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Student : Tzu-Yun Kuo Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

With modern day advances in computer processing and multimedia applications,
improvements in the area of image processing and video compression are analogous.
Video compression allows the réduction of high-resolution video into a more compact
memory space to thereby reduce storage and video processing resources. But the
playback is the growth of computational .¢omplexity, especially in HD-sized

application.

This thesis presents a set of fast algorithm and VLSI architecture for HDTV-sized
H.264 fractional motion estimation. To solve the long computational latency in
HD-sized application, we propose to use the single iteration algorithm with only six
search points. This single iteration method uses the information of motion vector
predictor to predict the fractional motion vector and thereby reduces 88% search
points and halves the cycle count of two iteration methods in previous approaches.
Moreover, we propose to use 4x4 Hadamard instead of 8x8 Hadamard as cost
function for H.264 high profiles without significant video quality loss and 75% area
reduction of the transform unit. By these techniques, the resulted architecture can save
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20% of area and provide over 40% of throughput improvement than the previous

work, and is able to support HDTV applications.
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Chapter 1 Introduction

With the demand of higher video quality and lower bit rate, a new international
video coding standard is developed by the Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, which is known as H.264 or MPEG-4 Part 10 Advanced Video
Coding (AVC)0. Comparing with MPEG-2 and MPEG-4, H.264/AVC can improve
the coding efficiency by up to 50%[2] while still keep the same video quality with

various advanced coding tools.

1.1 MOTIVATION

The early video standard, MPEG-1, is7aimed at. CD-ROM based video storage.
Subsequently, the MPEG-2 video ~coding-standard[3], as an extension of prior
MPEG-1 standard[4], supports the application such as the transmission of standard
definition(SD) and high definition(HD) TV signals over satellite, cable, and terrestrial
emission and the storage of high-quality SD video signals onto DVDs. Recently the
MPEG-4 standard[5] also emerges in some application domains of the prior coding

standards.

In 2001, the ISO Motion Picture Experts Group (MPEG) recognized the potential
benefits of H.26L and the Joint Video Team (JVT) was formed, including experts
from MPEG and VCEG. JVT’s main task is to develop the draft H.26L “model” into a
full International Standard. In fact, the outcome will be two identical standards: ISO

MPEG4 Part 10 of MPEG4 and ITU-T H.264. The “official” title of the new standard



is Advanced Video Coding(AVC); however, it is widely known by its old working title,
H.26L and by its ITU document number, H.2640. The H.264/AVC video compression
standard0 provides better compression and is widely adopted in various video

applications.

The H.264/AVC CODEC uses block-based motion estimation, the same principle
adopted by every major coding standard since H.261. Important differences from
earlier standards include the support for arrange of block sizes (down to 4x4) and fine
sub-pel motion vectors (1/4 pixel precision in the luma component). Motion
estimation(ME) contributes a lot in compression efficiency and also on the
computation time. Thus, many fast algorithms and hardware architectures are
proposed for integer pixel motion: estimation(IME) to meet real-time requirement.
With the computation reduction-0f IME, the fractional pixel motion estimation (FME)

now occupies 45% of the run-time intinter-predictionand thus needs speedup as well.

Many fast FME algorithms are also proposed to speed up the process such as the
center based fractional pixel search (CBFPS)[13], the quadratic prediction based
fractional ME algorithm[14], and the five candidates algorithm[15]. However, some
algorithms[13][14] are software-oriented and exhibit irregular data flow and thus are
not suitable for hardware design. The five candidates algorithm[15] which is our
previous work is more suitable for hardware implementation and can reduce the
processing unit from nine to five to save hardware cost. However, from the hardware
viewpoint it still suffers from long computation cycles as others. That is because it
still takes two iterative search loops, one on half-pels and one on quarter-pels[16].
Thus, fast algorithms only reduce the processing element but do not reduce the cycle

count in the hardware implementation. This problem will pose a strict limit on the
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HDTYV sized applications since FME will take a lot of cycles and dominate the whole
pipelining cycle time. Besides, all of these algorithms and designs do not consider the
costly 8x8 SATD (sum of absolute transformed difference) computations in the high
profile of H.264. Hence, we require a new algorithm that can truly reduce cycle time

and is suitable for high profile of H.264.

1.2 THESIS ORGANIZAION

In the thesis, the H.264 standard will be introduced in Chapter 2 . We will
review some previous fractional-pel motion estimation(FME) algorithms in Chapter
3 . The proposed fast fractional-pel motion estimation algorithm named as single
iteration 6 candidates FME is=illustrated in-Chapter 4 . Then, we will show the
hardware architecture of the FME istage-and result comparisons in Chapter 5

Finally, a conclusion is given in Chapter. 6



Chapter 2 Overview of H.264/AVC Standard

2.1 OVERVIEW

H.264 consists of a number of tools. Its basic structure is the so-called
motion-compensated transform coder. Compared to the prior video coding standards,
many important and new techniques are employed in H.264 and they together bring
significant improvement on coding performance. Some of these techniques are
highlighted here[6]. The concepts of some of these tools have existed for some time
but they are nicely tuned and integrated,together to form a good compression scheme

n H.264.

2.1.1 Variable block-size motion compensation with multiple references

The basic unit in H.264/AVC motion estimation is still the 16x16 macroblock
like that in MPEG-4[5] and other previous standards. However, it can be further split
into a tree structure, with a minimum block size as small as 4x4. Also, up to five

reference frames may be used for motion compensation to improve compression rate.
2.1.2 Directional spatial intra coding
H.264/AVC uses the intra-prediction technique to reduce the spatial correlation

inside a block. This technique estimates the current block pixel values based on the

known pixels of its neighbor blocks. The prediction results implicitly follow the edge



direction, and often get significant improvements.

2.1.3 In-loop deblocking filter

At low bit rate situation, block-based video coding process produces artifacts
known as blocking effect. To solve this problem, H.264/AVC adopts this in-loop
deblocking filter which adjusts its filter strength adaptively according to the image

local characteristics, and thus it provides better quality pictures at the decode end.

2.1.4 Context adaptive entropy coding

Two entropy coding methods,Context-based Adaptive Binary Arithmetic Coding
(CABAC) and Context-based=Adaptive  Variable L.ength Coding (CAVLC), are
provided in H.264. Both methods use context-base’adaptivity to improve the entropy

coding performance and the results show. this-approach is quite successful.

2.1.5 Encoding flow

A simplified encoding flow of H.264 is shown in Fig. 1[7]. A video frame is first
partitioned into a number of 16x16 macroblocks. Then, each macroblock goes
through the intra-prediction or the inter-prediction unit called motion estimation(ME).
The intra prediction unit uses the neighboring block data to predict the current block.
The inter-prediction uses reference frames to predict the current frame. Each predictor
has a number of modes. A good design should pick up the best mode with the lowest
rate and distortion. The prediction residuals are then transformed, quantized and

further entropy-coded into the output bitstream. In order to continue operating on the

5



next incoming frame, the quantized current frame is reconstructed and stored. The

decoder data flow is the reverse of the encoder flow.
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Fig. 1 Block diagram of H.264 encoder

2.1.6 Profiles

A profile defines a set of coding tools or algorithms that can be used in generating
a conforming bit stream. In the initial H.264/AVC standard, three basic profiles were
established to address these application domains: the Baseline, Main, and Extended
profiles. The Baseline profile was designed to minimize complexity and provide high
robustness and flexibility for use over a broad range of network environments and
conditions; the Main profile was designed with an emphasis on compression coding
efficiency capability; and the Extended profile was designed to combine the
robustness of the Baseline profile with a higher degree of coding efficiency and
greater network robustness and to add enhanced modes useful for such applications as

flexible video streaming.



While having a broad range of applications, the initial H.264/AVC standard (as it
was completed in May of 2003), was primarily focused on "entertainment-quality”
video, based on 8-bits/sample, and 4:2:0 chroma sampling. Given its time constraints,
it did not include support for use in the most demanding professional environments,
and the design had not been focused on the highest video resolutions. To address the
needs of these most-demanding applications, a continuation of the joint project was
launched to add new extensions to the capabilities of the original standard. These
extensions, originally known as the "professional" extensions, were eventually
renamed as the "fidelity range extensions" (FRExt)[8] to better indicate the spirit of
the extensions. These included:

€ Supporting an adaptive: block-size ‘for the residual spatial frequency

transform

€ Supporting encoder-specified perceptual-based quantization scaling matrices

€ Supporting efficient lossless representation of specific regions in video

content.

The FRExt project produced a suite of four new profiles collectively called the
High profiles:

€ The High profile (HP), supporting 8-bit video with 4:2:0 sampling,
addressing high-end consumer use and other applications using
high-resolution video without a need for extended chroma formats or
extended sample accuracy

€ The High 10 profile (Hi10P), supporting 4:2:0 video with up to 10 bits of
representation accuracy per sample.

€ The High 4:2:2 profile (H422P), supporting up to 4:2:2 chroma sampling and

7



up to 10 bits per sample, and ¢ The High 4:4:4 profile (H444P), supporting
up to 4:4:4 chroma sampling, up to 12 bits per sample, and additionally
supporting efficient lossless region coding and an integer residual color
transform for codingRGB video while avoiding color-space transformation

CITOr.

All of these profiles support all features of the prior Main profile, and additionally
support an adaptive transform blocksize and perceptual quantization scaling matrices.
The High profile adds more coding efficiency to what was previously defined in the
Main profile, without adding a significant amount of implementation complexity.

Fig. 2 shows the relationship of Baseline, Main, Extended and High profiles.

Fxtend

Quantization
Scaling
Matrices

intra 8x8
prediction
muodes

BxB/dxd
Transform
& Quantization

Adaptivity

FMO : Flwxible Macroblock Ordering
ASO : Arbitrary Slice Ordering

Fig. 2 Profiles



2.2 INTRA PREDICTION

In contrast to previous video coding standards like H.263 and MPEG-4, where
intra prediction is performed in the transform domain, in H.264/AVC it is always
conducted in the spatial domain. By referring to neighboring samples of coded blocks
which are to the left or/and above current predicted block, most of the energy in the
block can be removed in the intra prediction process. With the help of intra prediction,
the compression performance of small block-size transform is enhanced. For luma
components, there are nine 4x4 prediction modes and four 16x16 prediction modes.

Furthermore, additional nine 8x8 prediction modes are added in high profile.

QA‘B‘C‘D E‘F‘G‘H‘
I 1
B .
K|
| ] 4
L A S
(@) ®
A‘B‘C‘D‘E‘F‘G‘H I‘J‘K‘L‘M‘N‘O‘P‘

<|2[<|=[-][e]=[o]=

(c)

Fig. 3 (a) Intra_4_4 prediction is conducted for samples a-p of a block using samples A-Q.
(b) Eight “prediction directions” for 4x4 or 8x8 intra prediction.

(c) Intra_8_8 prediction is conducted for samples a-p of a block using samples A-Q.



When using the 4x4 or 8x8 intra prediction, each 4x4 or 8x8 block is predicted
from spatially neighboring samples as shown in Fig. 3(a)(c). For each block, one of
nine direction modes can be chosen. In addition to “DC” prediction (where one value
is used to predict the entire 4x4/8x8 block), eight directional prediction modes are

specified as illustrated in Fig. 3(b).

For 16x16 prediction modes, the whole luma component of a macroblock is
predicted. Four prediction modes are supported. They are vertical prediction,
horizontal prediction, DC prediction and plane prediction. The chroma components
are predicted using a similar prediction technique as that in the 16x16 prediction since
chroma components are usually smooth over large areas. Intra prediction and all other
forms of prediction are not used:while across slice boundaries to keep all slices

independent of each other.

2.3 INTER FRAME PREDICTION

The inter prediction in H.264/AVC is a block matching based motion estimation
and compensation technique. It can remove the redundant inter-frame information
efficiently. Each inter macroblock corresponds to a specific partition into blocks used
for motion compensation. For the luma components, partition with 16x16, 8x16, 16x8
and 8x8 are supported by the syntax. Once the 8x8 partition is chosen, additional
syntax is transmitted to specify whether the 8x8 partition is further partitioned into

8x4, 4x8 or 4x4 blocks. Fig. 4 illustrates these partitions.
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Fig. 4 Inter macroblock partitions

The prediction information for each MxN block is obtained by displacing an area
of the corresponding reference frame, which is determined by the motion vector and
reference index. H.264/AVC supports quarter pixels accurate motion compensation.
The sub-pel prediction samples are obtained by interpolation of integer position
samples. For the half-pel positién, the prgdiétion value is interpolated by a
one-dimensional 6-tap FIR filter” horizontally and- vertically. For the quarter-pel
position, the interpolation value'is geﬁefated by averaging the samples at integer-pel

and half-pel position. Fig. 5 shows the fractional Sample interpolation.

[l [E] &= o [< [
- Gooa 2
[ H &

EH B @ §WH [

Fig. 5 Fractional interpolation for motion compensation
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The prediction values for the chroma component are always obtained by bilinear
interpolation. Since the chroma components are down-sampled, the motion
compensation for chroma has one-eighth position accuracy since that for luma has

one-fourth position accuracy.

The motion vector components are differentially coded using either median or
directional prediction from neighboring blocks. Besides, H.264/AVC supports
multiple reference frame prediction. That is, more than one prior coded frame can be

used as reference for motion compensation as Fig. 6 illustrated.

ST 12

A

= |

4 Prior Decoded Pictures Current
as Reference Picture

Fig. 6 Multiple reference frame motion compensation

2.4 TRANSFORM

Similar to previous video coding standards, H.264/AVC utilizes transform
coding of the prediction residual. However, instead of fractional discrete cosine

transform applied by previous standard, an integer transform with similar properties

12



as DCT is adopted. Thus, the inverse-transform mismatches can be avoided due to the
exact integer operation of transform. The transformation is applied to 4x4 blocks. But
for 16x16 intra luma prediction or 16x16, 16x8, and 8x16 inter prediction, 8x8 DCT
is applied in high profile of H.264. Furthermore, for the 16x16 intra luma prediction
or chroma prediction, extra Hadamard transform is applied on the DC coefficients of

4x4 blocks.

2.5 QUANTIZATION

A quantization parameter is used for determining the quantization of transform
coefficients in H.264/AVC. The parameter can take 52 values. The quantized
transform coefficients of a block.'generally are scanned in a zig-zag order and
transmitted using entropy coding methods.The 2x2 DC coefficients of the chroma
component are scanned in the raster-scan order. The transform is simplified to integer
operation because some operation is performed in the quantization stage. The
quantization parameter is different between 4x4 and 8x8 DCT in high profile of

H.264.

2.6 ENTROPY CODING

In H.264/AVC, there are two methods of entropy coding. The simpler entropy
coding method, UVLC, uses exp-Golomb codeword tables for all syntax elements
except the quantized transform coefficients. For transmitting the quantized transform

coefficients, a more efficient method called Context-Adaptive Variable Length

13



Coding (CAVLC) is employed. In this scheme, VLC tables for various syntax

elements are switched depending on already transmitted syntax elements.

In the CAVLC entropy coding method, the number of nonzero quantized
coefficients (N) and the actual size and position of the coefficients are coded
separately. After zig-zag scanning of transformed coefficients, their statistical
distribution typically shows large values for the low frequency part and becomes to

small values later in the scan for the high-frequency part.

The efficiency of entropy coding can be improved further if the
Context-Adaptive Binary Arithmetic Coding (CABAC) is applied. In H.264/AVC, the
arithmetic coding core engine and'its associated probability estimation are specified
as multiplication-free low-complexity methods using only shifts and table look-ups.
Compared to CAVLC, CABAC typically-provides-a reduction in bit rate between

5%—-15%.
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Chapter 3 Review of FME Search Algorithms

3.1 SEARCH ALGORITHM IN THE REFERENCE SOFTWARE [12]

3.1.1 Algorithm

& S S
Q . Integer pixel
: half pixel
A\ : quarter pixel
B S S

B & )
W
Fig. 7 Search algorithm in the reference software
Fig. 7 details the search algorithm for the Fractional-pel ME(FME) process
according to the reference software[12]. The search process in fractional motion
estimation is typically divided into two parts. The first part consists of half-pel motion
estimation, where specific pixels at half-pel spacing are searched for comparison. The
second part consists of quarter-pel motion estimation, where pixels at quarter-pel
spacing centered around a search point obtained in the first part are used for

comparison.
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In the first part of half-pel ME, a cost value for each of eight search points in a
square search pattern surrounding the integer spaced pel called search center is
calculated. A cost value calculation for the search center is also performed. The search
point with the lowest cost value is then selected as the quarter-pel motion estimation
search center in the next step. The fractional motion estimation step utilizes an
additional eight fractional search points displaced around the search center at
quarter-pel spacing. A total of 17 search points (1 search point from integer pel, 8
search points from half-pel ME and 8 search points from quarter-pel motion
estimation) are searched and compared in a single round of the traditional ME

procedure according to the reference software.

3.1.2 Hardware implementation[16]

In the hardware implementation of the above algorithm in [16], firstly, reference
pixels are loaded to interpolation unit and then demanded sub-pixels are generated.
After that, the demanded sub-pixels and current MB pixels go into the 4x4 block PU
which is responsible for residual generation and Hadamard transform. It processes
4x4 element blocks decomposed from sub-block in sequential order. There are nine
4x4 block PU’s processing nine candidates around the refinement -center
simultaneously. Finally, nine accumulators accumulating the SATD of each 4x4
element block and corresponding MV cost and sent it to the compare unit for

determining the best candidate.
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3.2 FIVE CANDIDATES ALGORITHM [15]

3.2.1 Algorithm

@ @ o @ ”P @

(i
1
:
|
]
[

L
N
0

L
]

L
@R
\

7

|

L
N

]

@
®

@ @€ e ®
(a) (b)

Fig. 8 Five candidates search algorithm

The author of [15] finds that the‘error-surface of sub-pel motion estimation is
unimodal in most cases. Therefore; he.biases his second search step near the center
and just examines the neighborhood position around the points with low cost value.
Fixed half-pel search pattern and adapt quarter-pel search patterns are applied in his

search algorithm.

Stepl: Calculate the five search points of the center and the four half-pel points.

Step2: Adaptively select the search pattern depending on the best three search
positions of the first step. If the integer-pel has minimum cost, the algorithm will bias
the search pattern to the search center, as shown in Fig. 8(a). Otherwise, it will bias
the search pattern away from the search center, as shown in Fig. 8(b). The detail of

each case is shown below.
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Case 1: When the center has minimum cost, the second and third best search
positions aren’t near each other. It will choose the three search points between the best

and the second best ones, as shown in Fig. 9.

1 \ il \

I 444 HaAQ

T \ T \

Fig. 9 Refine position in case 1

an
@

Case 2: The minimum cost point falls on search center and the second best
positions is neighbor to the third one. It will choose the “L” shape pattern as shown in

Fig. 10.

o o
- -

Case 3: The best two search positions are at the four half-pel positions and

Fig. 10 Refine position in case 2

neighboring to each other. It will choose the three points in the “L” shape between the

best two as shown in Fig. 11.

\
4

Fig. 11 Refine position in case 3
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Case 4: When the best two search points are at the four half-pel positions and not
neighboring to each other. It will search the four candidates around the best search

point as shown in Fig. 12.

|

) 1

Fig. 12 Refine position in case 4

3.2.2 Hardware implementation
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Fig. 13 Block diagram of hardware of 5 candidates algorithm
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Fig. 13 shows the block diagram of the architecture in [15]. The core procedure
of FME includes interpolation, residual generation and Hadamard transform. The
interpolation unit interpolates the fractional pixels by 6-tap filter. Due to the irregular
search pattern used in second step, interpolated fractional pixels should be adaptively

selected before been send into PU.

The 4x4 block PU has four times parallelization of horizontal adjacent pixels and
is in charge of residual generation and Hadamard transform. It processes 4x4 element

blocks decomposed from sub block in sequential order.

SATD generated form PUs ahd MB header.included motion vector, reference
frames and type of block sizes-are.send mto.the compare and determination unit for
the Largrangian mode decision: Mode decision,is combined with comparator. In the
first search step, we should know not enly the best position but also second and third
places. Then, the information of the first step is send into selection unit to choose the

input of the next step.
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3.3 QUADRATIC PREDICTION BASED FME [14]

Vi

© L S,
© : Integer pixel
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A : diamond search point
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Fig. 14 The integer-pixel search positions within the "local" fractional-pel ME search area.

The fast algorithm in [14] uses a mathematical model to predict the best position
at quarter-pel position. In this pdper, a, “degenerate’” quadratic prediction function is
used to model the matching error function within the fractional-pel ME search area,
which is given by
F(X,y)= Ax> +Bx+Cy* +Dy +E
where x and y are local x and y coordinates of a search position at fractional-pel
accuracy and A, B, C, D, and E are parameters to be determined. As shown in Fig. 14,
a fractional-pel ME search area with search range=1 pixel contains 9 integer-pel
search positions. The five matching error values of the five integer-pel search
positions, C, H1, H2, V1, and V2 are known in the previous integer-pel ME search
procedure. These five SADs are employed to determine the five parameters, A, B, C,

D, and E in the equation.

In Fig. 1, the local coordinates of the five integer pixel positions C, H1, H2, V1,

and V2 are (0,0), (-1,0), (1,0), (0,-1), and (0,1). Then we have
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F(C)=E
l=F(H2)-C
FV)=C-D+E
. J=F(HI)-C
FV2)=C+D+E For simplicity, let
K=FV2)-C
F(H))=A-B+E
L=FVD)-C
F(H2)=A+B+E

A=(1+1J)/2
B=(1-J)/2
Then we have <C = (K +L)/2
D=K-L/2
E=F(C)

It is assumed that F(x, y) is continuous (smooth) within the “local” fractional-pel
search area, to obtain the minimum F(x, y), and then the differential operation can be
performed on F(x, y) with respective’to x and'y, respectively and then set it to zero.

The solution to the above differential equations 1s,

B D
X =——,A%0 =L —_IC%0
P 2A , Yo 2C

where (X 0> Yp ) is the best position in quarter-pel accuracy.

After determine the best position, the author does the first diamond search
around it. Then, it refines around the best point until it is center-located. This
algorithm needs at least two iterative loops and additional memory to store
information from integer-pel motion estimation. Therefore, it is not suitable for

hardware implementation.
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3.4 CENTER-BIASED FRACTIONAL-PEL SEARCH (CBFPS)[13]

PEEIVE £ e R Tl

(a) (b)

Fig. 15 (a) Sub-pel motion vector distribution using the Full Search algorithm versus the (0,0) MV (b)

Sub-pel motion vector distribution using the Full Search algorithm versus the median predictor.

The concept behind the center-biased EME[13] is that the probability of finding
the motion vector around frac Zpred mv-is higher than that around (0,0). Fig. 15(a)
shows the sub-pel motion vector‘distribution using the Full Search Algorithm versus
the (0,0) MV and Fig. 15(b) shows that versus the median predictor. The distribution
versus the median predictor is more center distributed than versus (0,0). Hence it
can be concluded that we have higher probability to find the accurate sub-pel MV

around the median predictor than around the (0,0) MV.

The center-biased FME[13] uses the information of predicted motion vector

(pred_mv). It first calculates the fractional predicted motion vector(frac_pred mv) :

frac pred mv=(pred mv-mv)%p )

where pred mv here is defined as the fractional pixel unit. mv is the integer pixel
motion vector after IME process, and mv is also in fractional pel unit. % is the mode

operation, =4 in 1/4-pel case and =8 in 1/8-pel case. frac_pred mv is the predicted
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fractional motion vector and indicates only fractional position. Then, it compares the
cost at (0, 0) and frac pred mv and does the first diamond search around the lower
cost one. After that, it refines around the best point until it is center-located. However,
this algorithm still needs at least two iterative loops and thus is not suitable for low

latency hardware design.
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3.5 FAST FRACTIONAL-PEL ME USING MATHEMATICAL MODEL[17][23]

3.5.1 Algorithm

fI(-1,-1) £2(021) f3(1,-1)
hi(-1/2-1/2) | h2(0-1/2) | h3¢1/2,172)
[ - [
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h(1212) | hsj12) | ho(2,12) @ : Integer pixel
! M M
[ |- L .
[] : halfpixel

é © —0

f7(-1,1) 18(0,1) f9(1,1)
Fig. 16 The integer and half pixels within the'fractional-pel ME search area.

The author in [17] implements the method of [23] and extends it to quarter-pel
precision. He uses a mathematical model to estimate SADs at quarter-pel position.
The mathematical model used to approximate the surface defined by the nine integer

pixels is as following:
f(X,y)=Cx’y> +C, X’y +C,x* + C,xy* + C.xy +C x+C,y* +C,y +C, ... (1)

Writing down the 9 SADs, we can get
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f1 1 -11 -1 1 -11 -11][C,
f,/ Jo o 0 0 0 0 1 -1 1/|C,
fl |1 -1 1 1 -1 1 -1 1]]c;
f,l]o0 0o 1 1 0 -1 0 0 1/|C,
fl=f0 0 0 0 1 0 0 0 1||C,
illo o 1 1 1 0 0 1]|C, [ )
f1 11 11 1 -1 -11 1 1||C,
fol o 000 0 0 1 1 1/|C,
f, | (1 1 1 1 1 1 1 1 1/|C)

Its 9 coefficients can be determined by 9 integer-pixel precision SADs around (0, 0),
as shown in Fig. 16. We can obtain 9 coefficients by the inverse matrix of Eq. (2), as

shown in Eq. (3).

¢l ot -1 1 -1 1 -1.1,-1 1][f,
C,| [0 0 0 0 040 1 _-1:d|llf,
C,| |1 =1 1 1 —f 1 H—ivIpf,
C.| |0 0 1 1 0 -1.0 0 1}f,
C.l=[0 0 0 0 1720700 A{f,
Cl 1o 0 1 1 1 “Doroemad || g [« 3)
C,| |1 1 1 1 -1 -11 1 1]|f,
C.|/0 o000 0 0 1 1 1]|f,
C | [T 1 1 1 1 1 1 1 1[f

It substitute these 9 coefficients into the original mathematical model (Eq.(2)). In the
next step, SADs at the neighboring half-pixel positions (hl, h2, ..., h9) can be
obtained by replacing x and y in Eq.(2) with its coordinates. The position which

causes minimum SAD is the half-pixel precision MV.

After finding the minimum SAD at half-pixel level, the author resets the origin
(0, 0) to the position pointed to by half-pel MV and find the minimum SAD at

quarter-pel precision similarly.
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3.5.2 Hardware implementation

Min integer SAD

& 8 neighbor SADs Ref ldx

Integer MV

FME

fractignal MV  Min fractional SAD

Mode decision

A\ 4 v A\ 4

MB mode SubMBmmode fractional MVD

Fig. 47 Top-level architecture in [17]

Fig. 17 depicts the top-level architecturesin[17]. It consists of two parts: FME
and mode decision. For each variable-size block, the FME receives from IME an
integer MV and nine associated SADs (one for the best integer position and eight
around the best) and outputs a fractional MV and a minimum SAD at quarter-pixel
precision. The mode decision engine receives SAD and fractional MV from FME and
reference index from IME. It produces the chosen modes and associated MVs of
macroblock and submacroblocks. The architecture of FME is a direct implementation
of Eq (3)). In the first step, FME receives nine SADs from IME and figures out 9
related SADs at half-pixel precision. Then, the comparator finds the minimum
half-pixel SAD and MV Refiner adjusts integer MV to half-pixel precision according

to the comparison result.

27



3.6 SUMMARY

Although the search algorithm illustrated in the reference software does manage
to sufficiently locate suitable search points for the motion vector refinement process,
the excess amount of search points may result in significant delays in the encoding
process. This search algorithm for the FME process may possess too many search
points to visit within one motion vector refinement process. Furthermore, although
this algorithm is suitable for hardware[16], the Fractional-Pel ME process requires
two iterative search loops of interpolation and Hadamard transform to calculate the
SATD cost. Therefore, the process takes too much cycle time in hardware

implementation.

The center based fractional. pixel search, (EBFPS)[13] and the quadratic
prediction based fractional ME algorithm{l4] are software-oriented and exhibit
irregular data flow and thus are not.suitable for hardware design. Although the
algorithm in [17] is suitable for hardware, it has more than 0.2dB degradation in
PSNR and needs additional hardware to generate residual. The five candidates
algorithm[15] which is our previous work is also suitable for hardware and can reduce
the processing unit from nine to five to save hardware cost. However, from the
hardware viewpoint it still suffers from long computation cycles as others. That is
because it still takes two iterative search loops, one on half-pels and one on
quarter-pels[16]. Thus, it only reduces the processing element but do not reduce the
cycle count in the hardware implementation. This problem will pose a strict limit on
the HDTYV sized applications since FME will take a lot of cycles and dominate the

whole pipelining cycle time.
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Besides, all of these algorithms and designs do not consider the costly 8x8 SATD
(sum of absolute transformed difference) computations in the high profile of H.264. In
H.264 high profile standard, blocktypes larger than 8x8, i.e. 16x16, 16x8, and 8x16,
pass through 8x8 DCT rather than 4x4 DCT before entropy coding. Hence, in FME
stage, the SATD of blocktypes larger than 8x8 is calculated by 8x8 Hadamard
transform rather than Hadamard 4x4 transform. However, 8x8 Hadamard transform
causes the interpolation unit and transform units to increase their area. Thus, the FME
hardware for high profile standard should be much larger than that for baseline or

main profile standard.

To solve above problems, we presents a single iteration fast FME algorithm and
its architecture suitable for HDITV and high profile applications. The proposed
algorithm can complete the quarter-pel precision motion search by only examining six
search points in one search step-instéad-of 17 search points in two search steps in the
reference software[12]. Thus, we can reduce the.number of SATD units since we only
search 6 candidates. Besides, the cycle count is also halved by using only one search
step. Furthermore, to avoid the costly 8x8 SATD computations with 8x8 Hadamard
transform, we use the 4x4 Hadamard transform units. Thus, we can achieve smaller

area and fewer cycle counts at the same time.
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Chapter 4 A Single Iteration Fractional-pel

Motion Estimation Algorithm

4.1 PROPOSED SINGLE ITERATION ALGORITHM

4.1.1 Proposed SIFME Algorithm

@ | @

@ o @
Fig. 18 The proposed SIFME algorithm flow on two square points, (0,0) and frac_pred_mv, and four

triangle point around frac_pred_mv in one quarter-pel distance

Inspired by the center-biased FME, we modify it by searching six candidates in
only one loop and no refined search as shown in Fig. 18. The six candidates includes
(0,0), frac_pred_mv and four diamond points around frac_pred_mv. (0, 0) is included
for low texture and low motion sequences. More search points are placed around
frac_pred_mv since the best fractional motion vector is more often around

frac_pred_mv than around (0, 0).

The next stage of the fast ME algorithm process entails selecting a quarter-pel
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search pattern. The quarter-pel search pattern is selected according to the ranking of
cost values for each specific search point, and provides search points in a certain area
to approach the global minimum cost in the search window. In an effort to reduce
confusion, the search points deduced in the quarter-pel ME stage will be referred to as
quarter-pel search points. However, both types of search points serve the same

purpose in providing matching points for the ME process.

Once the quarter-pel search pattern is determined (further below), cost values for
the quarter-pel search points of the fractional search pattern are then calculated. The
cost values attained here are used in conjunction with the cost data accumulated from
search points in the first stage to determine whether the current macroblock is a
suitable match to the reference.macroblock. The entire search pattern therefore
comprises the half-pel search pattern used in.the first stage and the quarter-pel search

pattern used the second stage for fractional. ME-:
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4.1.2 Analysis of prediction accuracy and search point

The method of the present invention manages to arrive at a comparable matching
accuracy while reducing the total search points and processing time. Table 1 shows
the prediction correctness compared with the algorithm in the reference software
under different quantization parameter (QP). The prediction accuracy is defined as if
the search fractional MV by the fast algorithm is the same as that in the reference
software in both x and y axis. This result shows that it can still have about 60~90 % of
prediction accuracy though the proposed algorithm had ignored more than 88% search

points.

Table 1 Hit rate of motion vector (myx'and mvy) compared to the algorithm adopted by JM

CIF size, 300 frame, IPPP, ProfileIDC=100, RDO off

QP container foreman mobile stefan
10 82.31% 61.80% 74.10% 62.20%
16 85.11% 63.60% 76:30% 70.70%
22 82.18% 70.97% 76.70% 75.70%
28 90.21% 78.90% 79.00% 79.40%
34 94.41% 86.40% 82.30% 82.83%
40 94.71% 91.10% 86.10% 85.40%

In addition, our algorithm is more accurate in higher QP condition. The reason
may be that our algorithm tends to find the motion vector which is similar to the
motion vector predictor(mvp) and thus has lower motion vector cost. Therefore, in
high QP condition where motion vector cost dominates rather than SATD cost does,
motion vectors found by our algorithm have lower motion vector cost and become

more accurate.
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Table 2 provides the search point comparisons with other algorithms. The
proposed algorithm needs the fewest search points compared with other search
algorithms, 64% reduction compared to reference software and 33% reduction
compared to the algorithm in [15]. This significantly reduces the hardware processing
time required by a related compression encoder or a microprocessor for use in video
compression. Besides, our algorithm does not need the second step search and saves
the additional interpolation time in the second step. Table 3 shows the comparisons
for hardware implementation. The proposed algorithm searches only six candidates
and needs only six PUs. Besides, since in hardware implementation, all candidates in
the same step are processing in parallel, cycle time is dependent on the number of
iterative steps, not number of candidates. With one loop design, our design just takes
about only half of cycles compared to that with reference software[16] and fast

algorithm in [15].

Table 2 Search point comparisons for different algorithms

Search points
JM 9.8[12] 17
Quadratic Prediction[14] 6 + multiple diamond search (Total <=11)
CBFPS|[13] 6 + multiple diamond search
Y. J. Wang[15] 8~9
Proposed 6

Table 3 Comparisons of number of processing unit(PU) and number of iterative search steps

# of PU # of iterative search step
T. C. Chen[16] 5 2
Y. J. Wang|15] 9 2
Proposed 6 1
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4.1.3 Proposed SATD cost of 4x4 Hadamard transform algorithm

In high profile standard of H.264, residual of block size larger than 8x8 are
passed through 8x8 DCT rather than 4x4 one. Thus, in the reference software, it
adopts 8x8 Hadamard transform for SATD calculation for block size larger than
8x8[18]. Though Hadamard transform is greatly simplified, one 8x8 Hadamard
transform unit still consumes about four times area than that of 4x4 one. For six PUs
in our design, six 8x8 transform will be required and thus cost a lot of area cost.
Moreover, the area of interpolation unit will also increase. To solve this area problem,
we propose to use 4x4 Hadamard for all SATD calculation disregarding of the block

size.

Table 4 shows the simulationiresults-of, our “algorithm with different SATD
strategy. We set only the first frame to.be “I-frame because inserting I-frame
periodically will ease up the effect of our algorithm. All the data are in Table 4
compared with the reference software. As shown in the table, the results with 4x4 and
8x8 Hadamard transform are similar except for low motion sequences like container
at high QP situations. That is quite acceptable since the bit rate at that condition is
quite low and any increase will be large in terms of that bit rate. As the 4x4 transform
unit only consumes 25% area cost of 8x8 one, we choose to calculate SATD by 4x4
Hadamard transform that has similar performance and saves about 75% of area cost in

PU and 60% of area cost in the total FME module.
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Table 4 Simulation results of SIFME with different SATD methods when compared to the reference

software[12]

CIF size, 300 frame, only first frame is I-frame, ProfileIDC=100,
RDO off, Search range = 32

SIFME with 4x4 Hadamard transform

container foreman mobile&calendar stefan
QP | APSNR | Abit | APSNR | Abit | APSNR | Abit | APSNR | Abit
(dB) rate (dB) rate (dB) rate (dB) rate
10 -0.03 | -0.75% -0.05 | 0.04% -0.04 | -0.24% -0.04 0%
16 0| -0.28% -0.07 | 1.03% -0.06 | 0.16% -0.05 | 0.30%
00} -0.03 | -0.37% -0.09 | 0.89% -0.08 | 0.06% -0.06 | 0.50%
28 0.03 | 0.46% -0.09 | 1.50% -0.07 | 0.47% -0.07 | 1.24%
34 0.04 | 2.11% -0.12 | 1.35% -0.07 | 1.73% -0.10 | 1.57%
40 -0.03 | 4.36% -0.08 | -0.36% -0.08 | 2.30% -0.13 | 1.02%
SIFME with 8x8 Hadamard transform
container foreman mobile&calendar | stefan
QP | APSNR | Abit APSNR | Abit APSNR | Abit APSNR | Abit
(dB) rate (dB) rate (dB) rate (dB) rate
10 -0.02 | -0.19% -0.02| -0.19% -0:03 | 0.34% -0.03 | 0.31%
16 -0.03 | -0.35% -0.03 | ~0:35% -0:03 | 0.64% -0.04 | 0.68%
22 -0.01 | -0.25% -0:01 [<0.25% -0.06 | 0.79% -0.06 | 1.06%
28 0.03 | 0.19% 0.03"°F 1 0:19% -0.06 | 1.16% -0.07 | 1.86%
34 -0.02 | 0.72% -0.02 | 0.72% -0.06 | 1.59% -0.08 | 1.97%
40 0.02 | 2.53% 0.02 | 2.53% -0.09 | -0.10% -0.11 | -0.04%

35




4.2 SIMULATION RESULT & COMPARISON

Table 5 shows the simulation results of the proposed SIFME with 4x4 Hadamard
transform algorithm compared with that of reference software for 720p and 1080p
sequences. Since our hardware architecture is used for high profile and HDTV size
video, we care more about the performance on 1080p and 720p size sequences rather
than that on CIF size sequences. Comparing the results of Table 4, Table 5, and Table
6, we can find that our algorithm has better performance on large size sequences than
CIF size sequences, which matches our goal. We can also find that our algorithm
greatly reduces computation time of FME. The proposed algorithm can speedup the
FME part by up to 4 times compared to the reference software. The reason is due to
the reduction of search candidates;-and use 4x4 Hadamard transform instead of 8x8

one.

For the result on 720p size sequence shown in Table 5, the PSNR degradation is
around 0~0.08dB and the bit rate even decreases on many sequences. For low motion
sequence like container in Table 4 and mobcal in Table 5 at high QP situation, the bit
rate may increase. That is quite acceptable since the bit rate at that condition is quite
low and any increase will be large in terms of that bit rate. However, for most 720p
sequences, the bit rate even decreases. The reason may be that our algorithm tends to
find the motion vector which is similar to the motion vector predictor(mvp) and thus

saves bits for coding motion vectors.
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Table 5 PSNR & bit rate comparison for different 720p sequences and QPs. Speed up is only the

performance in fractional ME part

JMO.8, 720p, 300 frames, only first frame is I-frame, ProfileIDC=100,
RDO off, search range=64
SIFME with 4x4 Hadamard transform
mobcal parkrun shields stockholm
QP | APSN | Abit speed | APSN | Abit speed | APSN | Abit speed | APSN | Abit speed
R(dB) | rate up R(dB) | rate up R(dB) | rate up R(dB) | rate up
10 -0.04 -0.77% 4.0 | -0.02 -0.77% 39| -0.04 -0.42% 3.6 | -0.04 0.05% 3.8
16 -0.04 -1.07% 3.6 | -0.04 -0.99% 3.7 | -0.08 -1.27% 3.7 | -0.08 -0.86% 3.6
22 -0.01 -1.08% 4.0 | -0.05 -1.42% 39| -0.04 -1.54% 39| -0.05 -1.50% 3.7
28 -0.01 -0.36v 39| -0.04 -0.63% 39| -0.02 -0.36% 3.6 | -0.02 -0.71% 3.8
34 -0.05 3.20% 39| -0.05 -0.14% 3.8 -0.03 0.30% 3.6 | -0.01 -1.87% 3.7
40 -0.06 4.28% 3.7 -0.04 -0.70% 4.1 | -0.01 -7.05% 3.5 0 -8.86% 3.7

Table 6 PSNR & bit rate’comparisen-fer-different'1080p sequences and QP

JM9.8, 1080p, 200 frames, only first frame is I-frame, ProfileIDC=100, RDO off, SearchRange=128

SIFME with 4x4 Hadamard transform

blue sky pedestrian | riverbed rush hour | sation2 sunflower | tractor
QP | APSN | Abit APSN | Abit APSN | Abit APSN | Abit APSN | Abit APSN | Abit APSN | Abit
R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate
10 -0.06 | -1.14% 0.07 | -1.41% -0.07 | -0.53% -0.07 | -1.13% -0.06 | -0.64% 0.11 | -0.27% -0.08 | 0.38%
16 -0.05 | -0.74% -0.05 | -0.68% -0.09 | -1.85% -0.06 | 0.62% -0.07 | -1.08% -0.10 | -0.11% 0.12 | -0.16%
22 -0.03 | -1.20% -0.05 | -1.32% 0.07 | -2.11% -0.04 | 0.02% -0.08 | -1.65% 0.07 | -2.53% 0.11 | -1.38%
28 0| 0.08% 0.02 | -1.03% -0.08 | -1.14% 0.02 | 0.72% 0.01 | 4.70% 0.01 | -1.71% -0.09 | -0.66%
34 0.01 | 2.40% 0.07 | 0.55% -0.03 | 0.48% 0.13 | 1.68% 0.03 | -2.43% -0.02 | -3.54% 0.03 | 1.10%
40 0.08 | 4.47% 0.16 | 0.68% 0.06 | 1.45% 0.22 | 1.44% 0.13 | -7.55% 0.02 | -5.07% 0| 236%
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Table 6 shows the result on 1080p sequence. The result at low QP situation is
quite the same as that on 720p sequence. However, at high QP condition, the PSNR
performance of our algorithm is even better than that of the reference software. The
reason may be that the accurate motion vector is getting closer to motion vector
predictor at high QP condition, and hence the accurate fractional one is getting closer

to frac_mv_pred illustrated in Sec. 4.1 .

Summing the information in Table 4, Table 5, and Table 6, we can conclude that
our proposed algorithm ignore 88% search point and achieve nearly 4 times speed up
with only less than 0.13 dB PSNR degradation and 4.47% bit rate increase. For some
720p or 1080p sequences, our algorithm even has better PSNR quality or less bit rate
than that of JM software[12]. The.rfate distortion curves are shown in Fig. 19, Fig. 20,
and Fig. 21. In each figure, the eurve of our proposed-algorithm is very close to that of

the method used in JM softwaref12].
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Fig. 19 Rate distortion curve of the four CIF size sequences
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Fig. 20 Rate distortion curve of the four 720p size sequences
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Fig. 21 Rate distortion curve of the seven 1080p size sequences
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Table 7 shows the simulation results of the proposed algorithm and reference

previous works compared with that of the reference software. We integrate our

algorithm into the reference software and use the full search algorithm for integer ME

for fair comparison. It can be found that our algorithm greatly reduces computational

complexity but only leads to a small amount of quality loss. Our algorithm speeds up

more compared with our previous work[15] with the same PSNR quality and less bit

rate increase. The algorithm in [13] has better performance in PSNR and bit rate than

our algorithm does because we cut the number of iteration to one and simplify the

cost function of SATD. Nevertheless, this algorithm has many number of iteration and

hence is not suitable for hardware implementation.

Table 7 Simulation result when QP = 28, speed up 1s:only the performance in fractional ME part. RDO

is off, reference frame number, = 1,-300f, CIF

QP =28 Stefan  |Mobile |Foreman [Coastguard News |# of iteration
JM 9.8 |bit rate 1441.14 1888.69 498.62 1127.87| 223.72
[12] PSNR 35.36 33.75 36.24 3452  38.12 1
time (sec) 491.604| 471.993| 496.974 488.039| 450.37
Y. J. /\bit rate(%) 2.2843| 2.36407| 1.780915 1.070159| 2.23494
Wang /\PSNR(dB) -0.09 -0.11 -0.07 -0.04 -0.06 2
[15] speed up 2.34227| 2.24167| 2.361651 2.283373| 2.24787
/\bit rate(%) -0.1524|  -0.0822| -0.7819 -0.402| 0.2294
CBFPS
(13] /\PSNR(dB) -0.01 -0.01 -0.03 -0.01 0 >2
speed up 2.163 2.265 2.249 2.307 2.638
/A\bit rate(%) 1.2408 0.4657 1.5022 -0.9468| 2.3643
proposed |APSNR(dB) -0.07 -0.07 -0.09 -0.06 -0.09 1
speed up 3.6 39 3.7 3.8 3.9
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Chapter S Architecture Design for Fast Sub-Pel

Motion Estimation

5.1 HARDWARE CONSIDERATION

The encoding procedure is dominated (90%) by the inter prediction in H.264
encoding process. Inter prediction can be mainly divided into two parts: integer
motion estimation (IME) and fractional motion estimation (FME). Complexities of
the former one and the later one are quite the same and both dominate the encoding
time of inter prediction. For the speed up in system level, our encoder chip pipelines

the IME and FME process. So the dedicated:hardware is needed for FME only.

For the speed up in the maeroblock level, we use the single iteration fast
algorithm which is illustrated in Chapter 4  in replace of the method applied in the
JM software[12]. The total hardware cycle is halved compared with the regular
algorithm used in the JM software[16]. But the overhead is the more complex timing
control circuit. For the data reusability within one macroblock, vertical integration is
applied to reduce the encoding time. Redundant interpolating operations appear in the
overlapped area of adjacent interpolation window and can be merged by scheduling

technique and thereby save redundant memory access and cycle time.

We set the 4x4 block as the basic unit for interpolation and SATD generation
since all block types can be decomposed by 4x4 block. However, this technique

encounters problems with H.264 high profile encoding. In H.264 high profile,
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blocktypes larger than 8x8 are recommended to use 8x8 Hadamard transform for
generating SATD value because the residual will go through 8x8 DCT instead of 4x4
DCT before quantization. We proposed to use 4x4 Hadamard transform instead of 8x8
one explained in Chapter 4  as the cost function. Therefore, we can still decompose

every type of block sizes by 4x4 block with very little quality loss.

5.2 HARDWARE CONSIDERATION FOR FME-

P

Reconstruction

Processor Frame Memory Buffer <% | Bitstream Buffer
System Controller
—» & Header - »  Bus Arbiter
Generator

1
REC SRAM

Neighbor Data

Reg.

. Deblocki .
.' Reconstruction | sgav | Deblocking

Fractional Motion

Estimation

Quantization coefficients SRAM

Luma Ref. SRAM

Bitstream Reg,

% Entropy Coding
MB Pipeline ~ MB Pipeline - MB Pipeline .
Stage 1 Stage 2 Stage 3

Fig. 22 The block diagram of proposed H.264 high profile encoder.

42



Fig. 22 shows the block diagram of our complete H.264 High Profile HDTV

encoder. The encoder contains system control, bus arbiters, and five coding tools

including: integer motion estimation (IME), fractional motion estimation (FME), intra

prediction, reconstruction, and entropy coding. Besides, internal SRAMs for reference

data and residue data are also included in this design. The complete frame data and

reconstructed result are stored in external memory through bus arbiter and bus

interface. The bus interface width is design for 128bits.

This design is with three stage pipeline architecture which is different with

previous works[9][10] which use four stage pipeline-architecture. The first advantage

is that the current luma block’-buffer and the residue generator, and the SATD

comparator can be shared between FME and intra prediction. In the second, the

fractional motion estimation part can be closed directly for intra frame. On the

contrary, the by-pass path in FME stage is still needed in four stage pipeline

architecture. Therefore, power consumption and additional idle stage can be reduced

in intra frame. Integer motion estimation is in the first pipeline stage. The second

stage is intra prediction and FME. The continuous DCT and quantization steps are

still in the second stage, and the third stage is the entropy coding stage.
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Fig. 23 The mode filtéring algorithm of integer pixel motion estimation

The target of our high profile encoder is to encode 1080p sequence in real time

under 145MHz clock frequency. Therefore, the latency of each pipeline stage should

be below 600 cycles. To shorten the computational cycles of FME, IME uses a fast

algorithm called mode filtering[22]. In this algorithm, IME compares the four modes

of 16x16, 16x8, 8x16, and the best one below 8x8. Afterwards, IME selects the best

two candidate modes out of the four modes, as shown in Fig. 23. Only two modes are

processed in FME stage. Therefore, the computational cycles of FME greatly

decrease.
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Moreover, the single iteration fast algorithm proposed in Chapter 4 is also
used to reduce the number of search iteration and thereby shorten the computational
cycles. The task of FME is to find the best fractional-pel MVs of these two modes,
decide the best mode, and determine whether the current macroblock is coded in inter
or intra mode. Then, after mode decision, an additional refinement step is applied to
calculate the residual and transform them. The quantization is done in the later

reconstruction stage. All of the previous tasks should be done within 600 cycles.

45



5.3 ARCHITECTURE

5.3.1 Functional flow and overall architecture

Decide the best candidate of Mode 0

lunj Eath

Decide the best candidate of Mode 1

lurri Eath

Mode decision (mode 0 & mode 1)

lum% +ath chrmHa path

Refine Refine
luma residual chroma residual
luma path chromp path

8x8/dx4 DCT 4x4 DCT

Fig. 24 Function flow in FME stage

Fig. 24 illustrates the function flow of our FME hardware. We divide
fractional-pel motion estimation(FME) process into two paths: luma path and chroma
path. The luma path consists of candidate decision, mode decision and luma residual
generation. Because the IME part uses the mode filtering technique explained in Sec.
5.2 and passes only two modes to the FME stage, we just have to calculate these two

modes named mode 0 and mode 1 in the luma path. The chroma path only includes
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chroma residual calculation. In the beginning, the candidate decision and mode
decision is done in the luma path. Afterwards, both luma path and chroma path start
residual calculation. The two paths use independent hardware to reduce cycle time.
The area cost will be discussed in Sec. 5.4 . Nevertheless, as shown in Table 8 and
Table 9 in Sec. 5.4 , the area cost of chroma path is quite small. Therefore, dividing
luma and chroma processing into two independent paths improves the throughput

with negligible area increment.

Fig. 25 shows the proposed FME stage architecture. Compared Fig. 24 with
Fig. 25, the luma path consists of Mode 0 Reference SRAM, Mode 1 Reference
SRAM, the “FME luma” module and the “8x8/4x4 DCT” module, and the chroma
path includes the Chroma Referecne SRAM, the “FME chroma” module and the “4x4

DCT” module.

The luma path contains two ‘reference SRAMs. This is due to the subsample
strategy used by our Integer Motion Estimation(IME) stag. Therefore, one SRAM
stores luma reference pixels coming from IME stage and the other holds pixels from
external memory. As shown in Fig. 24 and Fig. 25, in the first step, we calculate the
SATD of six candidates of all blocktypes from IME and decide the best mode in the
“FME luma” module. After mode decision, we recalculate the residual and
interpolated reference pixels of the best candidate of the best mode and pass the
residual to “8x8/4x4 DCT” module. Meanwhile, we load reference chroma pixels to
the “Chroma Ref. SRAM” according to the best motion vector and calculate the
chroma residual and chroma interpolated reference pixels in the “FME chroma”
module. Since 8x8 transform is only applied on luma residual, chroma residual

progress toward “4x4 DCT” module. The luma and chroma residual pass through two
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independent paths as illustrated in Fig. 24.
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External Mode 1 el
Memory Ref. SRAM Ref. pixel
Chroma
Residual
4x4 DCT _
External Chroma FME chroma Final
—> .
Mgmory Ref. SRAM Chroma Ref. plxe—l et
' &
Intra Residual ] Ref p:xe!
Intra Ref, pixel — &

Fig. 25Block diagram of FME po Stage

The hardware of the luma path 18 respoﬂsible for SATD calculation, mode
decision, and residual and reference pixels generation. On the other hand, the
hardware of the chroma path is only responsible for residual and reference pixels
calculation. Hence, the area cost of the chroma path is quite small. The SATD of the
best one in FME stage is compared with the SATD of the best intra mode in the
“mode decision” module and decides whether current macroblock is coded in intra or

inter mode.
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5.3.2 Reference SRAMSs

Mode 0 Ref. SRAM

< 37-pix = 296-bit >
> < 16— ><«—5—>
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\J
cycle 30
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Fig. 26 Block diagra of ModeO Reference Pixel SRAM
{ ] :_ | ."':

Fig. 26 shows the propose(-i:.'M_ogi'el.O Reference 'SRAM which contains reference
pixel from IME stage. There are 3 idefl-ticél" SRAMs between IME and FME stage.
One is for reference pixel loading from external memory. Another contains reference
of IME stage. The third one stores the reference pixel for the FME stage. After each
stage finishes, the loading SRAM becomes the IME reference SRAM, the IME
reference SRAM becomes FME reference SRAM, and the FME reference SRAM
discards its data and prepares for reference data loading. Each SRAM is 31x296 sized,

i.e. 9176-bit. We need 31*3=93 cycles to fill one SRAM under 128-bit bus bandwidth.
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Fig. 27 shows the propose(-i:.'Mogi'el.l Reference .SRAM which contains reference
pixel loading from external memer};. | -Thig . S.RAM contains reference pixels for
blocktype 16x16, 16x8, 8x16 or 8x8. For the worst case, i.e. macroblock with four
8x8 blocktype, we need four 14x14 interpolation window for interpolation four 8x8
blocks. Total four 8x8 blocks occupy 14x14x4 = 784-pixel = 6272-bit. The SRAM is
divided into two banks. Each bank is 28x112 sized, totally 28x224 = 6272-bit. One
bank contains the reference pixels of the left half macroblock and the other stores the

reference pixels of the right part. We need 31*2=62 cycles to fill this SRAM under

128-bit bus bandwidth.
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Fig. 28 Block diagram of Chroma Reference Pixel SRAM

Fig. 28 shows the proposed Chroma Reference SRAM which contains chroma
reference pixel loading from external memory. The Chroma Reference SRAM will
load chroma reference pixels according to the final motion vector after “FME luma”
module determines the best mode. Fhe basic unit for luma processing is 4x4 block,
and hence the basic unit for chroma [processing is 2x2 block. Each chroma 2x2 block
requires 3x3 reference block for interpolation. 32 3x3 reference blocks are stored in
the Chroma Reference SRAM, 16 for Cb and 16 for Cr. The Chroma Reference

SRAM totally stores 3x3x16 = 144-pixel = 1152-bit for both Cb and Cr pixels.
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5.3.3 FME luma module
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Fig. 29 Block diagram of fast FME luma hardware

Fig. 29 shows the proposed “FME luma” module. In “FME luma” module, all
larger sized block are decomposed into 4x4 block for processing. The input 4x4 block
are first interpolated by the interpolation unit for half and quarter pixels. Interpolation
unit will select the fractional points of the six candidates according to frac_pred_mv
explained in the previous chapter. Then these data are computed with the current
block data with the six 4x4 block PUs since our fast FME algorithm compares six
candidates. Six 4x4 block PUs process six candidates simultaneously. Four horizontal

adjacent pixels from original MB are broadcasted to every PU at the same time and
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the reference sub pixels are provided by interpolation unit. Each PU is in charge of

residual generation and 4x4 Hadamard transform.

We combine mode decision and candidate comparison in the compare unit shown
in Fig. 29. MB header related information included motion vector, reference frames,
type of block sizes and SATD are sent into the “Compare” module for the Largrangian
mode decision. The information of the best candidate will be stored in the
“SB_buffer” module. After the best candidate of each mode is chosen, SB_buffer will
compare all of them and send out the information of the best one. Finally, a

refinement step is carried out to get the final residual.
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Fig. 30 Interpolation unit
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The 6-tap 2-D FIR filter shown in Fig. 30 is adapted from previous work[15]. It
is divided into two directions (horizontal and vertical) 1-D FIR filter which is shown
in Fig. 31(b). First, we interpolate the horizontal half pixels by five FIR filters from
10 adjacent integer pixels. These five intermediate values and six integer pixels are
stored and shifted cycle by cycle in the interpolation buffer. We use the same way to
interpolate the vertical half pixels with 11 FIR filter. In our algorithm, since we will
not visit the entire positions in the whole refinement window, some redundant bilinear
filters appear in certain pixels in the quarter precision, and thus can be removed from

our design, which accounts to 88%.

Calculate SAD ! PE PE PE PE ; Out='A - 5B+20C+20D - SE+F

for 4 pixel ;fJ—f—fl—f—fJ—f-i—f A F B E C D

1 D Hadamard transform
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f
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Fig. 31 (a) 4X4 block PU (b) 6-tap 1-D FIR filter

The 4x4 block PU which is also modified from previous work[15] has four times

parallelization of horizontal adjacent pixels and is in charge of residual generation and
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Hadamard transform. The architecture of PU is shown in Fig. 31(a), four processing
elements (PE), 2-D Hadamard transform decomposed by two 1-D Hadamard
transform and a transpose register array can continually process four pixels in each
cycle without any latency. It processes 4x4 element blocks decomposed from sub

block in sequential order.

Six 4x4 block PUs around the refinement center process five candidates
simultaneously. Four horizontal adjacent pixels from original MB are broadcasted to
every PU at the same time and the reference sub pixels are provided by interpolation

unit.
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5.3.4 Other modules
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Fig. 32 Block diagram of FME chroma hardware: It contains 7 registers, 4 PEs and 2 subtracters

Fig. 32 shows the proposed “FME ‘chroma” module. Since mode decision and
candidate comparison are handled by “FME luma” module, the “FME chroma”
module is only responsible for chroma residual generation after mode decision is done.
As all larger sized blocks are decomposed into 4x4 block for luma processing, we also
separate all larger sized blocks into 2x2 block for chroma processing. Each 2x2
predicted chroma sample block requires 3x3 reference pixels. The formula of the

predicted chroma sample value in H.264 standard is :

predPartLX

={(8—xFrag¢*@8—yFrag* A+ xFrac(8—yFrag*B+(8—xFrag*yFra¢C+xFra¢ yFrac¢D+32 >>6
—{[(8—xFra¢* A+xFrac B|*(8—yFra¢+|(8—xFrad*C+xFra¢ D]*yFrae-32 >>6
={h0_vI*(8—yFrag+h0_v2*yFrae-32}>>6

The “predPartLXc” is the predicted chroma sample value, the xFrac and yFrac
represent the fractional motion vector in x-axis and y-axis, and A, B, C, and D stand
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for input integer reference pixels.

Every cycle a row of three reference pixels goes in and two fractional pixels in
x-axis, hO vl and hl vl, are generated according to xFrac. In the next cycle, the
older fractional pixels move to registers hO v2 and hl v2, and we can calculate the
final predicted chroma sample value according to yFrac. The “FME chroma” module
contains seven 8-bit registers, h0 v0, hl v0, h2 v0, h0 v1, hl vl, hO vl, hl vl, and
four processing elements(PE) and two subtracters. The area cost for “FME chroma”

module is quite small. We will show the area cost of each module in Sec. 5.4 .

xFrac

A
fractional
B ref. pixel

(8 - xFrac)

Fig. 33 Block diagram of Processing Element(PE) in FME chroma module.

It contains 2 multipliers and 1 adder.

As shown in Fig. 33, the processing element has 2 multipliers and one adder. The
function of PEO and PE1 is: frac ref pixek|(8—xFra¢*A+xFra¢B|, PE2 and PE3

have the same functionality except their input is yFrac in replace of xFrac.
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Fig. 34 The relationship of the 7 values in the registers in space domain

Fig. 34 illustrates the relationship of the 7 values, h0 v0, h1 v0, h2 v0, h0 vl,

h1 vl, hO v2, and hl v2 in the registers shown in Fig. 32. The input row of three
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Fig. 35 Block diagram of:Discrete Cosine Transform(DCT) hardware.

It can support both 8x8 and 4x4 transform

The “8x8/4x4 DCT” module shown in Fig. 35 can support both 8x8 or 4x4
Discrete Cosine Transform(DCT)[20]. This module is in 8-pixel parallel processing
for 4x4 DCT and 4-pixel parallel processing for 4x4 DCT. After mode decision, if the
final mode is 16x16, 16x8, or 8x16, then 8x8 DCT is applied. Otherwise, 4x4 DCT is
applied. The transform matrix registers and 1-D transform unit of 4x4 and 8x8 DCT

can be shared to reduce area.

In the beginning of one macroblock processing, the “MV & Mode buffer”

register array load the integer motion vectors and mode from IME stage. Other
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modules will load reference pixels from SRAMs according to the information saved
in “MV & Mode buffer”. After the best candidate is determined by “FME luma”
module and final fraction motion vectors are generated, the integer motion vectors

will be added with fractional ones and produce the final motion vectors.
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5.4 IMPLEMENTATION RESULT

The control unit is the most challenge part of the whole design due to the 4x4
block decomposition and reference pixels loading from different memory. This part is
implemented by finite state machine. The proposed FME architecture for H.264 is
implemented by Verilog and synthesized in UMC 0.13u technology at both 73MHz
and 145MHz. The FME module can real-time encode 1080p sequence under 145MHz

clock frequency and 720p sequence under 73MHz clock frequency.

The details of every part are listed in Table 8 and Table 9. In Table 8, it can be
found that six PUs occupy the largest area, and thus reducing the number of PUs can
significantly reduce the area cost: Compared with the method applied in the JM
software[12], our fast algorithm reduces the number of candidates and hence reduce

the number of PUs.

Table 8 Synthesis result of the fast FME luma architecture in UMCO013

Unit Gate Count in 73MHz | Gate Count in 145SMHz
Control 741 742
MV_COST 912 959
Interpolation unit 18,755 20,284
4x4 Block PU(*6) 22,289 22,290
Compare unit 2,470 2,610
SB_buffer 1,724 1,723

Total 47,236 48,950
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In Table 9, we can find that “FME luma” module, the Model Reference SRAM,
and the “8x8/4x4 DCT” module occupy most of the cell area. The cell area of chroma
processing path including “FME chroma” and “4x4 DCT” modules is very little.
Therefore, dividing luma and chroma processing into two independent paths reduces
the cycle time with only very little area increment. Moreover, we use retiming or
pipeline techniques to break up the critical path in our design. Hence, the area is much

the same under 73 MHz and 145MHz clock frequency.

Table 9 Synthesis result of the FME top stage in UMCO013

Unit Gate Count in 73MHz | Gate Count in 14SMHz
Model Ref. SRAM 20,060 20,070
Chroma Ref. SRAM 6,295 6,295
FME luma 46,973 48,655
8x8/4x4 DCT 18,440 18,746
FME chroma 2,047 2,047
4x4 DCT 3,433 3,433
MYV & Mode buffer 5,368 5,384
others 9,112 9,146

Total 111,728 113,776
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5.5 PERFORMANCE ANALYSIS

Compared to the reference architecture[16] as shown in Table 10, we save 20%
of area cost due to fewer number of PUs. The area cost of [15] is a little smaller than
our design. However, it has worse quality degradation and higher bit rate increase.
Besides, We can achieve more than 40% of throughput improvement with lower clock

rate than that in [15][16] because we only take one search step.

The throughput in [19] is 2 times of that in our design. However, its area cost is
about four times of ours. Although both the throughput and area cost in [17] are better
than that in ours, their architecture doesn’t do the 6-tap interpolation and hence suffers

great quality degradation.

Most of all, our hardware-architecture is designed for H.264/AVC high profile
which is not supported in reference architectures [15][16][17][19]. The FME module
can real-time encode 1080p sequence.under 145MHz clock frequency and 720p
sequence under 73MHz clock frequency and the area is much the same under 73MHz

and 145MHz clock frequency.

Table 10 Comparison between the proposed fast FME luma architecture and other architecture

Chen[16] | Wang[15] | Yang[19] Kao[17] proposed
process UMC 0.18u UMC 0.18u | TSMC 0.18u | TSMC 0.13u UMC 0.13u
Abit rate 0 2.02% 0 N/A -0.24%
APSNR(dB) 0 -0.064 0 -0.15 -0.0438
clock 100MHz 100MHz 285MHz 100MHz 73MHz | 145MHz
( Worst
200MHz )
Gate count 79,372 48,065 188,456 56,539 47,236 48,950
MB/sec 49k 50k 250k 909k 71.3k 142.6k
Cycle/MB 1648 2000 N/A N/A 1002
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Chapter 6 Conclusion

The point proposed in the paper can be mainly summarized into two parts. In
Chapter 4 , a fast fractional-pel motion estimation(FME) algorithm is proposed. Our
algorithm use single iteration search and thus can halve the computational cycle time.
Moreover, we use 4x4 Hadamard transform in replace of 8x8 Hadamard transform for
SATD(sum of absolute transformed difference) calculation. This technique saves 75%
area cost of transform unit and about 60% area cost of the total FME hardware. The
simulation result that the PSNR degradation is less than 0.13dB and bit rate increase
is less than 4.5%. Moreover, the simulation result also indicates that our algorithm
works better on large size sequence rather than CIF size. In most HD-sized sequences,

the bit rate of our algorithm is les§ than that of the reference software[12].

In Chapter 5 , the hardwate implementation of the previous proposed algorithm
is presented. The synthesis result shows ithat the gate count is about 113k for the
whole fractional-pel motion estimation stage with internal SRAMs. The design has
smaller area and higher throughput with negligible quality degradation compared with

other designs.

In the future work, by applying different fast algorithms, each component can
still be optimized for area reduction or throughput improvement. Besides, the
proposed designs can be further integrated into Scalable Video Coding(SVC) or
Multiview Video Coding which is based on MPEG-4 H.264/AVC. We sincerely hope
that this research results can promote the improvement of video application and

convenience of human life as well.
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