% PlayStation 3 } e pF 5 448 AaT

Real-time Multimedia Processing on PlayStation 3

FiA MA L
BERE FAR £

v

Wt
gL

A

% PlayStation 3 F en¥ pF § 448 I?

Real-time Multimedia Processing on PlayStation 3

o4 T mAER Student: Ching-Chih Chen
hERR I FIAA EL Advisor: Dr. Chih-Wei Liu

Tl LI AAIT

MLt

A Thesis
Submitted to Department of Electronies Engineering & Institute of Electronics
College of Electrical and.Computer Engineering
National Chiae Tung University
in Partial Fulfillment of the Requirements
for.the Degree 0of Master
in

Electronics Engineering
October 2007

Hsinchu, Taiwan, Republic of China

% PlayStation 3 } ¥ pF 5 548 @

EE ALY o TR Y

2

B pon SR B Wi o 0 R TR E S (data rate) fr B b 5
(compressmn ratio) » 1 HiF X 2 g e R ETH 4 o T K g R Y T AN AUL B
B AR AT B(ASIC) » O & BRGNS SRR - AR L 3 T
Foo R R R TR AT)ﬁ*? CISEATAO SRR SR E o R AR AT B
éﬁﬁwwou;¢%ﬂﬁ@?v"% ’@fdiﬁ”gwﬁ9*?ﬂﬁp5%@kWﬂWTEGLPﬁr?¥l
f e i3 R (DLP)2 ¢ » % 3447 (multi-thread)#¥ +% < (multi-core) 7 H:& - ¥ {

#4, {7 %5 (thread) & & T {7 & (TLP) c S AR R AR AEE 4 2 @—EJ—’V}@ 3¢
gt 0 LS Pe AL E i N ERBEN R S o RS ER T S BR LR SN
A 1 (iRt g 2 e T f o1 (P2 B FH BET AL SEA TR - A
vog g LA A (frame-based) shE AL 2 2] 5 > LY %1 T2 BenF ol %
(data dependency) » > I # hi= § e i RRER AT TR R kR B
- B ¥ teh s Poo s f—PlayStation 3 1+ > ¥ i@ * iput HIvE - B 1080p § 454 B
PRRRERITE R od FEREET dro S Bt (L nH T (€ fEA5 BAeid 20 1 &]9
AZ 1 7 pF (real-time) e0* 4] 12 60Hz =HF 5 f245 1) 1080p e’ & o

il

Real-time Multimedia Processing on PlayStation 3

Student: Ching-Chih Chen Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

ABSTRACT

Today’s multimedia applications evolve very fast. In order to improve the data rate
and compression ratio, the complexity of algorithm is enhanced. Instead of ASIC,
programmable processors are usually used to deal with the variety of new multimedia
standards. Processor-based architectures can use software patches to keep up with new
multimedia applications, thus extend products’ time-in-market. However, conventional
processor architectures are unable te*provide:sufficient computing power for real-time
constraints. Beyond instruction-lgvel-parallelism (ILP) and data-level-parallelism (DLP)
used in conventional processors, multithreaded/multi-core architecture further acquire
thread-level-parallelism (TLP) te exploit parallelism in multimedia applications. Multi-core
processor can provide high computing “power to' support complex applications, but
multi-core programming is much more.difficult, There are two main issues in multi-core
programming, synchronization overhead introduced by task parathion and communication
overhead arising from data communications between tasks. In this thesis, we adopt
frame-based data partition to eliminate the data dependency between tasks, thus minimize
synchronization overhead. Communication problem is solved using dataflow optimization.
Using these techniques, a multimedia video decoder processing 1080p frames is then
optimized on a famous multi-core architecture — PlayStation3. The experimental results
show that the optimization techniques make the decoder run 20-time faster, which finally

exceed real-time constraint to decode 1080p frame at 60 Hz.

il

iv

W

P EERTY o 5 E R DF S A Fes %ilﬁﬂ At B R L E o &

U IR B AR

EHEIZHLT - EFDRGELZ FHR - RALRFOWAFLRAL - L5
SRR E LDl B BT EL R RS LR BRI
HMEPRFRLY o BFRERG O SHAPE LS FROLL R R®Y

TR I

Btk 5L« 3 5L REGE AP L2 0HH E51 0§ 6 nfp Eass
ARG S PRk o FESEE L Ty T W BB R
Bl 4w g e

EMHTRZFLEFP - RHMETFEL w1 3 F L R E L2 R L
RMEEPAFT 44 EY chi a2 ﬁi]ﬁv cRBIELE ~ T T BB~ 1R
T RLRZ G PEHE F AEga - i

I\

R AfHas i 1 2 mph s BBl C P B2 1 F 2 oipa £ AR
ST PERROY S LSRR A R R o

Bis o BHAEMEDTL o §NEE - F O BT - BRI G R

AR R h e BT LA L B A oot BHEATAR -

e
fox

oN

BRI

2007 #

She

vi

CONTENTS

ABSTRACT (CHINESE)ottt ettt b e bbbttt b bbbt b bbb bt sb et b i
ABSTRACT (ENGLISH) ...ttt bbbttt bt iii
ACKNOWLEDGEMENT ...ttt et e e h bbbt r b b e e e n e an e %
CONTENT S e h R bR R s e et bRt R R e bt b e et b e eR e bRt b e a e snennens vii
LIST OF TABLES ...ttt h bbbttt r et h bbbt e e e ar e nr e b ene s iX
LIST OF FIGURESo bbbt r bbb Xi
T INTRODUGCTION.......oooiiiiii ittt e e e eeeeet e eee e e e e e eeetbtaseeeeaeeseaeettsaasaaaaeeaaaastsaseaaseeeeaannsseeenes 1
1.1 Multimedia PrOCESSINGcc..eeiuiiiiieiieeiieeie ettt ettt e 1
1.2 MUIti-COTE PTOCESSOTScuiiiiiniieiiieiieieeteeit ettt sttt 2
1.3 ThesisS OrganiZationcoeevuerieriienierienieeteettente et sttt ettt et et seeenteessesaeesaeenenaeens 4
2 BACKGROUNDcouttiiiiiiiiiecciiieeee e e e eeeettt e e e e e e e e eeetaasaseeaeeeeaasataasaseaeeseasessssessaaeeeesasses 7
2.1 Cell Broadband Engine......... et B il ooeeenieeiieieieeieneesiceeeeeeie et 7
2.2 Programming on PPE and.SPES . svessues.ciorciifinecevieiiniiiiiiiniceciiceccee e 19
3 FRAME-BASED DATA PARTITIONINGONCBEooooiiiee 24
3.1 Port the Multimedia Applications to CBEc......ooooiiiiic 25
3.2 Functional Partitioning and Data'Partitiohing for Multi-Core Processor................... 28
3.3 Comparison between Data’and Functional Partitioning...........c..cceceeveriiniincnncnnne. 28
3.4 The Partitioning and Management of Multimedia Decoding on CBE 30
3.5 Dataflow Planning for Multimedia Decoding on CBEcccccociiiniiniininncnne. 36
3.6 DMA and Buffer Allocation on CBEcccccooiiiiiiiiiniiiiiccceceeeee 38
A EXPERIMENTAL RESULTS.......ooiiiiiiiieeeeee ettt e et e e aaaae s 45
4.1 The Transfer Size per DMA Command............coceverieniiniriienienenieneeseeieseeneeeeenn 50
4.2 The Size Of I/O BUSTETeoviiiiiiii e 52
4.3 The Double BUffering........cccueiiuieiiiiiiee et 55
4.4 The Utilization of Different Number of SPEScccooiiiiiiiniiiicce 58
5 SUMMARY AND FUTURE WORK ..ottt 62
REFERENC Eootiiiiiitteeiiteeeestteeesitteeeeseattteesassteeeaasssaeesaasseeesesnsseeesssssseeesssssseesssnseeeen 65

vii

viii

LIST OF TABLES

Table 2-1 Differences between PPE and SPE............cccooiiiiiiiiiiiieececceeeees 9
Table 2-2 Three primary mechanisms of interprocessor communicationceecueeveeennnenne 17
Table 2-3 The reason why we have SPE initiate DMA commands...........ccoceeveriereeneenicnnene 18
Table 2-4 The mailbox channels and their associated MMIO registerscccccvveveevueneennenne 19
Table 3-1 Data partitioning vs. functional partitioningcceecueerierieereeniieenie e 30
Table 3-2 Total size of table used IN JPEGc..cccoiiiiiiiiiniiiiiiecee e 32

ix

LIST OF FIGURES

Figure 1-1 Multi-chip module vs. Multi-COTre ProCeSSOT.......ccuveruiirriieriieiieeieeiie et 3
Figure 2-1 The block diagram of CBE ProCessor..........coccviiriiriinienenienienieeienieseeieeeeseees 8
Figure 2-2 Brief block diagrams of PPE and SPE.............ccccooiiiiiiiiiccceee, 9
Figure 2-3 The PowerPC Processor Element (PPE)..........cccoociiiiiiiiiiiieeee, 10
Figure 2-4 The synergistic processor elements (SPE)..........cocoviiiiniiinininicnnicccce 12
Figure 2-5 The functional units in SPUcociiiiiiiiiiiiiceceee e 13
Figure 2-6 The element interconnect bus (EIB)ccociiiiiiiiiiiiiieee e, 15
Figure 2-7 Maximum bandwidth of Cell processorc.ccocveviriiniiniriinicnieiccceceee 16
Figure 2-8 The APL Of DIMA ...ttt ettt 20
Figure 2-9 The API 0f MailbOX.....cc.coiiiiiiiiiiieie e 20
Figure 2-10 The cooperation of PPE and SPES.........cccccooiiiiiiiiiiiiiiicceecce 21
Figure 3-1 Port the Multimedia Application§ to-CBEc..cccooiiriiniiiiniineececee 25
Figure 3-2 Functional partitioning and data partitiomingccccceceeveevienienenneneeneenieneenn 27
Figure 3-3 The situation of LS in‘the multimedia decoding.............cccceevvenieninninicneencnnnn. 31
Figure 3-4(a) Data dependency i JPEG ... i b 33
Figure 3-4(b) Spatial data dependency inHZOA 0. ...l it neiiiiiiiiiceeee e 33
Figure 3-5 Data communication between LS and shared memorycccoceveriininnninnnn 35
Figure 3-6 Dataflow planning for multimedia decoding on Cellcocoeviriiiniininiinicnnn. 37
Figure 3-7 The input buffer is a ring StrUCLUTEc.eeviiiiiiiiiiieie it 39
Figure 3-8 The single output buffer...........cooioiiiiiiiii e 40
Figure 3-9(a) Single BUffering.........ccoooriiriiiiiiiiiee e 41
Figure 3-9(b) Double bUfferingc.oooiiiiiiiiiiiee e 41
Figure 3-10(a) The computation time of SPU is much less than the DMA time of MFC 42
Figure 3-10(b) The computation time of SPU is much more than the DMA time of MFC.....42
Figure 3-11 The I/O double BUffercoooiiiiiniiieeeee e 43
Figure 4-1 The code structure of experimental program..........cc.cccecceevieierieniiieneeniienieeieeee. 47
Figure 4-2 The double frame buffercccoeiiiiiiiiii e 48
Figure 4-3 The performance with combinations of optimization techniques.............c.cccoc...... 49
Figure 4-4 The transfer size per DMA command............ccccueeiiieniiiiiienieeiienie e 50
Figure 4-5 The size of output buffer..........coooeiiiiiiii e, 53
Figure 4-6 The double buffering for different transfer size per DMA command..................... 56
Figure 4-7 The double buffering for different output buffer size.........cccccoeeveiiiiiniiiiiinnnnn. 57
Figure 4-8 The improvement of double buffering compared to single buffering..................... 57

X1

Figure 4-9 The utilization of different number of SPEs (original version).....
Figure 4-10 The utilization of different number of SPEs (optimized version)

Xii

1 INTRODUCTION

The software-only solutions for media-rich consumer-electronics devices get more and
more popular. This kind of solution decrease-the development and manufacturing cost as long
as the performance meets the real-time tequirements of multimedia processing. The problem
is how to reach the required level of performance on an advanced processor-based platform

provided by the processor designers.

1.1 Multimedia Processing

The data rate and compression ratio of multimedia processing are improved as the
complexity of algorithm grows. In multimedia decoding applications, the high-definition (HD)
resolution is a basic requirement in many markets, such as DTV, multimedia games, and

multimedia playing on monitors. The even higher performance pursued by consumers make

engineers design more powerful devices while keeping the price low.

There are 3 major parallelisms in multimedia applications: instruction-level parallelism
(ILP), task-level parallelism (TLP), and data-level parallelism (DLP). These parallelisms
could be exploited by 3 techniques respectively: the multi-issue, the single instruction
multiple data (SIMD), and the multi-thread or multi-core architecture.

The high-end consumer electronics need to run versatile multimedia applications. For
examples, audio standards are AAC, MP3, Dolby Digital (AC3), etc. And multimedia
standards are M-JPEG, MPEG-1, 2, and 4, H.263, H.264, etc. Thus the implementation of
multimedia coding by software is a cost-effective solution. Processor-based architectures can
use software patches to keep up with new multimedia applications. However, conventional
single-core processor architectures are unable to provide sufficient computing power for
advanced real-time multimedia proc¢essing. Thus the parallelisms in multimedia applications
should be exploited by processoi-based system with high performance to meet the real-time

specifications.

1.2 Multi-core Processors

In the recent years, the processor industry has reached a new market of consumer
electronics and personal computers. In order to further improve the already high performance
of processor, the concept of multi-core on a chip comes out. With the improvement of
semiconductor processes, it’s possible to put many processing cores onto a single processor
chip [1]. This kind of processor is called as multi-core processor or chip multiprocessor. It
may be simply named as multiprocessor.

There are some reasons for this trend. First, the processor needs more effective

performance per Hz, i.e., the power would become the bottleneck of processor. The utilization

of more processors on a system was a common solution in the past. The multi-chip module
(MCM) belongs to this category. But with the help of semiconductor technology, the
integration of many circuits into a single chip is feasible. Figure 1-1 depicts this trend. The
processor designers could now improve the processor performance just by making a single
processor chip more compact, i.e., put more processing cores together on a chip. Furthermore,
many standards for audio and multimedia have the same functionality but are almost not used
simultaneously. These are the reasons why the general-purpose processors but not the
application-specific integrated circuits (ASIC) are the solutions of multimedia processing for
personal devices. Because the generic processors are broadly applicable, the cost of
development and production could be decreased. This is the motivation to design the
multi-core processor for performance in order to meet the real-time requirements of

multimedia processing.

Single Board Single Chip

Processor
Chip

Processor
Chip

Interconneciotn Network

Processor
Chip

Processing
Core

Processor
Chip

Processing
Core

Interconneciotn Network

Processing
Core

Processing
Core

Figure 1-1 Multi-chip module vs. multi-core processor

Cell, also known as the Cell Broadband Engine Architecture (CBEA), is a famous

multi-core processor created by Sony, Toshiba, and IBM (called STI). It’s a design project to

provide power-efficient and cost-effective high-performance processing for a wide range of
applications. It has been used in servers known as Cell blade, game consoles known as
PlayStation 3. Cell is the multi-core system where this thesis holds experiment.

With the advent of multi-core processors, the programmers and consumers may simply
think that the performance would increase linearly with the number of cores on a single chip.
However, it’s usually not the case as we expected. The potential problems are the level of
parallelism and the communication between each core. It’s a hard job to find a balanced
workload for each core. The communication in a multi-core system may become the
bottleneck when the communication time is too much or frequency is too high. Thus the key
point to improve the performance of a multi-core system to an acceptable and reasonable level

is task partitioning and communication between each core.

1.3 Thesis Organization

This work proposes a data partitioning scenario for media processing on Cell. The goal is
to improve the performance with the number of cores utilized on Cell as linearly as possible.
Namely, the number of frames per second of the decoding process is the performance index
while the number of cores utilized is increased. The rest of this thesis is organized as follows.

Chapter 2 reviews the experimental platform: Cell Broadband Engine (CBE). A brief
description of the architecture of Cell processor is the beginning. Two processing units called
as the Power Processor Element (PPE) and the Synergistic Processor Element (SPE), the
direct memory access (DMA), and the element interconnect bus (EIB) would be in the
description. Then the communication mechanisms and associate application programming
interface (API) are presented. A flow of porting the multimedia processing onto CBE is

shown after the introduction is made.

Chapter 3 proposes a frame-based data partitioning technique for multimedia processing.
A simple discussion of functional partitioning and data partitioning is presented. This chapter
provides the data management and dataflow planning for multimedia stream decoding on
CBE. The proposed technique tries to reduce the number of communication between each
core, i.e., it tries to avoid the data dependencies between each partition of data. The
optimization of data transfer via DMA is a key point to mitigate the communication burden
on EIB of CBE. This is considered in Chapter 3 and discussed in Chapter 4.

Chapter 4 experiments the size of DMA and the allocation of buffer in local store. After
the data management and dataflow planning implement as in Chapter 3, the details of data
transfer between the local store and shared memory need to be considered. The suitable
transfer size per DMA command and the I/O buffer allocation are found here. By the
co-working of dataflow planning and the optimization of DMA, the performance boots to an
expected level.

Chapter 5 summarizes this thesis and-provides the future work.

2 BACKGROUND

This chapter provides background.information-on topics related to this thesis. Chapter
2.1 gives an overview of the hardware platform, Cell Broadband Engine (CBE) [7][13][15].

Chapter 2.2 gives a flow of porting the multimedia decoding application onto CBE.

2.1 Cell Broadband Engine

The Cell Broadband Engine is the first incarnation of a new family of microprocessors
conforming to the Cell Broadband Engine Architecture (CBEA, or, informally, "Cell"). The
CBEA is a new architecture that extends the 64-bit PowerPC Architecture. The CBEA and the
Cell Broadband Engine are the result of collaboration between Sony, Toshiba, and IBM,

known as STI, formally started in early 2001 [2][3].

Figure 2-1 shows the block diagram of CBE processor hardware. The CBE processor is a
multi-core processor with 9 processor elements and a shared coherent memory on-a-chip. The
functionality of 9 processors can be specialized into 2 categories: the Power Processor
Element (PPE) and the Synergistic Processor Element (SPE). There are 1 PPE and 8 SPEs in
the CBE processor. In order to improve the productivity of PlayStation 3, only 6 SPEs are

available for the programmers.

SPE 1 SPE 3 SPE 5 SPE 7
A A A A
7 8 9 10 11
PPE 1o, ¥ y Y Y o, [OIF_ 1 @ FlexIO
6 EIB g o
XIO - <> <>
XIO <> MIC 5 A 4 4 4, } IOIF 0 |« FlexIO
A A/ A \
SPE 0 SPE 2 SPE4 SPE 6
EIB: Element Interconnéct Bus MIC: Memory Interface Controller
BEI: Cell Broadband Engine Interface IOIF: 1/O Interface
PPE: PowerPC Processor Element XI0: Rambus XDR I/O
SPE: Synergistic Processor Element FlexIO: Rambus FlexIO Bus

Figure 2-1 The block diagram of CBE processor

The PPE complies with the 64-bit PowerPC Architecture. PPE could run 32-bit and
64-bit operating systems and applications. On the other hand, the SPE is optimized for
running compute-intensive applications. The PPE and the SPEs could work in a collaborative
scenario. The PPE runs the operating system and the top-level thread control for applications.
The SPEs provide the computing power to boot the performance of applications. Brief block

diagrams of PPE and SPE are shown in Figure 2-2 [4].

PowerPC Processor Element (PPE) Synergistic Processor Element (SPE)

PowerPC Processor Unit (PPU) Synergistic Processor Unit (SPU)
L1 Instruction L1 Data
Cache Cache Local Store (LS)

PowerPC Processar Memory Flow Controller (MFC)
Storage Subsystem (FPSS)

L2 Cache DMA Controller

Figure 2-2 Brief block diagrams of PPE and SPE

The Cell processor could be viewed as a 9-way multiprocessor for the application
programmer. The PPE is suitable for control-intensive tasks and task switching. The SPEs are
suitable for compute-intensive tasks but not task switching. The more significant difference
between the SPE and PPE lies in how theyiaceéss memory. The PPE can access main storage
at all 264 memory addresses, also ‘called effective addresses (EA), with the help of caches.
The SPEs, in contrast, access main. storage-with the help of direct memory access (DMA)
commands directed explicitly by programmers. Each SPE has its own local store (LS) which
contains 256 KB. The LS is a scratchpad memory of each SPE and could be access by PPE or

other SPE via DMA. Table 2-1 summarizes some differences between PPE and SPE.

Table 2-1 Differences between PPE and SPE

Feature PPE SPE
Addressability 2% bytes 256-KB LS
Load Latency variable (cache) 6 cycles [20]

128-bit SIMD Registers 32 128
Doubleword SIMD no yes
Usage control computation

€ PowerPC Processing Elements

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC
processor with the vector/SIMD multimedia extensions. The PPE is responsible for overall
control of a CBE system and the operating systems. The PPE consists of two main units as
shown in Figure 2-3 [4]. The PowerPC processor unit (PPU) is the computation unit, and the

PowerPC processor storage subsystem (PPSS) is for the purpose of storage.

PPE
PowerPC Processing Unit (PPU)
Instruction Unit {IL Fixed-Point Unit (FXL) ‘ector and Scalar Unit {(WSU)
Branch Unit (BRU) Load/Store Unit (LSU) FPU+ VXY Register
Files
Level-1 (L1) Instruction Cache Level-1 (L1) Data Cache Memory Management Lnit
u + (MRALLY
v
32-byte loads
16-byte stores
PowerPC Processor Storage Subsystem (PPSS)

Lewvel-2 (L2) Unified Cache

16-byte loads and stores

Element Interconnect Bus (EIB)

FPU Floating-Foint Unit
VXU Vector Media Extension Unit

Figure 2-3 The PowerPC Processor Element (PPE).

The PPU could further divided into the following units.
* Instruction Unit (IU)

The IU contains a 2-way set-associative and reload-on-error L1 instruction cache with 32

10

KB. The cache-line size is 128 bytes. The IU performs the instruction-fetch, decode, dispatch,
issue, and completion portions of execution.
* Branch Unit (BRU)
The BRU performs the branch functionality.
* Fixed-Point Unit (FXU)

The FXU performs fixed-point operations, including add, multiply, divide, compare,
shift, rotate, and logical instructions.
* Load and Store Unit (LSU)

The LSU contains a 4-way set-associative and write-through L1 data cache with 32 KB.
The cache-line size is 128 bytes. The LSU performs all data accesses, including load and store
instructions.

* Vector/Scalar Unit (VSU)

The VSU contains a floating-point unit (FPU) and a 128-bit vector/SIMD multimedia
extension unit (VXU), which together-execute floating-point and vector/SIMD multimedia
extension instructions.

* Memory Management Unit (MMU)

The MMU contains a 64-entry segment look-aside buffer (SLB) and 1024-entry, unified,
parity protected translation look-aside buffer (TLB). The MMU manages address translation
for all memory accesses.

The PPSS contains a unified, 512-KB, 8-way set-associative, write-back L2 cache with
error-correction code (ECC). The cache-line size for the L2 is 128 bytes as the same as L1
cache-line size. The PPSS handles all memory accesses by the PPU and memory-coherence
(snooping) operations from the element interconnect bus (EIB). The PPSS performs
data-prefetch for the PPU and bus arbitration and pacing onto the EIB. There are MMU, L1
instruction cache, and L1 data cache of PPU getting data from PPSS by a shared 32-byte load

port. There are MMU and L1 data cache of PPU putting data to PPSS by a shared 16-byte

11

store port. The interface between the PPSS and EIB supports 16-byte load and 16-byte store

buses.

€ Synergistic Processor Elements

SPE

Synergistic Processing Unit (SPU)

Synergistic SLs —_—
Execution Unit Lo Eﬁ_lss.ltme
(SxU) 55C — Y

Memory Flow Controller (MFC)

w e

Channels and
SPU Command Qusus

3:1FIEEPI:1QE:F5;||: Direct Memary Access
Managament . Controller (DMAC)
(SMM) .
MMIO Registers and

Proxy Command Cueus

E

W v

Element Interconnect Bus (EIB)

MMIO Memory-Mapped /O Reqisters
SLS SPU Load and Store Unit
S5C SPU Channel and DMA Unit

Figure 2-4 The synergistic processor elements (SPE)

Each SPE is a 128-bit RISC processor for data-rich, compute-intensive applications. It
consists of two main units, the synergistic processor unit (SPU) and the memory flow
controller (MFC), as shown in Figure 2-4 [4]. The data interface consists of a 128-bit read bus
and a 128-bit write bus. The MFC can send up to 16 outstanding MFC commands. It supports

atomic requests and snoop requests (read and write) of the SPU’s LS memory and the MFC’s

12

MMIO registers.

Local

Store

(LS)

Synergistic Execution Unit (SXU)

I I
| Odd Pipeline |
| |
| |
| SPU Odd 2P Load SFPU SPU Channel I
I Fixed-Point and Store Control and DA I
[Unit Unit Unit Unit !
| (SFS) (SLS) (SCN) (85C) :
I |
| e + |
| |
| | SPU
| | Register File
|« | Unit
: : (SRF)
| |
| |
: SPU Even sPU !
| Fixed-Point Floating-Point :
| Unit Unit I
I (SFX) {SFP) I
I I
| |
I I

Even Pipeline

Figure 2-5 The functional units in SPU

Figure 2-5 shows the functional units in SPU. The SPU issues two instructions to its two
execution pipelines respectively. The pipelines are referred to as even (pipeline 0) and odd
(pipeline 1). The units in SPU could be pointed out as follows.

* SPU Odd Fixed-Point Unit (SFS)

The SFS executes byte shift, rotate mask, and shuffle operations on quadwords.
* SPU Load and Store Unit (SLS)

The SLS executes load and store instructions and hint for branch instructions. It also
handles DMA requests to the LS.

* SPU Control Unit (SCN)

13

The SCN fetches and issues instructions to the two pipelines. It performs control
functions such as branch instructions, arbitration of access to the LS and register file, etc.
* SPU Channel and DMA Unit (SSC)

The SSC manages communication, data transfer, and control into and out of the SPU.
* SPU Even Fixed-Point Unit (SFX)

The SFX executes arithmetic instructions, logical instructions, word SIMD shifts and
rotations, floating-point comparisons, and floating-point reciprocal and reciprocal square-root
estimations.

*SPU Floating-Point Unit (SFP)

The SFP executes single-precision and double-precision floating point instructions,

16-bit integer multiplies and conversions, and byte operations. The 32-bit multiplies are

implemented in software using 16-bit multiplies.

€ Element Interconnect Bus

Figure 2-6 [5] shows the element ‘interconnect bus (EIB), the heart of the Cell
processor’s communication architecture, which enables communication among the PPE, the
SPEs, main system memory, and external I/O. The EIB has separate communication paths for
commands and data. The EIB data network consists of four 16-byte data rings: two running
clockwise and the other two counterclockwise. Each ring allows up to three concurrent data
transfers, as long as their paths don’t overlap.

Bus elements request data bus to initiate a data transfer. The data bus arbiter gives the
first priority to requests coming from the memory controller to minimize the stalls of reading.
It treats all others equally in round-robin fashion. The arbiter receives these requests and
decides which ring should handle each request. It selects one of the two rings that travel in the

same direction of the shortest transfer to ensure that the data won’t need to travel more than

14

halfway around the ring to its destination. The arbiter also schedules the transfer to avoid the
interferences with other in-flight transactions. The EIB operates at the speed of half the
processor-clock. Each bus element could simultaneously send and receive 16 bytes of data

every bus cycle.

PPE SPE1 SPE3 SPE5 SPE7 101FA

2

Data network Data bus arbiter

-

iz
&

I !

BIF
MIC SPEO SPEZ SPE4 SPEe IOIED

BIF Broadband interface
[OIF 15D interface

Figure 2-6 The element interconnect bus (EIB)

The EIB’s maximum data bandwidth is limited by the rate at which addresses are
snooped across all units in the system. The rate is one address per bus cycle. Each snooped
address request can potentially transfer up to 128bytes, so in a 3.2GHz Cell processor, the
theoretical peak data bandwidth on the EIB is 128 bytes * 1.6 GHz = 204.8 Gbytes/sec. The
maximum bandwidth of Cell processor is summarized in Figure 2-7. However, the actual data
bandwidth depends on several factors: the relative locations of destination and source, the

new transfer’s interferences with in-flight transfers, and the efficiency of data arbiter, etc.

15

PPE SPEI SPE3 SPES SPE7 TOTF 1
PPU SPU SPU SPU SPU
A A A A A
512 GB 512 GB/s 512 GB/s 512 GB/s 512 GB
\ \ A \ A
PPSS LS LS LS LS
A A A A A A
25.6 GB/s 25.6 GB/s 25.6 GB/s 25.6 GB/s 25.6 GB/s
Y \ \ y Y Y
EIB (204.8 GB/s)
Yoseamis| Yosecmis| tosecmis| Yasecmis| tasecmis| b
\ Y Y y Y \
LS LS LS LS
A A A A
512 GBs 512 GB/s 512 GB/s 512 GB
\ A \ A
SPU SPU SPU SPU
MIC SPEO SPE2 SPEA SPE6 [OIF 0

¢

There are many attributes of the shared-memory system. The PowerPC processor
element (PPE) and all synergistic processor elements (SPEs) have coherent access to the main
storage. All communication mechanisms are implemented and controlled by the SPE’s
memory flow controller (MFC). The SPEs must explicitly use the following three
communication mechanisms: DMA transfers, mailbox messages, and signaling messages in

order to communicate with other bus elements in the system. Table 2-2 summarizes the three

Figure 2-7-Maximum bandwidth-of Cell processor

mechanisms mentioned above.

Inter-processor Communication

16

Table 2-2 Three primary mechanisms of interprocessor communication

Mechanism Description

Used for control communication from the PPE or other devices.
Signaling | Signaling utilizes 32-bit registers for one-sender-to-one-receiver

signaling or many-senders-to-one-receiver signaling.

Used for control communication between an SPE and the PPE or
Mailboxes | other devices. Each SPE has two mailboxes for sending and one

mailbox for receiving 32-bit messages.

Used for data communication between main storage and an LS of
DMA the SPE. The asynchronous DMA transfers of MFC hide the
Transfers | memory latency and transfer overhead by moving data in parallel

with SPU computation.

B DMA

An MFC supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16 bytes and
multiples of 16 bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, the source and
destination addresses must have the same 4 least significant bits (LSB). A single DMA
command could transfer up to 16 KB between an LS and shared memory storage.

The throughput of a DMA transfer when the source and destination addresses are
128-byte aligned is double as compared to that of a mis-aligned transfer within a cache line.
It’s because that the mis-aligned transfer is a partial cache-line transfer, and actually there
may be two bus requests for this transfer. Peak performance is achieved when the size of the
transfer is a multiple of 128 bytes and both the effective address (EA) and the local store
address (LSA) of the DMA transfer are 128-byte aligned. The following performance

guidelines for DMA commands in CBE could be made.

17

* Minimize small transfers

* Align source and destination addresses to a 128-byte cache-line boundary.

* Minimize the use of synchronizing and data-ordering commands.

» Have SPEs (not PPE) initiate DMA transfers. The reasons state in Table 2-3.

Table 2-3 The reason why we have SPE initiate DMA commands

Feature SPE PPE

Processor Amount 8 1

MFC Command Queue 16 8
Synchronization easy hard
of Cycles to Initiate a DMA transfer smaller larger

B Mailbox

Mailboxes take charge of the 32-bit messages between an SPE and other devices. There
are three mailbox channels of each SPE: two one-entry mailbox channels and one four-entry
mailbox channel. The SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt
Mailbox which belong to one-entry mailbox channels are used for sending mails from the
SPE to the PPE or other bus elements. The SPU Read Inbound Mailbox which belongs to
four-entry mailbox channel is used for sending messages from the PPE or other bus elements

to the SPE. Table 2-4 gives details about the mailbox channels and their associated MMIO

registers.

18

Table 2-4 The mailbox channels and their associated MMIO registers

SPU Write SPU Read SPU Write
Feature Outbound Inbound Outbound Interrupt
Mailbox Mailbox Mailbox
Channel Interface

Mnemonic SPU WrOutMbox | SPU_RdInMbox | SPU_WrOutlntrMbox
of Entries 1 4 1
R/W W R W
Width (bits) 32 32 32

MMIO Register Interface

Mnemonic SPU Out Mbox | SPU In Mbox | SPU Out Intr Mbox
of Entries 1 4 1
R/W R W R
Width (bits) 32 32 64

2.2 Programming on PPE and SPEs

Figure 2-8 shows the application programming interface (API) of DMA utilized in this

thesis and the associated direction. The SPE could use the API “mfc write tag mask™ and

“mfc_read tag status all” to wait for the completion of DMA commands. It’s noted that the

waiting time of DMA commands could be reduced by programmer, because the operation of

DMA and the computation of SPU are asynchronous.

19

A

Shared
Memory

A

Figure 2-8 The APl of DMA

Figure 2-9 shows the API of mailbox utilized in this thesis and the associated direction.

KRR

The PPE could use the API “spe.¢ ,to gather the information of SPU Write

Outbound Mailbox for each SPE s bundled with “spe_out mbox read”.
PPE use “spe out mbox_status’ e of SPU Write Outbound Mailbox and

receive the message via “spe_out _mbo

spe_in_mbox_write spu_read_in_mbox

spe_out_mbox_read all—ll) L spu_write_out_mbox
< e

spe_in_mbox_write spu_read_in_mbox

spe_out_mbox_read all—]i’ Lt spu_write_out_mbox
<1 |_|=

Figure 2-9 The API of mailbox

20

Figure 2-10 shows a common form of program which utilizes the PPE and SPEs on CBE.
The communication between PPE and SPEs is a significant factor of the system performance,
namely, the mailbox and DMA commands. It’s noted that the algorithm of application is
almost unchanged. The major works are the function offload of SPE’s code and the building

of communication scenario.

PPE side SPE side

™ initialization;
for each SPE, Initialize SP|/
create_spe_context;

/4 control = spu_read_in_mbox();

I/O_address = spu_read_in_mbox();
for each SPE, send input parameters; /

spe_in_mbox_write(SPEid, control);
spe_in_mbox_write(SPEid, /O address);{. mfc_get(input_LS_addr, | _address);

computation(control, LS_addr);

for each SPE, check output and commit;
spe_out_mbox_read(SPEid);

mfc_put(output_LS_addr, O_address);

spu_write_out_mbox(COMPLETE);

Figure 2-10 The cooperation of PPE and SPEs

It’s noted that the APIs used here are mentioned above. As shown in the pseudo code the
PPE maintains the thread-control and I/O behavior, and SPEs take charge of the computing
tasks. The starting and ending of computation on SPEs are activated by the mails between the
PPE and the SPEs.

The PPE is the manager of threads, and it creates the context for SPE. The program for
SPEs would be loaded and executed in this simplified step. Then the SPEs run to the waiting

for mails from the PPE. SPEs get what they want via mailboxes or DMA transfers from PPE.

21

The completing message would be send to PPE when the computing on SPE is done. The PPE
receives this completing message and knows that the SPE with SPEid is idle and ready for

next task.

22

23

3 FRAME-BASED DATA
PARTITIONING ON CBE

This chapter focuses on the data management of multimedia stream on multi-core system.
The platform is CBE, and the demonstration software is JPEG decoder. For a multi-core
processor, the data communication efficiency is a key factor of the overall performance.
Although the algorithm optimization and the special instruction of processor could improve
the system computing power, they are too specific and irrelevant to the architecture and
design concepts of multi-core. High performance can’t be achieved without the optimization

of data partitioning and dataflow on a multi-core processor.

24

3.1 Port the Multimedia Applications to CBE

For Cell, such a multi-core processor, a common flow of porting multimedia application
could be summarized as in Figure 3-1. At the beginning, a single-thread program is the most
original program in the first implementation. In this original program on the PPE, the
programmers could access all 2** memory address and the program runs sequentially. The
main purpose of the original program is to verify the functionality. It has a little chance to
meet the performance requirements of multimedia applications nowadays without

optimization.

A
 J

sequential program

multi-thread
program on
PPE

single-thread
program on
PPE

parallelization function offload

multi-core vectorized .
.. . dataflow optimized
» program on vectorization multi-core oo g
PPE and SPEs program optimization program

Y

A

parallel program

Figure 3-1 Port the Multimedia Applications to CBE

The program could be divided into threads and then becomes a multi-thread program.
This parallelization step should be done in a very careful way. In order not to reduce
performance, the threads should be load-balanced. In other words, the computing time of each
thread should be kept as close as possible. The processor core could then manipulate the

threads equally and easily. For advanced single-core processors, the multiple functional units

25

(FUs) in the processors could take charge of different threads simultaneously which is called
simultaneous multi-thread (SMT) processors. This approach exploits the thread-level
parallelism (TLP) to boots the performance by parallel processing among FUs.

For CBE, the threads could be allocated to the SPEs [6][21]. It’s noted again that the
SPEs are the computing engines in CBE. In this stage, the load-balanced threads which found
previously get significance. The SPEs are all homogeneous with same computing power.
Thus the threads should have equal computing time to achieve the balanced loading. There are
6 available SPEs in PlayStation 3 which in turn means that the number of load-balances
threads could be 6. This technique is called “function offload” and the key point is load
balancing. After function offloading, the multi-thread program becomes the multi-core
program and each thread on different processors runs in parallel [22][23].

There are commonly used optimizations, namely, single instruction multiple data (SIMD)
[17][18][19] and loop unrolling: This process: vectorizes the code to exploit the data-level
parallelism (DLP) and instruction-level parallelism /(ILP). The vectorized program executes
on multiple data in a single instruction. (SIMD) or consumes multiple instructions with
multiple functional units (FUs). The vectorization is a technique to reduce the computing time
of a single processor. In a load-balanced multi-core environment, the amount of performance
improvement in single processor by vectorization equals that in entire multi-core system. For
example, the 200% improvement gained from SIMD in single processor core within a
multi-core system, the overall maximum improvement of the entire system would never
exceed 200%. Even worse, the improvement of computation in a multi-core system would be
bounded by the communication between each processor core. The communication scenario is
a very important performance factor in multi-core system with limited communication
resource such as CBE.

The last step is to make a good dataflow plan to reduce the communication overhead

within the CBE. This stage could boot the performance a lot while the bandwidth of

26

communication resource is low. For example, if all components connect to a low bandwidth
bus, all traffic would appear in this single bus. The components wait for the data transfers to
continue their own computing tasks. In the worst case, component A could wait for all other
transfers until the last for itself. Then component B needs the computation result and would
wait even longer. The communication overhead would accumulate if there is a traffic jam in
the system. This thesis would utilize the frame-based data partition method and optimize the
dataflow to reduce such burden. After the effort from programmers, the resulting optimized

program is a vectorized program utilizing multi-core processor and running in parallel.

Processor 1 Processor 2 Processor 4
Data Data Data Data
4 3 2 1 | (Taskl » Task2 Task3 »{ Task4
Task6 Task5
Processor 3

Functional Partitioning

Processor 1 Processor 2
Data Data
1 » O %:%*Q 2 » O %:%*Q
Processor 3 Processor 4
Data Data
3 = O%%O 4 = O%%O
Data Partitioning

Figure 3-2 Functional partitioning and data partitioning

27

3.2 Functional Partitioning and Data Partitioning for

Multi-Core Processor

Intuitively, there are two ways to partition applications over a multi-core environment,
1.e., data partitioning [8][9] and functional partitioning [10][11][12] as illustrated in Figure
3-2. The left hand side of Figure 3-2 is function partitioning. A function is decomposed into
tasks, and tasks are grouped and allocated to single core of the processor. The right hand side
of Figure 3-2 is data partitioning. For example, we can divide a picture into partitions and
process each partition on a single processor. For a streaming application running on
multi-core processor, the bottleneck of system performance is generally determined by the
communication between each core:

The locality of data plays an important role in such an environment. At first, data should
be loaded to a local memory. Then all-operations are performed at local processor. Finally, the
result is transferred back to the shared memory at higher level. The input and output data
packets flowing into the local processor and the intermediate results should be no larger than
the comparatively small size of local memory. When the small local memory is occupied by
data and instruction together, and the application deals with large data sets and performs

complex algorithm, the data partitioning and management becomes a big challenge.

3.3 Comparison between Data and Functional

Partitioning

There are many points of view about the pros and cons of the twos types of application

28

partitioning. Some comparisons could be made between data and functional partitioning [8].

*Depending on the application, different approaches result in different communication
behavior. For data partitioning, communication overhead would occur because of the data
dependencies between the partitions; for functional partitioning, communication overhead
would occur between individual tasks on different processor cores.

* In the case of data partitioning, task-to-task communication remains locally on the core if
sufficient local memory size is available. Thus, data partitioning inherently results in locality
of data.

*It’s very common that the number of data partitions is larger than the number of processor
cores. Given sufficient data partitions, load balancing between processor cores comes in a
nature way; for functional partitioning, it’s not incommon that a certain task becomes a
system bottleneck due to imbalanced loads .of the processor. It strongly depends on the
granularity of the functional decomposition-into-tasks and takes a lot of work to find a clear
balanced partitioning point.

* Data partitioning provides scalability of software. For instance, a Standard-

Definition (SD) multimedia sequence can be decoded using 2 CPUs, whereas for HD
resolution 8 CPUs are needed. For functional partitioning, different throughput requirements
would affect the overall partitioning of the application, which results in laborious rewriting of
the software.

* In order to fully exploit the computational power of the specific processors chosen by
programmer, the application software needs to be optimized for instruction-level parallelism.
For functional partitioning, this purpose would take a great deal of effort in the way of
partitioning and the restructuring the software; for data partitioning, the partitioning remains
unchanged, since each processor cores executes the complete function. The comparison is

summarized in Table 3-1.

29

Table 3-1 Data patrtitioning vs. functional partitioning

Feature Data Partitioning Functional Partitioning

Communication

data dependency task dependency
between Partitions
Load Balancing nature balance need extra effort
Scalability good bad
partitions remain
Optimization re-partitioning
unchanged

The main issue that needs to be resolved for data partitioning, is the minimization of the
communication overhead for data dependencies between partitions. Furthermore, the
scheduling of the data partitionsthas to_be considered, since inter-dependencies impose
restrictions on the order in which the partitions can be-processed. The best way is making the
data partitions fully independent; althoughrthere should be a cost of occupying a room on
shared memory. This is the concept we.proposed on a desk-top level system like PlayStation3.
It is obviously that the advantages of data partitioning would become larger when the
application is very complex and the amount of processing data is huge. It’s just the case while

the multimedia coding standard becomes more aggressive with time goes by.

3.4 The Partitioning and Management of Multimedia

Decoding on CBE

First of all, the decision about what should be left in SPE and what should be left in PPE

must be made. The usual and recommended way is to move all computing part of an

30

application to SPE and leave the memory management part and system control task in PPE.
The most computing-intensive part is the decoding algorithm, so it is reasonable to put all
decoding function into SPE. For the input process, such as file reading, data packet
management and the formation of one frame should be put into PPE. The display process,
usually the last step in real time multimedia decoding, utilizes the frame buffer of shared
memory in PS3. This is absolutely a PPE task which manages memory and the peripheral.

The way of data management between encoded multimedia stream and decoded
multimedia frame is an important issue, especially when the local store (LS) is comparatively
too small for the stream or frame. The smoothness of dataflow is a basic requirement for high
performance and must be treated carefully. It’s depicted in Figure 3-3. Thus the design of

dataflow and allocation of buffers become the major concern in this chapter [16].

vid€o stream

storage frame

buffer

Figure 3-3 The situation of LS in the multimedia decoding

For SPE, the program and data both reside in a single 256 Kbytes LS, so the usage of
program memory earns the first glance. Thus the starting work is to minimize the code size of
which part would be placed into the SPE. This means that the loop unrolling and some other
techniques which trade the code size for the performance should not be used before the

porting on SPE.

31

After some surveys of open source code, we insure that the algorithm part in the program
of simple multimedia decoder usually would not excess the limited size of the LS. Typically
the resulting execution file with no compiler’s optimization on SPE is about 130 Kbytes. It’s
worthy to note that the CBE SDK provides a mechanism called “SPU Overlay” to support the
access of SPU overlay code sections located in the main memory. It can decompose the large
code into small segments and load with programmer’s will. However, this mechanism
degrades the performance due to the overhead of the loading of the code sections. Next, the
consideration moves from program to static data on SPE.

There is an amount of static data in the program of multimedia stream codec. Take JPEG
for example, the quantization table and the Huffman tree table are necessary. For the
quantization table, the luminance table and chrominance table are needed. For the Huffman
tree table, the luminance DC and AC table, the chrominance DC and AC table are needed.
Furthermore, the code lookup table.and the cede size table should be built from the above
Huffman tree table and the header information. The total size of tables used in JPEG is

summarized below:

Table 3-2 Total size of table used in JPEG

unit: bytes Luminance Chrominance Total
Table DC AC DC AC
Quantization 64*1 64*1 128
Huffman Tree | 16+12 | 16+162 | 16+12 | 16+162 | 412
Huffman Code | 512*%2 | 512*2 | 512*2 | 512*2 | 4096
Huffman Size | 512*%1 | 512*1 | 512*1 | 512*1 | 2048
Total 792 792 6684

32

There are still some heap data in the program. The heap size should also be minimized by
the programmer. However, heap data is highly application-dependent and not the significant
part of the local store. Thus the important thing of the programming in CBE is to keep the size
of program and heap small. In the roadmap of CBE, the size of LS may be enlarged with the
improvement of semiconductor technology. It’s good news for the methodology of data
partitioning. The programmers are more comfortable for the larger LS because that the more

processing data units could be pulled in and out from the shared memory each time.

| DC coefficient AC coefficients
v/\ :v/\ of DCT of DCT

] | | | []

SB/#I/S'IyZ/SB/#X/SB#z

| e— | | e— |
SB#3 | SB#4 | SB#3 | SB#4

MB #1 ! MB #2

Figure 3-4(a) Data dependency in JPEG

Intra Intra Intra
MV MV MV Dependency for the current MB:
Deb|lock Intra — intra-prediction
Intra |™> ¥V MYV — motion vector prediction
NVl urrent Deblock — deblocking filter
MB
Deblock

Figure 3-4(b) Spatial data dependency in H.264

The basic processing data unit in the multimedia processing is called “macroblock” (MB)

33

as described in section 2.2. The MB could be partitioned into sub-block. There are many
dependencies between MBs and/or sub-blocks. Figure 3-4 shows two examples. In the simple
case of JPEG, the DC value in DCT of this sub-block comes from the DC value of the
previous sub-block and the difference value which is encoded in this sub-block. Furthermore,
in H.264 the spatial data dependencies are the left, upper left, upper, and upper right MBs. A
total of 4 reference MBs are involved in the decoding of this MB. This dependent data should
keep in the LS until it’s useless to avoid the massive data reloading from the shared memory.
This is a very critical step after the minimization of program and static data. The number of
times of DMA in the multi-core system should be as small as possible. After the first
compilation of application, the remaining room in LS should be smartly utilized with these
basic data units.

In multimedia decoding the input is in the‘form of stream, and the variable length
encoding scheme makes the parallel processing at.input very difficult. For data partitioning
technique, the parallel processing is iat'data-level. To fully utilize the parallelism that data
partitioning has, the data level parallelism_should be shift to a level higher than MB. The
appropriate level of data parallelism is frame-level, and only in this way the variable length
decoding could be put into SPE. The entire decoding functions are now in SPEs, and the input
and output data management left in PPE as expected.

Move from the single PPE program to the SPE program, the MB-based multimedia
decoding algorithms are unchanged. The only difference is that SPEs cannot directly access
the shared memory. The shared memory of all system could be accessed by SPEs only with
the help of DMA. The scenario of data communication between each LS in SPE and the
shared memory is shown in Figure 3-5. The partitions at shared memory are divided into 2
categories: the multimedia stream and the frames. The partitions at LS are divided also into 2
categories: the input buffer and the output buffer. It’s noted that there are still program and

data storage in the LS which is not shown in the figure. The I/O buffer utilized the remaining

34

part of LS as described above. SPE reads the multimedia stream with input buffer and write to
the frame through output buffer. The reading and writing process between the LS and shared
memory carries out through DMA command (dashed lines in Figure 3-5). For decoding of
one frame, the I/O process at SPE runs many times because the size of multimedia stream and
frame is much bigger than the I/O buffer in size. Each SPE takes charge of the decoding of
one frame. The stream of one frame is represented as many chunks. Each chunk has the size
which equals the size of input buffer. Put it in another way, the input stream of one frame is
cut into pieces by the input buffer. Input buffer gets one piece per DMA command. The
relationship between output buffer and the frame in shared memory is similar. The details of

dataflow and buffer allocation are discussed in following sections.

frame ! frame
encoded encoded #(6n) #(6n+5)
frame #(6n) frame #(6n+5)
" — I |
QPR 1
[©2 BN 7 §
Variable Inverse Inverse Color Space
I.S1 A Length > Quantization [Trans- p Trans- >
Decoding formation formation
QSPE £
I 1L 12U
\ Variable Inverse Inverse Color Space
LS 6 & Length > Quantization [Trans- » Trans- >
P Decoding formation formation
[O]

Figure 3-5 Data communication between LS and shared memory

35

A basic multimedia decoding flow is placed in the SPE part of the figure. Variable length
decoding is the 1st function of decoder. The implementation of variable decoding often
involves lookup tables which must be stored in LS. The 2nd function is inverse quantization
which is very common in many multimedia applications and involves quantization tables. The
3rd function is inverse transformation which is usually a type of inverse discrete cosine
transformation (IDCT). The final function is color space transformation for the purpose of
display. The transformation from YCbCr to RGB is the most common color space
transformation being used. For advanced multimedia application, there would be more
functions between inverse transformation and color space transformation. The complexity of a
multimedia decoding algorithm largely depends on the processes in this interval. However,
the complexity and optimization of multimedia decoding algorithm are not the concern and
discussion in this article, i.e., the performance of decoding on a single core is not the issue

here. The focus is the data partitioning and dataflow planning for multi-core system.

3.5 Dataflow Planning for'Multimedia Decoding on CBE

The proposed dataflow planning for frame-based multimedia decoding on Cell is
summarized in Figure 3-6 below. Start from the input multimedia stream and end at the
display of frames. Partitioning of multimedia stream into encoded frame and dispatch to each
SPE is the first task of PPE.

The encoded frames in a multimedia stream are divided into groups. There are 6 frames
in each group. The reason why the number “6” is chosen here is obvious: there are 6 available
SPEs in PS3. The encoded frames are allocated to SPEs in a round-robin fashion, i.e., the
frame 1, 7, and 13... are allocated to SPE 1, the frame 2, 8, and 14 are allocated to SPE 2, ...

etc. It should be noted that the actually data size flowing in and flowing out of a single SPE

36

depends on the I/O buffer in LS. An entire frame cannot be pulled in or out the LS once a time
undoubtedly. Thus the I/O buffering is a significant issue in the design of multi-core

programming. This would be discussed in section 3.6.

file [~}

l > PPE
encoded frame#
[T J2]3J4]5T6]7]18[9JtoJmnJi2]13]14]
\\\
\\\\\ > DMA
~a
SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6
> DMA
Y Y Y A Y Y
[L7, | [28..] [39. | {410.. [{511,.. | [612,.. |
decoded frame#t
> PPE
Frame Buffer

monitor g :
e ;
.

Figure 3-6 Dataflow planning for multimedia decoding on Cell

The decoding mechanism needs 6 frame repositories in shared memory. Each SPE
utilizes its own frame repository thorough all decoding of frames. Each frame repository
occupies one RGB frame in size. The content in frame repository could be updated right after
the display of current frame. In some aggressive multimedia decoding standards such as

H.264, the data communications would cross the frames, i.e., inter-prediction or motion

37

compensation. In such case this decoding mechanism needs 6 larger repositories in shared
memory to accommodate the longer range of data dependency. It is feasible in desktop-level
computers such as PS3.

Finally the display process takes each frame from 6 repositories also in round-robin and
shows the frame on the monitor through the frame buffer in PS3. The PPE takes charge of the

frames’ movement from the 6 frame repositories to the frame buffer.

3.6 DMA and Buffer Allocation on CBE

For MFC of SPE, the transfer size of a single DMA command ranges from 1 byte to 16
K bytes. It would be a confusing problem for programmers to decide on how large the size
should be with DMA commands. Therefore; thé beginning of optimization is the transfer size
per DMA command. We keep -the size of input and output buffers constant and tune the
transfer size of DMA commands. Thesdetail-of experiment on different DMA size is shown in
the next chapter. Now, the buffer allocation and structure is considering.

The processing of each code is variable in length, thus a basic implementation is to read
one byte from the input stream each time until the code is valid. This method is feasible on a
single core system undoubtedly, but it’s dangerous for the multi-core system where massive
data communication holds. For CBE the DMA is not efficient enough. To get one byte each
time from the input stream at shared memory is a huge burden and would become one
performance bottleneck. This would be shown in the next chapter. Thus input buffer is
implemented as a ring structure as shown in Figure 3-7 and read from the file block-wise.
Now the reading of one byte each time accesses the input buffer in LS, not the shared memory
through DMA. The term “ring” means that the data in buffer is continuous across the half ring

boundary, and the access of this ring structure could be simply in a smooth way.

38

16K bytes

circular

DMA input buffer

SPU

Figure 3-7 The input buffer is a ring structure

It’s noted that the update of half ring is an input DMA command that could occur
anywhere depending on where the boundary checking and update places. The simplest way of
boundary checking and update is'to, check right after each reading of input buffer in LS.
However the boundary checking-and update could be move to a bigger block, namely, the MB.
It could be placed where the processmg of one-MB is complete. In this way the size of half
ring must be larger than the size of one MB in bytes, and the number of boundary checking
could be reduced. It’s a common case because that the MB size is usually not more than tens
of bytes.

For a decoding application, the output bandwidth is many times larger than input
bandwidth. The decoding procedure could simply be viewed as a decompression of a tightly
compressed data stream.

Because multimedia decoding is a MB-based algorithm, the output basic unit is MB. The
MB size commonly used is 16*16 = 256 points. Thus the output size is 256*3 = 768 bytes if
the red, green and blue colors are stored as 1 byte each (256 levels). There are 16 rows and
16*3 = 48 columns in one output MB. For a single DMA command, the access address should

be consecutive. To be more specific, the DMA command contains only the starting address

39

and the access size in bytes. The size of a single DMA command for output is set at 128 bytes.
The packing of pixels for display is done on PPE. The typical form of output buffer for
MB-based multimedia decoding algorithm is shown in Figure 3-8. The term “n macroblocks”
in the figure means the width of the output buffer in terms of the number of MBs. There are
16 pixels in each row of one MB, i.e., 48 bytes in each row for RGB 3 colors. The discussion

of how to set “n macroblocks” is left in the next chapter.

< ;I I#MBS \

T T
| |
output bufferin LS | : SPU
| | .
| |

DMA

Figure 3-8 The single output buffer

An improvement at output buffer could be made in this decoding scenario. The double
buffering is a technique to overlap the data transfer and the computation: the current result is
written to one buffer by SPE, while the previous result residing in the other buffer is sent to
the shared memory through DMA. The difference between the single buffering and double
buffering is shown in Figure 3-9. “MFC” refers to the memory flow controller and “SPU” to
the synergistic processing unit as mentioned in Chapter 2. SPU is busy at decoding while
MFC is busy at output DMA commands. There are two buffers in the double-buffering case,

in which MFC and SPU utilize buffer A and buffer B interchangeably.

40

SPU decoding 1 decoding 2 decoding 3 decoding 4
’ (buffer A) (buffer A) (buffer A) (buffer A)
MEC DMA 1 DMA 2 DMA 3 DMA 4
(buffer A) (buffer A) (buffer A) (buffer A)
time
Figure 3-9(a) Single buffering
SPU decoding 1 decoding 2 | decoding3 | decoding 4
’ (buffer A) (bufter B) (buffer A) (buffer B)
MEC DMA 1 DMA 2 DMA 3 DMA 4
(buffer A) (buffer B) (buffer A) (buffer B)
time

Figure 3-9(b) Double buffering

However, there are 2 situations in which the effects of double buffering are not so
attractive. Namely, the 2 asynchronous processes are very imbalanced in consuming-time.
These situations are shown in Figure 3-10. In Figure 3-10(a), the computation time of SPU is
much less than the DMA time of MFC. This is what this thesis focuses on. It is noted that the
DMA time of the multi-core system increases in a multiple trend with the number of cores.
There are 6 SPEs in CBE, and the DMA time should be 6-fold as compared to 1 SPE. The
total system performance is bounded if the DMA time is much larger than the computation
time, 1.e., the utilization of 6 SPEs couldn’t have 6-fold speedup as compared to that of 1 SPE.
This is the critical problem which must be solved in the multi-core system. The DMA and the
associated buffer allocation would be discussed in the followings.

The other situation is shown in Figure 3-10(b), where the computation time of SPU is
much more than the DMA time of MFC. This situation is solved by the optimization of
decoding algorithm and the utilization of chosen processor. The commonly used techniques

are single-instruction-multiple-data (SIMD), loop unrolling, and some special extended

41

instructions. It’s not the point discussed here.

decoding 1 decoding2 decoding3 decoding 4
(buffer A) (buffer B) (buffer A) (buffer B)

SPU

DMA 1 DMA 2 DMA 3 DMA 4
(buffer A) (buffer B) (buffer A) (buffer B)

<
i
e

time

Figure 3-10(a) The computation time of SPU is much less than the DMA time of MFC

decoding 1 | decoding?2 | decoding3 | decoding 4

SPU (buffer A) (buffer B) (buffer A) (buffer B)

MFC

DMA 1 DMA 2 DMA 3 DMA 4 time
(buffer A) (buffer'B) (buffer A) (buffer B)

Figure 3-10(b) The computation time of SPU is much more than the DMA time of MFC

The implementation of double buffering for multimedia decoding is shown in Figure 3-11.

There are 2 pairs of data movement depicted as the arrows. Pair A is the upper left and the
bottom right arrows and Pair B is the upper right and the bottom left arrows. These 2 pairs
take place in a ping-pong fashion, and the computation and DMA could utilize 2 buffers
respectively at the same time.

The 2 halves of input ring buffer operates cooperative. When the address of this ring
buffer excesses the total size, it wraps around and starts at the beginning of ring. The ring

buffer updates half each time. When the access address excesses the half boundary, the other

4

half which is non-accessed updates by reading half size of data from the input stream. The
basic unit of the size of input ring buffer is 128 bytes. The reason and the associate discussion

are provided in Chapter 4.

16K bytes

circular

DMA . SPU
input buffer
16K bytes
MBs
\)
T T T -¢
L e
outp:ut buffer iln LS | .
. | | |
[t 1 ! ! -
DMA SPU
T T T T -t
| | | | I —
! outp:ut buffer iln LS | :
: : : | .
A

Figure 3-11 The 1/O double buffer

The double buffering matches the property that DMA transfers are asynchronous to SPE
computation. It’s noted that this technique double increase the output buffer size. There may
be a situation that double buffering isn’t feasible in such limited LS in SPE. It’s a tradeoff

issue of memory storage and the performance.

43

44

4 EXPERIMENTAL RESULTS

This chapter provides the experimental results.ofdifferent size of DMA transfers and the
allocation of I/O buffer. The experimental-environment is shown below.
€ Instrumentation

B PlayStation 3

B Linux kernel: 2.6.16 (Fedora) [14]

B HD monitor
€ System input

B 1080p motion JPEG sequence
€ System output

B 1080p decoded frames displayed on monitor

The code structure of experimental program is shown in Figure 4-1. The PPE controls
the decoding task on each SPE, and the SPEs take charge of the decoding of frames. The PPE
first create the spe context for each SPE to start the running of SPE program. SPE freely runs

to the location waiting for the I/O address from PPE. The PPE sends the I/O address to SPE

45

needed for the decoding of one frame. The SPE continues computing after the reception of
mail from PPE. When the decoding task is done the SPE sends a mail to PPE informing about
the completion. The PPE display the decoded frames after the reception of completion mail
and send another I/O address to the idle SPE. The detail operation for PPE and SPE side is
made below.

At first, the PPE side is considered. PPE accumulates 6 encoded frames from the input
stream and allocates them to 6 different SPE threads. The PPE mail the memory pointers of 6
encoded frames and the 6 frame repositories to individual 6 SPEs. After this initial sending of
mails PPE waits for the response of one SPE. The actual meaning of response is the
completion mail sent by SPE to PPE. When PPE knows the decoding of one frame is done,
the display procedure follows.

The display procedure fills the-RGB color pixels into the frame buffer of PS3 system.
This procedure takes about 1/120 seconds per.1920*1080p frame. Thus the display procedure
would only slightly degrade the petformance-and not be the critical part of multimedia
decoding.

After the display of frame, the returned SPE which completes its decoding gets another
encoded frame pointer. The returned SPE continues on the decoding job activating by this
mail from PPE.

If there are still frames need to be decoded, PPE waits for another comeback of one SPE
and repeats the flow described above. If all frames are sent to SPEs, PPE goes to the final step.
PPE waits the completion mail from all SPEs and display the last frames. The overall
decoding ends.

As for the SPE side, SPEs could be viewed as servants of PPE. The practical
implementation in SPE is an infinite loop starting from the reception of mail and return to the
loop at the sending of completion mail. SPEs get the mail containing the input encoded frame

pointer and the output decoded frame pointer from PPE. Then SPE knows where to get the

46

input and put the output in shared memory. SPE starts running the decoding function when

the PPE sends this information to it. At the end of decoding of one frame SPE sends a mail to

PPE to tell PPE the completion.

PPE side

fd = open_device;
get_screen_info;
get fb_control;
read file;

for each SPE, initialize SPE;
create spe_context;

for each frame, send input parameters to SPE;
spe_in_mbox_write(SPEid, I/O_address);

for each frame, commit and display;
spe_out_mbox_read(SPEid}; \

fill frame buffer(resolution);
wait_for_vsync;
output the content in fb;

=

}

SPE side

¢ initialization;

while(1) {

I/O_address = spu_read_in_mbox();

for each macroblock in one frame {
mfc_get(input_LS_addr, |_address);

decoding process(LS_addr);

mfc_put(output LS addr, O_address);

spu’_write_out_mbox(COMPLETE);

Figure 4-1 The code structure of experimental program

The frame buffer is a double buffer and it could be viewed in 3 layers. The first layer is

application layer which is controlled by programmers at top level. The control registers could

be modified by users manually to enhance the controllability of frame buffer. The

performance is improved by this way without the usage of application programming interface

(API). The second layer is kernel layer which is handled by operating systems (OS). The

communication and operation mechanisms between Cell processor and graphic processing

unit (GPU) are automatically controlled by kernel. The frame buffer is a virtual memory, and

47

it’s managed by kernel. The third layer is GPU layer which is the heart of graphic computing
and display. There are double frame buffer in GPU, and the content is delivered by kernel via

DMA. GPU provides the display on monitor. The schematic of these 3 layers is shown in

Figure 4-2.
Application L decoder 4
-
B A
v v
Kernel frame buffer 0 frame buffer 1
ene on XDR on XDR
A B
y v
frame buffer 0 frame buffer 1
GPU on GPU on GPU
B \ / A
Monitor

Figure 4-2 The double frame buffer

The arrows A and B represent the double buffering operation mechanism. When
application is busy writing results to frame buffer 0 on shared-memory (Rambus, XDR), the
frame buffer 1 on XDR moves its content to frame buffer 1 on GPU via DMA, and the pixels
displayed on monitor comes from frame buffer 0 on GPU. Then the frame buffer flips to the

other one and follows the mechanism described above. It’s noted that the computing time of

48

display isn’t included in the decoding statistics below.

There are 3 optimization techniques applied in this thesis. They are vectorization,
parallelization, and dataflow optimization. The performance with combinations of these
techniques is shown in Figure 4-3. The unit of y-axis is frames per second (fps), and the

x-axis represents the optimization techniques.

fps
A
110 108.9

100
90
80
70
60
50 46.8
40
30
20

10.0

10 5.1 4.7
0
Original Vectorization Parallelization — Parallelization Parallelization Parallelization

Dataflow Opt. ~ Vectorization ~ Vectorization
Dataflow Opt.

52.3

\/

Figure 4-3 The performance with combinations of optimization techniques

The experiment is divided into 4 categories as the followings.
The transfer size per DMA command
The size of I/O buffer

The double buffering

* & O o

The utilization of different number of SPEs

49

The purpose of this experiment is to find the appropriate transfer size of DMA
commands and the associate buffer. In the multi-core system, the communication between
each core plays an important role. The performance is highly dependent on the behavior of
DMA. The optimized results summarize in the final section with the number of utilized SPEs

going from zero to six.

4.1 The Transfer Size per DMA Command

In this experiment, the purpose is to find the appropriate transfer size of DMA command
on CBE for multimedia decoding applications. The input end is a variable-length reading
process and the output end is a block writing process. The input ring buffer reads the stream if
the data pointer crosses the boundary of half ring, and the output buffer writes the result to

shared memory after the decoding of each MB.:“Thg¢ detail is described in Chapter 3.

fps

- 1065 1065
110 103.6 1055 — 1027 1014 gs

100 %8 —
80 79
70
60
50
40
30
20

39.7

» bytes
8 16 32 64 128 256 768 768*2 768*4 768*8 768*12

1 macroblock 12 macroblocks

transfer size per DMA command

Figure 4-4 The transfer size per DMA command

50

The unit of y-axis is frames per second (fps), and the unit of x-axis is byte. The size of
input buffer size is set at 16 K bytes, and size of output buffer is set at 768*12 = 9216 bytes
(the size of 12 output macroblocks). The transfer size per DMA command is changed from 1
byte to 768*12 = 9216 bytes as shown in Figure 4-4.

The considerably poor performance comes from many DMA transfers with small size of
data. The issuing of DMA commands and the data shuffling consume much time in data
movement by small transfers. When the transfer size per DMA command is 32 bytes, the time
spent on DMA comes to an acceptable level because the computation time on SPU dominates
the overall performance.

This figure shows that the performance improvement by DMA size saturates at the
location “128 bytes”. This result makes sense for the CBE. The DMA commands favor the
128-byte transfers. This size is thesame as the L2 cache-line size. IBM suggested that, for
high performance, the access of memory should be 128-byte alignment, and the size should be
an even multiple of 128 bytes. The little degradations at 768 bytes and its multiples conform
to the fact that 768 is not a multiple of (128x2"). The degradation should be noted. Even
though the number of DMA command issuing is decreased after 768 bytes, the performance
doesn’t scale up but drops. Thus the DMA transfer command with size not a multiple of
(128%2") should be avoided as possible as we can.

It could be summarized that the issuing of DMA commands with transfer size larger than
128 bytes gets nothing better. A DMA command with transfer size larger than 128 bytes
would be divided into transfers whose sizes are all 128. Put it in another way, the basic unit of
DMA transfers is 128 bytes. Although the improvement among 32~128 bytes is not high, the
improvement in the multi-core system could become obvious when the DMA rate of
advanced application with higher data compression is increasing. In other words, the
improvement of system performance would be multiplied if the communication burden

becomes heavier or data rate becomes higher. The issues of DMA commands with small

51

transfer size should be avoided as many as possible. The number of DMA commands would
significantly influence the system performance, so the programmers must reduce the number

of DMA commands to a suitable amount.

4.2 The Size of I/O Buffer

In this experiment, the purpose is to find the appropriate size of 1/O buffer in a
multimedia decoding application. It’s noted that the input is variable-length. Thus the input
buffer is set at a fixed size and the size must bigger than one input macroblock. The size of
one input macroblock is usually tens of bytes, as compared to the size of output macroblock
which is 768 bytes. The update of input buffer could take place in every beginning of
decoding of one MB. For simplicity and safety; at first the input buffer size is set at 16K bytes
as the same as that in section 4.1. The transfer size pet input DMA command is fixed at 16K
bytes which is the appropriate size explored-in-the first experiment, to be more specific, 16K
is a multiple of (128 x2"). The transfer size per output DMA command is 128 bytes if the size
of output buffer is less than or equal to 128 bytes. Otherwise, the transfer sizes of DMA
commands approach the multiple of (128 x2"). For example, 768 bytes should be divided into
512 bytes and 256 bytes and transferred with 2 DMA commands separately. The reason why
the division is made comes from the observation in the 1st experiment.

The unit of y-axis is frames per second (fps), and the unit of x-axis is byte. The size of
output buffer is changed from 16 bytes to 9216 bytes as shown in Figure 4-5. It should be
noted that the DMA transfers are aligned transfers in CBE. To be more specific, the 4 least
significant bytes (LSB) of the source and destination address must be the same. Thus the
minimum buffer size could be used is 16 bytes. The size of one MB is 768 bytes contains

RGB pixels. The maximum buffer size chosen here, namely, 9216 bytes comes from 12

52

macroblocks. In Figure 4-4, we found that the performance saturates when output buffer size
is 768 bytes. The bad performance at 16, 32, 64 bytes comes from the same reason stated in
previous experiment. The number of DMA commands issued is larger, and the SPU should
wait for the completion of DMA transfers each time while the buffer is full within the
decoding of one MB. The latter is also the reason why the performance at 128 and 256 bytes
is worse than that at 768 bytes, even though the number of DMA commands issued is the

same.

fps

110 1067 1071 1072 107.2 1072
1033,
1003

100 92.9
90
80
70 641
60
50
40
30
20
10

80.7

» bytes
16 32 64 128 256 768 768*2 768*%4 768*8 768%12

1 macroblock 12 macroblocks

output buffer size
Figure 4-5 The size of output buffer
The performance doesn’t scale with larger size of output buffer. The performance

saturates at 768 bytes. The reason is that the time of data transfer is almost unchanged for size

of output buffer greater than 768 bytes. The range of data locality is limited within a single

53

MB, i.e., the computing of this output MB doesn’t need the information from the other output
MB. The DC value of DCT from previous MB is kept right after the Huffman decoding. On
the other side, the performance drops because that the number of DMA commands issued
exceeds the depth of command queue with smaller output buffer. The memory flow controller
(MFC) would stall the execution until all issuing DMA commands are queued. The summary
could be made. The issuing of DMA commands should never exceed the maximum capacity
of DMA command queue. The associate buffer size needs not to be the largest size occupying
all the remaining room in the small LS. The programmers would not have to leave a
considerably huge buffer size of an application. The bandwidth of CBE and the DMA
efficiency achieves its maximum capability at a point earlier than we expect. Although the
programmers could simply assign all the rest of unused LS to the buffer, it is unnecessary and
would make a large modification with the growing of application, i.e., the usage of LS for
algorithm is increased and the-rest of LS which' left for buffer allocation is decreased
therefore.

As for the size of input buffer, we set the size of output buffer to 768 and 768*2 and find
the best combination of I/O buffer. It’s reasonable that we search the size of input buffer after
output buffer. Note that the output bandwidth is almost 20-fold larger than input bandwidth.
The input buffer size is a minor effect on system performance. The experimental results not
shown here present that the size of input buffer almost has no influence on the system
performance. As for we know the fact that the maximum transfer size of a DMA command is
16K bytes, it’s reasonable that the size of input buffer is simply set as 16K bytes. The input
buffer could be filled up by a single DMA command and only occupies one slot maximally of
DMA command queue.

In the multimedia decoding applications, the summary is that the entries of DMA
command queue should be never overflowed. The decoding time of each MB is almost

equaled, so the issuing rate of DMA commands could be amortized as long as the queue is not

54

overflow. That’s the reason why the performance results at 768 bytes or lager are almost the
same. The arbitration mechanism in EIB is round-robin, so the 6 queues in MFC of 6 SPEs
would get the EIB resource in a fair way. The best way is always trying to fill up the DMA
queues and simply waiting for the arbitration granted next time. It’s should be noted again
that the I/O buffer doesn’t have the necessity to occupy all remaining capacity of the small

local store (LS). This utilization of LS by brute force is neither an easy nor good idea.

4.3 The Double Buffering

The concept of double buffering is that the content of one part is updating while the
content in the other part is transferring to outside place. The overlapping of computation and
transportation is the goal of double buffering téchnique. The detailed description is provided
in Chapter 4.

The input buffer is a ring structure, - Thering is divided into two halves. The output buffer
is a ping-pong buffer, i.e., the two parts ofioutput buffer operates interchangeably. In the
previous experiment, the input and output buffer structures are single buffer. The purpose of
this experiment is to find the performance improvement by double buffering. The experiment
divides into 2 parts.

In Figure 4-6, the experiment holds on different transfer size per DMA command. The
size of input buffer is fixed at 32K bytes, and the size of output buffer is fixed at 18432 bytes.
It’s just the double size in Ist experiment. The figure reveals 2 facts. Although the data
communication time is very huge for transfer size among 1~8 bytes, the double buffering
can’t do any help. The huge DMA time here comes from the queuing delay because the DMA
command queue overflows. The double buffer couldn’t ease the queuing delay. On the other

hand, the data shuffling time could be reduced by the double buffering effect as shown for

55

transfer size bigger than 768 bytes. The reason is that the data shuffling is handled by MFC

asynchronous to the computation handled by SPU.

fps

110] 106.2 108.2 108.6 108.7

101.3]]
100 e 03.4 105.5 069 . 01.4 99.5
98 .

90 0
80 —
70 77.9
60
50
40
30

20

194
8.2 19.2
10} 35 ’_‘
0 53
1 4

105 105 104.8 1022

I
|
|
|

40.4

» bytes
8 16 32 64 128 256 768 768*%2 768*4 768*8 768*12 Y

1 macroblock 12 macroblocks

transfer size! pery DMA command

Figure 4-6 The double buffering for diffefent transfer size per DMA command

In Figure 4-7, the experiment‘ holds.on different output buffer size. From the summary in
Ist experiment, the transfer size per DMA command is set at 128 bytes. The size of input
buffer is fixed at 32K bytes. The size of output buffer is changed from 32 bytes to 18432
bytes. It’s just the double size in 2nd experiment. The result of previous experiment on single
output buffer is also in this figure for the purpose of comparison. The unit of y-axis is frames
per second (fps), and the unit of x-axis is byte. It’s noted that the x-axis keeps the same as
Figure 4-5 for clarity, and the actual buffer size is doubled since the double buffering is
utilized. The performance saturates at 1536 bytes as the case in the 2nd experiment (768 bytes
for single buffer). The improvement provided by double buffering ranges from about 25% to

1.6% as shown in Figure 4-8.

56

fps

110
100
90
80

80.4

92.8

100.2

104.6

70
60
50
40
30
20
10

64.1

80.7

92.9

100.9

106.7

103.3

108.6

108.9

108.9

108.9

108.9

107.1

107.4

107.4

107.4

16

improve (%)

b x5

25

20

15

10

32

64

128

256

768 768*2 T768*4 768*8 768*12

1 macroblock

> bytes

12 macroblocks

output buffer size

Figure 4-7 The doublé bdfférmg.for different output buffer size

15

7.9

=1
.

P

4.3

3.3

18 1.7 1.6 16 16

16

32

64

128 256 768 768*2 768*4 768*8 768%12

1 macroblock

output buffer size

12 macroblocks

Figure 4-8 The improvement of double buffering compared to single buffering

57

> bytes

The improvement descends as the size of output buffer rising. This shows the actual
contribution where the double buffering gives. The time spent on DMA could be divided into
2 parts. The 1st part is the time from the issuing to the committing of DMA command, and the
2nd part is the time that actual data transfer spent on EIB. The double buffering technique
only improves the 2nd part. It overlaps the time of data transferring and computation. As the
statement before, if the size of output buffer and associate transfer size per DMA are greater
than or equal to 128 bytes, the transfer size is automatically divided into units of 128 bytes.
This means that the time spent on EIB is the same for the cases where the sizes of output
buffer are greater than 768 bytes. When the output buffer size is less than 128 bytes, the time
of data transferring is multiplied. For example, the time of data transferring whose output
buffer size is 64 bytes doubles that whose size is 128 bytes. The poor improvement for sizes
of output buffer greater than 768 bytes comes from. the fact that the DMA time is very small
in these settings.

The improvement at peak performance-(768 bytes) is less than 2%. This result tells that
the output double buffer actually ‘works but not so attractive. The tradeoff should be
considered. In order to gain the about 2% improvement, the memory usage raises to 200% for
output buffer. However, it’s reasonable to make this tradeoff if remaining capacity in LS at

last is still large enough.

4.4 The Utilization of Different Number of SPEs

This experiment shows the performance scaling with the number of SPEs. The first
experiment in this section is an original code. This original code is the beginning of
multi-core program mentioned in Chapter 4. The concept of memory is still the

shared-memory model. The access to memory is masked by the API of Cell, i.e., it’s a simple

58

DMA command without any buffering structure. The transfer size of input and output DMA
command equals to the size of memory access in single-core program on PPE. The
accumulation of DMA transfer is not applied here, and the size of DMA command is the same
as that of the output variable. The experiment result is shown in Figure 4-9. The performance
with 0 SPEs means the decoding is a single core program on PPE. It’s obvious that the
performance grows slowly and isn’t direct proportional to the number of SPEs. Even worse,

the performance with 6 SPEs is not better than that with single PPE.

fps
A

20

15

10

5 > 22 34 4.1 45 4.7 4.7

’ 0 ,Tl ,j\ 3 4 5 6 » # SPEs

(PPE)

Figure 4-9 The utilization of different number of SPEs (original version)

The result in Figure 4-9 reveals a common problem in multi-core programming, namely,
the multiple of improvement is much less than the number of utilized cores. However, this is
not surprised in the multi-core system if we look inside the architecture. The communication
resource is a limiting factor of system performance because that the bandwidth is limited in all
multi-core systems. For CBE the data communication is supported by element interconnect
bus (EIB) mentioned in Chapter 2. All data transfers should go through the EIB to other
elements. It’s almost impossible to achieve the best performance without dataflow planning

and optimization. The performance with 6 SPEs is no better than that with a single PPE in this

59

experiment.

The result after all the optimization experiment in previous section is shown in Figure
4-10. The size of input double ring buffer is 32K bytes, and that of output double buffer is
1536 bytes. The transfer size of input DMA command is 16K bytes, and the output DMA
commands are 2 commands with 512 and 256 bytes respectively. As shown in the figure, the
performance with 6 SPEs is 6-fold with respect to 1 SPE. It’s what we expect in a multi-core
system. The final results boots the performance about 20-fold as compared to the case of

single PPE.

fps

A

110
100
90
80
70
60 53
50
40 35.8
30
20
10 5.1
o ——1 ~ # SPEs

(PPE) 2

108.9

91.2

71.1

18.2

Figure 4-10 The utilization of different number of SPEs (optimized version)

60

61

5 SUMMARY AND FUTURE WORK

In this thesis, a frame-based data partitioning for-multimedia processing on PlayStation3
is utilized. The dataflow planning starts from-the input stream dividing by the PPE. The PPE
allocates the encoded frames to the"6 SPEs in-round-robin fashion. Each SPE is responsible
for the decoding of an entire frame. The SPE returns the decoded frame and the PPE display
the contents in the frame buffer. When all frames are returned, the PPE ceases the decoding
process and destroys the threads.

The communication scenario is very important in a multi-core system. There are two
mechanisms: mailbox for message passing and DMA commands for data transfers. The
number of times of message passing between the PPE and the SPEs is reduced to 2 per frame.

The discussion of transfer size per DMA command and the according buffer allocation is
experimented. The appropriate transfer size per DMA command is 128 bytes which conforms
to the design of DMA controller on CBE. It’s found that an output buffer with 16*16*3 = 768
bytes which is the size of 1 output macroblocks is good enough. The input buffer is a ring

structure whose size is 16k bytes. The I/O buffer is implemented as single buffer if the local

62

storage is not big enough, and the tiny profit of performance with double buffering could be
ignored. The key point is that the DMA command queue has 16 entries. It’s important to note
that the overflow of command queue would incur the queuing delay. The marginal utility is
negligible if the size of the I/O buffers is increased.

In this thesis, it’s supposed that the data dependencies only exist within a single frame,
i.e., the inter-frame issues aren’t discussed here. However, the proposed concept and
optimization could be extended. For some advanced multimedia applications, such as H.264,
the inter-frame prediction is the most complex part. The data dependency between frames is
bounded in the so-called group of pictures (GOP). The GOP-based data partitioning could be
implemented in a desktop level system such as PS3. The optimization of DMA commands

and I/O buffer allocations is also applicable for this advanced decoding standard.

63

64

REFERENCE

[1] L. Benini and G. De Micheli, "Networks on chips:-a new SoC paradigm," Computer, 35,
pp. 7078, 2002.

[2] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy, “Introduction to the
Cell multiprocessor,” in IBM J. RES. & DEV. VOL. 49 NO. 4/5, 2005.

[3] Cell broadband engine programming tutorial version 2.1, IBM, 2007.
[4] Cell broadband engine programming handbook version 1.1, IBM, 2007.

[5] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communication network:
built for speed,” published by the IEEE Computer Society, 2006.

[6] SPE runtime management library version 2.1, IBM, 2007.
[7] Cell broadband engine SDK libraries overview and users guide version 2.1, IBM, 2007.

[8] E. van der Tol, E. Jaspers, and R. Gelderblom, “Mapping of H.264 decoding on a
multiprocessor architecture,” Proceedings of SPIE, volume 5022, 2003.

65

[9] Y. Pu, C. Long, and R. Jianhua, “Porting practices: compute-intensive applications,” IBM,
2007.

[10]J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “H.264 HDTV decoder using
application-specific networks-on-chip,” Multimedia and Expo, 2005.

[11]F. Petrini, G. Fossum, J Fernandez, A.L. Varbanescu, M. Kistler, and M.

Perrone, ”"Multicore Surprises: Lessons Learned from Optimizing Sweep3D on the

CellBroadband Engine,” in Parallel and Distributed Processing Symposium, 2007

[12]8S. Olivier, J. Prins, J. Derby, and K. Vu, ” Porting the GROMACS Molecular Dynamics
Code to the Cell Processor,” in Parallel and Distributed Processing Symposium, 2007

[13]T. Chen, R. Raghavan, J. Dale, and E. Iwata, ” Cell Broadband Engine Architecture and
its first implementation: a performance view,” IBM, 2005

[14]J. Bartlett, ” Programming high-perforiance applications on the Cell BE processor, part
1: an introduction to Linux on.the PLAYSTATION 3,” IBM, 2007

[15]8S. K. Krewell, "Cell moves:into the linielight,” Microprocessor,2005

[16]D. Brokenshire, “Maximizing the power of the Cell Broadband Engine processor: 25 tips
to optimal application performance,” IBM, 2006

[17]C/C++ language extensions for Cell Broadband Engine architecture version 2.4, IBM,
2007

[18]PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension technology
programming environments manual version 2.07, IBM, 2006

[19]Cell Broadband Engine architecture version 1.01, IBM, 2006

[20]D. Pham et al, “Overview of the Architecture, Circuit Design, and Physical
Implementation of a First-Generation Cell Processor,” IEEE Journal of solid-state
circuits, 2006

[21]M. Ohara et al, "MPI Microtask for programming the cell broadband engine processor,”
IBM Systems Journal Volume 45, 2006

66

[22]M. Gschwind, “The Cell broad engine: exploiting multiple levels of parallelism in a chip
multiprocessor,” IBM research report, 2006

[23]Barry Wilkinson and Michael Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers, Prentice Hall, 1999

67

o W

MAE D 1982 & 12 % 22 p M43t 043 2005 #P~{F R i A8 73125 &

F1Ee BT LML A F TS 18 YT L 02007 # LRI AR E
T BRERLE j&;;;{,gm? % PlayStation 3 F e pF 5 /a2 | 2 HA L~ -

68

	1 Introduction
	2 Background
	3 Frame-based Data Partitioning on CBE
	4 Experimental Results
	5 Summary and Future Work
	Reference

