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Abstract

As the conventional SiO,-based gate insulator scales down to 1.0nm~1.5nm, a
large direct tunneling current generates through ultra-thin oxide which cause a serious
degradation in reliability and petformance of device. Utilizing high-k dielectric to
replace SiO,-based gate as an insulator to eliminate high leakage current is necessary
due to its larger physical thickness under the same equivalent oxide thickness.
However, mobility degradation and threshold voltage instability are the mainly
concern. Therefore, enhance mobility while keeping low leakage current is our aim
to realize. Beside, the reliability discussion for high-k dielectric needs to be
understood.

In this thesis, the electrical characteristics of HfAIO/SiON gate stack of
nMOSFET is discussed first. We extract the equivalent oxide thickness of HfAIO by
capacitance-voltage curve and we carried out with capping SiN layer on HfAIO/SiON

and HfAIO/SiON gate stack. The SiN film deposited by PECVD is used to induce



tensile strain locally in the channel region. Driving currents on nMOSFETs devices

are enhanced as the thickness of SiN layer increases due to increasing tensile strain in

the channel region. Constant voltage stress (CVS) and bias temperature (BTI)

characteristics of nMOSFET with tensile strain in the channel region are also

discussed. We can find that the nMOSFETs devices with thicken SiN capping layer

enhances drive current, the reliability concerns on CVS and BTI become huger when

thicken SiN capping layer deposited. More interface states are generated in high

CVS of nMOSFET with thicken SiN capping layer. This expresses that a higher

amount of hydrogen incorporated during SiN capping layer deposition as well as the

high strain energy stored in the channel.
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Chapter 1

Introduction

1.1 Backgrounds and Motivation

According to the international technology roadmap of semiconductor (ITRS)
(Table 1-1), the metal oxide semiconductor field effect transistors (MOSFET) of high
density integration circuit and high performance, device geometry such as channel
length and thickness of gate dielectric would be reduced. However, as the
conventional gate dielectric scales down to-1.0nm~I.5nm, the viability of SiO, will
face several challenges like a large leakage current occurs through the ultra-thin oxide
by direct tunneling mechanism [1]. This phenomenon increases standby power
consumption and loss of inversion charge which degrade the reliability and
performance of device seriously. In order to suppress the leakage current and
maintain excellent performance of device, replace the conventional SiO,-based
dielectric by high-k dielectric as a gate insulator is necessary. High-k dielectric can
efficiently reduce direct tunneling current through the oxide efficiently due to its high
dielectric constant. At same equivalent oxide thickness (EOT) high-k dielectric has

thicker physical thickness. Therefore, high-k dielectric is being pursued as possible



replacement for Si0s.

Several high-k dielectrics are investigated in the literature, among these high-k

dielectrics, Hafnium oxide (HfO;) is the most promising candidate due to its high

permittivity (k ~ 20 for HfO, ) as compared to Al,O3 and Si3Ny , high thermodynamic

stability on silicon (47.6Kcal/mol at 727°C) as compared to TiO, and Ta,Os and its

relatively high band gap (~5.8ev) among its high-k contender, appropriate barrier

height for both electrons and holes (>1ev), and compatible with poly-silicon gate

process. However, Hafnium oxide also has some challenge such as trapping in the

bulk dielectric and interfacial layer ‘between high-k and Si-sub which cause mobility

degradation and threshold voltage instability especially in its quite low crystallize

temperature (< 500 °C) [2-5], which restricts to the thermal budget after the post

deposition anneal (PDA) and brings about the leakage current and non-uniformity

associated with grain boundaries. By contrast, Al,O; dielectric is an extremely

promising selection on terms of its chemical, thermal stability as well as its high

barrier offset and band gap (barrier height of electron and hole are 2.9ev and 4.3ev,

band gap about 8.3ev) (Tablel-2). In order to gain high dielectric constant and

thermal stability, we avoid the low crystallize temperature by adding Al to HfO,. It

can be seen that the crystallize temperature increase between 500 and 600 ‘C for 6.8%

Al containing , which is about 200°C higher than without Al. If the Al concentration



is increased further to about 31.7%, the depending crystallize temperature will
increase between 800 ~ 900 ‘C, which is about 400 ‘C higher than HfO, without Al

[5].

Besides, enhanced turn-on current by tensile stress in nMOSFET is investigated.

[6] The uniaxial strain was induced by depositing SiN capping layer on HfO2/SiON

and HfAIO/SiON gate stack nMOSFET device and the magnitude of driving current

is proportion to the thickness of SiN capping layer. However, the reliability concern

such as negative bias temperature instability (NBTI) becomes worsened as compared

to thinner SiN capping layer. In‘this study, we analyses the characteristic and

performance of the nMOSFET device with HFAIO/SiON gate stacking structure, the

reliability concerns such as BTI was also discussed.



1.2 Organization of This Thesis

In this thesis, we discuss methodically the HfO2/SiON and HfAIO/SiON gate
stacking structure in terms of five chapters.

In chapter 1, we show the background and motivation respectively and the
characteristics of high-k dielectric.

In chapter 2, we explain the process flow of MOSFET device about the
HfO2/SiON and HfAIO/SiON gate stacking structure and illustrate the method of
measurement techniques.

In chapter 3, after measurement we show some basic electrical characteristics
about HfAIO with different thickness of SiN capping layer such as Id-Vg, 1d-Vd, C-V,
charge pumping...etc. By these data we can verify what type interfacial layer is and
use carrier separation to obtain leakage current mechanism.

In chapter 4, we discuss the reliability issues with device that utilized
HfO2/SiON dielectric. BTI (bias temperature instability) is also an important part of
reliability issues.

In chapter 5, we summarize the important issues of this study. Some

recommendations for future works are investigated.



Year of Production

2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012

EOT (physical) for
high-performance(nm)

1.1 11 10 | 1.0 | 09

effects (nm)

Electrical thickness adjustment for
gate depletion and inversion layer

0.74 { 0.74 | 0.7 | 0.7 | 0.7

Normal gate leakage current
density linit(at 250C)(A/cm2)

536 | 800 | 800 | 1180 | 1100

Table 1-1 2006 International Technology Roadmap of Semiconductor (ITRS)

High-x Dielectrics

AlO3 - -ZrO2 HfO2
Bandgap (eV) 8¢ 5.82 6.02
Barrier Height to Si (eV) 2.9 1.5 1.6
Dielectric Constant 9 ~25 ~ 25
Heat of Formation
399 261.9 271
(Kcal/mol)
A G for Reduction
: . 63.4 42.3 47.6
(MOx+ Si > M+ SIOX)
Thermal expansion
. 6.7 7.01 5.3
coefficient (10-6 0K-1)
Lattice Constant (A)
. 4.7-5.2 5.1 5.11
(5.43 A for Si)

Table 1-2 Materials properties of high- x dielectrics, Al,O3, ZrO, and HfO,.



Chapter 2

Device fabrication and Measurement Setup

2.1 Experimental Details

In this section, we expound the process flow of the nMOSFET device
fabrication systematically. Local oxidation of silicon (LOCOS) was applied for
device isolation. The nMOSFET devices were fabricated on 6-inch p-type (100)
Si wafer by conventional integration process. After LOCOS formation, before
dielectric deposited, we dipped the dilute-HF about seven minutes to eliminate the
native oxide that on the active-area, then we avoided the contamination of organic
element, particle and metal ion by standard RCA-clean. At once, a thin interfacial
layer of SiON was formed by oxide rapid thermal anneal (RTA) at 800°C in N,O
ambient with 30 seconds and it was measured approximate 0.7 nm by ellipsometer
analysis. This film can alleviate the interfacial layer growth and prevent the leakage
current through the dielectric. And then the 30nms HfO, and HfAIO films were
deposited by atomic layer deposition (ALD) immediately. In order to improve the
dielectric film quality, following RTA at 600°C for Hf0, and 700°C for HfAIO with
20 seconds in N, ambient is necessary. A 200nm poly-silicon was deposited on the

dielectric by low pressure chemical vapor deposition (LPCVD) then the gate electrode



was defined by I-line stepper after I-line PR coating and etched by electron cyclotron

resonance etcher (ECR). After removing sidewall polymer by SC-1

(NH40OH:H,0,:H,0=1:1:5), S/D extension implant was done in order to avoid the hot

carrier effect in the channel. A 200nm spacer formation was carried out by plasma

enhance chemical vapor deposition (PECVD) then etched by TEL5000 system.

Subsequently, S/D implantation was finished. Then definition and implantation of

body region was achieved respectively.  Afterwards, the stress induced by

Si3N4/Si02 capping layer was deposited by PECVD. In order to verify the relation

between the stress effect and the thickness of Si3N4, we divided the SizNy4 thickness

into four parts such as 100nm, 200nm, 300nm and without SizN4. We obtained the

magnitude of stress by stress measurement system and it showed 184.3 Mpa a for

100nm, 226.9 Mpa for 200nm and 432Mpa for 300nm. In some studies, we know

that the stress magnitude is relative to the concentration of nitrogen in SizNy4

deposition.  Final, Al-Si-Cu metallization were implemented by physical vapor

deposition (PVD) system. After metal etching, forming gas annealing at 400°C in

H2/N2 ambient for 30 minutes was used to fix dangling bond and reduces interfacial

state density. We show the process flow and the cross section of nMOSFET device

in Fig 2-1 and Fig 2-2 respectively.



2.2 Measurement setup

Some basic electrical characteristics of the nMOSFET device such as
current-to-voltage and capacitance-to-voltage were extracted by Agilent 4156C
precision semiconductor parameter and HP 4284 LCR meter respectively.

First, we can obtain the equivalent oxide thickness of the HfAIO and HfO,
dielectric MOSFET device from the capacitance in inversion region of C-V profile

without considering quantum effect. The equation is

Cinversion = M (2-1)
EOT
whereas €, A are permittivity and device area respectively. In addition, the interface
state density (Nj;) was measured by charge pumping method [7]. A series of
continuous square waveforms (fi= 1 MHz) were generated and applied to gate by
8110 pulse generator while source, drain and body were grounded. Besides, we fix
the magnitude of the square waveforms at 1.5V and the base voltage was varied from
accumulation to inversion. After measurement, we gained a list of the charge
pumping current (I,) data and calculated the Nj; from the equation
lep = g f NitA (2-2)
whereas g, A and f are electron charge, the area of device and frequency of pulse

respectively. Fig 2-3 shows the configuration of charge pumping measurement setup.

Besides, total trap density (ANyy) include of the interfacial trap and bulk trap was



calculated form threshold voltage shift (A Vy) by assuming that the charge was

trapped at the interface between the dielectric and Si substrate. The equation is

ANtot — CAVth (2'3)
gA

therefore, we can obtain the ANy (oxide trap or bulk trap) from (2-2) and (2-3) by
following equation

AN,= AN, -AN, (2-4)

tot

However, by measuring the charge pumping current (I.,) wuth variable fall and
rise times, we can obtain the energy distribution of the interface states in a relatively
huge part of the forbidden energy.gap on both sides of midgap [8-9]. Interface
states act as acceptor-like or donor-like which depend on their relative state to the
band gap. Donor-like interface states are neutral ‘when they are empty or negative
when occupied by electron. In contrast, acceptor-like states are positive when they
are empty or neutral when occupied by electron. Relative position depends on its
Fermi level and an interface trap will be occupied by an electron or empty.

Simultaneously, we listed some useful equations for analyzing whether acceptor-like

or donor-like interface states.

‘Vfb 'Vt|

|
% =2qD, AKT | In /t,t; +In {thhni ) /o*napJ (2-5)



‘Vfb -Vth‘ (EI Es mv)
E.,.-E =-kTlh|V,no, -—t. +e ¥ 2-6
em,e i th"i~’'n |V| f ( )
a
’\/fb -Vth‘ ( E;-E¢ acc)
E.np - E = +KT In| Vyno, v t+e © (2-7)
tf dlcp (2—8)

N, (E,)= -WI (t, constant)

N, (E )= _(p;[\il'l‘(jjltc:) (t. constant) (2-9)

If we gained the result that Ni(E,) was an extensive variation and Ny(E;) was almost
similar according to equation (2-5), (2-6) and (2-8), we could observe that it existed
strong fall time dependence of charge pumping curve for fixed rise time. It shows
that acceptor-like interface states exist because huge interface state variation is near
conduction band. Similarly, Ni(E;) was a large variation and Ny(E;) was almost
similar according to (2-5), (2-7)-and (2-9), it means that it existed strong rise time
dependence of charge pumping curve for fixed fall time and donor-like interface states
exist because large interface variation is near valence band.

The electron mobility of nMOSFET was measured by split C-V method. The

effective mobility of electron was measured at low drain bias and then gave

L 2-10
M = V?/dQn ( )

Where the Q, was measured from capacitance measurement and drain conductance g4

was defined as

al, (2-11)

= V., = constant
OV

94

-10-



The capacitance meter was connected between the gate and the source/drain were
connected together with the substrate grounded. Therefore, Q, was observed as
follows

Q,=[=C,dv, (2-12)

And effective electric field produced by the voltage was express as

E Q& +nQ, (2-13)
T Ke
s70

Qb was measured from capacitance measurements. The capacitance meter was
connected between the gate and substrate and the source/drain were connected
grounded together. Therefore,

Q, =/ C,dV, (2-14)
where Q, and Q, were charge: densities in depletion layer and inversion layer
respectively. The parameter 7 = 1/2 was for electron. And subsequently universal
mobility was accomplished by this equation

638 (2-15)

1.69
14| e
area

We can obtain the data that we need easily from above all equation. Fig 2-4

Iueff =

illustrates the configuration of split C-V measurement setup.

Carrier separation measurement is shown in Fig 2-5 and Fig 2-6 for nMOSFET

and pMOSFET respectively. This method is used to make sure that the component
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of gate leakage current under different state (i.e. inversion or accumulation). By

comparing the I, Isp and Ip that we can define which path dominates the leakage

mechanism.

Subsequently, in CVS measurement method, a constant voltage stress was

applied to the gate of device and the source/drain/substrate were grounded

respectively. We obtained the measurement data such as 1d-Vg and charge pumping

during the stress intervals that Fig 2-5 shows the configuration of CVS measurement

setup. After analyzing these data we could observe the shift of transconductance

(Gm) and threshold voltage and.‘charge pumping measurement is also used to

calculate the interface state generation under inversion. In the same way, we could

use equation (2-3) and (2-4) to calculate the bulk trap density after stressing.
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Standard LOCOS process

STD clean and HF dip

SiON ~ 0.7nm at 850°C in N,O ambient

ALD HfO, and HfA1O 30nm deposited

PDA at 600°C 20sec for HfO, and 700°C 20sec for HfAIO in N, ambient
Poly silicon gate deposition 200nm and patterning

S/D extension and S/D implant

Body engineering

Dopant activation at 950°C 30sec in N, ambient

Passivation layer deposition (split table: 200nm, 200nm and 300nm SiN )
Metallization

Fig 2-1 The process flow of nMOSFET device with HfO2 and HfAIO gate stack

Fig 2-2  The cross section of nMOSFET with HfO2 and HfAIO gate stack
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Fig. 2.4 Configuration for (a) gate-to-substrate (Cgp)  (b) gate-to-channel (Cyc)

capacitance measurements
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Fig 2-5 Configuration of Carrier Separation measurement setup for nMOSFET
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Fig 2-6  Configuration of Carrier Separation measurement setup for pMOSFET
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Fig 2-7 Configuration of CVS (constant voltage stress) measurement setup.
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Chapter 3

Result and discussion

3.1 Introduction

Scaling of COMS has not only led to an increase of integration circuit density
but also a corresponding enhancement in the transistor performance. However,
when gate length scaled down to the nanometer order, some limitation such as gate
oxide leakage current and and power density, make geometric scaling an increasingly
challenging task. In order to continue CMOS device performance improvement, the
industry needs a new scaling vector. Starting with the 90-nm technology generation,
mobility enhancement through uniaxial process-induced strained Si has emerged as
the next scaling vector being widely adopted in logic technologies [10~12].

Strain improves MOSFET drive current by altering the band structure of the
channel. Biaxial and uniaxial strained silicon technologies are promising for
enhancement of CMOS performance [13]. Biaxial tensile strain can be done by
using a wafer-based approach of a thin strained Si layer on a thick relax SiGe virtual
substrate, however, biaxial tensile strained silicon is difficult to implement because of
some disadvantages of SiGe, such as misfit and threading dislocations, Ge

up-diffusion, fast diffusion of S/D extensions, and cost [14~17]. Besides, high
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threading dislocation density (typically > 10* cm™) of the virtual SiGe substrates
represents a major obstacle for practical applications. In contrast, uniaxial strain can
easily be applied by modifying capping layer deposition [18][19], shallow trench
isolation [20][21], source/drain material [22], silicidation [23], packing process [24],
and so on. In this paper, we utilized the SiN capping layer as a stressor due to its
high stability and compatibility of conventional COMS process flow. Recently, it
has been shown that the mechanical stress from a contact etch-stop SiN layer over the
gate electrode can significantly affect the drive current [25][26]. Depending on the
deposition conditions, the SiN .capping layer can generate either tensile or
compressive stress [26]. It thus can be applied to the NMOS devices that benefit from

tensile stress, as well as PMOS devices that benefit from compressive stress[27].
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3.2 Brief Review of Strained Si

The carrier mobility is given by u =% , where 1/1 is scattering rate and m’ is
the conductivity effective mass. Strain enhance the mobility by reducing the
conductivity effective mass and/or the scattering rate. For electrons, both mass and
scattering rate reducing are generally accepted as important for mobility
enhancement[28]. However, for holes, only mass change due to band warping and
repopulation [29] plays a significant role at today’s manufacturable stress level (about
< 1GPa) since strain-induced valence band splitting is smaller than that for the
conduction band. Furthermore, though there has been focus on reduced in-plane mass
to increase the mobility, increasing the out-of-plane-mass for electrons and holes is
also now understood to equally important factor for maintaining the mobility
enhancement at high vertical fields, Fig 3-1 shows the definition of in- and
out-of-plane. For electron transport in bulk Si at room temperature, the conduction
band consists of six degenerate valley as shown in Fig 3-2(a) and these valleys are
equal energy. The effective mass for any direction is the reciprocal of the curvature
of the electron energy function. For unstressed bulk Si, the total electron

conductivity mass, m , is given by

o [§2 (]

where mj is longitudinal mass (parallel to the axis) about 0.98m, and m; is transverse
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mass (perpendicular to the axis) about 0.19 m,, where m, is the free electron mass.
After stressing, the valleys of Si are shown in Fig 3-2(b). For MOSFETs on a wafer,
advantage strain removes the degeneracy between the four in-plane valley (A4) and
the two out-of-plane (A;) by splitting them in energy as shown in Fig 3-2(c). The
lower energy of the A ; valleys means that they are preferentially occupied by electron.
The electron mobility partly improves via a reduced in-plane and increased
out-of-plane m~ due to the favorable mass of the A, valleys, which result in more
electrons with an in-plane transverse effective mass (m; =0.19 m,) and out-of-plane
longitudinal mass (m; =0.98 m,). .*However, electron scattering is also be reduced
due to the conduction valleys splitting into two- sets of energy levels, which
suppresses the rate of intervalley phonoen scattering between the A, and A4 valleys.
For holes, the valence band structure of Si is more complex than the conduction
band. Due to this complex structure as well as valence band warping under the strain
that results in a larger mobility enhancement than electron. These two factors are also
the reason that strained pMOSFET is a key focus in advantage logic technology. For
unstrained Si at room temperature, holes occupy the top two band : the heavy and light
hole bands. The unstrained constant energy surfaces for the two bands of Si are
shown in Fig 3-3(a). With the application of strain, the hole effective mass becomes

highly anisotropic due to band warping, and the energy levels become mixtures of
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pure heavy, light, and split-off bands. Thus, the light and heavy hole bands lose their

meaning, and holes increasingly occupy the top band at higher strain due to the energy

splitting. The warped top two bands are shown in Fig 3-3(b), (c¢) and (d) for the

three most common types of stresses. As shown in Fig 3-3 (b) and (c), the narrow

constant energy surface in the channel direction for uniaxial compression creates a

desire mass that about 40% smaller in-plane mass as compared to biaxial tensile strain.
p p

It is important to achieve high hole mobility by a low in-plane conductivity mass for

the top band (namely a narrow width to the constant energy surface along the channel

direction). This result is due to' the difficulty of significantly enhancing hole

mobility by reducing the intervalley scattering rate. - Hole intervalley scattering rate

is not significantly reduced for stress less than 1.GPa since the band splitting is less

than the optical phonon energy (60mev). Splitting is greater than 60mev and stress

is greater than 1GPa are necessary to suppress the intervalley phonon scattering rate

(see Fig 3-4). This is why the change of effective mass plays a more significant role

than reduced phonon scattering in hole mobility enhancement.

Hole mobility at high vertical field with uni-axial compressive and biaxial tensile

stresses would have different behaviors. Fig 3-5 shows the energy shift with

confinement for both uniaxial and biaxial stress. E,, represents the top band with

large out-f-plane mass for uniaxial stress and small out-f-plane mass for biaxial stress
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which compare to the second band, Es.cong. Thus, uniaxial has a small shift in energy

(indicates E;,p, which compares to unstrained) due to confinement for it, but there is a

large shift for biaxial. As shown in Fig 3-5, the strain-induced band splitting (E;p-

Esecond) increases for uniaxial strain but decreases for biaxial stress.  Thus,

confinement favors occupation of the top band for uniaxial compressive stress and the

second band for biaxial tensile stress. The net effect is strain and confinement

additive for uniaxial compressive stress and subtractive for biaxial tensile stress.

Thus, the competing effects of strain and confinement on band splitting is a factor of

lost hole mobility in biaxial tensile stress for pMOSFET at high vertical fields. For

uniaxial stress, the band splitting increased that maintains the hole mobility

enhancement at high vertical fields. ‘This is why the uniaxial compressive stress is

extensively adopted in pMOSFET [12][31] [32].

For NMOSFETs, it has been reported that the threshold voltage shift caused by

bi-axial tensile stress is larger than the case with uni-axial tensile strain [33]. For

PMOSFETs, larger shift of light-hole band edge under bi-axial tensile strain leads to

larger shift in Vi, compared with the case with uni-axial compressive strain [34].
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3.3 Electrical Characteristics of MOSFETs with different thickness of
SiN capping layer and materials

The C-V curve and EOT value are shown in Fig 3-6 and Fig 3-7 respectively, it
can be seen that the different SiN thickness which induced strain will not change the

equivalent oxide thickness of device. By this fact, we can make sure that the drive

T

physical

EOT

2

current enhancement is not caused by EOT decrease. By equation x =¢,,

where ¢, is the dielectric constant of SiO, and Tpnysicar 1s the real thickness of gate
dielectric. Then, we can obtain that the dielectric constant, “x >, is about 12. The
relation of I4-V, and G-V, characteristic of 'HfAIO gate stack nMOSFET with
different SiN capping layer thickness that upon the gate are shown in Fig 3-8 and Fig
3-9. Simultaneously, the [4-Vg is also shown in Fig 3-10. It is about 2 times
enhancement for Iy and G, between the without SiN and SiN 3000A. The
improvement of drain current and transconductance is obviously proportional to the
thickness of SiN layers. The mechanism which results in these results might be as
follows: These SiN capping layers upon the poly-Si gates with highly tensile stress
cause the poly-Si gates under them to be with compressive strain, and then the tensile
strain is caused in the channel regions by these compressive poly-Si gates upon
channel regions. The results might also be caused by another mechanism: The SiN

capping layers with highly tensile stress are directly deposited on the source/drain
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regions in the two terminals of channels. These SiN layers cause the source/drain

regions under them compressive and the channel regions are implicated to become

tensile. Fig 3-11 and Fig 3-12 show that the relation of drain current and

transconductance of HfO, gate stack pMOSFET with different tensile SiN capping

layer. According to [12], it can be obtained the degradation of drain current for

pMOSFET in such a tensile stress and it is about 14.8% and 30.8% degradation of I4

and G, respectively in figure. The relation between drain current and channel length

of HfAIO gate stack nMOSFET is shown in Fig 3-13 and Gy, is in Fig 3-14. By

above result, we can know that the strain effectis.strong with short channel especially

when channel length downs to 0.35um. Hoewever, it can be also seen that the drain

current enhancement is saturated when channel length is above 2um. In addition,

Fig 3-15 shows that the relation of drain current with different areas of channel, when

area of channel is large, the strain effect will not enhance the drain current. Unlike

biaxial strain, driving current improvement with uniaxial strain obviously takes place

in short channel device. This is also fit to the scaling-down demand.

The subtreshold swing versus to channel length of HfAIO gate stack nMOSFET

with different SiN capping layer thickness is shown in the Fig 3-16.  We find that the

subthreshold swing of SiN 3000A shows the better interface state than others. Thus,

we can find that the strain will improve the subthreshold swing in device. Fig 3-17
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shows that the Vy, roll-off characteristic with different thickness of SiN capping layer.

It can be seen that when the channel length is scaled below 1um, the roll-off

phenomenon is more series. Fig 3-18 indicates that gate leakage current seems not

to be increased as SiN thickness thicker. The extra hydrogen species come from the

SiN layer as a result of using SiH4 and NH3 as precursors during deposition. It is well

known that the PE-SiN film contains a substantial amount of hydrogen [35]. Fig

3-19 expresses the charge pumping current for different thickness of SiN layer. We

obtain that the charge pumping current decreased as the thickness of SiN capping

layer increased from 0 A to 3000./A. This means that the extra hydrogen species

come from the SiN layer as a result of using SiH4 and NH3 as precursors during

deposition and a lot of dangling bond could be fixed and therefore reduced interfacial

state. It is well known that the PE-SiN film contains a substantial amount of hydrogen

[35]. These hydrogen could passivate interfacial state that located on interfacial

layer. So, depositing thicker SiN would take long time and more interfacial state

could be fixed. The brief pasivation diagram is in Fig 3-20, it can be seen that when

SiN is deposited by PECVD, a lot of hydrogen species will locate at the interface to

passivate the interface states.

Carrier separation analysis is investigated to clarify the leakage path in gate stack

MOSFET [36]. The contributing carrier of leakage currents consist of holes and
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electrons. Fig 3-21, Fig 3-22, Fig 3-23 and Fig 3-24 express carrier separation
results under inversion regions and accumulation regions for n'-gate nMOSFETs with
different thickness of SiN layer of HfAIO/SiON gate stack. By above result, we can
find that the I is close to Isp under inversion region, it means that the source/drain
current dominates the leakage current. In contrast, the substrate current dominates
the leakage current under accumulation region. This phenomenon indicates electron
from S/D that goes through high-k dielectric to gate is the major component of
conduction mechanism under inversion region. We can easily explain this
mechanism by band-diagram in Fig'3-25(a) and carrier separation current component
is in Fig 3-25(b). The substrate current which corresponds to hole current from the
gate, while source/drain current corresponds to electron current from silicon substrate
under inversion region. Hole supplied from gate valence band on nMOSFET are
confined by less generation of minority holes in n'-gate. In other words, carrier
which go through gate dielectric are influenced by barrier height and distance[37].
Due to the asymmetry of the HfAIO/SiON (Fig 3-25(a)) and structure, we can deduce
that holes from gate electrode are hard to go through the dielectric compared to
electrons from the channel. In brief, electron current from the channel is the
predominant injection current under stressing. Similarly, the inference also is used

to explain the leakage component under accumulation region. Fig 3-26 (a) expresses

-27-



the band-diagram to interpret possible leakage current from under accumulation. Fig
3-26(b) shows the current component flow in carrier separation experiment. Fig
3-27, Fig 3-28, Fig 3-29 and Fig 3-30 show that the gate leakage current with different
thickness of SiN under inversion regions and these are measured form room
temperature to 125°C. We obtain the leakage current increased as temperature
elevated. This phenomenon means that the conduction mechanism must be relate
trap-related like schottky-emission, trap-assisted tunneling, Frenkel-Poole emission,
etc. Then, the result which we get accords with Frenkel-Poole emission for electron
current. Fig 3-31, Fig 3-32, Fig 3433 and Fig 3-34 show that the excellent linearity
relation for source/drain current ‘(electron) with' different thickness of SiN under
inversion region, and Fig 3-35, Fig 3-36, Fig 3-37 and Fig 3-38 for substrate current

(hole current). Then, the fitting curve can be acquired from these dorms as follows :

Lot V exp(2BWY_0Ps,
T kBT

-q(Dg '\/quff / e yao€o)
KT

In( J ) = 'q\/qk/:grgo)\/Ee?_?(@_ﬁ
B B

Eeff

Si0,

E
); B=quNT, a = —= = const

HfAIO

J = B*E, exp(

= Intercept gives the Barrier height ( - %)
B

Where B is a constant which is about the trapping density and carrier mobility in
insulator, ®g is the barrier height, Ecis the electric field in HfAIO films, g is the

free space permittivity, kg is Boltzmann constant, and T is the temperature in Kelvin.
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This tendency indicates that both electron and hole conduction mechanisms

are the same, and the result agrees well with the F-P conduction mechanism. Barrier

hight @y and dielectric constant €uaio of HFAIO/SiON can be calculated. The value

of electron ®g for without SiN, SiN 1000A, SiN 2000A and SiN 3000A under

inversion are about 0.737eV, 0.722eV, 0.645¢V and 0.621eV and ®g for hole are

0.639¢V, 0.614eV, 0.571eV and 0.464eV. The ®gto be discussed in this chapter is

the “effective” value that is representative of the HfAIO/SiON gate stack [49]. We

consider the case when the injected carrier flow across HfAIO/SiON by hopping via

the trap sites with energy barrier. @p, whose .value depends on the fabrication

process[50]. Fig 3-39 shows enetgy band diagram te present conduction mechanism

through HfAIO/SiON gate stacks with" different SiN capping layer. And Fig 3-40

shows that the result od electron and hole trap with different SiN capping layers.

This indicates that less barrier height as SiN capping layer increases.
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3.4 Summary

In this chapter, we verify that PECVD SiN capping layer is tensile strain and
suitable for nMOSFETs application. Therefore, as SiN capping layer thickness
increases, driving current has a huge enhancement. Besides, we observe that interface
states become less when SiN capping layer thickens. It may be attributed that a large
amount of hydrogen generated from SH4and NH; and then passivate the interfacial
layer and we verify the number of interface states by using charge pumping method.
Eventually, we utilize carrier separation method to make sure the current component
under inversion and accumulation.tegions and carrier separation measurement with
different temperature is followed'to calculate the electron and hole barrier height
under inversion region then, we obtain F-P conduction mechanism is matched. This

indicates that less barrier height as SiN capping layer increases.
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Fig 3-1 Definition of in- and out-of-plane direction

Fig 3-2  Ellipsoids of constant electron energy in reciprocal (“k”) space (a)
Unstrained Si (b) Strained Si; (c¢) Strain splits the energy level as shown, removing the

degeneracy between the A 4 and A ,
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Fig 3-3 Hole constant energy surfacesat.25meV obtained from six band kp
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compression on (100) wafer (¢) longitudinal compression on (110) wafer, and (d)

biaxial tension

Top Band

+ Second Band
@ : Hole

Unstressed Stressed

Fig 3-4 Hole intervalley phonon scattering process. High stress and splitting larger

than the optical phonon energy (60 meV) are required to suppress scattering.
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Fig 3-5 Simplified schematic of valence band splitting of strained Si as a function

of gate overdrive.
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Fig 3-6 The C-V curve of the HfAIO gate stack nMOSFET
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Fig 3-10 The drain current versus to gate voltage with different SiN capping layer
for HfAIO gate stack nMOSFET
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Fig 3-12 The transconductance of devices with different capping layers for HfO,
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HfAIO gate stack nMOSFET
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Fig. 3.20 (a) In control devices, hydrogen species mainly locate at the interface to
passivate the interface states. (b) In SiN-capping devices, a large amount of hydrogen
species from the SiN layer diffuse to the gate oxide layer and passivate the Si/HfAIO

interface.
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(a) Band diagrams, and (b) Schematic illustration of carrier separation experiment.
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Chapter 4
Reliability of MOSFETs with HfO,/SION
Gate Stack

4-1 Introduction

Recently, mobility enhancement by channel strain engineering has emerged as
an effective approach to boost the performance of scaled devices, especially
local-strain technology [38,39]. A method to introduce tensile strain for nMOSFET
and compressive strain for pMOSEET is to add a SiN capping layer deposited by
plasma-enhanced CVD (PECVD)[40,41]. - Though-strained channel could enhance
the mobility and the drive current of the device, but potentially it could also degrade
the device’s reliability characteristics. From the results presented in Chapter 3,
hydrogen species unintentionally incorporated in the thin stress-induced film may also
adversely affect the device reliability characteristics. The device reliability issue is
therefore a potential concern when the local strain is introduced, and should therefore
be carefully addressed. Negative bias temperature instability (NBTI) is well known
as the lifetime-limiting reliability concerns in CMOS devices when the gate oxide
thickness is scaled to 3.5 nm and below (worse than PBTI in nMOSFET) [42].

Conventionally, characterization of NBTI is primarily based on static experimental
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data. However, for real-life operations of digital circuits, the applied bias to the gate

of pMOSFET in a CMOS inverter is being switched between “high” and “low”

voltages incessantly. In line with this, the evaluation of the dynamic NBTI (DNBTTI)

characteristics seems to be more practical for reliability characterization. In this

aspect, it has been reported that the dynamic NBTI (DNBTI) effect greatly prolongs

the lifetime of pMOSFET operating in a practical digital circuit [43]. A physical

model has also been proposed for DNBTI involving the interaction of the released

hydrogen re-passivating Si dangling bonds during the passivation time [44].

However, reports on DNBTI of devices with SiN capping are lacking. In this work we

investigate the issue by performing dynamic and AC stress measurements on

pMOSFET with a compressively strained channel:
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4-2 Brief Review of NBTI

Negative Bias Temperature Instability (NBTI) has been known since the very
early days of MOS device development, have been observed as early as 1976 [45].
As the oxide thickness is scaled to nanometer, hot carrier effects become less
important due to the reduced operation voltage [46]. NBTI refers to the generation
of positive oxide charge and interface traps under negative gate bias at elevated
temperatures. The interface trap density induced by NBTI increases with decreasing
dielectric thickness, whereas the fixed oxide charge induced by NBTI appears to have
no thickness dependence. The shift in threshold voltage and degradation in
transconductance have been suggested to be due to the interfacial electrochemical
reactions related to the holes from the ¢hannel inversion layer for pMOSFET. When
the Si is oxidized, the bonding configuration at the surface is as shown in Fig 4-1 (a)
and 4-1 (b) with most Si atoms bonded to oxygen at the surface. Some Si atoms bond
to hydrogen. An interface trapped charge, often called interface trap, is an interface
trivalent Si atom with an unsaturated (unpaired) valence electron at the SiO2 /Si
interface. It is usually denoted by
Si3=Si - .
The = represents tree complete bonds other Si atoms and - indicates the fourth,

unpaired electron in a dangling bond. Interface traps are designated as Dy(cm™ eV™"),
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Qit(C/cmz), and Nit(cm'z) and they are acceptor-like in the upper half and donor-like in
the lower half of the band as shown in Fig 4-2 for pMOSFET and Fig 4-3 for
nMOSFET respectively. Since the fixed oxide charge (Qy) is positive, we have at
inversion : n channel : (Q¢- Qj), p channel : (Q¢+ Qji), hence pMOSFET have more
serious degradation in NBTI.

We discuss the two basic approaches for modeling interface trap generation
during NBTI process. The first models discuss trap creation via hydrogen
interaction dynamics. The second set of models describes more general trap creation
via chemical species interaction and diffusion. . In first models, it indicates that a
high electric field can dissociate the silicon-hydrogen bond, then, it can be modeling
as equation
Si3=SiH — Si;=Si - +H’
where H’ is a neutral interstitial hydrogen atom or atomic hydrogen. Recently
first —principles calculations show that the positively charged hydrogen or proton H+
is the only stable state of hydrogen at the interface and that H+ reacts directly with the
SiH to form an interface trap, it also can be written as
Si3=SiH+H" — Si3=Si - +H,
the mobile positive H™ migrates towards the negatively charged dipole region if SiH

molecule. The H™ atom then reacts with the H to form H, leaving behind a
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positively charged Si dangling bond. A different model is used to describe NBTI via
the interaction of SiH with “hot hole” or holes near the interface. It is given by
Si;=SiH+h" > Si3=Si - +H’

Another model, reaction and diffusion model, is
Siz=SiH+Y — Siz=Si - +X
this model assumes that species Y diffuses to the interface and creates an interface
trap, where Y is unknown. In this model, stress results in a negative shift in
threshold voltage showing a power-law dependence on stress time:

AV =At°

The shift in threshold voltage'and degradation -in transconductance have been
suggested to be due to the interfacial electrochemical reactions related to the holes
from the channel inversion layer. The exponential value of the power law equation is
about 0.25, which could be explained by the diffusion-controlled electrochemical
reactions.

Fixed oxide charge are designated as Q¢(C/cm?) and N (cm->).  The fixed oxide
charge is a charge near the dielectric/Si interface, contributing mainly to threshold
voltage shift. Qris also a byproduct trivalent Si defect in the oxide, denoted by
0;=Si"

Qs generation can be modeled as
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0;=SiH+h" — 0;=Si"+ H’
according this model, we can determine that the fixed oxide charges are generated

from the dissociation of SiH bonds.
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4-3 Reliability of MOSFETs with HfO,/SiON gate stack

Fig 4-4 expresses 1g-V, characteristics before stress and after stress 1000s with
SiN (blue line) and without SiN (red line) capping layer at room temperature. We
can know that no serious degradation of subthreshold swings both in with and without
SiN capping layer but a positive Vy, shift after stress is observed obviously. It
indicates that there is no serious interface trap generation during stress process
because interface trap generation can cause the subthreshold swing degradation.
Instead, electron trapping in gate dielectrics is the mainly cause of threshold voltage
shift after stress, and we can find the threshold woltage shift in with-SiN capping layer
is larger than in without-SiN capping layer, it means that the strain which caused by
depositing SiN capping layer will.-degrade the reliability of device.

Fig 4-5 shows that the threshold voltage shift as a function of stress time for
HfO, nMOSFETs without SiN, Fig 4-6 shows that the threshold voltage shift as a
function of stress time for HfO, nMOSFETs with SiN 1000A, Fig 4-7 shows that the
threshold voltage shift as a function of stress time for HfO, nMOSFETs with SiN
2000A, Fig 4-8 shows that the threshold voltage shift as a function of stress time for
HfO, nMOSFETs with SiN 3000A. In above figurations, we can find that the
threshold voltage shift become huge as the constant voltage stress increases, and the

carrier trapped by gate dielectric bulk is electron due to the threshold voltage shift is
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postive. It may be attributed that more electron-hole pairs which generate in channel

region and tunnel to the gate dielectrics and then turn to great threshold voltage

instability. In the same way, we can obtain that the bulk traps in gate dielectric bulk

almost occupy all of charges which calculate from threshold voltage shift. Fig 4-9

shows that the threshold voltage shift is as a function of stress time for HfAIO

nMOSFETs without SiN capping layer under various temperature. Fig 4-10 shows

that the threshold voltage shift is as a function of stress time for HFAIO nMOSFETs

with SiN 1000A capping layer under various temperature. It can be seen that the the

threshold voltage shift becomes huge as temperature increases. It may be attributed

that the high temperature make-the electron which generated from electron-hole pairs

get higher energy and this pheénomenon accelerates the electron trapped in gate

dielectric. Fig 4-11 shows that the threshold voltage shift of HfO, nMOSFET is as a

function of stress time which compares without SiN and with SiN 3000A under CVS

1.5V and CVS 2.5V. It also obtains the same result which we expect. The cause of

serious degradation with thicker SiN capping layer could be explained as follows:

One is that more Si-H bonds with thicker SiN capping layer which come from the

reaction of SiH, and NH; precursor break when constant voltage stress applies. The

other is great tensile strain as thickness of SiN capping increase, and it brings about

more strain energy which is stored in the channel. [49-50] Fig 4-12 shows that the
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Gm_max degradation rate with different SiN thickness. It can be seen that the Gm-

_max degradation increased as the thickness of SiN thickened.

Fig 4-13 shows that the threshold voltage shift as a function of stress time for

HfAIO nMOSFETs without SiN, Fig 4-15 shows that the threshold voltage shift as a

function of stress time for HFAIO nMOSFETs with SiN 1000A, Fig 4-17 shows that

the threshold voltage shift as a function of stress time for HFAIO nMOSFETs with

SiN 2000A, Fig 4-19 shows that the threshold voltage shift as a function of stress time

for HFAIO nMOSFETs with SiN 3000A. We also can find the threshold voltage

shift become large as the constant voltage stress‘increases. The results are the same

which compared with HfO,. It also can be explained by two reason : One is that

more Si-H bonds with thicker SiN capping layer which come from the reaction of

SiH4 and NHj precursor break when constant voltage stress applies. The other is

great tensile strain as thickness of SiN capping increase, and it brings about more

strain energy which is stored in the channel. Fig 4-14 shows that the threshold

voltage shift is as a function of stress time for HfAIO nMOSFETs without SiN

capping layer under various temperature. Fig 4-16 shows that the threshold voltage

shift is as a function of stress time for HFAIO nMOSFETs with SiN 1000A capping

layer under various temperature. Fig 4-18 shows that the threshold voltage shift is as

a function of stress time for HFAIO nMOSFETs with SiN 2000A capping layer under
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various temperature. Fig 4-20 shows that the threshold voltage shift is as a function
of stress time for HFAIO nMOSFETs with SiN 3000A capping layer under various
temperature. The results are also the same compared with HfO,. The threshold
voltage shift is more serious as the temperature increases.  Fig 4-21 and Fig 4-22
express the threshold voltage shift as a function of stress time for HFAIO nMOSFETs
with different SiN capping layer under CVS 2V at 25°C and 125°C. We can find
that the strain will cause the threshold voltage shift larger than without strain, even if
at room temperature or 125°C. Therefore, we can sure that although the strain
technique improves the driving curtent, the reliability is also be degraded. And Fig
3-23 reveals Gmmax degradation rate with different SiN thickness. It also obtains the

same result which we expect.
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4-4 Summary

The CVS reliability of nMOSFETs with HfO,/SiON and HfAIO/SiON is
investigated in this chapter. The CVS under various temperature is also shown. It is
believed that CVS degradation is related to the electron traps in gate dielectric. And
therefore cause threshold voltage shift. We observe that serious degradation such as
threshold voltage shift occurs as SiN capping layer thickens. And we also find that
threshold voltage shift with high temperature is larger when the thickness of SiN
thickness increases. It can be explained by more Si-H bonds with thicker SiN capping
layer which come from the reaction of SiH4 and NHj precursor break when constant
voltage stress applies or great tensile strain as thickness of SiN capping increase, and

it brings about more strain energy whichis stored in the channel.
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Si surface.
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Fig 4-18 Threshold voltage shift (AVy,) as a function of stress time for HfAIO
nMOSFETs with SiN 2000A capping layer under various temperature
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Chapter 5
Conclusions and Future Work
5-1 Conclusions

In this paper, we verify that PECVD SiN capping layer is tensile strain and
suitable for nMOSFETs application. Therefore, as SiN capping layer thickness
increases, driving current has a huge enhancement. Besides, we observe that interface
states become less when SiN capping layer thickens. It may be attributed that a large
amount of hydrogen generated from SH4and NH; and then passivate the interfacial
layer and we verify the number of.interface states by using charge pumping method.
Eventually, we utilize carrier separation method to make sure the current component
under inversion and accumulation regions and carrier separation measurement with
different temperature is followed to calculate the electron and hole barrier height
under inversion region then, we obtain F-P conduction mechanism is matched. This
indicates that less barrier height as SiN capping layer increases.

The CVS reliability of nMOSFETs with HfO,/SiON and HfAIO/SiON is
investigated in this chapter. The CVS under various temperature is also shown. It is
believed that CVS degradation is related to the electron traps in gate dielectric. And
therefore cause threshold voltage shift. We observe that serious degradation such as

threshold voltage shift occurs as SiN capping layer thickens. And we also find that

-79-



threshold voltage shift with high temperature is larger when the thickness of SiN

thickness increases. It can be explained by more Si-H bonds with thicker SiN capping

layer which come from the reaction of SiH4 and NHj precursor break when constant

voltage stress applies or great tensile strain as thickness of SiN capping increase, and

it brings about more strain energy which is stored in the channel.
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5-2 Future Work

There are many issues that we can’t discuss completely. We list some goals for

future work as follows.

1. HRTEM is used to verify real thickness and estimate value of the dielectric

constant for HfO2/SiON and HfAIO/SiON gate stack.

2. Because of actual CMOS circuit operation, AC gate bias with specific frequency

and duty cycle is usually utilized. Therefore, AC stress with Dynamic AC stress

application is more realistic and can provide additional insights into the trapping

behavior.

3. Fast transient pulsed Id-Vg measurement is also used to evaluate charge-trapping

phenomena precisely.

4. Charge pumping measurement on CVS.

5. Find the better recipe of surface treatment to gain good interfacial layer quality.
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