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ABSTRACT

This thesis proposes a low cost and high throughput CAVLC encoder. The motivation is
to compensate the inefficiency of CBP Look-Ahead to achieve higher throughput such that the
proposed CAVLC encoder can support 1080p at 30 fps. Moreover, under such high
throughput, we must keep logic gate count low. CBP Look-Ahead can skip encoding flow of
some zero blocks such that throughput can be improved. However, our statistics show that
abundant zero coefficients cannot be detected by CBP Look-Ahead such that many cycle
counts are wasted on the zero coefficients. In our design, we use novel direct significance
encoding architectures, as well as CBP Look-Ahead, to avoid spending time on zero

coefficients: Zero-block Codeword Table and Nonzero Index Table.

Nonzero Index Table concurrently records which coefficients are significant while the
proposed CAVLC encoder is reading all coefficients of a block in one cycle. Then Nonzero

Index Table determines whether the block is all-zero. If the block is all-zero, Zero-block



Codeword Table will generate the overall codeword of the block without going through the
whole CAVLC encoding flow. On the other hand, if the block consists of at least one
significant coefficient, Nonzero Index Table uses combinational circuits to locate significant
coefficients such that zero coefficients are ignored. In addition, while Nonzero Index Table is
aiming for a significant coefficient, the codeword of the significant coefficient can be directly
concatenated into the H.264/AVC bit-stream. Hence, we do not need additional buffers to

store the significant coefficient such that small logic gate count is consumed.

Eventually, based on 0.13um UMC technology, the proposed design can support 1080p
at 30 fps while consuming 9.03 K gate count at 145 MHz. Compared with other designs, we

can reduce 61% logic gate count and 29% cycle count.
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Chapter 1. Introduction

1.1 Motivation

H.264/AVC [1] is the latest standard for video coding. H.264/AVC is the result of the
collaboration between the ISO/IEC Moving Picture Experts Group and the ITU-T Video
Coding Experts Group [2]. H.264/AVC is designed to address a large range of applications,
such as storage, entertainment, multimedia short message, videophone, videoconference,
HDTYV broadcasting, and Internet streaming. Compared to previous video coding standards,
H.264/AVC can achieve 50% bit-rate reduction under the same quality [10]. The better
compression efficiency results from innovative coding tools such as multiple reference frames,

variable block size motion estimation, and in-loop de-blocking filter [3].

The essence of H.264/AVC is block-based motion estimation transform coding [3]. For
H.264/AVC Baseline profile, context-based adaptive variable length coding (CAVLC) is used
to encode quantized transform coefficients of the residual images [2]. Compared with entropy
coders of previous standards, CAVLC removes more statistical redundancy by switching VLC
tables according to previously transmitted symbols [2]. However, coding is not started until
syntax elements are extracted by scanning all coefficients of a block such that throughput is
very low [3]. To support high-end applications such as 1080p at 30 fps, we must improve

throughput of CAVLC encoder.

H.264/AVC specification stipulates that some all-zero blocks can be skipped according
to the coded block pattern (CBP) [1]. For example, Chen [3] uses CBP Look-Ahead to

improve throughput. However, our statistics show abundant zero coefficients are not covered



by the CBP. Therefore, we propose two zero-skipping methods to avoid wasting cycles on
zero coefficients such that throughput is improved. The resulting architecture not only has a

high throughput but also consumes small area.

1.2 Organization of thesis

This thesis is organized as follows. In Chapter 2, we present the algorithm of CAVLC in
H.264/AVC. Chapter 3 presents the proposed design with the two throughput enhancement
methods. Moreover, we present related statistics to prove that the methods are necessary.
Chapter 4 presents simulation results, implementation results, and comparison with other

designs. Chapter 5 concludes this thesis.



Chapter 2. Overview of CAVLC In

H.264/AVC

2.1 Overview of an H.264/AVC

encoder

Fig. 1 shows the block diagram of an H.264/AVC encoder. An input frame is processed

in units of a macro-block [16]. The data flow in Fig. 1 can be divided into the following three

steps:

Macro-block of

Input Frame Signal @ Error Signal
L

—

Entropy
Coding

H.264 Bit-stream
>

Prediction Quantized
Transform Quantize Coefficients
Inverse
Quant.
Inverse
Trans.
Prediction Signal
| o— Intra-Frame Reconstructed
\{\ Prediction Macro-block
5
Intra/Inter
o— | e s Reference Frame
Compensated Memory
Prediction
Motion Vector
Motion
Estimation

Fig. 1 Block Diagram of an H.264/AVC encoder [2]



1. First, we calculate the prediction signal of the macro-block. In general, there are two
prediction modes: Intra and Inter. In Intra mode, the prediction signal is calculated
according to pixels in the current frame, which have been encoded, reconstructed and
stored into Reference Frame Memory. In Inter mode, we use Motion Estimation to
estimate the motion vectors, which refer to the corresponding position of the
macro-block in an already transmitted (to decoder) frame stored in Reference Frame
Memory [2]. Then the prediction signal is generated by Macro-block Compensated
Prediction. Note that the motion vectors must be encoded into H.264/AVC bit-stream by
Entropy Coding.

2. Second, we subtract the prediction signal from the macro-block to obtain the prediction
error signal. Then the prediction error signal is transformed and quantized to generate
quantized coefficients, which is compressed into H.264/AVC bit-stream by Entropy
Coding. H.264/AVC has two major entropy coding tools: CAVLC for the Baseline
Profile and CABAC for the High Profile [1].

3. Third, the quantized coefficients are inverse quantized, inverse transformed, and added
to the prediction signal. The result is the reconstructed macro-block which is stored into
Reference Frame Memory in order to calculate the prediction signal of the future

macro-block.

2.2 Overview of block types

2.2.1 Partitions of a macro-block

As mentioned in section 2.1, Inter mode or Intra mode finds prediction signal of a
macro-block [2]. The residual data is obtained by subtracting the prediction signal from the

macro-block. Then we apply transform matrices on the residual data to obtain so-called



quantized transform coefficients [2]. The coefficients of a macro-block can be divided into
three components as follows: luminance Y, chrominance U, and chrominance V. The
component 'Y comprises 16 by 16 coefficients. The component U comprises 8 by 8

coefficients, and the component V does, too.

The main purpose of CAVLC is to encode the coefficients. Before encoded by CAVLC,
the three components of a macro-block are individually divided into several smaller blocks.
For the component Y, we divide it into sixteen 4x4 sub-blocks, as Fig. 2 shows. Each of the
sixteen sub-blocks has a DC coefficient. If Intra_16x16 [1] is the prediction mode of the

macro-block, we separate the DC coefficients to form another 4x4 sub-block, as Fig. 3 shows.

Fig. 2 Division of Y component in a macro-block



Fig. 3 Separation of DC and AC for Y

The component U is divided into four 4x4 sub-blocks, as Fig. 4 shows. Each of the four
4x4 sub-blocks has a DC coefficient. No matter which prediction mode the macro-block uses,
we separate the DC coefficients to form another 2x2 sub-block, as Fig. 5 shows. V and U use

the identical scheme of partition, as Fig. 6 shows.

Fig. 4 Division of U component in a macro-block

Fig. 5 Separation of DC and AC for U



Fig. 6 Separation of DC and AC for V

In conclusion, macro-blocks have only two types in point of CAVLC. First, an
Intra_16x16 macro-block is divided as Fig. 7 shows. Sub-blocks “0”-“16" represent Y, “17”
and “197-“22” represent U, and the remaining sub-blocks represent V. The numbers represent

the order in which the sub-blocks are encoded by CAVLC [1].

N mm

Fig. 7 Division of an Intra_16x16 macro-block

Second, a non-Intra_16x16 macro-block is divided as Fig. 8 shows. Sub-blocks “0”-*“15"
represent Y, “16” and “18”-“21” represent U, and the remaining sub-blocks represent V. The

numbers in Fig. 8 and Fig. 7 have the same meaning.



16 17

Fig. 8 Division of a non-Intra_16x16 macro-block

2.2.2 Thefive sub-block types

After a macro-block is divided into several sub-blocks, the sub-blocks are individually
encoded by CAVLC in order as mentioned in section 2.2.1. The sub-blocks are divided into
five types [9]. For every type the flow of CAVLC is similar but little different. The first type
is LUMA_DC referring to sub-block “0” in Fig. 7. LUMA_DC comprises 16 coefficients. The
second type is LUMA_AC referring to sub-blocks “1”-“16” in Fig. 7. Each LUMA_AC
sub-block comprises 15 coefficients. The third type is CHROMA _DC referring to sub-blocks
“177-*18” in Fig. 7. Each CHROMA DC sub-block comprises four coefficients. In Fig. 8
sub-blocks “16” and *“17” are also CHROMA DC. The fourth type is CHROMA_AC
referring to sub-blocks “197-“26" in Fig. 7. Each CHROMA_AC comprises 15 coefficients.
Sub-blocks *18”-“25” of Fig. 8 are also classified as CHROMA_AC. The final type is LUMA

referring to sub-blocks “0”-“15” in Fig. 8. ALUMA comprises 16 coefficients.

In conclusion, an Intra_16x16 macro-block comprises one sub-block of LUMA_DC,
sixteen sub-blocks of LUMA_AC, two sub-blocks of CHROMA _DC, and eight sub-blocks of

CHROMA_AC. In a non-Intra_16x16 macro-block, there are sixteen sub-blocks of LUMA,



two sub-blocks of CHROMA _DC, and eight sub-blocks of CHROMA_AC.

2.2.3 Coded block pattern

The coded block pattern is a syntax element in H.264/AVC [1]. Every macro-block has a
coded block pattern which comprises six bits. The lower four bits represent the component Y
and the upper two bits represent U and V. We use it to indicate which sub-blocks comprise

only zero coefficients.

For an Intra_16x16 macro-block, we present the definition of the coded block pattern

below. The 16 LUMA_AC sub-blocks are divided into four groups, as Fig. 9 shows.

Fig. 9 Four groups of an Intra_16x16 macro-block

Each group comprises four LUMA_AC sub-blocks. The 0™ bit (LSB) of the coded block
pattern, corresponds to group_ 0, the 1% bit corresponds to group 1, and so on. If all
coefficients of some group are zero, its corresponding bit is zero. Bit “1” means that the
corresponding group comprises at least one nonzero coefficient. As for U and V, the upper

two bits are defined as TABLE 1.



TABLE 1 Definition of the coded block pattern for chrominance part [1]

CodedBlockPatternChroma | Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels are non-zero.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels are non-zero valued.

Only three combinations of the 5" (MSB) and 4™ bit are possible, and we describe the

combinations in detail as follows:

1. *00” means that every sub-block is all-zero, including two CHROMA_DC sub-blocks
and eight CHROMA _AC sub-blocks.

2. “01” means that either CHROMA _DC sub-block comprises at least one nonzero
coefficient but each CHROMA _AC sub-block is all-zero.

3. “10” means that at least one nonzero coefficient is among the eight CHROMA_AC

sub-blocks.

For a non-Intra_16x16 macro-block, we present the definition of the coded block pattern

below. The sixteen LUMA sub-blocks are divided into four groups as Fig. 10 shows.

Fig. 10 Four groups of a non_Intral6x16 macro-block
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Each group comprises four LUMA sub-blocks. The 0™ bit (LSB) corresponds to group_0, the
1% bit corresponds to group_1, and so on. If group_0 consists of only zero coefficients, the 0"
bit is zero. The 0™ bit is one means that group_0 comprises at least one nonzero coefficient.
For the remaining three groups, the meaning of their corresponding bits in the coded block
pattern is identical with group_0. The definition for the U and V is identical with an

Intra_16x16 macro-block.

We describe how H.264/AVC specification skips sub-blocks according to the coded
block pattern below. Because LUMA_DC has no relation to the coded block pattern, even an
all-zero LUMA_DC sub-block must be encoded by CAVLC. As for LUMA, CHROMA DC,
and CHROMA_AC, CAVLC can ignore the sub-block as long as the coded block pattern
indicates that the sub-block is all-zero. As for LUMA_AC, skip condition is defined as Eq. 1
shows [1] [9].
if (CBP[3:0]==4'd0)

CAVLC ignores all sixteen LUMA_AC ssub - blocks

else
CAVLC encodes all sixteen LUMA_AC ssub - blocks

Eq. 1

In conclusion, all sub-block types except LUMA DC have relation to the coded block
pattern. We can check the coded block pattern to determine whether CAVLC can skip a

sub-block to save cycle counts.

2.2.4  Neighbor sub-blocks

In the flow of CAVLC, every sub-block type except CHROMA _DC needs neighbor

information [9]. The information comes from the sub-blocks neighboring to the left and to the
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top of the current one. We define the neighbor sub-blocks for the four sub-block types,

including LUMA, LUMA_AC, LUMA_DC, and CHROMA_AC.

For convenience of explanation, a frame is divided into three parts which respectively
represent Y, U, and V. We refer to the three parts as Y-frame, U-frame, and V-frame

respectively. A macro-block comprises 16 sub-blocks in Y-frame, as Fig. 11 shows.

Fig. 11 Three adjacent macro-blocks in Y-frame

For an Intra_16x16 macro-block the sixteen sub-blocks are LUMA_AC. The sixteen
sub-blocks of a non-Intra_16x16 macro-block are LUMA. For “12” of mb_2 in Fig. 11, the
left neighbor is “9” and the top neighbor is “6”. Some sub-blocks are on the border of a
macro-block such as “2” of mb_2, so their neighbor may reside in a different macro-block.
For example, the left neighbor of “2” in mb_2 is “7” of mb_1. In a frame, some macro-blocks
are Intra_16x16 and some are not, so the neighbor of LUMA may be LUMA_AC. Moreover,
some sub-blocks falls on the edge of a frame such that their neighbors may be not available.

As for a LUMA _DC sub-block, for example, we assume mb_2 is Intra_16x16; The
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LUMA_DC sub-block and “0” have the identical neighbors.

A macro-block comprises four CHROMA_AC sub-blocks in U-frame, as Fig. 12 shows.
The neighbors are the sub-blocks neighboring to the left and to the top of the current
sub-block. For example, in mb_2 the left neighbor of “3” is “2”, and the top neighbor is “1”.
If a sub-block is on the border of a macro-block such as “2” of mb_2, its neighbors may be in
another macro-block. As for a macro-block on the border of a frame, some sub-blocks’

neighbors may be not available.

Fig. 12 Three adjacent macro-blocks in U-frame

A macro-block comprises four CHROMA_AC sub-blocks in V-frame, as Fig. 13 shows.

V-frame and U-frame have the identical explanation for neighbors.

Fig. 13 Three adjacent macro-blocks in V-frame
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2.3 Flow of CAVLC in H.264/AVC

A sub-block is a coding unit of CAVLC. We describe the flow of CAVLC for each

sub-block type below.

2.3.1 Encoding flow of LUMA_DC

A LUMA DC sub-block comprises sixteen coefficients as Fig. 14 shows [11]. The
coefficients are scanned in zigzag scan order, as Fig. 15 shows [1]. Then the coefficients are

mapped to a 1-D array, Array_Coeff, as Fig. 16 shows.

0 3|-1 0
0O -1/ 1 0
110700
0] 0 0|0

Fig. 14 ALUMA_DC sub-block
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Fig. 15 Zigzag scan order

index 0 1 2 3 4 5 6 7
Array Coeff | 0 3 0 1 /-1]-1]0 1
index 8 9 | 10 | 11 | 12 | 13 | 14 | 15
Array Coeff | 0 0 0| O 0 0 0 0

Fig. 16 Structure of Array_Coeff

We analyze Array _Coeff to obtain syntax elements as follows [9]:

1. TotalCoeff

2. TrailingOnes

3. Trailing_one_sign_flag
4. Level

5. Total zeros

6. Run_before

TotalCoeff is the number of nonzero coefficients in Array_Coeff. TrailingOnes means the
number of trailing ones (T1s). To define trailing ones, we scan the coefficients in Array Coeff
from index “15” one by one until the occurrence of a nonzero coefficient whose magnitude is
greater than one. If we find a coefficient with magnitude equal to one, the coefficient is

so-called trailing one. In H.264/AVC the maximum of TrailingOnes is three such that
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Array _Coeff[3] is not classified as a trailing one. H.264/AVC combines TotalCoeff and
TrailingOnes into Coeff_token, an H.264/AVC syntax element [1]. Each trailing one has a
corresponding trailing_one_sign_flag which comprises only one bit. If the trailing one is
negative, its trailing_one_sign_flag is equal to one. A zero trailing_one_sign_flag means that
the corresponding trailing one is positive. A level refers to the nonzero coefficient which is
not a trailing one. Each nonzero coefficient has a corresponding run_before which is the
number of consecutive zeros before the nonzero coefficient in Array_Coeff. For example, the
run_before of Array_Coeff[7] is one and that of Array_Coeff[4] is zero. Finally, total_zeros is

the sum of all run_before.

After all syntax elements are obtained, we encode them in numerical order as follows

[9]:

1. Coeff _token

2. Trailing_one_sign_flags
3. Levels

4. Total_zeros

5.  Run_befores

Therefore, the structure of H.264/AVC bit-stream is as Fig. 17 shows.

------------- Coeff_token | trailing_one_sign_flags | levels | total_zeros | run_befores | seeeseceees

—

Fig. 17 Structure of H.264/AVC bit-stream

First, we encode Coeff_token by TABLE 2.
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TABLE 2 coeff_token mapping to TotalCoeff and TrailingOnes [1]

TrailingOnes TotalCoeff 0 <= nC < 2 <= nC <[4 <= nC < 8 <= nC ==
(coeff_token ) | ( coeff_token) 2 4 8 nC -1

0 0 1 11 1111 0000 11 01

0 1 0001 01 001011 001111 0000 00 0001 11
1 1 01 10 1110 0000 01 1

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00
1 2 0001 00 00111 01111 0001 01 0001 10
2 2 001 011 1101 0001 10 001

0 3 00000011 1 0000 111 0010 00 0010 00 0000 11
1 3 0000 0110 001010 01100 001001 0000 011
2 3 0000 101 0010 01 01110 0010 10 0000 010
3 3 00011 0101 1100 001011 0001 01
0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10
1 4 0000 0011 0 0001 10 01010 0011 01 0000 0011
2 4 0000 0101 0001 01 01011 0011 10 0000 0010
3 4 0000 11 0100 1011 001111 0000 000
0 5 0000 0000 111 0000 0100 0001 011 0100 00 -

1 5 0000 0001 10 0000 110 01000 0100 01 -

2 5 0000 0010 1 0000 101 01001 0100 10 -

3 5 0000 100 00110 1010 0100 11 -

0 6 0000 0000 01111 | 000000111 0001 001 0101 00 -

1 6 0000 0000 110 0000 0110 0011 10 0101 01 -

2 6 0000 0001 01 0000 0101 001101 0101 10 -

3 6 0000 0100 0010 00 1001 010111 -

0 7 0000 0000 01011 | 0000 0001 111 0001 000 0110 00 -

1 7 0000 0000 01110 | 000000110 001010 011001 -

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 -

3 7 0000 00100 0001 00 1000 011011 -

0 8 0000 0000 01000 | 0000 0001 011 0000 1111 0111 00 -

1 8 0000 0000 01010 | 0000 0001 110 0001 110 011101 -

2 8 0000 0000 01101 | 0000 0001 101 0001 101 011110 -

3 8 0000 0001 00 0000 100 01101 011111 -

0 9 2(1)00 0000 0011 0000 0000 1111 | 0000 1011 1000 00 -
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9 0000 0000 0011 0000 0001 010 0000 1110 1000 01
10

9 0000 0000 01001 | 0000 0001 001 0001 010 1000 10

9 0000 0000 100 0000 00100 001100 1000 11

10 0000 0000 0010 0000 0000 1011 | 000001111 1001 00
11

10 0000 0000 0010 0000 0000 1110 | 0000 1010 1001 01
10

10 0000 0000 0011 0000 0000 1101 | 0000 1101 1001 10
01

10 0000 0000 01100 | 0000 0001 100 0001 100 1001 11

11 0000 0000 0001 0000 0000 1000 | 000001011 1010 00
111

11 0000 0000 0001 0000 0000 1010 | 000001110 101001
110

11 0000 0000 0010 0000 0000 1001 | 0000 1001 1010 10
01

11 0000 0000 0011 0000 0001 000 0000 1100 101011
00

12 0000 0000 0001 0000 0000 0111 | 0000 01000 101100
011 1

12 0000 0000 0001 0000 0000 0111 | 000001010 101101
010 0

12 0000 0000 0001 0000 0000 0110 | 000001101 1011 10
101 1

12 0000 0000 0010 0000 0000 1100 | 0000 1000 101111
00

13 0000 0000 0000 0000 0000 0101 | 0000 0011 01 1100 00
1111 1

13 0000 0000 0000 0000 0000 0101 | 000000111 1100 01
001 0

13 0000 0000 0001 0000 0000 0100 | 0000 01001 1100 10
001 1

13 0000 0000 0001 0000 0000 0110 | 000001100 1100 11
100 0

14 0000 0000 0000 0000 0000 0011 | 0000 0010 01 1101 00
1011 1

14 0000 0000 0000 0000 0000 0010 | 0000 0011 00 1101 01
1110 11

14 0000 0000 0000 0000 0000 0011 | 0000 0010 11 1101 10
1101 0

14 0000 0000 0001 0000 0000 0100 | 0000 0010 10 1101 11
000 0

15 0000 0000 0000 0000 0000 0010 | 0000 0001 01 111000
0111 01
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1 15 0000 0000 0000 0000 0000 0010 | 0000 0010 00 111001
1010 00

2 15 0000 0000 0000 0000 0000 0010 | 0000 0001 11 1110 10
1001 10

3 15 0000 0000 0000 0000 0000 0000 | 0000 0001 10 111011
1100 1

0 16 0000 0000 0000 0000 0000 0001 | 0000 0000 01 111100
0100 11

1 16 0000 0000 0000 0000 0000 0001 | 0000 0001 00 111101
0110 10

2 16 0000 0000 0000 0000 0000 0001 | 0000 0000 11 111110
0101 01

3 16 0000 0000 0000 0000 0000 0001 | 0000 0000 10 111111
1000 00

The symbol nC represents the average of TotalCoeff of the neighbor sub-blocks. Eq. 2 shows
the algorithm of calculating nC [9]. “left_available” represents the availability of the left
neighbor and nL is the TotalCoeff of the left neighbor. “top_available” represents the

availability of the top neighbor and nU is the TotalCoeff of the top neighbor.

if (left_available & & top_available)
nC=(nU+nL +1)/2;

else if(left_available & & !top_avalable)
nC =nL;

elseif(!left_available & & top_available)
nC =nU;

else
nC =0;

Eq. 2

Second, the number of bits for trailing_one_sing_flags is equal to TrailingOnes. We
encode T1s from high frequency to low frequency such that “011” is the codeword of T1s for

Array_Coeff, where “0” represents Array_Coeff[7] (see Fig. 16).

Third, we encode each level from high frequency to low frequency. There are seven VLC

tables to encode a level and the choice of tables depends on already encoded levels. Eq. 3
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shows the algorithm of selecting the VLC table for the first encoded level [9]. Each table has

a serial number: vicnum. Because we have seven VLC tables, vicnum ranges from zero to six.

if (TotalCoeff >10 & & TrailingOnes < 3)
vicnum=1;

else
vichnum=0;

Eq. 3

The VLC table for the second encoded level depends on the absolute value of the first
encoded level. If the absolute value is greater than three, we add one to vicnum. Otherwise,
the second and the first use the identical table. The third encoded level and the following use

the identical algorithm to choose the VLC table, as Eq. 4 shows [9].

intincVIc[]={0,3,6,12,24,48,32768};

if (abs(level) > incVIc[vlicnum])
vicnum + +;

Eq. 4

The choice of VLC table for the third encoded level depends on the absolute value of the
second encoded level, the fourth depends on the third, and so on. Each table corresponds to a
threshold denoted by incVlic in Eq. 4. If the absolute value of the second encoded level is
greater than the threshold corresponding to the table used by the second encoded level, we
add one to vicnum such that the third encoded level use an updated table. Otherwise, we apply

the identical VVLC table on the third encoded level.

Fourth, total_zeros is encoded by TABLE 3.
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TABLE 3 total_zeros tables for LUMA, LUMA_DC, LUMA_AC, CHROMA_AC [1]

total_zeros TotalCoeff( coeff_token )
1 2 3 4 5 6 7
0 1 111 0101 00011 | 0101 0000 01 0000 01
1 011 110 111 111 0100 0000 1 0000 1
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 00011 0101 0011 101 101 100 11
6 00010 0100 100 100 100 011 010
7 0000 11 0011 011 0011 011 010 0001
8 0000 10 0010 0010 011 0010 0001 001
9 0000 011 00011 | 00011 0010 | 0000 1 001 0000 00
10 0000 010 00010 | 00010 0001 0 | 0001 0000 00
11 0000 0011 | 0000 11 | 0000 01 0000 1 | 0000 O
12 0000 0010 | 0000 10 | 0000 1 00000
13 0000 0001 1 | 0000 01 | 0000 OO
14 0000 0001 0 | 0000 00
15 0000 0000 1
total_zeros TotalCoeff( coeff_token )
8 9 10 11 12 13 14 | 15
0 0000 01 0000 01 | 0000 1 | 0000 | OOCOO 000 000
1 0001 0000 00 [ 00000 | 0001 | 0001 | 001 011
2 0000 1 0001 001 001 |01 1 1
3 011 11 11 010 1 01
4 11 10 10 1 001
5 10 001 01 011
6 010 01 0001
7 001 0000 1
8 0000 00

Finally, we encode each run_before except the nonzero coefficient of the lowest

frequency such as Array Coeff[1] (see Fig. 16). Run_befores are encoded from high
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frequency to low frequency such that the first encoded run_before belongs to Array Coeff[7].
The codeword is looked up in TABLE 4, where zerosLeft means how many run_befores are
not encoded including the current run_before. For example, the zerosLeft of Array Coeff[7]
is three and that of Array_Coeff[5] is two. When zerosLeft is equal to zero, the encoding

process for the current and the following run_befores can be terminated in advance [11].

TABLE 4 Tables for run_before [1]

run_before | zerosLeft
1(2 |3 |4 5 6 >6
0 1(1 11 | 11 11 11 111
1 0]01|10] 10 10 | 000 | 110
2 - 100 (01|01 |011 001|101
3 - |- | 00| 001|010 | 011 | 100
4 - - - 000 | 001 | 010 | 011
5 - - - - 000 | 101 | 010
6 -l - - 100 | 001
7 - - - - - - 0001
8 - - - - - 00001
9 -l - - - 000001
10 - - - - - - 0000001
11 - - - - - - 00000001
12 - - -] - - 000000001
13 - - - - - - 0000000001
14 - - - - - - 00000000001

2.3.2 Encoding flow of LUMA, LUMA_AC,

and CHROMA_AC

The CAVLC flow of LUMA is the same as LUMA _DC. LUMA_AC comprises fifteen

coefficients such that the operation of scanning the coefficients into Array_Coeff is different
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from LUMA_DC, as Fig. 18 shows.

131234

Fig. 18 Scanning for a LUMA_AC sub-block

Then the following processing of Array_Coeff is similar to LUMA_DC and the differences
are described below. If TotalCoeff is equal to 15, we can skip encoding of total zeros and

run_befores [9]. Finally, the CAVLC flow of CHROMA_AC is the same as LUMA_AC.

2.3.3 Encoding flow of CHROMA_DC

CHROMA _DC comprises four coefficients and Fig. 19 represents the scanning order for
the coefficients into Array_Coeff. The following processing of Array Coeff is similar to
LUMA_DC and the differences are described below. First, nC is always set as -1 when we
apply TABLE 2 on Coeff_token [1]. Second, we use TABLE 5 for total _zeros instead of
TABLE 3. Moreover, if TotalCoeff is equal to four, we can skip encoding of total_zeros and

run_befores [9].

-3

Fig. 19 Scanning for a CHROMA_DC sub-block
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TABLE 5 total_zeros tables for CHROMA_DC [1]

total_zeros | TotalCoeff( coeff_token)
1 2 3

0 1 1 1

1 01 01 0

2 001 00

3 000
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Chapter 3. Architecture Design of

the Proposed CAVLC Encoder

3.1 Motivation: statistics of zero

coefficients

For a sub-block, we can check the coded block pattern to decide whether the CAVLC
flow can be skipped. However, there are many zero coefficients that cannot be skipped by the
coded block pattern. For example, Fig. 20 represents a group of four LUMA sub-blocks,
where only subblock_0 comprises one nonzero coefficient and another three sub-blocks are
all-zero. As mentioned in section 2.2.3, all sub-blocks must go through the CAVLC flow such

that many cycle counts are wasted on zeros.

Fig. 20 A group of four LUMA sub-blocks

In the section, we represent statistics to show that abundant zeros cannot be skipped by

the coded block pattern. To obtain the statistics, we ran several simulations using the
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H.264/AVC reference software [9]. The test sequences include the following (motion from
low to high): akiyo, coastguard, foreman, mobile_calendar, and Stefan. TABLE 6 shows the

simulation setting. Two types of statistics are obtained and described below.

TABLE 6 Simulation setting

Video Size CIF
Frame Number 300
Intra Period 10
Number of Reference

Frames '
Use FME ON
RD Optimization OFF

3.1.1 Statistics of nonzero coefficients in

NS4B

NS4B (Not Skipped 4x4 Block) denotes a sub-block, excluding CHROMA_DC, which
cannot be skipped by the coded block pattern. Fig. 21 represents the average number of
nonzero coefficients in a NS4B. CHROMA DC is excluded because maximal TotalCoeff of
CHROMA DC is only four such that the average is reduced unfairly. Note that
Mobile_calendar with QP equal to 12 has the highest bit-rate. Even for the highest bit-rate, a
NS4B comprises less than seven nonzero coefficients; in other words, up to 60% of

coefficients are zero.
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Stefan
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QP

Fig. 21 Average number of nonzero coefficients per NS4B sub-block

3.1.2 Statistics of NSZB

NSZB (Not Skipped Zero Block) denotes an all-zero sub-block, which cannot be skipped
by the coded block pattern. For example, subblock 1 of Fig. 20 can be classified as a NSZB.
Fig. 22 shows how many percent of all-zero sub-blocks are NSZB. Note that a higher bit-rate
results in a higher percentage. This is because a lower bit-rate induces more zero CBP bits
such that more all-zero sub-blocks are covered by the CBP. Note that the percentage is
significant at middle QP and low QP. Therefore, Fig. 22 proves that many all-zero sub-blocks

cannot be skipped by the coded block pattern in most cases.
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Fig. 22 Percentage of NSZB in all-zero sub-blocks

3.1.3 Summary

In this section, we show the statistics to prove that abundant zero coefficients cannot be
skipped by the coded block pattern. Thus CBP Look-Ahead is an inefficient method to skip
zeros. To solve the problem, we propose two methods such that more zeros can be ignored.
First, we use Nonzero Index Table to skip zeros in a non-all-zero sub-block. Second, we use
Zero-block Codeword Table to directly encode a NSZB without going through the whole

course of CAVLC flow. The two methods will be examined in section 3.4
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3.2 System consideration of CAVLC

In H.264/AVC encoder

Fig. 23 shows the partial system architecture of an H.264/AVC encoder. The encoder
adopts a macro-block pipeline schedule. Global Control Unit administers the progress of
macro-blocks in the pipeline, where each stage comprises and processes one macro-block.

Global Control Unit generates the following two things which are propagated through the

pipeline registers:

1. Syntax elements which are so-called header information such as mb_type [1].

2. Information about the macro-block at PRO (Pipeline Register 0) such as coordinates.

Global Control Unit

l l

M \L
P P U
Exp-Golomb
R o quantized R X Co%ing Unit
0— Prediction —ransform CBP 1 0 M
Engine coefficients Generator )l.i
— — 1
Residual Entropy
Buffer SRAM
Interface L
External Bus H.264/AVC | Bit-stream
Memory Interface bit-stream Packer

Fig. 23 Partial system architecture of an H.264/AVC encoder
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Prediction Engine uses data in PRO to execute Inter or Intra prediction algorithms such
that the best prediction signal can be worked out. Then Prediction Engine subtracts the
prediction signal from the macro-block to obtain residual data. Finally, Prediction Engine
applies transform and quantization on the residual data to obtain quantized transform
coefficients. CBP Generator examines whether some coefficients are zero to determine the
coded block pattern which will be stored into PR1. Moreover, the coefficients are stored into
Residual Buffer. After all stages are finished, Global Control Unit grants the progress of the

pipeline such that the data in PRO goes into PR1.

Header information in PR1 is encoded in predefined order which Global Control Unit
maintain by MUX 0 (Multiplexer 0) and MUX 1 (Multiplexer 1). The codeword of header
information is generated by Exp-Golomb Coding Unit and is concatenated by Bit-stream
Packer such that H.264/AVC bit-stream is formed. The bit-stream is written into External

Memory via Bus Interface.

After encoding of header information is finished, Entropy SRAM Interface fetches
coefficients of one sub-block from Residual Buffer to CAVLC Encoder. The codeword of
each syntax element such as Coeff_token is sent to Bit-stream Packer via MUX 1. When
encoding of the sub-block is finished, CAVLC Encoder will request Entropy SRAM Interface

to fetch the next sub-block.

3.2.1 Residual Buffer

Residual Buffer comprises five parts. The first part is Luma SRAM, which is
implemented as an SRAM. Luma SRAM stores the Y component of one macro-block and Fig.

24 shows the organization of Luma SRAM.
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Luma SRAM

word 0

word 1

word 14
word 15

Fig. 24 Organization of Luma SRAM

As mentioned in section 2.1, a macro-block comprises sixteen Y sub-blocks and one word

stores one sub-block in Luma SRAM. Fig. 25 represents the mapping relation between the

sub-blocks and the words.

10 | 11 | 14 | 15

Fig. 25 Y sub-blocks of a macro-block

Fig. 26 shows the organization of a word in Luma SRAM, where we use 14 bits to represent a

coefficient. Fig. 27 shows the mapping relation between the numerical labels and the

coefficients of a LUMA sub-block.

MSB

LSB

0 1 | 14

15

k—14 bits—

Fig. 26 Organization of a word in Luma SRAM
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Fig. 27 The coefficients of a LUMA sub-block

Fig. 28 shows the mapping relation between the numerical labels of Fig. 26 and the
coefficients of a LUMA_AC sub-block. As for LUM_AC, the position “0” in Fig. 26 is

useless because the DC is separated. In brief, Luma SRAM comprises 16x16x14 bits.

Fig. 28 The coefficients of a LUMA_AC sub-block

The second part is Chroma SRAM, which is implemented as an SRAM and is used to

store CHROMA _AC sub-blocks. Fig. 29 shows the organization of Chroma SRAM.

Chroma SRAM

word 0

word 1

word 6

word 7

Fig. 29 Organization of Chroma SRAM
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A macro-block comprises eight CHROMA_AC sub-blocks and one word stores one
sub-block in Chroma SRAM, so there are totally eight words in Chroma SRAM. Fig. 30
shows the mapping relation between the words of Chroma SRAM and the CHROMA_AC

sub-blocks of a macro-block.

Fig. 30 U and V sub-blocks of a macro-block

Fig. 31 shows the organization of one word in Chroma SRAM, where we use 12 bits to
represent one coefficient. Fig. 32 shows the mapping relation between the numerical labels of
Fig. 31 and the coefficients of a CHROMA _AC sub-block. Because the DC is separated, the
position “0” in Fig. 31 is always useless; however, it exists for the regularity of hardware

architecture. In brief, Chroma SRAM comprises 8x16x12 bits.

MSB LSB
0 1 e 14 15

K—12 bits—

Fig. 31 Organization of one word in Chroma SRAM
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Fig. 32 Coefficients of a CHROMA_AC sub-block

The third part is LDC (Luma DC) Register, which is implemented as a register and is
used to store one LUMA_DC sub-block. Fig. 33 shows the organization of LDC Register,
where we use 14 bits to represent one coefficient. Fig. 34 shows the mapping relation between
the numerical labels of Fig. 33 and the coefficients of a LUMA_DC sub-block. In brief, LDC
Register comprises 1x16x14 bits because there are at most one LUMA_DC sub-block in one

macro-block.

MSB LSB
0 1| e 14 15

k—14 bits—

Fig. 33 Organization of LDC Register

Fig. 34 Coefficients of a LUMA_DC sub-block

The fourth part is CDCU (Chroma DC U) Register, which is implemented as a register
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and is used to store one CHROMA _DC sub-block of U component. Fig. 35 shows the
organization of CDCU Register, where we use 14 bits to store one coefficient. Fig. 36 shows
the mapping relation between the numerical labels of Fig. 35 and the coefficients of a
CHROMA _DC sub-block. In brief, CDCU Register comprises 1x4x14 bits because U

component consists of only one CHROMA _DC sub-block.

MSB LSB
0 1 2 3

K—14 bits—

Fig. 35 Organization of CDCU Register

Fig. 36 Coefficients of a CHROMA _DC sub-block

The final part is CDCV (Chroma DC V) Register, which is implemented as a register and
is used to store one CHROMA DC sub-block of VV component. The organization of CDCV
Register is the same as CDCU Register. The permutation of the coefficients in CDCV Resister
is the same as Fig. 36 shows. In brief, CDCV Register comprises 1x4x14 bits because V

component consists of only one CHROMA _DC sub-block.

Last but not least, as for Luma SRAM one word comprises 224 bits such that the bus
seems a little wider. This is because we can write one sub-block per cycle to reduce cycle
counts on macro-block level and to improve the throughput of the macro-block pipeline

schedule. On the contrary, if a narrower bus is adopted, we must spend more cycle counts on
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writing one macro-block into Residual Buffer than a wider bus.

3.2.2

CBP Generator

Fig. 37 shows the architecture of CBP Generator. Prediction Engine writes one sub-block

into Residual Buffer per cycle. Global Control Unit provides Global Counter for Prediction

Engine to determine which sub-block is written now. In CBP Generator, we use Global

Counter to generate Sub-block Index which represents one of the twenty-six sub-block as Fig.

38 shows.

—Iluma_cof—>

Comparator

—chroma_cof—

Comparator

Global Counter

Sub-block
Index

u_de——

Comparator

xcg
xcg

0
1

24

v_dc——>

S

Coded Block Pattern

—coded block pattern>

—

Comparator

25

Nonzero Block Tag

Fig. 37 Architecture of CBP Generator
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16 17

Fig. 38 Sub-block Index of each sub-blocks in a macro-block

Prediction Engine uses luma_cof to send coefficients to Luma SRAM, uses chroma_cof
to send coefficients to Chroma SRAM, uses u_dc to send coefficients to CDCU Register, and
uses v_dc to send coefficients to CDCV Register. For example, when Sub-block Index is
equal to three, luma_cof now comprises coefficients of sub-block “3” in Fig. 38. We use
comparator to examine whether it is an all-zero sub-block. If the sub-block is all-zero, we set
zero to the 3" bit in Nonzero Block Tag, which is a 26-bit register. After the 26 sub-blocks are
examined through, Nonzero Block Tag is settled and Coded Block Pattern of Fig. 37, a

combinational circuit, can generate the coded block pattern for the macro-block.

3.2.3 Entropy SRAM Interface

Fig. 39 shows the architecture of Entropy SRAM Interface. Global Control Unit defines
a serial number, syntax_idx_cur, for each syntax element. When syntax_idx_cur is equal to
some value, it means encoding of coefficients is started and esi_enable is activated to enable

Entropy SRAM Interface.
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‘ syntax_idx_cur ‘

‘ esi_enable ‘
% fetch_step_cur
‘ Blkldx_cur ‘
[

Residual Buffer
Controller

Sub-block Type ——

—sram_Luma_data
—sram_Chro_data
—reg_LumaDC g_cof
—reg_ChroDCU
—reg_ChroDCV

Fig. 39 Architecture of Entropy SRAM Interface

“fetch_step_cur” is initialized as zero and BIlkldx_cur is initialized as zero or one
depending on the macro-block type. If the macro-block is an Intra_16x16, Blkldx_cur is
initialized as zero; otherwise, BIKIdx_cur is initialized as one. BIkldx_cur represents which
sub-block Entropy SRAM Interface fetches right now. Fig. 40 shows the mapping relation
between Blkldx_cur and the sub-blocks of an Intra_16x16 macro-block. Fig. 41 shows the

mapping relation between Blkldx_cur and the sub-blocks of a non-Intra_16x16 macro-block.
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Fig. 40 Blkldx_cur for each sub-block of an Intra_16x16 macro-block

R N

Fig. 41 Blkldx_cur for each sub-block of a non-Intra_16x16 macro-block

“fetch_step_cur” represents the steps during the interaction between Entropy SRAM

Interface and Residual Buffer. Fig. 42 shows the timing schedule of fetch_step_cur.
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esi_enable ! BIkldx_cur (0)

|
|
ADDR
|
|
|
|
|
|
|
2

fetch_step_cur 0 1
Fig. 42 Timing schedule of fetch_step_cur

When fetch_step_cur is equal to one, Residual Buffer Controller sends read address to
Residual Buffer according to Blkldx_cur. Then, when fetch_step_cur is equal to two, the read
data is ready at the output of Residual Buffer. The output of Residual Buffer refers to
sram_Luma_data, sram_Chroma_data, reg_LumaDC, reg_ChroDCU, and reg_ChroDCV in
Fig. 39. “q_cof” selects one of the five output signals according to BIkldx_cur. Finally, when
fetch_step_cur is equal to three, the coefficients of the sub-block are stored into CAVLC
Encoder. Moreover, Sub-block Type calculates the type of sub-block according to the current

Blkldx_cur.

3.2.4  Exp-Golomb Coding Unit

Fig. 43 shows the architecture of Exp-Golomb Coding Unit. “data” is the syntax
elements from PR1 (see Fig. 23). As for Exp-Golomb Coding Unit, the syntax elements are
divided into three categories as follows: UE (Unsigned Exp-Golomb), SE (Signed
Exp-Golomb), and CBP [1]. Global Control Unit sends “mode” to indicate which category
according to the current syntax element. We must calculate codeNum [1] of the current syntax

element to generate the codeword by Exp-Golomb Code Table.
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mode

data

codeNum

Exp-Golomb

SE_CN M
U
X
CBP_CN
/

Code Table

——> codeword

Fig. 43 Architecture of Exp-Golomb Coding Unit

As for UE, the syntax element is equal to codeNum such that “data” can be directly sent

to Exp-Golomb Code Table via MUX. As for SE and CBP, we use SE_CN and CBP_CN to

calculate the codeNumb respectively.

TABLE 7 shows the structure of Exp-Golomb Code Table.

Codeword Range of codeNum
1 0
01 Xo 1-2
001 x; Xo 3-6
000 1 X X9 Xo 7-14
00001 X3 X X1 Xg 15-30
000001 X4 Xz Xo X1 Xo 31-62

TABLE 7 Structure of Exp-Golomb Code Table [1]

Fig. 44 shows the structure of codeword in TABLE 7. “M” represents the number of prefix

zero bits and INFO is the value of suffix bits [11]. “codeNum” is expressed as Eq. 5 shows.
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0 0 0 1 x2 X1 Xo

M INFO

Fig. 44 Structure of Exp-Golomb codeword

codeNum = 2™ —1+ INFO
Eq.5

TABLE 8 shows Exp-Golomb Code Table in explicit form. SE_ CN and CBP_CN are
implementations of TABLE 9 and TABLE 10 respectively. As for TABLE 10, note that the

mapping is different between Intra and Inter.

TABLE 8 Exp-Golomb Code Table in explicit form [1]

Bit string codeNum
1 0
010 1
011 2
00100 3
00101 4
00110 5
00111 6
0001000 7
0001001 8
0001010 9

TABLE 9 Assignment of syntax element to codeNum for signed Exp-Golomb [1]

codeNum | syntax element value
0 0
1 1
2 -1
3 2
4 -2
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5 3

6 -3

k (-1)**! Ceil(k+2)

TABLE 10 Assignment of codeNum to values of CBP [1]

codeNum CBP
Intra Inter
0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8
6 29 32
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15
12 39 47
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 44
24 28 33
25 35 34
26 37 36
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27 42 40
28 44 39
29 1 43
30 2 45
31 4 46
32 8 17
33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26
39 22 28
40 25 23
41 32 27
42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 4 4

3.2.5 Bit-stream Packer

Fig. 45 shows the input and output ports of Bit-stream Packer. Fig. 46 shows the

architecture of Bit-stream Packer.
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—mux_word—
—mux_length— Bit-stream Packer
—mux_valid—

—bitstream _cur—>

—Dbitstream _valid_cur—>

Fig. 45 Input and Output ports of Bit-stream Packer

residual_length_cur

longer than 31

mux_length

mux_valid longer_than 31

residual_word_cur

mux_word left_shifter residual_word_cur

mux_valid  longer_than 31

residual_word_cur

bitstream cur

mux_word right_shifter

bitstream_valid _cur

TwoByteBuf cur }

Fig. 46 Architecture of Bit-stream Packer

“mux_word”, “mux_length”, and “mux_valid” are output signals of MUX 1 (See Fig. 23).
“mux_word” carries the codeword of some syntax element and mux_length represents the
length of the codeword. Fig. 47 shows the structure of mux_word, where the codeword is

“00101” and mux_length is equal to five. Note that mux_word is left-alignment.
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32 bits

muxword | O |0 |1 02|00 - 0

“00101”

Fig. 47 Structure of mux_word

When mux_valid is high, it means that mux_word is valid and that we must concatenate
mux_word into residual_word_cur, a 32-bit register. The length of the codeword in
residual_word_cur is represented by residual_length_cur. Fig. 48 shows the structure of
residual_word_cur, where the codeword is “00101” and residual_length_cur is equal to five.

Note that residual_word_cur is right-alignment.

k 32 bits 3

residual_word_cur | 0 | O | ---ee 0 0|0|1|0]|1

Fig. 48 Structure of residual_word_cur

When mux_valid is high, if the sum of mux_length and residual_length_cur is smaller
than 32 (longer_than_31 is low), residual_word_cur is updated by left_shifter as Fig. 49

shows.
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32 bits \'i 'fi 32 bits

residual_word_cur mux_word

|

32 bits X 32 bits N
I
|

[
left_shifter

update...

32 bits 3

residual_word_cur

Fig. 49 Updating of residual_word_cur by left_shifter when longer_than_31 is low

“left_shifter” is a right-alignment signal of 64 bits and consists of the concatenation of
residual_word_cur and mux_word. On the other hand, if the sum of residual_length_cur and
mux_length is larger than 31 (longer_than_31 is high), bitstream_cur is updated as shown in
Fig. 50 and bitstream_valid_cur is high such that Bus Interface (see Fig. 23) can fetch the

updated bitstream_cur.
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32 bits 3y 'fi 32 bits

residual_word_cur mux_word

'fi 32 bits sk 32 bits

|
right_shifter

update...

|
N\

'E 32 bits \'i

bitstream_cur

Fig. 50 Updating of bitstream_cur by right_shifter

“bitstream_cur” is a register of 32 bits; in other words, we send 32 bits of bit-stream to Bus
Interface in one cycle. “right_shifter” is a left-alignment signal of 64 bits and consists of the
concatenation of residual_word_cur and mux_word. The remaining part, “C”, is stored into

residual_word_cur.

Moreover, TwoByteBuf cur is a register of 16 bits and comprises the last two bytes of
H.264/AVC bit-stream stored in External Memory (see Fig. 23). We use TwoByteBuf_cur and
right_shiter to determine whether emulation prevention byte [1], a byte equal to 0x03, is
necessary to be inserted into bitstream_cur. The main purpose of emulation prevention bytes
is to ensure that start code prefix [1], a sequence of three bytes equal to 0x000001, occurs
only at the beginning of the H.264/AVC bit-stream. When the following successive three

bytes are found in the raw byte sequence, emulation prevention byte is inserted:

1.  0x000000 -> 0x00000300
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2. 0x000001 -> 0x00000301
3. 0x000002 - 0x00000302

4. 0x000003 - 0x00000303

The usage of TwoByteBuf _cur is illustrated in Fig. 51. “right_shifter[63:32]” is divided
into four bytes and the arrowhead is the insert position of emulation prevention byte. There
are only seven cases according to the analysis [12]. For example, case 1 is illustrated in Fig.
52, where the number is hexadecimal. After insertion, bitstream_cur becomes 0x03000003

and 0x0002 is stored into residual_word_cur.

TwoByteBuf cur iright_shifter[G?,:SZ]i

case 0 case 1
case 2 case 3
case 4 case 5

q

|

case 6

Fig. 51 Usage of TwoByteBuf _cur
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TwoByteBuf_cur right_shifter[63:32]
00 | 00

Insertion...

=

03 | 00 | 00 | 03 00 | 02

Fig. 52 Example for case 1

3.3 Encoding flow of proposed

CAVLC encoder

Fig. 53 represents encoding flow of the proposed CAVLC encoder. Entropy SRAM
Interface provides the proposed CAVLC encoder with the coded block pattern and coefficients

of a sub-block.
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Fig. 53 Encoding flow of the proposed CAVLC encoder

Bit-stream
Packer

The proposed CAVLC encoder uses the coded block pattern to determine whether the

sub-block can be skipped. If the sub-block can be skipped, there are no further steps and we

fetch the next sub-block from Entropy SRAM Interface. Otherwise, if the sub-block cannot be

skipped, the coefficients are loaded into Input Buffer, as Fig. 54 shows. Nonzero Index Table

concurrently records which coefficients are nonzero by setting bit “1”. Both Input Buffer and

Nonzero Index Table are registers constructed in the proposed CAVLC encoder.
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15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 O
InputBuffer |/ 0 /OO 0 0|00 |01 01/ -1/1 0|30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Nonzero Index Tabley 0 | 0 | O /O | O] 0| O |01 |01 1/1 010

Fig. 54 Input Buffer and Nonzero Index Table

If all bits are zero in Nonzero Index Table, as Fig. 55 shows, it means that the sub-block
is NSZB. Zero-block Codeword Table generates the codeword of the NSZB and Bit-stream
Packer concatenates the codeword in parallel. Then the encoding flow is terminated earlier

such that we save cycle counts for collecting syntax elements of the NSZB.

15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 O
InputBuffer |/ 0 |/ OO0 0 0|00 O0O|0|O0O|]O0O 0| 0| 0|O0]|O

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Nonzero Index Tabley 0 | O | O /O | O] O0O|O|O|]O0O|O0O|0|]O0O|O0O|0|O0]|O

Fig. 55 Nonzero Index Table for an all-zero sub-block

Otherwise, if Nonzero Index Table consists of nonzero bits (see Fig. 54), it means that
the sub-block consists of nonzero coefficients. This thesis refers to a sub-block comprising
nonzero coefficients as NAZ (Not All Zero). We analyze Nonzero Index Table to obtain
syntax elements whose codeword are generated by combinational circuits and are
concatenated by Bit-stream Packer. After all syntax elements of the sub-block are encoded
into H.264/AVC bit-stream, the encoding of the NAZ sub-block is finished and we can fetch

the next sub-block.
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Nonzero Index Table makes it possible to directly encode significant coefficients such
that we can save cycle counts on zero coefficients in NAZ. We can encode one nonzero
coefficient every cycle by updating Nonzero Index Table. Fig. 56 and Fig. 57 show the
updating. At some cycle, as shown in Fig. 56, we aim at the coefficient at index “7” and the
codeword of the coefficient is concurrently generated by combinational circuits. At the next
cycle (see Fig. 57), Nonzero Index Table is updated and we aim at the coefficient at index “4”
such that the zeros between index “4” and “7” are ignored. Hence, Nonzero Index Table saves

cycle counts on zero coefficients in NAZ.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
InputBuffer, 0 1O/ 0 0| 0|00 |02 0 0 -12/1 0|3 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Nonzero Index Tablee 0 | 0| O | O | O | O0O|O0O|O0Of2 0|02 |21 01 0

Fig. 56 Coefficient at index 7 is being encoded

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
InputBuffer, 0 | O |O |O| 0|0 0|02 |0|0]-1/21 0]3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Nonzero Index Tablee 0 | 0| O | O | O | O0O|O0O|O0O|O0O 0|02 |21 01 0

Fig. 57 Coefficient at index 4 is being encoded
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3.4 Architecture of proposed CAVLC
encoder

According to section 3.3, sub-blocks can be divided into three categories in terms of

encoding flow:

1. NAZ: as mentioned in section 3.3.
2.  NSZB: as mentioned in section 3.1.2.

3. CS (CBP Skip): a sub-block which can be skipped by the coded block pattern.

In this section, we first describe the architecture of the proposed CAVLC encoder. Then, in the
following three sections, we cycle-wise explain the hardware operation for NAZ, NSZB, and

CS to manifest the advantages of our design.

Fig. 58 shows the architecture of the proposed CAVLC encoder. “cavic_data_ready”
fetches sixteen coefficients in one cycle. If the sub-block comprises less than sixteen
coefficients like CHROMA DC, Entropy SRAM Interface automatically appends zeros.
According to the sub-block type and the coded block pattern, we determine whether the

sub-block is CS.
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sram_nonzero
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cavlc_coding
Entropy Bit-stream
SRAM cavlc_data | . | Packer
d cavic_scan cavlc Cod|ng level cavic_mux
Interface _ready - -

cavlc_coding_crun

Fig. 58 Architecture of the proposed CAVLC encoder

As for a sub-block of NSZB or NAZ, the sixteen coefficients including the appending
zeros are stored into Input Buffer, which comprises sixteen 16-bit registers, as Fig. 59 shows.
Input Buffer is constructed in cavic_data_ready. The coefficients are put into Input Buffer in
zigzag scan order. We consider Input Buffer as a 1-D array and index “0” represents the DC.
The greater the index is, the higher the frequency is. Nonzero Index Table comprises sixteen
1-bit registers and indicates which coefficients are nonzero. When the coefficients are stored,
we concurrently check which coefficients are zeros. If a coefficient is nonzero, we set one to
the corresponding bit in Nonzero Index Table. The index of Nonzero Index Table is the same

as Input Buffer.
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15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 O
InputBuffer, 0 /OO 0 000|021 01/ -2/1 0|30

16x16 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Nonzero Index Tabley 0 | 0O | O /O | O] 0| O |01 |01 1|1 0 1|0

16x1 bits

Fig. 59 Structure of Input Buffer and Nonzero Index Table

“sram_nonzero” is an SRAM which records the TotalCoeff of already encoded
sub-blocks. “cavic_nunl” reads neighbor TotalCoeff from sram_nonzero and calculates nC.

Then cavilc_nunl writes the current TotalCoeff into sram_nonzero.

“cavlc_scan” extracts syntax elements from Nonzero Index Table. We explain the

operation of cavlc_scan cycle-wise below.

At the first cycle, cavlc_scan uses a simple adder to calculate the number of bit “1” in
Nonzero Index Table, which is TotalCoeff. Then, cavic_scan uses start index and stop index to
scan Nonzero Index Table, as Fig. 60 shows. Start index is a register and we initialize it as
fifteen. This is because the coefficients of higher frequency are encoded earlier [9]. Stop index
indicates the leading bit “1” in Nonzero Index Table from index 15 to 0. Stop index is the
output of FindLeadingOne, a combinational circuit constructed in cavlc_scan. After stop

index and TotalCoeff are known, total_zeros can be defined as Eq. 6.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2
InputBuffer, 0 41 04 0| 0|0 0|00} 21 0|2 -2/2 0|3 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
NonzeroIndexTablefl 0 (O | 0O | O|O|O|O|O0O}|21 O/1 |1 |12 01/ 0

I |

start stop
index index

Fig. 60 Start index and stop index with Nonzero Index Table

stop index +1 - TotalCoeff
Eq. 6

On the other hand, if FindLeadingOne cannot find any one bit in Nonzero Index Table, the
sub-block is NSZB. We encode the NSZB by Zero-block Codeword Table (see Fig. 61) and
the encoding of the NSZB is finished in advance. In fact, Zero-block Codeword Table is the
first row of TABLE 2 because “all-zero” means both TotalCoeff and TrailingOnes are equal to

ZEro.

0<=nC<2 | 2<=nC<4 | 4<=nC<8 | 8<=nC nC==-1

1 11 1111 000011 01

Fig. 61 Zero-block Codeword Table

At the second cycle, Nonzero Index Table is updated as shown in Fig. 62, where the bit
at the position of stop index is set zero and start index moves to the new zero bit. Now we can
calculate the run_before of the coefficient pointed by stop index at previous cycle, which is

expressed as Eq. 7. For example, the run_before is one for the coefficient at index seven.
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15 14 13 12 11 10 9 8 7 6 5 4 3
InputBuffery 0 O O|0|0 00|02 | 0}|-1/-2/1|0]¢{S3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NonzerolIndexTable 0 | 0O /O | O/ O | O/ O0O|O0O|0|O0f2 |1 1,012 0

stIrt sl;p

index index

Fig. 62 Updating for Nonzero Index Table

start index - stop index -1

Eq. 7

At the following cycles, we do the same things as the second cycle.

Every cycle we examine whether the coefficient pointed by stop index is a trailing one. If
the coefficient is a trailing one, we add one to TrailingOnes and the trailing_one_sign_flag is
concurrently determined. As soon as TrailingOnes is settled, cavlc_mux permits the codeword
of Coeff_token and trailing_one_sign_flags to be sent to Bit-stream Packer. The codeword of
Coeff_token is the concurrent output of cavlc_coding in which TABLE 2 is implemented.

Because trailing_one_sign_flags are codeword in itself, no additional circuit is necessary.

After trailing_one_sign_flags are encoded into the bit-stream, the coefficient pointed by
stop index is sure to be a level. In such cases, cavlic_mux certainly grants the codeword of the
level to be sent to Bit-stream Packer. The codeword of the level is the concurrent output of
cavlc_coding_level which is adapted from JM encoder reference software [9]. In JM encoder,
levels are encoded by a simple calculation instead of one-to-one mapping tables like TABLE

2.
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After each level is encoded into the bit-stream, cavlc_mux grants the codeword of
total_zeros to be sent to Bit-stream Packer. The codeword of total_zeros is the output of

cavlc_coding in which TABLE 3 and TABLE 5 are implemented.

Although run_befores are the final syntax element in the bit-stream, we can obtain a
run_before accompanied with a level or a trailing one in one cycle. The codeword of the
run_before is concurrently generated by cavlc_coding_crun in which TABLE 4 is
implemented. “cavlc_coding_crun” concatenates each run_before codeword into a 32-bit
register before sent to Bit-stream Packer. According to TABLE 4, we can reason that the total
length of all run_before codeword for a sub-block is always smaller than 32. After total zeros
is encoded into the bit-stream, we spend only one cycle to send the concatenated codeword to

Bit-stream Packer.

3.4.1 Hardware operation for encoding a NAZ

We assume the sub-block is LUMA as Fig. 63 shows. The hardware operation of the

proposed CAVLC encoder is described cycle-wise below:

Fig. 63 Coefficients of a LUMA sub-block

1. 0" cycle: Entropy SRAM Interface updates Blkldx_cur for the sub-block.
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2.

3.

4.

1% cycle:

2" cycle:

3" cycle:

According to Blkldx_cur, Entropy SRAM Interface does the following
two things. First, Entropy SRAM Interface sends read address to Residual
Buffer (see Fig. 23). Second, Entropy SRAM Interface sends block_type and
block _idx to CAVLC encoder. “block_type” refers to the sub-block type as
mentioned in section 2.2.2. “block_idx” has the same definition as the
numerical labels of Fig. 87. “block_idx” is used to determine read address of
sram_nonzero to fetch neighbor TotalCoeff. “block_idx” is stored into
blk_idx_cur and block type is stored into blk _typ cur, where both
blk_idx_cur and blk_typ_cur are registers constructed in cavic_data_ready.

Moreover, CAVLC encoder obtains mb_x and mb_y from PR1.
“mb_x" and mb_y are coordinates of the current macro-block. We use mb_x
and mb_y to determine whether the sub-block is on border of frame. “mb_x"
and mb_y are stored into mb_x_cur and mb_y cur respectively. Both
mb_x_cur and mb_y_cur are registers constructed in cavlc_data_ready.

Finally, CAVLC encoder obtains the coded block pattern of the current
macro-block from PR1. The CBP is stored into cbp_cur, which is a register
constructed in cavic_data_ready.

All coefficients of the sub-block are ready on the output of Residual
Buffer. Moreover, cavilc_nunl sends read address of top neighbor to
sram_nonzero.

“cavlc_nunl” sends read address of left neighbor to sram_nonzero. All
coefficients are loaded into Input Buffer as Fig. 64 shows, and Nonzero
Index Table is determined at the same time. Start index is initialized as

fifteen (see section 3.4).
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coefficient

o

Input Buffer

Nonzero
Index Table

Fig. 64 Loading of Input Buffer and determination of Nonzero Index Table

5. 4" cycle: Start index is equal to 15 and stop index points to “13”, as shown in Fig.

65. TotalCoeff is determined by a combinational adder as Fig. 66 shows.

15 14 13 12 11 10
InputBuffer| 0 | 0 | -1 | -1 |-1| 0| O

©
o'
~
o
ol
Lanl SN
w
[N
B
o

15 14 13 12 11 10 9 8 7 6 5 4
o;j12,1,1 0,022, 002,01 1|1

Nonzero Index Table] 0

stlrt stop
index index

Fig. 65 State of Nonzero Index Table at 4™ cycle
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NonzeroIndexTablel 0 /O f 2 1 (1 0|01 /1 0|01 0|11

TotalCoeff

num_nz_cur

Fig. 66 Determination of TotalCoeff by Nonzero Index Table

TotalCoeff is stored into num_nz_cur which is a register constructed in
cavlc_scan. “total_zeros” is determined by Eq. 6 as shown in Fig. 67.
“total_zeros” is stored into total run_cur which is a register constructed in

cavic_scan.

—stop index—

+

—TotalCoeff—>

= —total zeros

total run_cur

Fig. 67 Determination of total_zeros

The coefficient pointed by stop index is a trailing one whose
trailing_one_sign_flag is one, so num_t1 cur, a register constructed in
cavlc_scan, is increased as Fig. 68 shows. The meaning of num_t1_cur is the

same as TrailingOnes. Trailing_one_sign_flags are stored into sign_t1_cur, a
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register constructed in cavilc_scan.

InputBuffer, 0 41 0 |-2/-2/-1/0 0|22 ,0]0|21|0-1|-3|3
stop index
MUX /
I
1 -1
NN
I
I
num_t1 cur

Fig. 68 Determination of TrailingOnes

6. 5" cycle: The TotalCoeff of top neighbor comes from sram_nonzero and is stored

into nu_cur, which is a register constructed in cavic_nunl. Nonzero Index

Table is updated as Fig. 69 shows.

©
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ol
I
w
[N
=
o

15 14 13 12 11 10
InputBuffer| 0 | 0 |1 | -1|-1, 0|0 |1

15 14 13 12 11 10 9 8 7 6 5 4 3

NonzeroIndex Tablefl 0 | 0 | O [ 2 |1 | 0O | O

start stop
index index

Fig. 69 State of Nonzero Index Table at 5™ cycle

The coefficient pointed by stop index, denoted by Input Buffer [12], is
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7.

6" cycle:

a trailing one whose trailing_one_sign _flag is one, so num_tl1 cur is
increased. The run_before of Input Buffer [13] can be calculated by Eq. 7 as

shown in Fig. 70.

| |
start  stop |

index index
€ N2 \|,

run_before

[m—————— e ————— -

TABLE 4

Fig. 70 Determination and concatenation of run_before

The codeword (“11”) of the run_before is generated by TABLE 4,
implemented as a combinational circuit in cavlc_coding_crun. The
codeword is concatenated into crun_word_cur, a 32-bit register constructed
in cavlc_coding_crun.

The TotalCoeff of left neighbor comes from sram_nonzero and is stored
into nl_cur, which is a register constructed in cavic_nunl. Now that nu_cur
and nl_cur are settled, nC can be determined in the cycle. Nonzero Index

Table is updated as Fig. 71 shows.
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Fig. 71 State of Nonzero Index Table at 6™ cycle

The coefficient pointed by stop index is a trailing one whose
trailing_one_sign_flag is one, so num_t1_cur is increased. The run_before
of Input Buffer [12] is zero and the run_before codeword (“11”) is

concatenated into crun_word_cur.

M eycle: Nonzero Index Table is updated as Fig. 72 shows. The value of

~

num_t1_cur is equal to three which is the maximum of TrailingOnes, so the
coefficient pointed by stop index is not a trailing one, although its magnitude
is equal to one. Because the coefficient pointed by stop index is not a trailing

one, trailing ones never occur at the following coefficients such that

num_t1_cur and sign_t1_cur are settled.
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Fig. 72 State of Nonzero Index Table at 7" cycle
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9. 8"cycle:

10. 9" cycle:

Now that nC, TotalCoeff, and TrailingOnes are settled, the coeff_token
codeword is valid and is concatenated into Bit-stream Packer. The codeword
of coeff_token is generated by TABLE 2, which is implemented as a
combinational circuit in cavlc_coding as Fig. 73 shows.

The run_before of Input Buffer [11] is two and the run_before

codeword (“011”) is concatenated into crun_word_cur.

nC \ num_t1 cur \ \num_nz_cur

TABLE?2

Fig. 73 Generation of coeff_token codeword

“sign_t1_cur” is concatenated into Bit-stream Packer. No updating of
Nonzero Index Table occurs.

The state of Nonzero Index Table is the same as 7™ cycle. See Fig. 72,
Input Buffer [8] is a level, which is the coefficient at stop index. The level
codeword, generated by cavlc_coding_level as shown in Fig. 74, is

concatenated into Bit-stream Packer.
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InputBuffer| 0 | 0 | -1 | -1 | -1
stop jndex

MUX

cavlc_coding_level

level
codeword

i

Fig. 74 Generation of level codeword

11. 10™cycle: Nonzero Index Table is updated as Fig. 75 shows. The level codeword
of Input Buffer [7], the coefficient as stop index, is concatenated into

Bit-stream Packer. The run_before codeword (“11”) of Input Buffer [8] is

concatenated into crun_word_cur.

15 14 13 12 11 10
InputBuffer{ 0 /O |2 |-1|-2,0|0|2 |2 0,01 0/|-12|3|3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o,0|j0}j12,0, 02 0|1 1|1

Nonzero Index Table, 0 | O | O | O | O

start stop
index index

Fig. 75 State of Nonzero Index Table at 10" cycle

12. 11" cycle: Nonzero Index Table is updated as shown in Fig. 76. The level

codeword of Input Buffer [4], the coefficient at stop index, is concatenated
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into Bit-stream Packer. The run_before codeword (“01”) of Input Buffer [7]

is concatenated into crun_word_cur.
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Fig. 76 State of Nonzero Index Table at 11" cycle

13. 12" cycle: Nonzero Index Table is updated as shown in Fig. 77. The level
codeword of Input Buffer [2], the coefficient at stop index, is concatenated

into Bit-stream Packer. The run_before codeword (“0”) of Input Buffer [4] is

concatenated into crun_word_cur.
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start slop
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Fig. 77 State of Nonzero Index Table at 12" cycle

14. 13" cycle: Nonzero Index Table is updated as shown in Fig. 78. The level

codeword of Input Buffer [1], the coefficient at stop index, is concatenated
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into Bit-stream Packer. Note that we have encoded all run_befores at 12"

cycle such that zerosLeft becomes zero. Therefore, no run_before is encoded

after 12" cycle (see section 2.3.1).
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start  stop
index index

Fig. 78 State of Nonzero Index Table at 13" cycle

15. 14" cycle: Nonzero Index Table is updated as shown in Fig. 79. The level

codeword of Input Buffer [0], the coefficient at stop index, is concatenated

into Bit-stream Packer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
of1,12,-2,0}0}2}2,0(0|1 0} -2(3]|3

Input Buffer | 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
ojojo0;,0j0|0j0|0|0]O0]1

Nonzero Index Table; 0 | 0 | O | O | O

start slop
index index

Fig. 79 State of Nonzero Index Table at 14" cycle

16. 15" cycle: Nonzero Index Table is updated as Fig. 80 shows. Note that no one bit

exists in Nonzero Index Table. The fact means that encoding of levels is
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done.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
InputBuffer, 0 |0 |-1}-1}-2,00}1,20/0}1|0(-1 3|3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Nonzero IndexTablef 0 | O (| O | O[O |O0|O0O|O0O|]O|O0O|O|O0O|O|O0O|O0]|O

Fig. 80 State of Nonzero Index Table at 15" cycle

17. 16" cycle: The total_zeros codeword, generated by cavlc_coding as shown in Fig.
81, is concatenated into Bit-stream Packer. Because total run_cur and
num_nz_cur have been settled at 4" cycle, the total_zeros codeword is valid

right now. Note that TABLE 3 is constructed as a combinational circuit in

cavlc_coding.

total_run_cur | | num_nz_cur
S I
i :
| | !
I I
| | TABLE3 !
I I
I I
! I

total _zeros cavic_coding

codeword

!

Fig. 81 Generation of total_zeros codeword
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18. 17" cycle: “crun_word_cur” is concatenated into Bit-stream Packer, which is the

concatenation of each run_before codeword. Then, the encoding of the NAZ

is finished.

3.4.2 Hardware operation for encoding a

NSZB

We assume the sub-block is LUMA. The hardware operation of the proposed CAVLC

encoder is described cycle-wise below:

1. 0M-2"cycle: The same as section 3.4.1.

2. 3"cycle: Input Buffer and Nonzero Index Table are shown in Fig. 82. As shown
in Fig. 83, if FindLeadingOne cannot find any nonzero bit in Nonzero Index
Table, zero_blk cur is set one to indicate that the sub-block is all-zero.
“zero_blk_cur” is 1-bit register constructed in cavlc_scan. Moreover,

“cavlc_nunl” sends read address of left neighbor to sram_nonzero.

©
00}
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N

15 14 13 12 11 10
InputBuffer{ 0 | 0 | O | 0|0 | O

15 14 13 12 11 10 9 8
ojojo0jo0ojo0oj0,0]0j0|0|0]O

Nonzero Index Tablel 0 | O | O | O

start
index

Fig. 82 State of Nonzero Index Table at 3" cycle for NSZB
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NonzeroIndex Tablee 0 | O | O | O | O|O | O|O0O|O0O|O|]O|0O0|O0|0/]O0]|O0

FindLeadingOne

zero_blk_cur

cavilc_scan

Fig. 83 Determination of an all-zero sub-block

3. 4" cycle: The TotalCoeff of top neighbor comes from sram_nonzero and is stored
into nu_cur.
4. 5" cycle: The TotalCoeff of left neighbor comes from sram_nonzero and is stored

into nl_cur. Because nu_cur and nl_cur are settled, nC can be determined in
the cycle. Therefore, the codeword generated by Zero-block Codeword
Table (see Fig. 61) is valid and it can be concatenated into Bit-stream Packer.

Then, the encoding of the NSZB is finished.

3.4.3 Hardware operation for encoding a CS

1. 0M-1%cycle:  The same as section 3.4.1.
2. 2" cycle: According to blk_idx_cur, blk_typ_cur, and cbp_cur, we can confirm
that the sub-block is a CS. No codeword is generated and the encoding of

the CS is finished.
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3.5 Memory system

In this section, we present the size requirement and organization of SRAM
(sram_nonzero) constructed in the proposed CAVLC encoder. Section 2.2.4 shows that a
macro-block has 24 sub-blocks which may be neighbors of other sub-blocks. For calculating
nC, we must record TotalCoeff of the 24 sub-blocks. The neighbors may come from other
macro-blocks as shown in Fig. 84. Fig. 84 shows a frame of M by N macro-blocks. The
macro-blocks of Row 1 need information from those of Row 0 to calculate nC. Thus we must
record the information of macro-blocks in one row of a frame such that the size of SRAM

depends on the frame’s width.

ROW O ......

ROW 1 ......

Fig. 84 Two adjacent rows in a frame

We take QCIF as an example and Fig. 85 shows the organization of sram_nonzero for
QCIF. Because QCIF’s width is equal to 11 macro-blocks, four bits are necessary to represent
the macro-blocks. We use five bits to represent the 24 sub-blocks in one macro-block.

Therefore the address of SRAM comprises nine bits and the structure of the address is shown
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in Fig. 86

mb_addr 0 0
1

2

31

mb_addr 1 0
1

2

31

mb_addr 15 0

[EEN

31

Fig. 85 Organization of sram_nonzero for QCIF

MSB LSB

mb_addr sb_addr
4 bits 5 bits

Fig. 86 Structure of sram_nonzero address

The former four bits are denoted as mb_addr which indicate one of the 11 macro-blocks; the
remaining five bits are denoted as sb_addr which indicate one of the 24 sub-blocks in a
macro-block. One word comprises five bits because the maximum of TotalCoeff is equal to 16.

Therefore the size of SRAM for QCIF is equal to 2560 bits, which is expressed as Eq. 8.

2° (word) x 5(bits / word)

Eq. 8
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Fig. 87 shows the mapping relation between the numbers in Fig. 85 and the 24
sub-blocks of a macro-block. The smaller the number of a sub-block is, the earlier the
sub-block is encoded (see section 2.2.1). For the current sub-block, we read the TotalCoeff of

the top and left neighbors and then write the current TotalCoeff into the SRAM, as Fig. 88

shows.

Fig. 87 Mapping relation between sub-blocks and sram_nonzero for a macro-block

read top read left write current
neighbor neighbor TotalCoeff

Time

Fig. 88 Timing schedule of sram_nonzero

For each sub-block in Fig. 87, TABLE 11 represents the read addresses to access the
neighbors and the write address to record the current TotalCoeff. “X” denotes the current

macro-block’s mb_addr, X-1 denotes the left macro-block’s mb_addr, and an address is

denoted as {mb_addr, sb_addr}.

TABLE 11 Read and write address of sram_nonzero for a sub-block

Sub-block | top read address | left read address | current write address
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0 {X, 10} {X-1, 5} {X, 0}
1 {X, 11} {X, 0} {X, 1}
2 {X, 0} {X-1, 7} {X, 2}
3 {X, 1} {X, 2} {X, 3}
4 {X, 14} {X, 1} {X, 4}
5 {X, 15} {X, 4} {X, 5}
6 {X, 4} {X, 3} {X, 6}
7 {X, 5} {X, 6} {X, 7}
8 {X, 2} {X-1, 13} {X, 8}
9 {X, 3} {X, 8} {X, 9}
10 {X, 8} {X-1, 15} {X, 10}
11 {X, 9} {X, 10} {X, 11}
12 {X, 6} {X, 9} {X, 12}
13 {X, 7} {X, 12} {X, 13}
14 {X, 12} {X, 11} {X, 14}
15 {X, 13} {X, 14} {X, 15}
16 {X, 18} {X-1, 17} {X, 16}
17 {X, 19} {X, 16} {X, 17}
18 {X, 16} {X-1, 19} {X, 18}
19 {X, 17} {X, 18} {X, 19}
20 {X, 22} {X-1, 21} {X, 20}
21 {X, 23} {X, 20} {X, 21}
22 {X, 20} {X-1, 23} {X, 22}
23 {X, 21} {X, 22} {X, 23}

For example, Fig. 89 shows a QCIF frame, where the red square is the current macro-block
and the green squares are already encoded macro-blocks. The information of the green
macro-block is stored in the SRAM and the number on each green macro-block is the
corresponding mb_addr, so X is equal to four. The encoding order of sub-blocks can

guarantees that a word in the SRAM is never updated before the word is read by other

sub-blocks.
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Fig. 89 Current macro-block in a QCIF frame

3.6 Summary

In this chapter, we propose two methods to save cycle counts on zeros which the CBP
cannot skip. First, we use Zero-block Codeword Table to encode a NSZB such that the
encoding flow can be terminated earlier. Second, Nonzero Index Table with stop index
directly jumps to a nonzero coefficient in Input Buffer. Thus zeros in NAZ sub-blocks are
skipped. Moreover, we present the size requirement and organization of SRAM in which

already encoded TotalCoeff is stored.
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Chapter 4. Results and Comparison

4.1 Cycle count analysis

As mentioned in section 3.4, sub-blocks can be divided into the following three

categories: NAZ, NSZB, and CS. Below, we show the cycle count analysis for each category.

Fig. 90 shows the timing schedule for encoding a NAZ. “x” is defined as TABLE 12

shows and “y” is defined as Eq. 9. The following things are done during the first 5+x cycles:

1. Fetch coefficients from Entropy SRAM Interface.

2. “cavlc_nunl” interacts with sram_nonzero to calculate nC.

3. Coeff_token, trailing_one_sign_flags, and total_zeros are settled by analyzing Nonzero
Index Table.

4. The trailing ones’ run_before codeword is concatenated into cavic_coding_crun

Afterwards, each syntax element codeword is sent to Bit-stream Packer.

Six | | | [

|
y
cycles : 1cycle : 1cycle : cycles :1 cycle : 1cycle
|

=Coeff_token: trailing_one_sign_flags: levels : total_zeros, run_befores

Fig. 90 Timing schedule for encoding a NAZ sub-block

TABLE 12 Definition of variable “x”

TrailingOnes
0 0
1 1
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TotalCoeff - TrailingOnes +1
Eq. 9

Fig. 91 shows the timing schedule for encoding of an NSZB. The following things are

done during the first five cycles:

1. Fetch coefficients from Entropy SRAM Interface.
2. *“cavilc_nunl” interacts with sram_nonzero to calculate nC.
3. The fact that it is an NSZB is confirmed by analyzing Nonzero Index Table.

4.  Zero-block Codeword Table generates Coeff_token codeword.

Afterwards, Coeff_token codeword is sent to Bit-stream Packer and encoding of the NSZB is

done.

|
|
cycles
: Coeff_token

1 cycle

Fig. 91 Timing schedule for encoding of an NSZB sub-block

Fig. 92 shows the timing schedule for encoding of a CS. The following things are done

during the three cycles:

1. Fetch coefficients from Entropy SRAM Interface
2. Entropy SRAM provides the coded block pattern and the sub-block type.

3. The fact that it is a CS is confirmed by the coded block pattern and the sub-block type.

Afterwards, no codeword is sent to Bit-stream Packer and encoding of the CS is done.
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3
cycles 5

Fig. 92 Timing schedule for encoding of a CS sub-block

In conclusion, TABLE 13 shows the total cycle counts for encoding a NAZ, NSZB, and

CS respectively.

TABLE 13 Total cycle counts for CS, NSZB and NAZ

Total cycle counts per sub-block
CS 3
NSZB 6
NAZ 9+x+y

4.2 Simulation result

Simulation setting is the same as section 3.1. The results are calculated according to the
analysis in section 4.1. Fig. 93 shows the average cycle counts to encode a sub-block,
including CS, NSZB, and NAZ. Fig. 94 shows the average cycle counts we need to encode a
macro-block. We choose 145 MHz as the working frequency of the proposed CAVLC encoder.

Fig. 95 presents how many macro-blocks on average are encoded in one second.
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Fig. 93 Average encoding cycles per sub-block
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82

44

—&— Akiyo

—=— Coast
Stefan
Foreman

—*— Mobile




2000000

1800000

1600000 -

1400000 [

—— Akiyo
—=— Coast
Stefan
1000000
/ Foreman
—*— Mobile
""" 1080p@30fps

1200000 [

Cycle

800000 [

600000

400000 —

200000

0

Fig. 95 Average number of macro-blocks encoded per cycle

The red line in Fig. 95 denotes “244800” that is the throughput requirement of 1080p at
30 fps, as TABLE 14 shows [10]. Each case in Fig. 95 is above the requirement and we prove

that the proposed CAVLC encoder can support 1080p at 30 fps.

TABLE 14 Requirement of 1080 HD

Format | Width | Height | MBs Total | MBs/second
1080p | 1920 | 1088 8160 244800

4.3 Implementation results and
comparison

We used Verilog and UMC 0.13um cell library to implement the proposed CAVLC

encoder, which consumes 9.03 K logic gates at 145 MHz. TABLE 15 shows the gate count
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profile (see Fig. 58) and TABLE 16 shows on-chip memory requirement. TABLE 17 shows
the comparison with other designs, where the serial numbers for zero-skipping methods are
defined in TABLE 18. In TABLE 17, note that the gate count of Lai [14] includes the

bit-stream packer. TABLE 19 shows the gate count profile comparison, where “statistic

buffer” only refers to the storage element storing the syntax elements of a sub-block.

TABLE 15 Gate count profile of the propose CAVLC encoder

Item Gate Count
cavlc_data_ready 3074
cavic_scan 1252
cavlc_coding 1302
cavlc_coding_level 1176
cavlc_coding_crun 1410
cavic_nunl 570
cavlc_mux 244
Total 9028

TABLE 16 On-chip memory requirement of the proposed CAVLC encoder

Number of word Bits per word Total bits
QCIF 512 5 2560
1080 HD 4096 5 20480
TABLE 17 Comparison with other CAVLC encoder designs
Proposed [3] [15] [4] [13] [14]
UMC UMC | TSMC 0.18um | TSMC
Technology FPGA
0.13um | 0.18um | 0.18um CMOS | 0.35um
Frequency 145MHz | 100MHz | 27MHz | 100MHz | 125MHz | 28MHz
Gate Count Cé:/rzc 9028 17635 | 23281 | 22128 9724 9171
Cycle Count | Foreman 301 350 225
per MB Mobile 397 430 360 na na na
(QP=12) Stefan 361 400 na
Akiyo 155 na na na na na
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Coast 326
Average 308 393 293 432 402
Zero-skippin
PpPINg 1,2, 3 1 1,2 none 1 none

method

TABLE 18 Definition of serial numbers for zero-skipping methods

Serial number Definition
1 CBP Look-Ahead
2 Nonzero Index Table
3 Zero-block Codeword Table

TABLE 19 Gate count profile comparison

Proposed | [3] [15] [4] [13] | [14]
coeff_token 864 298 | 554
1302
total_zeros 646 564 | 420
3758
levels 1176 1012 2249 | 1208 na
run_befores 1410 263 1361 | 432
statistic buffer 0 12283 0 5325
17656
control 5140 2567 | 19523 1785
Total 9028 | 17635 | 23281 | 22128 | 9724 | 9171

Chen [3] is an improved version of the CAVLC encoder in Huang [6]. The architecture

of Huang [6] is shown in Fig. 96.

Scan Phase

Statistic Buffer

Coding Phase

Fig. 96 Architecture of Huang [6]

In Scan Phase, Huang [6] reads one coefficient per cycle and concurrently examine whether

the coefficient is nonzero to update TotalCoeff. TotalCoeff is not settled until all coefficients
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of a sub-block are read. For example, as for a LUMA sub-block, Huang [6] spends at least
sixteen cycles to make TotalCoeff settled even if the sub-block consists of many zero
coefficients. As a result, many cycle counts are wasted on zero coefficients. Because
TotalCoeff is the first syntax element to be encoded into H.264/AVC bit-stream, Huang [6]
must use Statistic Buffer to store the syntax elements obtained before TotalCoeff during the
sixteen cycles, including levels and run_befores. Otherwise, the syntax elements except
TotalCoeff will evaporate after the sixteen cycles. After all syntax elements are ready in
Statistic Buffer, Coding Phase generates the codeword of the syntax elements from Statistic
Buffer. While Coding Phase is generating the codeword of the current sub-block, Scan Phase
cannot write the syntax elements of the next sub-block into Statistic Buffer. Otherwise, Scan
Phase will destroy the data of the current sub-block in Statistic Buffer. Therefore, Scan Phase
and Coding Phase cannot work in parallel such that the utilization of hardware is halved. To
double the utilization, Chen [3] use two statistic buffers switched in ping-pong manner, as

shown in Fig. 97.

Statistic Buffer
0

Scan Phase J /— Coding Phase
| [ Statistic Buffer | |

1

Fig. 97 Architecture of Chen [3]

While Coding Phase is generating the codeword of the current sub-block, whose syntax
elements are stored in Statistic Buffer 1, Scan Phase writes the syntax elements of the next
sub-block into Statistic Buffer 0, so Scan Phase never destroys the data of the current
sub-block in Statistic Buffer 1. Therefore, Scan Phase and Coding Phase can work in parallel

such that the utilization is doubled.
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On the contrary, the proposed design reads sixteen coefficients in one cycle and
TotalCoeff is concurrently settled by Nonzero Index Table. After a few cycles when stop
index meets a level for the first time, Coeff token and trailing_one_sign_flags have been
encoded into H.264/AVC bit-stream. Therefore, we can immediately send the level codeword,
output of combinational circuits, to the Bit-stream Packer, so the additional redundant buffers
are not necessary. As for the run_before, we also use a buffer to store its codeword before sent
to Bit-steam Packer. However, Chen [3] and Huang [6] store the un-encoded value of the
run_before but we store the encoded codeword of the run_before. Therefore, our buffer gate
count is sure to be smaller than Chen [3]. In summary, the proposed design does not need
Statistic Buffers to save syntax elements, so the proposed design consumes less logic gates
than Chen [3]. Moreover, Chen [3] spends at least sixteen cycles for a sub-block even if the
sub-block consists of many zero coefficients. As a result, Chen [3] wastes many cycle counts
on zero coefficients. That is the reason why the proposed design can spend less cycle counts

per macro-block than Chen [3].

The architecture of Kim [4] is similar to Huang [6], as Fig. 98 shows. Compared with
Fig. 96, Kim [4] replaces Statistic Buffer with FIFO. Although Kim [4] has only one storage
element, Kim [4] has the same pipelining schedule as Chen [3]. In other words, Kim [4] can

process two sub-blocks at the same time.

Scan Phase FIFO Coding Phase

Fig. 98 Architecture of Kim [4]

This is because the FIFO is an IP with a handshaking protocol [8] which grants the new data
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coming in without destructing the old data. However, Kim [4] spends more cycle counts per
macro-block than Chen [3] because Chen [3] takes advantage of CBP Look-Ahead [3]. The

FIFO is the reason why Kim [4] consumes more logic gates than the proposed design.

The architecture of Chien [13] is similar to Huang [6], as Fig. 99 shows. Compared with

Fig. 96, Chien [13] replaces Statistic Buffer with SIPO (Serial Input Parallel Output).

S

——3 Scan Phase Coding Phase ——>

SIPO '\

Fig. 99 Architecture of Chien [13]

Although Chien [13] has only one storage element, Chien [13] can concurrently process two
sub-blocks as Chen [3]. That is because SIPO accepts one syntax element per cycle from Scan
Phase and SIPO sends two syntax elements per cycle to Coding Phase. Therefore the old data
are fetched by Coding Phase before they are destroyed by the new data from Scan Phase.
However, SIPO is the reason why Chien [13] consumes more logic gates than the proposed
design. On the other hand, Chien [13] spends more cycle counts than the proposed design

because CBP Look-Ahead is the only zero-skipping method.

The architecture of Lai [14] is similar to Huang [6], as Fig. 100 shows. Compared with
Fig. 96, Lai [14] replaces Statistic Buffer with Stack. The Stack is also a storage element to

store syntax elements generated by Scan Phase.
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Scan Phase Stack Coding Phase

Fig. 100 Architecture of Lai [14]

Like Huang [6], while Coding Phase fetches syntax elements from the Stack, Scan Phase
cannot write the syntax elements of the next sub-block into the Stack. Moreover, Scan Phase
also spends at least sixteen cycle counts to obtain all syntax elements of a sub-block. Thus,
Lai [14] may spend as many cycle counts in encoding a sub-block as Huang [6]. So Lai [14]
should spend more cycle counts per macro-block than the proposed design. On the other hand,
Lai [14] should consume more logic gates than the proposed design because of the Stack.
Note that the total gate count of Lai [14] is close to that of the proposed design. This is

because Lai [14] chooses a much lower working frequency than the proposed design does.

Fig. 101 shows the architecture of Tsai [15]. TQ (Transform Quantize) Stage [15] writes
coefficients of a macro-block into Residual SRAM [15]. At the same time, TQ Stage records
which coefficients are nonzero in Non-zero Flag Reg [15] and TQ Stage records which
coefficients are 1 or -1 in Abs-one Flag Reg [15]. A macro-block consists of about 384
coefficients, including luminance and chrominance, so both Non-zero Flag Reg and Abs-one

Flag Reg comprise 384 bits.
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TQ Residual Symbol Look Table codeword

SRAM Ahead Module classes
Stage
Non-zero Bit-stream
Flag Reg Packer
Abs-one
Flag Reg

Fig. 101 Architecture of Tsai [15]

First, Symbol Look Ahead Module [15] uses Non-zero Flag Reg and Abs-one Flag Reg to
generate TotalCoeff and TrailingOnes in one cycle, whose codeword is concurrently
calculated by Table classes [3] and concatenated by Bit-stream Packer. Then Symbol Look
Ahead Module directly accesses one nonzero coefficient per cycle according to Non-zero Flag
Reg, whose codeword is calculated by Table classes at the same time. Like the proposed
design, because TotalCoeff and TrailingOnes have been encoded, Tsai [15] does not need any
Statistic Buffer to store the coefficient and the codeword can be immediately concatenated
into Bit-stream Packer. However, Tsai [15] consumes more logic gates than the proposed
design. The large gate count of Tsai [15] results from the MB-sized Non-zero Flag Reg and
Abs-one Flag Reg. On the other hand, note that Tsai [15] spends fewer cycle counts than the

proposed design. The reasons may be the following:

1. The operation of Non-zero Flag Reg is similar to that of Nonzero Index Table, because
both can skip zero coefficients in NAZ.

2. Abs-one Flag Reg makes Tsai [15] spend fewer cycle counts on calculating TrailingOnes
than the proposed design.

3. In TABLE 17, the cycle count of the proposed design includes not only the time for the
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CAVLC core process but also the time for interacting with Entropy SRAM Interface, as
mentioned in section 3.4.1 and section 4.1. However, Tsai [15] does not disclose the

method of calculating cycle count.

Last but not least, we consume less logic gates under higher frequency. In other words,
although we have no such statistic buffers to pipeline, the proposed design has a shorter
critical path than other designs. Moreover, the demand for the statistic buffer originates from

data evaporation. Therefore, critical path is not a point of controversy.

In summary, the designs which need statistic buffers often consume large logic gate
count, as TABLE 19 shows. TABLE 17 shows the proposed design can achieve up to 61%
decrease in logic gate count. On the other hand, Nonzero Index Table and Zero-block
Codeword Table can skip zero coefficients which CBP Look-Ahead [3] cannot detect. In other
words, the proposed design can skip every zero coefficient in a macro-block. Therefore, the
proposed design achieves higher throughput than other designs. TABLE 17 shows the

proposed design can achieve up to 29% decrease in cycle count.
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Chapter 5. Conclusions

The main contribution of this thesis is to propose two new hardware architectures which
permit direct significance encoding. The proposed architectures compensate for drawbacks of
conventional CBP Look-Ahead such that CAVLC encoder for H.264/AVC can achieve a
higher throughput. CBP Look-Ahead uses the coded block pattern to detect occurrence of an
all-zero sub-block in advance such that encoding time for the all-zero sub-block can be saved.
However, our statistics in section 3.1.2 shows that many all-zero sub-blocks are not covered
by the coded block pattern, especially at middle QP and low QP. Moreover, a NAZ sub-block
is sure to comprise some zero coefficients, which the coded block pattern cannot detect by
definition. Our statistics in section 3.1.1 shows that a NAZ sub-block comprises up to 60%
zero coefficients on average. As a result, CBP Look-Ahead is not enough to significantly
improve throughput of a CAVLC encoder. Thus we propose two new architectures to save
encoding cycle counts of the zero coefficients which the coded block pattern cannot take into
account. First, Zero-block Codeword Table permits encoding flow to be terminated in advance
for an NSZB sub-block. Second, Nonzero Index Table directly skips several zero coefficients
in one cycle for a NAZ sub-block. The proposed CAVLC encoder adopts Zero-block
Codeword, Nonzero Index Table, as well as CBP Look-Ahead, such that we can save
encoding time of all zero coefficients in a macro-block. Comparison in section 4.3 shows that
the proposed design achieves a higher throughput than other designs. Simulation results in

section 4.2 shows that the proposed design can support 1080p at 30fps.

Moreover, the proposed design has the advantage of fewer gate counts even at a higher
working frequency. This is because our design does not need statistic buffers to save

intermediate syntax elements, as mentioned in section 4.3.
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Eventually, the proposed design can support 1080p at 30 fps with 9.03 K gate count at

145 MHz. We save 61% logic gate count and 29% cycle count.
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