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摘要 

     現今的多媒體發展非常迅速，為了提升資料速率 (data rate)和壓縮比率

(compression ratio)，使得演算法的複雜度不斷增加。所以通常會使用可程式化處理器

而非特定功能積體電路(ASIC)，以因應各種新穎的多媒體標準。在處理器為主的平台

上，只需要作軟體的更新，就可以讓新的多媒體應用能夠順利運行，延長產品在市場

的壽命。在多媒體應用中，除了傳統處理器所利用到的指令層級的平行度(ILP)和資料

層級的平行度(DLP)之外，多執行緒(multi-thread)或多核心(multi-core)架構進一步利用

執行緒(thread)層級的平行度(TLP)。多核心處理器能提供很高的運算能力去處理複雜

的應用，但是多核心處理器的程式撰寫非常困難。多核心程式撰寫有兩個最主要的問

題是，由工作分派所產生的同步花費和工作之間資料傳遞所產生的溝通花費。本論文

中採用以幅為基礎(frame-based)的資料切割方式，去消除工作之間的資料依靠關係

(data dependency)，減少同步的花費。溝通的問題則是利用資料流動最佳化來解決。在

一個著名的多核心架構—PlayStation 3 上，可以使用這些技巧對一個 1080p 多媒體影

片解碼器作最佳化。由實驗結果可知，這些最佳化的技巧能使解碼器加速 20 倍，最後

超過即時(real-time)的限制以 60Hz 的頻率解碼出 1080p 的影片。 
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ABSTRACT 

Today’s multimedia applications evolve very fast. In order to improve the data rate 
and compression ratio, the complexity of algorithm is enhanced. Instead of ASIC, 
programmable processors are usually used to deal with the variety of new multimedia 
standards. Processor-based architectures can use software patches to keep up with new 
multimedia applications, thus extend products’ time-in-market. However, conventional 
processor architectures are unable to provide sufficient computing power for real-time 
constraints. Beyond instruction-level-parallelism (ILP) and data-level-parallelism (DLP) 
used in conventional processors, multithreaded/multi-core architecture further acquire 
thread-level-parallelism (TLP) to exploit parallelism in multimedia applications. Multi-core 
processor can provide high computing power to support complex applications, but 
multi-core programming is much more difficult. There are two main issues in multi-core 
programming, synchronization overhead introduced by task parathion and communication 
overhead arising from data communications between tasks. In this thesis, we adopt 
frame-based data partition to eliminate the data dependency between tasks, thus minimize 
synchronization overhead. Communication problem is solved using dataflow optimization. 
Using these techniques, a multimedia video decoder processing 1080p frames is then 
optimized on a famous multi-core architecture – PlayStation3. The experimental results 
show that the optimization techniques make the decoder run 20-time faster, which finally 
exceed real-time constraint to decode 1080p frame at 60 Hz. 
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1   Introduction 

The software-only solutions for media-rich consumer-electronics devices get more and 

more popular. This kind of solution decrease the development and manufacturing cost as long 

as the performance meets the real-time requirements of multimedia processing. The problem 

is how to reach the required level of performance on an advanced processor-based platform 

provided by the processor designers. 

 

1.1  Multimedia Processing 

The data rate and compression ratio of multimedia processing are improved as the 

complexity of algorithm grows. In multimedia decoding applications, the high-definition (HD) 

resolution is a basic requirement in many markets, such as DTV, multimedia games, and 

multimedia playing on monitors. The even higher performance pursued by consumers make 
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engineers design more powerful devices while keeping the price low.  

There are 3 major parallelisms in multimedia applications: instruction-level parallelism 

(ILP), task-level parallelism (TLP), and data-level parallelism (DLP). These parallelisms 

could be exploited by 3 techniques respectively: the multi-issue, the single instruction 

multiple data (SIMD), and the multi-thread or multi-core architecture. 

The high-end consumer electronics need to run versatile multimedia applications. For 

examples, audio standards are AAC, MP3, Dolby Digital (AC3), etc. And multimedia 

standards are M-JPEG, MPEG-1, 2, and 4, H.263, H.264, etc. Thus the implementation of 

multimedia coding by software is a cost-effective solution. Processor-based architectures can 

use software patches to keep up with new multimedia applications. However, conventional 

single-core processor architectures are unable to provide sufficient computing power for 

advanced real-time multimedia processing. Thus the parallelisms in multimedia applications 

should be exploited by processor-based system with high performance to meet the real-time 

specifications. 

1.2  Multi-core Processors 

In the recent years, the processor industry has reached a new market of consumer 

electronics and personal computers. In order to further improve the already high performance 

of processor, the concept of multi-core on a chip comes out. With the improvement of 

semiconductor processes, it’s possible to put many processing cores onto a single processor 

chip [1]. This kind of processor is called as multi-core processor or chip multiprocessor. It 

may be simply named as multiprocessor.  

There are some reasons for this trend. First, the processor needs more effective 

performance per Hz, i.e., the power would become the bottleneck of processor. The utilization 
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of more processors on a system was a common solution in the past. The multi-chip module 

(MCM) belongs to this category. But with the help of semiconductor technology, the 

integration of many circuits into a single chip is feasible. Figure 1-1 depicts this trend. The 

processor designers could now improve the processor performance just by making a single 

processor chip more compact, i.e., put more processing cores together on a chip. Furthermore, 

many standards for audio and multimedia have the same functionality but are almost not used 

simultaneously. These are the reasons why the general-purpose processors but not the 

application-specific integrated circuits (ASIC) are the solutions of multimedia processing for 

personal devices. Because the generic processors are broadly applicable, the cost of 

development and production could be decreased. This is the motivation to design the 

multi-core processor for performance in order to meet the real-time requirements of 

multimedia processing.  
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Figure 1-1 Multi-chip module vs. multi-core processor 

 

Cell, also known as the Cell Broadband Engine Architecture (CBEA), is a famous 

multi-core processor created by Sony, Toshiba, and IBM (called STI). It’s a design project to 
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provide power-efficient and cost-effective high-performance processing for a wide range of 

applications. It has been used in servers known as Cell blade, game consoles known as 

PlayStation 3. Cell is the multi-core system where this thesis holds experiment.     

With the advent of multi-core processors, the programmers and consumers may simply 

think that the performance would increase linearly with the number of cores on a single chip. 

However, it’s usually not the case as we expected. The potential problems are the level of 

parallelism and the communication between each core. It’s a hard job to find a balanced 

workload for each core. The communication in a multi-core system may become the 

bottleneck when the communication time is too much or frequency is too high. Thus the key 

point to improve the performance of a multi-core system to an acceptable and reasonable level 

is task partitioning and communication between each core. 

1.3  Thesis Organization 

This work proposes a data partitioning scenario for media processing on Cell. The goal is 

to improve the performance with the number of cores utilized on Cell as linearly as possible. 

Namely, the number of frames per second of the decoding process is the performance index 

while the number of cores utilized is increased. The rest of this thesis is organized as follows. 

Chapter 2 reviews the experimental platform: Cell Broadband Engine (CBE). A brief 

description of the architecture of Cell processor is the beginning. Two processing units called 

as the Power Processor Element (PPE) and the Synergistic Processor Element (SPE), the 

direct memory access (DMA), and the element interconnect bus (EIB) would be in the 

description. Then the communication mechanisms and associate application programming 

interface (API) are presented. A flow of porting the multimedia processing onto CBE is 

shown after the introduction is made. 
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Chapter 3 proposes a frame-based data partitioning technique for multimedia processing. 

A simple discussion of functional partitioning and data partitioning is presented. This chapter 

provides the data management and dataflow planning for multimedia stream decoding on 

CBE. The proposed technique tries to reduce the number of communication between each 

core, i.e., it tries to avoid the data dependencies between each partition of data. The 

optimization of data transfer via DMA is a key point to mitigate the communication burden 

on EIB of CBE. This is considered in Chapter 3 and discussed in Chapter 4. 

Chapter 4 experiments the size of DMA and the allocation of buffer in local store. After 

the data management and dataflow planning implement as in Chapter 3, the details of data 

transfer between the local store and shared memory need to be considered. The suitable 

transfer size per DMA command and the I/O buffer allocation are found here. By the 

co-working of dataflow planning and the optimization of DMA, the performance boots to an 

expected level. 

Chapter 5 summarizes this thesis and provides the future work.  
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2   Background 
 

This chapter provides background information on topics related to this thesis. Chapter 

2.1 gives an overview of the hardware platform, Cell Broadband Engine (CBE) [7][13][15]. 

Chapter 2.2 gives a flow of porting the multimedia decoding application onto CBE. 

 

2.1  Cell Broadband Engine 

The Cell Broadband Engine is the first incarnation of a new family of microprocessors 

conforming to the Cell Broadband Engine Architecture (CBEA, or, informally, "Cell"). The 

CBEA is a new architecture that extends the 64-bit PowerPC Architecture. The CBEA and the 

Cell Broadband Engine are the result of collaboration between Sony, Toshiba, and IBM, 

known as STI, formally started in early 2001 [2][3].  
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Figure 2-1 shows the block diagram of CBE processor hardware. The CBE processor is a 

multi-core processor with 9 processor elements and a shared coherent memory on-a-chip. The 

functionality of 9 processors can be specialized into 2 categories: the Power Processor 

Element (PPE) and the Synergistic Processor Element (SPE). There are 1 PPE and 8 SPEs in 

the CBE processor. In order to improve the productivity of PlayStation 3, only 6 SPEs are 

available for the programmers. 

 

SPE 1 SPE 3 SPE 5 SPE 7

SPE 0 SPE 2 SPE 4 SPE 6

PPE

MIC

IOIF_1

IOIF_0

EIB

B
EI 0

1110987

6

5 4 3 2 1

FlexIO

FlexIOXIO
XIO

EIB: Element Interconnect Bus
BEI: Cell Broadband Engine Interface
PPE: PowerPC Processor Element
SPE: Synergistic Processor Element

MIC: Memory Interface Controller
IOIF: I/O Interface
XIO: Rambus XDR I/O
FlexIO: Rambus FlexIO Bus

 

Figure 2-1 The block dia ram of CBE processor 

 

The PPE complies with the 64-bit PowerPC Architecture. PPE could run 32-bit and 

64-b

g

it operating systems and applications. On the other hand, the SPE is optimized for 

running compute-intensive applications. The PPE and the SPEs could work in a collaborative 

scenario. The PPE runs the operating system and the top-level thread control for applications. 

The SPEs provide the computing power to boot the performance of applications. Brief block 

diagrams of PPE and SPE are shown in Figure 2-2 [4]. 
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Figure 2-2 Brief block diagrams of PPE and SPE 

 

The Cell processor could be viewed as a 9-way multiprocessor for the application 

programmer. The PPE is suitable for control-intensive tasks and task switching. The SPEs are 

suitable for compute-intensive tasks but not task switching. The more significant difference 

between the SPE and PPE lies in how they access memory. The PPE can access main storage 

at all 264 memory addresses, also called effective addresses (EA), with the help of caches. 

The SPEs, in contrast, access main storage with the help of direct memory access (DMA) 

commands directed explicitly by programmers. Each SPE has its own local store (LS) which 

contains 256 KB. The LS is a scratchpad memory of each SPE and could be access by PPE or 

other SPE via DMA. Table 2-1 summarizes some differences between PPE and SPE. 

 

Table 2-1 Differences between PPE and SPE 

Feature PPE SPE 

Addressability 264 bytes 256-KB LS 

Load Latency variable (cache) 6 cycles [20] 

128-bit SIMD Registers 32 128 

Doubleword SIMD no yes 

Usage control computation 
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 PowerPC Processing Elements 

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC 

processor with the vector/SIMD multimedia extensions. The PPE is responsible for overall 

control of a CBE system and the operating systems. The PPE consists of two main units as 

shown in Figure 2-3 [4]. The PowerPC processor unit (PPU) is the computation unit, and the 

PowerPC processor storage subsystem (PPSS) is for the purpose of storage. 

 

 

Figure 2-3 The PowerPC Processor Element (PPE). 

 

The PPU could further divided into the following units. 

• Instruction Unit (IU) 

The IU contains a 2-way set-associative and reload-on-error L1 instruction cache with 32 
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KB. The cache-line size is 128 bytes. The IU performs the instruction-fetch, decode, dispatch, 

issue, and completion portions of execution. 

• Branch Unit (BRU) 

 The BRU performs the branch functionality. 

• Fixed-Point Unit (FXU) 

The FXU performs fixed-point operations, including add, multiply, divide, compare, 

shift, rotate, and logical instructions.  

• Load and Store Unit (LSU)  

The LSU contains a 4-way set-associative and write-through L1 data cache with 32 KB. 

The cache-line size is 128 bytes. The LSU performs all data accesses, including load and store 

instructions. 

• Vector/Scalar Unit (VSU) 

The VSU contains a floating-point unit (FPU) and a 128-bit vector/SIMD multimedia 

extension unit (VXU), which together execute floating-point and vector/SIMD multimedia 

extension instructions. 

• Memory Management Unit (MMU) 

The MMU contains a 64-entry segment look-aside buffer (SLB) and 1024-entry, unified, 

parity protected translation look-aside buffer (TLB). The MMU manages address translation 

for all memory accesses. 

The PPSS contains a unified, 512-KB, 8-way set-associative, write-back L2 cache with 

error-correction code (ECC). The cache-line size for the L2 is 128 bytes as the same as L1 

cache-line size. The PPSS handles all memory accesses by the PPU and memory-coherence 

(snooping) operations from the element interconnect bus (EIB). The PPSS performs 

data-prefetch for the PPU and bus arbitration and pacing onto the EIB. There are MMU, L1 

instruction cache, and L1 data cache of PPU getting data from PPSS by a shared 32-byte load 

port. There are MMU and L1 data cache of PPU putting data to PPSS by a shared 16-byte 
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store port. The interface between the PPSS and EIB supports 16-byte load and 16-byte store 

buses.  

 

 Synergistic Processor Elements 

 

 

Figure 2-4 The synergistic processor elements (SPE) 

 

Each SPE is a 128-bit RISC processor for data-rich, compute-intensive applications. It 

consists of two main units, the synergistic processor unit (SPU) and the memory flow 

controller (MFC), as shown in Figure 2-4 [4]. The data interface consists of a 128-bit read bus 

and a 128-bit write bus. The MFC can send up to 16 outstanding MFC commands. It supports 

atomic requests and snoop requests (read and write) of the SPU’s LS memory and the MFC’s 
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MMIO registers.  

 

 

Figure 2-5 The functional units in SPU 

 

Figure 2-5 shows the functional units in SPU. The SPU issues two instructions to its two 

execution pipelines respectively. The pipelines are referred to as even (pipeline 0) and odd 

(pipeline 1). The units in SPU could be pointed out as follows. 

• SPU Odd Fixed-Point Unit (SFS) 

The SFS executes byte shift, rotate mask, and shuffle operations on quadwords. 

• SPU Load and Store Unit (SLS) 

The SLS executes load and store instructions and hint for branch instructions. It also 

handles DMA requests to the LS. 

• SPU Control Unit (SCN) 
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The SCN fetches and issues instructions to the two pipelines. It performs control 

functions such as branch instructions, arbitration of access to the LS and register file, etc. 

• SPU Channel and DMA Unit (SSC) 

The SSC manages communication, data transfer, and control into and out of the SPU. 

• SPU Even Fixed-Point Unit (SFX) 

The SFX executes arithmetic instructions, logical instructions, word SIMD shifts and 

rotations, floating-point comparisons, and floating-point reciprocal and reciprocal square-root 

estimations. 

•SPU Floating-Point Unit (SFP) 

The SFP executes single-precision and double-precision floating point instructions, 

16-bit integer multiplies and conversions, and byte operations. The 32-bit multiplies are 

implemented in software using 16-bit multiplies. 

 

 Element Interconnect Bus 

Figure 2-6 [5] shows the element interconnect bus (EIB), the heart of the Cell 

processor’s communication architecture, which enables communication among the PPE, the 

SPEs, main system memory, and external I/O. The EIB has separate communication paths for 

commands and data. The EIB data network consists of four 16-byte data rings: two running 

clockwise and the other two counterclockwise. Each ring allows up to three concurrent data 

transfers, as long as their paths don’t overlap.  

Bus elements request data bus to initiate a data transfer. The data bus arbiter gives the 

first priority to requests coming from the memory controller to minimize the stalls of reading. 

It treats all others equally in round-robin fashion. The arbiter receives these requests and 

decides which ring should handle each request. It selects one of the two rings that travel in the 

same direction of the shortest transfer to ensure that the data won’t need to travel more than 
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halfway around the ring to its destination. The arbiter also schedules the transfer to avoid the 

interferences with other in-flight transactions. The EIB operates at the speed of half the 

processor-clock. Each bus element could simultaneously send and receive 16 bytes of data 

every bus cycle. 

 

 

Figure 2-6 The element interconnect bus (EIB) 

 

The EIB’s maximum data bandwidth is limited by the rate at which addresses are 

snooped across all units in the system. The rate is one address per bus cycle. Each snooped 

address request can potentially transfer up to 128bytes, so in a 3.2GHz Cell processor, the 

theoretical peak data bandwidth on the EIB is 128 bytes * 1.6 GHz = 204.8 Gbytes/sec. The 

maximum bandwidth of Cell processor is summarized in Figure 2-7. However, the actual data 

bandwidth depends on several factors: the relative locations of destination and source, the 

new transfer’s interferences with in-flight transfers, and the efficiency of data arbiter, etc.  
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Figure 2-7 Maximum bandwidth of Cell processor 

 

 Inter-processor Communication 

There are many attributes of the shared-memory system. The PowerPC processor 

element (PPE) and all synergistic processor elements (SPEs) have coherent access to the main 

storage. All communication mechanisms are implemented and controlled by the SPE’s 

memory flow controller (MFC). The SPEs must explicitly use the following three 

communication mechanisms: DMA transfers, mailbox messages, and signaling messages in 

order to communicate with other bus elements in the system. Table 2-2 summarizes the three 

mechanisms mentioned above. 
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Table 2-2 Three primary mechanisms of interprocessor communication 

Mechanism Description 

 

Signaling 

Used for control communication from the PPE or other devices. 

Signaling utilizes 32-bit registers for one-sender-to-one-receiver 

signaling or many-senders-to-one-receiver signaling. 

 

Mailboxes 

Used for control communication between an SPE and the PPE or 

other devices. Each SPE has two mailboxes for sending and one 

mailbox for receiving 32-bit messages. 

 

DMA 

Transfers 

Used for data communication between main storage and an LS of 

the SPE. The asynchronous DMA transfers of MFC hide the 

memory latency and transfer overhead by moving data in parallel 

with SPU computation. 

 

 

 DMA 

An MFC supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16 bytes and 

multiples of 16 bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, the source and 

destination addresses must have the same 4 least significant bits (LSB). A single DMA 

command could transfer up to 16 KB between an LS and shared memory storage. 

The throughput of a DMA transfer when the source and destination addresses are 

128-byte aligned is double as compared to that of a mis-aligned transfer within a cache line. 

It’s because that the mis-aligned transfer is a partial cache-line transfer, and actually there 

may be two bus requests for this transfer. Peak performance is achieved when the size of the 

transfer is a multiple of 128 bytes and both the effective address (EA) and the local store 

address (LSA) of the DMA transfer are 128-byte aligned. The following performance 

guidelines for DMA commands in CBE could be made. 
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• Minimize small transfers 

• Align source and destination addresses to a 128-byte cache-line boundary. 

• Minimize the use of synchronizing and data-ordering commands. 

• Have SPEs (not PPE) initiate DMA transfers. The reasons state in Table 2-3. 

 

Table 2-3 The reason why we have SPE initiate DMA commands 

Feature SPE PPE 

Processor Amount 8 1 

MFC Command Queue 16 8 

Synchronization easy hard 

# of Cycles to Initiate a DMA transfer smaller larger 

 

 

 Mailbox 

Mailboxes take charge of the 32-bit messages between an SPE and other devices. There 

are three mailbox channels of each SPE: two one-entry mailbox channels and one four-entry 

mailbox channel. The SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt 

Mailbox which belong to one-entry mailbox channels are used for sending mails from the 

SPE to the PPE or other bus elements. The SPU Read Inbound Mailbox which belongs to 

four-entry mailbox channel is used for sending messages from the PPE or other bus elements 

to the SPE. Table 2-4 gives details about the mailbox channels and their associated MMIO 

registers. 
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Table 2-4 The mailbox channels and their associated MMIO registers 

 

Feature 

SPU Write 

Outbound 

Mailbox 

SPU Read 

Inbound 

Mailbox 

SPU Write 

Outbound Interrupt 

Mailbox 

Channel Interface 

Mnemonic SPU_WrOutMbox SPU_RdInMbox SPU_WrOutIntrMbox

# of Entries 1 4 1 

R/W W R W 

Width (bits) 32 32 32 

MMIO Register Interface 

Mnemonic SPU_Out_Mbox SPU_In_Mbox SPU_Out_Intr_Mbox

# of Entries 1 4 1 

R/W R W R 

Width (bits) 32 32 64 

 

2.2  Programming on PPE and SPEs 

Figure 2-8 shows the application programming interface (API) of DMA utilized in this 

thesis and the associated direction. The SPE could use the API “mfc_write_tag_mask” and 

“mfc_read_tag_status_all” to wait for the completion of DMA commands. It’s noted that the 

waiting time of DMA commands could be reduced by programmer, because the operation of 

DMA and the computation of SPU are asynchronous. 
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Figure 2-8 The API of DMA 

 

Figure 2-9 shows the API of mailbox utilized in this thesis and the associated direction. 

The PPE could use the API “spe_out_mbox_status” to gather the information of SPU Write 

Outbound Mailbox for each SPE. Usually this API is bundled with “spe_out_mbox_read”. 

PPE use “spe_out_mbox_status” to wait the update of SPU Write Outbound Mailbox and 

receive the message via “spe_out_mbox_read”. 
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…
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Figure 2-9 The API of mailbox 
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Figure 2-10 shows a common form of program which utilizes the PPE and SPEs on CBE. 

The communication between PPE and SPEs is a significant factor of the system performance, 

namely, the mailbox and DMA commands. It’s noted that the algorithm of application is 

almost unchanged. The major works are the function offload of SPE’s code and the building 

of communication scenario. 

 

/*Initialization of SPE program*/
for each SPE, Initialize SPE;

create_spe_context;

/*Activate the computation on SPE*/
for each SPE, send input parameters;

spe_in_mbox_write(SPEid, control);
spe_in_mbox_write(SPEid, I/O_address);

/*Commit the completion on SPE*/
for each SPE, check output and commit;

spe_out_mbox_read(SPEid);

initialization;

/*Get input parameters*/
control = spu_read_in_mbox();
I/O_address = spu_read_in_mbox();

/*Get input data*/
mfc_get(input_LS_addr, I_address);

computation(control, LS_addr);

/*Give output data*/
mfc_put(output_LS_addr, O_address);

/*Inform PPE about the completion*/
spu_write_out_mbox(COMPLETE);

   

Figure 2-10 The cooperation of PPE and SPEs 

 

It’s noted that the APIs used here are mentioned above. As shown in the pseudo code the 

PPE maintains the thread-control and I/O behavior, and SPEs take charge of the computing 

tasks. The starting and ending of computation on SPEs are activated by the mails between the 

PPE and the SPEs.  

The PPE is the manager of threads, and it creates the context for SPE. The program for 

SPEs would be loaded and executed in this simplified step. Then the SPEs run to the waiting 

for mails from the PPE. SPEs get what they want via mailboxes or DMA transfers from PPE. 
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The completing message would be send to PPE when the computing on SPE is done. The PPE 

receives this completing message and knows that the SPE with SPEid is idle and ready for 

next task.  
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3   Frame-based Data 
Partitioning on CBE 

 

This chapter focuses on the data management of multimedia stream on multi-core system. 

The platform is CBE, and the demonstration software is JPEG decoder. For a multi-core 

processor, the data communication efficiency is a key factor of the overall performance. 

Although the algorithm optimization and the special instruction of processor could improve 

the system computing power, they are too specific and irrelevant to the architecture and 

design concepts of multi-core. High performance can’t be achieved without the optimization 

of data partitioning and dataflow on a multi-core processor.  
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3.1  Port the Multimedia Applications to CBE 

 For Cell, such a multi-core processor, a common flow of porting multimedia application 

could be summarized as in Figure 3-1. At the beginning, a single-thread program is the most 

original program in the first implementation. In this original program on the PPE, the 

programmers could access all 264 memory address and the program runs sequentially. The 

main purpose of the original program is to verify the functionality. It has a little chance to 

meet the performance requirements of multimedia applications nowadays without 

optimization.   
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single-thread 
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PPE

 multi-thread 
program on 

PPE

vectorized
multi-core 
program

function offload

multi-core 
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PPE and SPEs

optimized 
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Figure 3-1 Port the Multimedia Applications to CBE 

  

 The program could be divided into threads and then becomes a multi-thread program. 

This parallelization step should be done in a very careful way. In order not to reduce 

performance, the threads should be load-balanced. In other words, the computing time of each 

thread should be kept as close as possible. The processor core could then manipulate the 

threads equally and easily. For advanced single-core processors, the multiple functional units 
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(FUs) in the processors could take charge of different threads simultaneously which is called 

simultaneous multi-thread (SMT) processors.  This approach exploits the thread-level 

parallelism (TLP) to boots the performance by parallel processing among FUs. 

 For CBE, the threads could be allocated to the SPEs [6][21]. It’s noted again that the 

SPEs are the computing engines in CBE. In this stage, the load-balanced threads which found 

previously get significance. The SPEs are all homogeneous with same computing power. 

Thus the threads should have equal computing time to achieve the balanced loading. There are 

6 available SPEs in PlayStation 3 which in turn means that the number of load-balances 

threads could be 6. This technique is called “function offload” and the key point is load 

balancing. After function offloading, the multi-thread program becomes the multi-core 

program and each thread on different processors runs in parallel [22][23]. 

 There are commonly used optimizations, namely, single instruction multiple data (SIMD) 

[17][18][19] and loop unrolling. This process vectorizes the code to exploit the data-level 

parallelism (DLP) and instruction-level parallelism (ILP). The vectorized program executes 

on multiple data in a single instruction (SIMD) or consumes multiple instructions with 

multiple functional units (FUs). The vectorization is a technique to reduce the computing time 

of a single processor. In a load-balanced multi-core environment, the amount of performance 

improvement in single processor by vectorization equals that in entire multi-core system. For 

example, the 200% improvement gained from SIMD in single processor core within a 

multi-core system, the overall maximum improvement of the entire system would never 

exceed 200%. Even worse, the improvement of computation in a multi-core system would be 

bounded by the communication between each processor core. The communication scenario is 

a very important performance factor in multi-core system with limited communication 

resource such as CBE. 

 The last step is to make a good dataflow plan to reduce the communication overhead 

within the CBE. This stage could boot the performance a lot while the bandwidth of 
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communication resource is low. For example, if all components connect to a low bandwidth 

bus, all traffic would appear in this single bus. The components wait for the data transfers to 

continue their own computing tasks. In the worst case, component A could wait for all other 

transfers until the last for itself. Then component B needs the computation result and would 

wait even longer. The communication overhead would accumulate if there is a traffic jam in 

the system. This thesis would utilize the frame-based data partition method and optimize the 

dataflow to reduce such burden. After the effort from programmers, the resulting optimized 

program is a vectorized program utilizing multi-core processor and running in parallel. 
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   Figure 3-2 Functional partitioning and data partitioning 
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3.2  Functional Partitioning and Data Partitioning for 

Multi-Core Processor 

Intuitively, there are two ways to partition applications over a multi-core environment, 

i.e., data partitioning [8][9] and functional partitioning [10][11][12] as illustrated in Figure 

3-2. The left hand side of Figure 3-2 is function partitioning. A function is decomposed into 

tasks, and tasks are grouped and allocated to single core of the processor. The right hand side 

of Figure 3-2 is data partitioning. For example, we can divide a picture into partitions and 

process each partition on a single processor. For a streaming application running on 

multi-core processor, the bottleneck of system performance is generally determined by the 

communication between each core. 

The locality of data plays an important role in such an environment. At first, data should 

be loaded to a local memory. Then all operations are performed at local processor. Finally, the 

result is transferred back to the shared memory at higher level. The input and output data 

packets flowing into the local processor and the intermediate results should be no larger than 

the comparatively small size of local memory. When the small local memory is occupied by 

data and instruction together, and the application deals with large data sets and performs 

complex algorithm, the data partitioning and management becomes a big challenge.  

3.3  Comparison between Data and Functional 

Partitioning 

There are many points of view about the pros and cons of the twos types of application 
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partitioning. Some comparisons could be made between data and functional partitioning [8]. 

 

•Depending on the application, different approaches result in different communication 

behavior. For data partitioning, communication overhead would occur because of the data 

dependencies between the partitions; for functional partitioning, communication overhead 

would occur between individual tasks on different processor cores. 

• In the case of data partitioning, task-to-task communication remains locally on the core if 

sufficient local memory size is available. Thus, data partitioning inherently results in locality 

of data. 

•It’s very common that the number of data partitions is larger than the number of processor 

cores. Given sufficient data partitions, load balancing between processor cores comes in a 

nature way; for functional partitioning, it’s not uncommon that a certain task becomes a 

system bottleneck due to imbalanced loads of the processor. It strongly depends on the 

granularity of the functional decomposition into tasks and takes a lot of work to find a clear 

balanced partitioning point. 

• Data partitioning provides scalability of software. For instance, a Standard- 

Definition (SD) multimedia sequence can be decoded using 2 CPUs, whereas for HD 

resolution 8 CPUs are needed. For functional partitioning, different throughput requirements 

would affect the overall partitioning of the application, which results in laborious rewriting of 

the software. 

• In order to fully exploit the computational power of the specific processors chosen by 

programmer, the application software needs to be optimized for instruction-level parallelism. 

For functional partitioning, this purpose would take a great deal of effort in the way of 

partitioning and the restructuring the software; for data partitioning, the partitioning remains 

unchanged, since each processor cores executes the complete function. The comparison is 

summarized in Table 3-1. 
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Table 3-1 Data partitioning vs. functional partitioning 

Feature Data Partitioning Functional Partitioning 

Communication 

between Partitions 
data dependency task dependency 

Load Balancing nature balance need extra effort 

Scalability good bad 

Optimization 
partitions remain 

unchanged 
re-partitioning 

 

The main issue that needs to be resolved for data partitioning, is the minimization of the 

communication overhead for data dependencies between partitions. Furthermore, the 

scheduling of the data partitions has to be considered, since inter-dependencies impose 

restrictions on the order in which the partitions can be processed. The best way is making the 

data partitions fully independent, although there should be a cost of occupying a room on 

shared memory. This is the concept we proposed on a desk-top level system like PlayStation3. 

It is obviously that the advantages of data partitioning would become larger when the 

application is very complex and the amount of processing data is huge. It’s just the case while 

the multimedia coding standard becomes more aggressive with time goes by. 

3.4  The Partitioning and Management of Multimedia 

Decoding on CBE 

First of all, the decision about what should be left in SPE and what should be left in PPE 

must be made. The usual and recommended way is to move all computing part of an 
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application to SPE and leave the memory management part and system control task in PPE. 

The most computing-intensive part is the decoding algorithm, so it is reasonable to put all 

decoding function into SPE. For the input process, such as file reading, data packet 

management and the formation of one frame should be put into PPE. The display process, 

usually the last step in real time multimedia decoding, utilizes the frame buffer of shared 

memory in PS3. This is absolutely a PPE task which manages memory and the peripheral. 

The way of data management between encoded multimedia stream and decoded 

multimedia frame is an important issue, especially when the local store (LS) is comparatively 

too small for the stream or frame. The smoothness of dataflow is a basic requirement for high 

performance and must be treated carefully. It’s depicted in Figure 3-3. Thus the design of 

dataflow and allocation of buffers become the major concern in this chapter [16]. 

 

 

Figure 3-3 The situation of LS in the multimedia decoding 

 

For SPE, the program and data both reside in a single 256 Kbytes LS, so the usage of 

program memory earns the first glance. Thus the starting work is to minimize the code size of 

which part would be placed into the SPE. This means that the loop unrolling and some other 

techniques which trade the code size for the performance should not be used before the 

porting on SPE.  
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After some surveys of open source code, we insure that the algorithm part in the program 

of simple multimedia decoder usually would not excess the limited size of the LS. Typically 

the resulting execution file with no compiler’s optimization on SPE is about 130 Kbytes. It’s 

worthy to note that the CBE SDK provides a mechanism called “SPU Overlay” to support the 

access of SPU overlay code sections located in the main memory. It can decompose the large 

code into small segments and load with programmer’s will. However, this mechanism 

degrades the performance due to the overhead of the loading of the code sections. Next, the 

consideration moves from program to static data on SPE. 

There is an amount of static data in the program of multimedia stream codec. Take JPEG 

for example, the quantization table and the Huffman tree table are necessary. For the 

quantization table, the luminance table and chrominance table are needed. For the Huffman 

tree table, the luminance DC and AC table, the chrominance DC and AC table are needed. 

Furthermore, the code lookup table and the code size table should be built from the above 

Huffman tree table and the header information. The total size of tables used in JPEG is 

summarized below: 

 

Table 3-2 Total size of table used in JPEG 

unit: bytes Luminance Chrominance Total 

Table DC AC DC AC  

Quantization 64*1 64*1 128 

Huffman Tree 16+12 16+162 16+12 16+162 412 

Huffman Code 512*2 512*2 512*2 512*2 4096 

Huffman Size 512*1 512*1 512*1 512*1 2048 

Total 792 792 6684 
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There are still some heap data in the program. The heap size should also be minimized by 

the programmer. However, heap data is highly application-dependent and not the significant 

part of the local store. Thus the important thing of the programming in CBE is to keep the size 

of program and heap small. In the roadmap of CBE, the size of LS may be enlarged with the 

improvement of semiconductor technology. It’s good news for the methodology of data 

partitioning. The programmers are more comfortable for the larger LS because that the more 

processing data units could be pulled in and out from the shared memory each time.   
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Figure 3-4(a) Data dependency in JPEG 
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Figure 3-4(b) Spatial data dependency in H.264 

 

The basic processing data unit in the multimedia processing is called “macroblock” (MB) 
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as described in section 2.2. The MB could be partitioned into sub-block. There are many 

dependencies between MBs and/or sub-blocks. Figure 3-4 shows two examples. In the simple 

case of JPEG, the DC value in DCT of this sub-block comes from the DC value of the 

previous sub-block and the difference value which is encoded in this sub-block. Furthermore, 

in H.264 the spatial data dependencies are the left, upper left, upper, and upper right MBs. A 

total of 4 reference MBs are involved in the decoding of this MB. This dependent data should 

keep in the LS until it’s useless to avoid the massive data reloading from the shared memory. 

This is a very critical step after the minimization of program and static data. The number of 

times of DMA in the multi-core system should be as small as possible. After the first 

compilation of application, the remaining room in LS should be smartly utilized with these 

basic data units.  

In multimedia decoding the input is in the form of stream, and the variable length 

encoding scheme makes the parallel processing at input very difficult. For data partitioning 

technique, the parallel processing is at data level. To fully utilize the parallelism that data 

partitioning has, the data level parallelism should be shift to a level higher than MB. The 

appropriate level of data parallelism is frame-level, and only in this way the variable length 

decoding could be put into SPE. The entire decoding functions are now in SPEs, and the input 

and output data management left in PPE as expected.    

Move from the single PPE program to the SPE program, the MB-based multimedia 

decoding algorithms are unchanged. The only difference is that SPEs cannot directly access 

the shared memory. The shared memory of all system could be accessed by SPEs only with 

the help of DMA. The scenario of data communication between each LS in SPE and the 

shared memory is shown in Figure 3-5. The partitions at shared memory are divided into 2 

categories: the multimedia stream and the frames. The partitions at LS are divided also into 2 

categories: the input buffer and the output buffer. It’s noted that there are still program and 

data storage in the LS which is not shown in the figure. The I/O buffer utilized the remaining 
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part of LS as described above. SPE reads the multimedia stream with input buffer and write to 

the frame through output buffer. The reading and writing process between the LS and shared 

memory carries out through DMA command (dashed lines in Figure 3-5). For decoding of 

one frame, the I/O process at SPE runs many times because the size of multimedia stream and 

frame is much bigger than the I/O buffer in size. Each SPE takes charge of the decoding of 

one frame. The stream of one frame is represented as many chunks. Each chunk has the size 

which equals the size of input buffer. Put it in another way, the input stream of one frame is 

cut into pieces by the input buffer. Input buffer gets one piece per DMA command. The 

relationship between output buffer and the frame in shared memory is similar. The details of 

dataflow and buffer allocation are discussed in following sections.  

 

 

   Figure 3-5 Data communication between LS and shared memory 
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A basic multimedia decoding flow is placed in the SPE part of the figure. Variable length 

decoding is the 1st function of decoder. The implementation of variable decoding often 

involves lookup tables which must be stored in LS. The 2nd function is inverse quantization 

which is very common in many multimedia applications and involves quantization tables. The 

3rd function is inverse transformation which is usually a type of inverse discrete cosine 

transformation (IDCT). The final function is color space transformation for the purpose of 

display. The transformation from YCbCr to RGB is the most common color space 

transformation being used. For advanced multimedia application, there would be more 

functions between inverse transformation and color space transformation. The complexity of a 

multimedia decoding algorithm largely depends on the processes in this interval. However, 

the complexity and optimization of multimedia decoding algorithm are not the concern and 

discussion in this article, i.e., the performance of decoding on a single core is not the issue 

here. The focus is the data partitioning and dataflow planning for multi-core system.  

3.5  Dataflow Planning for Multimedia Decoding on CBE 

 of multimedia stream into encoded frame and dispatch to each 

The proposed dataflow planning for frame-based multimedia decoding on Cell is 

summarized in Figure 3-6 below. Start from the input multimedia stream and end at the 

display of frames. Partitioning

SPE is the first task of PPE.  

   The encoded frames in a multimedia stream are divided into groups. There are 6 frames 

in each group. The reason why the number “6” is chosen here is obvious: there are 6 available 

SPEs in PS3. The encoded frames are allocated to SPEs in a round-robin fashion, i.e., the 

frame 1, 7, and 13… are allocated to SPE 1, the frame 2, 8, and 14 are allocated to SPE 2, … 

etc. It should be noted that the actually data size flowing in and flowing out of a single SPE 
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depends on the I/O buffer in LS. An entire frame cannot be pulled in or out the LS once a time 

undoubtedly. Thus the I/O buffering is a significant issue in the design of multi-core 

rogramming. This would be discussed in section 3.6.  
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Figure 3-6 Dataflow planning for multimedia decoding on Cell 

 

The decoding mechanism needs 6 frame repositories in shared memory. Each SPE 

utilizes its own frame repository thorough all decoding of frames. Each frame repository 

occupies one RGB frame in size. The content in frame repository could be updated right after 

the display of current frame. In some aggressive multimedia decoding standards such as 

H.264, the data communications would cross the frames, i.e., inter-prediction or motion 
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compensation. In such case this decoding mechanism needs 6 larger repositories in shared 

memory to accommodate the longer range of data dependency. It is feasible in desktop-level 

 PPE takes charge of the 

frames’ movement from the 6 frame repositories to the frame buffer. 

3.6  DMA and Buffer Allocation on CBE  

MA size is shown in 

the n

e half ring 

oundary, and the access of this ring structure could be simply in a smooth way.  

computers such as PS3. 

    Finally the display process takes each frame from 6 repositories also in round-robin and 

shows the frame on the monitor through the frame buffer in PS3. The

For MFC of SPE, the transfer size of a single DMA command ranges from 1 byte to 16 

K bytes. It would be a confusing problem for programmers to decide on how large the size 

should be with DMA commands. Therefore, the beginning of optimization is the transfer size 

per DMA command. We keep the size of input and output buffers constant and tune the 

transfer size of DMA commands. The detail of experiment on different D

ext chapter. Now, the buffer allocation and structure is considering. 

The processing of each code is variable in length, thus a basic implementation is to read 

one byte from the input stream each time until the code is valid. This method is feasible on a 

single core system undoubtedly, but it’s dangerous for the multi-core system where massive 

data communication holds. For CBE the DMA is not efficient enough. To get one byte each 

time from the input stream at shared memory is a huge burden and would become one 

performance bottleneck. This would be shown in the next chapter. Thus input buffer is 

implemented as a ring structure as shown in Figure 3-7 and read from the file block-wise. 

Now the reading of one byte each time accesses the input buffer in LS, not the shared memory 

through DMA. The term “ring” means that the data in buffer is continuous across th

b
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Figure 3-7 The input buffer is a ring structure 

educed. It’s a common case because that the MB size is usually not more than tens 

of by

 procedure could simply be viewed as a decompression of a tightly 

comp

 

   It’s noted that the update of half ring is an input DMA command that could occur 

anywhere depending on where the boundary checking and update places. The simplest way of 

boundary checking and update is to check right after each reading of input buffer in LS. 

However the boundary checking and update could be move to a bigger block, namely, the MB. 

It could be placed where the processing of one MB is complete. In this way the size of half 

ring must be larger than the size of one MB in bytes, and the number of boundary checking 

could be r

tes. 

For a decoding application, the output bandwidth is many times larger than input 

bandwidth. The decoding

ressed data stream. 

Because multimedia decoding is a MB-based algorithm, the output basic unit is MB. The 

MB size commonly used is 16*16 = 256 points. Thus the output size is 256*3 = 768 bytes if 

the red, green and blue colors are stored as 1 byte each (256 levels). There are 16 rows and 

16*3 = 48 columns in one output MB. For a single DMA command, the access address should 

be consecutive. To be more specific, the DMA command contains only the starting address 
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and the access size in bytes. The size of a single DMA command for output is set at 128 bytes. 

The packing of pixels for display is done on PPE. The typical form of output buffer for 

MB-based multimedia decoding algorithm is shown in Figure 3-8. The term “n macroblocks” 

in the figure means the width of the output buffer in terms of the number of MBs. There are 

16 pixels in each row of one MB, i.e., 48 bytes in each row for RGB 3 colors. The discussion 

f how to set “n macroblocks” is left in the next chapter. 
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Figure 3-8 The single output buffer 

   

double-buffering case, 

 which MFC and SPU utilize buffer A and buffer B interchangeably. 

 

 

An improvement at output buffer could be made in this decoding scenario. The double 

buffering is a technique to overlap the data transfer and the computation: the current result is 

written to one buffer by SPE, while the previous result residing in the other buffer is sent to 

the shared memory through DMA. The difference between the single buffering and double 

buffering is shown in Figure 3-9. “MFC” refers to the memory flow controller and “SPU” to 

the synergistic processing unit as mentioned in Chapter 2. SPU is busy at decoding while 

MFC is busy at output DMA commands. There are two buffers in the 

in
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Figure 3-9(a) Single buffering 

 

 

Figure 3-9(b) Double buffering 

 

However, there are 2 situations in which the effects of double buffering are not so 

attractive. Namely, the 2 asynchronous processes are very imbalanced in consuming-time. 

These situations are shown in Figure 3-10. In Figure 3-10(a), the computation time of SPU is 

much less than the DMA time of MFC. This is what this thesis focuses on. It is noted that the 

DMA time of the multi-core system increases in a multiple trend with the number of cores. 

There are 6 SPEs in CBE, and the DMA time should be 6-fold as compared to 1 SPE. The 

total system performance is bounded if the DMA time is much larger than the computation 

time, i.e., the utilization of 6 SPEs couldn’t have 6-fold speedup as compared to that of 1 SPE. 

This is the critical problem which must be solved in the multi-core system. The DMA and the 

associated buffer allocation would be discussed in the followings. 

   The other situation is shown in Figure 3-10(b), where the computation time of SPU is 

much more than the DMA time of MFC. This situation is solved by the optimization of 

decoding algorithm and the utilization of chosen processor. The commonly used techniques 

are single-instruction-multiple-data (SIMD), loop unrolling, and some special extended 
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instructions. It’s not the point discussed here.  

 

 

Figure 3-10(a) The computation time of SPU is much less than the DMA time of MFC 
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Figure 3-10(b) The computation time of SPU is much more than the DMA time of MFC 

11. 

here are 2 pairs of data movement depicted as the arrows. Pair A is the upper left and the 

bott

t wraps around and starts at the beginning of ring. The ring 

buffe

 

The implementation of double buffering for multimedia decoding is shown in Figure 3-

T

om right arrows and Pair B is the upper right and the bottom left arrows. These 2 pairs 

take place in a ping-pong fashion, and the computation and DMA could utilize 2 buffers 

respectively at the same time.  

The 2 halves of input ring buffer operates cooperative. When the address of this ring 

buffer excesses the total size, i

r updates half each time. When the access address excesses the half boundary, the other 
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half which is non-accessed updates by reading half size of data from the input stream. The 

basic unit of the size of input ring buffer is 128 bytes. The reason and the associate discussion 

are provided in Chapter 4. 
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Figure 3-11 The I/O double buffer 

 

The double buffering ma ers are asynchronous to SPE 

omputation. It’s noted that this technique double increase the output buffer size. There may 

be a

tches the property that DMA transf

c

 situation that double buffering isn’t feasible in such limited LS in SPE. It’s a tradeoff 

issue of memory storage and the performance.  
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4   Experimental Results 

This chapter provides the experimental results of different size of DMA transfers and the 

allocation of I/O buffer. The experimental environment is shown below. 

 Instrumentation 

 PlayStation 3 

 Linux kernel: 2.6.16 (Fedora) [14] 

 HD monitor 

 System input 

 1080p motion JPEG sequence 

 System output 

 1080p decoded frames displayed on monitor 

The code structure of experimental program is shown in Figure 4-1. The PPE controls 

the decoding task on each SPE, and the SPEs take charge of the decoding of frames. The PPE 

first create the spe_context for each SPE to start the running of SPE program. SPE freely runs 

to the location waiting for the I/O address from PPE. The PPE sends the I/O address to SPE 
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needed for the decoding of one frame. The SPE continues computing after the reception of 

mail from PPE. When the decoding task is done the SPE sends a mail to PPE informing about 

the completion. The PPE display the decoded frames after the reception of completion mail 

and send another I/O address to the idle SPE. The detail operation for PPE and SPE side is 

made below. 

At first, the PPE side is considered. PPE accumulates 6 encoded frames from the input 

stream and allocates them to 6 different SPE threads. The PPE mail the memory pointers of 6 

encoded frames and the 6 frame repositories to individual 6 SPEs. After this initial sending of 

response is the 

completion mail sent by SPE to PPE. When PPE knows the decoding of one frame is done, 

the display procedure follows. 

   The display procedure fills the RGB color pixels into the frame buffer of PS3 system. 

This

 part of multimedia 

 frame, the returned SPE which completes its decoding gets another 

ntinues on the decoding job activating by this 

ll frames need to be decoded, PPE waits for another comeback of one SPE 

ll frames are sent to SPEs, PPE goes to the final step. 

pletion mail from all SPEs and display the last frames. The overall 

mails PPE waits for the response of one SPE. The actual meaning of 

 procedure takes about 1/120 seconds per 1920*1080p frame. Thus the display procedure 

would only slightly degrade the performance and not be the critical

decoding. 

   After the display of

encoded frame pointer. The returned SPE co

mail from PPE.  

If there are sti

and repeats the flow described above. If a

PPE waits the com

decoding ends. 

As for the SPE side, SPEs could be viewed as servants of PPE. The practical 

implementation in SPE is an infinite loop starting from the reception of mail and return to the 

loop at the sending of completion mail. SPEs get the mail containing the input encoded frame 

pointer and the output decoded frame pointer from PPE. Then SPE knows where to get the 
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input and put the output in shared memory. SPE starts running the decoding function when 

the PPE sends this information to it. At the end of decoding of one frame SPE sends a mail to 

PPE to tell PPE the completion.  

 

PPE side
/*Display initialization*/

for each SPE, initialize SPE;

n SPE*/
meters to SPE;

spe_out_mbox_read(SPEid);

/*display on monitor*/
me buffer(resolution);

        wait_for_vsync;

SPE side
initialization;

while(1) {

    for each macroblock in one frame {

mfc_get(input_LS_addr, I_address);

            decoding process(LS_addr);

spu_write_out_mbox(COMPLETE);
}

fd = open_device;       
get_screen_info;        
get_fb_control;
read file;

/*Initialization of SPE program*/

create spe_context;

/*Activate the frame decoding o
for each frame, send input para

/*Get input parameters*/
I/O_address = spu_read_in_mbox();

/*Decoding process*/

 /*Get input data*/

spe_in_mbox_write(SPEid, I/O_address);

/*Commit the decoding completion on SPE*/
for each frame, commit and display;

        fill fra

/*Give output data*/
mfc_put(output_LS_addr, O_address);

    }

  /*Inform PPE about the completion*/

output the content in fb;
 

Figure 4-1 The code structure of experimental program 

 

The frame buffer is a double buffer and it could be viewed in 3 layers. The first layer is 

application layer which is controlled by programmers at top level. The control registers could 

be modified by users manually to enhance the controllability of frame buffer. The 

performance is improved by this way without the usage of application programming interface 

(API). The second layer is kernel layer which is handled by operating systems (OS). The 

communication and operation mechanisms between Cell processor and graphic processing 

unit (GPU) are automatically controlled by kernel. The frame buffer is a virtual memory, and 
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it’s managed by kernel. The third layer is GPU layer which is the heart of graphic computing 

and display. There are double frame buffer in GPU, and the content is delivered by kernel via 

DMA. GPU provides the display on monitor. The schematic of these 3 layers is shown in 

igure 4-2. 
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Figure 4-2 The double frame buffer 

 

The arrows A and B represent the double buffering operation mechanism. When 

application is busy writing results to frame buffer 0 on shared-memory (Rambus, XDR), the 

frame buffer 1 on XDR moves its content to frame buffer 1 on GPU via DMA, and the pixels 

displayed on monitor comes from frame buffer 0 on GPU. Then the frame buffer flips to the 

other one and follows the mechanism described above. It’s noted that the computing time of 
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display isn’t included in the decoding statistics below. 

There are 3 optimization techniques applied in this thesis. They are vectorization, 

parallelization, and dataflow optimization. The performance with combinations of these 

techniques is shown in Figure 4-3. The unit of y-axis is frames per second (fps), and the 

-axis represents the optimization techniques. 
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Figure 4-3 The performance with co es 

 

mbinations of optimization techniqu

The experiment is divided into 4 categories as the followings. 

 The transfer size per DMA command 

 The size of I/O buffer 

 The double buffering 

 The utilization of different number of SPEs 
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The purpose of this experiment is to find the appropriate transfer size of DMA 

comm

4.1  The Transfer Size per DMA Command 

In this experiment, the purpose is to find the appropriate transfer size of DMA command 

on CBE for multimedia decoding applications. The input end is a variable-length reading 

process and the output end is a block writing process. The input ring buffer reads the stream if 

the data pointer crosses the boundary of half ring, and the output buffer writes the result to 

shared memory after the decoding of each MB.. The detail is described in Chapter 3.  

 

ands and the associate buffer. In the multi-core system, the communication between 

each core plays an important role. The performance is highly dependent on the behavior of 

DMA. The optimized results summarize in the final section with the number of utilized SPEs 

going from zero to six. 

 

 

Figure 4-4 The transfer size per DMA command 
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The unit of y-axis is frames per second (fps), and the unit of x-axis is byte. The size of 

input buffer size is set at 16 K bytes, and size of output buffer is set at 768*12 = 9216 bytes 

(the size of 12 output macroblocks). The transfer size per DMA command is changed from 1 

byte to 768*12 = 9216 bytes as shown in Figure 4-4. 

The considerably poor performance comes from many DMA transfers with small size of 

ata. The issuing of DMA commands and the data shuffling consume much time in data 

movement by small transfers. When the transfer size per DMA command is 32 bytes, the time 

e on SPU dominates 

m 

 the fact that 768 is not a multiple of ( ). The degradation should be noted. Even 

though the number of DMA comma r 768 bytes, the performance 

doesn’t scale up but drops. Thus the DMA transfer command with size not a multiple of 

) should be avoided as possible as we can. 

It could be summarized that the issuing of DMA commands with transfer size larger than 

128 bytes gets nothing better. A DMA command with transfer size larger than 128 bytes 

would be divided into transfers whose sizes are all 128. Put it in another way, the basic unit of 

DMA transfers is 128 bytes. Although the improvement among 32~128 bytes is not high, the 

improvement in the multi-core system could become obvious when the DMA rate of 

advanced application with higher data compression is increasing. In other words, the 

improvement of system munication burden 

becomes heavier or data rate becomes higher. The issues of DMA commands with small 

d

spent on DMA comes to an acceptable level because the computation tim

the overall performance.   

This figure shows that the performance improvement by DMA size saturates at the 

location “128 bytes”. This result makes sense for the CBE. The DMA commands favor the 

128-byte transfers. This size is the same as the L2 cache-line size. IBM suggested that, for 

high performance, the access of memory should be 128-byte alignment, and the size should be 

an even multiple of 128 bytes. The little degradations at 768 bytes and its multiples confor

to n2128×

nd issuing is decreased afte

( n2128×

 performance would be multiplied if the com
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trans

4.2  The Size of I/O Buffer 

ust bigger than one input macroblock. The size of 

one input macroblock is usually tens of bytes, 

ands separately. The reason why 

the division is m

fer size should be avoided as many as possible. The number of DMA commands would 

significantly influence the system performance, so the programmers must reduce the number 

of DMA commands to a suitable amount.  

In this experiment, the purpose is to find the appropriate size of I/O buffer in a 

multimedia decoding application. It’s noted that the input is variable-length. Thus the input 

buffer is set at a fixed size and the size m

as compared to the size of output macroblock 

which is 768 bytes. The update of input buffer could take place in every beginning of 

decoding of one MB. For simplicity and safety, at first the input buffer size is set at 16K bytes 

as the same as that in section 4.1. The transfer size per input DMA command is fixed at 16K 

bytes which is the appropriate size explored in the first experiment, to be more specific, 16K 

is a multiple of ( n2128× ). The transfer size per output DMA command is 128 bytes if the size 

of output buffer is less than or equal to 128 bytes. Otherwise, the transfer sizes of DMA 

commands approach the multiple of ( n2128× ). For example, 768 bytes should be divided into 

512 bytes and 256 bytes and transferred with 2 DMA comm

ade comes from the observation in the 1st experiment. 

The unit of y-axis is frames per second (fps), and the unit of x-axis is byte. The size of 

output buffer is changed from 16 bytes to 9216 bytes as shown in Figure 4-5. It should be 

noted that the DMA transfers are aligned transfers in CBE. To be more specific, the 4 least 

significant bytes (LSB) of the source and destination address must be the same. Thus the 

minimum buffer size could be used is 16 bytes. The size of one MB is 768 bytes contains 

RGB pixels. The maximum buffer size chosen here, namely, 9216 bytes comes from 12 
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macroblocks. In Figure 4-4, we found that the performance saturates when output buffer size 

is 768 bytes. The bad performance at 16, 32, 64 bytes comes from the same reason stated in 

previous experiment. The number of DMA commands issued is larger, and the SPU should 

wait for the completion of DMA transfers each time while the buffer is full within the 

 reason why the performance at 128 and 256 bytes 

the number of DMA commands issued is the 

same

decoding of one MB. The latter is also the

is worse than that at 768 bytes, even though 

. 
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Figure 4-5 The size of output buffer 

 

 The performance doesn’t scale with larger size of output buffer. The performance 

saturates at 768 bytes. The reason is that the time of data transfer is almost unchanged for size 

of output buffer greater than 768 bytes. The range of data locality is limited within a single 
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MB, i.e., the computing of this output MB doesn’t need the information from the other output 

MB. The DC value of DCT from previous MB is kept right after the Huffman decoding. On 

the other side, the performance drops because that the number of DMA commands issued 

exceeds the depth of command queue with smaller output buffer. The memory flow controller 

(MFC) would stall the execution until all issuing DMA commands are queued. The summary 

could be made. The issuing of DMA commands should never exceed the maximum capacity 

of DMA command queue. The associate buffer size needs not to be the largest size occupying 

ll the remaining room in the small LS. The programmers would not have to leave a 

considerably huge buffer size of an application. The bandwidth of CBE and the DMA 

efficiency achieves its maximum capability at a point earlier than we expect. Although the 

programmers could simply assign all the rest of unused LS to the buffer, it is unnecessary and 

would make a large modification with the growing of application, i.e., the usage of LS for 

algorithm is increased and the rest of LS which left for buffer allocation is decreased 

therefore. 

 As for the size of input buffer, we set the size of output buffer to 768 and 768*2 and find 

the best combination of I/O buffer. It’s reasonable that we search the size of input buffer after 

output buffer. Note that the output bandwidth is almost 20-fold larger than input bandwidth. 

The input buffer size is a minor effect on system performance. The experimental results not 

shown here present that the size of input buffer almost has no influence on the system 

performance. As for we know the fact that the maximum transfer size of a DMA command is 

16K bytes, it’s reasonable that the size of input buffer is simply set as 16K bytes. The input 

buffer could be filled up by a single DMA com ne slot maximally of 

DMA command queue. 

a

mand and only occupies o

In the multimedia decoding applications, the summary is that the entries of DMA 

command queue should be never overflowed. The decoding time of each MB is almost 

equaled, so the issuing rate of DMA commands could be amortized as long as the queue is not 
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overflow. That’s the reason why the performance results at 768 bytes or lager are almost the 

same. The arbitration mechanism in EIB is round-robin, so the 6 queues in MFC of 6 SPEs 

would get the EIB resource in a fair way. The best way is always trying to fill up the DMA 

queues and simply waiting for the arbitration granted next time. It’s should be noted again 

that the I/O buffer doesn’t have the necessity to occupy all remaining capacity of the small 

local store (LS). This utilization of LS by brute force is neither an easy nor good idea.   

The concept of double buffering is that the content of one part is updating while the 

content in the other part is transferring to outside place. The overlapping of computation and 

transportation is the goal of double buffering technique. The detailed description is provided 

in Chapter 4.  

The input buffer is a ring structure. The ring 

4.3  The Double Buffering 

is divided into two halves. The output buffer 

e here comes from the queuing delay because the DMA 

command queue overflows. The double buffer couldn’

is a ping-pong buffer, i.e., the two parts of output buffer operates interchangeably. In the 

previous experiment, the input and output buffer structures are single buffer. The purpose of 

this experiment is to find the performance improvement by double buffering. The experiment 

divides into 2 parts. 

In Figure 4-6, the experiment holds on different transfer size per DMA command. The 

size of input buffer is fixed at 32K bytes, and the size of output buffer is fixed at 18432 bytes. 

It’s just the double size in 1st experiment. The figure reveals 2 facts. Although the data 

communication time is very huge for transfer size among 1~8 bytes, the double buffering 

can’t do any help. The huge DMA tim

t ease the queuing delay. On the other 

hand, the data shuffling time could be reduced by the double buffering effect as shown for 
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transfer size bigger than 768 bytes. The reason is that the data shuffling is handled by MFC 

asynchronous to the computation handled by SPU.  

 

 

The double buffering for different transfer size per DMA command 

in 2nd experiment. The result of previous experiment on single 

output buffer is also in this fi

Figure 4-6 

 

In Figure 4-7, the experiment holds on different output buffer size. From the summary in 

1st experiment, the transfer size per DMA command is set at 128 bytes. The size of input 

buffer is fixed at 32K bytes. The size of output buffer is changed from 32 bytes to 18432 

bytes. It’s just the double size 

gure for the purpose of comparison. The unit of y-axis is frames 

per second (fps), and the unit of x-axis is byte. It’s noted that the x-axis keeps the same as 

Figure 4-5 for clarity, and the actual buffer size is doubled since the double buffering is 

utilized. The performance saturates at 1536 bytes as the case in the 2nd experiment (768 bytes 

for single buffer). The improvement provided by double buffering ranges from about 25% to 

1.6% as shown in Figure 4-8. 
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Figure 4-7 The double buffering for different output buffer size 
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Figure 4-8 The improvement of double buffering compared to single buffering 
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The improvement descends as the size of output buffer rising. This shows the actual 

contribution where the double buffering gives. The time spent on DMA could be divided into 

2 parts. The 1st part is the time from the issuing to the committing of DMA command, and the 

2nd part is the time that actual data transfer spent on EIB. The double buffering technique 

only improves the 2nd part. It overlaps the time of data transferring and computation. As the 

statement before, if the size of output buffer and associate transfer size per DMA are greater 

than or equal to 128 bytes, the transfer size is automatically divided into units of 128 bytes. 

This means that the time spent on EIB is the same for the cases where the sizes of output 

buffer are greater than 768 bytes. When the output buffer size is less than 128 bytes, the time 

of data transferring is multiplied. For example, the time of data transferring whose output 

buffer size is 64 bytes doubles that whose size is 128 bytes. The poor improvement for sizes 

of output buffer greater than 768 bytes comes from the fact that the DMA time is very small 

in these settings. 

The improvement at peak performance (768 bytes) is less than 2%. This result tells that 

the output double buffer actually works but not so attractive. The tradeoff should be 

considered. In order to gain the about 2% improvement, the memory usage raises to 200% for 

output buffer. However, it’s reasonable to make this tradeoff if remaining capacity in LS at 

last is still large enough. 

4.4  The Utilization of Different Number of SPEs 

This experiment shows the performance scaling with the number of SPEs. The first 

experiment in this section is an original code. This original code is the beginning of 

multi-core program mentioned in Chapter 4. The concept of memory is still the

shared-m ple 

 

emory model. The access to memory is masked by the API of Cell, i.e., it’s a sim
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DMA command without any buffering structure. The transfer size of input and output DMA 

command equals to the size of memory access in single-core program on PPE. The 

accumulation of DMA transfer is not applied here, and the size of DMA command is the same 

as that of the output variable. The experiment result is shown in Figure 4-9. The performance 

with 0 SPEs means the decoding is a single core program on PPE. It’s obvious that the 

performance grows slowly and isn’t direct proportional to the number of SPEs. Even worse, 

the performance with 6 SPEs is not better than that with single PPE. 

 

 

Figure 4-9 The utilization of different number of SPEs (original version) 

 

The result in Figure 4-9 reveals a common problem in multi-core programming, namely, 

the multiple of improvement is much less than the number of utilized cores. However, this is 

communication 

resource is a limiting factor of system performance because that the bandwidth is limited in all 

multi-co

not surprised in the multi-core system if we look inside the architecture. The 

re systems. For CBE the data communication is supported by element interconnect 

bus (EIB) mentioned in Chapter 2. All data transfers should go through the EIB to other 

elements. It’s almost impossible to achieve the best performance without dataflow planning 

and optimization. The performance with 6 SPEs is no better than that with a single PPE in this 
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experiment. 

The result after all the optimization experiment in previous section is shown in Figure 

4-10. The size of input double ring buffer is 32K bytes, and that of output double buffer is 

1536 bytes. The transfer size of input DMA command is 16K bytes, and the output DMA 

commands are 2 commands with 512 and 256 bytes respectively. As shown in the figure, the 

performance with 6 SPEs is 6-fold with respect to 1 SPE. It’s what we expect in a multi-core 

system. The final results boots the performance about 20-fold as compared to the case of 

ngle PPE. 

 

si

 

Figure 4-10 The utilization of different number of SPEs (optimized version) 
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5   Summary and Future Work 

In this thesis, a frame-based data partitioning for multimedia processing on PlayStation3 

is utilized. The dataflow planning starts from the input stream dividing by the PPE. The PPE 

allocates the encoded frames to the 6 SPEs in round-robin fashion. Each SPE is responsible 

for the decoding of an entire frame. The SPE returns the decoded frame and the PPE display 

the contents in the frame buffer. When all frames are returned, the PPE ceases the decoding 

process and destroys the threads. 

The communication scenario is very important in a multi-core system. There are two 

mechanisms: mailbox for message passing and DMA commands for data transfers. The 

number of times of message passing between the PPE and the SPEs is reduced to 2 per frame. 

The discussion of transfer size per DMA command and the according buffer allocation is 

experimented. The appropriate transfer size per DMA command is 128 bytes which conforms 

to the design of DMA controller on CBE. It’s found that an output buffer with 16*16*3 = 768 

bytes which is the size of 1 output macroblocks is good enough. The input buffer is a ring 

structure whose size is 16k bytes. The I/O buffer is implemented as single buffer if the local 
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storage is not big enough, and the tiny profit of performance with double buffering could be 

ignored. The key point is that the DMA command queue has 16 entries. It’s important to note 

that the overflow of command queue would incur the queuing delay. The marginal utility is 

negligible if the size of the I/O buffers is increased. 

In this thesis, it’s supposed that the data dependencies only exist within a single frame, 

i.e., the inter-frame issues aren’t discussed here. However, the proposed concept and 

optimization could be extended. For some advanced multimedia applications, such as H.264, 

the inter-frame prediction is the most complex part. The data dependency between frames is 

be 

implemented in a desktop level system such as PS3. The optimization of DMA commands 

and I/O buffer allocations is also applicable for this advanced decoding standard. 

 

 

bounded in the so-called group of pictures (GOP). The GOP-based data partitioning could 
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