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Abstract

In this thesis, we propose a 3-D particle filter based objects tracking and
correspondence system. Through the 2-D tracking results, we can predict and
update the probability distribution of moving objects in 3-D domain. With such
probability, we can not only refine.the 2-D.tracking results but also construct
the correspondence of objects in different camera views. In addition, our
system is able to correct the correspondence automatically based on some 2-D
and 3-D clues. With the object correspondence, the occlusion problem can be
solved easily and the 3-D probability distribution of moving objects can also
be estimated more precisely. These advantages make the results of objects

tracking and correspondence more robust and reliable.
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Chapter 1 Introduction

Surveillance systems have attracted more and more attention in recent years. With an
intelligent surveillance system, we can automatically detect and track moving objects.
Furthermore, we can recognize one person’s identity and decide the occurrence of an abnormal
event. Based on the number of cameras, surveillance systems can be classified into
single-camera surveillance systems and multi-camera surveillance systems. A single-camera
surveillance system cannot handle the occlusion problem whereas a multi-camera surveillance
system can integrate the information from several cameras to solve this occlusion problem and
make the tracking result more reliable. With calibrated cameras, we can use the internal and
external parameters of cameras and 2-D tracking results to construct the correspondence relation
and then to estimate the location of moving objects in the 3-D domain. Moreover, the heights
[24] of the moving objects can also be estimated to give us extra information for objects tracking
and correspondence. Even though we may also use 2-D tracking results to find the
correspondence relation among uncalibrated cameras, our research focuses on a surveillance
system equipped with multiple calibrated cameras, With calibrated cameras, the correspondence
problem becomes much simpler. In Flgure 1- 1(a) we show different views of multiple cameras;
while in (b), we demonstrate the objects trackmg' and correspondence results of our system.

(a)The environment of our surveillance system (b)Objects tracking and correspondence of our
surveillance system

Figure 1-1 Multi-camera surveillance system



In this thesis, we propose a 3-D particle filter based objects tracking and correspondence
system. The main idea is that the motion detection problem can be described as a probability
distribution problem. Here, we assign higher probability values at those 3D positions where
some moving objects are likely to be present. Since the probability distribution of moving
objects in the 3-D domain may not be Gaussian distribution, we use a group of particles to
approximate this distribution. Moreover, since this distribution combines all the information
from different camera views, it can refine the 2-D tracking results and construct the
correspondence relation by back-projecting all 3-D particles onto 2-D image planes. When the
correspondence has been constructed, the occlusion problem in 2-D image planes can be solved
easily by fusing other camera views’ 2-D tracking results, which belong to the same 3-D moving
object. In addition, we can classify all the 3-D particles into different moving objects in the 3-D
domain. The major advantage is that we will neither just focus on the moving objects which have
the most 3-D particles nor ignore the ones which have the fewest 3-D particles. By exchanging
information between 2-D domain and 3-D domain, our system can automatically check if the
correspondence relation is correct. The number of the 3-D particles varies dynamically according
to the correspondence results. For example, if there is an object in a 2-D image plane which
cannot build the correspondence with other,camera’ views, we will give more particles along the
path where this object may appear in the 3-D_domain. Also, if some 2-D image planes detect new
objects, we will use the same method to generate 3-D particles. By adjusting the number of 3-D
particles adaptively, we can dynamically update the 3:D probability distribution of moving
objects and make our system more flexible androbust.



Chapter 2 Backgrounds

In this chapter, we will introduce some existing methods for moving objects detection,
tracking and correspondence. In 2.1 and 2.2, we will integrate and discuss some moving objects
detection and tracking methods, which are popular in recent years. In 2.3, we will discuss some
methods which focus on how to fuse the information from different view of cameras and how to
establish the correspondence of moving objects in each camera view.

2.1 Motion Detection

In this section, some popular methods about how to detect moving objects in a complex
background are to be discussed. The detection process is very important since better detection
algorithms support better tracking and correspondence results. Since all of these methods have
advantages and disadvantages, we usually choose a suitable algorithm according to the
environment of the surveillance system.

2.1.1 Background Subtraction

Background subtraction is a method to detect moving regions in an image by taking the
difference between the current image and the‘reference background in a pixel-by-pixel fashion.
This technique is developed especially for"surveillance systems with static cameras since the
reference background model is needed. After subtraction, each pixel of residuals is then
classified as foreground if its intensity is larger than a given threshold; otherwise the pixel is
classified as background. Although this method is quite simple and costs low computation, it is
very sensitive to the image noise and the variation of illumination. Stauffer [1] uses a set of
Gaussian distributions  to represent a pixel’s value. In other words, the intensity at each pixel in
the reference background follows the distribution of a Gaussian mixture model (GMM). The
difference between the current image and the reference background is obtained by measuring the
distance of each point to its corresponded set of Gaussian distributions. Moreover, the parameters
of Gaussian distributions will be adjusted as time goes on. As a result, the background model
becomes more precisely and flexibly. However, the detection results are still degenerated by
shadows and highlights. Horprasert T [2] utilizes the concept of color constancy of human eyes
to separate the information of color and intensity. It can not only segment the moving regions in
an image but also tell if some pixels of the moving regions belong to shadows or highlights. As
Figure 2-1 shows, the upper-left picture is the reference background and the upper-right picture
is the current image. In the lower-left figure, the blue region represents the detected moving
object, and the red region indicates the shadows and highlights. The lower-right picture shows
the final result of detection.
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Figure 2-1 Horprasert’s method [2]
Upper-left is the reference background, upper-right is the current image. In the lower-left picture, the
blue region is the detected moving object and red region is shadows and highlights. The lower-right

picture is the final detection result.

Duque [3] takes the temporal differencing results.into consideration. The detected moving
regions obtained by both temporal dlfferenCIng rESuIts and background subtraction results can
reduce the influence of noise.



2.1.2 Temporal Differencing

Temporal differencing is a method to detect moving regions by taking the difference
between successive images. We can use a given threshold to distinguish moving parts from static
parts. Although this approach needs low computation and is not sensitive to the environment, it
can only detect moving objects. That is, if an object stops to move, then it will be misclassified
as a part of background. In addition, sometimes the detection results are not reliable because the
detected regions are usually not complete and have many holes. Fu-Yuan Hu [4] does some
morphological operations and GMM detection on the results of temporal differencing to
eliminate these holes. S Dubuisson [5] uses a particular set of Gabor filters to filter the residuals.
The contribution of such filters is to emphasize the moving regions. As Figure 2-2 shows, the left
figure illustrates the original result, and the right figure shows the results after using Gaber filters.
After the filtering, we put some particles randomly on the moving regions, with the number of
particles being proportional to the magnitude of motion. As Figure 2-3 shows, in the left figure
the white particles represent the locations with larger motion. By applying some classification
methods, we can cluster the small residuals to accomplish the detection task.

Figure 2-2 The illustration of the results before and after Gabor Filters [5]
Left one is the original results of time differencing, and right one is the results after
applying Gabor filters.

ek
Figure 2-3 The example of detection result by applying Gabor Filters [5]
Left figure is the detection results after applying Gabor filters, white particles represent
the points used to clustering, and the right figure shows the final detection results.



2.1.3 Optical Flow

Optical flow is a method to represent each pixel by a function of time and location. If along
the time a moving point only changes its location while keeps its intensity values unchanged,
then we can estimate its motion vector. The pro of this method is that we can extract moving
objects from the background even over a dynamic camera system. In addition, by classifying the
motion vectors of each pixel we can further segment and distinguish different moving objects.
The con of this method is that it costs a lot of computation and is not suitable for real-time
surveillance systems.

2.1.4 Learned Classifier

Learned Classifier method needs to know the objects which are going to detect. That means
we need to train a set of classifiers at first based on the features of objects. Figure 2-4 illustrates
some examples of training data for detection. However, there are lots of features that can be
selected to train the classifiers and Figure 2-5 illustrates one of the selections. The pro is that if
the amount of the training data is large enoughithen the performance of this method can be very
good. In addition, the application of thié method. is. not limited to static camera systems. The con
is that this method can only detect specific-kinds of objects and it needs a large amount of
training data to “learn” these objects. V"Nair [6] proposeé a method which doesn’t require much
training data at first. Instead, his system ¢an-learn-the features of objects online by combining the
motion information of the moving dbjects. Hence; his system can learn the objects’ features

adaptively.
¢
b
] /] o

Figure 2-4 Training data[6]

The left figure shows some training examples of “people”.
The right figure shows some training examples of “background”’.



Figure 2-5 A example of training features[6]

Many detection methods contain more than one working principle. For example, Dongxiang
Zhou [7] proposes a method which integrated all the aforementioned concepts. Since each
method has its pros and cons, we may combine different methods to achieve better detection
results.



2.2 Motion Tracking

In the previous section, we have introduced several detection methods. In this section,
motion tracking methods are to be discussed. Motion tracking is to track moving objects from
one frame to another in an image sequence and it is the key process of a surveillance system.
Some major types of motion tracking techniques will be introduced in the following sections.

2.2.1 Region-Based Tracking

The basic component of a region-based tracking algorithm is a segmented region, called
blob. The main idea is to track such a region in successive frames of an image sequence.
Generally speaking, these kinds of tracking algorithms utilize the background subtraction to
detect objects in the first place. Wren [8] describes the detected objects as small blobs. As Figure
2-7 shows, by comparing the value with the reference GMM background model, each pixel of
the foreground can be further classified into the corresponding blob. Then we can successfully
track the object by tracking all of its small blobs.

o

Figure 2-6The original image[8] Figure 2-7 The example of Wren’s
region-based tracking method.
The 2-D illustration of small blobs belongs
to the same object [8]

McKenna [9] also uses the background subtraction technique to get the regions which
possibly belong to the parts of moving objects and uses bounding boxes to select these regions.
As shown in Figure 2-8, the left picture shows the original results of background subtraction, and
the middle picture shows the results after classification. Each bounding box contains a part of
moving object. The right picture illustrates the final results of McKenna’s algorithm. Based on
the structures and color models of human bodies, we are able to classify the regions into different
persons. Moreover, if the region involves only one person then it is denoted as “people”;
otherwise, if it involves more than one human body, it will be denoted as “group”. The task of
objects tracking can be accomplished by analyzing and tracking these regions. By comparing the
color information with their color models, moving objects can be tracked successfully without

8



losing their identities even if these objects are partially occluded.

Figure 2-8 The example of McKenna’s region-based tracking algorithm [9]

The left figure is the result of background subtraction, and the middle figure shows the
segmentation of residuals which are marked by rectangles. There are three regions and two of
them belong to the same person. The right one is the final tracking result.

2.2.2Active-Contour-Based Tracking

Active-contour tracking method is to track objects by representing their outlines as
bounding contours and updating these contours, over time. Paragios [10] tracks the moving
objects in an image using a geodesic active .contour objective function and a level-set
formulation scheme. In Figure 2-9, there -s-ia ‘convergent process of active-contour-based
algorithm. Active-contour-based algorithms can represent the moving objects more precisely
than region-based algorithms. However, thissmethod requires perfect detection results and needs
manual selection at first. Consequently; it.is difficult-to start this kind of systems automatically.

G

Figure 2-9 The example of Paragios’s active-contour-based algorithm[10]



2.2.3 Model-Based Tracking

Model-based tracking algorithms need to build the prior structure models of the objects at
first and then build the model for each candidate of target. Moving objects are tracked by
matching the prior model with the model of the target candidates. The definition of rigid objects
and non-rigid objects are quite different. Rigid objects such as cars can be tracked by comparing
their 3D generic models with the reference models [11], as shown in Figure 2-10 . On the other
hand, the models of non-rigid objects, such as human bodies, are more difficult to build due to
the possible deformations. Some models of human body [12] are shown in Figure 2-11.
Model-based tracking methods usually need to maintain a lot of parameters to build the models.
Hence, it is difficult to implement these model-based tracking methods due to their heavy
computational loads. However, if we use fewer parameters to build the models, then these
models may not be able to describe the objects precisely.

2y &y &

CAR-zsedan CAR-haichback CAR-station wagon

= =B

mini bus pick- up

Figure 2-10 3-D generic model[ll] I :—
The left figure shows some 3-D generlc models of cars. The middle and the right figures show the
models of the detected cars.

Fabrs i
e i b

Lot knee Fight nasy

J.m-nw"-l

(a) (b) (c)
Figure 2-11 Different models of human body [12]

(a ) stick-figure model of human body (Chen and Lee, 1995 ) (b ) 2-D contour model of human
body (Leung and Yang, 1994 ) (c ) volumetric model of human body (Hogg, 1994 )

10



2.2.4 Feature-Based Tracking

The main idea of feature-based tracking algorithm is to extract the features of moving
objects for tracking. By comparing the features in an image sequence, the task of tracking is
successfully done. Based on different features, the algorithms can be further classified as global
feature-based methods, such as center of gravity[13], color[14], area[15]; local feature-based
methods, such as line[16], vertex[17]; and dependence-graph-based methods, such as the change
of structures among features.

Nowadays many real-time surveillance systems adopt feature-based algorithms for objects
tracking. Mean-shift method [19] and particle filter [21] are two popular algorithms. Generally
speaking, color is the common feature for these two algorithms. The tracked objects are modeled
in terms of their color histograms. Color histogram is to calculate the color distribution of a
selected area. As shown in Figure 2-12, (a) is the color histogram of the target calculated from
the region inside the green rectangle, while (b) is the color histogram of the candidate calculated
from the region inside the red rectangle. By comparing the color histogram with the reference
color model, moving objects can be tracked since the same objects should have similar color
distributions.

0
12345678810
a (%)

a

(a) (b)

Figure 2-12 An example of color histogram [20]
(a ) color histogram of the target (b ) color histogram of the candidate

Bhattacharyya distance is a popular similarity measure of color histogram. The value of
similarity measure is obtained by multiplying the color histograms of the reference model and
the detected object in a point-by-point fashion and then summing up the products. The value of
the similarity measure ranges from 0 to 1, with a larger value indicating a more similar matching.
The advantage of color histogram is that it keeps the information of the target even if the target
object is under expansion, shrink, rotation, or deformation. In addition, it requires low expense of
computation. In the following section, we will introduce the mean-shift algorithm and particle
filter, respectively.

11



2.2.4.1 Mean-Shift Algorithm

Mean-shift is a mathematic tool used to find the local maximum of any known or unknown
distribution. As long as we have the well definition of object model such as color histogram and
appropriate similarity measure such as Bhattacharyya coefficient, mean-shift can help us search
for the top of the distribution to achieve the task of object tracking in an image sequence. In
Figure 2-13, the surface is constructed by calculating the similarity between each point and its
corresponding point in the reference model. The red point is the initial position and it will
converge to the blue point which is the estimated position of moving object after applying

mean-shift algorithm.

0.7

|
06
06

|
04 S

03 4 Initial location
02 | Convergence point
- o

40—
20 S

X Similarity surface

Figure 2-13 The'illustration-of-the convergence of mean-shift

This method is appropriate to be applied to real-time surveillance system due to its low
computation. However, since mean-shift algorithm can only find the local maximum, it must be
careful to choose the initial position otherwise it will converge to the wrong position. So the
system using mean-shift algorithm for objects tracking must have self-correction ability. That
means it can detect and correct the wrong tracking result automatically to make the performance

robust and reliable.
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2.2.4.2 Particle Filter

If the moving objects in an image can be described as a probability distribution, then we can
task the moving objects successfully by maintaining such a distribution precisely in an image
sequence. Unfortunately, it is hard to estimate and update the distributions dynamically since
these kinds of distributions usually do not belong to linear or Gaussian distributions. Particle
filter algorithm provides a solution for such problem by using a group of particles to approximate
the distribution. Through the prediction and update of each particle’s weight, the distribution of
moving objects will be described correctly over time. As shown in Figure 2-14, the position of
each black point which is so-called particle sampled form the objects’ distribution represents the
possible position of the moving object. Each particle has different weight based on its similarity
with the target model. The final position of moving object, the white point, is estimated by
calculating the center of gravity of all these particles.

r |

Figure-2-14 the concept of particle filter

The pro of particle filter algorithm is thatthe moving objects are described as a probability
distribution approximated by lots of particles so the system has more chance to find the right
positions of objects even under short-time occlusions. In Figure 2-15, top row shows the result of
mean-shift algorithm while bottom row shows the result of particle filter and the red bounding
box represents the final decision whereas yellow bounding box represents the decision of each
particle with different weight. It is clear that the particle filter algorithm gives the better results
than mean-shift algorithm.

420

Figure 2-15 The comparison of mean-shift and particle filter[20]
Top row shows the result of mean-shift and bottom row shows the result of particle filter
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2.3 Multi-Camera Correspondence

In previous sections, we have introduced how to detect and track moving objects over
single-camera surveillance system. In the following section, we are going to introduce how to
track moving objects and construct the correspondence between multiple cameras. The system
will have a broader view for objects tracking trough the cooperation of multiple cameras. In
addition, when the correspondence relation has been established, the system will overcome some
problems which are not able to be solved in single-camera surveillance system such as
occlusions. Multi-camera correspondence can be roughly classified into region-based method
and point-based method.

2.3.1 Region-Based Methods

Region-based methods usually represent the moving objects in an image as regions in one
camera view and then compare the features of these regions with other regions in anther camera
view to construct the correspondence relations. Color information is the popular feature used to
establish the correspondence such as colorshistegram [21] or GMM color model [22]. Although
this method is really simple, it is not reliable due to the variation of illumination. Also, the color
information of objects in different camera views has.an important impact on the correspondence
result. For example, if two persons in different camera views dressed in the clothes with same
color or two sides of clothes are: differentycolors, it is easy to make mistakes in objects
correspondence.

2.3.2 Point-Based Methods

Point-based methods construct the correspondence by comparing the features between
different camera views based on some constraints of cameras. According to different geometric
constraints, we can classify the methods into correspondence in 2-D domain and correspondence
in 3-D domain.

The concept of correspondence in 3-D domain is shown in Figure 2-16. The left figure is an
example of indoor surveillance system and the right figure shows the top view of this indoor
environment where the cameras mounted on the ceilings in a circle. Each camera monitors one
view and then transmits the 2-D information of that view to 3-D domain. By fusing all 2-D
information coming from cameras of different views, we can roughly estimate the positions of
objects in 3-D domain. The correspondence relations are able to be constructed by
back-projecting the 3-D estimations into each 2-D image plane. However, this method needs the
camera calibration before the system starts to work.
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c Tcp.'.u'iew
Figure 2-16 An example of indoor surveillance system[23]

Utsumi [23] finds the COG (center of gravity) of the detected objects in each 2-D image
plane. The points inside a detected region are called COG if they have the longest distances to
their closest boundaries As shown in Figure 2-17, the left is the original residual after detection
and the right figure illustrates the distance map of the residual and the black points are so-called
COG. How to find the correspondence relations by COGs? First of all, we project COGs from all
camera views to 3-D domain and use’the Gaussian: distributions to estimate the positions of
objects in 3-D domain. Through theé back-projection of 3-D Gaussian distributions to all 2-D
image planes, we can compare the detected COGSs with the projected COGs in each camera view
to find the possible correspondencerelations.

Binary Image Distance Transformed Image

Figure 2-17 An example of Utsumi’s method [23]
The left one is the original residual. And the right one is the distance map where the
black points are so-called COG.
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Camera 2

Figure 2-18 The illustration of correspondence in 3-D domain by Utsumi’s method[23]
The objects are modeled as Gaussian distributions with N()Thl, S_hl) in 3-D domain

where X, and S, are mean and covariance of Gaussian distribution respectively. It
is sill a Gaussian distribution after back-projection from 3-D to 2-D.

Black, Jamesa [24] uses the constraints of epipole plane to correspond objects in different
camera views. As shown in Fioure 2-191t is anillustration of epipole plane where m1 and m2 are
obtained by back-projecting the 3-D object located at M on image plane 1 and image plane 2
respectively. The back-projection lines, Mml‘and Mm2,;-will go through Esl and Es2 which are
camera focuses. The epipole plane ‘constraint'tells us/that Esl, Es2 and M are in the same 2-D
plane called epipole plane and m2 willlay.on epl1 which is the intersection line of epipole plane
and image plane 2.

Based on the epipole constraint, the center of each detected object in a 2-D image can project
a line called epipole line on a 2-D image of another camera view and this epipole line will go
through the center of the corresponding object belonging to the same 3-D object in that camera
view. However, there may be some errors of 2-D tracking results. So the center of the
corresponding object could not lay on the epipole line exactly. By combing this constraint and the
2-D tracking results, the task of multi-objects correspondence can be achieved.
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Figure 2-19 The illustration of epipole constraint [24]

Esl,Es2 are focuses of cameral and camera2, M is the position of object in 3-D
domain ,ml,m2are the back-projection of M to image plane 1 and image plane 2
respectively, and epll is the intersection line of epipole plane and image plane 2.

[nagel Inage [naged Inaged

Figure 2-20 Black, Jamesa’s correspondence 'method based on the epipole constraint [24]
There are epipole lines with different colors in four images above. T he color of the epipole
lines of detected object in imagel is red and green, blue, and yellow are the colors of the
epipole lines of image2, image3,and image4 respectively. The green rectangles in image and
image4 are ground plane regions, and the yellow rectangles in image2 and image3 are
occlusion plane regions.
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The correspondence method in 2-D domain doesn’t need the calibrated cameras. It only
needs some clues of 2-D images in different camera views to find the correspondence relations. S.
Khan [25] finds the overlap regions of current image and other images of different camera views.
Only when the moving object appears in such overlap regions, it has the correspondence relation
to the objects detected in other camera views. As shown in Figure 2-20, the range of each camera
view is shown in the left figure and the grey point represents the object. We can find that the
object is visible in camera2’s view but invisible in camera3’s view. The right figure is cameral’s
view and the region of other camera’s views projecting on it.

Camera |

Figure 2-21 S. Khan’s correspondence-in 2:Dimethod [25]

The left figure illustrates the ranges of-three camera views The right figures is the
cameral’s view. There are same linesindicated the regions of the overlap views from
other camera’s views. We can easily find that the black point in the bottom of object is
visible in cameral’s view and camera2’s view but invisible in camera3’s view.

J. Black [26] is to find the homography matrix between two 2-D images of different camera
views. With this matrix, we can transform any point of current camera view to the point of
another camera view. This method is much easier than the method using the epipple constraint.
As shown in Figure 2-22, the blue lines are epipole lines and red points are the correspondence
points using homography matrix transformation.
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Figure 2-22 An example of J. Black’s method [26]
Viewpoint correspondence using: epipole line analysis and homography alignment

The tasks of multi-objects correspondence in both 2-D domain and 3-D domain are hard due
to that the results are easier degraded due to the influence of noise or the inaccuracy of 2-D
tracking results.
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Chapter 3 Proposed Method

In a multi-camera surveillance system, if we know the exact positions of moving objects in
the 3-D domain, then the 2-D image planes are just the back-projection of the 3-D data onto
different camera views. In other words, if we can track objects successfully in the 3-D domain,
then the 2-D objects tracking problem is solved automatically. In practical situations, however,
we only have 2-D images. Since the 2-D images have lost the depth information when projecting
the 3-D objects onto 2-D images, it is difficult to deal with the occlusion problem when two or
more objects are closer to one another. Hence, in our study, we try to find a method to combine
the 2-D tracking results from different views of cameras and use the camera geometry constraints
to estimate the 3-D positions of the moving objects.

In this thesis, we use a group of 3-D particles with different weights to describe the
probability distribution of moving objects in the 3-D domain. This probability distribution can be
constructed and updated by 2-D tracking results. In addition, this probability distribution can also
help the refinement of the 2-D tracking results since it fuses the information coming from all
camera views. The multi-objects correspondence can.be established by some clues obtained by
back-projecting all 3-D particles onto they2-D image-planes of different camera views. The
correspondence relations will help us to solve‘the~occlusion problem which is hard to be
accomplished in single-camera = surveillance systems. Besides, the establishment of
correspondence is also an important clue for 3-Dparticles’ classification and then the probability
distribution will be more accurate to describe-the'moving objects in 3-D domain. The advantage
of classification for 3-D particles is that the distribution will not only focus on some specific
objects having better tracking results in 2-D image planes. When new objects enter, the
probability distribution should be updated as soon as possible. So we can put extra 3-D particles
along the paths where the objects may appear in 3-D domain based on the clues coming from the
current 2-D tracking results. In addition, if the objects in some 2-D image planes are still not able
to establish the correspondence relations, we can use the same method mentioned above to
update the probability distribution. Consequently, the number of 3-D particles is variable which
depends on the current situation. Moreover, our system has the ability to correct the
correspondence relations automatically to make performance more robust and reliable.
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3.1 2-D Objects Detection and Tracking

In this section, we will discuss the method of 2-D objects tracking applied in our system.
Each image of the sequence is applied background subtraction for objects detection. Then by
comparing and connecting the detection results between successive images, the task of objects
tracking is accomplished successfully.

3.1.1 Background Subtraction Detection

Since our system belongs to the static-camera surveillance system, we can build the
reference background model for each camera view before starting the system. Then we can
extract the foreground by taking the difference between current image and the reference
background in a point-by-point fashion. However, the residuals are neither complete nor correct
and need to do some posterior processing due to the influence of noise, variation of illuminations,
and shadows. First of all, we use a given threshold of intensity to remove some noise and apply
the method proposed in [3] to reduce the influence of illuminations and shadows. As shown in
Figure 3-1, (a) is the residuals after a givensthreshold, (b) indicates the illuminations and
shadows, and (c) is the final result obtained by eliminating noise, illuminations and shadows. It is
clear that the influence of the shadows is reduced in-this example.

(a) the residuals after a given (b) illuminations and shadows  (c) final result
threshold

Figure 3-1 a posterior process of background subtraction

Then we apply the morphological operations to fill the holes to make the residuals more
complete. As shown in Figure 3-2, figure (a) and (b) are the results before and after the
morphological operations.
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(a) the results before the (b) the results after the
morphological operations morphological operations

Figure 3-2 The results before and after the morphological operations

Sometimes there is more than one object in an image. So we need to segment the objects
from the residuals. First, we sum the residuals vertically to get the profile of moving objects in
x-direction. The height of profile is proportion to the probability of moving objects appearance.
So we can use a given threshold to eliminate some noise of the profile to segment the moving
objects in x-direction, get the width of each moving object, and calculate the number of moving
objects in that image. This process is shown in Figufe 3-3 (a). Then we can sum the residuals in
each segmented region horizontally to| get -the length- of each moving object. Finally, each
moving object in the image is marked as a bounding box as shown in Figure 3-3 (b). However,
when two or more objects in an image become too closer, they will be detected as one object
since there is no extra information to separate them.
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(a)an example of vertical (b)final result
summation of the residual.

Figure 3-3a illustration of objects detection applied in our system
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3.1.2Mapping Objects

Through the method mentioned above, we can do objects detection for each image. In order
to do objects tracking, the detection result of each image should be connected in time domain.
Our objects tracking method is to compare the detection results between successive images to
correspond the moving objects in time domain. The concept can be explained by Figure 3-4. Left
column is the illustration of all possible tracking results between successive images and the red
rectangle represents the detected object at time t-1 while blue rectangle represents the detected
object at time t. We can establish the correspondence relations of moving objects in time domain
by analyzing their overlap regions. Right column represents the correspondence tables of moving
objects at time t-1 and time t. Figure (a) is the one to one case where the moving objects at time
t-1 correspond to different objects at time t respectively, figure (b) is the mergence case where
the moving objects become closer at time t-1 and then merge to the same object at time t, figure
(c) is the split case where the moving object at time t-1 splits into two objects at time t, figure (d)
is the new objects case where there are more moving objects at time t than time t-1, and figure (e)
is the leave case where some of moving objects at time t-1 disappear at time t.
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Figure 3-4 the illustration of all kinds of tracking results

Through this way, we can track«the moving bbjects in an image sequence and get the
relations of these moving objects sueh as mergence, split, or new objects entering etc. It provides
the useful information for multi-camera correspondence which will be discussed in the following
sections. .
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3.2Transformation Between 2-D and 3-D

Before using multiple cameras for objects tracking and correspondence, the geometric
relations between cameras should be established at first. With such relations we can project the
2-D tracking results into 3-D domain and then fuse the information to achieve the cooperation of
multiple cameras for objects tracking and correspondence. After camera calibration, we can get
the intrinsic and extrinsic parameters of cameras which can be used for transforming the
information between 2-D domain and 3-D domain. Figure 3-5 (a) illustrates the world coordinate
of PTZ camera. O, andO. are the rotation center and projection center of camera respectively,

OC' is the new projection center after the camera tilts ¢ degree and r is rotation radius of

camera.
Y
A
) O | 00,00
.......................... ‘a) . A E T, Z
< A ' /)
T P\ ’ h r~ -l Image plane
rd T, H
x h'={ h-rsing )
(a)model of camera setup (b)geometry of a horizontal plane with respect to

a rectified camera and a tilted camera.

Figure 3-5 a illustration of camera setup[27]

Each camera has its own world coordinate and some intrinsic and extrinsic parameters
obtained by camera calibration. With these parameters we can easily transform information
between 2-D and 3-D domain. Also we can get the rotation matrix and translation vectors for
transformation between different world coordinates. The formula of transformation from 3-D to
2-D is as follows,

X X
—_— (04
1192 Y sing+Z cosg+r(cosg—1)
: Y Y cos¢g+Zsing+rsin
y|=|B5|=|P .¢ / / : Eq 3-1
1 1Z =Y sing+Zcos¢g+r(cos¢g—1)
1
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where X, Y, Z represent the world coordinate, X ,Y',Z represent the world coordinate with
camera tilted ¢ degree, x,y are image coordinate and the formula of transformation from 2-D

domain to 3-D domain is as follows,

N < X

(x —u, )B(rsing—h)

a[(vo - y')cos¢—,6’sin 4]
—h
[(v, —y)sing+ Bcosg](rsing—h)

(v, — Y )cosg— Bsing

—r+rcosg¢

Eq 3-2

. Each pixel of an image can only emit a line instead of a corresponding point in the 3-D world
coordinate since it loses the depth information. Giving different height h produces a
corresponding point X, Y, Z on that line based on Eq 3-3.

We can get a set of 3-D lines emitted form the centers of bounding box in different camera
views. If these detected objects correspond to the same 3-D object then those 3-D lines will
intersect at the same point. But that intersection point may not exist due to the tracking errors.

However, we can use the method proposed.in_[24].~Assume there are N objects in different
camera views and their corresponding 3-D lines.are. r,=a, + A4b, and1<i<N. Then the

estimated point can be approximated as

N < X

-1 —

(@

N

i=1
N

i=1
N

L i=1

Zaix - bixai ’ bi

Zaiz - bizai 'bi

1> a, —bya b |

Eq3-4

With these transformation formulas, it is easier and more convenient to develop the
multi-camera tracking and correspondence algorithms.
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3.3 3-D Particle Filter

Before discussing multi-camera correspondence methods, we will introduce particle filter
algorithm in more formal way. First, we will deduce the basic formula of particle filter and then
discuss how to apply both 2-D and 3-D information in our surveillance system based on this
mathematic tool.

3.3.1 Particle Filter Algorithm

Particle filter algorithm has been applied in objects tracking extensively. The concept of
particle filter is to use a group of particles with different weights to describe the probability
distribution of moving objects. So we can use the probability instead of exact value to describe
the location of the object. As shown in Figure 3-6 the red points are the samples from the
distribution and the more number of samples, the more accuracy of probability distribution. The
blue point on the top of the distribution is the estimated location obtained by averaging all red
points with different weights. Trough the prediction and update of the distribution, we can
estimate the location of moving objects to.achievethe tracking task.

- p(x;)

Figure 3-6 a illustration of particle filter

Then we will use the mathematic formula to express the algorithm of particle filter. We
should define some variables at first. k is the time index, {x.,keN} is the set of state

sequence, and {zk,k € N} is the set of measurement sequence. The estimation of object state at
timek can be represented as x, = f,(x._,,v,_,) Where f, (o) is an estimation function which is
related to the object state at timek —1 andv, ,, i.i.d noise at timek —1. The measurement of
object at timek can be expressed as z, =h,(x,,n,) whereh, () is a measurement function
which is related to the current state andn, , i.i.d noise at timek . f, (¢)andh, (¢)are not restricted
to be linear functions. So the probability distribution of object can be written as
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p(xk |lek): p(zk |Xk)p(xk |Zl:k—1)

p(zk | Zl:k—l)

Eq 3-5

where p(xk | Zl:k—l): J. p(Xk | Xk—l)p(xk—l | Zl:k—l)dxk—l Eq 3-6

. Based on these two equations, we can deduce p(x, |z, ) from p(x,_, |z, ,). Eq 3-5 and Eq 3-6
are the equations for updating and predicting of probability distribution respectively. By
calculating these two equations iteratively, we can update the distribution of the moving object.

Generally speaking, the probability distribution of the moving object doesn’t belong to
known distribution. Consequently, we use a group of particles with different weights written as

{x():ki,wki }Nzl to express p(X,, |z, ). It can be represented as

NS

p(XO:k | Zl:k)z ZWki '5(X0:k - XO:ki)

Eq 3-7

So we can regard these particles as the samples-obtained-from the distribution. Then the problem
of how to predict and update the distribution becomes the problem of how to generate the
particles and how to update their weights “in" the next time. Assume we can sample the

particles, {xoiki}N:l, from the importance density, q(x,, |z, ), then w,' ocﬂg% in Eq 3-7.
QX0 | 2y

. NG
Also, assume q(Xox | 2y, )= A(X, [ Xox 1 Zux ) A(Xgre1 | Zu s ), that means we can sample{xk'}:1

and X , from q(X | Xg4_1,Zey ) and aXou s | 2, Jrespectively. With replacement, w,' can
Okl k 0:k—17 “1:k 0:k-1 Tk-1 k

be inferred as

p(XIOK |Zlk) (Zki |)_(ki)p(xki |Xk—1i)p(xi°*‘1 | Ztk—l)
Qo |z) | q(xfl [ X, 2 Jl Kot |24 Eq 3-8
i p(zk |Xk )p(xk |Xk—l)

Q(XkI |Xi01'<—1’ Ly

OC

o W, 4

28



\We can generate new particles through q(XO:k |zl:k) and each particle’s weight can be calculated
by Eq 3-8. Hence, we can get the probability distribution over time. Most of time, we will

assume q(Xy, |z, )= p(x, | X, )then the Eq 3-8 can be rewritten asw, oc w, ' - p(zk |in)_ Table

3-1 shows the algorithm of particle filter.

Table 3-1 algorithm of particle filter [28]

Algorithm 1: SIS Particle Filter
; P1Ns 1 — ; ; Ns
[{X}c, wi_ 1’=1] = SIS[{XE:—U Wh_1 i=15 Zk]
e FOR i = 1: N,
— Draw Xj, ~ q(xk|X§c_1, Zk)
— Assign the particle a weight, wj,

e END FOR

We can estimate the location of the moving object, X by averaging these particles with

mean !

different weights and where
NS . . NS .
Xmean :szI'XkI1 1ZWkI L Eq 3-9
i=1 i=1

. However, the potential problem “of this-algorithm is-that the variation of the weights will
become more sever along the time.“That means we will pay a lot of efforts to compute the
particles with very small weights then ‘the final distribution will still be dominated by some
particular particles with large weights. The problem will be solved by the method of resampling.
The idea of resampling is to remove the particles with excessively small weights and split the
particles with large weights at each time. This concept is shown in Figure 3-7 and Table 3-2
shows the algorithm of resampling. At first we evaluate the cdf of these particles according their
weights and generate u,,1<i< N_,from a uniform distribution. By searching the cdf from small

to large value, we will find the value which is the smallest value bigger thanu, then assign its
corresponding particle to the new particle. So it is obvious that the particles with large weights
will be sampled many times. On the contrary, the particles with small weights may not be
sampled after all.
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Table 3-2 algorithm of resampling[28]

Algorithm 2: Resampling Algorithm

[ wl, ¥},] = RESRMPLE [{xf, w )iy

Ns

e Initialize the CDF: ¢, =0
® FOR i = 2; N;

Construct CDF: ¢ =ci—1+ w}é

® END FOR
e Start at the bottom of the CDF: ¢=1
» Draw a starting point: u; ~ U0, N7
» FOR j = 1: N,
— Move along the CDF: w; =wuy + N;72(j— 1}
— WHILE w; > ¢
¥ i=i+1
— END WHILE )
— Assign sample: Xy =X},
— Assign weight: wj = Nt
— Assign parent: # =i
e END FOR

i =

i=1,...N particles
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o
= =
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Figure 3-7 a illustration of resampling
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3.3.2Proposed 3-D Particle Filter

Nowadays, particle filter focuses on 2-D objects tracking. When having multiple cameras,
we can extend the objects tracking from 2-D domain to 3-D domain and take the advantage of
cooperation of multiple cameras by fusing their information together to achieve the mission of
objects tracking. We propose a surveillance system based on 3-D particle filter to track moving
objects in different camera views and construct their correspondence relations. Before starting to

introduce our method, we define some variables and notations at first. {Xt(s)}':wl is the set of 3-D

NlS

particles at time t where each Xt(s) represents a location in 3-D coordinate and W(s>}

., Isthe set

of weights of {Xt(s) }?jl. N, is the number of 3-D particles and it varies according to the current

tracking and correspondence results. N is the number of cameras and N,(c) represents the
number of detected objects in ¢ th camera view at time t. M, is number of detected objects in
3-D domain at time t. and M, > N,(c),1<c < N_ since the objects in 3-D domain may not be
visible in all camera views all the time.

3.3.2.1 First Generation ofParticles

First of all, we should generate some particles in.3-D domain as the initial state. We utilize
the 2-D tracking results of different camera views. to-estimate the possible locations of moving
objects in 3-D domain. The concept is shown in Figure 3-8. This tree illustrates all possible
correspondence relations of objects in all camera views and each branch represents one
correspondence relation where N0(1)~ N,(N,) is the number of detected objects in each camera
view at time 0. We use each estimated correspondence relation from each branch to emit some
3-D lines from those detected objects’ centers in different camera views and then use the
approximation method in [24] to find the estimated intersection point of these 3-D lines.

Camera 1

Camera 2

6] [ 5, e 6] [ fl.) cameraV,

Figure 3-8 a illustration of tree
All possible correspondence relations
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There will be a lot of particles obtained by above method and then we will put some new random

particles around those particles to get a group of initial particles, {XO(S’ }Sj . In Figure 3-9, figure

(a) demonstrates the 2-D tracking results in all camera views and figure (b) is the illustration of
the initial particles in 3-D domain.

(a)2-D tracking results in all camera views _,¢u1102(b)a illustration of initial particles in 3-D domain

Figure 3-9an=ﬁe}(émplg}oifgerrﬁ'erat‘rfi’ng initial particles
¥ EHHA 6
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3.3.2.2 Correction of Particles

We can get a group of 3-D particles, {Xt‘s’ }L through first generation or prediction of

particles and the objects probability distribution in 3-D domain can be established by updating
those particles’ weights. We update the weights of the particles by projecting those particles from
3-D domain to 2-D domain to compare with the 2-D tracking results. Before starting to deduce
the formula of updating weights, we will define the mapping function ,, (.) more formally. It is

a function mapping a 3-D particle into a 2-D image plane of c-th camera view and then find that
particle’s corresponding object and it can be formulated as follows:

i ,cD(Xt(S), c)falls in the bounding box of i th object in ¢ th camera view

(s) . : . . . Eq 3-10
0, q)(xt : c)doesn t fall in any bouding box in c th camera view

, where 1<c<N_and1<i<N,(c). d)(xt(s),c) which is a transformation function gives a 2-D

coordinate value by back-projecting,a 3-D-particle, Xt(s) ,into the 2-D image plane in ¢ th camera
view. The idea of the definition of each-3-D particle’s weight is that if the distance
between @(Xt(s),c)and the center of its ‘corresponding.bounding box is small then the weight

becomes large due to its accurate correspondence and vice versa. The mathematic formulation is

as follows.
W o _ 1 e[_ dt(S) _d_tJ Eq 3-11
! 2ro 20° q
Niwt(s) _q Eq 3-12
s=1
, Where
NC ( (%) =) @00, b b} )1
Jo St ‘ wid *! ‘ ‘ len® ‘ , [Eq3-13
L= N, N,(c)
51 (x.c)-1i)
c=1 i=1
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ol o060 )
gt | wid™ || len™ ) , Eq3-14
t = N N N (c)

> 6(1,,(x, ) c)-i)

(e).and (o), represent the 2-D coordinate value in x-direction and y-direction respectively.

len®" and wid *' representing the length and width of i-th object’s bounding box in c-th camera
view are the normalization terms to make the definition of weight more reasonable. Without
these two terms, the weight will be in proportion to the size of detected objects.

After these computation, we can finally get these 3-D particles with different

weights, {Xt(s) ,WI(S)}:: , at time t.
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3.3.2.3 Shrink of Particles

In each camera view, every object has a subset of the 3-D particles. When projecting such
subset of 3-D particles into the 2-D image plane, they will all fall in its corresponding 2-D
object’s bounding box. In other words, this subset of 3-D particles can be visualized as the
distribution of that 2-D object in 3-D domain. Consequently, we can estimate the position of this
2-D object by finding the center of gravity of its corresponding subset of 3-D particles.

We condense entire 3-D particles to the centers of gravity of all subsets. The information of

NC
objects is still complete even if the number of particles reduces from NtstoZNt(c). In more
c=1

formal way, every 2-D object can get its center of gravity and weight in 3-D domain through the
transformation function X, (X,,c,i)and W,, (X,,c,i) as shown in Eq 3-15 and Eq 3-16 where

xtz{xl‘”}:';; represent all 3-D particles, c and i represent i-th object in c-th camera

view ,1<c <N, and1<i<N,(c).

NIS
z Xt(S) 'Wt(S) . 5<|32 (Xt(s),C)— I)
Xy (Xi€01) = = Eq3-15

SWO (1, (%, c)=i)
s=1

NlS

S0l o2

Wy (X, ) == Eq3-16

As shown in Figure 3-10, the red points are the 3-D particles after weight updating and the blue points
are the centers of gravity after shrink. By back-projecting these centers of gravity to its corresponding

2-D image plane, we can get the refined location of 2-D tracking result, y,*', which is written as

yo = (X, (X, ci)e) Eq 3-17

. These centers of gravity also can be utilized to establish the correspondence relations between
2-D detected objects in all camera views since if some 2-D objects correspond to the same 3-D
object then their centers of gravity in 3-D domain should be very close. The method of
correspondence will be discussed in 3,4.

35



Figure 3-10 3-D particles and the centers of gravity after
shrink. Red points are all 3-D particles and blue points are
the center of gravity after shrink
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3.3.2.4 Prediction of Particles

We can use the centers of gravity obtained by shrinking the 3-D particles to predict the
objects probability distribution. Based on the correspondence relations, we can classify these
centers of gravity to their corresponding 3-D objects and then use them to predict 3-D objects’
positions in the next time.

We generate N jnew particles for each 3-D object by using the method of resampling

mentioned in 3.1. Each center of gravity belonging to the same 3-D object will split as several
new particles in proportion to its weight. We define an indicator, I23(o), which gives the index of
its corresponding 3-D object from a 2-D object. For example, Iza(c,i): k represents that the i-th
object in c-th camera view corresponds to k-th object in 3-D domain. This indicator is obtained
after establishing the correspondence relations. The algorithm of Resample(e) is referred in Table
3-2. The centers of gravity belonging to the same 3-D object with different weights will split into
equal weight 3-D particles through this function. The estimated state of these particles can be
written as

X=X +n,, where nz =N(0,X) 71<s<N, Eq 3-18
KN,
o) 1 : ; . . N, N ()
X = = Resampling{{X,; (X,c,i)W,, (X,,c,i)| 15(c,i) =k}
PJs—(k-1}N,+1 Eq 3-19
1<k <M,

, whereW,, (X,,c,i)is normalized as

Wy (X,.c.i)

W, (Xt,c,i):
> W, (X, i) 315 1)~ 1(cii) Eq3-20

In Figure 3-11, figure (a) is the 2-D tracking results with objects correspondence. The 2-D
objects belonging to the same 3-D object have their bounding box in the same color. Figure
(b) demonstrates the 3-D particles under different situation. The red points describe the
current probability distribution, the blue points represent the centers of gravity after shrink
and the yellow points are the prediction particles describing the probability distribution in
the next time.
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(a)2-D tracking results with objects (b)3-D particles under different situations

correspondence

Figure 3-11 2-D tracking results and the illustration of 3-D particles

When detecting a new object entering a 2-D image, the probability distribution of 3-D
objects should be updated immediately. As shown in Figure 3-12(a), the2-D image detects a new
object in the right top sub-image with.yellow boundlng box. Then along the 3-D line emitting

from the center of this bounding box, we will put' N, new particles on the particular locations

where the object may appear based-on some-known infermation such as the normal height of a
person. As shown in Figure 3- 12(b) the yellow pomts are the prediction particles and the green
points represent the particles of a new object; By adjusting the weights of these particles through
2-D tracking results, the new probability distribution can be updated. As for the objects which
can not establish the correspondence relation, we will use the same method to emphasis the
positions where the 3-D objects of those corresponding 2-D objects may appear. As shown in
Figure 3-13(a), the object selected by the yellow bounding box in the right bottom sub-image
still doesn’t establish the correspondence relation yet. In Figure 3-13(b), the yellow points are
prediction particles and the green points represent the extra particles generated for that 2-D

object. As a result, the total number of particles is N,,,, =(M,,,+M_, + )-N, in the

uncrsp

next time whereM ,, and M are the summations of the detected new objects’ number and

uncrsp

the objects not establishing the correspondence relation in all camera views respectively.
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(a)The right top sub-image detects a new object (b)the yellow points are the prediction particles
and the green particles are the extra particles for
the new entering objects

Figure 3-12 Extra particles for new entering objects

(a)The object in the right bottom sub-image still (b) The yellow points are prediction particles and
doesn’t find the correspondence relation. the green points are the particles not establishing

the correspondence relation yet.
Figure 3-13 extra particles for the objects still not establishing the correspondence relations.
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3.4 Information Exchange between 2-D and 3-D

The information of objects in 3-D domain is only obtained by the 2-D tracking results in
different camera views. By using the clues of 2-D images, we can find the correspondence
relations. The occlusion problem can be solved since we can project the 2-D information to 3-D
domain, fuse them together and then back-project them to the 2-D image planes over the system
with multiple calibrated cameras.

3.4.1 Construction of Correspondence

Based on the proposed 3-D particle filter, every object in each camera view has its
corresponding center of gravity in 3-D domain. By back-projecting this center of gravity to each
2-D image plane, we can find which object it belongs to in all camera views to find the
correspondence relation. If some 2-D objects belong to the same 3-D object then the distance
between their centers of gravity in 3-D domain must be small. In theory, those centers of gravity
will have similar correspondence relation in each camera view after back-projecting them to 2-D
image planes. Our correspondence algorithm is based on such idea to develop.

How to decide the similarity of-these centers of gravity? We use a score function to compare
one center of gravity with another of their correspondence relation in each camera view and this
function is written as

1,if a0,b=#0,anda="hb
P(a,b)=1-1, if a=0,b=0,anda=b Eq 3-21
0, otherwise

, 1t means that if two centers of gravity map to the same 2-D object in one camera view, their
similarity score adds one point and that if they map to different 2-D object, the similarity score
minuses one point. But if any one of the centers of gravity doesn’t map in that camera view, the
similarity score will not change. In the following sections, our proposed method of
correspondence will be discussed. We will introduce how to establish a correspondence table at
initial state in 3.4.1.1 and how to update and correct the correspondence table after initial
establishment in 3.4.1.2.
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3.4.1.1First Construction of Correspondence

At first, we must choose one camera,C as the reference camera to decide the order of

start !
the 3-D objects based on the 2-D tracking result in that camera view. Then we can decide which
index of the 3-D objects the 2-D object in other camera view belongs to. The formula of how to
chooseC,,, is written as

start

C

start —

arg max Zu(l\gz(xM (Xo,c,i),c')) Eq 3-22

: ) & -
1<c<N Ng(c)=M, 0 C) = ca

Since the number of 3-D objects can only be estimated by 2-D images in all camera views, we
choose the camera with the most detected objects. If there is more than one camera satisfying
this condition, we will calculate which camera’s corresponding centers of gravity has the most

corresponding objects in all 2-D images. Then we will decide that camera as the reference
camera and assign the indicator I (e )as

Ly(Co oK)=k » 1<k <My Eq 3-23

The correspondence table is defined.as T,*'(s): For example, T,*'(c) gives the number of the

ordered 2-D object in c-th camera view' by back-projecting k-th 3-D object. So the
correspondence table of C__ . -th camera can be assigned as

start
TO(k)(Cstart) =k Eq 3-24

. Further, we will define a buffer, Buff (k)(o), saving for the all correspondence relations of the

centers of gravity. For example, Buff (k)(j,l: N, )represents a possible correspondence relation of

k-th 3-D object in N camera views where 1< j < Buff _num® . Buff _num(k)represents the
number of possible correspondence relations saving in Buff (k)(o) and it is increasing during the

process. We put TO(")(C )into Buff “)(e)at first. Then we will classify the 2-D objects in other

start

camera views by the following equation,
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: 1 Buff um'™! e ( ( - ) (k)(. ))
l,,(c,i)=arg g‘j:oW. ,Zl‘ CzlP 15,(Xy (Xo,C,i).c') Buff “(j,c)) Eq 3-25

,Wherel<c <N, ,c#C,,and 1<i<N,(c)
The idea of this equation is that we can project the center of gravity of i-th object in c-th

camera view to each camera viewc' then we can get the correspondence relation formulated

start

as I, (X,, (Xo,¢,i).c ). By comparing I,(X,, (Xo,c.i).c’) withBuff ®)(s,c’) one by one, we can
find the most possible corresponding 3-D object of i-th object in c-th camera view. If it
correspond to k-th 3-D object, then we put this correspondence relation, |32(XM(XO,c,i),c'),in

to Buff “)(e)and the size of Buff ®(s), Buff _num®, also increases. The correspondence table is
updated as

TO(IZS(CJ))(C): i Eq 3-26

. After establishing the correspondence relation for.each 2-D object, we can finish the initial table
and get the indicator, I23(o), from 2-D domain to 3-D domain. However, not every 2-D object can
find its correspondence relation inZthe initial—state. For example, if there are more than one
objects in a 2-D image corresponding*to the same 3<D"object or if one 2-D object correspond to
more than one 3-D objects, these 2-D objects'will try to find their correspondence relations in the
next time.
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3.4.1.2Correspondence Update

We need to check and update the correspondence table every now and then based on the
current 2-D tracking results and the distribution of 3-D particles to keep the correctness of
correspondence relations. The update method can be described as

|23(C,i) =arg mkax ip(l ) (XM (Xt,c,i),c'),Tt(k)(c')) Eq 3-27

1<k<m, € =1

The concept of this equation is that by comparing the current center of gravity with each 3-D
object’s correspondence relation in the correspondence table, we can find the most possible
corresponding 3-D object to update the indicator. The correspondence table can also be updated
as

Tt(|23(cyi))(c) =i Eq 3-28

. Sometimes the 2-D objects need to reconstruct their correspondence relations if they still don’t
establish the correspondence relations or their-correspondence relations are considered as the
failure cases.

How to decide if the correspondence relation.is wrong is the main point of our algorithm.
Our method to correct the correspondence automatically is classified into two parts. The first part
is based on the 2-D objects tracking and correspondence and the second part is based on the
distribution of 3-D particles. We will discuss as follows,

I.  Based on 2-D objects tracking and correspondence results :

4+ One object splits into two objects :
If two objects are too closer at initial state, we will consider them as the same object. Along
the time, they will split into two objects then our system will detect this situation and revoke
the original correspondence relation. Besides, we will reconstruct these two objects’
correspondence relations.

4+ More than one 2-D objects correspond to the same 3-D object :
When more than one 2-D objects in a 2-D image correspond to the same 3-D object, we will
revoke their correspondence relations due to this contradiction and then reconstruct the
correspondence relations in the next time.
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Based on the distribution of 3-D particles :
When establishing the objects correspondence relations, we can use a classification
function,C(o), to find the corresponding 3-D object for each 3-D particles, and it can be

written as

C(Xt(s)): arg max iP(I “ (Xt(s),c),Tt(k)(c)) Eq 3-29

1<k<M, ©=1

.Each 3-D object has a set of 3-D particles to describe its distribution. We can correct the
correspondence relation by observing the projection results in all camera views of these 3-D
particles. By calculating the distribution of the 3-D particles falling in a bounding box of 2-D
object, we will revoke that 2-D object’s correspondence relation if any case occurs as
follows:

There is no 3-D particles falling in the bounding box :
Nts
IF > 5(1,(x."c)-i) =0 Eq 3-30
s=1

, wherel<c<N_ ,1<i<N,(c), and N represents the number of 3-D particles. That

means the current 3-D probability.distribution.doesn’t contain the information of this 2-D
object which is i-th object in c-th camera view. So we will revoke its original correspondence
result.

The incoherent correspondence relations of the original one and the estimated result :

If 1,(c,i)=arg max NZts:5(I32(Xt(s),c)—i)-5(C(Xt‘s))—k) Eq 3-31

1<k<M, =1

Assume the 2-D object correspond tok -th 3-D object, but the most number of 3-D particles

inside its bounding box belongs to k -th 3-D object. Then we will revoke its original
correspondence relation due to the incoherence of correspondence results.
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3.4.2 Occlusion Handling

When two or more objects in a 2-D image become closer, they will be covered by each
other since they lose the information of depth when back-projecting from 3-D domain to 2-D
domain. It is so-called occlusion problem which will degrade the 2-D tracking results. In order to
solve this problem, we use the multiple cameras to estimate the positions of the moving objects
in 3-D domain. Then the 2-D objects under occlusions can be orientated by the 3-D information
and the performance of 2-D tracking results will be good and stable.

If the correspondence relations have been established before occlusions, then we can
however use the 3-D particles belonging to their corresponding 3-D objects to locate their
positions in a 2-D image. Moreover, the occluded objects in a 2-D image will be selected within
the same bounding box. This bounding box provides the important information for positioning
objects. The occlusion problem can be solved by two steps:

I.  Orientation by 3-D particles :
Since the correspondence relations Shaverbeen established, the location of the occluded
object can be obtained by averaging the_centers of . gravity of other 2-D objects belonging to
the same 3-D object. For example, assume:the occluded object is i-th object in c-th camera
view, then its estimated center:of gravity is written as:

N, N1(c‘)

X (Xt,c',i')-WM (Xt,c,i)-5(lz3(c',i')— 1s(c.i))

S, (1) (16 ) (e 1)

mu_occlusion®' = ¢=Li=1

Eq 3-32

Il. Correction of location and modification of size by using the merging bounding box :
We use the boundary of the merging bounding box to correct the location of the occluded
objects. If A and B are both inside the same bounding box and A is near the left side of the
bounding box in respect to B, then we assign this left side of the merging bounding box as
A’s then move A’s bounding box here and vice versa. After correcting the locations of the
occluded objects, we will adjust the size of the bounding boxes. If the distance of A and B is
small, it means that they encounter the sever occlusion so the merging bounding box can
even approximate these two objects’ bounding box. Then we expand their bounding boxes
through a fuzzy adjustment function. The size adjustment of the bounding box is as follows,

- -Ccii 1 - gci 1 - -
wid _eStIt "= (Wj ~wid®' + (1— mj -wid _0CC|US|0nt Eq 3-33
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,where wid®'and wid _estit°’i are the widths before and after adjusting, wid _occlusion, is

the width of merging bounding box, d is the distance between the centers of occluded
objectsanda, T are the parameter for fuzzy function.

The original result is shown in Figure 3-14 (a), we can find that the performance is not good
due to the estimation error and the inappropriate size of the bounding box. The better result is
shown in Figure 3-14 (b) after fuzzy adjustment. We can find that the locations and the sizes
of bounding box are more appropriate than the original result.

= {,LJ:':l ﬁdjyétrnent

Figure 3-;1h alllusﬁﬁfon’bf fﬁz_zy adjustment
= TN it

46



3.5 Overall System Structure

The flow chart of our system is shown in Figure 3-15. When our system starts to work, first,
we will spray lots of initial particles on the locations where objects may appear in 3-D domain
based on the current 2-D tracking results in all camera views. Then we continue to track moving
objects in each camera view. By back-projecting all particles from 3-D domain to 2-D domain,
the weights of particles will be updated by comparing their projection results with the 2-D
tracking results. Condensing all the 3-D particles into the centers of gravity which have the one
to one relations to the 2-D objects, we can establish and update the correspondence table and
refine the 2-D tracking results. Finally, we can use these centers of gravity to predict the next
positions of the 3-D particles. The concept of our system is to exchange the information between
2-D domain and 3-D domain. The objects probability distribution in 3-D domain is updated by
passing the 2-D tracking results to 3-D domain and the 2-D tracking results can also be refined
by the back-projecting their centers of gravity in 3-D domain. Through this cooperation, our
system can accomplish the multiple objects tracking and correspondence over the multi-camera

surveillance system.

Generate 3-D Particles

l

2-D Tracking

l

3-D Particles Correction

Correspondence Check

}

2-D Tracking Refinement

|

3-D Particles Prediction

Figure 3-15 the flow chart of our system
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Chapter 4 Experimental Results

Our system is developed in an indoor environment with four static and calibrated PTZ
cameras mounted on the ceiling. In the following sections, we will demonstrate some
experimental results of our algorithm. There are two sequences, seqland seq2 demonstrating a
two-people case and a three-people case, respectively. The bounding boxes of the detected
objects in different camera views t are in the same color for the same 3-D object. Moreover, a
yellow bounding box represents an object, whose correspondence relation hasn’t been found yet.

The first experimental result demonstrates the tracking results under occlusions. The
location of an occluded people can be estimated by the cooperation of other 2-D objects
belonging to the same 3-D people. In Figure 4-1, the left column shows the detection results
obtained by background subtraction and there is no correspondence relation at all. The right
column shows the results of our system. At t = 603 the correspondence relations have been
constructed. At t = 606 two people in the lower-right image become closer and the occlusion
problem occurs. At t = 642 these two people separate from each other but other two people in the
lower-left image start to occlude each. other We fmd that our system can handle the occlusion
problem in a reasonable and efﬁmentway :"| PN,

Seql, t =603
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=606

Seql,t

618

Seql,t

=642

Seql,t
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Seql,t=654

Figure 4-1 the tracking and correspondence results in seql under occlusions

When occlusion occurs, the size of the bounding box only keeps the same size of the
bounding box before occlusion. However, we can use the information of the merged bounding box
to modify the size of the occluded objects boundlng boxes through a fuzzy adjustment. In Fioure
4-2, two people encounter the occlusg@p S|tuat|omeom t = 612~621. At t = 615 and 618 the
occlusion become so severe that tt:é;s%e d)ﬂaalott chjuded object approximates the size of the

merged bounding box. - ik o 1=

Seql,t=618 Seql, t=621

Figure 4-2 modification of size by a fuzzy adjustment (Seql)
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In Figure 4-3, it is anther occlusion example for three people. We can find that the sizes of
the bounding boxes of the occluded people become more similar to the merged bounding box
and then recover to the original size when these two people separate from each other.
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In the following demonstration, it shows that our system can check the correctness of the
correspondence relations and revoke the unreasonable correspondence relations automatically. In
Fioure 4-4, at t = 1196 the object with the green bonding box in the upper-left image has a wrong
correspondence relation. At t = 1198 the objects with the same green bounding box in the other
camera views are revoked their original correspondence relations and at t = 1120 the object in the
upper-left image is also revoked its correspondence. At t = 1202 most of the objects have
established their correspondence relations.

Seq2, t=1198
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Seq2,t=1202

Figure 4-4 the demonstration of self-correction of our system
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When a 2-D image detects a new object, our system will find its correspondence relation as
soon as possible. In Fjoure 4-5, at t = 669 a new object is detected in the lower-right corner. After
that, our system will spay some new 3-D particles over the locations where this object may appear.
At t =675, we can find that object has established its correspondence relation.

Seql t=675 & . Séq1,t=678
. I l .
Figure 4-5 Establishment of the correspdndence re|a:t|on for the newly detected object
If two objects were initially thought teJae_a_smgle Object due to occlusion, as shown in the
lower-left image in Fioure 4-6at t = 675 and then separate from each other, our system will revoke
the original correspondence of the merged.object.and reconstruct the correspondence relation for
each of them, as shown in the lower-left image of Fjoure 4-6att = 678.

Seql,t=675
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Seql, t=678

Figure 4-6 the reconstruction of correspondence relation when splitting
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Chapter 5 Conclusion

We construct a surveillance system with multiple cameras for moving objects tracking and
correspondence. Our system uses the 2-D tracking results from different camera views and a lot of
3-D particles with different weights to estimate the probability distribution of moving objects in
the 3-D domain. Although Utsumi[23] also uses a similar concept to describe the moving objects
as some Gaussian distributions in the 3-D domain, our method is more flexible and reasonable
since the distribution of moving objects usually doesn’t follow a Gaussian distribution. Through
the information exchange between the 2-D domain and 3-D domain, this probability distribution
can be correctly updated. This distribution can also refine the 2-D tracking results and help each
object in the 2-D domain to find its correspondence relation. Moreover, our system may check and
update the correspondence relations automatically based on some proposed constraints. After
establishing the correspondence relations, the occlusion problem can be solved easily and these
correspondence relations can be used to maintain the correctness of the probability distribution of
the moving objects in the 3-D domain.
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