
國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

動態考慮多關鍵性迴路之效能感知佈局研究

Throughput-Aware Floorplanning by Dynamically
Considering Multiple Critical Cycles

研 究 生： 王莉雅

指導教授： 黃俊達 博士

中 華 民 國 九 十 六 年 八 月

動態考慮多關鍵性迴路之效能感知佈局研究

Throughput-Aware Floorplanning by Dynamically

Considering Multiple Critical Cycles

研 究 生：王莉雅 Student：Liya Wang

指導教授：黃俊達 博士 Advisor：Dr. Juinn-Dar Huang

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering
August 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年八月

動態考慮多關鍵性迴路之效能感知佈局研究

研究生：王 莉 雅 指導教授：黃 俊 達 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘 要

隨著製程的進步，導線延遲取代了元件的延遲，逐漸主宰著系統的效率，並且在設

計上成為一個非常關鍵的因素。然而，導線的延遲很難在早期的系統設計中預知，必須

要等到佈局(floorplan)完成才可以有初步的分析。因此，在這份論文中，我們會介紹導

線延遲所造成的潛在因素是如何引響系統的效能，並且重新評估一些具有同成果品質

(Quality of Result) 目標的舊有佈局方法。接著我們提出一個新的效能感知

(Throughput-Aware)佈局方法，這個新的方法會動態考量一個對效能最具關鍵的迴路集

合，此迴路集合的元素還會隨著佈局的過程而改變，以達到增進系統效能(system

throughput)的目標。實驗結果也顯示出我們的方法可大幅增進系統效能，有些例子裡甚

至可以比以往的方法達到兩倍以上的成長。我們另外推薦一個整體設計流程，可以在系

統設計步驟時就預估佈局對效能的影響，避免未來因為效能不足而造成冗長且高價的重

複設計代價。

 i

Throughput-Aware Floorplanning by Dynamically

Considering Multiple Critical Cycles

Student: Liya Wang Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

The wire delay is gradually dominating the system performance and becoming one of the

most critical design issues. However, it is hard to precisely estimate the wire delay in early

design stages until floorplan is actually done. In this thesis, we first show how the latency

incurred by wire delay dominates system throughput and re-evaluate several exiting

floorplanning strategies which are considered providing the same quality of result (QoR) in

the past. Then we propose a new throughput-aware floorplanning strategy which dynamically

optimizes a set of most critical performance cycles in the system. The experimental results

show that our approach can even double the system performance than the previous method in

certain cases. We also recommend a design flow that considers the floorplanning impact as

early as the system-level design stage to avoid lengthy and costly redesign iterations.

 ii

Acknowledgment

從進入研究所到這份論文的完成，我得到非常多的人的幫助以及關懷。在此我將對

他們表達我的感謝之意，如果沒有這些幫助，這份論文是無法完成的。

首先是要感謝的是我親愛的父母。他們辛苦的工作並養育我，給我一個幸福完整的

家庭，從小讓我接受良好的教育，提供我經濟的來源，讓我衣食無缺。在我研究的過程

中全力支持我、關心我，讓我無後顧之憂的完成我的研究。深厚的親情是無法用言語訴

說，在此也僅能獻上我微不足道的感謝：謝謝你們讓我順利完成研究。

重要的是我也非常感謝我的指導老師─黃俊達教授。他不僅提供了完整的研究環

境，並且花費了很多心力在我身上。如果沒有 Adar 老師的教導、解惑、以及每次的討

論，我的研究工作將會無比艱辛。再次感謝我的指導老師 Adar 老師。

另外要感謝的是 Adar、Acar、以及 EDA group 的所有老師和同學們。當我上台報告

的時候，像是周景揚老師、陳宏明老師、趙家佐老師…等等，這些老師們總是會給我最

好的建議，幫助我的研究，非常感謝這些老師的幫助。而其他同學：同屆的小形和小朋

友總是會跟我一起討論課業，也會幫忙我修改報告內容；詠翔學長總是會幫我解決設備

或是工作站的問題；而在論文即將完成的後期時間，耿維學長更是給我非常大的幫助，

使我受益匪淺；另外還有其他學長姐學弟妹的關心討論等等。很多的幫忙，像是同學之

間的加油打氣、研究苦思時的體貼關懷，都無法一一寫出，我只能在此表達我的感謝之

意，謝謝這些人的關懷以及幫助，也讓我的研究生活充實而愉快。

對於此論文的完成，我有很多的感激。一份論文的研究實在需要很多很多的助力，

不論是實際上的支持，或是背後的幫助，皆無法在此以三言兩語來真正的說明，因此在

最後引用陳之藩先生說的話：「因為需要感謝的人太多了，就感謝天吧。」來表達我完

成論文的心情，謝謝。

 iii

 Contents
1 Introduction………………………………………………………………………….. 1

1.1 Motivation………………………………………………………….................. 4

1.2 Our Contribution……………………………………………………………… 5

1.3 Organization of This Thesis…………………………………………………... 5

2 Preliminaries………………………………………………………........................... 6

2.1 System Throughput…………………………………………………………… 6

2.2 The Effect of Floorplanning to Throughput………………………………….. 10

2.3 Problem Formulation…………………………………………………………. 11

2.4 Related Works………………………………………………………………… 12

2.4.1 The Modified SA-based Adjacent Constraint Graph (ACG)

Floorplaner[14]………………………………………………………… 12

2.4.2 The SA-based Floorplaner with Correlative Cost Function[9]………… 14

3 Throughput-Aware Floorplanning by Dynamically Considering

 Multiple Critical Cycles …………………………………………………………. 16

3.1 The Consideration of Multiple Critical Cycles……………………………… 16

3.2 Dynamic Cycle Set CTp……………………………………………………… 18

3.3 The SA-based Flow of Our Approach……………………………………….. 20

4 Experimental Results………………………………………………………………. 22

4.1 Environment Setup and Benchmarks………………………………………… 22

4.2 Weight Assignment…………………………………………………………… 23

4.3 Results………………………………………………………………………… 23

4.3.1 Experiment I……………………………………………………………… 23

4.3.2 Experiment II…………………………………………………………….. 25

4.4 Stability……………………………………………………………………….. 26

4.5 Discussion…………………………………………………………………….. 28

5 Throughput-Aware Design Flow……………………………………………………. 29

6 Conclusion………………………………………………………………………….. 32

Reference………………………………………………………………………………… 33

Appendix…………………………………………………………………………………. 35

 iv

List of Figures
1-1 Un-shrinking global wire as feature size downscaling………..…………………… 1

1-2 The trend for signal propagation length (obtained from [2])……………………..... 2

1-3 An example of the pipeline element insertion……………………………………… 3

2-1 The system nFB without feedback loop……………………………………………... 6

2-2 Time slot sequence in the system nFB……………………………………………… 7

2-3 The system FB with feedback loop…………………………………………………. 8

2-4 Time slot sequence in the system FB………………………………………………... 8

2-5 The system with two cycles…………………………………………………………. 9

2-6 Time slot sequence of the system in Figure 2-5…………………………………….. 10

2-7 Floorplanning results FP1 & FP2…………………………………………………… 10

2-8 Floorplan FP1 & FP2 after pipelining………………………………………………. 11

2-9 The system S1 and its floorplanning result FS1-a…………………………………. 13

2-10 The floorplanning result FS1-b of the system S1………………………………….. 13

3-1 The cycle means of 10 cycles in a system………………………………………….. 16

3-2 The possible cycle means at the beginning (a) and ending (b) in SA process……... 18

3-3 The flow chart of SA-based floorplaner………………………………………….. 21

4-1 Average throughput improvement for Method_M, Method_C, and Method_D….. 25

4-2 Average throughput improvement of Method_D and Method_D*………………… 26

4-3 The standard deviations for every method under different number of cycles……… 27

5-1 The redesign iterations…………………………………………………………….. 29

5-2 The recommended global design flow chart for preliminary throughput……….… 30

 v

List of Tables
3-1 The meanings of the abbreviations in Figure 3-3………………………………….. 20

4-1 The number of blocks and cycles for every benchmark……………………………. 22

4-2 Average throughput and dead space……………………………………………….. 24

4-3 Average area overhead for Method_M, Method_C, and Method_D………….…… 25

4-4 Average area overhead for Method_D and Method_D*……………………………. 26

A-1 Average P and DS of every bnechmark………………………………………………35

 vi

Chapter 1

Introduction

As entering the era of SoC design using deep submicron (DSM) technology, the trend of

continuous shrinking device size and interconnect width makes the performance critically

dependent on the latency of long wires. Feature size downscaling speeds up the operating

frequency but raises the delay ratio of wire to device [1]. Moreover, due to rapidly increasing

design complexity, the delay of global wire fails to shrink as the device delay does. One major

reason is shown in Figure 1-1. The impact of technology scaling on global wire is unchanged

while the local wire and devices or modules becomes small.

Figure 1-1. Un-shrinking global wire as feature size downscaling.

As a result, the length which a signal can reach within a clock cycle drops quickly.

Figure 1-2, which is obtained from [2], shows the trend for metric clock locality in different

process generation. The die length is 30mm and the operating frequency is 1.2GHz. In the

80nm process, it needs 16 clock cycles to across the chip. Moreover, the length that a signal

 1

can reach within a clock cycle decreases to only 5% of the die length in the 60nm process

node.

0.25 0.18
0.13 0.1

0.08 0.06

1
2

4
8

16

0

10

20

30

40

50

60

70

80

90

100

processor generation (um)

clocks

Die reachable (%)

Figure 1-2. The trend for signal propagation length (obtained from [2]).

Hence, it is unavoidable that the chip-scale inter-module communication becomes

multi-cycle. Such multi-cycle latency can seriously degrade the performance improvement

originally obtained from adopting advanced fabrication technology. The combination of

increasing long wire delay and increasing chip operating frequency forces designers to

innovate better design methodologies.

Therefore, in physical level, there are wire sizing, buffer insertion, bus encoding…etc

helping to relax the wire delay constraint. And in system level, many research works try to

find new design paradigms that not only have advantage of being perfectly transparent to the

designers but still guarantee the timing closure and correct functional behavior.

One approach is to adopt globally-asynchronous locally-synchronous (GALS) systems

[3-5] which utilize asynchronous handshake protocols for global inter-module communication.

 2

The other is to use latency-insensitive systems (LIS) [6-8] in which the communication

protocols do not rely on specific latency requirements. In such protocol, modules are

surrounded by wrappers and communicate through special pipeline elements, called relay

stations. Another one is network-on-chip (NoC) platform [9-10] which organizes the global

wire as an on-chip interconnection network. The communication of NoC design passes

through every module’s router with network interface.

For synchronous designs, inserting pipeline elements into interconnects, like LIS design

paradigm and wire pipelining strategy, is generally compatible with the traditional

synchronous design mainstream. The LIS design is getting more attention these years and

wire pipelining is used popularly. By inserting pipeline elements into interconnects, the time

constraint is relaxed. For example, the wires shown in Figure 1-3, the input/output time

constraint of wire for all the modules are needed to be smaller than 1 clock cycles. The delay

of wire A is 0.9 clock cycle such that it needs no pipelining. On the other side the delay of

wire B is 2.4 clock cycles such that two pipeline elements are inserted into wire B. Therefore,

the input/output timing constraint of wire B is feasible.

Figure 1-3. An example of the pipeline element insertion.

 3

1.1 Motivation

For synchronous design, how to realize multi-cycle communication is addressed well.

However, besides the overhead of additional pipeline elements, it also jeopardizes overall

system throughput due to the existence of multi-cycle communication feedback loops within

the system.* If this issue can not be properly addressed, the advantage obtained from

technology improvement is likely to vanish as mentioned previously.

Moreover, notice that it is particularly hard to deal with this throughput degradation issue

in early system design stage. This is because the wire delay information remains unknown

until the floorplanning is actually performed. Thus, how many clock cycles for the

interconnect communication is dependent on the result after performing floorplan. Therefore,

the floorplan needs to be modified appropriately to deal with this important subject otherwise

the system performance is endangered. The floorplaner that considers multi-cycle

communication becomes necessary and is very important in the coming era of high speed

synchronous design.

The overall system throughput is virtually unpredictable at early design phase. If the

throughput result after floorplanning doesn’t meet the requirement, significant redesign

iterations are likely required to achieve the target throughput. These redesign iterations may

become a terrible encumbrance and damage the project schedule. Hence, the effect of

floorplan to the throughput must be evaluated in advance. As a result, a more effective design

flow is needed to minimize the redesign iterations.

* This influence is discussed in Section 2-1.

 4

1.2 Our Contribution

In this thesis, a new floorplanning strategy is proposed. This strategy is based on

simulated annealing (SA) and the cost function is defined to considering the important issue

of system performance—throughput. Moreover this new strategy dynamically considers a set

of most critical cycles. This dynamic set of cycles is initially set to certain range of cycles

according to their throughput and its size changes with temperature. It has a good balance

between high correlation and low sensitivity than previous works. The experimental results

show that our method provides significant improvement on throughput. Furthermore, the

improvement of our method increases very much as the interconnect delay gets larger.

According to the experiment of optimizing the throughput, a global design flow is

recommended. This recommended design flow evaluates the throughput result affected by

floorplanning after system-level design. If the throughput result is not satisfied at this stage, it

can be fast backward to change the system-level design and doesn’t need to wait until

finishing the backend floorplan. Thus, this new design flow helps reduce the redesign

iterations between backend floorplan backward to system-level architecture or RTL & logic

design stages.

1.3 Organization of This Thesis

This thesis is organized as follows. In Chapter 2 we show the preliminaries for our work.

It includes the throughput calculation, the effects of floorplanning to throughput, and the

related works. The proposed throughput-aware floorplanning strategy is given in Chapter 3.

Experimental results are provided in Chapter 4. The recommended overall design flow is

discussed in Chapter 5. Chapter 6 concludes this thesis.

 5

Chapter 2

Preliminaries

2.1 System Throughput

Data rate is the major performance metric in system design and it is calculated by

multiplying the system throughput and the operating frequency. Obviously, the throughput

serves as an important performance factor. As described, the throughput depends on not only

the latency of functional blocks but also the latency incurred by long wires. An example is

given to show how the wire latency impacts the throughput.

Figure 2-1. The system nFB without feedback loop.

Consider the system nFB shown in Figure 2-1, the circles a, b, and c are functional

blocks, while the rectangle PE is a pipeline element. Assume the interconnect delay between

a and c is greater than one clock period but less than two. It implies that at least one pipeline

element must be inserted between a and c to preserve the correct functionality. Hence, the

interconnection latency from a to c is 1 clock cycle. Assume the latency of every functional

 6

block is 1 clock cycle. Also assume that the interconnect channel can properly queue the

transfer data. The output sequence at the functional block c is considered as the output of the

system nFB.

At the time slot t0, all functional blocks a, b, and c produce the first valid data tokens a0,

b0, and c0 while PE only contains an empty data token τ initially. For following time slots,

every functional block produces a valid data if its input data are ready at the previous time slot.

Otherwise it produces empty data. A pipeline element only keeps a token one clock cycle then

forwards it out from senders to receivers.

Figure 2-2. Time slot sequence in the system nFB.

In Figure 2-2, at time slot t1, because one input data of the block c is τ at the previous

time slot, c produces τ and the data b0 is queued in the interconnecting channel from b to c.

Also at time slot t1, the pipeline element PE receives the data a0, and passes it to the block c

at the next time slot. Then the empty data τ is popped out since t2 and all functional blocks

produce valid data since then. Note that there exists only one τ in the output sequence of the

system nFB. Therefore the overall throughput of the system nFB approaches 1 as t→∞.

Now consider the system FB with a feedback loop as shown in Figure 2-3. Though it

looks similar as the system nFB, it presents a totally different throughput.

 7

Figure 2-3. The system FB with feedback loop.

As Figure 2-4 points out, the empty data token τ introduced by PE circles around during

t0 ~ t4. It becomes obvious that the empty data token never disappears and always presents at

the system output every 4 clock cycles. As a result, the throughput of the system FB

approaches only 3/4 as t→∞.

Figure 2-4. Time slot sequence in the system FB.

As the two systems nFB and FB demonstrate, a system can be modeled as a graph, in

which vertices depict the functional modules and edges describe inter-module communication

channels. Every vertex and edge has a weight indicating its required number of clock cycles

for signal transmission. The throughput P of a cycle C can be calculated as the reciprocal of

the cycle mean λ and is shown in Equation (1)

 8

1
1)(

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

C
CWP CC λ

 (1)

In Equation (1), |C|, usually called the size of cycle C, is the number of vertices in C and

W(C) is the sum of weights of all vertices and edges within the cycle C.

If a system contains more than one cycle, then the system throughput is bounded by the

most critical cycle possessing the maximum cycle mean, shown in Equation (2). The equation

has been proven in [7-8] and [16].

1
1

1
max

)(max)(max
−

∈∀

−

∈∀

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞⎜

⎝
⎛==

C
CWCP

systemCsystemCsystem λλ
 (2)

The system shown in Figure 2-5 is an example that the critical cycle bounds the system

throughput. This system has 2 cycles C1 and C2. Although the output functional block f

belongs to C2 whose throughput is 4/5 and the output sequence at f shown in Figure 2-6

presents a throughput approaching 4/5 before t19, the cycle C1 eventually blocks the input data

of the block d such that the throughput of functional block f is 3/4 after t19. Thus, the final

throughput of this system is bounded by the cycle C1 with the maximum cycle mean and

approaches 3/4 as t→∞.

4
3

1 =PC :
5
4

2 =PC :

Figure 2-5. The system with two cycles.

 9

Figure 2-6. Time slot sequence of the system in Figure 2-5.

2.2 The Effect of Floorplanning to Throughput

In the previous section, how wire latency affects system throughput is described.

However, what latency a interconnect channel possesses depends on the floorplanning result.

For example, two different floorplans, FP1 and FP2, for the same system are shown in Figure

2-7. This system has one cycle a-b-c-a and the two floorplan have the same area and wire

length. The only difference between them is the positions of blocks c and d.

Figure 2-7. Floorplanning results FP1 & FP2.

It is assumed that the data transfer cannot be successfully completed from b to d in FP1

and from b to c in FP2 within one clock cycle. Hence, a pipeline element must be inserted in

both cases. After inserting pipeline elements, surprisingly, the performances of two floorplans

are significantly different. As shown in Figure 2-8, FP1 remains its throughput to be 1 while

 10

FP2’s throughput drops from 1 to 3/4 (25% performance loss).

1
3
3
==λ

3
4

=λ

Figure 2-8. Floorplan FP1 & FP2 after pipelining.

This example shows the strong effect of floorplanning to throughput. If the floorplan

without carefully dealing with this issue, the degradation of throughput becomes large.

Therefore, we try to find a new method that improve the system throughput under simular

area and wire length cost.

2.3 Problem Formulation

This problem is formulated to be a modified floorplan problem. The modifications are

the input data type and the additional new objective. It can be further formulated as following.

Given: 1. A system task graph with physical information

 2. The wire length that a signal can reach within one clock cycle, WCLK (The

wire length WCLK is used to calculate the latency on an interconnect.)

Constraint: A non-overlap feasible floorplan result

Objective: 1. Maximize throughput (i.e. minimize the maximum cycle mean)

 2. Minimize area and wire length

Algorithm: The SA-based algorithm

 11

In an SA-based floorplanning algorithm, the cost function is the guide to reach the

objectives. Conventionally the cost function only contains the objectives for area and wire

length. We add a new one for maximizing throughput into cost function Φ, and it is now

defined as Equation (3).

Cost function:)(PfγβWαA ⋅++=Φ (3)

In Equation (3), A is for total area, W is for total wire length, f(P) represents the cost of

throughput. Smaller f(P) means higher throughput. α, β, and γ are weighting constants. If one

objective is emphazied, raising its weighting constant can make the floorplan be better on the

objective.

2.4 Related Works

The floorplan with throughput consideration has been discussed. There are two related

works with discussion as in the following sections.

2.4.1 The Modified SA-based Adjacent Constraint Graph (ACG)

Floorplaner[14]

In [14], authors identify the maximum cycle mean among all cycles and directly use that

mean as f(P) of the cost function in their SA-based floorplaner [15]. This method immediately

gives the response of the overall system throughput in cost function without considering any

minor factors. The high correlation between cost and throughput is provided. However, the

maximum cycle mean might not be smooth enough to serve as a good cost function.

For example, consider the system S1 and the floorplan FS1-a shown in Figure 2-9. This

system has three cycles C1, C2, and C3. According to FS1-a, the cycle C2 is the critical cycle

 12

with the maximum cycle mean and it dominates this system throughput bounded to be 3/4.

The other two cycles have equal cycle mean to be 5/4.

In order to improve the throughput, the floorplaner tends to choose a result improving

the critical cycle C2. As a result shown in Figure 2-10, the cycle mean of C2 is improved from

4/3 to 1, however, the cycle mean of C3 (=3/2) takes the place of critical cycle and the system

throughput decreases from 3/4 (of FS1-a) to 2/3 (of FS1-b).

4
5

1
=Cλ 3

4
2
=Cλ 4

5
3
=Cλ

4
3

1 =⇒ −aFSP

Figure 2-9. The system S1 and its resulting floorplan FS1-a.

1
3
3

2
==Cλ

2
3

4
6

3
==Cλ

3
2

1 =⇒ −bFSP

1Cλ

Figure 2-10. The resulting floorplan FS1-b of the system S1.

 13

From this example of the system S1, directly using the maximum cycle mean to be f(P)

of the cost function may increase the other minor cycle means. Thus, f(P) must be considered

to prevent the increasing of critical and minor cycle means simultaneously.

2.4.2 The SA-based Floorplaner with Correlative Cost

Function[11-13]

In [11-13], authors first investigate the throughput-driven floorplanning. They introduce

a simulated annealing (SA)-based floorplaner optimize for system throughput. However, they

claim that the throughput is too sensitive to small local changes such that it is not a good idea

to directly use it in the cost function.

Instead, they create a correlative f(P) for preventing the pipeline element insertion into

the edges in the critical cycles. Initially, every edge is assigned a weight with the reciprocal of

the smallest cycle size containing it. It is because the pipeline element insertion in the cycle

with small size is easy to decrease the system throughput. If an edge with a large reciprocal

value, inserting pipeline element into the edge has much danger to the throughput. Then at

each following iteration, the edge latency is updated according to the current floorplanning

solution. After that, the SA-based floorplaner is guided to reduce the sum of product of the

weight and the latency for all edges. The small value of this method means that the less

pipeline elements in the critical edges such that the system throughput is improved. Taking the

resulting floorplan of the system S1 shown in Figure 2-9 as an example, the edge g-e has one

pipeline element and its smallest cycle size is |C3| =3. Hence the partial cost of it is 1/3. The

respected the partial cost of edge c-d is 1/4 and edge c-e is 1/4. Thus the final cost of f(P) of

this method is 10/12.

The authors claim that the designated cost function is better than the real system

 14

throughput for SA-based floorplaner due to its modest sensitivity to local changes and fast

computation. However, the fact is that the overall system throughput solely depends on the

most critical cycle with the maximum cycle mean. Thus, it is arguable how strong the

correlation between the designated cost function and the final system throughput is.

According to the claim in [11], the throughput with smaller cost is better than the other one.

For example, to reduce the cost of FS1-a in Figure 2-9, which is computed to be 0.83 (10/12),

the FS1-b in Figure 2-10 could be the new floorplan because it has smaller cost 0.75 (9/12).

However, FS1-b with throughput 0.75 (3/4) is actually better than that of FS1-a with

throughput 0.67 (2/3). Therefore, neither the weighted edge cost nor the most critical cycle

mean can improve the actual system throughput very well.

 15

Chapter 3

Throughput-Aware Floorplan by
Dynamically Considering Multiple
Critical Cycles

3.1 The Consideration of Multiple Critical Cycles

According to the discussion in section 2.4, a new method for f(P) is considered in order

to balance the correlation and sensitivity. Therefore, instead of the overall cycles in [11] and

the maximum cycle mean in [14], a set of most critical cycles is taken into consideration in

our methodology. The set of most critical cycles is defined as CTp and the number of cycles in

CTp is defined as its size |CTp|. The cycles in CTp are chosen according to their cycle means

and the |CTp| is parameterizable. For example, assume we have ten cycles in a system, Figure

3-1 shows the cycle means of these cycles. The number in x-axis is the cycle number and the

height of the bar is the cycle’s corresponding cycle mean.

In this example, if we decided to choose the 50% most critical cycles, then the cycles

with 50% larger cycle means (C3, C4, C5, C9, and C10 which are colored in Figure 3-1) are

picked up to form CTp and |CTp| is five in the floorplaner. f(P) now designed to considering

how to improve the cycle means in CTp. Minimizing the cycle mean of each cycle in CTp is

our objective. Hence, we use the average cycle mean of all cycles in CTp, called λTp, to

 16

represent the influence of throughput in the cost function. Therefore, the f(P) in Equation (3)

can be rewritten as Equation (4).

cycle mean

0
1
2
3
4
5
6
7
8

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
cycle number

Figure 3-1 The cycle means of 10 cycles in a system.

Tp
Tp

Tp

C
Pf

CC
C

i

i∑
∈

==

λ

λ)(
 (4)

In our work, the chosen cycles’ percentage is initially set in SA floorplaner. However,

Equation (4) is not ideal application of f(P). Although this method gives the opportunity to

prevent forming a worse critical cycle from the minor ones, it has the criticism mentioned in

section 2.4.2 that the small cost may not imply good throughput result. In addition, as

mentioned in section 2.1, the system throughput is only decided by the maximum cycle mean.

Thus it seems that keeping fixed number of multiple cycles in CTp during whole SA iterations

is not suitable. Therefore, in next section, a more feasible application is evolved.

 17

3.2 Dynamic Cycle Set CTp

Although the cycle set CTp is high correlative and not so sensitive to local change, the

computing method of λTp is still not good enough to stand for the system throughput

improving. It is always that the maximum cycle mean bounds the system throughput. Thus

when SA process is near to the end, we should concentrate on decreasing the maximum cycle

mean only. On the other words, CTp should eventually contain only the cycle with the

maximum cycle mean at low annealing temperature (i.e. |CTp| becomes on the end of SA

iterations). It is more practical than to consider multi-cycle for the final floorplanning result.

An example is shown in Figure 3-2. (a) is represents the cycle means at the beginning

iteration of floorplanning and (b) is the cycle means at almost the end of the floorplan. The

cycle means in (a) are worse that needs to consider the most critical cycles. But during the SA

iterations, λTp decreases such that the most cycle means are small in (b). Therefore, the

multiple cycle consideration is not suitable for (b). On the other words, reducing the

maximum cycle mean is the best way under (b)’s condition.

cycle mean

0

1

2

3

4

5

6

7

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

cycle number

cycle mean

0

1

2

3

4

5

6

7

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

cycle number

Figure 3-2. The possible cycle-means at the beginning (a) and ending (b) in SA process.

However, dramatically drop of |CTp| should be avoided in the SA process. For SA

 18

algorithm, it is a gradually converging process and a violent changing may destroy the process.

Therefore, the violent decreasing change of |CTp| may damage the smooth characteristic of

SA-based floorplanning algorithm such that the throughput may not be improved. Thus we

develop a mechanism to decrease |CTp| smoothly during SA process.

Assume that when temperature going down, the most cycle means in CTp decrease such

that the non-critical cycles increase. Therefore, |CTp| can be shrunk as temperature cooling

down and should contain only the cycle with maximum cycle mean near the end of SA

iterations. T means the annealing temperature in SA algorithm and r is the cooling down ratio

of T (i.e. Tnew = rTold) and 0 < r < 1. In order to guarantee that CTp remains only the cycle with

maximum cycle mean, a threshold of temperature, called Tthreshold, is given. Therefore, |CTp|

decrease with the same down ration r of T as T greater than or equal to Tthreshold. This

formulation of |CTp| is given in Equation (5).

⎪⎩

⎪
⎨
⎧

<
≥

=
threshold

thresholdoldTp
new TT

TTCrC
 ,
 ,

Tp 1 (5)

Consequently CTp is the set of most critical cycles which change according their cycle

means and |CTp| decreases with the temperature until T is smaller than Tthreshold. The initial

value of CTp is decided by how worse the cycle mean is wanted to be improved. The other

parameter Tthreshold can be decided by when the multiple cycles consideration should be

finished. By this dynamically considering the multiple critical cycles, λTp in Equation (4) just

becomes the best computation method of f(P) in our opinion.

 19

3.3 The SA-based Flow of Our Approach

Combining the SA-based floorplanning algorithm with our approach, the flow chart of

Figure 3-3 displays the whole process for the new throughput-aware floorplanning. The

abbreviations in Figure 3-3 are described in Table 3-1. G is the system task graph with hard

blocks physical information. X is the representation of a floorplan. FP() is the floorplanning

generation to generate a new X. p is the acceptance probability decided by the cost and

temperature. R is a random number between 0~1.

Table 3-1: The meanings of the abbreviations in Figure 3-3.

G The system task graph
T Annealing temperature
r The cooling speed of Temperature
X Floorplan
FP() Floorplanning generation
Φ Cost
p Acceptance probability
R Random number

This flow is separated into three main processes that are discussed as following:

1. Initial setup: In this process, the parameters, like initial temperature, chip aspect

ratio, temperature cooling down ratio…etc, are given. All cycles in the system task

graph are identified and the initial set of CTp is also determined.

2. SA iteration: This is the main process of the SA-based floorplaner. At every iteration

it generates a new floorplan Xnew and the new cost of this floorplan is computed. If

the cost does not change any more or T is decreased to zero, the iteration stops.

Otherwise, the judgement of taking Xnew or not is applied and the floorplaner

decreases |CTp| with temperature by Euqation (5). The cycles of CTp are also

re-chosen according to their new cycles. The floorplan Xnew. is taken by its

 20

decreasing cost or the greater computed acceptance probability than a random

number. Then the next new floorplan is continuously generated.

3. Final result: It outputs the best floorplan in the SA process and it throughput.

Input data: G, T

Initialize: X =X0
 Φ =Φ0

1. Initial setup

Terminate?

Φ decreased ?
Yes

Xnew = FP(G, X, T)

TpλγβWαA ++=Φ

,T)p(Δp Φ=

X = X X= Xnew

No
No

Tnew = rTold

⎪⎩

⎪
⎨
⎧

<
≥

=
threshold

threshold

TT
TTCrC

 ,
 ,Tp

Tp 1

R< p? No Yes

2. SA iteration

Output final result

Yes

3. Final result

Figure 3-3. The flow chart of SA-based floorplaner.

 21

Chapter 4

Experimental Results

4.1 Environment Setup and Benchmarks

The benchmarks we use contain two sets, MCNC and GSRC. However, the original

benchmarks lack of transfer direction information. In order to add data dependency between

the modules in each benchmark, we break each net into a 2-pin net and randomly assign it

with a direction. The system has cycles because of this direction assignment. To provide a

moderate number of cycles in a system, we limit the number of cycles around one tenth the

number of blocks in every benchmark. The number of cycles in every benchmark is show in

Table 4-1 after our modification.

Table 4-1. The number of blocks and cycles for each benchmark
MCNC GSRC

file name
apte xeorx hp ami33 ami49 n10 n30 n50 n100

blocks 9 10 11 33 49 10 30 50 100
cycles 4 2 1 5 7 2 3 9 12

The experiments are conducted on a Linux workstation with two Intel Xeon 3.2G CUPs

and 3GB DRAM.

 22

4.2 Weight Assignment

The weight of each block in a benchmark is assigned to be one. This means that each

block requires one clock cycle for computation. The weight of an interconnect ei is the

number of pipeline elements it needing and this number is determined by how many clock

cycles a signal propagates from the interconnect’s one end to the other. For example, and

interconnect with 2.4 clock cycle delay needs to be inserted into two pipeline elements.

Therefore, the weight of ei is defined by Equation (6)

⎥
⎦

⎥
⎢
⎣

⎢
=

CLKW
)length(e)weight(e i

i (6)

The interconnect length is modelled as the Manhattan distance between the centers of

two blocks. Equation (6) computes the clock cycle delay of ei and takes the floor value which

is the number of pipeline elements needed at least for ei.

To model the effect of the advancing technology, we assume WCLK to shorten as 1/k times

of the die length and give several kind of k. We applied k to be the number of 1, 2, 4, …to 32.

1 means that the signal can reach the die length in one clock cycle in 0.25 um processor

generation [2]. 32 is the required cycle for cross-chip signal propagation through the top-level

metal wire in 35nm processor generation [18].

4.3 Results

4.3.1 Experiment I

We apply four different methods for cost computation in the same floorplaner:

Method_A is like the conventional floorplaner optimizing are only. The other methods not

only reduce area but also consider the throughput with their own way: Method_M is reducing

 23

the maximum cycle mean only [13]; Method_C is re-implementation of the correlative cost in

[10]; and Method_D is our approach. In our method, CTp initially contains all cycles and

Tthreshold is set as 1/1000 of the initial temperature.

Under the same value of k, we run every benchmark for ten times by using the four

different methods. The results of average throughput and dead space are shown in Table 4-2.

P is the system throughput and DS is the percentage of dead space.

Table 4-2. Average throughput and dead space.

Method_A Method_M Method_C Method_D
k P DS(%) P DS(%) P DS(%) P DS(%)

1 0.73 8.15 0.92 8.41 0.99 8.38 1.00 8.49
2 0.45 7.75 0.64 8.68 0.76 9.92 0.88 10.69
4 0.26 8.04 0.39 8.35 0.49 9.96 0.63 12.51
8 0.15 7.94 0.23 8.58 0.26 9.94 0.41 12.18
16 0.07 7.95 0.12 8.59 0.14 9.84 0.22 12.69
32 0.04 7.74 0.06 8.50 0.07 10.26 0.11 12.54

Form Table 4-2, the throughput decreases very much as k increases. The dead space of

our method is smaller than 13% while Method_A and Method_M are smaller than 9% and

Method_C is smaller than 11%. The throughput of our method (Method_D) always has better

throughput results than others.

The comparison between the four different methods on the thoughput is shown in Figure

4-1. The area overhead is shown in Table 4-3. All the results are normalized to Method_A.

Form Figure 4-1, the improvement of throughput is increasing as the number of cycles

increasing and our method has the best achievements. The area overhead, which does not

exceed 5%, is quite small as shown in Table 4-3.

 24

The improvement of throughput

0%

50%

100%

150%

200%

250%

1 2 4 8 16 32 k

Method_M

Method_C

Method_D

Figure 4-1. Average throughput improvement for Method_M, Method_C and Method_D.

Table 4-3. Average area overhead for Method_M, Method_C, and Method_D

k

Method_M

(%)

Method_C

(%)

Method_D

(%)

1 0.24 0.21 0.31

2 0.85 2.04 2.78

4 0.30 1.81 4.19

8 0.58 1.86 3.97

16 0.59 1.77 4.43

32 0.71 2.37 4.50

4.3.2 Experiment II

In this experiment, we try to allow more are overhead by decreasing the weighting

constant α in our method, called Method_D* and do the experiment of Method_D*. The

comparisons of throughput and area overhead of Method_D and Method_D* are shown in

Figure 4-2 and Table 4-4. The data is also normalized to Method_A.

 25

The improvement of throughput

0%

50%

100%

150%

200%

250%

300%

1 2 4 8 16 32
k

Method_D

Method_D*

Figure 4-2. Average throughput increasing of Method_D and Method_D*.

Table 4-4. Average area overhead for Method_D and Method_D*

k

Method_D

(%)

Method_D*

(%)

1 0.31 1.42

2 2.78 2.76

4 4.19 7.90

8 3.97 9.36

16 4.43 10.43

32 4.50 9.79

According to Figure 4-2 and Table 4-4, if more area overhead is allowed, even more

significant improvement of throughput can be achieved as the value of k increases. It shows

that the area overhead increase about 10% but the improvement of Method_D* increases near

to 300% as k=32.

4.4 Stability

For all methods, we compute the average standard deviation of the maximum cycle mean

 26

for the results of each benchmark. The results are shown in Figure 4-3.

1 2 4 8 16 32

Method_D*
Method_D

Method_C
Method_M

Method_A

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

k

The average standard deviation of the maximum cycle means

Method_D*

Method_D

Method_C

Method_M

Method_A

Figure 4-3. The standard deviations for every method under different number of cycles.

From Figure 4-3, Method_A has the greatest standard deviation because it does not

condiering throughput at all. Among all the throughput-aware floorplan, Method_M has the

greatest standard deviation because it considers only the maximum cycle mean. And our

method has smaller standard deviation than Method_C because improving the throughputs for

all cycles by [10] may not actually improve the system throughput. Moreover, our method

considers a set of multiple critical cycles with dynamically decreasing size, thus it really

improves the system throughput at low temperature.

Method_D* has smaller standard deviation than Method_D because the more area

overhead is allowed in Method_D*. Therefore, the floorplaner has more opportunities to place

the blocks without damaging the throughput too much.

 27

4.5 Discussion

In Experiment I, the throughput degrades is very fast as the required number of cycles

increases. Therefore, all method for optimizing throughput has improvement of throughput

and the improvement of throughput increases when the number of cycles increases (i.e. the

wire delay becomes worse). When the number of cycles is small, the improving of throughput

has little difference. It is because the wire weight is still small such that achieving high

throughput is easy. Our throughput-aware floorplanning shows the greatest improvement on

the throughput. Even when the number of cycle increases, our approach has more

improvement than other methods. It reaches almost 200% improving when the number of

clocks is 16 and 32 cycles. Moreover, the area overhead of our method is no more than 5%

corresponding to the Method_1.

In Experiment II, Method_4* has even more improvement than Method_4. It can have

more than 250% improvement when the number of clocks is greater than 16. And the area

overhead is only increasing about 9%. Thus if relaxing area constraint is allowed, the better

throughput is achieved than having area constraint.

In section 4.4, our method has the smallest standard deviation between

Method_1~Method_4*. Therefore our method can provide a more stable result than other

methods. Specially, Method_4* which relax the area constraint has smaller standard deviation

than Method_4. It may be because that relaxing area constraint makes the more possible

positions for the movements of the blocks become large. Thus the standard deviation of

relaxing area constraint is smaller than having it.

 28

Chapter 5

Throughput-Aware Design Flow

Our experimental results show a great improvement can be achieved on the system

throughput by using our method. However, if the result given by the throughput-aware

floorplaner still can not satisfy the design constraint, redesign iteration is unavoidable. Figure

5-1 shows a design process from the system-level design to floorplanning.

Throughput-aware
floorplaner

RTL & logic
design

System-level
design

Figure 5-1. The redesign iterations.

If the throughput-aware floorplaner can not generate a satisfied result, the RTL & Logic

design is modified again and expects to get an improved result after performing floorplan.

However, if this redesign iteration is useless on improving throughput, the system-level

architecture is needed to be rebuilt. Nevertheless the throughput of the rebuilt system

 29

architecture is still unknown until floorplan is done. Thus an un acceptable resulting

throughput of the floorplan makes the design process repeat form system level to floorplan.

Such redesign iterations cost too much time and decrease the benefit.

Therefore, we propose a new methodology that can help to reduce the possible design

iterations. The flow of this throughput-evaluation methodology is shown in Figure 5-2. The

gray part is the proposed new design stages for reducing the redesign iterations form floorplan

back to system level. It helps evaluate the throughput at early design stage.

System-level design with
estimated physical information

Preliminary floorplanning
throughput evaluation

Throughput satisfied?

Througput satistied?

Futher
improvement at

RTL?

No

Yes

No No

Yes
Yes

RTL & logic design

Throughput-aware
floorplanning

Placement & routing

Figure 5-2 The recommended global design flow chart for preliminary throughput.

First the functional blocks are give the estimated physical information of area size and

the clock-latency. Then, our proposed method can be applied to calculate the preliminary

throughput value for floorplanning. If the resulting throughput is not satisfied, it can

 30

immediately modify the system-level design such that the possibility of redesigns from

floorplan back to system level is greatly reduced.

 31

Chapter 6

Conclusions

In this thesis, a new throughput-aware floorplanning strategy is proposed to maximize

the system performance. It optimizes a dynamic set of most critical cycles simultaneously.

Thus a more stable and better result can be obtained. Compared to the previous works, our

approach is not only highly correlated to the final system throughput but also insensitive and

stable to the locally minor changes during floorplanning refinement processes in

floorplanning. The experimental results show that our floorplaner can achieve about twice the

throughput of that minimizing area only as the applied clock cycles increasing to 16~32. And

the area overhead only increases about 3%~10% more area under various setting of applied

cycles. Meanwhile, a recommend design flow is proposed for preliminary throughput-aware

floorplanning in system level. It helps reduce the design iterations. Hence, we believe the

proposed method and flow can provide better floorplan solutions in the coming multi-cycle

communication era.

 32

Reference
[1] I International Technology Roadmap for Semiconductors, Semiconductor Industry

Association, 2003.

[2] D. Matzke, “Will physical scalability sabotage performance gains?” IEEE Computer, vol.

30, pp. 37-39, 1997.

[3] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” Ph.D.

dissertation, Stanford Univ., CA, 1984.

[4] D. S. Bormann and P. Y. Cheung, “Asynchronous wrapper for heterogeneous systems,”

in Proc. ICCD, pp.307-314, 1997.

[5] J. Muttersbach, T. Villiger and W. Fichtner, “Practical design of globally-asynchronous

locally-synchronous systems,” in Proc. ASYNC, pp. 52-59, 2000.

[6] L. P. Carloni, K. L. McMillan, A. Saldanha and A. L. Sangiovanni-Vincentelli, “A

methodology for “Correct-by-construction latency insensitive design,” in Proc. ICCAD,

pp. 309-315, 1999.

[7] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis and optimization

of latency insensitive protocols,” in Proc. DAC, pp. 21-26, 2001.

[8] R. Lu and C. Koh, “Performance optimization of latency insensitive systems through

buffer queue sizing of communication channels,” in Proc. ICCAD, pp. 227, 2003.

[9] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and

A. Hemani, “A network on chip architecture and design methodology” in Proc.

Symposium on VLSI, pp. 117-124, 2002.

 33

[10] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and D. Lindqvist,

“Network on a chip: an architecture for billion transistor era,” in Proc. of the IEEE

NorChip Conf., 2002

[11] M. R. Casu and L. Macchiarulo, “Floorplanning for throughput,” in Proc. ISPD, pp.

62-69, 2004.

[12] M. R. Casu and L. Macchiarulo, “Throughput-driven floorplanning with wire

pipelining,” in IEEE Tran. CAD, vol. 24, pp. 663-675, 2005.

[13] M. R. Casu and L. Macchiarulo, “Floorplan assisted data rate enhancement through wire

pipelining: a real assessment,” in Proc. ISPD, pp. 121-128, 2005.

[14] J. Wang, H. Zhou and P. Wu, “Processing rate optimization by sequential system

floorplanning,” in Proc. ISQED, pp. 340-345, 2006.

[15] H. Zhou and J. Wang, “ACG-adjacent constraint graph for general floorplans,” in Proc.

ICCD, pp. 572-575, 2004.

[16] R. Lu and C. Koh, “Performance analysis and efficient implementation of latency

insensitive systems,” ECE technical report, Purdue Univ., IN, 2003.

[17] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in Proc. DAC, pp.

101-107, 1986.

[18] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger, “Clock rate vs IPC: the end

of the road for conventional microarchitectures,” in Proc. ISCA, pp. 248-259, 2000.

 34

Appendix

The average throughput and dead space of every benchmark with Method_A, Method_M,

Method_C, Method_D, and Method_D* is shown in Table A-1.

Table A-1. Average P and DS of every benchmark

apte
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.751 1.59 1.000 2.48 1.000 1.84 1.000 1.93 1.000 2.22
2 0.462 1.64 0.729 2.26 0.722 6.89 1.000 12.12 1.000 3.35
4 0.245 1.59 0.413 2.04 0.400 4.14 0.602 4.77 0.685 5.71
8 0.134 1.64 0.228 2.06 0.215 3.30 0.338 7.43 0.348 5.52
16 0.070 1.64 0.120 2.33 0.112 2.87 0.170 4.95 0.205 4.87
32 0.034 1.64 0.060 2.21 0.059 3.22 0.090 6.35 0.107 4.47

xeorx
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.833 6.04 0.909 6.16 1.000 6.33 1.000 6.98 1.000 6.69
2 0.435 5.85 0.541 6.31 0.909 9.64 1.000 10.29 1.000 8.89
4 0.215 5.60 0.323 6.74 0.455 10.79 0.667 22.88 0.656 19.13
8 0.122 6.09 0.174 5.73 0.242 10.87 0.351 19.39 0.388 17.48
16 0.057 5.60 0.103 6.86 0.137 10.84 0.190 22.61 0.213 18.81
32 0.033 5.70 0.047 6.50 0.069 12.40 0.097 21.23 0.110 17.51

 35

hp
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 1.000 7.84 1.000 7.91 1.000 7.39 1.000 7.16 1.000 9.70
2 0.714 7.65 1.000 9.25 1.000 7.28 1.000 8.05 1.000 8.52
4 0.476 6.76 0.667 7.64 1.000 7.13 1.000 8.66 1.000 9.33
8 0.333 7.93 0.500 8.21 0.500 7.83 1.000 9.22 0.500 11.40
16 0.135 7.55 0.250 8.14 0.333 7.66 0.500 9.48 0.333 10.60
32 0.092 6.76 0.141 7.76 0.167 8.44 0.250 9.57 0.167 12.50

ami33
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.665 10.29 0.930 10.24 0.980 11.04 1.000 11.21 1.000 11.01
2 0.361 10.42 0.579 10.68 0.656 11.27 0.784 11.52 1.000 14.52
4 0.246 11.16 0.341 9.75 0.349 11.07 0.509 13.61 0.800 23.11
8 0.124 10.24 0.182 9.97 0.192 10.89 0.325 13.30 0.493 27.84
16 0.063 10.59 0.106 10.59 0.096 11.48 0.173 13.00 0.261 26.43
32 0.028 10.15 0.048 10.18 0.051 11.13 0.084 11.54 0.148 26.42

ami49
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.649 10.19 0.930 10.24 1.000 9.65 1.000 9.84 1.000 10.80
2 0.400 8.99 0.579 10.68 0.701 10.69 0.968 11.63 1.000 12.49
4 0.218 9.66 0.341 9.75 0.424 10.81 0.632 12.22 0.910 17.15
8 0.128 9.73 0.182 9.97 0.215 11.29 0.358 10.86 0.588 24.06
16 0.074 9.61 0.106 10.59 0.109 10.74 0.176 12.53 0.331 28.10
32 0.032 9.84 0.048 10.18 0.067 10.50 0.111 11.64 0.183 25.34

n10
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.728 6.48 1.000 6.02 1.000 6.82 1.000 7.16 1.000 6.06
2 0.504 5.71 0.760 6.54 1.000 9.92 1.000 8.30 1.000 8.13
4 0.255 6.28 0.471 6.90 0.656 11.73 0.752 11.26 0.752 10.44
8 0.154 6.04 0.236 6.40 0.360 10.64 0.429 10.18 0.429 10.70
16 0.074 6.09 0.126 6.35 0.203 11.59 0.271 12.76 0.267 11.97
32 0.036 5.74 0.071 6.71 0.102 11.93 0.148 12.26 0.137 12.59

 36

n30
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.755 10.33 0.930 11.24 1.000 11.29 1.000 11.37 1.000 10.32
2 0.414 10.19 0.519 11.28 0.667 11.57 0.828 12.76 1.000 11.74
4 0.234 10.78 0.338 10.91 0.390 11.56 0.582 15.18 0.930 23.16
8 0.147 10.09 0.180 12.10 0.210 12.37 0.308 14.68 0.588 21.82
16 0.067 10.67 0.095 10.97 0.120 11.70 0.220 15.15 0.317 24.90
32 0.039 10.06 0.050 10.94 0.058 12.70 0.090 14.27 0.175 23.91

n50
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.635 9.46 0.794 9.10 0.973 10.17 1.000 9.57 1.000 12.81
2 0.385 9.22 0.583 9.17 0.596 10.87 0.693 9.78 0.976 14.67
4 0.233 9.04 0.324 9.46 0.369 10.44 0.484 11.16 0.679 22.79
8 0.117 9.59 0.179 9.85 0.190 10.52 0.277 11.04 0.405 24.05
16 0.060 9.50 0.098 9.83 0.095 10.50 0.146 10.87 0.222 22.84
32 0.032 9.00 0.047 9.98 0.049 10.54 0.080 10.72 0.117 24.43

n100
Method_A Method_M Method_C Method_D Method_D*

k P DS (%) P DS (%) P DS (%) P DS (%) P DS (%)
1 0.548 11.15 0.760 12.01 0.980 10.85 1.000 11.16 1.000 14.25
2 0.353 10.12 0.481 11.53 0.606 11.14 0.661 11.74 0.990 18.03
4 0.209 11.46 0.270 11.03 0.324 11.97 0.449 12.85 0.623 19.12
8 0.116 10.14 0.157 12.05 0.182 11.70 0.300 13.56 0.385 26.73
16 0.063 10.35 0.069 10.77 0.098 11.21 0.163 12.83 0.227 25.97
32 0.029 10.74 0.038 11.64 0.048 11.49 0.080 15.26 0.114 29.13

 37

