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摘要 

 在本文中，我們提出了一個基於三維粒子濾波器的多物體追蹤及對應

技術，利用多個二維物體追蹤的結果，建立起物體在三維空間中的機率分

佈，並透過二維三維資訊的交換，更新及預測這個分佈的變化。同時，這

個三維的機率分佈，也可以幫助我們修正二維追蹤的結果，以及建立起各

視野間物體的對應關係，並且能夠自動的修正錯誤的對應關係。有了物體

的對應關係，就可以解決物體交錯所造成的追蹤錯誤，並且能夠更加正確

的估測三維物體的機率分佈，使多物體的追蹤和對應更加準確而可靠。 
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Abstract 

  

 In this thesis, we propose a 3-D particle filter based objects tracking and 

correspondence system. Through the 2-D tracking results, we can predict and 

update the probability distribution of moving objects in 3-D domain. With such 

probability, we can not only refine the 2-D tracking results but also construct 

the correspondence of objects in different camera views. In addition, our 

system is able to correct the correspondence automatically based on some 2-D 

and 3-D clues. With the object correspondence, the occlusion problem can be 

solved easily and the 3-D probability distribution of moving objects can also 

be estimated more precisely. These advantages make the results of objects 

tracking and correspondence more robust and reliable. 
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Chapter 1 Introduction 
Surveillance systems have attracted more and more attention in recent years. With an 

intelligent surveillance system, we can automatically detect and track moving objects. 
Furthermore, we can recognize one person’s identity and decide the occurrence of an abnormal 
event. Based on the number of cameras, surveillance systems can be classified into 
single-camera surveillance systems and multi-camera surveillance systems. A single-camera 
surveillance system cannot handle the occlusion problem whereas a multi-camera surveillance 
system can integrate the information from several cameras to solve this occlusion problem and 
make the tracking result more reliable. With calibrated cameras, we can use the internal and 
external parameters of cameras and 2-D tracking results to construct the correspondence relation 
and then to estimate the location of moving objects in the 3-D domain. Moreover, the heights 
[24] of the moving objects can also be estimated to give us extra information for objects tracking 
and correspondence. Even though we may also use 2-D tracking results to find the 
correspondence relation among uncalibrated cameras, our research focuses on a surveillance 
system equipped with multiple calibrated cameras. With calibrated cameras, the correspondence 
problem becomes much simpler. In Figure 1-1(a), we show different views of multiple cameras; 
while in (b), we demonstrate the objects tracking and correspondence results of our system. 
 

(a)The environment of our surveillance system (b)Objects tracking and correspondence of our 
surveillance system 

Figure 1-1 Multi-camera surveillance system 
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In this thesis, we propose a 3-D particle filter based objects tracking and correspondence 
system. The main idea is that the motion detection problem can be described as a probability 
distribution problem. Here, we assign higher probability values at those 3D positions where 
some moving objects are likely to be present. Since the probability distribution of moving 
objects in the 3-D domain may not be Gaussian distribution, we use a group of particles to 
approximate this distribution. Moreover, since this distribution combines all the information 
from different camera views, it can refine the 2-D tracking results and construct the 
correspondence relation by back-projecting all 3-D particles onto 2-D image planes. When the 
correspondence has been constructed, the occlusion problem in 2-D image planes can be solved 
easily by fusing other camera views’ 2-D tracking results, which belong to the same 3-D moving 
object. In addition, we can classify all the 3-D particles into different moving objects in the 3-D 
domain. The major advantage is that we will neither just focus on the moving objects which have 
the most 3-D particles nor ignore the ones which have the fewest 3-D particles. By exchanging 
information between 2-D domain and 3-D domain, our system can automatically check if the 
correspondence relation is correct. The number of the 3-D particles varies dynamically according 
to the correspondence results. For example, if there is an object in a 2-D image plane which 
cannot build the correspondence with other camera’ views, we will give more particles along the 
path where this object may appear in the 3-D domain. Also, if some 2-D image planes detect new 
objects, we will use the same method to generate 3-D particles. By adjusting the number of 3-D 
particles adaptively, we can dynamically update the 3-D probability distribution of moving 
objects and make our system more flexible and robust. 
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Chapter 2 Backgrounds 
In this chapter, we will introduce some existing methods for moving objects detection, 

tracking and correspondence. In 2.1 and 2.2, we will integrate and discuss some moving objects 
detection and tracking methods, which are popular in recent years. In 2.3, we will discuss some 
methods which focus on how to fuse the information from different view of cameras and how to 
establish the correspondence of moving objects in each camera view. 

 

2.1 Motion Detection 
In this section, some popular methods about how to detect moving objects in a complex 

background are to be discussed. The detection process is very important since better detection 
algorithms support better tracking and correspondence results. Since all of these methods have 
advantages and disadvantages, we usually choose a suitable algorithm according to the 
environment of the surveillance system. 

 

2.1.1 Background Subtraction 
Background subtraction is a method to detect moving regions in an image by taking the 

difference between the current image and the reference background in a pixel-by-pixel fashion. 
This technique is developed especially for surveillance systems with static cameras since the 
reference background model is needed. After subtraction, each pixel of residuals is then 
classified as foreground if its intensity is larger than a given threshold; otherwise the pixel is 
classified as background. Although this method is quite simple and costs low computation, it is 
very sensitive to the image noise and the variation of illumination. Stauffer [1] uses a set of 
Gaussian distributions  to represent a pixel’s value. In other words, the intensity at each pixel in 
the reference background follows the distribution of a Gaussian mixture model (GMM). The 
difference between the current image and the reference background is obtained by measuring the 
distance of each point to its corresponded set of Gaussian distributions. Moreover, the parameters 
of Gaussian distributions will be adjusted as time goes on. As a result, the background model 
becomes more precisely and flexibly. However, the detection results are still degenerated by 
shadows and highlights. Horprasert T [2] utilizes the concept of color constancy of human eyes 
to separate the information of color and intensity. It can not only segment the moving regions in 
an image but also tell if some pixels of the moving regions belong to shadows or highlights. As 
Figure 2-1 shows, the upper-left picture is the reference background and the upper-right picture 
is the current image. In the lower-left figure, the blue region represents the detected moving 
object, and the red region indicates the shadows and highlights. The lower-right picture shows 
the final result of detection. 
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Figure 2-1 Horprasert’s method [2]
Upper-left is the reference background, upper-right is the current image. In the lower-left picture, the 
blue region is the detected moving object and red region is shadows and highlights. The lower-right 
picture is the final detection result. 

 
Duque [3] takes the temporal differencing results into consideration. The detected moving 

regions obtained by both temporal differencing results and background subtraction results can 
reduce the influence of noise.  
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2.1.2 Temporal Differencing 
Temporal differencing is a method to detect moving regions by taking the difference 

between successive images. We can use a given threshold to distinguish moving parts from static 
parts. Although this approach needs low computation and is not sensitive to the environment, it 
can only detect moving objects. That is, if an object stops to move, then it will be misclassified 
as a part of background. In addition, sometimes the detection results are not reliable because the 
detected regions are usually not complete and have many holes. Fu-Yuan Hu [4] does some 
morphological operations and GMM detection on the results of temporal differencing to 
eliminate these holes. S Dubuisson [5] uses a particular set of Gabor filters to filter the residuals. 
The contribution of such filters is to emphasize the moving regions. As Figure 2-2 shows, the left 
figure illustrates the original result, and the right figure shows the results after using Gaber filters. 
After the filtering, we put some particles randomly on the moving regions, with the number of 
particles being proportional to the magnitude of motion. As Figure 2-3 shows, in the left figure 
the white particles represent the locations with larger motion. By applying some classification 
methods, we can cluster the small residuals to accomplish the detection task. 

 
 

 
Figure 2-2 The illustration of the results before and after Gabor Filters [5]
Left one is the original results of time differencing, and right one is the results after 
applying Gabor filters. 

 
Figure 2-3 The example of detection result by applying Gabor Filters [5]
Left figure is the detection results after applying Gabor filters, white particles represent 
the points used to clustering, and the right figure shows the final detection results.  
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2.1.3 Optical Flow 
Optical flow is a method to represent each pixel by a function of time and location. If along 

the time a moving point only changes its location while keeps its intensity values unchanged, 
then we can estimate its motion vector. The pro of this method is that we can extract moving 
objects from the background even over a dynamic camera system. In addition, by classifying the 
motion vectors of each pixel we can further segment and distinguish different moving objects. 
The con of this method is that it costs a lot of computation and is not suitable for real-time 
surveillance systems. 

 

2.1.4 Learned Classifier 
Learned Classifier method needs to know the objects which are going to detect. That means 

we need to train a set of classifiers at first based on the features of objects. Figure 2-4 illustrates 
some examples of training data for detection. However, there are lots of features that can be 
selected to train the classifiers and Figure 2-5 illustrates one of the selections. The pro is that if 
the amount of the training data is large enough then the performance of this method can be very 
good. In addition, the application of this method is not limited to static camera systems. The con 
is that this method can only detect specific kinds of objects and it needs a large amount of 
training data to “learn” these objects. V Nair [6] proposes a method which doesn’t require much 
training data at first. Instead, his system can learn the features of objects online by combining the 
motion information of the moving objects. Hence, his system can learn the objects’ features 
adaptively. 

 

 
Figure 2-4 Training data[6]

The left figure shows some training examples of “people”.  
The right figure shows some training examples of “background”. 
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Figure 2-5 A example of training features[6]

     
Many detection methods contain more than one working principle. For example, Dongxiang 
Zhou [7] proposes a method which integrated all the aforementioned concepts. Since each 
method has its pros and cons, we may combine different methods to achieve better detection 
results. 
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2.2 Motion Tracking 
In the previous section, we have introduced several detection methods. In this section, 

motion tracking methods are to be discussed. Motion tracking is to track moving objects from 
one frame to another in an image sequence and it is the key process of a surveillance system. 
Some major types of motion tracking techniques will be introduced in the following sections. 

 

2.2.1 Region-Based Tracking 
The basic component of a region-based tracking algorithm is a segmented region, called 

blob. The main idea is to track such a region in successive frames of an image sequence. 
Generally speaking, these kinds of tracking algorithms utilize the background subtraction to 
detect objects in the first place. Wren [8] describes the detected objects as small blobs. As Figure 
2-7 shows, by comparing the value with the reference GMM background model, each pixel of 
the foreground can be further classified into the corresponding blob. Then we can successfully 
track the object by tracking all of its small blobs. 
 

  
Figure 2-6The original image[8] Figure 2-7 The example of Wren’s 

region-based tracking method. 
The 2-D illustration of small blobs belongs 
to the same object [8]

 

McKenna [9] also uses the background subtraction technique to get the regions which 
possibly belong to the parts of moving objects and uses bounding boxes to select these regions. 
As shown in Figure 2-8, the left picture shows the original results of background subtraction, and 
the middle picture shows the results after classification. Each bounding box contains a part of 
moving object. The right picture illustrates the final results of McKenna’s algorithm. Based on 
the structures and color models of human bodies, we are able to classify the regions into different 
persons. Moreover, if the region involves only one person then it is denoted as “people”; 
otherwise, if it involves more than one human body, it will be denoted as “group”. The task of 
objects tracking can be accomplished by analyzing and tracking these regions. By comparing the 
color information with their color models, moving objects can be tracked successfully without 
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losing their identities even if these objects are partially occluded. 

Figure 2-8 The example of McKenna’s region-based tracking algorithm [9]
The left figure is the result of background subtraction, and the middle figure shows the 
segmentation of residuals which are marked by rectangles. There are three regions and two of 
them belong to the same person. The right one is the final tracking result.  

 
 

2.2.2Active-Contour-Based Tracking 
Active-contour tracking method is to track objects by representing their outlines as 

bounding contours and updating these contours over time. Paragios [10] tracks the moving 
objects in an image using a geodesic active contour objective function and a level-set 
formulation scheme. In Figure 2-9, there is a convergent process of active-contour-based 
algorithm. Active-contour-based algorithms can represent the moving objects more precisely 
than region-based algorithms. However, this method requires perfect detection results and needs 
manual selection at first. Consequently, it is difficult to start this kind of systems automatically.   

Figure 2-9 The example of Paragios’s active-contour-based algorithm[10]
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2.2.3 Model-Based Tracking 
Model-based tracking algorithms need to build the prior structure models of the objects at 

first and then build the model for each candidate of target. Moving objects are tracked by 
matching the prior model with the model of the target candidates. The definition of rigid objects 
and non-rigid objects are quite different. Rigid objects such as cars can be tracked by comparing 
their 3D generic models with the reference models [11], as shown in Figure 2-10 . On the other 
hand, the models of non-rigid objects, such as human bodies, are more difficult to build due to 
the possible deformations. Some models of human body [12] are shown in Figure 2-11. 
Model-based tracking methods usually need to maintain a lot of parameters to build the models. 
Hence, it is difficult to implement these model-based tracking methods due to their heavy 
computational loads. However, if we use fewer parameters to build the models, then these 
models may not be able to describe the objects precisely. 
 

 
Figure 2-10 3-D generic model[11]
The left figure shows some 3-D generic models of cars. The middle and the right figures show the 
models of the detected cars.  

 
（a）     （b）       （c）    

Figure 2-11 Different models of human body [12]
（a）stick-figure model of human body（Chen and Lee, 1995） （b）2-D contour model of human 
body（Leung and Yang, 1994）（c）volumetric model of human body（Hogg, 1994） 
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2.2.4 Feature-Based Tracking 
The main idea of feature-based tracking algorithm is to extract the features of moving 

objects for tracking. By comparing the features in an image sequence, the task of tracking is 
successfully done. Based on different features, the algorithms can be further classified as global 
feature-based methods, such as center of gravity[13], color[14], area[15]; local feature-based 
methods, such as line[16], vertex[17]; and dependence-graph-based methods, such as the change 
of structures among features. 

 
Nowadays many real-time surveillance systems adopt feature-based algorithms for objects 

tracking. Mean-shift method [19] and particle filter [21] are two popular algorithms. Generally 
speaking, color is the common feature for these two algorithms. The tracked objects are modeled 
in terms of their color histograms. Color histogram is to calculate the color distribution of a 
selected area. As shown in Figure 2-12, (a) is the color histogram of the target calculated from 
the region inside the green rectangle, while (b) is the color histogram of the candidate calculated 
from the region inside the red rectangle. By comparing the color histogram with the reference 
color model, moving objects can be tracked since the same objects should have similar color 
distributions. 

 

*q ( )k kq x

（a） （b）  

Figure 2-12 An example of color histogram [20]
（a）color histogram of the target（b）color histogram of the candidate 

 

Bhattacharyya distance is a popular similarity measure of color histogram. The value of 
similarity measure is obtained by multiplying the color histograms of the reference model and 
the detected object in a point-by-point fashion and then summing up the products. The value of 
the similarity measure ranges from 0 to 1, with a larger value indicating a more similar matching. 
The advantage of color histogram is that it keeps the information of the target even if the target 
object is under expansion, shrink, rotation, or deformation. In addition, it requires low expense of 
computation. In the following section, we will introduce the mean-shift algorithm and particle 
filter, respectively. 
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2.2.4.1 Mean-Shift Algorithm 
  Mean-shift is a mathematic tool used to find the local maximum of any known or unknown 

distribution. As long as we have the well definition of object model such as color histogram and 
appropriate similarity measure such as Bhattacharyya coefficient, mean-shift can help us search 
for the top of the distribution to achieve the task of object tracking in an image sequence. In 
Figure 2-13, the surface is constructed by calculating the similarity between each point and its 
corresponding point in the reference model. The red point is the initial position and it will 
converge to the blue point which is the estimated position of moving object after applying 
mean-shift algorithm.  

 

 

Figure 2-13 The illustration of the convergence of mean-shift  

 
This method is appropriate to be applied to real-time surveillance system due to its low 

computation. However, since mean-shift algorithm can only find the local maximum, it must be 
careful to choose the initial position otherwise it will converge to the wrong position. So the 
system using mean-shift algorithm for objects tracking must have self-correction ability. That 
means it can detect and correct the wrong tracking result automatically to make the performance 
robust and reliable. 
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2.2.4.2 Particle Filter 
If the moving objects in an image can be described as a probability distribution, then we can 

task the moving objects successfully by maintaining such a distribution precisely in an image 
sequence. Unfortunately, it is hard to estimate and update the distributions dynamically since 
these kinds of distributions usually do not belong to linear or Gaussian distributions. Particle 
filter algorithm provides a solution for such problem by using a group of particles to approximate 
the distribution. Through the prediction and update of each particle’s weight, the distribution of 
moving objects will be described correctly over time. As shown in Figure 2-14, the position of 
each black point which is so-called particle sampled form the objects’ distribution represents the 
possible position of the moving object. Each particle has different weight based on its similarity 
with the target model. The final position of moving object, the white point, is estimated by 
calculating the center of gravity of all these particles.  

 

Figure 2-14 the concept of particle filter 

The pro of particle filter algorithm is that the moving objects are described as a probability 
distribution approximated by lots of particles so the system has more chance to find the right 
positions of objects even under short-time occlusions. In Figure 2-15, top row shows the result of 
mean-shift algorithm while bottom row shows the result of particle filter and the red bounding 
box represents the final decision whereas yellow bounding box represents the decision of each 
particle with different weight. It is clear that the particle filter algorithm gives the better results 
than mean-shift algorithm. 

 

Figure 2-15 The comparison of mean-shift and particle filter[20]
Top row shows the result of mean-shift and bottom row shows the result of particle filter 
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2.3 Multi-Camera Correspondence 
In previous sections, we have introduced how to detect and track moving objects over 

single-camera surveillance system. In the following section, we are going to introduce how to 
track moving objects and construct the correspondence between multiple cameras. The system 
will have a broader view for objects tracking trough the cooperation of multiple cameras. In 
addition, when the correspondence relation has been established, the system will overcome some 
problems which are not able to be solved in single-camera surveillance system such as 
occlusions. Multi-camera correspondence can be roughly classified into region-based method 
and point-based method.  
  

2.3.1 Region-Based Methods 
Region-based methods usually represent the moving objects in an image as regions in one 

camera view and then compare the features of these regions with other regions in anther camera 
view to construct the correspondence relations. Color information is the popular feature used to 
establish the correspondence such as color histogram [21] or GMM color model [22]. Although 
this method is really simple, it is not reliable due to the variation of illumination. Also, the color 
information of objects in different camera views has an important impact on the correspondence 
result. For example, if two persons in different camera views dressed in the clothes with same 
color or two sides of clothes are different colors, it is easy to make mistakes in objects 
correspondence. 

 

2.3.2 Point-Based Methods 
Point-based methods construct the correspondence by comparing the features between 

different camera views based on some constraints of cameras. According to different geometric 
constraints, we can classify the methods into correspondence in 2-D domain and correspondence 
in 3-D domain. 
 

The concept of correspondence in 3-D domain is shown in Figure 2-16. The left figure is an 
example of indoor surveillance system and the right figure shows the top view of this indoor 
environment where the cameras mounted on the ceilings in a circle. Each camera monitors one 
view and then transmits the 2-D information of that view to 3-D domain. By fusing all 2-D 
information coming from cameras of different views, we can roughly estimate the positions of 
objects in 3-D domain. The correspondence relations are able to be constructed by 
back-projecting the 3-D estimations into each 2-D image plane. However, this method needs the 
camera calibration before the system starts to work.  

 

 14



 

Figure 2-16 An example of indoor surveillance system[23]

 
Utsumi [23] finds the COG (center of gravity) of the detected objects in each 2-D image 

plane. The points inside a detected region are called COG if they have the longest distances to 
their closest boundaries As shown in Figure 2-17, the left is the original residual after detection 
and the right figure illustrates the distance map of the residual and the black points are so-called 
COG. How to find the correspondence relations by COGs? First of all, we project COGs from all 
camera views to 3-D domain and use the Gaussian distributions to estimate the positions of 
objects in 3-D domain. Through the back-projection of 3-D Gaussian distributions to all 2-D 
image planes, we can compare the detected COGs with the projected COGs in each camera view 
to find the possible correspondence relations. 
  

 
Figure 2-17 An example of Utsumi’s method  [23]

The left one is the original residual. And the right one is the distance map where the 
black points are so-called COG. 
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Figure 2-18 The illustration of correspondence in 3-D domain by Utsumi’s method[23]
The objects are modeled as Gaussian distributions with ( )11,N hh SX  in 3-D domain 

where 1Xh and 1Sh  are mean and covariance of Gaussian distribution respectively. It 
is sill a Gaussian distribution after back-projection from 3-D to 2-D.  

 
 Black, Jamesa [24] uses the constraints of epipole plane to correspond objects in different 
camera views. As shown in Figure 2-19 it is an illustration of epipole plane where m1 and m2 are 
obtained by back-projecting the 3-D object located at M on image plane 1 and image plane 2 
respectively. The back-projection lines, Mm1 and Mm2, will go through Es1 and Es2 which are 
camera focuses. The epipole plane constraint tells us that Es1, Es2 and M are in the same 2-D 
plane called epipole plane and m2 will lay on ep11 which is the intersection line of epipole plane 
and image plane 2. 
 

Based on the epipole constraint, the center of each detected object in a 2-D image can project 
a line called epipole line on a 2-D image of another camera view and this epipole line will go 
through the center of the corresponding object belonging to the same 3-D object in that camera 
view. However, there may be some errors of 2-D tracking results. So the center of the 
corresponding object could not lay on the epipole line exactly. By combing this constraint and the 
2-D tracking results, the task of multi-objects correspondence can be achieved.    
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Figure 2-19 The illustration of epipole constraint [24]
Es1,Es2 are focuses of camera1 and camera2, M is the position of object in 3-D 

domain ,m1,m2are the back-projection of M to image plane 1 and image plane 2 
respectively, and  ep11 is the intersection line of epipole plane and image plane 2.  

Figure 2-20 Black, Jamesa’s correspondence method based on the epipole constraint [24]
There are epipole lines with different colors in four images above. T he color of the epipole 
lines of detected object in image1 is red and green, blue, and yellow are the colors of the 
epipole lines of image2, image3,and image4 respectively. The green rectangles in image and 
image4 are ground plane regions, and the yellow rectangles in image2 and image3 are 
occlusion plane regions. 
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 The correspondence method in 2-D domain doesn’t need the calibrated cameras. It only 
needs some clues of 2-D images in different camera views to find the correspondence relations. S. 
Khan [25] finds the overlap regions of current image and other images of different camera views. 
Only when the moving object appears in such overlap regions, it has the correspondence relation 
to the objects detected in other camera views. As shown in Figure 2-20, the range of each camera 
view is shown in the left figure and the grey point represents the object. We can find that the 
object is visible in camera2’s view but invisible in camera3’s view. The right figure is camera1’s 
view and the region of other camera’s views projecting on it. 
 

 
Figure 2-21 S. Khan’s correspondence in 2-D method  [25]
The left figure illustrates the ranges of three camera views The right figures is the 
camera1’s view. There are some lines indicated the regions of the overlap views from 
other camera’s views. We can easily find that the black point in the bottom of object is 
visible in camera1’s view and camera2’s view but invisible in camera3’s view.  

 
 
 J. Black [26] is to find the homography matrix between two 2-D images of different camera 
views. With this matrix, we can transform any point of current camera view to the point of 
another camera view. This method is much easier than the method using the epipple constraint. 
As shown in Figure 2-22, the blue lines are epipole lines and red points are the correspondence 
points using homography matrix transformation. 
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Figure 2-22 An example of J. Black’s method [26]
Viewpoint correspondence using: epipole line analysis and homography alignment 

 
 The tasks of multi-objects correspondence in both 2-D domain and 3-D domain are hard due 
to that the results are easier degraded due to the influence of noise or the inaccuracy of 2-D 
tracking results. 
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Chapter 3 Proposed Method 
In a multi-camera surveillance system, if we know the exact positions of moving objects in 

the 3-D domain, then the 2-D image planes are just the back-projection of the 3-D data onto 
different camera views. In other words, if we can track objects successfully in the 3-D domain, 
then the 2-D objects tracking problem is solved automatically. In practical situations, however, 
we only have 2-D images. Since the 2-D images have lost the depth information when projecting 
the 3-D objects onto 2-D images, it is difficult to deal with the occlusion problem when two or 
more objects are closer to one another. Hence, in our study, we try to find a method to combine 
the 2-D tracking results from different views of cameras and use the camera geometry constraints 
to estimate the 3-D positions of the moving objects. 

 
In this thesis, we use a group of 3-D particles with different weights to describe the 

probability distribution of moving objects in the 3-D domain. This probability distribution can be 
constructed and updated by 2-D tracking results. In addition, this probability distribution can also 
help the refinement of the 2-D tracking results since it fuses the information coming from all 
camera views. The multi-objects correspondence can be established by some clues obtained by 
back-projecting all 3-D particles onto the 2-D image planes of different camera views. The 
correspondence relations will help us to solve the occlusion problem which is hard to be 
accomplished in single-camera surveillance systems. Besides, the establishment of 
correspondence is also an important clue for 3-D particles’ classification and then the probability 
distribution will be more accurate to describe the moving objects in 3-D domain. The advantage 
of classification for 3-D particles is that the distribution will not only focus on some specific 
objects having better tracking results in 2-D image planes. When new objects enter, the 
probability distribution should be updated as soon as possible. So we can put extra 3-D particles 
along the paths where the objects may appear in 3-D domain based on the clues coming from the 
current 2-D tracking results. In addition, if the objects in some 2-D image planes are still not able 
to establish the correspondence relations, we can use the same method mentioned above to 
update the probability distribution. Consequently, the number of 3-D particles is variable which 
depends on the current situation. Moreover, our system has the ability to correct the 
correspondence relations automatically to make performance more robust and reliable.  
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3.1 2-D Objects Detection and Tracking 
In this section, we will discuss the method of 2-D objects tracking applied in our system. 

Each image of the sequence is applied background subtraction for objects detection. Then by 
comparing and connecting the detection results between successive images, the task of objects 
tracking is accomplished successfully. 
 

3.1.1 Background Subtraction Detection 
Since our system belongs to the static-camera surveillance system, we can build the 

reference background model for each camera view before starting the system. Then we can 
extract the foreground by taking the difference between current image and the reference 
background in a point-by-point fashion. However, the residuals are neither complete nor correct 
and need to do some posterior processing due to the influence of noise, variation of illuminations, 
and shadows. First of all, we use a given threshold of intensity to remove some noise and apply 
the method proposed in [3] to reduce the influence of illuminations and shadows. As shown in 
Figure 3-1, (a) is the residuals after a given threshold, (b) indicates the illuminations and 
shadows, and (c) is the final result obtained by eliminating noise, illuminations and shadows. It is 
clear that the influence of the shadows is reduced in this example. 

 

  

(a) the residuals after a given 
threshold 

(b) illuminations and shadows (c) final result 

Figure 3-1 a posterior process of background subtraction 

Then we apply the morphological operations to fill the holes to make the residuals more 
complete. As shown in Figure 3-2, figure (a) and (b) are the results before and after the 
morphological operations. 
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(a) the results before the 
morphological operations 

(b) the results after the 
morphological operations 

Figure 3-2 The results before and after the morphological operations  

 
Sometimes there is more than one object in an image. So we need to segment the objects 

from the residuals. First, we sum the residuals vertically to get the profile of moving objects in 
x-direction. The height of profile is proportion to the probability of moving objects appearance. 
So we can use a given threshold to eliminate some noise of the profile to segment the moving 
objects in x-direction, get the width of each moving object, and calculate the number of moving 
objects in that image. This process is shown in Figure 3-3 (a). Then we can sum the residuals in 
each segmented region horizontally to get the length of each moving object. Finally, each 
moving object in the image is marked as a bounding box as shown in Figure 3-3 (b). However, 
when two or more objects in an image become too closer, they will be detected as one object 
since there is no extra information to separate them.  
 

 

(a)an example of vertical 
summation of the residual.  

(b)final result  

Figure 3-3a illustration of objects detection applied in our system  
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3.1.2Mapping Objects 
Through the method mentioned above, we can do objects detection for each image. In order 

to do objects tracking, the detection result of each image should be connected in time domain. 
Our objects tracking method is to compare the detection results between successive images to 
correspond the moving objects in time domain. The concept can be explained by Figure 3-4. Left 
column is the illustration of all possible tracking results between successive images and the red 
rectangle represents the detected object at time t-1 while blue rectangle represents the detected 
object at time t. We can establish the correspondence relations of moving objects in time domain 
by analyzing their overlap regions. Right column represents the correspondence tables of moving 
objects at time t-1 and time t. Figure (a) is the one to one case where the moving objects at time 
t-1 correspond to different objects at time t respectively, figure (b) is the mergence case where 
the moving objects become closer at time t-1 and then merge to the same object at time t, figure 
(c) is the split case where the moving object at time t-1 splits into two objects at time t, figure (d) 
is the new objects case where there are more moving objects at time t than time t-1, and figure (e) 
is the leave case where some of moving objects at time t-1 disappear at time t.  
 

 
 

(a)one to one  

 
 

(b)mergence  

  

(c)split  
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 (d)new objects  

 

 

(e) leave   

Figure 3-4 the illustration of all kinds of tracking results  

 
 Through this way, we can track the moving objects in an image sequence and get the 
relations of these moving objects such as mergence, split, or new objects entering etc. It provides 
the useful information for multi-camera correspondence which will be discussed in the following 
sections. . 
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3.2Transformation Between 2-D and 3-D 
Before using multiple cameras for objects tracking and correspondence, the geometric 

relations between cameras should be established at first. With such relations we can project the 
2-D tracking results into 3-D domain and then fuse the information to achieve the cooperation of 
multiple cameras for objects tracking and correspondence. After camera calibration, we can get 
the intrinsic and extrinsic parameters of cameras which can be used for transforming the 
information between 2-D domain and 3-D domain. Figure 3-5 (a) illustrates the world coordinate 
of PTZ camera.  and  are the rotation center and projection center of camera respectively, 

 is the new projection center after the camera tilts 

RO CO

'OC φ  degree and r is rotation radius of 

camera. 

 

 

(a)model of camera setup (b)geometry of a horizontal plane with respect to 
a rectified camera and a tilted camera.  

Figure 3-5 a illustration of camera setup[27]

 
Each camera has its own world coordinate and some intrinsic and extrinsic parameters 

obtained by camera calibration. With these parameters we can easily transform information 
between 2-D and 3-D domain. Also we can get the rotation matrix and translation vectors for 
transformation between different world coordinates. The formula of transformation from 3-D to 
2-D is as follows, 
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where X, Y, Z represent the world coordinate,  represent the world coordinate with 
camera tilted

''' Z,Y,X
φ degree,  are image coordinate and the formula of transformation from 2-D 

domain to 3-D domain is as follows, 

'' , yx
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. Each pixel of an image can only emit a line instead of a corresponding point in the 3-D world 
coordinate since it loses the depth information. Giving different height h produces a 
corresponding point Z,Y,X on that line based on Eq 3-3. 
 
 We can get a set of 3-D lines emitted form the centers of bounding box in different camera 
views. If these detected objects correspond to the same 3-D object then those 3-D lines will 
intersect at the same point. But that intersection point may not exist due to the tracking errors. 
However, we can use the method proposed in [24]. Assume there are N objects in different 
camera views and their corresponding 3-D lines are iii ba λ+=ir  and . Then the 
estimated point can be approximated as  

Ni1 ≤≤
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 With these transformation formulas, it is easier and more convenient to develop the 
multi-camera tracking and correspondence algorithms. 
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3.3 3-D Particle Filter 
Before discussing multi-camera correspondence methods, we will introduce particle filter 

algorithm in more formal way. First, we will deduce the basic formula of particle filter and then 
discuss how to apply both 2-D and 3-D information in our surveillance system based on this 
mathematic tool. 
 

3.3.1 Particle Filter Algorithm 
Particle filter algorithm has been applied in objects tracking extensively. The concept of 

particle filter is to use a group of particles with different weights to describe the probability 
distribution of moving objects. So we can use the probability instead of exact value to describe 
the location of the object. As shown in Figure 3-6 the red points are the samples from the 
distribution and the more number of samples, the more accuracy of probability distribution. The 
blue point on the top of the distribution is the estimated location obtained by averaging all red 
points with different weights. Trough the prediction and update of the distribution, we can 
estimate the location of moving objects to achieve the tracking task.  

 

Figure 3-6 a illustration of particle filter 

 
Then we will use the mathematic formula to express the algorithm of particle filter. We 

should define some variables at first.  is the time index, k { }Nkxk ∈,  is the set of state 
sequence, and  is the set of measurement sequence. The estimation of object state at 
time k can be represented as 

{ Nkzk ∈, }
( )11, −−= kkkk vxfx  where ( )•kf  is an estimation function which is 

related to the object state at time 1−k  and , i.i.d noise at time1−kv 1−k . The measurement of 
object at time can be expressed as k ( )kkkk nxhz ,=  where ( )•kh  is a measurement function 
which is related to the current state and , i.i.d noise at time k .kn ( )•kf and are not restricted 
to be linear functions. So the probability distribution of object can be written as 

( )•kh
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. Based on these two equations, we can deduce ( )kk zxp :1|  from ( )1:11 | −− kk zxp . Eq 3-5 and Eq 3-6 
are the equations for updating and predicting of probability distribution respectively. By 
calculating these two equations iteratively, we can update the distribution of the moving object. 
 
 Generally speaking, the probability distribution of the moving object doesn’t belong to 
known distribution. Consequently, we use a group of particles with different weights written as 
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So we can regard these particles as the samples obtained from the distribution. Then the problem 
of how to predict and update the distribution becomes the problem of how to generate the 
particles and how to update their weights in the next time. Assume we can sample the 

particles,{ , from the importance density, } sN

i
i

kx 1:0 = ( )kk zxq :1:0 | , then ( )
( )kk

i
kk

i
i

k zxq
zxpw

:1:0

:1:0

|
|

∝  in Eq 3-7. 

Also, assume ( ) ( ) ( )1:11:0:11:0:1:0 |,|| −−− ⋅= kkkkkkk
i zxqzxxqzxq , that means we can sample{ } sN

i
i

kx 1=  

and  from { } sN

i
i

kx 11:0 =− ( )kkk zxxq :11:0 ,| −  and ( )1:11:0 | −− kk zxq respectively. With replacement, can 

be inferred as 

i
kw

 

 

( )
( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )kk

ii
k

i
k

i
k

i
kki

k

kk
i

kk
ii

k

kk
ii

k
i

k
i

k
i

k

kk
i

kk
i

i
k

zxxq
xxpxzpw

zxqzxxq
zxpxxpxzp

zxq
zxpw

1:0

1
1

1:11:0:11:0

1:11:01

:1:0

:1:0

,|
||

|,|
|||

|
|

−

−
−

−−−

−−−

∝

∝∝

:1

 Eq 3-8 

 
 
 

 28



.We can generate new particles through ( )kk zxq :1:0 |  and each particle’s weight can be calculated 
by Eq 3-8. Hence, we can get the probability distribution over time. Most of time, we will 

assume ( ) ( )1:1:0 || −= kkkk xxpzxq then the Eq 3-8 can be rewritten as ( )i
kk

i
kk xzpww |1 ⋅∝ − . Table 

3-1 shows the algorithm of particle filter.  
 

Table 3-1 algorithm of particle filter [28]

 
 

We can estimate the location of the moving object, , by averaging these particles with 
different weights and where 

meanX
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. However, the potential problem of this algorithm is that the variation of the weights will 
become more sever along the time. That means we will pay a lot of efforts to compute the 
particles with very small weights then the final distribution will still be dominated by some 
particular particles with large weights. The problem will be solved by the method of resampling. 
The idea of resampling is to remove the particles with excessively small weights and split the 
particles with large weights at each time. This concept is shown in Figure 3-7 and Table 3-2 
shows the algorithm of resampling. At first we evaluate the cdf of these particles according their 
weights and generate , ,from a uniform distribution. By searching the cdf from small 
to large value, we will find the value which is the smallest value bigger than then assign its 
corresponding particle to the new particle. So it is obvious that the particles with large weights 
will be sampled many times. On the contrary, the particles with small weights may not be 
sampled after all. 

iu sNi ≤≤1

iu
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Table 3-2 algorithm of resampling[28]

 

 

Figure 3-7 a illustration of resampling  
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3.3.2Proposed 3-D Particle Filter  
Nowadays, particle filter focuses on 2-D objects tracking. When having multiple cameras, 

we can extend the objects tracking from 2-D domain to 3-D domain and take the advantage of 
cooperation of multiple cameras by fusing their information together to achieve the mission of 
objects tracking. We propose a surveillance system based on 3-D particle filter to track moving 
objects in different camera views and construct their correspondence relations. Before starting to 

introduce our method, we define some variables and notations at first. { } tsN

s
s

tX 1
)(

= is the set of 3-D 

particles at time t where each represents a location in 3-D coordinate and  is the set 

of weights of . is the number of 3-D particles and it varies according to the current 

tracking and correspondence results. is the number of cameras and represents the 
number of detected objects in c th camera view at time t. is number of detected objects in 
3-D domain at time t. and 

( )s
tX { } tsN

s
s

tW 1
)(

=

{ } tsN

s
s

tX 1
)(

= tsN

cN )(cNt

tM
( )cNM tt ≥ , cNc ≤≤1  since the objects in 3-D domain may not be 

visible in all camera views all the time. 
 

3.3.2.1 First Generation of Particles 
First of all, we should generate some particles in 3-D domain as the initial state. We utilize 

the 2-D tracking results of different camera views to estimate the possible locations of moving 
objects in 3-D domain. The concept is shown in Figure 3-8. This tree illustrates all possible 
correspondence relations of objects in all camera views and each branch represents one 
correspondence relation where is the number of detected objects in each camera 
view at time 0. We use each estimated correspondence relation from each branch to emit some 
3-D lines from those detected objects’ centers in different camera views and then use the 
approximation method in 

( ) )(~1 00 cNNN

[24] to find the estimated intersection point of these 3-D lines.   

 
Figure 3-8 a illustration of tree 
All possible correspondence relations 
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There will be a lot of particles obtained by above method and then we will put some new random 

particles around those particles to get a group of initial particles, { } osN

s
sX 1
)(

0 = . In Figure 3-9, figure 

(a) demonstrates the 2-D tracking results in all camera views and figure (b) is the illustration of 
the initial particles in 3-D domain. 

(a)2-D tracking results in all camera views  (b)a illustration of initial particles in 3-D domain 

Figure 3-9an example of generating initial particles 
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3.3.2.2 Correction of Particles 

 We can get a group of 3-D particles,{ } tsN

s
s

tX 1
)(

= , through first generation or prediction of 

particles and the objects probability distribution in 3-D domain can be established by updating 
those particles’ weights. We update the weights of the particles by projecting those particles from 
3-D domain to 2-D domain to compare with the 2-D tracking results. Before starting to deduce 
the formula of updating weights, we will define the mapping function  more formally. It is 
a function mapping a 3-D particle into a 2-D image plane of c-th camera view and then find that 
particle’s corresponding object and it can be formulated as follows: 

( )•32I

 

 ( )( )
( )( )

( )( ) wcamera vie  thc inbox  boudingany  in fallt doesn' ,   , 0  
wcamera vie  thc inobject   thi ofbox  bounding  thein falls ,,    {,32 cX

cXicXI s
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, where nd  cNc ≤≤1 a ( )cNi t≤≤1 . ( )( )cX s
t ,Φ  which is a transformation function gives a 2-D 

coordinate value by back-projecting a 3-D particle, ( )s
tX ,into the 2-D image plane in c th camera 

view. The idea of the definition of each 3-D particle’s weight is that if the distance 

between ( )( )cX s
t ,Φ and the center of its corresponding bounding box is small then the weight 

becomes large due to its accurate correspondence and vice versa. The mathematic formulation is 
as follows. 
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( )x• and represent the 2-D coordinate value in x-direction and y-direction respectively. 

and representing the length and width of i-th object’s bounding box in c-th camera 
view are the normalization terms to make the definition of weight more reasonable. Without 
these two terms, the weight will be in proportion to the size of detected objects.  

( )y•
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After these computation, we can finally get these 3-D particles with different 

weights, , at time t.   ( )
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3.3.2.3 Shrink of Particles 
In each camera view, every object has a subset of the 3-D particles. When projecting such 

subset of 3-D particles into the 2-D image plane, they will all fall in its corresponding 2-D 
object’s bounding box. In other words, this subset of 3-D particles can be visualized as the 
distribution of that 2-D object in 3-D domain. Consequently, we can estimate the position of this 
2-D object by finding the center of gravity of its corresponding subset of 3-D particles. 

 
We condense entire 3-D particles to the centers of gravity of all subsets. The information of 

objects is still complete even if the number of particles reduces from to . In more 

formal way, every 2-D object can get its center of gravity and weight in 3-D domain through the 
transformation function and 

tsN ( )∑
=

cN

c
t cN

1

( )icXX tM ,, ( )icXW tM ,,  as shown in Eq 3-15 and Eq 3-16 where 

represent all 3-D particles, c and  represent i-th object in c-th camera 

view , nd
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As shown in Figure 3-10, the red points are the 3-D particles after weight updating and the blue points 
are the centers of gravity after shrink. By back-projecting these centers of gravity to its corresponding 

2-D image plane, we can get the refined location of 2-D tracking result, ic
ty , , which is written as 

 

 ( )( )cicXXy tM
ic

t ,,,, Φ=  Eq 3-17 

 
. These centers of gravity also can be utilized to establish the correspondence relations between 
2-D detected objects in all camera views since if some 2-D objects correspond to the same 3-D 
object then their centers of gravity in 3-D domain should be very close. The method of 
correspondence will be discussed in 3,4. 
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Figure 3-10 3-D particles and the centers of gravity after 
shrink. Red points are all 3-D particles and blue points are 
the center of gravity after shrink 
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3.3.2.4 Prediction of Particles 
We can use the centers of gravity obtained by shrinking the 3-D particles to predict the 

objects probability distribution. Based on the correspondence relations, we can classify these 
centers of gravity to their corresponding 3-D objects and then use them to predict 3-D objects’ 
positions in the next time. 

 

We generate new particles for each 3-D object by using the method of resampling 

mentioned in 3.1. Each center of gravity belonging to the same 3-D object will split as several 
new particles in proportion to its weight. We define an indicator,

pN

( )•23I , which gives the index of 
its corresponding 3-D object from a 2-D object. For example, ( ) kicI =,23 represents that the i-th 
object in c-th camera view corresponds to k-th object in 3-D domain. This indicator is obtained 
after establishing the correspondence relations. The algorithm of Resample(•) is referred in Table 
3-2. The centers of gravity belonging to the same 3-D object with different weights will split into 
equal weight 3-D particles through this function. The estimated state of these particles can be 
written as 
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, where is normalized as ( icXW tM ,, )
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Eq 3-20 

 
In Figure 3-11, figure (a) is the 2-D tracking results with objects correspondence. The 2-D 
objects belonging to the same 3-D object have their bounding box in the same color. Figure 
(b) demonstrates the 3-D particles under different situation. The red points describe the 
current probability distribution, the blue points represent the centers of gravity after shrink 
and the yellow points are the prediction particles describing the probability distribution in 
the next time.  
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(a)2-D tracking results with objects 
correspondence 

(b)3-D particles under different situations  

Figure 3-11 2-D tracking results and the illustration of 3-D particles 

 
When detecting a new object entering a 2-D image, the probability distribution of 3-D 

objects should be updated immediately. As shown in Figure 3-12(a), the2-D image detects a new 
object in the right top sub-image with yellow bounding box. Then along the 3-D line emitting 

from the center of this bounding box, we will put  new particles on the particular locations 

where the object may appear based on some known information such as the normal height of a 
person. As shown in 

pN

Figure 3-12(b), the yellow points are the prediction particles and the green 
points represent the particles of a new object. By adjusting the weights of these particles through 
2-D tracking results, the new probability distribution can be updated. As for the objects which 
can not establish the correspondence relation, we will use the same method to emphasis the 
positions where the 3-D objects of those corresponding 2-D objects may appear. As shown in 
Figure 3-13(a), the object selected by the yellow bounding box in the right bottom sub-image 
still doesn’t establish the correspondence relation yet. In Figure 3-13(b), the yellow points are 
prediction particles and the green points represent the extra particles generated for that 2-D 

object. As a result, the total number of particles is puncrspnewtst NMMMN ⋅++= ++ )( 11  in the 

next time where and are the summations of the detected new objects’ number and 

the objects not establishing the correspondence relation in all camera views respectively. 

newM uncrspM
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(a)The right top sub-image detects a new object (b)the yellow points are the prediction particles 

and the green particles are the extra particles for 
the new entering objects  

Figure 3-12 Extra particles for new entering objects 
 

 
(a)The object in the right bottom sub-image still 
doesn’t find the correspondence relation.  

(b) The yellow points are prediction particles and 
the green points are the particles not establishing 
the correspondence relation yet. 

Figure 3-13 extra particles for the objects still not establishing the correspondence relations. 
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3.4 Information Exchange between 2-D and 3-D 
 The information of objects in 3-D domain is only obtained by the 2-D tracking results in 
different camera views. By using the clues of 2-D images, we can find the correspondence 
relations. The occlusion problem can be solved since we can project the 2-D information to 3-D 
domain, fuse them together and then back-project them to the 2-D image planes over the system 
with multiple calibrated cameras.  
 

3.4.1 Construction of Correspondence 
Based on the proposed 3-D particle filter, every object in each camera view has its 

corresponding center of gravity in 3-D domain. By back-projecting this center of gravity to each 
2-D image plane, we can find which object it belongs to in all camera views to find the 
correspondence relation. If some 2-D objects belong to the same 3-D object then the distance 
between their centers of gravity in 3-D domain must be small. In theory, those centers of gravity 
will have similar correspondence relation in each camera view after back-projecting them to 2-D 
image planes. Our correspondence algorithm is based on such idea to develop. 

 
 How to decide the similarity of these centers of gravity? We use a score function to compare 
one center of gravity with another of their correspondence relation in each camera view and this 
function is written as 
 

 ( )
⎪
⎩

⎪
⎨

⎧
≠≠≠−
=≠≠

=
otherwise                       ,0

ba and0,b0,a  if  , 1
ba and0,b0,a  if  ,  1

,baP  Eq 3-21 

 
, it means that if two centers of gravity map to the same 2-D object in one camera view, their 
similarity score adds one point and that if they map to different 2-D object, the similarity score 
minuses one point. But if any one of the centers of gravity doesn’t map in that camera view, the 
similarity score will not change. In the following sections, our proposed method of 
correspondence will be discussed. We will introduce how to establish a correspondence table at 
initial state in 3.4.1.1 and how to update and correct the correspondence table after initial 
establishment in 3.4.1.2. 
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3.4.1.1First Construction of Correspondence 
At first, we must choose one camera, , as the reference camera to decide the order of 

the 3-D objects based on the 2-D tracking result in that camera view. Then we can decide which 
index of the 3-D objects the 2-D object in other camera view belongs to. The formula of how to 
choose is written as 

startC

startC
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Since the number of 3-D objects can only be estimated by 2-D images in all camera views, we 
choose the camera with the most detected objects. If there is more than one camera satisfying 
this condition, we will calculate which camera’s corresponding centers of gravity has the most 
corresponding objects in all 2-D images. Then we will decide that camera as the reference 
camera and assign the indicator as ( )•23I
 

 ( ) kkCI start =,23 ，   01 Mk ≤≤ Eq 3-23 

 

.The correspondence table is defined as ( )( )•kT0 . For example, ( )( )cT k
0  gives the number of the 

ordered 2-D object in c-th camera view by back-projecting k-th 3-D object. So the 
correspondence table of -th camera can be assigned as  startC
 

 ( )( ) kCT start
k =0  Eq 3-24 

 
. Further, we will define a buffer, ( )( )•kBuff , saving for the all correspondence relations of the 

centers of gravity. For example, ( )( )c
k NjBuff :1, represents a possible correspondence relation of 

k-th 3-D object in camera views where cN ( )knumBuffj _1 ≤≤ . represents the 

number of possible correspondence relations saving in

( )knumBuff _

( )( )•kBuff  and it is increasing during the 

process. We put ( ) ( )start
k CT0 into ( )( )•kBuff at first. Then we will classify the 2-D objects in other 

camera views by the following equation, 
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, where startc CcNc ≠≤≤ ,   1 and ( )   1 0 cNi ≤≤ . 
The idea of this equation is that we can project the center of gravity of -th object in -th 
camera view to each camera view  then we can get the correspondence relation formulated 

as

i c
'c

( )( )'032 ,,, cicXXI M . By comparing ( )( )'032 ,,, cicXXI M  with ( ) ( )', cBuff k •  one by one, we can 

find the most possible corresponding 3-D object of i-th object in c-th camera view. If it 

correspond to k-th 3-D object, then we put this correspondence relation, ( )( )'032 ,,, cicXXI M ,in 

to and the size of , ( )( )•kBuff ( )( )•kBuff ( )knumBuff _ , also increases. The correspondence table is 
updated as 
 

 ( )( )( ) icT icI =,
0

23  Eq 3-26 

 
. After establishing the correspondence relation for each 2-D object, we can finish the initial table 
and get the indicator, , from 2-D domain to 3-D domain. However, not every 2-D object can 
find its correspondence relation in the initial state. For example, if there are more than one 
objects in a 2-D image corresponding to the same 3-D object or if one 2-D object correspond to 
more than one 3-D objects, these 2-D objects will try to find their correspondence relations in the 
next time.  

( )•23I
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3.4.1.2Correspondence Update 
We need to check and update the correspondence table every now and then based on the 

current 2-D tracking results and the distribution of 3-D particles to keep the correctness of 
correspondence relations. The update method can be described as 
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=≤≤

=
cN

c

k
ttM cTcicXXIPicI

1

''
32

Mk1
k     23

'
t

,,,,max  arg,  ) Eq 3-27 

 
The concept of this equation is that by comparing the current center of gravity with each 3-D 
object’s correspondence relation in the correspondence table, we can find the most possible 
corresponding 3-D object to update the indicator. The correspondence table can also be updated 
as  

 ( )( )( ) icT icI
t =,23  Eq 3-28 

 
. Sometimes the 2-D objects need to reconstruct their correspondence relations if they still don’t 
establish the correspondence relations or their correspondence relations are considered as the 
failure cases. 
 

How to decide if the correspondence relation is wrong is the main point of our algorithm. 
Our method to correct the correspondence automatically is classified into two parts. The first part 
is based on the 2-D objects tracking and correspondence and the second part is based on the 
distribution of 3-D particles. We will discuss as follows, 

 
I. Based on 2-D objects tracking and correspondence results： 

 One object splits into two objects： 
If two objects are too closer at initial state, we will consider them as the same object. Along 
the time, they will split into two objects then our system will detect this situation and revoke 
the original correspondence relation. Besides, we will reconstruct these two objects’ 
correspondence relations. 
 

 More than one 2-D objects correspond to the same 3-D object： 
When more than one 2-D objects in a 2-D image correspond to the same 3-D object, we will 
revoke their correspondence relations due to this contradiction and then reconstruct the 
correspondence relations in the next time.  
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II. Based on the distribution of 3-D particles： 
    When establishing the objects correspondence relations, we can use a classification 

function, , to find the corresponding 3-D object for each 3-D particles, and it can be 
written as 

( )•C
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   .Each 3-D object has a set of 3-D particles to describe its distribution. We can correct the 

correspondence relation by observing the projection results in all camera views of these 3-D 
particles. By calculating the distribution of the 3-D particles falling in a bounding box of 2-D 
object, we will revoke that 2-D object’s correspondence relation if any case occurs as 
follows: 

 
 There is no 3-D particles falling in the bounding box：  
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tsN
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t icXIδ  Eq 3-30 

 
, where , , and represents the number of 3-D particles. That 
means the current 3-D probability distribution doesn’t contain the information of this 2-D 
object which is i-th object in c-th camera view. So we will revoke its original correspondence 
result. 

   1 cNc ≤≤ ( )cNi t≤≤1 tsN

 
 

 The incoherent correspondence relations of the original one and the estimated result： 
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Assume the 2-D object correspond to -th 3-D object, but the most number of 3-D particles 
inside its bounding box belongs to -th 3-D object. Then we will revoke its original 
correspondence relation due to the incoherence of correspondence results. 

k
'k

 
 
 

 44



3.4.2 Occlusion Handling 
When two or more objects in a 2-D image become closer, they will be covered by each 

other since they lose the information of depth when back-projecting from 3-D domain to 2-D 
domain. It is so-called occlusion problem which will degrade the 2-D tracking results. In order to 
solve this problem, we use the multiple cameras to estimate the positions of the moving objects 
in 3-D domain. Then the 2-D objects under occlusions can be orientated by the 3-D information 
and the performance of 2-D tracking results will be good and stable. 

 
If the correspondence relations have been established before occlusions, then we can 

however use the 3-D particles belonging to their corresponding 3-D objects to locate their 
positions in a 2-D image. Moreover, the occluded objects in a 2-D image will be selected within 
the same bounding box. This bounding box provides the important information for positioning 
objects. The occlusion problem can be solved by two steps: 
 
I. Orientation by 3-D particles： 

Since the correspondence relations have been established, the location of the occluded 
object can be obtained by averaging the centers of gravity of other 2-D objects belonging to 
the same 3-D object. For example, assume the occluded object is i-th object in c-th camera 
view, then its estimated center of gravity is written as: 
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II. Correction of location and modification of size by using the merging bounding box： 

We use the boundary of the merging bounding box to correct the location of the occluded 
objects. If A and B are both inside the same bounding box and A is near the left side of the 
bounding box in respect to B, then we assign this left side of the merging bounding box as 
A’s then move A’s bounding box here and vice versa. After correcting the locations of the 
occluded objects, we will adjust the size of the bounding boxes. If the distance of A and B is 
small, it means that they encounter the sever occlusion so the merging bounding box can 
even approximate these two objects’ bounding box. Then we expand their bounding boxes 
through a fuzzy adjustment function. The size adjustment of the bounding box is as follows,  
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,where and are the widths before and after adjusting, s 

the width of merging bounding box, is the distance between the centers of occluded 
objects and a ,

icwid , ic
testiwid ,_ tocclusionwid _ i

d
T are the parameter for fuzzy function. 

 
The original result is shown in Figure 3-14 (a), we can find that the performance is not good 

due to the estimation error and the inappropriate size of the bounding box. The better result is 
shown in Figure 3-14 (b) after fuzzy adjustment. We can find that the locations and the sizes 
of bounding box are more appropriate than the original result.  

 

 
(a)The original result (b) The result after fuzzy 

adjustment 
Figure 3-14  a illustration of fuzzy adjustment 
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3.5 Overall System Structure 
The flow chart of our system is shown in Figure 3-15. When our system starts to work, first, 

we will spray lots of initial particles on the locations where objects may appear in 3-D domain 
based on the current 2-D tracking results in all camera views. Then we continue to track moving 
objects in each camera view. By back-projecting all particles from 3-D domain to 2-D domain, 
the weights of particles will be updated by comparing their projection results with the 2-D 
tracking results. Condensing all the 3-D particles into the centers of gravity which have the one 
to one relations to the 2-D objects, we can establish and update the correspondence table and 
refine the 2-D tracking results. Finally, we can use these centers of gravity to predict the next 
positions of the 3-D particles. The concept of our system is to exchange the information between 
2-D domain and 3-D domain. The objects probability distribution in 3-D domain is updated by 
passing the 2-D tracking results to 3-D domain and the 2-D tracking results can also be refined 
by the back-projecting their centers of gravity in 3-D domain. Through this cooperation, our 
system can accomplish the multiple objects tracking and correspondence over the multi-camera 
surveillance system. 

 
 

Figure 3-15 the flow chart of our system 
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Chapter 4 Experimental Results 
Our system is developed in an indoor environment with four static and calibrated PTZ 

cameras mounted on the ceiling. In the following sections, we will demonstrate some 
experimental results of our algorithm. There are two sequences, seq1and seq2 demonstrating a 
two-people case and a three-people case, respectively. The bounding boxes of the detected 
objects in different camera views t are in the same color for the same 3-D object. Moreover, a 
yellow bounding box represents an object, whose correspondence relation hasn’t been found yet. 

 
The first experimental result demonstrates the tracking results under occlusions. The 

location of an occluded people can be estimated by the cooperation of other 2-D objects 
belonging to the same 3-D people. In Figure 4-1, the left column shows the detection results 
obtained by background subtraction and there is no correspondence relation at all. The right 
column shows the results of our system. At t = 603 the correspondence relations have been 
constructed. At t = 606 two people in the lower-right image become closer and the occlusion 
problem occurs. At t = 642 these two people separate from each other but other two people in the 
lower-left image start to occlude each other. We find that our system can handle the occlusion 
problem in a reasonable and efficient way. 

 

Seq1 , t =603  
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Seq1 , t =606  

 
Seq1 , t = 618  

  
Seq1 , t =642  
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Seq1 , t = 654  

Figure 4-1 the tracking and correspondence results in seq1 under occlusions 

 
When occlusion occurs, the size of the bounding box only keeps the same size of the 

bounding box before occlusion. However, we can use the information of the merged bounding box 
to modify the size of the occluded objects’ bounding boxes through a fuzzy adjustment. In Figure 

4-2, two people encounter the occlusion situation from t = 612~621. At t = 615 and 618 the 
occlusion become so severe that the size of each occluded object approximates the size of the 
merged bounding box. 

 

 
Seq1 , t = 612  Seq1 , t = 615  

  
Seq1 , t = 618 Seq1 ,  t = 621 

Figure 4-2 modification of size by a fuzzy adjustment (Seq1) 
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In Figure 4-3, it is anther occlusion example for three people. We can find that the sizes of 
the bounding boxes of the occluded people become more similar to the merged bounding box 
and then recover to the original size when these two people separate from each other.  

 

 
Seq2 , t = 1244 Seq2 ,  t = 1246 

  
Seq2 , t = 1248 Seq2 , t = 1250 

Figure 4-3 modification of size by a fuzzy adjustment (Seq2) 
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In the following demonstration, it shows that our system can check the correctness of the 
correspondence relations and revoke the unreasonable correspondence relations automatically. In 
Figure 4-4, at t = 1196 the object with the green bonding box in the upper-left image has a wrong 
correspondence relation. At t = 1198 the objects with the same green bounding box in the other 
camera views are revoked their original correspondence relations and at t = 1120 the object in the 
upper-left image is also revoked its correspondence. At t = 1202 most of the objects have 
established their correspondence relations. 
 

 
Seq2 , t = 1196 

 
Seq2 ,  t = 1198 
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 Seq2 , t = 1200 

 
Seq2 , t = 1202 

Figure 4-4 the demonstration of self-correction of our system 
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When a 2-D image detects a new object, our system will find its correspondence relation as 
soon as possible. In Figure 4-5, at t = 669 a new object is detected in the lower-right corner. After 
that, our system will spay some new 3-D particles over the locations where this object may appear. 
At t = 675, we can find that object has established its correspondence relation. 

 
Seq1 , t = 669 Seq1 ,  t = 672 

 
Seq1 , t = 675  Seq1 , t = 678 

Figure 4-5 Establishment of the correspondence relation for the newly detected object  

 If two objects were initially thought to be a single object due to occlusion, as shown in the 
lower-left image in Figure 4-6 at t = 675, and then separate from each other, our system will revoke 
the original correspondence of the merged object and reconstruct the correspondence relation for 
each of them, as shown in the lower-left image of Figure 4-6 at t = 678. 
 

 

 Seq1 , t = 675 
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Seq1 ,  t = 678 

Figure 4-6 the reconstruction of correspondence relation when splitting  
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Chapter 5 Conclusion 
We construct a surveillance system with multiple cameras for moving objects tracking and 

correspondence. Our system uses the 2-D tracking results from different camera views and a lot of 
3-D particles with different weights to estimate the probability distribution of moving objects in 
the 3-D domain. Although Utsumi[23] also uses a similar concept to describe the moving objects 
as some Gaussian distributions in the 3-D domain, our method is more flexible and reasonable 
since the distribution of moving objects usually doesn’t follow a Gaussian distribution. Through 
the information exchange between the 2-D domain and 3-D domain, this probability distribution 
can be correctly updated. This distribution can also refine the 2-D tracking results and help each 
object in the 2-D domain to find its correspondence relation. Moreover, our system may check and 
update the correspondence relations automatically based on some proposed constraints. After 
establishing the correspondence relations, the occlusion problem can be solved easily and these 
correspondence relations can be used to maintain the correctness of the probability distribution of 
the moving objects in the 3-D domain. 
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