
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Fig. 4.3 Calculated DIIMFPs for a 500 eV electron moving parallel to the axis of a 

cylindrical cavity (radius  a.u.) in Si for several electron distances  from 

the axis. 

20=a 0ρ
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Fig. 4.4 Calculated results of the DIIMFP for an electron moving parallel to and at a 

distance 210 =ρ  a.u. from the axis of a Si cylinder (radius 20=a  a.u.) in vacuum 

for several electron energies. 
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4.1.4 Inverse Inelastic Mean Free Path 

 

The IIMFP may be calculated by the integration of differential inelastic mean 

free path according to 

 

( ) ( ) ωωμ=μ ∫ dEE
E pp

0

)()( ,  ,          (4.15) 

 

where =p I and II for the case of an electron moving inside and outside the cylinder, 

respectively. 

 Figure 4.5 shows a plot of the IIMFP for an electron moving inside ( ) or 

outside ( ) the cylindrical cavity in Si as a function of electron distance from the 

cavity center  for several electron energies.  It is seen that the IIMFP decreases 

with increasing electron energy.  In the region 

a<ρ0

a>ρ0

0ρ

a≥ρ0 , the IIMFP is both contributed 

from volume and surface excitations.  The contribution from surface excitations 

confines near the cavity boundary and increases as a→ρ0 .  On the other hand, the 

contribution from volume excitations simultaneously decreases near the boundary.  

The decrease in volume excitations is, to a good approximation, compensated by the 

increase in surface excitations (Kwei 1998).  This makes the IIMFP spatially 
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non-varying and approaching the value of an infinite Si until electron is closer within 

~ 2 a.u. from the cavity boundary.  There, the contribution from volume excitations 

becomes negligibly small so that the IIMFP drops abruptly.  For a<ρ0 , i.e. electron 

inside the cavity, the IIMFP is non-zero due to surface excitations.  The IIMFP 

decreases with increasing electron distance from the cavity boundary. 
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Fig. 4.5 Calculated results of the IIMFP for an electron moving parallel to the axis 

of a cylindrical cavity (radius 20=a  a.u.) in Si for several electron energies. 
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4.2 Inelastic Interactions of Electrons  

with Clad Cylindrical Systems 

 

 Figure 4.6 illustrates the studied problem.  An electron with velocity  and 

energy  moves parallel to the axis of two infinitely long, coaxial cylindrical 

interfaces of inner radius  and outer radius .  The cylinder has dielectric 

functions ,  and 

vr

2/2vE =

a b

( )ωε ,1 k ( ωε ,2 k ) ( )ωε ,3 k  in different radii ρ  for , 

 and , respectively.  At time , the electron is at a position 

 in cylindrical coordinates. 

a<ρ

ba <ρ< b>ρ t

( vtx ,0,00 ρ=v )

 

4.2.1 Induced Potential 

 

 Considering three different cases, i.e. a<ρ0  (case I), ba <ρ< 0  (case II) and 

 (case III), the potential in cylindrical coordinates can be expressed as 

(Jackson 1975) 

b>ρ0
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Fig. 4.6 A sketch of the problem studied in the present work.  An electron of 

velocity  moves parallel to and at a distance vr 0ρ  from the axis of an infinitely long 

clad cylindrical system with inner radius  and outer radius .  The media in the 

regions , 

a b

a<ρ ba <ρ<  and  have dielectric functions b>ρ ),(1 ωε k ,  

and , respectively. 

),(2 ωε k

),(3 ωε k
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for ,  a<ρ
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for .  Here , ,  and  are coefficients to be 

determined, 

b>ρ )( p
mA )( p

mB )( p
mC )( p

mD

=p I, II and III are for cases I, II and III respectively,  and  are 

modified Bessel functions,  is the delta function,  
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is the potential of the electron in vacuum with ( )0,max ρρ=ρ>  and 

. ( )0,min ρρ=ρ<

 The Fourier transforms of the potentials are  
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for , and  ba <ρ<
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for , where  b>ρ
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4.2.1.1 Case I. Electrons Moving in Medium 1 (i.e. a<ρ0 ) 
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 By matching the boundary conditions, i.e. continuities of the potential and the 

normal component of electric displacement at the interfaces a=ρ  and , one 

finds  

b=ρ

 

( ) ( ) ( ) ( )[ ] ( )
( )kaI
kaKkIkCkBkA

m

m
mmmm '

',,, 0
)I()I()I( ρ−ω+ω=ω  ,       (4.20a) 

 

( ) ( ) ( )[ ] ( )
( ) ( )

( ) ( ) ( )
( )kbK
kbIk

kbK
kbIk

kCkkkB

m

m

m

m

m
m

ωε−ωε

ωωε−ωε
=ω

,
'
',

,,,,
32

)I(
23)I(  ,         (4.20b) 

 

( )
( ) ( )

( )
( )
( ) ( )

( ) ( )[ ] ( ) ( )[ ]
( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )kaI
kaKk

kaI
kaKk

kbK
kbIk

kbK
kbIk

kkkk

kI
kaI
kaK

kaI
kaKk

kC

m

m

m

m

m

m

m

m

m
m

m

m

m

m

ωε−ωε+
ωε−ωε

ωε−ωεωε−ωε

ρ⎥
⎦

⎤
⎢
⎣

⎡
−ωε

=ω
,

'
',

,
'
',

,,,,
'
',

,
12

32

1223

02
)I(  ,  (4.20c) 

 

( ) ( )
( ) ( ) ( ω+ω=ω ,,
'
', )I()I()I( kCkB

kbK
kbIkD mm

m

m
m ) ,         (4.20d) 

 

where  and ( ) ( ) dxxdIxI mm /' = ( ) ( ) dxxdKxK mm /' = .  Removing the vacuum 

potential and taking the inverse Fourier transform, one obtains the induced potential in 
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the spatial space as  
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4.2.1.2 Case II. Electrons Moving in Medium 2 (i.e. ba <ρ< 0 ) 

 

 A similar approach can be made for electrons moving in medium 2.  After some 

mathematical manipulations, one finds  
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Therefore, the induced potential in the spatial space is then obtained as  
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4.2.1.3 Case III. Electrons Moving in Medium 3 (i.e. b>ρ0 ) 

 

Again, a similar approach can be made for electrons moving in medium 3.  

After mathematical manipulations, the coefficients can be found as  

 

( ) ( ) ( )
( ) ( ω+ω=ω ,
'
',, )III()III()III( kC
kaI
kaKkBkA m

m

m
mm )  ,         (4.25a) 

 

( )
( ) ( )

( )
( )
( ) ( )

( ) ( )[ ] ( ) ( )[ ]
( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )kbK
kbIk

kbK
kbIk

kaI
kaKk

kaI
kaKk

kkkk

kK
kbK
kbI

kbK
kbIk

kB

m

m

m

m

m

m

m

m

m
m

m

m

m

m

ωε−ωε+
ωε−ωε

ωε−ωεωε−ωε

ρ⎥
⎦

⎤
⎢
⎣

⎡
−ωε

=ω
,

'
',

,
'
',

,,,,
'
',

,
32

12

3221

02
)III(  , (4.25b) 

 

 82



( ) ( ) ( )[ ] ( )
( ) ( )

( ) ( ) ( )
( )kaI
kaKk

kaI
kaKk

kBkkkC

m

m

m

m

m
m

ωε−ωε

ωωε−ωε
=ω

,
'
',

,,,,
12

)III(
21)III(  ,        (4.25c) 

 

( ) ( ) ( )[ ] ( )
( ) ( ω+ρ−ω=ω ,
'
',, )III(

0
)III()III( kC

kbK
kbIkKkBkD m

m

m
mmm ) .      (4.25d) 

 

Therefore, the induced potential in the spatial space is then obtained as 
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4.2.2 Stopping Power 

 

4.2.2.1 Case I. Electrons Moving in Medium 1 (i.e. a<ρ0 ) 

 

 The stopping power, , is related to the derivative of  at the 

position of electrons.  One gets 

)I(F ( tzind ,,,)I(
,1 φρΦ )

 83



 

∑ ∫
∞

−∞=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

ε
⎟
⎠
⎞

⎜
⎝
⎛ ρ
ω

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

ε

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

⎟
⎠
⎞

⎜
⎝
⎛ ρ
ω

ωω
π
−

=
m

E

m

m

m

v
v

K

v

v
A

v
Id

v
F

0

1

0

1

)I(

02
)I(

,

1Im
,

,
Im2  . (4.27) 

 

4.2.2.2 Case II. Electrons Moving in Medium 2 (i.e. ba <ρ< 0 ) 

 

 The stopping power, , is related to the derivative of  at 

the position of electrons.  One gets 
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4.2.2.3 Case III. Electrons Moving in Medium 3 (i.e. b>ρ0 ) 

 

 The stopping power, , is related to the derivative of  at 

the position of electrons.  One gets 
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4.2.2.4 Limiting Cases 

 

 Taking 32 ε=ε  in Eq (4.27) or 21 ε=ε  in Eq (4.29), one obtains the same 

formulas of the stopping power as that derived in Eq. (4.9).  Taking  in Eq 

(4.29) or  in Eq (4.27), one obtains the same formulas of the stopping power 

as that derived in Eq. (4.10). 

21 ε=ε

32 ε=ε

 

4.2.3 Differential Inverse Inelastic Mean Free Path 

 

 The stopping power is expressed in terms of the DIIMFP, , through )( pμ

 

( )∫ ωωωμ=
E pp dEF

0

)()( ,  ,          (4.30) 

 

where =p I, II and III are for cases I, II and III respectively.  Therefore, one obtains 

the DIIMFPs as 
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for an electron moving in medium 1,  

 

( ) ∑
∞

−∞=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

ε
⎟
⎠
⎞

⎜
⎝
⎛ ρ
ω

⎟
⎠
⎞

⎜
⎝
⎛ ρ
ω

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

ε

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

⎟
⎠
⎞

⎜
⎝
⎛ ρ
ω

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

ε

⎟
⎠
⎞

⎜
⎝
⎛ ω
ω

⎟
⎠
⎞

⎜
⎝
⎛ ρ
ω

π
−

=ωμ
m

mm

m

m

m

m

v
v

K
v

I

v

v
C

v
K

v

v
B

v
I

v
E

,

1Im

,

,
Im

,

,
Im

2,

2

00

2

)II(

0

2

)II(

0

2
)II(   . (4.32) 

 

for an electron moving in medium 2, and 
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for an electron moving in medium 3. 
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 Taking 32 ε=ε  in Eq (4.31) or 21 ε=ε  in Eq (4.32), one obtains the same 

formulas of the DIIMFP as that derived in Eq. (4.12).  Taking 32 ε=ε  in Eq (4.32) 

or  in Eq (4.33), one obtains the same formulas of the DIIMFP as that derived 

in Eq. (4.13).  Taking 

21 ε=ε

ε=ε=ε=ε 321  in Eqs. (4.31), (4.32) or (4.33), one obtains 

the DIIMFP for an infinite solid as Eq. (4.14).  Equation (4.14) may also be found by 

taking  in Eq. (4.31), ∞→a 0=a  and ∞→b  in Eq. (4.32), or  in Eq. 

(4.33). 

0== ba

 Using Eqs. (4.31), (4.32) and (4.33), the DIIMFP for an electron moving parallel 

to the axis of a Si cylindrical tube of inner radius  and outer radius 

 is calculated.  In these calculations, a sum-rule-constrained extended 

Drude dielectric function with dispersion (Kwei 2003) was applied.  Figure 4.7 

shows the results for the DIIMFP of a 500 eV electron traveling inside the Si tube, i.e. 

, at several distances  as a function of energy transfer.  It is seen that the 

DIIMFP is entirely contributed from surface excitations.  The surface excitation peak 

(~ 12 eV) decreases in magnitude for decreasing 

o
A15=a

o
A25=b

a<ρ0 0ρ

0ρ  due to the weaker response by 

the solid surface. 

 The DIIMFP of a 500 eV electron traveling inside the cylindrical shell of the Si 

tube, i.e. , is plotted in Fig. 4.8 as a function of energy transfer for several 

values of .  Since now the electron travels inside the solid, the DIIMFP exhibits 

ba <ρ< 0

0ρ
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overlapping peaks due to the contributions from surface and volume excitations.  

The relative contributions from surface and volume excitations depend on the location 

of the electron.  As the electron moves along the midline between inner and outer 

surfaces (solid curve), volume excitations (the peak at ~17 eV) dominate.  When the 

electron moves near the inner surface (dashed curve) or the outer surface (dotted 

curve), surface excitations (the peak at ~12 eV) become more prominent.  In the case 

of , for instance, the electron moves at away from and parallel to the 

cylindrical surface where the electron and the cylindrical axis are on opposite sides of 

the surface.  In the case of , on the other hand, the electron moves also at 

away from and parallel to the cylindrical surface where the electron and the 

cylindrical axis are on the same side of the surface.  For , the electron 

moves along the cylindrical surface bending away from it, leading to reduced surface 

excitations and increased volume excitations.  For , the electron moves 

along the cylindrical surface bending towards it, leading to enhanced surface 

excitations and decreased volume excitations. 

o

0 A16=ρ
o
A1

o

0 A24=ρ

o
A1

o

0 A16=ρ

o

0 A24=ρ

 Similar results on the DIIMFP of a 500 eV electron moving outside the Si tube, 

i.e. , for several  are plotted in Fig. 4.9 as a function of energy transfer.  It 

is seen that in this case the DIIMFP is totally contributed from surface excitations, 

with its value decreasing for increasing electron distance from the surface.  Figure 

b>ρ0 0ρ
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4.10 shows the DIIMFP for electrons with various energies moving outside the Si tube 

at .  It is seen that the DIIMFP decreases with increasing electron energy.  

This indicates that the contribution from surface excitations also decreases as electron 

velocity increases. 

o

0 A26=ρ

 Figure 4.11 shows the DIIMFP for a 500 eV electron moving at  

outside a Si cylinder clad in a SiO

o

0 A26=ρ

2 film with outer radius  and inner radius 

,  or .  For comparisons, corresponding results of a SiO

o
A25=b

o
A15=a

o
A22

o
A24 2 

cylindrical wire ( ) and a Si cylindrical wire ( ) are included.  In the 

case of , the DIIMFP exhibits a broad distribution contributed from surface 

excitations of SiO

o
A0=a

o
A25=a

o
A0=a

2.  For , on the other hand, the DIIMFP is purely 

contributed from surface excitations of Si.  For the Si cylinder clad in a SiO

o
A25=a

2 film of 

thickness ) or ), the DIIMFP reveals the contributions 

from surface (SiO

o
A1  (

o
A24=a

o
A3  (

o
A22=a

2-vacuum) excitations and interface (Si-SiO2) excitations.  For the 

case of a Si cylinder clad in a  ( ) SiO
o
A10

o
A15=a 2 film, the DIIMFP approaches to 

that of the SiO2 cylinder wire.  Another words, as the film thickness increases the 

DIIMFP gradually changes from a value of the Si cylindrical wire to that of the SiO2 

wire.  When the film thickness is greater than , nearly no contribution from 

interface excitations is found. 

o
A10
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Fig. 4.7 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 

distance  from the axis of a Si tube of inner radius  and outer 

radius . 

o

0 A15<ρ
o
A15=a

o
A25=b
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Fig. 4.8 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 

distance  from the axis of a Si tube of inner radius  and 

outer radius . 

o

0

o
A25A15 <ρ<

o
A15=a

o
A25=b
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Fig. 4.9 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 

distance  from the axis of a Si tube of inner radius  and outer 

radius . 

o

0 A25>ρ
o
A15=a

o
A25=b
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Fig. 4.10 Calculated DIIMFP for an electron moving parallel to and at a distance 

 from the axis of a Si tube of inner radius  and outer radius 

 for several electron energies. 

o

0 A26=ρ
o
A15=a

o
A25=b
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Fig. 4.11 Calculated DIIMFP for a 500 eV electron moving parallel to and at a 

distance  from the axis of a Si cylinder clad in a SiO
o

0 A26=ρ 2 film, having outer 

radius  and inner radius 
o
A25=b =a 0, 15, 22, 24 or .  Results of  

and correspond to the SiO

o
A25  0=a

o
A52 2 and the Si cylindrical wires. 
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CHAPTER 5 

SUMMARY 

 

 In this dissertation, electronic excitations produced by the inelastic interaction 

between charged particles and solids were studied theoretically. 

 Electronic excitations are the important mechanism responsible for the energy 

loss of electrons in electron spectroscopies.  The description of electronic excitations 

was based on the extended Drude model which characterized the dielectric response 

functions.  Experimental data taken from the optical ellipsometry for small energy 

transfers and the electron energy-loss spectra for large energy transfers were used to 

obtain parameters in the model dielectric functions for semiconducting III-V 

compounds.  To assure the accuracy of the dielectric functions, sum-rules and 

critical-point energies are checked. 

 In the research on electronic excitations in planar systems, the inelastic response 

to a probe electron moving across the solid surface was determined.  The angular and 

energy dependences of the SEP for electrons moving in vacuum and across the surface 

were analyzed.  The SEP was fitted to a simple formula for the applications in 

electron surface-sensitive spectroscopies.  Moreover, a theoretical treatment was 

developed to account for the memory effect on the induced potential, stopping power, 
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DIIMFP, IMFP for a charged particle moving close and parallel to the surface of a 

solid.  It was found that the consideration of memory effect was important for the 

calculation of inelastic interactions. 

 In the research on electronic excitations in cylindrical systems, analytic formulas 

were derived to deal with the DIIMFP and IIMFP for an electron moving parallel to 

the axis of a (clad) cylindrical structure based on the dielectric response theory.  The 

dependences of the DIIMFP and IIMFP on the electron position and energy have been 

analyzed.  All relevant inelastic interactions including volume, surface and interface 

excitations were considered.  Information on electron inelastic interactions with 

cylindrical structures is essential in the applications of electron surface spectroscopies, 

involving nanowires and microcapillaries. 
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