
國立交通大學

電子工程學系 電子研究所

碩 士 論 文

適用於 H.264/AVC 分數像素移動估測之快速演

算法與設計

Fast Algorithm and Design for H.264/AVC

Fractional-pel Motion Estimation

研 究 生：郭子筠

 指導教授：張添烜 博士

中 華 民 國 九 十 六 年 七 月

適用於 H.264/AVC 分數像素移動估測之快速演算法與設計

Fast Algorithm and Design for H.264/AVC Fractional-pel Motion Estimation

研 究 生：郭子筠 Student: Tzu-Yun Kuo
指導教授：張添烜 博士 Advisor: Dr. Tian-Sheuan Chang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in
Electronics Engineering & Institute of Electronics

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

 i

適用於 H.264/AVC 分數像素移動估測之快速演

算法與設計

研究生：郭子筠 指導教授：張添烜博士

國立交通大學

電子工程學系 電子研究所

摘要

隨著高解析數位電視時代的來臨，為了兼顧大且精緻的畫面，高壓縮率規格

(H.264/AVC)是我們現行的解決方案。因為在視訊編碼上用了更多的壓縮技巧，

它不僅可有效節省儲存媒體所需的空間，同時也可在現行的通訊環境下允許傳輸

更高解析的畫面。但是伴隨著種種好處而來的，就是尤其在高畫值應用中極之龐

大的運算量。

這篇論文提出了適用於高畫值 H.264/AVC 分素像素移動的快速演算法及其

硬體架構。為了解決高畫值應用中的龐大計算時間，我們提出只搜尋六點的單一

疊代快速演算法。這個單一疊代的演算法利用移動向量預測器來預估可能的分數

移動向量，由此減少了 88%的分數位移估測搜尋點數，並且讓分數位移估測的運

算所需要的疊代次數減半；另外我們使用 4x4 哈達瑪轉換而非 8x8 哈達瑪轉換來

作為價值函數的計算方式，以減少其運算量和大約 75%的轉換裝置面積。拜快速

演算法之賜，分數移動估測部分跟之前的研究相比，其架構可以減少 20%的面積

及增進 40%的運算處理速度。

 ii

Fast Algorithm and Design for H.264/AVC

Fractional-pel Motion Estimation

Student : Tzu-Yun Kuo Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

With modern day advances in computer processing and multimedia applications,

improvements in the area of image processing and video compression are analogous.

Video compression allows the reduction of high-resolution video into a more compact

memory space to thereby reduce storage and video processing resources. But the

playback is the growth of computational complexity, especially in HD-sized

application.

This thesis presents a set of fast algorithm and VLSI architecture for HDTV-sized

H.264 fractional motion estimation. To solve the long computational latency in

HD-sized application, we propose to use the single iteration algorithm with only six

search points. This single iteration method uses the information of motion vector

predictor to predict the fractional motion vector and thereby reduces 88% search

points and halves the cycle count of two iteration methods in previous approaches.

Moreover, we propose to use 4x4 Hadamard instead of 8x8 Hadamard as cost

function for H.264 high profiles without significant video quality loss and 75% area

reduction of the transform unit. By these techniques, the resulted architecture can save

 iii

20% of area and provide over 40% of throughput improvement than the previous

work, and is able to support HDTV applications.

 iv

誌 謝

首先誠摯的感謝指導教授張添烜博士，老師悉心的教導使我得以一窺

視訊編碼領域的深奧，不時的討論並指點我正確的方向，使我在這些年中

獲益匪淺。老師對學問的嚴謹更是我輩學習的典範。

同時也要謝謝我的口試委員們，交大電子李鎮宜教授和清華電機陳永

昌教授，感謝教授們百忙之中抽空來指導我，各位的寶貴意見讓本論文更

加完備。

 兩年裡的日子，實驗室裡共同的生活點滴，學術上的討論、言不及

義的閒扯、讓人又愛又怕的宵夜、趕作業的革命情感、因為睡太晚而遮遮

掩掩閃進實驗室........，感謝眾位學長、同學、學弟的共同砥礪，你們

的陪伴讓兩年的研究生活變得絢麗多彩。

 感謝林佑昆、張彥中、鄭朝鐘、古君偉、王裕仁、蔡旻奇、余國亘、

吳錦木、李國龍學長們不厭其煩的指出我研究中的缺失，且總能在我迷惘

時為我解惑，也感謝李得瑋、林嘉俊、吳秈璟、廖英澤同學的幫忙，恭喜

我們順利走過這兩年。實驗室的戴瑋呈、張瑋城、曾宇晟、蔡宗憲、詹景

竹學弟們當然也不能忘記，你們的幫忙及搞笑我銘感在心。

 最後，謹以此文獻給我摯愛的雙親。

 v

Content

Chapter 1 Introduction..1
1.1 MOTIVATION...1
1.2 THESIS ORGANIZAION ...3

Chapter 2 Overview of H.264/AVC Standard ...4
2.1 OVERVIEW ..4

2.1.1 Variable block-size motion compensation with multiple references4
2.1.2 Directional spatial intra coding...4
2.1.3 In-loop deblocking filter ...5
2.1.4 Context adaptive entropy coding ..5
2.1.5 Encoding flow...5
2.1.6 Profiles ..6

2.2 INTRA PREDICTION...9
2.3 INTER FRAME PREDICTION ..10
2.4 TRANSFORM ...12
2.5 QUANTIZATION..13
2.6 ENTROPY CODING...13

Chapter 3 Review of FME Search Algorithms ..15
3.1 SEARCH ALGORITHM IN THE REFERENCE SOFTWARE [12]15

3.1.1 Algorithm ..15
3.1.2 Hardware implementation[16] ..16

3.2 FIVE CANDIDATES ALGORITHM [15] ..17
3.2.1 Algorithm ..17
3.2.2 Hardware implementation...19

3.3 QUADRATIC PREDICTION BASED FME [14]...21
3.4 CENTER-BIASED FRACTIONAL-PEL SEARCH (CBFPS)[13]23
3.5 FAST FRACTIONAL-PEL ME AND MODE DECISION[17]25

3.5.1 Algorithm ..25
3.5.2 Hardware implementation...27

3.6 SUMMARY ...28
Chapter 4 A Single Iteration Fractional-pel Motion Estimation Algorithm30

4.1 PROPOSED SINGLE ITERATION ALGORITHM30
4.1.1 Proposed SIFME Algorithm ...30
4.1.2 Analysis of prediction accuracy and search point...............................32
4.1.3 Proposed SATD cost of 4x4 Hadamard transform algorithm34

 vi

4.2 SIMULATION RESULT & COMPARISON ..36
Chapter 5 Architecture Design for Fast Sub-Pel Motion Estimation....................41

5.1 HARDWARE CONSIDERATION..41
5.2 HARDWARE CONSIDERATION FOR FME..42
5.3 ARCHITECTURE ...46

5.3.1 Functional flow and overall architecture ..46
5.3.2 Reference SRAMs ..49
5.3.3 FME luma module ..52
5.3.4 Other modules...56

5.4 IMPLEMENTATION RESULT...61
5.5 PERFORMANCE ANALYSIS..63

Chapter 6 Conclusion ..64
Bibliography ...65

 vii

List of Figures
Fig. 1 Block diagram of H.264 encoder...6
Fig. 2 Profiles...8
Fig. 3 (a) Intra_4_4 prediction is conducted for samples a-p of a block using

samples A-Q...9
Fig. 4 Inter macroblock partitions..11
Fig. 5 Fractional interpolation for motion compensation11
Fig. 6 Multiple reference frame motion compensation................................12
Fig. 7 Search algorithm in the reference software15
Fig. 8 Five candidates search algorithm ..17
Fig. 9 Refine position in case 1..18
Fig. 10 Refine position in case 2..18
Fig. 11 Refine position in case 3..18
Fig. 12 Refine position in case 4..19
Fig. 13 Block diagram of hardware of 5 candidates algorithm....................19
Fig. 14 The integer-pixel search positions within the "local" fractional-pel

ME search area...21
Fig. 15 (a) Sub-pel motion vector distribution using the Full Search

algorithm versus the (0,0) MV (b) Sub-pel motion vector distribution
using the Full Search algorithm versus the median predictor.23

Fig. 16 The integer and half pixels within the fractional-pel ME search area.
..25

Fig. 17 Top-level architecture in [17] ..27
Fig. 18 The proposed SIFME algorithm flow on two square points, (0,0)

and frac_pred_mv, and four triangle point around frac_pred_mv in one
quarter-pel distance ..30

Fig. 19 Rate distortion curve of the four CIF size sequences38
Fig. 20 Rate distortion curve of the four 720p size sequences39
Fig. 21 Rate distortion curve of the seven 1080p size sequences................39
Fig. 22 The block diagram of proposed H.264 high profile encoder.42
Fig. 23 The mode filtering algorithm of integer pixel motion estimation ...44
Fig. 24 Function flow in FME stage ..46
Fig. 25 Block diagram of FME Top Stage ...48
Fig. 26 Block diagram of Mode0 Reference Pixel SRAM49
Fig. 27 Block diagram of Mode1 Reference Pixel SRAM50
Fig. 28 Block diagram of Chroma Reference Pixel SRAM.........................51
Fig. 29 Block diagram of fast FME luma hardware52

 viii

Fig. 30 Interpolation unit ...53
Fig. 31 (a) 4X4 block PU (b) 6-tap 1-D FIR filter.......................................54
Fig. 32 Block diagram of FME chroma hardware. It contains 7 registers, 4

PEs and 2 subtracters ...56
Fig. 33 Block diagram of Processing Element(PE) in FME chroma module.

..57
Fig. 34 The relationship of the 7 values in the registers in space domain ...58
Fig. 35 Block diagram of Discrete Cosine Transform(DCT) hardware.......59

 ix

List of Tables
Table 1 Hit rate of motion vector (mvx and mvy) compared to the algorithm

adopted by JM..32
Table 2 Search point comparisons for different algorithms.........................33
Table 3 Comparisons of number of processing unit(PU) and number of

iterative search steps ..33
Table 4 Simulation results of SIFME with different SATD methods when

compared to the reference software[12] ..35
Table 5 PSNR & bit rate comparison for different 720p sequences and QPs.

Speed up is only the performance in fractional ME part37
Table 6 PSNR & bit rate comparison for different 1080p sequences and QP

..37
Table 7 Simulation result when QP = 28, speed up is only the performance

in fractional ME part. RDO is off, reference frame number = 1, 300f,
CIF ...40

Table 8 Synthesis result of the fast FME luma architecture in UMC01361
Table 9 Synthesis result of the FME top stage in UMC01362
Table 10 Comparison between the proposed fast FME luma architecture and

other architecture ...63

 1

Chapter 1 Introduction

With the demand of higher video quality and lower bit rate, a new international

video coding standard is developed by the Joint Video Team (JVT) of ISO/IEC MPEG

and ITU-T VCEG, which is known as H.264 or MPEG-4 Part 10 Advanced Video

Coding (AVC)0. Comparing with MPEG-2 and MPEG-4, H.264/AVC can improve

the coding efficiency by up to 50%[2] while still keep the same video quality with

various advanced coding tools.

1.1 MOTIVATION

The early video standard, MPEG-1, is aimed at CD-ROM based video storage.

Subsequently, the MPEG-2 video coding standard[3], as an extension of prior

MPEG-1 standard[4], supports the application such as the transmission of standard

definition(SD) and high definition(HD) TV signals over satellite, cable, and terrestrial

emission and the storage of high-quality SD video signals onto DVDs. Recently the

MPEG-4 standard[5] also emerges in some application domains of the prior coding

standards.

In 2001, the ISO Motion Picture Experts Group (MPEG) recognized the potential

benefits of H.26L and the Joint Video Team (JVT) was formed, including experts

from MPEG and VCEG. JVT’s main task is to develop the draft H.26L “model” into a

full International Standard. In fact, the outcome will be two identical standards: ISO

MPEG4 Part 10 of MPEG4 and ITU-T H.264. The “official” title of the new standard

 2

is Advanced Video Coding(AVC); however, it is widely known by its old working title,

H.26L and by its ITU document number, H.2640. The H.264/AVC video compression

standard0 provides better compression and is widely adopted in various video

applications.

The H.264/AVC CODEC uses block-based motion estimation, the same principle

adopted by every major coding standard since H.261. Important differences from

earlier standards include the support for arrange of block sizes (down to 4x4) and fine

sub-pel motion vectors (1/4 pixel precision in the luma component). Motion

estimation(ME) contributes a lot in compression efficiency and also on the

computation time. Thus, many fast algorithms and hardware architectures are

proposed for integer pixel motion estimation(IME) to meet real-time requirement.

With the computation reduction of IME, the fractional pixel motion estimation (FME)

now occupies 45% of the run-time in inter prediction and thus needs speedup as well.

Many fast FME algorithms are also proposed to speed up the process such as the

center based fractional pixel search (CBFPS)[13], the quadratic prediction based

fractional ME algorithm[14], and the five candidates algorithm[15]. However, some

algorithms[13][14] are software-oriented and exhibit irregular data flow and thus are

not suitable for hardware design. The five candidates algorithm[15] which is our

previous work is more suitable for hardware implementation and can reduce the

processing unit from nine to five to save hardware cost. However, from the hardware

viewpoint it still suffers from long computation cycles as others. That is because it

still takes two iterative search loops, one on half-pels and one on quarter-pels[16].

Thus, fast algorithms only reduce the processing element but do not reduce the cycle

count in the hardware implementation. This problem will pose a strict limit on the

 3

HDTV sized applications since FME will take a lot of cycles and dominate the whole

pipelining cycle time. Besides, all of these algorithms and designs do not consider the

costly 8x8 SATD (sum of absolute transformed difference) computations in the high

profile of H.264. Hence, we require a new algorithm that can truly reduce cycle time

and is suitable for high profile of H.264.

1.2 THESIS ORGANIZAION

In the thesis, the H.264 standard will be introduced in Chapter 2 . We will

review some previous fractional-pel motion estimation(FME) algorithms in Chapter

3 . The proposed fast fractional-pel motion estimation algorithm named as single

iteration 6 candidates FME is illustrated in Chapter 4 . Then, we will show the

hardware architecture of the FME stage and result comparisons in Chapter 5 .

Finally, a conclusion is given in Chapter 6 .

 4

Chapter 2 Overview of H.264/AVC Standard

2.1 OVERVIEW

H.264 consists of a number of tools. Its basic structure is the so-called

motion-compensated transform coder. Compared to the prior video coding standards,

many important and new techniques are employed in H.264 and they together bring

significant improvement on coding performance. Some of these techniques are

highlighted here[6]. The concepts of some of these tools have existed for some time

but they are nicely tuned and integrated together to form a good compression scheme

in H.264.

2.1.1 Variable block-size motion compensation with multiple references

The basic unit in H.264/AVC motion estimation is still the 16x16 macroblock

like that in MPEG-4[5] and other previous standards. However, it can be further split

into a tree structure, with a minimum block size as small as 4x4. Also, up to five

reference frames may be used for motion compensation to improve compression rate.

2.1.2 Directional spatial intra coding

H.264/AVC uses the intra-prediction technique to reduce the spatial correlation

inside a block. This technique estimates the current block pixel values based on the

known pixels of its neighbor blocks. The prediction results implicitly follow the edge

 5

direction, and often get significant improvements.

2.1.3 In-loop deblocking filter

At low bit rate situation, block-based video coding process produces artifacts

known as blocking effect. To solve this problem, H.264/AVC adopts this in-loop

deblocking filter which adjusts its filter strength adaptively according to the image

local characteristics, and thus it provides better quality pictures at the decode end.

2.1.4 Context adaptive entropy coding

Two entropy coding methods, Context-based Adaptive Binary Arithmetic Coding

(CABAC) and Context-based Adaptive Variable Length Coding (CAVLC), are

provided in H.264. Both methods use context-base adaptivity to improve the entropy

coding performance and the results show this approach is quite successful.

2.1.5 Encoding flow

A simplified encoding flow of H.264 is shown in Fig. 1[7]. A video frame is first

partitioned into a number of 16x16 macroblocks. Then, each macroblock goes

through the intra-prediction or the inter-prediction unit called motion estimation(ME).

The intra prediction unit uses the neighboring block data to predict the current block.

The inter-prediction uses reference frames to predict the current frame. Each predictor

has a number of modes. A good design should pick up the best mode with the lowest

rate and distortion. The prediction residuals are then transformed, quantized and

further entropy-coded into the output bitstream. In order to continue operating on the

 6

next incoming frame, the quantized current frame is reconstructed and stored. The

decoder data flow is the reverse of the encoder flow.

Fig. 1 Block diagram of H.264 encoder

2.1.6 Profiles

A profile defines a set of coding tools or algorithms that can be used in generating

a conforming bit stream. In the initial H.264/AVC standard, three basic profiles were

established to address these application domains: the Baseline, Main, and Extended

profiles. The Baseline profile was designed to minimize complexity and provide high

robustness and flexibility for use over a broad range of network environments and

conditions; the Main profile was designed with an emphasis on compression coding

efficiency capability; and the Extended profile was designed to combine the

robustness of the Baseline profile with a higher degree of coding efficiency and

greater network robustness and to add enhanced modes useful for such applications as

flexible video streaming.

 7

While having a broad range of applications, the initial H.264/AVC standard (as it

was completed in May of 2003), was primarily focused on "entertainment-quality"

video, based on 8-bits/sample, and 4:2:0 chroma sampling. Given its time constraints,

it did not include support for use in the most demanding professional environments,

and the design had not been focused on the highest video resolutions. To address the

needs of these most-demanding applications, a continuation of the joint project was

launched to add new extensions to the capabilities of the original standard. These

extensions, originally known as the "professional" extensions, were eventually

renamed as the "fidelity range extensions" (FRExt)[8] to better indicate the spirit of

the extensions. These included:

 Supporting an adaptive block-size for the residual spatial frequency

transform

 Supporting encoder-specified perceptual-based quantization scaling matrices

 Supporting efficient lossless representation of specific regions in video

content.

The FRExt project produced a suite of four new profiles collectively called the

High profiles:

 The High profile (HP), supporting 8-bit video with 4:2:0 sampling,

addressing high-end consumer use and other applications using

high-resolution video without a need for extended chroma formats or

extended sample accuracy

 The High 10 profile (Hi10P), supporting 4:2:0 video with up to 10 bits of

representation accuracy per sample.

 The High 4:2:2 profile (H422P), supporting up to 4:2:2 chroma sampling and

 8

up to 10 bits per sample, and ♦ The High 4:4:4 profile (H444P), supporting

up to 4:4:4 chroma sampling, up to 12 bits per sample, and additionally

supporting efficient lossless region coding and an integer residual color

transform for codingRGB video while avoiding color-space transformation

error.

All of these profiles support all features of the prior Main profile, and additionally

support an adaptive transform blocksize and perceptual quantization scaling matrices.

The High profile adds more coding efficiency to what was previously defined in the

Main profile, without adding a significant amount of implementation complexity.

Fig. 2 shows the relationship of Baseline, Main, Extended and High profiles.

Fig. 2 Profiles

 9

2.2 INTRA PREDICTION

In contrast to previous video coding standards like H.263 and MPEG-4, where

intra prediction is performed in the transform domain, in H.264/AVC it is always

conducted in the spatial domain. By referring to neighboring samples of coded blocks

which are to the left or/and above current predicted block, most of the energy in the

block can be removed in the intra prediction process. With the help of intra prediction,

the compression performance of small block-size transform is enhanced. For luma

components, there are nine 4x4 prediction modes and four 16x16 prediction modes.

Furthermore, additional nine 8x8 prediction modes are added in high profile.

Fig. 3 (a) Intra_4_4 prediction is conducted for samples a-p of a block using samples A-Q.

(b) Eight “prediction directions” for 4x4 or 8x8 intra prediction.

(c) Intra_8_8 prediction is conducted for samples a-p of a block using samples A-Q.

 10

When using the 4x4 or 8x8 intra prediction, each 4x4 or 8x8 block is predicted

from spatially neighboring samples as shown in Fig. 3(a)(c). For each block, one of

nine direction modes can be chosen. In addition to “DC” prediction (where one value

is used to predict the entire 4x4/8x8 block), eight directional prediction modes are

specified as illustrated in Fig. 3(b).

 For 16x16 prediction modes, the whole luma component of a macroblock is

predicted. Four prediction modes are supported. They are vertical prediction,

horizontal prediction, DC prediction and plane prediction. The chroma components

are predicted using a similar prediction technique as that in the 16x16 prediction since

chroma components are usually smooth over large areas. Intra prediction and all other

forms of prediction are not used while across slice boundaries to keep all slices

independent of each other.

2.3 INTER FRAME PREDICTION

The inter prediction in H.264/AVC is a block matching based motion estimation

and compensation technique. It can remove the redundant inter-frame information

efficiently. Each inter macroblock corresponds to a specific partition into blocks used

for motion compensation. For the luma components, partition with 16x16, 8x16, 16x8

and 8x8 are supported by the syntax. Once the 8x8 partition is chosen, additional

syntax is transmitted to specify whether the 8x8 partition is further partitioned into

8x4, 4x8 or 4x4 blocks. Fig. 4 illustrates these partitions.

 11

Fig. 4 Inter macroblock partitions

The prediction information for each MxN block is obtained by displacing an area

of the corresponding reference frame, which is determined by the motion vector and

reference index. H.264/AVC supports quarter pixels accurate motion compensation.

The sub-pel prediction samples are obtained by interpolation of integer position

samples. For the half-pel position, the prediction value is interpolated by a

one-dimensional 6-tap FIR filter horizontally and vertically. For the quarter-pel

position, the interpolation value is generated by averaging the samples at integer-pel

and half-pel position. Fig. 5 shows the fractional sample interpolation.

Fig. 5 Fractional interpolation for motion compensation

 12

The prediction values for the chroma component are always obtained by bilinear

interpolation. Since the chroma components are down-sampled, the motion

compensation for chroma has one-eighth position accuracy since that for luma has

one-fourth position accuracy.

The motion vector components are differentially coded using either median or

directional prediction from neighboring blocks. Besides, H.264/AVC supports

multiple reference frame prediction. That is, more than one prior coded frame can be

used as reference for motion compensation as Fig. 6 illustrated.

Fig. 6 Multiple reference frame motion compensation

2.4 TRANSFORM

Similar to previous video coding standards, H.264/AVC utilizes transform

coding of the prediction residual. However, instead of fractional discrete cosine

transform applied by previous standard, an integer transform with similar properties

 13

as DCT is adopted. Thus, the inverse-transform mismatches can be avoided due to the

exact integer operation of transform. The transformation is applied to 4x4 blocks. But

for 16x16 intra luma prediction or 16x16, 16x8, and 8x16 inter prediction, 8x8 DCT

is applied in high profile of H.264. Furthermore, for the 16x16 intra luma prediction

or chroma prediction, extra Hadamard transform is applied on the DC coefficients of

4x4 blocks.

2.5 QUANTIZATION

A quantization parameter is used for determining the quantization of transform

coefficients in H.264/AVC. The parameter can take 52 values. The quantized

transform coefficients of a block generally are scanned in a zig-zag order and

transmitted using entropy coding methods. The 2x2 DC coefficients of the chroma

component are scanned in the raster-scan order. The transform is simplified to integer

operation because some operation is performed in the quantization stage. The

quantization parameter is different between 4x4 and 8x8 DCT in high profile of

H.264.

2.6 ENTROPY CODING

In H.264/AVC, there are two methods of entropy coding. The simpler entropy

coding method, UVLC, uses exp-Golomb codeword tables for all syntax elements

except the quantized transform coefficients. For transmitting the quantized transform

coefficients, a more efficient method called Context-Adaptive Variable Length

 14

Coding (CAVLC) is employed. In this scheme, VLC tables for various syntax

elements are switched depending on already transmitted syntax elements.

In the CAVLC entropy coding method, the number of nonzero quantized

coefficients (N) and the actual size and position of the coefficients are coded

separately. After zig-zag scanning of transformed coefficients, their statistical

distribution typically shows large values for the low frequency part and becomes to

small values later in the scan for the high-frequency part.

The efficiency of entropy coding can be improved further if the

Context-Adaptive Binary Arithmetic Coding (CABAC) is applied. In H.264/AVC, the

arithmetic coding core engine and its associated probability estimation are specified

as multiplication-free low-complexity methods using only shifts and table look-ups.

Compared to CAVLC, CABAC typically provides a reduction in bit rate between

5%–15%.

 15

Chapter 3 Review of FME Search Algorithms

3.1 SEARCH ALGORITHM IN THE REFERENCE SOFTWARE [12]

3.1.1 Algorithm

: Integer pixel

: half pixel

: quarter pixel

Fig. 7 Search algorithm in the reference software

Fig. 7 details the search algorithm for the Fractional-pel ME(FME) process

according to the reference software[12]. The search process in fractional motion

estimation is typically divided into two parts. The first part consists of half-pel motion

estimation, where specific pixels at half-pel spacing are searched for comparison. The

second part consists of quarter-pel motion estimation, where pixels at quarter-pel

spacing centered around a search point obtained in the first part are used for

comparison.

 16

 In the first part of half-pel ME, a cost value for each of eight search points in a

square search pattern surrounding the integer spaced pel called search center is

calculated. A cost value calculation for the search center is also performed. The search

point with the lowest cost value is then selected as the quarter-pel motion estimation

search center in the next step. The fractional motion estimation step utilizes an

additional eight fractional search points displaced around the search center at

quarter-pel spacing. A total of 17 search points (1 search point from integer pel, 8

search points from half-pel ME and 8 search points from quarter-pel motion

estimation) are searched and compared in a single round of the traditional ME

procedure according to the reference software.

3.1.2 Hardware implementation[16]

In the hardware implementation of the above algorithm in [16], firstly, reference

pixels are loaded to interpolation unit and then demanded sub-pixels are generated.

After that, the demanded sub-pixels and current MB pixels go into the 4x4 block PU

which is responsible for residual generation and Hadamard transform. It processes

4x4 element blocks decomposed from sub-block in sequential order. There are nine

4x4 block PU’s processing nine candidates around the refinement center

simultaneously. Finally, nine accumulators accumulating the SATD of each 4x4

element block and corresponding MV cost and sent it to the compare unit for

determining the best candidate.

 17

3.2 FIVE CANDIDATES ALGORITHM [15]

3.2.1 Algorithm

Fig. 8 Five candidates search algorithm

The author of [15] finds that the error surface of sub-pel motion estimation is

unimodal in most cases. Therefore, he biases his second search step near the center

and just examines the neighborhood position around the points with low cost value.

Fixed half-pel search pattern and adapt quarter-pel search patterns are applied in his

search algorithm.

Step1: Calculate the five search points of the center and the four half-pel points.

Step2: Adaptively select the search pattern depending on the best three search

positions of the first step. If the integer-pel has minimum cost, the algorithm will bias

the search pattern to the search center, as shown in Fig. 8(a). Otherwise, it will bias

the search pattern away from the search center, as shown in Fig. 8(b). The detail of

each case is shown below.

 18

Case 1: When the center has minimum cost, the second and third best search

positions aren’t near each other. It will choose the three search points between the best

and the second best ones, as shown in Fig. 9.

Fig. 9 Refine position in case 1

Case 2: The minimum cost point falls on search center and the second best

positions is neighbor to the third one. It will choose the “L” shape pattern as shown in

Fig. 10.

Fig. 10 Refine position in case 2

Case 3: The best two search positions are at the four half-pel positions and

neighboring to each other. It will choose the three points in the “L” shape between the

best two as shown in Fig. 11.

Fig. 11 Refine position in case 3

 19

Case 4: When the best two search points are at the four half-pel positions and not

neighboring to each other. It will search the four candidates around the best search

point as shown in Fig. 12.

Fig. 12 Refine position in case 4

3.2.2 Hardware implementation

Search window data
rearrangement

Adaptive Search Pattern
Selection Unit

4x4
Block

PU

Compare and determine
quarter search pattern type

Interpolation Unit

ControlMode

MV

Ref frame
data

Original MB
data

Best MV

Early
Termination

Unit

Residual
buffer

4x4
Block

PU

4x4
Block

PU

4x4
Block

PU

4x4
Block

PUMB header

Fig. 13 Block diagram of hardware of 5 candidates algorithm

 20

Fig. 13 shows the block diagram of the architecture in [15]. The core procedure

of FME includes interpolation, residual generation and Hadamard transform. The

interpolation unit interpolates the fractional pixels by 6-tap filter. Due to the irregular

search pattern used in second step, interpolated fractional pixels should be adaptively

selected before been send into PU.

The 4x4 block PU has four times parallelization of horizontal adjacent pixels and

is in charge of residual generation and Hadamard transform. It processes 4x4 element

blocks decomposed from sub block in sequential order.

SATD generated form PUs and MB header included motion vector, reference

frames and type of block sizes are send into the compare and determination unit for

the Largrangian mode decision. Mode decision is combined with comparator. In the

first search step, we should know not only the best position but also second and third

places. Then, the information of the first step is send into selection unit to choose the

input of the next step.

 21

3.3 QUADRATIC PREDICTION BASED FME [14]

H1 H2C

V1

V2

: Integer pixel

(xp, yp)

: diamond search point
: (xp, yp)

Fig. 14 The integer-pixel search positions within the "local" fractional-pel ME search area.

The fast algorithm in [14] uses a mathematical model to predict the best position

at quarter-pel position. In this paper, a “degenerate” quadratic prediction function is

used to model the matching error function within the fractional-pel ME search area,

which is given by

EDyCyBxAxyxF ++++= 22),(

where x and y are local x and y coordinates of a search position at fractional-pel

accuracy and A, B, C, D, and E are parameters to be determined. As shown in Fig. 14,

a fractional-pel ME search area with search range=1 pixel contains 9 integer-pel

search positions. The five matching error values of the five integer-pel search

positions, C, H1, H2, V1, and V2 are known in the previous integer-pel ME search

procedure. These five SADs are employed to determine the five parameters, A, B, C,

D, and E in the equation.

In Fig. 1, the local coordinates of the five integer pixel positions C, H1, H2, V1,

and V2 are (0,0), (-1,0), (1,0), (0,-1), and (0,1). Then we have

 22

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

++=
+−=
++=
+−=

=

EBAHF
EBAHF
EDCVF
EDCVF

ECF

)2(
)1(
)2(
)1(

)(

 For simplicity, let

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=
−=
−=
−=

CVFL
CVFK
CHFJ
CHFI

)1(
)2(
)1(
)2(

Then we have

()
()
()

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
−=
+=
−=
+=

)(
2/
2/
2/
2/

CFE
LKD
LKC
JIB
JIA

It is assumed that F(x, y) is continuous (smooth) within the “local” fractional-pel

search area, to obtain the minimum F(x, y), and then the differential operation can be

performed on F(x, y) with respective to x and y, respectively and then set it to zero.

The solution to the above differential equations is,

⎪⎩

⎪
⎨
⎧

==

≠−=

0,0

0,
2

Ax

A
A

Bx

p

p ,
⎪⎩

⎪
⎨
⎧

==

≠−=

0,0

0,
2

Cy

C
C
Dy

p

p

where),(pp yx is the best position in quarter-pel accuracy.

After determine the best position, the author does the first diamond search

around it. Then, it refines around the best point until it is center-located. This

algorithm needs at least two iterative loops and additional memory to store

information from integer-pel motion estimation. Therefore, it is not suitable for

hardware implementation.

 23

3.4 CENTER-BIASED FRACTIONAL-PEL SEARCH (CBFPS)[13]

(a) (b)

Fig. 15 (a) Sub-pel motion vector distribution using the Full Search algorithm versus the (0,0) MV (b)

Sub-pel motion vector distribution using the Full Search algorithm versus the median predictor.

The concept behind the center-biased FME[13] is that the probability of finding

the motion vector around frac_pred_mv is higher than that around (0,0). Fig. 15(a)

shows the sub-pel motion vector distribution using the Full Search Algorithm versus

the (0,0) MV and Fig. 15(b) shows that versus the median predictor. The distribution

versus the median predictor is more center distributed than versus (0,0). Hence it

can be concluded that we have higher probability to find the accurate sub-pel MV

around the median predictor than around the (0,0) MV.

The center-biased FME[13] uses the information of predicted motion vector

(pred_mv). It first calculates the fractional predicted motion vector(frac_pred_mv) :

β)%_(__ mvmvpredmvpredfrac −= (1)

where pred_mv here is defined as the fractional pixel unit. mv is the integer pixel

motion vector after IME process, and mv is also in fractional pel unit. % is the mode

operation, β=4 in 1/4-pel case and β=8 in 1/8-pel case. frac_pred_mv is the predicted

 24

fractional motion vector and indicates only fractional position. Then, it compares the

cost at (0, 0) and frac_pred_mv and does the first diamond search around the lower

cost one. After that, it refines around the best point until it is center-located. However,

this algorithm still needs at least two iterative loops and thus is not suitable for low

latency hardware design.

 25

3.5 FAST FRACTIONAL-PEL ME USING MATHEMATICAL MODEL[17][23]

3.5.1 Algorithm

Fig. 16 The integer and half pixels within the fractional-pel ME search area.

The author in [17] implements the method of [23] and extends it to quarter-pel

precision. He uses a mathematical model to estimate SADs at quarter-pel position.

The mathematical model used to approximate the surface defined by the nine integer

pixels is as following:

98
2

765
2

4
2

3
2

2
22

1),(CyCyCxCxyCxyCxCyxCyxCyxf ++++++++= …..(1)

Writing down the 9 SADs, we can get

 26

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−−−
−
−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

111111111
111000000
111111111
100111100
100010000
100101100
111111111
111000000
111111111

C
C
C
C
C
C
C
C
C

f
f
f
f
f
f
f
f
f

………………………….(2)

Its 9 coefficients can be determined by 9 integer-pixel precision SADs around (0, 0),

as shown in Fig. 16. We can obtain 9 coefficients by the inverse matrix of Eq. (2), as

shown in Eq. (3).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−−−
−
−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

111111111
111000000
111111111
100111100
100010000
100101100
111111111
111000000
111111111

f
f
f
f
f
f
f
f
f

C
C
C
C
C
C
C
C
C

………………………….(3)

It substitute these 9 coefficients into the original mathematical model (Eq.(2)). In the

next step, SADs at the neighboring half-pixel positions (h1, h2, …, h9) can be

obtained by replacing x and y in Eq.(2) with its coordinates. The position which

causes minimum SAD is the half-pixel precision MV.

After finding the minimum SAD at half-pixel level, the author resets the origin

(0, 0) to the position pointed to by half-pel MV and find the minimum SAD at

quarter-pel precision similarly.

 27

3.5.2 Hardware implementation

Fig. 17 Top-level architecture in [17]

Fig. 17 depicts the top-level architecture in [17]. It consists of two parts: FME

and mode decision. For each variable-size block, the FME receives from IME an

integer MV and nine associated SADs (one for the best integer position and eight

around the best) and outputs a fractional MV and a minimum SAD at quarter-pixel

precision. The mode decision engine receives SAD and fractional MV from FME and

reference index from IME. It produces the chosen modes and associated MVs of

macroblock and submacroblocks. The architecture of FME is a direct implementation

of Eq (3)). In the first step, FME receives nine SADs from IME and figures out 9

related SADs at half-pixel precision. Then, the comparator finds the minimum

half-pixel SAD and MV Refiner adjusts integer MV to half-pixel precision according

to the comparison result.

 28

3.6 SUMMARY

Although the search algorithm illustrated in the reference software does manage

to sufficiently locate suitable search points for the motion vector refinement process,

the excess amount of search points may result in significant delays in the encoding

process. This search algorithm for the FME process may possess too many search

points to visit within one motion vector refinement process. Furthermore, although

this algorithm is suitable for hardware[16], the Fractional-Pel ME process requires

two iterative search loops of interpolation and Hadamard transform to calculate the

SATD cost. Therefore, the process takes too much cycle time in hardware

implementation.

The center based fractional pixel search (CBFPS)[13] and the quadratic

prediction based fractional ME algorithm[14] are software-oriented and exhibit

irregular data flow and thus are not suitable for hardware design. Although the

algorithm in [17] is suitable for hardware, it has more than 0.2dB degradation in

PSNR and needs additional hardware to generate residual. The five candidates

algorithm[15] which is our previous work is also suitable for hardware and can reduce

the processing unit from nine to five to save hardware cost. However, from the

hardware viewpoint it still suffers from long computation cycles as others. That is

because it still takes two iterative search loops, one on half-pels and one on

quarter-pels[16]. Thus, it only reduces the processing element but do not reduce the

cycle count in the hardware implementation. This problem will pose a strict limit on

the HDTV sized applications since FME will take a lot of cycles and dominate the

whole pipelining cycle time.

 29

Besides, all of these algorithms and designs do not consider the costly 8x8 SATD

(sum of absolute transformed difference) computations in the high profile of H.264. In

H.264 high profile standard, blocktypes larger than 8x8, i.e. 16x16, 16x8, and 8x16,

pass through 8x8 DCT rather than 4x4 DCT before entropy coding. Hence, in FME

stage, the SATD of blocktypes larger than 8x8 is calculated by 8x8 Hadamard

transform rather than Hadamard 4x4 transform. However, 8x8 Hadamard transform

causes the interpolation unit and transform units to increase their area. Thus, the FME

hardware for high profile standard should be much larger than that for baseline or

main profile standard.

To solve above problems, we presents a single iteration fast FME algorithm and

its architecture suitable for HDTV and high profile applications. The proposed

algorithm can complete the quarter-pel precision motion search by only examining six

search points in one search step instead of 17 search points in two search steps in the

reference software[12]. Thus, we can reduce the number of SATD units since we only

search 6 candidates. Besides, the cycle count is also halved by using only one search

step. Furthermore, to avoid the costly 8x8 SATD computations with 8x8 Hadamard

transform, we use the 4x4 Hadamard transform units. Thus, we can achieve smaller

area and fewer cycle counts at the same time.

 30

Chapter 4 A Single Iteration Fractional-pel

Motion Estimation Algorithm

4.1 PROPOSED SINGLE ITERATION ALGORITHM

4.1.1 Proposed SIFME Algorithm

frac_pred_mv

(0,0)

Fig. 18 The proposed SIFME algorithm flow on two square points, (0,0) and frac_pred_mv, and four

triangle point around frac_pred_mv in one quarter-pel distance

Inspired by the center-biased FME, we modify it by searching six candidates in

only one loop and no refined search as shown in Fig. 18. The six candidates includes

(0,0), frac_pred_mv and four diamond points around frac_pred_mv. (0, 0) is included

for low texture and low motion sequences. More search points are placed around

frac_pred_mv since the best fractional motion vector is more often around

frac_pred_mv than around (0, 0).

The next stage of the fast ME algorithm process entails selecting a quarter-pel

 31

search pattern. The quarter-pel search pattern is selected according to the ranking of

cost values for each specific search point, and provides search points in a certain area

to approach the global minimum cost in the search window. In an effort to reduce

confusion, the search points deduced in the quarter-pel ME stage will be referred to as

quarter-pel search points. However, both types of search points serve the same

purpose in providing matching points for the ME process.

Once the quarter-pel search pattern is determined (further below), cost values for

the quarter-pel search points of the fractional search pattern are then calculated. The

cost values attained here are used in conjunction with the cost data accumulated from

search points in the first stage to determine whether the current macroblock is a

suitable match to the reference macroblock. The entire search pattern therefore

comprises the half-pel search pattern used in the first stage and the quarter-pel search

pattern used the second stage for fractional ME.

 32

4.1.2 Analysis of prediction accuracy and search point

The method of the present invention manages to arrive at a comparable matching

accuracy while reducing the total search points and processing time. Table 1 shows

the prediction correctness compared with the algorithm in the reference software

under different quantization parameter (QP). The prediction accuracy is defined as if

the search fractional MV by the fast algorithm is the same as that in the reference

software in both x and y axis. This result shows that it can still have about 60~90 % of

prediction accuracy though the proposed algorithm had ignored more than 88% search

points.

Table 1 Hit rate of motion vector (mvx and mvy) compared to the algorithm adopted by JM

CIF size, 300 frame, IPPP, ProfileIDC=100, RDO off
QP container foreman mobile stefan
10 82.31% 61.80% 74.10% 62.20%
16 85.11% 68.60% 76.30% 70.70%
22 82.18% 70.97% 76.70% 75.70%
28 90.21% 78.90% 79.00% 79.40%
34 94.41% 86.40% 82.30% 82.83%
40 94.71% 91.10% 86.10% 85.40%

In addition, our algorithm is more accurate in higher QP condition. The reason

may be that our algorithm tends to find the motion vector which is similar to the

motion vector predictor(mvp) and thus has lower motion vector cost. Therefore, in

high QP condition where motion vector cost dominates rather than SATD cost does,

motion vectors found by our algorithm have lower motion vector cost and become

more accurate.

 33

Table 2 provides the search point comparisons with other algorithms. The

proposed algorithm needs the fewest search points compared with other search

algorithms, 64% reduction compared to reference software and 33% reduction

compared to the algorithm in [15]. This significantly reduces the hardware processing

time required by a related compression encoder or a microprocessor for use in video

compression. Besides, our algorithm does not need the second step search and saves

the additional interpolation time in the second step. Table 3 shows the comparisons

for hardware implementation. The proposed algorithm searches only six candidates

and needs only six PUs. Besides, since in hardware implementation, all candidates in

the same step are processing in parallel, cycle time is dependent on the number of

iterative steps, not number of candidates. With one loop design, our design just takes

about only half of cycles compared to that with reference software[16] and fast

algorithm in [15].

Table 2 Search point comparisons for different algorithms

 Search points
JM 9.8[12] 17
Quadratic Prediction[14] 6 + multiple diamond search (Total <=11)
CBFPS[13] 6 + multiple diamond search
Y. J. Wang[15] 8~9
Proposed 6

Table 3 Comparisons of number of processing unit(PU) and number of iterative search steps

 # of PU # of iterative search step
T. C. Chen[16] 5 2
Y. J. Wang[15] 9 2
Proposed 6 1

 34

4.1.3 Proposed SATD cost of 4x4 Hadamard transform algorithm

In high profile standard of H.264, residual of block size larger than 8x8 are

passed through 8x8 DCT rather than 4x4 one. Thus, in the reference software, it

adopts 8x8 Hadamard transform for SATD calculation for block size larger than

8x8[18]. Though Hadamard transform is greatly simplified, one 8x8 Hadamard

transform unit still consumes about four times area than that of 4x4 one. For six PUs

in our design, six 8x8 transform will be required and thus cost a lot of area cost.

Moreover, the area of interpolation unit will also increase. To solve this area problem,

we propose to use 4x4 Hadamard for all SATD calculation disregarding of the block

size.

Table 4 shows the simulation results of our algorithm with different SATD

strategy. We set only the first frame to be I-frame because inserting I-frame

periodically will ease up the effect of our algorithm. All the data are in Table 4

compared with the reference software. As shown in the table, the results with 4x4 and

8x8 Hadamard transform are similar except for low motion sequences like container

at high QP situations. That is quite acceptable since the bit rate at that condition is

quite low and any increase will be large in terms of that bit rate. As the 4x4 transform

unit only consumes 25% area cost of 8x8 one, we choose to calculate SATD by 4x4

Hadamard transform that has similar performance and saves about 75% of area cost in

PU and 60% of area cost in the total FME module.

 35

Table 4 Simulation results of SIFME with different SATD methods when compared to the reference

software[12]

CIF size, 300 frame, only first frame is I-frame, ProfileIDC=100,
RDO off, Search range = 32
SIFME with 4x4 Hadamard transform

 container foreman mobile&calendar stefan
QP ΔPSNR

(dB)
Δbit
rate

ΔPSNR
(dB)

Δbit
rate

ΔPSNR
(dB)

Δbit
rate

ΔPSNR
(dB)

Δbit
rate

10 -0.03 -0.75% -0.05 0.04% -0.04 -0.24% -0.04 0%
16 0 -0.28% -0.07 1.03% -0.06 0.16% -0.05 0.30%
22 -0.03 -0.37% -0.09 0.89% -0.08 0.06% -0.06 0.50%
28 0.03 0.46% -0.09 1.50% -0.07 0.47% -0.07 1.24%
34 0.04 2.11% -0.12 1.35% -0.07 1.73% -0.10 1.57%
40 -0.03 4.36% -0.08 -0.36% -0.08 2.30% -0.13 1.02%

SIFME with 8x8 Hadamard transform
 container foreman mobile&calendar stefan
QP ΔPSNR

(dB)
Δbit
rate

ΔPSNR
(dB)

Δbit
rate

ΔPSNR
(dB)

Δbit
rate

ΔPSNR
(dB)

Δbit
rate

10 -0.02 -0.19% -0.02 -0.19% -0.03 0.34% -0.03 0.31%
16 -0.03 -0.35% -0.03 -0.35% -0.03 0.64% -0.04 0.68%
22 -0.01 -0.25% -0.01 -0.25% -0.06 0.79% -0.06 1.06%
28 0.03 0.19% 0.03 0.19% -0.06 1.16% -0.07 1.86%
34 -0.02 0.72% -0.02 0.72% -0.06 1.59% -0.08 1.97%
40 0.02 2.53% 0.02 2.53% -0.09 -0.10% -0.11 -0.04%

 36

4.2 SIMULATION RESULT & COMPARISON

Table 5 shows the simulation results of the proposed SIFME with 4x4 Hadamard

transform algorithm compared with that of reference software for 720p and 1080p

sequences. Since our hardware architecture is used for high profile and HDTV size

video, we care more about the performance on 1080p and 720p size sequences rather

than that on CIF size sequences. Comparing the results of Table 4, Table 5, and Table

6, we can find that our algorithm has better performance on large size sequences than

CIF size sequences, which matches our goal. We can also find that our algorithm

greatly reduces computation time of FME. The proposed algorithm can speedup the

FME part by up to 4 times compared to the reference software. The reason is due to

the reduction of search candidates, and use 4x4 Hadamard transform instead of 8x8

one.

For the result on 720p size sequence shown in Table 5, the PSNR degradation is

around 0~0.08dB and the bit rate even decreases on many sequences. For low motion

sequence like container in Table 4 and mobcal in Table 5 at high QP situation, the bit

rate may increase. That is quite acceptable since the bit rate at that condition is quite

low and any increase will be large in terms of that bit rate. However, for most 720p

sequences, the bit rate even decreases. The reason may be that our algorithm tends to

find the motion vector which is similar to the motion vector predictor(mvp) and thus

saves bits for coding motion vectors.

 37

Table 5 PSNR & bit rate comparison for different 720p sequences and QPs. Speed up is only the

performance in fractional ME part

JM9.8, 720p, 300 frames, only first frame is I-frame, ProfileIDC=100,
RDO off, search range=64
SIFME with 4x4 Hadamard transform
 mobcal parkrun shields stockholm
QP ΔPSN

R(dB)

Δbit

rate

speed

 up

ΔPSN

R(dB)

Δbit

rate

speed

up

ΔPSN

R(dB)

Δbit

rate

speed

 up

ΔPSN

R(dB)

Δbit

rate

speed

up

10 -0.04 -0.77% 4.0 -0.02 -0.77% 3.9 -0.04 -0.42% 3.6 -0.04 0.05% 3.8

16 -0.04 -1.07% 3.6 -0.04 -0.99% 3.7 -0.08 -1.27% 3.7 -0.08 -0.86% 3.6

22 -0.01 -1.08% 4.0 -0.05 -1.42% 3.9 -0.04 -1.54% 3.9 -0.05 -1.50% 3.7

28 -0.01 -0.36v 3.9 -0.04 -0.63% 3.9 -0.02 -0.36% 3.6 -0.02 -0.71% 3.8

34 -0.05 3.20% 3.9 -0.05 -0.14% 3.8 -0.03 0.30% 3.6 -0.01 -1.87% 3.7

40 -0.06 4.28% 3.7 -0.04 -0.70% 4.1 -0.01 -7.05% 3.5 0 -8.86% 3.7

Table 6 PSNR & bit rate comparison for different 1080p sequences and QP

JM9.8, 1080p, 200 frames, only first frame is I-frame, ProfileIDC=100, RDO off, SearchRange=128
SIFME with 4x4 Hadamard transform
 blue sky pedestrian riverbed rush hour sation2 sunflower tractor
QP ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

10 -0.06 -1.14% -0.07 -1.41% -0.07 -0.53% -0.07 -1.13% -0.06 -0.64% -0.11 -0.27% -0.08 0.38%

16 -0.05 -0.74% -0.05 -0.68% -0.09 -1.85% -0.06 0.62% -0.07 -1.08% -0.10 -0.11% -0.12 -0.16%

22 -0.03 -1.20% -0.05 -1.32% -0.07 -2.11% -0.04 0.02% -0.08 -1.65% -0.07 -2.53% -0.11 -1.38%

28 0 0.08% -0.02 -1.03% -0.08 -1.14% 0.02 0.72% -0.01 4.70% -0.01 -1.71% -0.09 -0.66%

34 0.01 2.40% 0.07 0.55% -0.03 0.48% 0.13 1.68% 0.03 -2.43% -0.02 -3.54% -0.03 1.10%

40 0.08 4.47% 0.16 0.68% 0.06 1.45% 0.22 1.44% 0.13 -7.55% 0.02 -5.07% 0 2.36%

 38

Table 6 shows the result on 1080p sequence. The result at low QP situation is

quite the same as that on 720p sequence. However, at high QP condition, the PSNR

performance of our algorithm is even better than that of the reference software. The

reason may be that the accurate motion vector is getting closer to motion vector

predictor at high QP condition, and hence the accurate fractional one is getting closer

to frac_mv_pred illustrated in Sec. 4.1 .

Summing the information in Table 4, Table 5, and Table 6, we can conclude that

our proposed algorithm ignore 88% search point and achieve nearly 4 times speed up

with only less than 0.13 dB PSNR degradation and 4.47% bit rate increase. For some

720p or 1080p sequences, our algorithm even has better PSNR quality or less bit rate

than that of JM software[12]. The rate distortion curves are shown in Fig. 19, Fig. 20,

and Fig. 21. In each figure, the curve of our proposed algorithm is very close to that of

the method used in JM software[12].

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000

kbits/sec

P
S

N
R

(d
B

)

JM 9.8

our proposed

Fig. 19 Rate distortion curve of the four CIF size sequences

 39

25

30

35

40

45

50

0 20000 40000 60000 80000 100000

kbits/sec

P
S

N
R

(d
B

)

JM 9.8

our proposed

Fig. 20 Rate distortion curve of the four 720p size sequences

30

35

40

45

50

0 30000 60000 90000 120000 150000

kbits/sec

P
S

N
R

(d
B

)

JM 9.8

our proposed

Fig. 21 Rate distortion curve of the seven 1080p size sequences

 40

Table 7 shows the simulation results of the proposed algorithm and reference

previous works compared with that of the reference software. We integrate our

algorithm into the reference software and use the full search algorithm for integer ME

for fair comparison. It can be found that our algorithm greatly reduces computational

complexity but only leads to a small amount of quality loss. Our algorithm speeds up

more compared with our previous work[15] with the same PSNR quality and less bit

rate increase. The algorithm in [13] has better performance in PSNR and bit rate than

our algorithm does because we cut the number of iteration to one and simplify the

cost function of SATD. Nevertheless, this algorithm has many number of iteration and

hence is not suitable for hardware implementation.

Table 7 Simulation result when QP = 28, speed up is only the performance in fractional ME part. RDO

is off, reference frame number = 1, 300f, CIF

QP = 28 Stefan Mobile Foreman Coastguard News # of iteration

bit rate 1441.14 1888.69 498.62 1127.87 223.72

PSNR 35.36 33.75 36.24 34.52 38.12
JM 9.8
[12]
 time (sec) 491.604 471.993 496.974 488.039 450.37

1

△bit rate(%) 2.2843 2.36407 1.780915 1.070159 2.23494
△PSNR(dB) -0.09 -0.11 -0.07 -0.04 -0.06

Y. J.
Wang
[15] speed up 2.34227 2.24167 2.361651 2.283373 2.24787

2

△bit rate(%) -0.1524 -0.0822 -0.7819 -0.402 0.2294
△PSNR(dB) -0.01 -0.01 -0.03 -0.01 0

CBFPS
[13]

speed up 2.163 2.265 2.249 2.307 2.638

> 2

△bit rate(%) 1.2408 0.4657 1.5022 -0.9468 2.3643
△PSNR(dB) -0.07 -0.07 -0.09 -0.06 -0.09

proposed
 speed up 3.6 3.9 3.7 3.8 3.9

1

 41

Chapter 5 Architecture Design for Fast Sub-Pel

Motion Estimation

5.1 HARDWARE CONSIDERATION

The encoding procedure is dominated (90%) by the inter prediction in H.264

encoding process. Inter prediction can be mainly divided into two parts: integer

motion estimation (IME) and fractional motion estimation (FME). Complexities of

the former one and the later one are quite the same and both dominate the encoding

time of inter prediction. For the speed up in system level, our encoder chip pipelines

the IME and FME process. So the dedicated hardware is needed for FME only.

For the speed up in the macroblock level, we use the single iteration fast

algorithm which is illustrated in Chapter 4 in replace of the method applied in the

JM software[12]. The total hardware cycle is halved compared with the regular

algorithm used in the JM software[16]. But the overhead is the more complex timing

control circuit. For the data reusability within one macroblock, vertical integration is

applied to reduce the encoding time. Redundant interpolating operations appear in the

overlapped area of adjacent interpolation window and can be merged by scheduling

technique and thereby save redundant memory access and cycle time.

We set the 4x4 block as the basic unit for interpolation and SATD generation

since all block types can be decomposed by 4x4 block. However, this technique

encounters problems with H.264 high profile encoding. In H.264 high profile,

 42

blocktypes larger than 8x8 are recommended to use 8x8 Hadamard transform for

generating SATD value because the residual will go through 8x8 DCT instead of 4x4

DCT before quantization. We proposed to use 4x4 Hadamard transform instead of 8x8

one explained in Chapter 4 as the cost function. Therefore, we can still decompose

every type of block sizes by 4x4 block with very little quality loss.

5.2 HARDWARE CONSIDERATION FOR FME

Fig. 22 The block diagram of proposed H.264 high profile encoder.

 43

Fig. 22 shows the block diagram of our complete H.264 High Profile HDTV

encoder. The encoder contains system control, bus arbiters, and five coding tools

including: integer motion estimation (IME), fractional motion estimation (FME), intra

prediction, reconstruction, and entropy coding. Besides, internal SRAMs for reference

data and residue data are also included in this design. The complete frame data and

reconstructed result are stored in external memory through bus arbiter and bus

interface. The bus interface width is design for 128bits.

This design is with three stage pipeline architecture which is different with

previous works[9][10] which use four stage pipeline architecture. The first advantage

is that the current luma block buffer and the residue generator, and the SATD

comparator can be shared between FME and intra prediction. In the second, the

fractional motion estimation part can be closed directly for intra frame. On the

contrary, the by-pass path in FME stage is still needed in four stage pipeline

architecture. Therefore, power consumption and additional idle stage can be reduced

in intra frame. Integer motion estimation is in the first pipeline stage. The second

stage is intra prediction and FME. The continuous DCT and quantization steps are

still in the second stage, and the third stage is the entropy coding stage.

 44

Fig. 23 The mode filtering algorithm of integer pixel motion estimation

The target of our high profile encoder is to encode 1080p sequence in real time

under 145MHz clock frequency. Therefore, the latency of each pipeline stage should

be below 600 cycles. To shorten the computational cycles of FME, IME uses a fast

algorithm called mode filtering[22]. In this algorithm, IME compares the four modes

of 16x16, 16x8, 8x16, and the best one below 8x8. Afterwards, IME selects the best

two candidate modes out of the four modes, as shown in Fig. 23. Only two modes are

processed in FME stage. Therefore, the computational cycles of FME greatly

decrease.

 45

Moreover, the single iteration fast algorithm proposed in Chapter 4 is also

used to reduce the number of search iteration and thereby shorten the computational

cycles. The task of FME is to find the best fractional-pel MVs of these two modes,

decide the best mode, and determine whether the current macroblock is coded in inter

or intra mode. Then, after mode decision, an additional refinement step is applied to

calculate the residual and transform them. The quantization is done in the later

reconstruction stage. All of the previous tasks should be done within 600 cycles.

 46

5.3 ARCHITECTURE

5.3.1 Functional flow and overall architecture

Fig. 24 Function flow in FME stage

Fig. 24 illustrates the function flow of our FME hardware. We divide

fractional-pel motion estimation(FME) process into two paths: luma path and chroma

path. The luma path consists of candidate decision, mode decision and luma residual

generation. Because the IME part uses the mode filtering technique explained in Sec.

5.2 and passes only two modes to the FME stage, we just have to calculate these two

modes named mode 0 and mode 1 in the luma path. The chroma path only includes

 47

chroma residual calculation. In the beginning, the candidate decision and mode

decision is done in the luma path. Afterwards, both luma path and chroma path start

residual calculation. The two paths use independent hardware to reduce cycle time.

The area cost will be discussed in Sec. 5.4 . Nevertheless, as shown in Table 8 and

Table 9 in Sec. 5.4 , the area cost of chroma path is quite small. Therefore, dividing

luma and chroma processing into two independent paths improves the throughput

with negligible area increment.

Fig. 25 shows the proposed FME stage architecture. Compared Fig. 24 with

Fig. 25, the luma path consists of Mode 0 Reference SRAM, Mode 1 Reference

SRAM, the “FME luma” module and the “8x8/4x4 DCT” module, and the chroma

path includes the Chroma Referecne SRAM, the “FME chroma” module and the “4x4

DCT” module.

The luma path contains two reference SRAMs. This is due to the subsample

strategy used by our Integer Motion Estimation(IME) stag. Therefore, one SRAM

stores luma reference pixels coming from IME stage and the other holds pixels from

external memory. As shown in Fig. 24 and Fig. 25, in the first step, we calculate the

SATD of six candidates of all blocktypes from IME and decide the best mode in the

“FME luma” module. After mode decision, we recalculate the residual and

interpolated reference pixels of the best candidate of the best mode and pass the

residual to “8x8/4x4 DCT” module. Meanwhile, we load reference chroma pixels to

the “Chroma Ref. SRAM” according to the best motion vector and calculate the

chroma residual and chroma interpolated reference pixels in the “FME chroma”

module. Since 8x8 transform is only applied on luma residual, chroma residual

progress toward “4x4 DCT” module. The luma and chroma residual pass through two

 48

independent paths as illustrated in Fig. 24.

Fig. 25 Block diagram of FME Top Stage

The hardware of the luma path is responsible for SATD calculation, mode

decision, and residual and reference pixels generation. On the other hand, the

hardware of the chroma path is only responsible for residual and reference pixels

calculation. Hence, the area cost of the chroma path is quite small. The SATD of the

best one in FME stage is compared with the SATD of the best intra mode in the

“mode decision” module and decides whether current macroblock is coded in intra or

inter mode.

 49

5.3.2 Reference SRAMs

Fig. 26 Block diagram of Mode0 Reference Pixel SRAM

Fig. 26 shows the proposed Mode 0 Reference SRAM which contains reference

pixel from IME stage. There are 3 identical SRAMs between IME and FME stage.

One is for reference pixel loading from external memory. Another contains reference

of IME stage. The third one stores the reference pixel for the FME stage. After each

stage finishes, the loading SRAM becomes the IME reference SRAM, the IME

reference SRAM becomes FME reference SRAM, and the FME reference SRAM

discards its data and prepares for reference data loading. Each SRAM is 31x296 sized,

i.e. 9176-bit. We need 31*3=93 cycles to fill one SRAM under 128-bit bus bandwidth.

 50

Fig. 27 Block diagram of Mode1 Reference Pixel SRAM

Fig. 27 shows the proposed Mode 1 Reference SRAM which contains reference

pixel loading from external memory. This SRAM contains reference pixels for

blocktype 16x16, 16x8, 8x16 or 8x8. For the worst case, i.e. macroblock with four

8x8 blocktype, we need four 14x14 interpolation window for interpolation four 8x8

blocks. Total four 8x8 blocks occupy 14x14x4 = 784-pixel = 6272-bit. The SRAM is

divided into two banks. Each bank is 28x112 sized, totally 28x224 = 6272-bit. One

bank contains the reference pixels of the left half macroblock and the other stores the

reference pixels of the right part. We need 31*2=62 cycles to fill this SRAM under

128-bit bus bandwidth.

 51

Fig. 28 Block diagram of Chroma Reference Pixel SRAM

Fig. 28 shows the proposed Chroma Reference SRAM which contains chroma

reference pixel loading from external memory. The Chroma Reference SRAM will

load chroma reference pixels according to the final motion vector after “FME luma”

module determines the best mode. The basic unit for luma processing is 4x4 block,

and hence the basic unit for chroma processing is 2x2 block. Each chroma 2x2 block

requires 3x3 reference block for interpolation. 32 3x3 reference blocks are stored in

the Chroma Reference SRAM, 16 for Cb and 16 for Cr. The Chroma Reference

SRAM totally stores 3x3x16 = 144-pixel = 1152-bit for both Cb and Cr pixels.

 52

5.3.3 FME luma module

Fig. 29 Block diagram of fast FME luma hardware

Fig. 29 shows the proposed “FME luma” module. In “FME luma” module, all

larger sized block are decomposed into 4x4 block for processing. The input 4x4 block

are first interpolated by the interpolation unit for half and quarter pixels. Interpolation

unit will select the fractional points of the six candidates according to frac_pred_mv

explained in the previous chapter. Then these data are computed with the current

block data with the six 4x4 block PUs since our fast FME algorithm compares six

candidates. Six 4x4 block PUs process six candidates simultaneously. Four horizontal

adjacent pixels from original MB are broadcasted to every PU at the same time and

 53

the reference sub pixels are provided by interpolation unit. Each PU is in charge of

residual generation and 4x4 Hadamard transform.

We combine mode decision and candidate comparison in the compare unit shown

in Fig. 29. MB header related information included motion vector, reference frames,

type of block sizes and SATD are sent into the “Compare” module for the Largrangian

mode decision. The information of the best candidate will be stored in the

“SB_buffer” module. After the best candidate of each mode is chosen, SB_buffer will

compare all of them and send out the information of the best one. Finally, a

refinement step is carried out to get the final residual.

Fig. 30 Interpolation unit

 54

The 6-tap 2-D FIR filter shown in Fig. 30 is adapted from previous work[15]. It

is divided into two directions (horizontal and vertical) 1-D FIR filter which is shown

in Fig. 31(b). First, we interpolate the horizontal half pixels by five FIR filters from

10 adjacent integer pixels. These five intermediate values and six integer pixels are

stored and shifted cycle by cycle in the interpolation buffer. We use the same way to

interpolate the vertical half pixels with 11 FIR filter. In our algorithm, since we will

not visit the entire positions in the whole refinement window, some redundant bilinear

filters appear in certain pixels in the quarter precision, and thus can be removed from

our design, which accounts to 88%.

 (a) (b)

Fig. 31 (a) 4X4 block PU (b) 6-tap 1-D FIR filter

The 4x4 block PU which is also modified from previous work[15] has four times

parallelization of horizontal adjacent pixels and is in charge of residual generation and

 55

Hadamard transform. The architecture of PU is shown in Fig. 31(a), four processing

elements (PE), 2-D Hadamard transform decomposed by two 1-D Hadamard

transform and a transpose register array can continually process four pixels in each

cycle without any latency. It processes 4x4 element blocks decomposed from sub

block in sequential order.

Six 4x4 block PUs around the refinement center process five candidates

simultaneously. Four horizontal adjacent pixels from original MB are broadcasted to

every PU at the same time and the reference sub pixels are provided by interpolation

unit.

 56

5.3.4 Other modules

Fig. 32 Block diagram of FME chroma hardware. It contains 7 registers, 4 PEs and 2 subtracters

Fig. 32 shows the proposed “FME chroma” module. Since mode decision and

candidate comparison are handled by “FME luma” module, the “FME chroma”

module is only responsible for chroma residual generation after mode decision is done.

As all larger sized blocks are decomposed into 4x4 block for luma processing, we also

separate all larger sized blocks into 2x2 block for chroma processing. Each 2x2

predicted chroma sample block requires 3x3 reference pixels. The formula of the

predicted chroma sample value in H.264 standard is :

(){ }
()[] () ()[]{ }

(){ } 632*2_08*1_0
632***88***8

632****)8(*)8(**)8(*8

>>++−=
>>++−+−+−=

>>++−+−+−−=

yFracvhyFracvh
yFracDxFracCxFracyFracBxFracAxFrac

DyFracxFracCyFracxFracByFracxFracAyFracxFrac
cpredPartLX

The “predPartLXc” is the predicted chroma sample value, the xFrac and yFrac

represent the fractional motion vector in x-axis and y-axis, and A, B, C, and D stand

 57

for input integer reference pixels.

Every cycle a row of three reference pixels goes in and two fractional pixels in

x-axis, h0_v1 and h1_v1, are generated according to xFrac. In the next cycle, the

older fractional pixels move to registers h0_v2 and h1_v2, and we can calculate the

final predicted chroma sample value according to yFrac. The “FME chroma” module

contains seven 8-bit registers, h0_v0, h1_v0, h2_v0, h0_v1, h1_v1, h0_v1, h1_v1, and

four processing elements(PE) and two subtracters. The area cost for “FME chroma”

module is quite small. We will show the area cost of each module in Sec. 5.4 .

Fig. 33 Block diagram of Processing Element(PE) in FME chroma module.

It contains 2 multipliers and 1 adder.

As shown in Fig. 33, the processing element has 2 multipliers and one adder. The

function of PE0 and PE1 is: ()[]BxFracAxFracpixelreffrac **8__ +−= , PE2 and PE3

have the same functionality except their input is yFrac in replace of xFrac.

 58

Fig. 34 The relationship of the 7 values in the registers in space domain

Fig. 34 illustrates the relationship of the 7 values, h0_v0, h1_v0, h2_v0, h0_v1,

h1_v1, h0_v2, and h1_v2 in the registers shown in Fig. 32. The input row of three

pixels passes through two PEs and two fractional pixels in x-axis come out. In the

next cycle, final predicted fractional pixels in both x-axis and y-axis are generated.

Then we subtract them with two integer original pixels and get the chroma residual.

 59

Fig. 35 Block diagram of Discrete Cosine Transform(DCT) hardware.

It can support both 8x8 and 4x4 transform

The “8x8/4x4 DCT” module shown in Fig. 35 can support both 8x8 or 4x4

Discrete Cosine Transform(DCT)[20]. This module is in 8-pixel parallel processing

for 4x4 DCT and 4-pixel parallel processing for 4x4 DCT. After mode decision, if the

final mode is 16x16, 16x8, or 8x16, then 8x8 DCT is applied. Otherwise, 4x4 DCT is

applied. The transform matrix registers and 1-D transform unit of 4x4 and 8x8 DCT

can be shared to reduce area.

In the beginning of one macroblock processing, the “MV & Mode buffer”

register array load the integer motion vectors and mode from IME stage. Other

 60

modules will load reference pixels from SRAMs according to the information saved

in “MV & Mode buffer”. After the best candidate is determined by “FME luma”

module and final fraction motion vectors are generated, the integer motion vectors

will be added with fractional ones and produce the final motion vectors.

 61

5.4 IMPLEMENTATION RESULT

The control unit is the most challenge part of the whole design due to the 4x4

block decomposition and reference pixels loading from different memory. This part is

implemented by finite state machine. The proposed FME architecture for H.264 is

implemented by Verilog and synthesized in UMC 0.13u technology at both 73MHz

and 145MHz. The FME module can real-time encode 1080p sequence under 145MHz

clock frequency and 720p sequence under 73MHz clock frequency.

The details of every part are listed in Table 8 and Table 9. In Table 8, it can be

found that six PUs occupy the largest area, and thus reducing the number of PUs can

significantly reduce the area cost. Compared with the method applied in the JM

software[12], our fast algorithm reduces the number of candidates and hence reduce

the number of PUs.

Table 8 Synthesis result of the fast FME luma architecture in UMC013

Unit Gate Count in 73MHz Gate Count in 145MHz

Control 741 742

MV_COST 912 959

Interpolation unit 18,755 20,284

4x4 Block PU(*6) 22,289 22,290

Compare unit 2,470 2,610

SB_buffer 1,724 1,723

Total 47,236 48,950

 62

In Table 9, we can find that “FME luma” module, the Mode1 Reference SRAM,

and the “8x8/4x4 DCT” module occupy most of the cell area. The cell area of chroma

processing path including “FME chroma” and “4x4 DCT” modules is very little.

Therefore, dividing luma and chroma processing into two independent paths reduces

the cycle time with only very little area increment. Moreover, we use retiming or

pipeline techniques to break up the critical path in our design. Hence, the area is much

the same under 73 MHz and 145MHz clock frequency.

Table 9 Synthesis result of the FME top stage in UMC013

Unit Gate Count in 73MHz Gate Count in 145MHz

Mode1 Ref. SRAM 20,060 20,070

Chroma Ref. SRAM 6,295 6,295

FME luma 46,973 48,655

8x8/4x4 DCT 18,440 18,746

FME chroma 2,047 2,047

4x4 DCT 3,433 3,433

MV & Mode buffer 5,368 5,384

others 9,112 9,146

Total 111,728 113,776

 63

5.5 PERFORMANCE ANALYSIS

Compared to the reference architecture[16] as shown in Table 10, we save 20%

of area cost due to fewer number of PUs. The area cost of [15] is a little smaller than

our design. However, it has worse quality degradation and higher bit rate increase.

Besides, We can achieve more than 40% of throughput improvement with lower clock

rate than that in [15][16] because we only take one search step.

The throughput in [19] is 2 times of that in our design. However, its area cost is

about four times of ours. Although both the throughput and area cost in [17] are better

than that in ours, their architecture doesn’t do the 6-tap interpolation and hence suffers

great quality degradation.

Most of all, our hardware architecture is designed for H.264/AVC high profile

which is not supported in reference architectures [15][16][17][19]. The FME module

can real-time encode 1080p sequence under 145MHz clock frequency and 720p

sequence under 73MHz clock frequency and the area is much the same under 73MHz

and 145MHz clock frequency.

Table 10 Comparison between the proposed fast FME luma architecture and other architecture

 Chen[16] Wang[15] Yang[19] Kao[17] proposed
process UMC 0.18u UMC 0.18u TSMC 0.18u TSMC 0.13u UMC 0.13u

Δbit rate 0 2.02% 0 N/A -0.24%
ΔPSNR(dB) 0 -0.064 0 -0.15 -0.0438
clock 100MHz 100MHz 285MHz

(Worst
200MHz)

100MHz 73MHz 145MHz

Gate count 79,372 48,065 188,456 56,539 47,236 48,950
MB/sec 49k 50k 250k 909k 71.3k 142.6k
Cycle/MB 1648 2000 N/A N/A 1002

 64

Chapter 6 Conclusion

The point proposed in the paper can be mainly summarized into two parts. In

Chapter 4 , a fast fractional-pel motion estimation(FME) algorithm is proposed. Our

algorithm use single iteration search and thus can halve the computational cycle time.

Moreover, we use 4x4 Hadamard transform in replace of 8x8 Hadamard transform for

SATD(sum of absolute transformed difference) calculation. This technique saves 75%

area cost of transform unit and about 60% area cost of the total FME hardware. The

simulation result that the PSNR degradation is less than 0.13dB and bit rate increase

is less than 4.5%. Moreover, the simulation result also indicates that our algorithm

works better on large size sequence rather than CIF size. In most HD-sized sequences,

the bit rate of our algorithm is less than that of the reference software[12].

In Chapter 5 , the hardware implementation of the previous proposed algorithm

is presented. The synthesis result shows that the gate count is about 113k for the

whole fractional-pel motion estimation stage with internal SRAMs. The design has

smaller area and higher throughput with negligible quality degradation compared with

other designs.

In the future work, by applying different fast algorithms, each component can

still be optimized for area reduction or throughput improvement. Besides, the

proposed designs can be further integrated into Scalable Video Coding(SVC) or

Multiview Video Coding which is based on MPEG-4 H.264/AVC. We sincerely hope

that this research results can promote the improvement of video application and

convenience of human life as well.

 65

Bibliography

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint

Video Specification, ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC,
in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050,
Mar. 2003

[2] A.Puri, X.Chen, A. Luthra, “Video Coding Using the H.264/MPEG-4 AVC

Compression Standard,” Signal Proc. Image Communication, vol. 19, pp.
793-849, 2004

[3] Generic Coding of Moving Picture and Associated Audio Information – Part 2:

Video, ITU-T Recommendation H.262 and ISO/IEC 13818-2, Draft International
Standard, Nov. 1994

[4] Coding of Moving Picture and Associated Audio for Digital Storage Media up to

about 1.5Mbits/s, ISO/IEC 11172-2, International Standard, Nov. 1992

[5] Coding of Audio-Visual Objects – Part 2: Visual, ISO/IEC 14496-2, International

Standard: 1999/Amd1:2000, Jan. 2000

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaad, and A. Luthra, “Overview of the

H.264/AVC video coding standard”, IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, pp. 560-575, July 2003

[7] H.264/MPEG4 Part 10 White Paper, Overview, 2003.

[8] Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra, “The H.264/AVC Advanced

Video Coding Standard: Overview and Introduction to the Fidelity Range
Extensions,” SPIE Conference on Applications of Digital Image Processing
XXVII Special Session on Advances in the New Emerging Standard: H.264/AVC,
August, 2004

[9] Y. W. Huang, and et al., “A 1.3TOPS H.264/AVC single-chip encoder for HDTV

applications,” in proc. IEEE International Solid-State Circuits Conference, vol. 1,
pp. 128 – 588, 2005

 66

[10] H. C. Chang, and et al., “A 7mW~183mW Dynamic Quality-Scalable H.264
Video Encoder Chip,” in proc. IEEE International Solid-State Circuits
Conference, pp.280-281,603, 2007

[11] T. C. Chen, and et al., “2.8 to 67.2mW Low-Power and Power-Aware H.264

Encoder for Mobile Applications,” in proc. Symposium on VLSI Circuits,
pp.281-284, July 2006

[12] Joint Video Team Reference Software JM9.8

[13] Libo Yang, Keman Yu, Jiang Li, and Shipeng Li, “Prediction-based Directional

Fractional Pixel Motion Estimation for H.264 Video Coding”, in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP2005), Vol. 2, pp.901–904, 2005

[14] Jing-Fu Chang, Jin-Jang Leou, "A Quadratic Prediction Based Fractional-Pixel

Motion Estimation Algorithm for H.264," in Proc. Seventh IEEE International
Symposium on Multimedia (ISM'05), pp. 491-498, 2005

[15] Yu-Jen Wang, Chao-Chung Cheng, and Tian-Sheuan Chang, "A Fast Fractional

Pel Motion Estimation Algorithm for H.264/AVC", in Proc. International
Conference on Circuit and System (ISCAS), pp. 3974-3977, 2006

[16] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen, "Fully utilized and

reusable architecture for fractional motion estimation of H.264/AVC" in Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP2005), vol. 4. pp.9-12, 2004

[17] C. Y. Kao, H. C. Kuo, and Y. L. Lin, “High Performance Fractional Motion

Estimation and Mode Decision for H.264/AVC,” in proc. IEEE International
Conference on Multimedia and Expo (ICME), pp. 1241 – 1244, 2006

[18] Joint Video Team of ITU-T and ISO/IEC: “H.264/AVC for Next Generation

Optical Disc: A Proposal on FRExt Profiles,” Doc. JVT-K025r1, 2004.

[19] C. Yang, S. Goto, T. Ikenaga, “High performance VLSI architecture of fractional

motion estimation in H.264 for HDTV,” in Proc. International Conference on
Circuit and System (ISCAS), pp.2605-2608, 2006,

 67

[20] Yu-Kun Lin, Ying-Ze Liao, and Tian-Sheuan Chang, “An Area-Efficient Design

for Integer Transform in H.264/AVC FRExt,” 17th VLSI Design/CAD
Symposium, pp. 517-520, 2006

[21] J.W. Suh, and J. Jeong, “Fast Sub-pixel Motion Estimation Techniques Having

Lower Computation Complexity,” IEEE Trans. on Consumer Electronics, vol. 50,
pp. 968-973, Aug. 2004

[22] C. C. Lin, and et al, ”Hardware Oriented Algorithms for Motion Estimation in

MPEG-4 AVC/H.264 Video Coding”, VLSI Design/CAD Symposium, pp.
505-508, Taiwan, Aug. 2005

[23] J.W. Suh, J. Jeong, “Fast Sub-pixel Motion Estimation Techniques Having

Lower Computation Complexity,” IEEE Transaction on Consumer and
Electronic, vol. 50, pp. 968-973, Aug. 2004

 68

作 者 簡 歷

姓名： 郭子筠

籍貫： 台灣桃園

學歷：

國立武陵高級中學 (民國 87 年 09 月~民國 90 年 06 月)

國立交通大學電子工程學系 (民國 90 年 09 月~民國 94 年 06 月)

國立交通大學電子所系統組 (民國 94 年 09 月~民國 96 年 06 月)

著作：

[1] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, “A Memory Bandwidth
Optimized Interpolator for Motion Compensation in the H.264 Video Decoding”,
IEEE Asia Pacific Conference on Circuits and Systems, Singapore, pp. 1244-1247,
4 December - 7 December, 2006 (APCCAS 2006)

[2] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, “SIFME: A Single Iteration
Fractional-pel Motion Estimation Algorithm and Architecture for HDTV Sized H.264
Video Coding”, IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. I-1185 - I-1188, April 2007 (ICASSP 2007)

