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Abstract

Motion estimation (ME) processing is the most complex part and the bottle neck of
a real time video encoder due to its heavy complexity, high area cost, and large memory
bandwidth. In this thesis, we propose fast algorithms and architectures to solve these
issues. For the fast algorithms,first,—we- introduce-a low cost adaptive skip mode
detection algorithm and its architecture t6 encode the static portion of video in an
efficient way. Second, a fast mode. decision-algorithm is presented to save hardware
computing cycles by separating the ‘intéger-pixel"ME and fractional-pixel ME phase. In
the architecture designs, we propose two different ME designs for portable and high
definition applications. For portable small size video gadgets, we propose low cost and
low power refined quarter motion estimation hardware to solve the cost problem. For
large frame size high definition video, we use parallel multi-resolution motion estimation
to offer large search region. Finally, we integrate these methods into a high profile

encoder chip which supports 1080p video under 145MHz.
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1. Introduction

1.1. Motivation

The emerging multimedia technology such as digital television, mobile phone and DVD
play indispensible roles in our daily life. These products become our main way to acquire
information from the world, to communicate to each other and to entertain ourselves.
However, the multimedia information is too large to transmit or record without effective
compress them. Therefore, the issue of how to effectively compress the data becomes
an important part of multimedia research nowadays. In short, video compression is a
technology to transform video signals and try to maintain original quality under a
number of constraints such as storage;constraint, real time constraint or computation
power constraint. It needs effectively exploiting the redundancy within or between
frames to reduce the data rates with minimum video: quality loss. Thus, the design of
data compression systems notmally. .involves- a tradeoff between quality, speed,

resource utilization and power consumption.

The compression technique in a video scene includes removing data redundancy of
spatial, temporal and statistical correlation between frames. The main concept to
remove such redundancy is because our human eye and brain (Human Visual System)
are more sensitive to lower frequencies and thus enables us to diminish the information
of higher frequency to decrease total bit rates. Thus, by removing different types of
redundancy, it is possible to compress the data significantly at the expense of a certain
amount of information loss (distortion) and further compression can be achieved by

encoding the processed data using an entropy coding.

Within these compression techniques, motion estimation and motion compensation are

widely used in video compression to reduce the temporal redundancy in video contents.



It is a very efficient and practical way to predict the motion of adjacent frame by using
few bit rates; whereas, it occupies very high computational complexity in whole
encoding process. Besides, in the recently standard—H.264/AVC, variable block size
motion estimation (VBSME) consisting of integer ME (IME) and fractional ME (FME) is
adapted to fit different details of video sequences. However, the long coding time and
large power consumption of motion estimation becomes the main problem eager to

solve in the encoder.



1.2. Contribution of the Thesis

Figure 1 shows main contributions of this thesis within the basic flow of motion
estimation. In the mode decision phase, we detect the skip mode and do mode filtering
to decrease the complexity of mode combination. Afterward, we estimate several the
motion vectors in the integer motion estimation phase; however, the further
refinement step for fractional motion vectors will not be included in the thesis. This
thesis presents a number of integer motion estimation algorithms and its architectures

for variable block size motion estimations. The following novel contributions result from

this work.
~
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Figure 1 the contribution of the thesis



Adaptive skip mode detection: we propose low cost adaptive skip detection
hardware algorithm and its architecture to save the computation power for static
macroblock. The hardware costs are 0.63K gate counts and small size memory for
look-up table. In some low motion and highly quantized sequences, our method

can accurately skip 82.39% macroblocks.

Mode Filtering (MF): it is a fast algorithm that can speed up the overall motion
estimation process with the reduction of fraction motion estimation modes. With
different mechanism, the algorithm can be applied to 2-D array design or 1-D array
designs. By using the algorithm, the hardware implementation can be pipelined

with higher efficiency with slightly performance loss.

Refined Quarter Motion Estimation (RQME): it uses the MF to reduce the
computational load of fractional motionsestimation and the quarter pixel method
to enable four times of parallelsprocessing with low computational complexity and
low quality loss. Besides, the proposed hardware' architecture only needs half the
number of process elements”and. less latency than the general 2-D architectures.
This design is very suitable for portable device which has the characters of low cost

and small frame size.

Parallel Multi Resolution Motion Estimation (PMRME): the method applies
parallel multi resolution motion estimation, MF and bit truncation to support large
search range [-128, 127] within 256 cycles for p-frame (one-direction) motion
estimation. Because of the fast searching mechanism, the design also can support
b-frame (bi-directional) motion estimation with only 512 cycles. In addition, this
design can save at least 91.91% of memory buffer and 55.1% of bandwidth. The
resulted hardware also save up to 48.9% of area cost and 62.1% of memory cost
compared to previous approach for 1080P processing. With above features, the

proposed design is suitable for larger search range application such as HDTV.



v" A 1080p high profile encoder chip for H.264: we integrate our design into a high
performance H.264 high profile encoder that can support 1080p resolution under
145MHz with smaller area. In this integration, we optimize the algorithm and
architecture of the motion estimation component as well as the memory
organization and pipeline schedule of the whole design to achieve a high

throughput and low hardware cost design.

1.3. Organization of the Thesis

The main theme of the thesis is to study different implementation methods for motion
estimation in the standard of H.264/AVC [1]. In chapter 2, we briefly introduce the
background and basic tools of H.264/AVC standard. In chapter 3, we give an overview of
the basic concepts and several algorithms:;of motion estimation. In chapter 4, we
propose an adaptive skip mode detection;to-lower the computation overhead for static
macroblocks. In chapter 5, we propose 'the algorithm of mode filtering and its
performance to simplify the mode combinhation and: enhance throughput of motion
estimation. In chapter 6, we present the refined quarter motion estimation design to fit
some low cost, small frame size application of H.264. In chapter 7, a large search range
PMRME design is proposed to deal with the large frame size application. Then, in
chapter 8, we integrate the method mentioned above to implement an encoder which

supports 1080p high profile of H.264/AVC. Finally, a conclusion is given in chapter 9.






2. Overview of H.264/AVC Standard

2.1. Overview

Image and video compression has been a very active field of research and development
for over twenty years. Many different systems and algorithms for compression and
decompression have been proposed and developed. In order to achieve inter-working,
industrial competition and possibility of popularity, it is necessary to define standard
methods for decoding to allow products from different manufacturers to communicate
to each other effectively. Therefore, the standardization process has contributed to the
prevalence of broadcast television and home entertainment nowadays. Recently, the
ISO (International Standard Organization)!MPEG4 standard is enabling a new generation
of internet-based video applications’ " while “.ithe ITU-T (Telecommunication
Standardization Sector) H.263 standard for video compression is now widely used in

videoconference systems.

MPEG4 and H.263 are standards that are based on video compression technology start
with about 1995. The two groups responsible for these standards: the one is Motion
Picture Experts Group (MPEG) and the other is Video Coding Experts Group (VCEG), both
of them are in the final stages of developing a new standard that promises to
significantly outperform MPEG4 and H.263. It provides better compression of video
images by properly adopting a variety of tools to supporting high-quality and low bit
rate streaming video. In the VCEG side, after finishing the original H.263 standard 1995,
the VCEG started work on two further development areas: a short-term effort to add
extra features to H.263 and a long-term effort to develop a new standard for low bit
rate visual communications. The long-term effort led to the draft “H.26L” standard,
offering significantly better video compression efficiency than previous ITU-T standards.

In 2001, the MPEG recognized the potential benefits of H.26L; therefore the Joint Video



Team (JVT) was formed, including experts from MPEG and VCEG. JVT’s main task is to
develop the draft H.26L model into a full international standard. In fact, the outcome
will be two identical standards: 1ISO MPEG4 Part 10 of MPEG4 and ITU-T H.264. The
official title of the new standard is Advanced Video Coding (AVC); however, it is widely

known by its old working title, H.26L and by its ITU document number, H.264 [1].

H.264 consists of numerous of tools. Compared to the prior video coding standards,
many important and new techniques are employed and bring significant improvement
on coding performance. Some details of these techniques can be found in [2]. Here, we
would like to give a brief introduction of the basic concepts of these tools, which have
existed for some time but nicely tuned and well integrated together to form a good

compression scheme in H.264.

2.2. Coding Structure

In common with earlier standards, the“H.264. standard does not explicitly define a
CODEC (encoder / decoder pair). Instead, the standard defines the syntax of an encoded
video bit stream together with the method of ‘decoding. Actually, a compliant encoder
and decoder are likely to include the functional elements shown in Figure 2 and Figure 3;
besides, the functions shown in these figures are likely to be necessary for compliance.
In these figure, we can find that the decoder system is a part of the encoder, whereas

there are a certain range for considerable variation in the structure.

In general, most of the video coding systems are based on the motion estimation and
motion compensation mechanism along with some other tools to reduce the
neighboring frame redundancy. The basic functional elements (prediction, transform,
guantization, entropy encoding) are little different from previous standards (MPEG1,

MPEG2, MPEG4, H.261, H.263, etc.).
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2.3. Intra Prediction

Figure 3 the basic structure of decoder

If a block or macroblock is encoded in intra mode, a prediction block is formed based on

previously encoded and reconstructed blocks. This prediction block is subtracted from

the current block prior to encoding. In H.264 [1], for the luminance (luma) block, it may

be formed for each 4x4 subblock or for a 16x16 macroblock. There are a total of 9

optional prediction modes for each 4x4 luma block and 4 optional modes for a 16x16

luma block and one mode that is always applied to each 4x4 chrominance (chroma)

block.




2.4. Inter Prediction

Inter prediction creates a prediction model from one or more previously encoded video
frames. The model is formed by shifting samples in the reference frame(s) (motion
compensated prediction). The AVC CODEC uses block-based motion compensation, the
same principle adopted by every major coding standard since H.261. Important
differences from earlier standards include that the H.264 supports for a variety of range
of block sizes (down to 4x4) and fine sub-pixel motion vectors (1/4 pixel in the luma

component).

2.5. In-loop Filter

In H.264, a filter is applied to every decoded macroblock in order to reduce blocking
distortion caused by block-based transformation. In‘the encoder, the deblocking filter is
applied after the inverse transform and before “reconstructing and storing the
macroblock for future predictions. In the’decoder, itlis applied before reconstructing
and displaying the macroblock. The filter has tWo benefits: in the first place, block edges
are smoothed, improving the appearance of decoded images, especially at higher
compression ratios. In the second place, the filtered macroblock is used for
motion-compensated prediction of further frames in the encoder, resulting in a smaller

residual after prediction.

2.6. Context-based Adaptive Binary Arithmetic Coding (CABAC)

An arithmetic coding system is used to encode and decode H.264 syntax elements. The
arithmetic coding scheme selected for H.264, Context-based adaptive binary arithmetic
coding (CABAC) achieves good compression performance through for two reasons: first,
it selects probability models for each syntax element according to the element’s context.
Second, it adapts probability estimates based on local statistics by using arithmetic

coding.
10



3. Overview of Block Matching Motion Estimation

For video compression, consecutive frames in a video sequence can be regarded as a set
of object appropriately displaced from frame to frame. If the motion trajectory of every
object in current frame could be predicted from the previous frame, we only have to
record and transmit the trajectory information to the decoder. In this way, we encode
the trajectory of the object instead of the pixel information; thus we can diminish the
required bits a lot for the video sequence. The trajectory of the object, which we call it
motion vector (MV) is needed for decoder to do motion compensation to reconstruct
the frame. The process of determining the motion vector in the encoder is called motion
estimation (ME) and the maximum value of motion vector is determined by its search

range

3.1. Block-based Motion.:Estimation

There are several ways to do motion estimation. One.is object-based motion estimation
that detects the outline of the object first-and then estimates its motion vector [3]. The
other way is block-based motion estimation, which is the most widely used motion
estimation method for video coding since most of the pictures are normally rectangular
in shape and block-division can be easily done. Besides, the block-base method can

significantly reduce complexity compared with the object-based method.

In H.264 [1], the standard defines the standard block sizes for motion estimation. As
illustrated in Figure 4 , one frame consists of several macroblocks (MB), which are “16
by 16” pixels square. In one macroblock, it can be divided into four “8 by 8” pixels 8x8
blocks, and within one 8x8 block, it can be further cut into four “4 by 4” pixels 4x4
blocks. The standard of H.264 defines several block type (mode) and its corresponding

block size for motion estimation as listed in TABLE | and Figure 5.

11



| | | | |
| | | |
L | B | MB | w™mB i ~~~~~ ! MB N
R T R R N o
! ! | ] T
l B | mMB | MB ! \ ® | 8x8 | 8x8
i | | \ \ J{ i |
A AN IS \ L L
| | \ |
: | N \
1 MB V1o88 | &8 |\
| ! frame \| ! \64%
777777 s T T
N J e
N\ 14xd 1 4xd ]
N
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TABLE | the mode type and its block size for H.264
Mode Block size
Mode 1 16x16
Mode 2 16x8
Mode3 8x16
Mode 4 8x8
Maode 5 8x4
Mode 6 4x8
Mode: 7 4x4
Mode 1 Mode 2 Mode 3 Mode 4
8x16 0 8x8 00 | 8x8 01
16x16 16x8 0 | 16x8 1
8x16_1 8x8 10 | 8x8 11
Mode 5 Mode 6 Mode 7
4x4 | 4x4 | 4x4 | 4x4
e B0 ] e 0 4x8 | 4x8 | 4x8 | 4x8 00| 01| 02| 03
00| 01] 02| 03 4x4 | 4x4 | 4x4 | 4x4
8x4_10 | 8x4_11 Tl0) 11| 12| 13
4x4 | 4x4 | 4x4 | 4x4
7 2D | Gt 21 4x8 | 4x8 | 4x8 | 4x8 20| 21| 22| 23
_10|_11(_12|_13 4x4 | 4x4 | 4x4 | 4x4
8x4 30 | 8x4 31 30| 31| 32| 33

Figure 5 different modes and its block size
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The goal of motion estimation is to accurately predict the motion vector inside the
search range of previous frame. However, not only the MV but also the block size will
determine the quality of prediction and accuracy. Figure 6 shows the relation of motion
vector, search range and the distribution of block sizes within a picture. It is easy to see
that the detailed region is associated with small blocks whereas the large uniform region
is associated with large blocks. Hence, a macroblock can be composed by variable block

size, and this method is known as variable block size motion estimation (VBSME).

Reference frame

\\
\\
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T T T
| | | |
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Figure 6 the motion vector and the search range
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3.2. The Matching Criteria

Block-based motion estimation obtains the best match by minimizing a cost function.
Although there are several cost functions [4], the common used criterion is sum of
absolute difference (SAD). It is because of its low complexity, good performance and

ease of hardware implementation. The cost function is defined as:

x+N-1y+N-1

SAD(dx, dy) = Z Z I (m, 1) — L_; (m + dx, n + dy)| + A + R((dx, dy) — MVP)

m=x n=y

MV = (MVx, MVy) = min gy ayyea SAD(dX, d)

I(x, y): pixel intensity at location (x, y) in k-th frame (current frame)

l1(x, y): pixel intensity at location:(x, y) in'’k-1-th frame (reference frame)

A: Lagrangian multiplier

MVP: the predicted motion:vector

R: number of bits to code the motionvectordifference (MVD) = (dx, dy)-MVP
A: the region of search range

MV: motion vector

The former term of the function means the residual cost of the search point, and the
latter term is the cost of the motion vector difference (MVD). We can find that the
Lagrangian multiplier will influence the weighting of the motion vector cost. Therefore,
when the Lagrangian is larger, the motion estimation mechanism will prone to choose
larger block type because less motion vectors are needed and vice versa. We designers
need to make balance between these two costs. Since the introduction of variable block
size motion estimation in H.264/AVC, one macroblock can produce more than one
motion vector due to the existence of different kinds of blocks. In H.264, 41 motion
vectors and their corresponding costs should be produced in one macroblock to choose

the best combination and this is known as mode selection.
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3.3. Quality Judgment

The quality of a video sequence can be determined by using both objective and
subjective approaches. The most widely used objective measure is the

peak-signal-to-noise-ratio (PSNR) which is defined as:

PSNR = 101 255°
= 0810 MSE

MES: the mean-square-error of decoded frame and original frame

The peak value is 255 since the pixel value is 8 bits in depth (0~255). The higher the
PSNR means the higher the quality of video. Although PSNR can objectively represent
the quality of coding, it does notséqual the 'subjective quality. Subjective quality is
determined by a number of human testers :and:a conclusion is drawn based on their
opinions. In some cases high PSNR results.in‘low subjective quality. However, in most
cases, PSNR provides a good approximation-to the subjective measure and we use this

measure in the rest of the thesis.

The PSNR and bit-rate are usually conflicting. According to the rate-distortion theory,

low bit-rate always accompanies low quality (larger distortion) and vice versa.
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3.4. Review of Motion Estimation Algorithm

3.4.1. Full Search Algorithm (FSA)

It is conspicuous that the most accurate strategy to find best motion vector is the full
search algorithm (FSA) which exhaustively searches all possible search points within a
predetermined search range to find the best motion vector. Although this method has
heavy burden computation, the method has the characteristic of regular search flow
and this feature enables it very suitable for hardware implementation. The data of the
search range can be fully reused, and it really diminishes the enormous memory
required during motion estimation. In addition, the computation of FSA can be

decreased by using some technique to predict the skip macroblock.

3.4.2. Three Steps Search Algorithm(3SS)

O first step

[] second step

N third step

Figure 7 the search steps of three steps search algorithm

A representative work of the fast search algorithm is three-step search (3SS) algorithm
[5]. 3SS is widely used because of its good performance and simplicity. It relies on a
monotonically increasing match criterion around the location of the optimal motion

vector to iteratively determine that location. Figure 7 shows an example to illustrate the
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3SS algorithm. For search range equals 16x16, 3SS requires 25 (9+8+8) search points per
macroblock, leading to a speedup of 9 when compared with 225 search points per
macroblock for the FSA algorithm. However, the main disadvantage of 3SS is that it is
inefficiency to estimate small motions, since the points forming the search pattern in
the first step are positioned uniformly at relatively large distance around the center of
the search window. Nevertheless, most of the motions in real world have a
center-biased motion vector distribution [6]. In addition, in view of hardware design, we
have to consider the branch condition of 3SS, which will cause the bauble effect in a
pipelined hardware design and lower the average throughput. Therefore, we
recommend using FSA in hardware design to enhance our performance. On the other
side, in order to reduce the computation power (which is also the main concern in
hardware design), we would like to use hardware oriented skip algorithm to predict the

skip mode to lower the computation poweriand main high quality performance.

3.4.3. Quarter Pixel Motion Estimation (QME)

First stage : QSAD is
calculated for all
candidate blocks

® O
O O
® O
O O

) @ @
O 0|0 O

Second stage: SAD is calculated
for U candidate blocks with
minimum QSAD values

Figure 8 the QME algorithm

The Quarter Motion Estimation (QME) [7] is an algorithm of our previous design. As in

Figure 8, the SAD is the sum of absolute difference as mentioned earlier, whereas the
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QSAD is quarter pixel (the black dot) absolute difference. In [7], the algorithm can be
divided into two stages. The first stage is to perform full search with QSAD as the
matching criterion, and keep U candidates that have smallest QSAD values. The second
stage is to calculate the SAD values for these U candidates and select the candidate

which has the smallest SAD as the final result.
This is a quite efficient algorithm; however, in the design; it does not support VBSME.

Therefore, base on this algorithm, we make several modifications and further propose

another refined quarter motion estimation to support the VBSME.
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3.4.4. Multi Resolution Motion Estimation (MRME)

A conventional MRME [8] is shown Figure 9. It uses three hierarchical levels for search
and refines the motion vector from the coarse level to the finest level. At first, it
searches two minimum cost motion vector in level 2, which has coarsest resolution. In
the second, it refines these two motion vectors along with the predicted motion vector
(MVP) in level 1 and selects motion vector which has the minimum cost of them. At last,

it further refines this motion vector to get the final result.

S S S S S S

Layer 2

Layer 1

S S S S S S yava (T W S S S S S S S S

2
\ J

Best-SAD
(minimal)

Layer 0 T

V4

Figure 9 the conventional multi resolution algorithm

It seems to be an effective algorithm to reduce the search timing; however, this
approach has several disadvantages for hardware implementation. First, the motion
vector found in the higher level needs to be further refined in the lower level. It means
the search is a sequential process that will increase the cycle counts, and decrease the
hardware utilization and throughput. Besides, a full search range sized buffer is still
needed because the dependency between the three hierarchical levels. It will greatly
increase the hardware costs if we directly adapt the algorithm for large search range
design. Last but not the least; the required bandwidth is still quite large because of poor

data reuse in the refinement process.
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In this thesis, we propose a highly parallelized MRME not only solve the problems but
further supports a large search range motion estimation to meet the high requirement

for HDTV applications.

There are still a lot of fast search algorithms such as cross search (CS) [9],
one-dimensional gradient descent search (1DGDS) [10], the block-based gradient
descent search (BBGDS) [11], the four-step search (4SS) [12], the diamond search (DS)
[13], the cross-diamond search (CDS) [14] and the hexagon-based search (HEXBS)[15]
and etc. ; however, most of them have several drawbacks in common. In one hand, they
may be trapped into a local minimum search point and cannot find the best motion
vectors. On the other hand, in view of hardware design, because the search flows of
them are not regular, it will decrease the hardware utility and throughput. Last but not
the least, these irregular search flow willifesult in low data reusability, low hardware

throughput and raise the memory,bandwidthrequired.
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3.5. Review of Skip Mode Detection

In MPEG-4 AVC/H.264 video coding, IME and FME contributes a lot for coding efficiency
due to new techniques such as variable block size and six-tap interpolation filter.
However, these new complex techniques make ME dominate the computational loading
and power of the whole encoding process, up to 96% [16]. The most efficient way to
lower the complexity and power of ME is to directly skip the MB encoding and simply
denote it with skip mode if the encoding situation is allowed. Therefore, if we can
predict the skip mode before ME, we can skip the whole coding stage and save encoding

power of these skipped MBs.

In H.264 /AVC, if the following conditions are matched, the MB will be skipped without

encoding the motion vector and residuals;andsjust is denoted as skip mode:

The chosen block type is 16x16,
The best motion vector equals the predicted.-motion vector (MVP).

The chosen reference frame is'the previous frame.

> wonN e

All coefficients are zero after transform and quantization.

3.5.1. Lagrangian Cost Motion Estimation

In [17], it proposes a skip prediction through Lagrangian cost estimation. The paper use a
Lagrangian rate-distortion cost function which incorporates and adaptive model for the
Lagrangian multiplier parameter base on local sequence statistics. However, the model is

non-linear; therefore it is not suitable for hardware implementation in an efficient way.
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3.5.2. All Zero DCT Blocks Detection

In [18] and [19], they perform a comprehensive analysis of the dynamic properties of the
DCT and quantization in H.264. They use several partial SADs in a 4x4 block to predict
the zero blocks in variety of conditions. Although it is quite precisely, it is not suitable for
hardware implementation because these partial SADs cannot acquire in an efficient way

and the algorithm has too much different condition branches.

Base on these problems, in this thesis, we will introduce low cost adaptive skip mode
detection and accurately predict the skip MB to save the computation complexity and
energy of the motion estimation. Besides, we also propose a fast mode decision
algorithm to decrease the computation loading of fractional motion estimation which

will lower the pipeline efficiency of hardWare désign.
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4. Low Cost Hardware Friendly Adaptive Skip Mode

Detection

In this chapter we present a low cost skip mode algorithm and its architecture by
detecting 4x4-zero block numbers in a macroblock (MB). With this simple zero block
detection and an adaptive threshold, the proposed algorithm can pre-skip 82.39% of
total MB encoding and saves 77.13% of coding time for low motion CIF sized sequences
with QP=36. Compared with the reference software [20], we can achieve similar quality
because of the high accuracy in the skip mode detection. Due to the simplicity of this
hardware friendly algorithm, the hardware cost is just 0.63K gate counts for 100MHz
clock frequency. With this algorithm, we can efficiently skip the power hungry motion
estimation and intra prediction and thus it can be applied to the power constrained

mobile devices.

4.1. Introduction

In MPEG-4 AVC/H.264 video coding, a lot of new complex techniques make ME
dominate the computational loading and power of the whole encoding process, up to
96% [16]. Thus, speedup with VLSI circuits or fast algorithms is necessary. In which, the
most efficient way is to directly skip the MB encoding and simply denote it with skip
mode if the encoding situation is allowed. Therefore, if we can predict the skip mode
before ME, we can skip the whole coding stage and save encoding power of these
skipped MBs. This situation could often happen in many low motion sequences, and

thus we can save over 80% of ME for these low motion MBs.

However, the conventional flow as in reference software JM9.0 [20] will still do the MB
encoding to detect if it can skip them. In reference software, the skip mode will be

decided after the FME finds the best motion vector and finishes the transform and
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guantization. All these conditions require encoding for decision and thus will waste
power once the MBs are skipped. Thus, if the skipped MB can be predicted before ME,

the MB can directly go to entropy coding.

Several approaches have been proposed. In [17], it uses an adaptive threshold for
different types of MB. In [18], they use the relationship of 4x4 integer discrete cosine
transform (DCT) and partial sum of SAD (sum of absolute difference) to predict the zero
block. In [19], they derive a more conservative and thus accurate threshold to predict
the SAD of one 4x4 zero block. However, the condition of the threshold is too
conservative, and thus could miss many opportunities to skip them. In [21], it uses the
total SAD of one MB to predict skip MB, but it is not accurate because it will miss a lot of
possible zero MBs in our analysis. In [22], they use an open-loop adjustable threshold
that is not robust to have consistent penformance. Besides, most of these approaches

are not regular and thus are not easy and efficient for hardware design.

To overcome these disadvantages mentioned above, We propose a low cost hardware
friendly close-loop algorithm and ‘its:architecture. The concept of our approach is that
probability of a zero MB is highly depended on its contained zero 4x4-block numbers.
Thus, we use a SAD threshold to detect a 4x4 zero block, and an adaptive threshold of
the number of 4x4 zero block in a MB to decide a zero MB. Furthermore, we remove the
exceptional cases with a spike threshold. With this, we can achieve higher detection with

accurate prediction.
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4.2. The Fast Skip Algorithm

The whole algorithm is illustrated in Figure 10. We first detect whether a 4x4-block is
zero or not by a 4x4-block-SAD-threshold. We count the number of zero 4x4-blocks in a
MB. If the number is larger than an adaptive MB-zero-block-threshold, we will denote
this MB as a zero MB and skip its encoding. To avoid above SAD threshold affected by
local large variations, we adopt a Spike-threshold to remove such cases for more

accurate detection.
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Figure 10 the skip detection flow

4.2.1. 4x4-block-SAD-threshold

This threshold is used to decide if a 4x4-block is zero. We determine this by analyzing the
distribution of the 4x4-block SADs higher than the must-be-zero-block-threshold [19] --

we call it TO-- but also quantized to zero block in skipped MBs. We use five 100-frame CIF
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sized test sequences to determine this threshold as shown in TABLE Il. In which, the
“mean”, ”variance”, “maxima” stand for the average, standard deviation and maxima
values of these 4x4-blocks whose SADs are higher than TO. The boundary of the

4x4-block-SAD-threshold is the summation of mean and variance.

From this table, we can find that almost 85.9% in average of the 4x4-block SADs in one
skip MB is lower than the boundary. When the SAD of the 4x4-block is less than the
boundary, we consider the 4x4-block as a zero block. Therefore, we choose the
minimum one of the five sequences as the 4x4-block-SAD-threshold to prevent from
large prediction error. The 4x4-block-SAD-threshold under different QPs is shown in
TABLE I11.

TABLE Il boundaryidetermination of QP28
(Mean, variance, boundary and.maxima for the'4x4-block SAD distribution which
higher than TO when QP 28)

akiyo | mother | foreman | football | silence
Mean 43 45 45 48 55
Variance 10 9 10 10 12
Boundary | 53 54 55 58 67
Maxima 100 97 117 97 111

TABLE Il the 4x4-block-SAD-threshold and Spike-threshold under different QP

QP20 | QP24 | QP28 | QP32 | QP36
4x4-block-SAD-threshold | 21 34 53 82 125
Spike-threshold 36 63 97 160 | 231

4.2.2. MB-zero-block-threshold

In the reference software, we can only decide the MB as a skip MB when the MB has
sixteen 4x4-zero-blocks. However, we should consider more about the characteristic of
the skip MB. The skipped MB always has spatial and temporal correlations. For example,

as in Figure 11, when the MB belongs to the background such as the wall, it is likely that
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the neighboring MBs are also background due to spatial correlation. Therefore, we
record the zero block numbers as the MB-zero-block-threshold if the MB is skipped;

otherwise we record the MB-zero-block-threshold as 16.

Figure 11 the skipped MB in the sequence “table” in frames 171 and 172
(Light-colored ocks.are skipped MB)

For the hardware pipeline conside 5‘.::?; MB-zero-block-threshold is
: and upper-left (L) and upper-right

(R), as depicted in Figure 12. The use L) is to-avoic 'the “read-after-write” data hazard

Figure 12 the MB-zero-block-threshold prediction
C=min {U, L, R}.
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4.2.3. Spike-threshold

Due to its adaptive adjustment, the MB-zero-block-threshold could be decreased by the
neighboring MB, such as to 13. However, this could lead to a case that the number of
zero blocks exceeds the threshold but also contains blocks with large SAD values. In such
case, the MB should not be skipped but will be detected as the skipped. For example, in
Figure 11, there is one ping-pong ball flying from the left bottom corner in the 172 frame.
For this case, the MB-zero-block-threshold could be decreased to 13 and this MB has 14
zero blocks that exceeds the threshold. However, it also has two 4x4-blocks with large
SADs. In this situation, this MB will be skipped by examining the threshold only, and thus
cause error prediction. Thus, we must set up a threshold to detect if there are any large
4x4-block SAD -- we call such 4x4-block as a ‘spike’. The spike-threshold is determined by
the minimum one among the six ‘maxima’ values in TABLE Il. When QP is equal to 28,
the spike-threshold is 97. The spike-threshold under different QPs is illustrated in TABLE
M.

4.3. The Fast Skip Architecture

MB-zero-block-
Reasthreshold threshold table

--——write backw
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—These three part stop
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Figure 13 the system architecture
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Figure 13 shows the system architecture of our design. The gray colored block is the
added hardware by our pre-skip design. The skip detection module is at the beginning
stage and combined with the IME module. At each time, the IME starts searching at the
MVP and gets the sixteen 4x4-block SADs for the skip detection module. The detection
module then compares these SADs and 4x4 zero block count with the
4x4-block-SAD-threshold, MB-zero-block-threshold and Spike-threshold to decide
whether the MVP is a skip MB or not. If it does, the skip detection module raises the
“skip_flag” signal to the control logic and it will abort the rest of encoding steps. At last,
the entropy coding module encodes the MB as a skipped MB and writes back the
number of zero block of the skipped MB. On the other hand, if the MB at the MVP is not
detected as skipped MB in the first stage, the IME continues searching the best MV in
the search range and goes through the normal procedure. However, the entropy coding
also has to write back the MB-zero-block-threshold table. If the MB is decided as a
skipped MB in the entropy coding stagejiit-writes'.back the number of zero blocks.

Otherwise, it writes back the threshold as 16.

Figure 14 is the skip detection module architecture. It consists of sixteen comparators to
decide whether the SADs are bigger "than the 4x4-block-SAD-threshold and
spike-threshold. It also include one adder to sum up the number of zero block and one
“OR gate” to decide if the MB has spike. In addition, another comparator is used to
select the minimum of MB-zero-block-threshold in the neighbor MB. At last, an “AND

gate” will check whether the MB is to be skipped.
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Figure 14 the skip detect architecture

4.4, Experimental Result

The simulation environment is described below. First, we will show the performance
under various small size test sequences. Since the number of skipped MB is highly
depended on the sequence contents, we roughly'partition eight 300-frame CIF sized test
sequences into three categories, low -motion, medium motion and high motion
sequences for more accurate évaluation. The dow motion sequence are: ‘akiyo’,
‘mother_daughter’, ‘news’ and the medium motion sequences are ‘container’, ‘table’,
‘foreman’. The high motion sequences are: ‘stephan’ and ‘mobile’. This algorithm is
included into the reference software. Second, we show the performance of large frame

size sequences, which are 300-frame 720p sized ‘Stockholm’ and ‘mobcal’.

The test environments are: baseline profile, no rate distortion optimization, one
reference frame, search range is equal to 16 and 32 for CIF and 720p sized sequences
respectively. The average performances of pre-skip detection are listed in TABLE IV -
TABLE VII, with high QP, our design will save more bit rate with some PSNR drop. The
“skip hit rate” is the ratio of pre-skip MBs divides the number of skip MBs. All these
following simulations are compared with the reference software. All these following

simulations are compared with the reference software.
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TABLE IV performance of pre-skip detection for low motion CIF sequences

PSNR (dB) Bit-rate (%) Skip hit rate (%)
QP20 -0.02 -1.79 92.10
QP24 -0.10 -1.56 93.44
QP28 -0.13 -2.86 94.82
QP32 -0.21 -5.70 94.53
QP36 -0.28 -8.65 96.56

TABLE V performance of pre-skip detection for medium motion CIF sequences

PSNR (dB) Bit-rate (%) Skip hit rate (%)
QP20 0.00 -0.02 85.71
QP24 -0.09 -0.66 85.86
QP28 -0.13 -1.95 88.96
QP32 -0.21 -4.68 91.13
QP36 -0:36 -7.12 94.77

TABLE VI performance of pre-skip detection for high motion CIF sequences

PSNR (dB) Bit-rate (%) Skip hit rate (%)
QP20 0.01 0.17 86.15
QP24 0.01 0.37 92.82
QP28 0.01 1.08 91.70
QP32 0.03 1.27 86.09
QP36 -0.02 0.01 86.93

TABLE VII performance of pre-skip detection for 720p sequences

PSNR (dB) Bit-rate (%) Skip hit rate (%)
QP24 0.03 2.20 86.85
QP28 0.05 4.47 89.75
QP32 -0.06 -0.32 89.31
QP36 -0.20 -3.38 90.72
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Figure 15 shows the RD curve of the low motion sequence. The curve of our design is
almost the same as the original curve, and sometimes is slightly better than the original
curve under high QP because we skip more MBs than JM9.0. These skipped MBs are
nearly to be skipped so it does not degrade performance significantly. Figure 17 shows
the results of medium motion sequences. Our design has almost the same curve as
original curve. Figure 19 reveals the result for high motion sequence; because there are
few MBs which are skipped, the performance is almost the same as the original curve.
Figure 21 is the RD curve of 720p sequences, it shows slight quality drop because the
high definition characteristic of large size sequences are much difficult to correctly

predict and an error predicted skip MB will also cause more serious quality drop.

Figure 16, Figure 18, and Figure 20 are the average distribution of not skipped MB, and
the skipped MB for different categories,CIF sized.sequences. Besides, the distributions of
720p sequences are depicted in Figure 22=The‘portion of skipped MB consists of three
types: error predict, under skip ahdicorrect skip:-“Bad skip” means the MB is pre-skipped
but it should not be skipped. “Miss skip”‘means-the MB should be pre-skipped but it is
not detected in the pre-skip stage by our design. “Correct skip” means we can accurately
pre-skip the MB. We can see that the higher QP case will skip more MBs, up to 82.39 %
for low motion and 65.88% for medium motion sequence in average. On the other hand,
we find that the “error predict” does not degrade the performance a lot because these

error predicted MBs are nearly to be skipped.
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Figure 23 and Figure 24 are the coding time of CIF and 720p sequences, both of them
reveal that the coding time is roughly proportion to QP, whereas the coding time
decrease rate for 720p sequences are less than CIF sequences, it is because high

definition frame can be hardly skipped.
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TABLE VIII shows our average coding time compared with the JM9.0. For QP=36, our
design only needs 22.87% and 29.63% coding timing for low motion and medium motion
sequences. However, for high motion sequences, the performance is limited. For 720p
sequences, our design also perform well; however, the coding time saved is not as much
as CIF sized sequences because of its high definition quality and the characteristics of
the sequences itself. Comparisons to other approaches [17] - [19], [21], [22] are not
included since their simulation conditions are quite different than the proposed one,

and thus are hard to compare to them.

TABLE IX shows the hardware cost synthesized by UMC 0.13 CMOS technology for
frequency 100 MHz The memory table size comes from the horizontal number of MB in

one line, and each MB takes 0.5 bytes memory.

TABLE VIII the average coding'time (%) for.categorized CIF and 720p sequences
(Compared with JIM9.0)

Ourdesign'compare-with JM9.0
Time (%) Low Medium High 720p
QP20 54.48 88.38 96.89
QP24 44.65 73.91 87.91 98.72
QP28 36.58 49.16 82.86 78.12
QP32 30.27 41.63 78.81 63.17
QP36 22.87 29.63 71.72 43.98

TABLE IX the hardware cost of the skip design

Skip detection hardware cost 0.63K gate counts
MB-zero-block-threshold memory table | 11 bytes (CIF) / 40 bytes (720p)
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4.5. summary

In this chapter, we propose low cost skip detection hardware algorithm and architecture.
The hardware costs are 0.63K gate counts, 11 bytes and 40 bytes memory for CIF size
and 720p size video respectively. The video performance of our design is quite similar
the same as the JM9.0 and our design can save 77.13% to 11.62% of coding time in

difference sequences and QPs.
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5. Hardware Efficient Fast Mode Decision Algorithm

In this chapter, we present a hardware friendly fast algorithm for motion estimation (ME)
in H.264 video coding. The algorithm can save hardware computing cycles by separating
the integer-pixel ME and fractional-pixel ME phase with hardware oriented mode
filtering. The simulation results show that it can significantly reduce the cycles with small

PSNR drop and bit rate increase.
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Figure 25 algorithm of mode filtering
(a) is the original reference software algorithm (b) is our proposed mode filtering
algorithm
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5.1. Introduction

In the standard of MPEG-4 AVC/H.264 video coding [1], variable block size motion
estimation (VBSME) consists of integer ME (IME) and fractional ME (FME), which are
adapted to fit different details of video sequences. Thus, one 16x16 macroblock (MB)
can be partitioned into two 16x8 blocks, two 8x16 blocks or four 8x8 blocks.
Furthermore, one 8x8 block can be further partitioned into two 8x4 blocks, two 4x8
blocks or four 4x4 blocks, as shown in Figure 25 (a). With all these combinations, IME
could generate totally 41 motion vectors (MVs) for the following FME and this full search

flow is widely adopted in current VBSME designs [23], [24], [25] .

However, such high computational complexity not only dominates the computational
loading of the whole encoding process,; buts also results in an unbalanced hardware
designs. In [23], for [-16™~15] search range; the-cycle count of IME is about 1089 cycles
per macroblock (MB) by data reuse and data parallelism like the 2-D array based designs.
On the other hand, the cycle count of FME:is even larger, 1648 cycles for full 41 MVs per
MB [25]. Thus, at least 2737 cycles are needed. to.find a best motion vectors (MVs).
Though further pipelining IME and FME canireduce the long latency, it is still unbalanced
and results in bad hardware utilization. These kinds of problems result in the difficulty to

realize the real-time encoder of H.264.

Thus, in this chapter, we propose a fast algorithm that selects only the most possible
candidate modes after IME (called mode filtering) such that FME can have shorter
computational cycles. The proposed algorithm can be regarded as a more general
approach of the concept in [25]. However, our method explores larger design space and

achieves better performance than that in [25].
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Figure 25 (a) depicts the original algorithm used in the H.264 reference software [20]. In
each mode, IME is followed by FME immediately, and only one best mode and its MVs
will be decided finally. However, in order to save the hardware computing cycles, we
separate the IME and FME into different parts instead of directly coupled. With this, we
transmit one to four (1~4) numbers of IME mode and MV candidates to FME module.
Intuitively, with the larger the numbers of IME candidates to be transmitted, the larger
loading of FME is need and better performance can be achieved. This method is called

“Mode Filtering.”

5.2. Mode Filtering Algorithm

As illustrated in Figure 25 (b), after computing the cost of all possible block sizes, we
select the most possible few modes for FME: (mode filtering) instead of all modes for
FME. The most possible few modes‘are selected. from one of 16x16, 16x8, 8x16 and the
best of the 8x8 and subblock. For the case of 8x8 and-subblock size, each 8x8 block will
select its own best mode (8x8, 4x8, 8x4 or-4x4 mode).=In the worst case, every subblock
will have a 4x4 mode and the four.subblocks consist of 16 MVs totally. Therefore, with
different number of mode candidates transmitted, different numbers of FME calculation
are need and the relationship is shown in TABLE X. For example, if only 2 mode
candidates are transmitted, only 3 to 18 MVs instead of 41 MVs are calculated in FME,

which can save a lot of computing cycles.

TABLE X the relationship of candidates and motion vectors

Number of candidates | Number of motion vectors
1 1~16
2 3~18
3 5~20
4 9~21
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5.3. The Simulation Result of Mode Filtering

As the previous chapter, we test the algorithm in two different kinds of video: QCIF, CIF
(small frame size) and 720p (large frame size) test sequences to see the performances of
mode filtering under small frame size and large frame size conditions. The contents of
QCIF sized sequence, includes ‘akiyo’, ‘foreman’, and ‘mobile’ (QCIF and CIF), all of three
which are low motion, medium motion, and high motion sequences respectively. The
contents of CIF sequences are the same as QCIF. For 720p sequences, the test sequences
are ‘Stockholm’, and ‘park_run’. The simulation environment is set up as follows: The
search range 8, 16 and 32 for QCIF, CIF and 720p sequences respectively. The reference

software is JM 9.0 [20] with Rate-Distortion Optimization (RDO) off.

5.3.1. Performance of QCIF/CIF Sequences

Figure 26 - Figure 28 show the result of different candidates’ mode filtering algorithm for
the three QCIF sequences and: Figure 29 - Figure 31 show the result of different
candidates’ mode filtering algorithm for the three .CIF sequences. Clearly, in small size
sequences, we can see that the 2~4 candidates’ method have similar performance as

reference software, whereas the 1 candidate’s method performs not so well.
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TABLE XI and TABLE XII list the average performance of this algorithm of QCIF and CIF
sequences respectively. In these result, we find out that the one candidate method has
larger bit rate increase and PSNR drop. However, when the 2 candidates’ method is
chosen, the average bit-rate increasing can be only 0.54%/1.30% and the PSNR
degradation is only 0.11db for QCIF/CIF. This is a very significant improvement. When 3
and 4 candidates’ methods are used, the performance will be improved further but not

much.

The performances for CIF sequence are better than QCIF, because mode filtering will
filter much of the FME processing of small block size while small block sizes are more
preferable in small size sequences. Therefore, Mode filtering does better in CIF
sequences, because CIF sequences are smoother than QCIF and large block sizes can

deal with CIF sequences well and save bhit rate!

TABLE XI the mode-filtering performance for QCIF sequence

4 candidates |3 candidatés | 2 candidates 1 candidate

PSNR (dB) -0.10 -0.12 -0.13 -0.16

QP14 |- o R R R e
Bit-rate (%) 0.68 1.46 2.52 7.11
PSNR (dB) -0.12 -0.14 -0.14 -0.20

QP21 | YA s B ) B
Bit-rate (%) 1.41 2.11 3.96 8.59

ap2g |.PSNR(dB) | 010 [ 011 [ 012 | 020
Bit-rate (%) -0.83 -0.34 1.45 6.11

ap3s |..PSNR(dB) | 010 [ 011 [ 015 | 026
Bit-rate (%) -1.49 -1.46 -0.67 2.74
PSNR (dB) -0.11 -0.12 -0.11 -0.21

Average |- T e e e e s
Bit-rate (%) -0.06 0.44 1.30 6.14
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TABLE XIl the mode filtering performance for CIF sequence

4 candidates | 3 candidates | 2 candidates 1 candidate

p1a | PSNR(dB) | o011 | 011 [ 012 [ 014
Bit-rate (%) -0.92 -0.48 0.50 5.50

a1 | PSNR(dB) | 008 | 009 [ 010 | 013
Bit-rate (%) -0.42 0.03 1.59 6.69

QP28 __RS_NR(d_BZ ___________ __Q_'p_? ______________ t(_)_'_og ______________ fp_'_]_'_z_______ _______-_0_'_]_'_6_ ______
Bit-rate (%) -1.61 -0.99 0.68 5.59
PSNR (dB) -0.04 -0.05 -0.10 -0.17

QP35 [ b
Bit-rate (%) -1.86 -1.53 -0.63 3.52

average | PSNR(@8) T 008 | 009 [ 011 [ 015
Bit-rate (%) -1.20 -0.74 0.54 5.33

5.3.2. Performance of 720p Sequences

Figure 32 and Figure 33 show the result of differentcandidates’ mode filtering algorithm

for 720p sequences. TABLE XIII lists_the ‘average performance. The results of 720p are

very far from the performance of-CIF sequences..For 720p sequences, we find that under

the condition of low QPs, the 1 candidate’s method provides very good performance,

because it saves a lot of bit rate (7.16% under QP12) by dropping a little PSNR. However,

as the QP become larger, the bit rate increases rapidly and reaches 5.26% increasing

under QP36. On the other side, the 2 candidates’ method maintains stable performance

under different QPs rather than 1 candidate’s method. The performance of 3 candidates’

and 4 candidates’ are quite the same as 2 candidates’ method, and both of them cannot

effectively improve the performance.

49




52

47

42

PSNR

37

32

27

stockholm

=e— stockholm orig
—s— stockholm 4cand

stockholm 3cand

—»—stockholm 2cand

—=—stockholm 1cand

Bit Rate

0 50 100 150

52

47

42

PSNR

37

32

27

Figure 32 the mode fiIte}ihé s';nllqlati
|

park_run

200

K

on result for Stockholm (720p)

—o— parkrun orig
parkrun 4cand

parkrun 3cand

parkrun 2cand

—e— parkrun 1lcand

Bit Rate

0 50 100 150

200

K

Figure 33 the mode filtering simulation result for park_run (720p)

50



TABLE Xlll the mode filtering performance for 720p sequence

4 candidates | 3 candidates | 2 candidates | 1 candidate

QP12 PSNR (dB) -0.03 -0.03 -0.03 -0.05
Bit-rate (%) -0.41 -0.42 -0.45 -7.16
QP16 PSNR (dB) -0.04 -0.04 -0.04 -0.08
Bit-rate (%) -0.57 -0.65 -0.71 -3.44
QP20 PSNR (dB) -0.10 -0.11 -0.11 -0.16
Bit-rate (%) -1.10 -1.27 -1.37 -3.21
PSNR (dB) -0.12 -0.13 -0.15 -0.19

QP24 ;
Bit-rate (%) -1.73 -2.10 -2.30 -3.89
QP28 PSNR (dB) -0.07 -0.08 -0.09 -0.14
Bit-rate (%) -0.05 -0.39 -0.42 -0.91
QP32 PSNR (dB) -0.05 -0.06 -0.07 -0.11
Bit-rate (%) 1.28 1.12 1.23 2.78
PSNR (dB) -0.04 -0.05 -0.06 -0.10

QP36 5
Bit-rate (%) 2.14 1.85 2.19 5.26
Average PSNR (dB) -0.07 -0.07 -0.08 -0.12
Bit-rate (%) -0.06 £0.27 -0.26 -1.51

For small size sequences (QCIF and' CIF), the bit-rate oveérhead is smaller for high QP case
(the low bit-rate condition), it is becatse the mode filtering algorithm prefers to select
larger block size, and larger block size is also preferred under the low bit-rate condition
because of fewer MV bit. Because QCIF sequences are coarser and smaller than CIF
sequences, QCIF will prefer to choose small block size. Therefore, mode filtering
performs better in CIF than QCIF sequences. While for 720p sequences, the frame
contents are smoother because of the characteristics of high definition; thus, large block
size is preferred in 720p sequences and result in the general better performance of
mode filtering. This phenomenon proves the point that the IME and FME partition
mechanism has an inclination to consume bit-rate to trade off the PSNR performance, so

the impact on bit-rate is larger than on PSNR.
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5.4. summary

In this chapter, we propose a fast algorithm that can speed up the overall ME process
with the reduction of FME modes. With the algorithm, the hardware implementation

can be pipelined with higher efficiency and slightly performance loss.
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6. Efficient Low Cost Motion Estimation for Portable

Devices

For some portable device, in order to achieve the goal of low cost hardware and high
efficiency design, we present this hardware friendly fast algorithm and its architecture
for motion estimation in H.264 video coding. The fast algorithm adopts the quarter pixel
subsampling and mode filtering that reduces the computing complexity of integer ME by
75%, and only two modes instead of a great number of modes are refined for fractional
motion estimation. This also can save about 80% fractional ME cycle counts in average.
The simulation result shows that the method only increases the bit rate within 1.44%
and at most 0.11dB quality degradation; nevertheless, the architecture only costs 41.5%
of area cost and requires 48% of cyele counts when‘eompared with the previous designs.
Besides, the power consumption for 30fps ‘CIF and QCIF video are just 0.59mW and
0.08mW respectively, which prove that the design is suitable for power constricted

portable device.

6.1. Introduction

As mentioned in the previous chapter, an ME design can be partitioned into integer
motion estimation (IME) and fractional motion estimation (FME). Most of the current
ME designs [23], [26] follow the computing order as in the reference software [20]
shown in Figure 34. In this figure, IME will first generate 41 motion vectors (MVs) for
various combinations of block sizes, and then FME further refines these 41 MVs into
sub-pixel precision. Finally the best MV is selected based on the cost. Though this flow
can achieve better coding performance, it has a serious problem for hardware
implementation. In hardware implementation, when search range equals 8, the cycle
count of IME can be easily reduced to 256 cycles per macroblock (MB) by data reuse and

data parallelism like the 2-D array based designs [23]. However, the cycle count of FME is
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much larger, 1648 cycles for 41 MVs per MB [25]. The reason for this is that data reuse
and data parallelism in FME is hard to achieve to the same level as that in IME because

of diverged 41 MVs. This unbalanced problem results in a bad hardware pipelining

performance.
mode 1 \
16x16 |» QME [» refine —»
mode 2
16x8
» QME [ refine —»
mode 3
. first » FME
X > QME |»| refine —» > mode 3~18 best MVs
4 second MVs mode
mode » FME

_/
Figure 34 the RQME algorithm

Furthermore, though many ME designs have been proposed, few are proposed for
variable block size [23], [26]. Though these designs have different 1-D or 2-D array
architectures, they are all based on the full search block matching algorithms. The full
search algorithm can provide better performance, but the resulted hardware cost such
as the 2-D array based design is large, almost half or more of the total encoder area [26].
On the other hand, if fewer processing elements (PEs) such as the 1-D array are used to
save the cost, the cycle counts will increase dramatically. Thus, the hardware cost and

performance cannot have a good tradeoff in current designs.
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Motivated by above problems, in this chapter, we propose a hardware oriented fast
variable block size IME algorithm and its architecture that has lower hardware cost, cycle
counts and is also pipelining balanced to FME. This design is based on our previous
proposed fast algorithm, Quarterly Motion Estimation (QME) [7]. QME uses the 4:1
subsampling that can reduce the hardware cost and cycle counts significantly but also
preserve the regularity of full search like scan pattern. However, direct application of
QME to VBSME will result in significant quality degradation since 4:1 subsampling in the
small 4x4 block will lead to two fewer samples and thus less accurate result. To avoid
such problem, we introduce a refinement process to compensate the quality loss. The
hardware architecture is also redesigned to support the variable block size. Besides, the
various combinations of block size are reduced to only two before the final FME stage
(called mode filtering). Thus, only 3 to_181MVs instead of 41 MVs are refined in the FME.
Using this mechanism we can saveiabout 80% . FME in average, and leads to a significant
decrease of cycle counts. With above approaches, thezarea cost and cycle counts of IME
is reduced by 58.5% and 52% respectively' when compared with the previous design. The

resulted IME design (520 cycles) is‘also. more balanced to FME (568 cycles) [29].

6.2. Refined Quarter Motion Estimation (RQME)

QME adopts the 4:1 subsampling as shown in Figure 35. The current block is divided into
four quarter fields while the search range is divided into two column fields. QME
computes the matching cost on these two column fields (called quarter sum of SAD
(QSAD)). When computing the matching cost, the two column fields in the search range
are used for computation with the first field of current block (only the Quarter Field 1 is
needed). Each field in the search range is for different search point. For example, search
point (0, 0) will use the pixels “A” from Even Column Field, (0, 1) will use the pixels “C”
from Even Column Field, (1,0) uses the pixels “B” from Odd Column Field, and (1,1) uses

the pixels “D” from Odd Column Field. With this, every search point in the search range
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buffer will be tested but only one fourth of pixels in the block are used to calculate the
matching cost. This algorithm can efficiently reduce the computing complexity with
similar performance to that of the full search algorithm. However, when applied to
VBSME, 4:1 subsampling will result in too few samples for a 4x4 block and thus has
significant quality degradation. Otherwise, the QME method has an inclination to
participate larger block size into smaller block size. Thus, we enlarge the motion vector
cost during the computation of IME SAD. With this refinement, we overweight the cost
for small size block, such that we can effectively balance the error prediction by QME

without any other hardware cost.

| current block | search range
Quarter Field 1 Quarter Field 2 Even Odd

A B/ABAB AlAlA B column column
C|D|(C|D|C|D AlAlA B B A[(B/A|B|A|B AlAlA B|B|B
A/ B|A(B/A|B AlAlA B C|D|(C|D|C|D C|C|C D|D|D
C/D|C|/D|C|D Quarter Field 3 Quarter Field 4 A/B|/A|B/AlB AlAlA B/B|B
A B|/A(B/AIB C D C|D|C|D|C|D C|C|C D|D|D
C|D|C|D|(C|D C[&|/C| |D)¥|D A|B|/A|B|A|B AlAl/A| |B|B[B

C D C|D|C|D|C|D C(C|C| |D|D|D

Figure 35 the partition of current block and search range

6.3. Mode Filtering

After computing the cost of all possible block sizes, we select the most possible two
modes for FME (mode filtering) instead of all modes for FME, as shown in Figure 34. The
reason to choose two modes is that, in the previous chapter [30], the two modes
selection has the highest improvement in terms of mode numbers in hardware design.
The most possible two modes are selected from one of 16x16, 16x8, 8x16 and the best
of the 8x8 and subblock. For the case of 8x8 and subblock size, each 8x8 block will has its
own best mode (8x8, 4x8, 8x4 or 4x4) based on QSAD. The cost of the four 8x8 blocks
are summed together to compare with other modes. Finally, two best modes are further
refined by FME. With this, only 3 to 18 MVs instead of 41 MVs are calculated in FME,

which can save about 80% FME computing cycles. In [25] a similar but more complex
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procedure has also been proposed. However, our method can achieve better quality and
lower cycle count than that in [25]. It is because that we only select two instead of three
candidates and only the best candidate for the 8x8 and subblock case is considered in

the final best mode selection.

6.4. Performance Analysis

In order to correctly analysis the performance of RQME, we partition the section into
two parts. The first one is to analysis only the RQME design, and the other one is to
analysis the combined RQME with adaptive skip mode detection we have introduced in

Chapter 4.

6.4.1. Performance of MF+RQME

TABLE XIV presents the simulated performance of the proposed algorithm compared
with the full search algorithm used in.the“reference software. The search range is [-15,
16], and the reference software™is:JM 9.0 [20]..The test sequences are CIF sized,
including: Akiyo, flower, football, and table tennis. The average R-D curves of these

sequences are shown in Figure 36.
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TABLE XIV MF+RQME performance for CIF sequences

QP Mode Filtering (MF) RQME MF+RQME
16 A PSNR (dB) -0.08 -0.02 -0.09
A Bit-rate (%) 0.07 -0.68 1.63
20 A PSNR (dB) -0.08 -0.02 -0.10
A Bit-rate (%) 0.31 -0.45 2.15
24 A PSNR (dB) -0.12 -0.03 -0.13
A Bit-rate (%) -0.48 -0.27 1.54
58 A PSNR (dB) -0.11 -0.03 -0.12
A Bit-rate (%) -0.74 0.15 1.09
32 A PSNR (dB) -0.09 -0.03 -0.11
A Bit-rate (%) -0.49 0.45 1.18
36 A PSNR (dB) -0.09 -0.03 -0.12
A Bit-rate (%) -0.86 0.82 1.07
Average A PSNR (dB) -0.10 -0.03 -0.11
A Bit-rate (%) -0.36 0.00 1.44
CIF
48
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38
36 / ——original -
/ —&— mode filtering
34 ‘ -
/ —=—RQME
32 n/ Combined
30 Bit rate x100
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Figure 36 the averaged R-D curve of proposed algorithm

58




For the method of mode filtering, we can find that the PSNR degradation is small and
even the bit-rate is lower than original; however, it is with the penalty of PSNR loss.
Besides, the bit-rate overhead for mode filtering is smaller for high QP case which means
the low bit-rate condition. The reason for this is that the mode filtering algorithm prefers
to select larger block size, and larger block size is also preferred under the low bit-rate

condition because of fewer MV bits.

For the refined QME algorithm, the PSNR decrease is smaller than 0.03 dB. If the
refinement step is skipped, the bit rate increase will be serious. In terms of bit-rate
increase, the refined QME works well under low QP, which is high bit-rate condition. It
means the refined QME prefers to select smaller block size which fits the condition of

high bit-rate.

From above analysis, these two methods iare.complémentary to each other so that the
performance of the combined method is under.an average level which means the PSNR
degradation is below 0.14dB and. the 'bit-rate increase is below 2.15%. It works well

when comparing with other fast motion estimation algorithms for H.264.

6.4.2. Performance of Skip+MF+RQME

Firstly, we test three different types of QCIF sequence to analysis the design which
combines with three algorithms we proposed: adaptive skip mode detection, mode
filtering and refined quarter motion estimation (Skip+MF+RQME). The test environment
are: three 300-frame QCIF sequences (silent: low motion sequence, carphone: medium
motion sequence, and mobile: high motion sequence), the search range equals 8, 1
reference frame, coding type: IPPP, no rate-distortion optimization and disable

thresholding.
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All of the analyses are compared with JM9.0 [20]. The R-D curves of the three sequences
are shown in Figure 37 - Figure 39, and TABLE XV shows the average performance,
speed-up and pre-skipped MBs. The performances are not very well for low QP
conditions; it is because the mode filtering performs badly for small size sequences
especially for low QP conditions. While the mode filtering the skip mode detection

perform better in high QP, the performance is better for high QP sequences.
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TABLE XV Skip+MF+RQME performance for QCIF sequences

PSNR Bit rate Speed up Pre-Skip rate (%)
QP12 -0.14 2.30 1.28 0.17
QP16 -0.16 2.03 1.45 7.83
QP20 -0.20 2.46 1.56 13.89
QP24 -0.28 0.87 1.76 19.70
QP28 -0.32 -0.59 1.94 22.09
QP32 -0.32 -2.08 2.23 27.19
QP36 -0.30 -3.00 2.57 37.02
average -0.24 0.28 1.83 17.41
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Figure 37 Skip+MF+RQME performance of QCIF silent (low motion)
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Figure 39 Skip+MF+RQME performance of QCIF mobile (high motion)
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Secondly, we also test three CIF sequence to analysis the design. The test environment
are: three 300-frame CIF sequences (akiyo: low motion sequence, container: medium
motion sequence, and hall: high motion sequence), the search range equals 16, 1
reference frame, coding type: IPPP, no rate-distortion optimization and disable

thresholding.

The R-D curve of the three sequences are shown in Figure 40-Figure 42, and TABLE XVI
shows the average performance, speed-up and pre-skipped MBs. By seeing the R-D
curve, the performances are quite good in CIF sequences; it is because the mode
filtering and refined quarter motion estimation do well for CIF sequences. Besides, for
high QPs, although the PSNR drop by 0.46dB, the bit rate decreases enormously to 10.22
(%). It is because our adaptive skip mode detection can skip lots of almost skipped MBs
and save many bit rates. It is demonstrated by that we pre-skip 82.65(%) MBs in average

under QP36. It shows that our design-is especially suitable for CIF size video.

TABLE XVI Skip+MF+RQME performance for CIF sequences

PSNR Bit rate Speed up Pre-Skip rate (%)
QP12 -0.15 -2.90 1.57 25.30
QP16 -0.15 -1.17 1.85 15.51
QP20 -0.14 0.30 2.34 24.49
QP24 -0.19 -2.50 2.75 35.96
QP28 -0.27 -6.28 3.71 58.77
QP32 -0.40 -10.22 5.02 73.97
QP36 -0.46 -8.94 6.37 82.65
average -0.25 -4.53
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Figure 41 Skip+MF+RQME performance of CIF container (medium motion)
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6.5. The RQME Architecture

Figure 43 shows the proposed architecture that follows the algorithm. Thus, the current
block is divided into four quarter fields and the reference frame is divided into even
column and odd column fields. Both of the two fields of search range are used for
computing while only the first field of current block is adopted for QSAD computation.
This enables parallel computation by two parallel QME units, one for each column field.
With this, the computational complexity can be reduced by 75%. After computing QME

for each search point, only the smaller one will be kept to find the best search point.

| control |
Current 3
—8 block B Even Column mvx
QME module
Even Column SAD
- = Fmvy
search range ! tree
Odd Column
| Odd Column d QME module ' SAD
search range

Figure 43 the proposed architecture

For each QME unit in Figure 44, four Row QME modules are included. A 16x16 current
block is divided into four row subsets and each subset is computed by a Row QME
module. The architecture of a ROW QME module is illustrated in Figure 45. In our design,
each process element (PE) unit in the Row SAD module is responsible for SAD
computation of two pixels and each PE unit contains two basic units which are used to

compute the absolute difference as shown in Figure 46.
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Figure 45 the‘structure of'an Row QME module
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Figure 46 the structure of a PE

In the Row SAD module design, the current block data is directly gotten from the current
block buffer, while the two reference data are broadcasted to the eight PE modules in

every cycle.
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Figure 47 shows the data flow of even column field of the proposed architecture. The
timing diagram of odd column field is the same. The dotted line in the figure shows the
timing to select different broadcasted reference data to main the fully pipelined data

flow.
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Figure 48 the structure of the SAD tree

The QSAD for block size larger than 4x4 is computed by the SAD tree as shown in Figure
48. This SAD tree is different from the traditional SAD tree as in other VBSME designs.
First, this is a skewed tree which can minimize the necessary registers in a delay line.
Second, this SAD tree needs to compute the total cost for the four 4x4-blocks, two
8x4-blocks, two 4x8-blocks within one 8x8-block and the sum of the four 8x8 subblock
mode, two of 16x8-blocks, two 8x16-blocks within one MB. The reason is that our
algorithm needs to decide the best mode of each 8x8 block and the best two modes of
an MB. This function is only activated when finishing all the search points for lower
power consumption. With above data flow and architecture, our proposed architecture
can complete the IME calculation with 520 cycles for search range [-15, 16], which is
roughly balanced to the cycle count of FME (568).
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6.6. Hardware Implementation Result

The proposed design has been designed by using Verilog HDL and synthesized by 0.13
um CMOS cell library. TABLE XVII shows the implementation result and its comparisons
with other designs. The search range of the design is different for CIF and QCIF
sequences. Search range [-16, 15] is support to CIF sequences while [-8, 7] is enough to
support QCIF sequences. Therefore, the latency is longer (520) for CIF whereas shorter

(136) for QCIF sequences.

The design in [26] is based on 1-D array so that the latency is long. The design of [23] is
based on the 2-D array. Comparing with these 2-D architectures, the PE number of our
architecture is half so that the gate count is almost half compared with the three ones.
In term of latency, our method speed up two times than that of in [23] with half of
hardware cost. The major contribution |fori such “improvement is the adopted fast

algorithm instead of full search as in others.

Besides, we define two parameters:

search points

v" Throughput = * frequency

latency

. . throughput
v' Area efficiency = ———-P_
gate counts

‘Throughput’ means the number of search points generated in every second and ‘area
efficiency’ is the elevation of how much search points are contributed by every unit
hardware cost. The throughput of our design is 393.8, and the area efficiency is 8.95. It
shows our design outperforms other’s design and gets an effective tradeoff between

hardware cost and video quality.

70



TABLE XVII RQME comparisons with previous works

Ref [23] Ref [26] J.M!s [27] | Chen’s [28] Ours
Search Range 32x32 16x16 N/A 64x32 32x32 / 16x16
Latency 1089 4096 N/A N/A 520/ 136
Process (um) 0.35 0.13 0.13 0.18 0.13
Voltage (V) N/A 1.2 1.0 1.3 1.2
Gate Count 106K 61K N/A 63.54K 44K
Max
Frequency 66.67 294 13.5 27 200
(MHz)
Throughput 62.66 18.375 N/A N/A 393.8
Area 0.59 0.30 N/A N/A 8.95
efficiency
3.28mW@6.
75MHz for 55.63mW@200MHz
CIF 30fps 1.40 @ 13.5
73732 @
66.67MHz 2376 @ 11 Mhz for CIF 0.59mW @1.62MHz
0.41mW @ 30fps for CIF 30fps
Power (mW) for MHz for QCIF ‘
; 0.85MHz/for (low power mode)
720x480 30fps
30fps ‘ QCIF 15fps (ultra low
: power mode) | 0.08mW @0.2MHz for
(without QCIF 15fps
subblock)
. Parallel-VBS
Search Full Search Eull saateh Gradient Four step Full search Quarter
pattern ‘ decent search SAD
power analysis
0 1 2 3
St . .
3 high quality mode CIF
St
3 low power mode CIF
> QCIF I
L 0.028°0.0525

H memory M logic

Figure 49 power analysis of RQME design
Figure 49 is the power analysis of our design, we support high quality mode and low
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power mode for CIF sequences. For high quality mode, we consume 2.31mW@6.2MHz
for search range 32x32. For low power mode, we consume 0.59mW@1.6MHz with
search range 16x16. For QCIF sequences, the power consumption is 0.08mW@0.2MHz.
Because of our very low operation frequency and quarter pixel algorithms, our design
consumes less power than other design such as [27] and [28]. Thus, our design is more

suitable for power constricted portable devices.

6.7. Summary

In this chapter [31], we propose a set of algorithm and architecture for search range [-16,
15] integer motion estimation in H.264/AVC. The algorithm uses the mode filtering to
reduce the computational load of fractional motion estimation and refined QME to
enable four times of parallel processing while lower:computational complexity and low
quality loss. The proposed architecture only needs.half of PE counts and lower latency
than the general 2-D architectures. . The:power consumption of our design in only
0.59mW for CIF and 0.08mW for QCIF; therefore .our design is suitable for medium
frame size application such as mobile phone} personal digital assistant (PDA) or video

camera.
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7. Efficient Large Search Range Motion Estimation for

High Definition Video Compression

The section presents a hardware-efficient fast algorithm and its architecture for large
search range motion estimation (ME) used in HDTV sized H.264 video coding. To solve
the high cost and latency in large search range case, the proposed algorithm processes
ME in parallel multi-resolution levels instead of serial process in the previous approach.
This enables high data reuse for lower bandwidth and low memory cost. Further
combining with our previous proposed mode filtering and bit truncation, the algorithm
only increases the bit rate within -1.62% and 1.20% and 0.04dB and 0.07dB PSNR
degradation in average for 720p and 1080p sequences respectively. The hardware
implementation can save up to 48.9%.of area cost and 55.1% of memory cost compared

to the previous approach for large:search,range to [-128, 127].

7.1. Introduction

Video compression technique becomes” 'more and more important while the
development of mobile video device and HDTV is growing up. H.264/AVC, the latest
video standard is well adopted in HDTV and other application since it provides high
video quality and excellent coding efficiency. The high efficiency is achieved by several
new coding tools such as variable block size integer motion estimation (VBSME).
However, so much complex IME become the bottle neck when we want to realize a

real-time encoder.

Although many VLSI realizations of VBSME have been widely proposed to speed up the
ME process, most of them are only applicable for SDTV size or below. For HDTV size
applications that requires large search range up to [-128, 127] or even larger; however,

previous approaches will consume too much area cost and computational cycles.

73



To support large size research range, lots of fast integer ME algorithms have been
proposed. For fast IME, various approaches have been proposed such as [8], [16], [32],
but few can be readily applicable to large search range as used in HDTV. The large search
range requirement will result in longer execution cycles as well as large buffer and high
memory access. Previous design [16] with [-63, 64] search range uses the full search
method and thus occupies large area cost. Besides, a modified three-step algorithm is
used in [33] to decrease the search points for low power, but still consumes large area
cost and memory. Nevertheless, most of them are not suitable for hardware
implementation due to nearly prohibited memory bandwidth resulted from the poor
data reuse flow. To solve this problem, one promising approach is the multi-resolution
ME as one proposed in [8], and the conventional multi resolution algorithm is shown in
Figure 9. In this design, they use three hierarchical levels for search and refine the
motion vector from the coarse level to the finest level. However, this approach has
several disadvantages for hardware implementation.-First, the motion vector found in
the higher level needs to be further refined in the lower level. It means the search is a
sequential process that will increase’the“cycle counts, and decrease the hardware
utilization and throughput. Second, “a full=search range sized buffer is still needed
because the dependency between the three hierarchical levels. It greatly increases the
hardware costs for large search range design and diminishes the benefits of
multi-resolution ME. Third, the required bandwidth is still quite large due to poor data

reuse of the refinement process.

To solve above problem, in this chapter, we proposes a parallel multi-Resolution ME
(PMRME) algorithm and its architecture. The proposed algorithm uses three
independent levels for search. The first two levels with data subsampling cover the large
search range to find the rarely occurred large search vector. These two levels have good
data reuse by fixing the searching center at (0, 0). On the other hand, the third level
without data subsampling covers the search range with the most occurred MV. This level

has the search center at the motion vector predictor. The concept behind our algorithm
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is the unequal distribution of motion vector that most of them are near the motion
vector predictor. Thus, a fine search around the motion vector predictor can find the
most of motion vector while the rest of motion vector can be found in the coarse search.
With above approaches, we can save at least 92.4% memory buffer compared with the
previous method (for the search range 128). Besides, data within two out of three
memory buffers are highly reused, and thus can save about 64.8% of memory

bandwidth.

Center:
(pred_x,pred_y)

Level 0 Pre PP

—=[.Q ~ d/l'l _ —
SR=[-8 ~ +7] "My d
mode1 ~ mode7 - -

Center: (0,0)

Level 1
SR=[-32 ~ +30]
mode1 ~ mode4

Level 2
SR=[-128 ~ +124]
mode1

Figure 50 the three level parallel multi resolution motion estimation

7.2. Parallel Multi-Resolution Motion Estimation (PMRME)

PMRME includes three levels and all of them are independent to each other, as
illustrated in Figure 50. In the coarsest level 2, the SR is the largest, [-128, 124], and this
level is centered on the original point (0, 0). This enables regular memory reuse between
successive MB processing. This level uses the 16:1 sampling and thus we only choose the
16x16 mode (mode 1 in TABLE I) since other modes will contain too fewer pixels for SAD

calculation.
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In level 1, the SR is reduced to [-32, 30] and also centered on (0, 0) for the same reason
as level 2. This level uses the 4:1 sampling and thus we only choose the 16x16 to 8x8
mode (mode 1 to 4 in TABLE 1) since other modes will contain too fewer pixels for SAD

calculation.

In the finest level 0, the SR is set to [-8, 7]. However, unlike the other two levels with (O,
0) center, we choose the predictive motion vector (MVP) as the center due to its higher
probability for final MV. Thus, we do not subsample data in this level and thus enable

search for all variable block size modes.

The characteristic of the three levels are different and they can properly complement to
each other. Level 2 provides a large search range for high motion blocks with coarse
precision. It is useful for very high motion blocks, and can find a good enough though
approximate motion vector candidate. Also; the level 1 can provide a medium search
range but a finer precision. TheZlevel 2 and level 1 ate complementary to each other.
With these two large search levels, the-algorithm can rapidly converge for the motion
search of the level 0 by effects of MVP as shownin‘Figure 51, thus undoubtedly level 0
will provides better performance. If only the level 0 is used, it is difficult to trace the high

motion blocks because the MVP cannot follow up the real motion effectively in this case.
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7.3. Mode Filtering

To further reduce the complexity, ‘we use-our previously proposed mode filtering
method [30] (see chapter 0). Only two modes in the integer ME stage will be passed to
the fraction ME stage to significantly reduce the fractional ME cycle. Besides, the

method also increases the overall ME pipelining efficiency.

7.4. Bit Truncation

Two degrees of bit truncation [34] are used in our design. In our analysis (as in TABLE XIX
and TABLE XX), five bits precision is enough to provide a good coding efficiency for the
720p sequences. However, at least six bits is needed for the 1080p sequences because of
the very high definition characteristics. In our analysis, five bits for 1080p will cause

larger bit rate increasing.
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By using the bit truncation method, about 38% and 28% hardware cost are saved for “5

bits precision” and “6 bits precision” respectively.

7.5. The PMRME Architecture
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Figure 52 the proposed PMRME architecture
(the number on the line is the number of pixels)

Figure 52 shows the proposed architecture and one 16x16 current block data is shared
for the three levels. In this architecture, all computations are decomposed as the
combinations of 4x4 blocks, denoted as “primitive module” and this is the basic module
to compute the SAD of a 4x4 block as depicted in Figure 53. Each primitive module is
capable of processing the data of a 4x4 block within four cycles (four stages pipelined)
because there are four SAD modules in a primitive module, and each SAD module is
used to sum the SAD of four horizontal pixels and previous SAD. The architecture of a
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SAD module is a combinational logic and it is depicted in Figure 54. The reference
selection module is for the sake of choosing different broadcasted reference data to

raise hardware utility; more detail will be explained in the following section.

With the primitive modules, every level can be easily implemented by regular hierarchal
composed module. The hierarchy of motion estimation hardware is “SAD module” >
“primitive module” > “Row ME module” > “ME module.” In this way, “Level 0 ME module”
contains four “Level 0 Row ME module”, and each “Level 0 Row ME module” has four
“primitive modules” and can process the data of a 16x16 macroblock in full resolution

(2:1). In brief, level 0 has 16 primitive modules for one macroblock, as in Figure 55.

Because level 1 is 4:1 subsampled, only four primitive modules are needed for one
“Level 1 ME module” for one search,pointjas in Figure 56. In addition, to further
speedup the processing, we adopt:four “level1:ME ‘module” in parallel (see Figure 52).
Another reason to parallelize the four “Level1 ME module” is that we can reuse the
overlapped data among these modules.-Thus, totally 16 primitive modules are used as
that in level 0. Similarly, for level 2:with 16:1 subsampling, only one primitive module is
needed for one “Level 2 ME module” for ‘one search point, as in Figure 57. We also
speedup the level 2 by using sixteen “Level 2 ME module” in parallel (see Figure 52),
thus further highly reuse data in these modules. Therefore, in level 2, we also have the
same primitive modules as level 0. Last but not the least, the main reason for such
speedup in level 1 and level 2 is to balance the computation cycles for different levels.
Thus, computations for all levels can be done in the same 256 cycles with different

resolutions and search range.
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It contains only one “Level 2 Row ME module” and can process one 16x16 macroblock
in 16:1 resolution

After getting the SADs form primitive modules of each block, these SADs are further
summed up to generate the SADs of 'different block sizes. For level 0, it has the most
complex summation trees for combination of the seven kinds of block types and the
architecture of the “4x4 SAD tree” is'shown in Figure 58. As for the level 1, four “8x8 SAD
tree” are used for combination ofithe model1to mode 4 block types because of the four
times parallelism as illustrated in Figure 59. However, in level 2, only comparators and
registers (pipelined to decrease the critical path) are needed to select the minimum SAD
cost. Finally, according to mode filtering, the selection module will choose the best two

SAD costs from different levels for the fractional ME module.
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7.6. Search Scheduling

The whole scheduling is described below. To ease explanation, we first partition the data

|ll

into several “row packages”. Figure 60 shows the search flow in level 0. For the current
MB, we separate it into 16 row packages; while the reference data are cut into many
overlapped row packages (16x31, 16 is because of the search range [-8, 7] and 31 comes
from the number of words of reference A (16) add the number of words of reference B

(15). See the next section).

The search process is done by fed these row packages to motion estimation modules.
The search schedule is from top to down and left to right; therefore, in this level, the
search point of (-8,-8) will be calculated first, and the (-8,-7) in the next. After finishing
the search points of first column (x=-8),it;goes the next column (x=-7) until all of the

search points are calculated.

The data flow for current and referencel row packages are different: for current block the
row packages are “stay” and for the reférence datathe row packages are “broadcasting”,

while the results (SAD) are “propagated™as shown in Figure 61.

Figure 62 is the pipelined search schedule of level 0. CO~C15 is the current row packages
of a macroblock (see Figure 60), and RefA and RefB stand for reference row package in
the search range, while each of them are mapped into the corresponding input ports of
“level 0 ME module” (Figure 55). In the first cycle (0th cycle), we get the SAD of [CO, R
(-8,-8)]. In the following cycle (1% cycle), we will get the SAD of [CO,R(-8,-7)] and
{[C1,R(-8,-7)]+[CO,R(-8,-8)]}.  Therefore, in the 4t cycle, we will get
{[C3,R(-8,-5)]+[C2,R(-8,-6)]+[C1,R(-8,-7)]+[CO,R(-8,-8)]} which is the SADs of “4x4_00
block, 4x4 01 block, 4x4_02 block, 4x4_03 block” (see Figure 5 and Figure 58) of search
point (-8,-8). This four 4x4 SAD results are connected to the “4x4-SAD tree” (Figure 58)

to wait to accumulate the SADs for other block types. In the same way, in the gt cycle,
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we get the result of “4x4_10 block, 4x4_11 block, 4x4 12 block, 4x4 13 block”. In the
12t cycle, we get the result of ““4x4 20 block, 4x4 21 block, 4x4 22 block, 4x4 23
block”. At last, in the 16" cycle, the “4x4-SAD tree” can attain all of the sixteen 4x4 SADs,
and after a few cycles propagation in the tree, we can have the 41 SADs of various block

types of search point (-8,-8).

As shown in Figure 62, to maintain the full pipeline of data, in different cycle counts,
different primitive modules should choose different reference row packages from RefA
and RefB. The control of this part is determined by reference selection module (Figure
55). Because the search flow is fully pipelined, we can get the result of a search point in

each cycle (except for the previous 15 cycles).
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Figure 63 is the pipelined search schedule of level 1. The main idea of search flow is alike
the same way as level 0 except some other aspects. First, the quantity of cycle counts
which is needed to complete one search point is halved (8 cycles instead of 16) because
of the 4:1 subsampling. Second, the results of four adjacent search points can be
generated at the same time, and it is because we utilize the four times parallelism in this
level. With these two features, we can search the motion vector in a region sixteen
times larger. Another benefit of the parallelism is macroblock level data reuse, because
we can reuse overlapped data in these neighboring search points. For example, [CO, R
(-32,-32)] are capable of dealing with the partial SAD of search points (-32,-32), (-30,-32),
(-28,-32), (-26,-32) at the same time, as in Figure 64.
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Figure 65 the reference control of level 1
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Figure 66 is the pipelined search schedule of level 2. The method of search flow is very

likely the same as level 1. The differences are: first, it just needs four cycles to complete

one search point. The resolution is 16:1 with 16 times parallelism and the reference data

of sixteen neighboring search point are further efficiently reused. These features give

the level 2 has the ability to search sixty-four times larger region than level 0 with the

same cycles consumed (256).
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7.7. Memory Allocation

The memory allocation of level 0 is shown in Figure 68. In order to save the memory
bandwidth, we propose to share and reuse the reference data of level O for IME and FME.
In this figure, the 3-pixels stripe surrounds the memory is prepared for fractional ME,
while it is not used in integer ME phase. The reason for this is that if the motion vector
falls in to the boundary of the search range (-8,-7,-6, 5, 6, 7 out of search range -8~7),
the interpolation process of FME needs extra three pixels beyond the search range.
Therefore, preventing from the data miss in FME phase, we preload the three-pixel

boundary data.

Figure 68 (a) is the reading order of motion estimation computation. It means the order
of acquiring reference row package begin with.the stripe [0~15] from top to down and
the next of the stripe of [1~16] and:so on. Figure.68 (b) is the division of bank, the level 0
memory is cut into two parts, and each part contains three banks. The two parts is used
for realizing fully pipelined data-flow for‘motion estimation as illustrated in Figure 62.
The memory bandwidth in this level equals the.memory size in the level, which are
37x37=1369 bytes. It is because that in this'level, the search region is around MVP;

therefore we have to refresh all the data of search region for every macroblock.
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91

<—--9g}--->

—--Gl--->



The memory allocation of level 1 is shown in Figure 69. The order of reading reference
data is shown in Figure 69 (a). The width of the reading strip (11) comes from the width
of a macroblock (8 instead of 16 because of 4:1 subsampling) add with the additional
three times parallelism (total in 4 times parallelism). More explicitly, the partial data of
[0~7], [1~8], [2~9], [3~10] of stripe [0~10] are proceeded at the same time for adjacent
search points as illustrated in previous section. Figure 69 (b) is the memory bank
allocation of level 1. The width of every bank is the width of one macroblock (8), and we
only have to refresh a bank (both refA and refB) for every macroblock. Because the
search region is center around (0, 0), the data of other four banks can be reused for the

next macroblock.
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Figure 69 memory allocation of level 1
(a) is the read order of the memory; (b) is the allocation memory bank
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The memory allocation of level 2 is shown in Figure 70. The order of reading reference
data is shown in Figure 70 (a). The width of the reading strip (19) in level 2 comes from
the width of a macroblock (4 instead of 16 because of 16:1 subsampling) add with the
additional fifteen times parallelism (total in 16 parallelism). Alike level 1, the partial data
of [0~3], [1~4], [2~5], [3~6] ...... [15~18] of stripe [0~18] are proceeded at the same time
for adjacent sixteen search points. Figure 70 (b) is the memory bank allocation of level 2.
The reason for the bank division is the same as level 1, and we only have to update the

data of one bank for every macroblock.
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Figure 70 the memory allocation of level 2
(a) is the read order of the memory; (b) is the allocation memory bank
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The degree of data reusability is shown in Figure 71, our design is a highly data reuse

design and it can significantly diminish the external memory bandwidth and internal

memory size. The memory size and bandwidth for three reference frame buffers are

listed in TABLE XVIIl. The bit width of memory buffer of level 1 and level 2 are also

truncated, while that of the level 0 is not. The reason for this is that the level 0 data can

be reused by the following fraction ME hardware if the best motion vector falls in the

level O.

Level 0

e | D (e | e uee I

reuse

macro block
reuse

Level 1

Level 2

Figure 71 the data reusability degree in different level

TABLE XVIIl memory and bandwidth for different frame size

Memory cost for 720p for 1080p
buffer size BW(per MB) buffer size BW(per MB)
| LevelO(Kbyte) | 1363 | 1369 | 1369 | 1369
| Level1(Kbyte) | 0975 | 0312 | 1170 |y 0312
| Level2 (Kbyte) | 28475 | | 0268 | 3417 | 0268
Total (Kbytes) 5.1915 1.949 5.956 1.949
Direct design 73.712 4.336 73.712 4.336
Saving (%) 92.95 55.1 91.91 55.1
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7.8. Memory Schedule
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Figure 72 the block diagram of IME and FME

Figure 72 shows the total block-diagram-of the.full ME modules. The IME module has
three internal SRAMs for reference pixels storage..Each one is corresponding to one
level of reference pixels. When one“stage is completed, the current macroblock
information in IME is moved to FME in one cycle. The information includes motion
vectors, block type, subblock type and the current macroblock pixels. Moreover, the
reference pixels in level 0 SRAM needs to be moved to FME. However, instead of
moving data, we use three SRAMs as the level 0 buffer and swap them with a ping-pong
buffer concept. The three SRAMs includes one for IME level O reference, one for FME,
and one for loading new data from external memory. Whenever the IME stage
completes the coding of the first MB, the SRAM for level O reference for the first MB is
changed for FME reference in the next stage. At the same time, the SRAM for current
FME reference is changed to load the data of the third MB from external memory for
further use. The SRAM that is now filled the reference data for the second MB is

switched for IME level O reference. With above ping-pong buffers, we can share the
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level 0 data of IME with the FME, and no additional memory access time is necessary. In
our ME design, if the motion vector from IME is around motion vector predictor, FME
can use the reference pixels in IME reference SRAM. However, if the motion vector is far
away from motion vector predictor, FME has to load the reference pixels from external
memory. Thus, to reduce the data loading traffic, the IME stage uses the mode filtering
strategy and gives only two block types for FME refinement. To further reduce the
loading time for FME, our IME scheme intentionally guarantees that one of the two
block types must be around MVP so that FME can access its reference pixel right in IME

SRAM.

7.9. Experimental and Implemental Result

We partition the performance analysis into two, parts. The first part does not include the

adaptive skip detection algorithm (chapter4).while the second part does.

7.9.1. Performance of PMRME

TABLE XIX and TABLE XX show the simulation result in different parameters, PARME only,
PARME with mode filtering (PARME+MF), PARME+MF with bit truncation for 720p and
1080p sequences respectively. In addition, we also test the algorithm performance for

high motion sequences by skipping two frames to simulate high motion sequences.

The simulation environments are as following: No rate-distortion optimization (RDO);
sequence type IPPP and SR is [-128, 127]. All of the simulation results are compared with
that of the Fast-Full-Search (FFS) Algorithm in JM9.0 [20]. The result in this table only
shows the average performance under different QPs. For 720p, the test sequence
including: Stockholm, park_run, and shields. The frame rate is 50 and 50 frames are
coded. For 1080p, the test sequence including: station2, rush_hour, and sunflower. The

frame rate is 25 and 100 frames are tested. The 1920x1080p image is truncated to an
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image of 1920x1072 to fit the multiples of 16.

The simulation shows the PMRME alone can achieve the similar video quality as the FFS.
However, the distortion is larger under high OP because the blocky effect will be more
serious for high QP and mislead the subsampling method. Further combining with MF,
we can find that the bit-rate for low QP case sometimes lower than the FFS with the
penalty of PSNR loss. If the truncation method is combined, the performance is a little
worse. For 720p sequences, it has 0.04dB PSNR loss but 1.62% of bite-rate decrease in
average. As for 1080p sequences, it has 0.07dB PSNR loss and up to 1.20% of bit-rate
increase in average. However, with slightly quality loss, we can save a lot of hardware
cost as described in the previous section. For high motion sequences simulated by 2
frame skipping, the proposed design keeps the similar quality. It means the algorithm

does well even for high motion sequences.

In these two tables, the term “LO-hit-rate” means the percentages of motion vector falls
in layer 0. With this, the memory data'of-level 0 can be directly reused by fraction ME
and thus save a lot of bandwidth.:In.our design, the hit rate is at least 87%, and the
higher QP will have higher hit rate and thus can save more power and BW. In our analysis,
the hit rate for 720p and 1080p is quite the same, so we conclude the search range 128
is enough for the 720p and 1080p sequence. However, the bit truncation method has
stronger impact for 1080p. As we can see, the bit truncation method will lead to 1.20%
bit-rate increasing for 1080p sequence. The rate-distortion (RD) curves of 720p and
1080p sequence are shown in Figure 73 and Figure 74, and the RD curves are almost

overlapped with that by FFS.

97



TABLE XIX PMRME performance for 720p sequences

720p
PMRME+MF
PMRME+MF (5 bits)
(o] PMRME | PMRME+MF (5 bits) Skip 2 frame
LO Hit rate (%)
PSNR inc.(db) -0.01 -0.02 -0.02 -0.02
Qp12 Bit rate inc. (%) -3.53 -4.87 -2.97 -4.10 88.62
PSNR inc.(db) 0.00 -0.05 -0.03 -0.04
Qapie Bit rate inc. (%) -1.33 -2.56 -1.56 -2.38 90.41
PSNR inc.(db) 0.01 -0.09 -0.07 -0.07
Qapr20 Bit rate inc. (%) -0.94 -2.40 -1.38 -2.13 91.67
PSNR inc.(db) 0.00 -0.07 -0.06 -0.06
Qap24 Bit rate inc. (%) -1.26 -2.73 -1.63 -2.69 93.72
PSNR inc.(db) 0.00 -0.05 -0.04 -0.05
QP28 Bit rate inc. (%) -0.86 -2.09 -1.57 -2.91 9514
PSNR inc.(db) -0.01 -0.05 -0.04 -0.05
Qap32 Bit rate inc. (%) 0.27 -0.96 -0.58 -1.75 9563
PSNR inc.(db) 0.00 -0.06 -0.04 -0.05
Average I gitrateinc. (%) | -1.28 -2.60 162 2.66 92.53
49 p
47 et
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41 nz: /
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Figure 73 PMRME performance of 720p sequences
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TABLE XX PMRME performance for 1080p sequences

1080p
PMRME+MF
PMRME+MF (6 bits)
ap PMRME | PMRME+MF (6 bits) Skip 2 frame
LO Hit rate (%)
PSNR inc.(db) 0.00 -0.08 -0.09 -0.05
QP12 Bit rate inc. (%) -2.14 -4.62 -3.00 -3.93 87.69
PSNR inc.(db) 0.00 -0.07 -0.06 -0.06
QP16 Bit rate inc. (%) -0.49 -1.09 0.47 -0.47 89.57
PSNR inc.(db) -0.01 -0.04 -0.04 -0.03
Qap20 Bit rate inc. (%) -0.44 -0.22 2.65 1.89 92.33
PSNR inc.(db) -0.03 -0.06 -0.06 -0.07
Qap24 Bit rate inc. (%) -0.40 -0.94 1.83 1.03 93.19
PSNR inc.(db) -0.06 -0.07 -0.08 -0.07
QP28 Bit rate inc. (%) 0.40 0.19 2.20 1.64 93.47
PSNR inc.(db) -0.10 -0.09 -0.10 -0.09
Qap32 Bit rate inc. (%) 1.68 1.59 3.06 2.54 93.39
PSNR inc.(db) -0.03 -0.07 -0.07 -0.06
Average it rateinc. (%) | -0.23 -0.85 1.20 0.45 9253
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Figure 74 PMRME performance of 1080p sequences
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7.9.2. Performance of Skip + PMEME

We further combine the PMRME algorithm with the adaptive skip mode detection. We
test three 150-frame 720p sequences. The three sequences are: Stockholm, park_run,
and shields. The testing environments are: search range 128, 1 reference frame, coding

type: IPPP, no rate-distortion optimization and disable thresholding.

Figure 75 - Figure 77 show the R-D curve of these three test sequences, and TABLE XXl is
the average performances. The performance does well for low QP condition, and it is
because mode filtering performs well in low QP large frame size. The LO hit rate is very
high (about 98.05% in average) because the MVs are rapidly converged by PMRME. The
contribution of speed-up comes from two factors: one factor is that the PMRME has
fewer search points than full search algorithmjsand the other factor comes from the
pre-skip algorithm. We can see that the BMRME has an intrinsic speed-up about 25, and

the rest of the speed up will depend on how much MBs are skipped.

TABLE XXI Skip+PMRME performance for 720p sequences

PSNR (dB) Bit rate (%) | Speed-up | LO hit rate (%) | Pre_skip rate (%)
QP12 -0.02 -2.78 25.64 96.87 0.07
QP16 -0.03 -1.10 26.83 96.62 0.10
QP20 -0.10 -1.03 30.33 97.24 0.02
QP24 -0.09 -0.86 32.15 98.45 0.32
QP28 -0.05 0.68 35.53 99.41 9.09
QP32 -0.11 -0.68 48.60 99.70 28.25
average -0.07 -0.96 98.05
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Figure 76 Skip+PMRME performance of 720p park_run
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Figure 77 Skip+PMRME performance of 720p shields

Besides, we also test another three 100-frame 1080p sequences. The three sequences
are: station2, rush_hour, and sunflower. The testing environments are: search range 128,
1 reference frame, coding type: IPPP _ho_rate-distortion optimization and disable

thresholding.

Figure 78 - Figure 80 show the R-D curve of these three sequences and TABLE XXI shows
the average performance. We see that for these three sequences, we pre-skip a lot of
MBs for high QP condition with larger PSNR drop and bit rate decreasing. In the extreme
case, it drops 0.37dB in PSNR and 7.08 (%) bit rate decreasing. Another point deserves to
notice is that 1080p frame is smoother than 720p frame; therefore we can skip more

MBs in 1080p sequences.
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TABLE XXII Skip+PMRME performance for 1080p sequences

PSNR (dB) Bit rate (%) | Speed up | LO hit rate (%) | Pre_skip rate (%)
QP12 -0.08 -3.02 26.65 94.66 0.00
QP16 -0.09 -0.96 30.02 96.24 0.04
QP20 -0.01 0.61 34.44 98.18 4.86
QP24 -0.06 -1.88 48.10 98.54 28.35
QP28 -0.32 -6.60 75.19 98.31 55.48
QP32 -0.38 -7.08 96.33 98.17 64.60
average -0.16 -3.15 97.35
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Figure 78 Skip+PMRME performance of 1080p station2
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7.10. Implementation Result

The proposed design has been implemented and synthesized. TABLE XXIIl shows the
total hardware cost of our design and comparison to other design. Our design can
provide the largest search range capability (High Profile Level 2) but just needs similar
hardware cost and smaller buffers. Besides, our design has the shortest latency so that
our design can achieve 1080p@60fps specification with only 124MHz operating
frequency only. In comparison, designs in [32], [35] has larger area cost and long latency
due to the full search architecture. Though designs in [8], [33] use fast algorithms to
reduce the latency, they still needs large area cost and buffer. At last, comparing with
[16], our design can save at least 48.9% of area costs and 62.1% of memory costs with
larger search range. Therefore, the proposed IME design can achieve low latency while

low buffer cost and similar area cost, and thus;is suitable for HD applications.

TABLE XXIIl the PMRME ‘hardware cost comparison

[8] [16] [32] [33] [35] Ours
Max. Supporting | 720x480@ 720p@ 4CIF@ CIF@ 720p@ 1080p@
Resolution 30fps 30fps 15fps 30fps 60fps 60fps
Search Algorithm mU|t,| Full Full 4-Step Full mult.l
resolution resolution
Max. Search H:+64 H:+64 H:+64 H:+32 H:+16 H: 128
Range V: 132 V: 32 V: 164 V: 16 V: 16 V: 128
IME Gate 155.8 for 720p
Count (K) N/A 305 154 131.2 176 213.7 for 1080p
IME Memory 5.19 for 720p
(Kbyte) N/A 13.71 7.5 64 41.6 5.95 for 1080p
Operating 16f{)r7.7 108 100 (1343?f0r 55.6 27.6 for 720p
Freq.(MHz) 720x480 for 720p for 4CIF CIF) for 720p 124.4for 1080p
Latency for IME
75/1 N/A 1024 N/A 2 2
Stage (cycle) 375/ 180 / 0 / 58 56
CMOS Tech. N/A 0.18um 0.18um 0.18 um 0.18um 0.13 um
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7.11. Summary

In this chapter, we propose a parallel multi-resolution algorithm and architecture to
integer ME for H.264/AVC. The algorithm uses PMRME, MF and bit truncation to support
large search range within 256 cycles. With data reuse and parallel multi-resolution, we
can save at least 91.91% of memory buffer and 55.1% of bandwidth. The resulted
hardware can save up to 48.9% of area cost and 62.1% of memory cost compared to the
previous approach for 720p processing. With above features, the proposed design is

very suitable for larger search range application such as HDTV in a more economical way.
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8. Integration for 1080P H.264/AVC High Profile Encoder

8.1. introduction

For motion estimation, forward motion estimation (P frame) uses a previous frame as
the reference frame. However, it produces poor prediction when the frame contains
hidden regions or newly entered objects. Therefore, an effective way to solve the
problem is to predict from the next frame. Bi-directional motion estimation (B frame) is
supported in high profile H.264 standards [1], and it uses past frames and future frames

for prediction as illustrated in Figure 81.

Bi-direction motion estimation provides a number of significant advantages, including:
1. Hidden areas can be predicted by using:the futureframe

2. Less bit budget can be spentto achieve the same quality of motion compensation

3. It has a better noise suppression quality than the forward frame prediction

Previous frame Future frame

Figure 81 the concept of bi-directional motion estimation

To support the specifications of H.264, we extend PMRME architecture to support
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bi-direction motion estimation. As in chapter 0, we need 256 cycles to finish search
range [-127,124] in one direction. In this way, we have to consume 512 cycles to
complete bi-directional motion estimation, which can be well integrated with our 560

cycle intra coder design [37].

8.2. System Architecture for Bi-direction Motion Estimation

Figure 82 is the system architecture of bi-directional motion estimation. The width of

external bus is 128 bits; it is because 128 bits equals the width of a MB which is 16

pixels.

Forward memory control

External bus

t
3 3 d A
2 3 g g
- - a o
g 3 3 g
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I = =
2 2 1" 7 i
i Y l Y — l
Level 2 Level 1 Level 0 Level 0
forward forward forward forward
y y yo |7 =™ — —"» | memory 2
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)
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o
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o
IME >3 > FME
Q
2
o
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A
N N Level 0 /
= = b N backward / W
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‘ Backward memory control

Figure 82 system architecture of bi-directional motion estimation

Roughly speaking, we doubled the memory for reference frame, while the hardware cost
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is the same, because the throughput of PMRME (512 in bi-directional) is good enough to
meet the requirement of our intra coder (560). As shown in Figure 82, we have 10
memory blocks totally, they are composed of 3 for level O forward searching, 3 for level 0
backward searching, 1 for level 1 forward searching, 1 for level 1 backward searching, 1
for level 2 forward searching and 1 for level 2 backward searching. The goal and usage of
these 3 memory blocks in level 0 have been explained in section 7.8. With these level 0
ping-pong buffers, we can share the level 0 data of IME with the FME, and no additional
memory access time is necessary. In our ME design, if the motion vector from IME is
around motion vector predictor, FME can use the reference pixels in IME reference

SRAM.

W : write
| : read for integer motion estimation
F : read for fractional motion estimation

Current MB

urrent I E_l 1K 1 2 3 4 5 6
LOFO wol [l |[Fo w3 13 F3 wel |16
LOBO iwo| fo| Fo| tws| 1| IF| iwe| 16
LOF1 wilo [ i Fii wal [wl [ral [wrl
LOB1 wi| o P twa| | TR twr
LOF2 W2 12 F2 W5 51 |Fs51
LOB2 w2 fe| lF2| lws| 5| IFs
L1F two 1o twi | 1 iwz| 12 {wa| 13 {wal 14 ws|is iwe| 16 w7
L1B wolio [wilit [weli2 |wal s [wali4|wsiis|wel ie
L2F two 10 fw| 11wz | 12 lwa| 3 lwali4 ws|i5 iwe| e lwr
L2B wolio [wilin (w2l iz [walis [wali4|wsiis|we! ie

Figure 83 memory schedule of bi-direction ME
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Figure 83 is the memory behavior of our design. For each MB processing, it consists of
two stages: the former half stage and the latter half stage (gray colored).

For level 0, when processing -t MB, LOFO (the numbered 0 of the level O forward
searching memory) will have to write the forward reference data in the former stage,
whereas the LOBO also has to write the backward reference data in the latter stage,
because these data have to be ready before 0" MB to do motion estimation. When
processing 0™ MB, LOFO will be read to do forward IME in the former stage and LOBO will
be read to do backward IME in the latter stage. At the same time, LOF1 will write the
forward reference data at former stage and LOB1 write the backward reference data at
latter stage for 1% MB. When processing 1 MB, the LOFO and LOBO will be shifted to FME
stage, while LOFO to do forward FME in the former stage and LOBO to do backward FME
in latter stage. At the same time, LOF1 and LOB1 will do IME for 1% MB and LOF2, LOB2
write the reference data for 2" MB.«In this way; 'LOF0, LOF1, and LOF2 will perform in a
ping-pong buffer and LOBO, LOB4; LOB2'in another ping-pong buffer to continue the

motion estimation for every MB.
For level 1 and level2, every former stage will.do forward IME and write the reference

data for the backward search buffer, and every post stage will do backward IME and

write the forward reference data of next MB.
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8.3. Frame-Level Memory Scheduling

The processing of MBs in a frame is from left to right and top to down. Take 720p frame
as an example, as depicted in Figure 84, after dealing with 80 MBs in a row, the
procedure go to the next row until finish total 45 rows in a frame.
720p
- X: 80 (MBs) >

<«—(sg) G A—>

Figure 84 coding order of 720p sequences

The range of accessed referencedata,is different in different levels. For level 0, because
the search region is centered on ‘motion vector predictor (MVP), the search region is
irregular for every MB. Therefore, to simplify the data flow and control in an efficient
way, we just extend the data from boundary and constrict the motion vectors inside the

frame size if the search region is out of the frame boundary.

However, the reference data flow is very regular in level 1 and level 2. Both of their
search region are centered on (0, 0), thus we only have to refresh a column of search
range (a bank of memory in our design) and it can save a lot of memory bandwidth (BW).
The refreshed reference data in level 1 for 720p frame size is shown in Figure 85, and
Figure 86. The search range of level 1 is [-32, 30], so we have to load a square search
region which contains 5x5 MBs. Nevertheless, if current block is near the boundary of a
frame, there are some data outside the boundary, thus we can reduce the memory

bandwidth. For example, if the current MB locates on Y=0, we cannot get the upper half
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side of data and we only can get a search range of Y=0~2. Besides, for level 1, 4:1
subsampling, we need 8 cycles to acquire the data of one MB, so we need 3x8=24 cycles
to refresh a bank of search buffer. In the same manner, we pay 4x8=32 cycles to get the
search region of Y=0~3 when current block locates on Y=1. The rest of the search region
scheduling is shown in Figure 86. The concept and method of accessed reference

scheduling in level 2 are the same as level 1 and it is shown in Figure 87.

Stripe of T Stripe of current MB (Y=0)
search range z
(Y=0~2) o
Stripe of !
| [=]
search range &
Y=0~3 |
e
. | """
Stripe of : &
search range 1 Stripe of current MB (Y=2)
(Y=0~4) | I
|
1
. | o
Sz el ] 1 Stripe of current MB (Y=3)
searchrange
(Y=1~5) I

Figure 85 the relationship of stripe of current MB and search range in level 1
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Previous |

Current

Level 1 Accessed reference

MB MBs form external memory
frame required (75,42) 78 40~44 40
(XY) X Y cycles (76,42) 79 40~44 40
(77,44) 0 0~2 24 (77,42) 0 41~44 40
(78,44) 1 0~2 24 (78,42) 1 41~44 40
(79,44) 2 0~2 24 _L(79,42) 2 41~44 32
(0,0) 3 0~2 24 (0,43) 3 41~44 32
(1,0) 4 0~2 24 (1,43) 4 41~44 32
(2,0) 5 0~2 24 (2,43) 5 41~44 32
(3,0) 6 0~2 24 (3,43) 6 41~44 32
(75,0) 78 0~2 24 (75,43) 78 41~44 32
(76,0) 79 0~2 24 (76,43) 79 41~44 32
(77,0) 0 0~3 32 (77,43) 0 42~44 24
(78,0) 1 0~3 32 (78,43) 1 42~44 24
_ (79,0 2 0~3 32 o 1(79,43) 2 42~44 24
3 0~3 32 (0,44) 3 42~44 24
4 0~3 32 (1,44) 4 42~44 24
5 0~3 32 (2,44) 5 42~44 24
78 0~3 32 (75,44) 78 42~44 24
79 0~3 32 (76,44) 79 42~44 24
0 0~4 40 (77,44) 0 0~2 24
1 0~4 40 (78,44) 1 0~2 24
_ 2 0~4 40 _ (79,44) 2 0~2 24
3 0~4 40 [ (0,0) 0 0~2 24
4 0~4 40 (1,0) 1 0~2 24
5 0~4 40 ) (2,0) 2 0~2 24
1 } 3 Next
1] frame
78 0~4 40
79 0~4 40
0 1~5 40 —
1 1~5 40 i
_ 2 1~5 40 _
(0,3) 3 1~5 40
(1,3) 4 1~5 40
(2,3) 5 1~5 40
(75,3) 78 1~5 40
(76,3) 79 1~5 40
(77,3) 0 2~6 40
(78,3) 1 2~6 40
_ 2 2~6 40 _

(79.3)

Figure 86 the refreshed reference data of every MB in level 1
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Current

Level 2 Accessed reference

MB MBs form external memory
Previous  (X.Y) X Y 'equl"ed (68,7) 78 0~15 64
frame cycles (69,7) 79 0~15 64
(70,44) 0 0~8 36 (70,7) 0 0~16 68
(71,44) 1 0~8 36 (71.7) 1 0~16 68
(72,44) 2 0-8 36 (72.7) 2 0~16 68
(73,44) 3 0~8 36 (73.7) 3 0~16 68
(74,44) 1 0~8 36 (74,7) 4 0~16 68
(75,44) 5 0~8 36 (75.7) 5 0~16 68
(76,44) 6 0~8 36 (76.7) 6 0~16 68
(77,44) 7 0~8 36 77.7) 7 0~16 68
(78 44) 3 0~8 36 (78.7) 8 0~16 68
(79,44) 9 0~8 36 (79.7) 9 0~16 68
(0,0) 10 0~8 36 (0.8) 10 0~16 68
(1,0) (K 0~8 36 (1,8) (K 0~16 68
(2.,0) 12 0~8 36 (2.8) 12 0~16 68
(3.0) 13 0~8 36 (3.8) 13 0~16 68
(68.,0) 78 0~8 36 (68,36) 78 28~44 68
(69.,0) 79 0~8 36 (69,36) 79 28~44 68
(70,0) 0 0~9 40 (70,36) 0 29~44 64
(71,0) 1 0~9 20 (71,36) 1 29~44 64
(72,0) 2 0~9 20 (72,36) 2 29~44 64
(73.0) 3 0~9 40 (73,36) 3 29~44 64
(74,0) 2 0~9 20 (74,36) 4 29~44 64
(75.0) 5 0~9 40 (75.,36) 5 29~44 64
(76.,0) 6 0~9 40 (76,36) 6 29~44 64
(77.0) 7 0~9 20 (77,36) 7 29~44 64
(78.,0) 8 0~9 40 (78,36) 3 29~44 64
(19,0 9 0~9 40 (79,36) 9 29~44 64
©.1) 10 0~9 20 0,37) 10 29~44 64
1,1) 1 0~9 20 (1,37) 1 29~44 64
2.1) 12 0-9 20 2,37) 12 29~44 64
(68.1) 78 0~9 36 (68,43) 78 35~44 20
(69,1) 79 0~9 36 (69,43) 79 35~44 20
(70,1) 0 0~10 24 (70,43) 0 36~44 36
71.1) 1 0~10 a4 (71,43) 1 36~44 36
72,1) 2 0~10 24 (72,43) 2 36~44 36
(73,1) 3 0~10 a4 (73,43) 3 36~44 36
(74,1) a 0~10 24 (74,43) 4 36~44 36
(75.1) 5 0~10 a4 (75,43) 5 36~44 36
(76,1) 6 0~10 24 (76,43) 6 36~44 36
77.1) 7 0~10 24 (77,43) 7 36~44 36
(78,1) 3 0~10 24 (78,43) 3 36~44 36
@9 9 0~10 a4 (79,43) 9 36~44 36
0.2) 10 0~10 a4 (0,44) 10 36~44 36
(1.2) 1 0~10 24 (1,44) 1 36~44 36
2.2) 12 0~10 24 (2,44) 12 36~44 36
(68,44) 78 36~44 36
(69,44) 79 36~44 36
(70,44) 0 0~8 36
(71,44) 1 0~8 36
(72,44) 2 0~8 36
(73,44) 3 0~8 36
(74,44) 4 0~8 36
(75,44) 5 0~8 36
(76,44) 6 0~8 36
(77,44) 7 0~8 36
(78,44) 8 0~8 36
(79,44) 9 0~8 36
0,1 10 0~8 36
(1,1) (K 0~8 36
2.1) 12 0~8 36

Next
frame

Figure 87 the refreshed reference data of every MB in level 2
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8.4. Bandwidth Analysis

The bandwidth required is not consistant because some data outside boundary are
unabailable and the bandwidth is depend on the Y-axis of current block. Bandwidth

required for every MB is:
BandWidth = required accessing cycle * 16 (Bytes)

Required accessing cycle is the cycle needed to refresh the column of serarch range and
16 is the width of the external bus. The bandwidth of level O, level 1 and level 2 are
illustarted in Figure 88 and Figure 90 respectively. At last, the average bandwidth for
720p sequences and 1080p sequences are listed in TABLE XXIV. In one direction, the
averaged bandwidth for 720p for is 3.385,bytes. per MB, and for 1080p is 3.425 bytes per
MB. So, we need 6.77 bytes per MB and,6.85.bytés per MB for bi-direction 720p and

1080p motion estimation respectively.

level O for 720p

1.95
1.75
1.55
1.35
1.15
0.95
0.75
0.55
0.35

BW (K bytes)

level 0

0 10 20 30 40

Y-axis of current MB

Figure 88 bandwidth of PMRME level 0 (720p)
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level 1 for 720p

0.7
0.65
- 06
()]
% 055
£ 05
E 0.45 level 1
0.4
0.35
0 10 20 30 40
Y-axis of current MB
Figure 89 bandwidth of PMRME level 1 (720p)
level 2 for 720p
1.2
1.1 /
= 1
o0,/ \
E 0.7 // \\ level 2
0.6
0.5
0 10 20 30 40
Y-axis of current MB
Figure 90 bandwidth of PMRME level 2 (720p)
TABLE XXIV average bandwidth per MB
Averaged BW per MB 720p 1080p
Level O (K bytes) 1.776 1.776
Level 1(K bytes) 0.623 0.629
Level 2(K bytes) 0.986 1.020
Total (K bytes) 3.385 3.425
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8.5. Conclusion

In this chapter, we integrate the PMRME architecture into a high profile H.264/AVC
encoder which supports 1080p bi-directional motion estimation within 512 cycles. The
memory size is 11.912 K-bytes and the memory bandwidth is 6.85 K bytes per MB. The
design is finally synthesis by UMC 0.13um CMOS process under 145 MHz to support
1080p @ 30fps.
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9. Conclusion

In this thesis, we studied and analyzed several algorithms and hardware architectures
for motion estimation in the latest video codec standard H.264/AVC. The conclusion can

be summarized into five parts:

9.1. Adaptive Skip Mode Detection

The hardware cost of this part is 0.63K gate counts, 11 bytes and 40 bytes memory for
CIF size and 720p size video respectively. The video performance of our design is quite
similar the same as the JM9.0 and our design can save 77.13% to 11.62% of coding time

in difference sequences and QPs.

9.2. Mode filtering

This method can speed up the ovérall motion estimation process with the reduction of
modes for fractional motion estimation." With this algorithm, the hardware

implementation can be pipelined with higher efficiency and slightly performance loss.

9.3. Refined Quarter Pixel Motion Estimation

We propose a design for search range [-16, 15] integer motion estimation in H.264/AVC.
The algorithm uses the mode filtering to reduce the computational load of fractional
motion estimation and refined quarter motion estimation to enable four times of
parallel processing while lower computational complexity and low quality loss. The
hardware design consumes 44K gate counts, which only needs half of process element
counts and lower latency than other design. The power consumption of the design is

only 0.59mW for 30fps CIF sequences and 0.08mW for 30fps QCIF sequences. Therefore,
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the design is very suitable for medium frame size application such as mobile phone,

personal digital assistant (PDA) or video camera.

9.4. Parallel Multi Resolution Motion Estimation

We present a search range [-128, 124] parallel multi-resolution algorithm and
architecture of integer motion estimation for H.264/AVC. The algorithm uses PMRME,
MF and bit truncation to support large search range within 256 cycles. With data reuse
and parallel multi-resolution, we can save at least 91.91% of memory buffer and 55.1%
of bandwidth. The resulted hardware can save up to 48.9% of area cost and 62.1% of
memory cost compared to the previous approach for 720p processing. With above
features, the proposed design is very suitable for larger search range application such as

HDTV in a more economical way.

9.5. 1080p High Profile Encoder Chip

We integrate the PMRME architecture”into a high-profile H.264/AVC encoder which
supports 1080p bi-directional motion estimation within 512 cycles. The memory size is
11.912 K-bytes and the memory bandwidth is 6.85 K bytes per MB. The design is finally
synthesis by UMC 0.13um CMOS process under 145 MHz to support 1080p @ 30fps.

9.6. Future Work

We have finished several fast motion estimation algorithm and architecture to support
H.264/AVC high profile encoder, while the next generation of H.264 — Scalable Video
Coding (SVC) [38] has become increasingly important because a variety of end-users
with different available bandwidths and processing capabilities may request the same
multimedia material. The most important scalability dimensions are for different picture
size (spatial), frame rate (temporal), and image quality (signal-to-noise) resolutions.

Thus, we have to further modify our algorithm and architecture, and try to find a
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trade-off between the performances and cost to support SVC in an efficient way. This is

another challenge need to complete in our future.
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