

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

低成本高效率內容適應性可變長度編碼器之設計

A Low Cost and High Throughput CAVLC Encoder

Design

 學生 :吳 秈 璟

 指導教授 :張添烜 博士

中 華 民 國 九十六 年 七 月

低成本高效率內容適應性可變長度編碼器之設計

A Low Cost and High Throughput CAVLC Encoder

Design

 研 究 生 : 吳秈璟 Student : Sian-Jing Wu

 指導教授 : 張添烜 博士 Advisor : Dr. Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for Degree of Master of Science

in
Electronic Engineering

July 2007
Hsinchu, Taiwan, Republic of China

 i

低成本高效率內容適應性可變長度編碼器之設計

學生 : 吳秈璟 指導教授 : 張添烜 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

本論文提出一個低成本高效率的內容適應性可變長度編碼器。本論文的動機是為了

補償編碼區塊樣式先決的低效能以達到高效率，使得我們所提出的內容適應性可變長度

編碼器能支援每秒處理30張1080p畫面。此外，在如此高效率之下，我們必須維持少量

的邏輯閘。編碼區塊樣式先決能跳過一些零方塊的編碼流程來提高效率。然而，我們的

統計數據指出有大量的零係數無法被編碼區塊樣式先決偵測到，使得許多的週期數被浪

費在零係數。在我們的設計裡，除了採用編碼區塊樣式先決，我們還使用可以直接對非

零係數作編碼的新奇架構，以避免花費時間在零係數：零方塊碼字表與非零索引表。

當我們所提出的內容適應性可變長度編碼器在一個週期內讀取一個方塊的所有係

數時，非零索引表同時記錄那些係數是非零的。然後非零索引表會分辦這個方塊是否為

全零。假如這方塊是全零，零方塊碼字表可以在不用跑完整套內容適應性可變長度編碼

流程的情況下，直接產生這個方塊的全部碼字。另一方面，如果這個方塊含有至少一個

非零係數，非零索引表使用組合電路找出非零係數的位置，使得零係數被忽略。再者，

 ii

當非零索引表鎖定一個非零係數時，這個非零係數的碼字會直接被連接到H.264/AVC的

位元串流。因此，我們不需要額外的緩衝存儲器來儲存這個非零係數，使得少量的邏輯

閘被消耗。

最後，基於聯華電子點一三微米製程，我們所提出的設計在145 MHz的工作時脈之

下，消耗了9.03 K個邏輯閘，且可支援每秒處理30張1080p的畫面。和其它的設計相較之

下，我們可以節省61%的邏輯閘與29%的週期數。

 iii

A Low Cost and High Throughput CAVLC Encoder

Design

Student : Sian-Jing Wu Advisor : Dr. Tian-Sheuan Chang

Institute of Electronics

National Chiao Tung University

ABSTRACT

This thesis proposes a low cost and high throughput CAVLC encoder. The motivation is

to compensate the inefficiency of CBP Look-Ahead to achieve higher throughput such that the

proposed CAVLC encoder can support 1080p at 30 fps. Moreover, under such high

throughput, we must keep logic gate count low. CBP Look-Ahead can skip encoding flow of

some zero blocks such that throughput can be improved. However, our statistics show that

abundant zero coefficients cannot be detected by CBP Look-Ahead such that many cycle

counts are wasted on the zero coefficients. In our design, we use novel direct significance

encoding architectures, as well as CBP Look-Ahead, to avoid spending time on zero

coefficients: Zero-block Codeword Table and Nonzero Index Table.

Nonzero Index Table concurrently records which coefficients are significant while the

proposed CAVLC encoder is reading all coefficients of a block in one cycle. Then Nonzero

Index Table determines whether the block is all-zero. If the block is all-zero, Zero-block

 iv

Codeword Table will generate the overall codeword of the block without going through the

whole CAVLC encoding flow. On the other hand, if the block consists of at least one

significant coefficient, Nonzero Index Table uses combinational circuits to locate significant

coefficients such that zero coefficients are ignored. In addition, while Nonzero Index Table is

aiming for a significant coefficient, the codeword of the significant coefficient can be directly

concatenated into the H.264/AVC bit-stream. Hence, we do not need additional buffers to

store the significant coefficient such that small logic gate count is consumed.

Eventually, based on 0.13um UMC technology, the proposed design can support 1080p

at 30 fps while consuming 9.03 K gate count at 145 MHz. Compared with other designs, we

can reduce 61% logic gate count and 29% cycle count.

 v

誌 謝

首先，要感謝我的指導教授－張添烜博士，在張教授的指導之下，我學習到作研究

正確的方法與態度。此外，張教授所提供的優良實驗室環境和軟硬體資源，使得我的研

究能夠順利進行，才有這本論文的誕生。

同時也要謝謝我的口試委員們，交大研發長李鎮宜教授、清大電機陳永昌教授，感

謝各位在百忙之中抽空前來指導我，各位教授的寶貴意見讓本論文得以更加完備。

接著，我要感謝實驗室的夥伴。謝謝林佑昆學長，領導我們走向晶片下線成功的坦

途，學長在晶片下線期間努力建構與維護測試平台，並時常與我交流驗證的心得，使我

的驗證能夠順利進行。謝謝李國龍學長和張彥中學長，給予課程和研究上的指導，讓研

究得以順利進行。謝謝李得瑋同學、林嘉俊同學和郭子筠同學，你們所設計的高效能演

算法，得以讓我們團隊的晶片達到下線的規格要求。也謝謝張瑋城學弟和戴瑋呈學弟，

在晶片下線期間，分擔部分的驗證工作與後段佈局流程。此外，要謝謝廖英澤同學，宇

晟，宗憲，景竹等學弟，你們的幫忙讓我的實驗室生活能順利渡過。所有的一切，都是

我在交大的寶貴回憶。

最後，我要感謝我的家人們，你們的默默支持，是我能夠完成學業的最大動力。

在此，我謹把這篇論文獻給所有愛我與我愛的人。

 vi

Contents
Chapter 1. Introduction ..1

1.1 Motivation ..1
1.2 Organization of thesis ...2

Chapter 2. Overview of CAVLC in H.264/AVC..3
2.1 Overview of an H.264/AVC encoder..3
2.2 Overview of block types...4

2.2.1 Partitions of a macro-block ..4
2.2.2 The five sub-block types ..8
2.2.3 Coded block pattern..9
2.2.4 Neighbor sub-blocks... 11

2.3 Flow of CAVLC in H.264/AVC..14
2.3.1 Encoding flow of LUMA_DC..14
2.3.2 Encoding flow of LUMA, LUMA_AC, and CHROMA_AC22
2.3.3 Encoding flow of CHROMA_DC ..23

Chapter 3. Architecture Design of the Proposed CAVLC Encoder25
3.1 Motivation: statistics of zero coefficients...25

3.1.1 Statistics of nonzero coefficients in NS4B ...26
3.1.2 Statistics of NSZB ..27
3.1.3 Summary...28

3.2 System consideration of CAVLC in H.264/AVC encoder....................................29
3.2.1 Residual Buffer...30
3.2.2 CBP Generator..36
3.2.3 Entropy SRAM Interface..37
3.2.4 Exp-Golomb Coding Unit ..40
3.2.5 Bit-stream Packer ...44

3.3 Encoding flow of proposed CAVLC encoder...50
3.4 Architecture of proposed CAVLC encoder ..54

3.4.1 Hardware operation for encoding a NAZ...59
3.4.2 Hardware operation for encoding a NSZB...71
3.4.3 Hardware operation for encoding a CS ..72

3.5 Memory system ..73
3.6 Summary...77

Chapter 4. Results and Comparison ...78
4.1 Cycle count analysis ...78
4.2 Simulation result...80

 vii

4.3 Implementation results and comparison ...83
Chapter 5. Conclusions ..92

 viii

List of Figures
Fig. 1 Block Diagram of an H.264/AVC encoder [2] ...3
Fig. 2 Division of Y component in a macro-block ...5
Fig. 3 Separation of DC and AC for Y ...6
Fig. 4 Division of U component in a macro-block...6
Fig. 5 Separation of DC and AC for U ...6
Fig. 6 Separation of DC and AC for V ...7
Fig. 7 Division of an Intra_16x16 macro-block ...7
Fig. 8 Division of a non-Intra_16x16 macro-block..8
Fig. 9 Four groups of an Intra_16x16 macro-block ...9
Fig. 10 Four groups of a non_Intra16x16 macro-block ...10
Fig. 11 Three adjacent macro-blocks in Y-frame..12
Fig. 12 Three adjacent macro-blocks in U-frame...13
Fig. 13 Three adjacent macro-blocks in V-frame ...13
Fig. 14 A LUMA_DC sub-block ..14
Fig. 15 Zigzag scan order ...15
Fig. 16 Structure of Array_Coeff..15
Fig. 17 Structure of H.264/AVC bit-stream..16
Fig. 18 Scanning for a LUMA_AC sub-block ...23
Fig. 19 Scanning for a CHROMA_DC sub-block..23
Fig. 20 A group of four LUMA sub-blocks ..25
Fig. 21 Average number of nonzero coefficients per NS4B sub-block27
Fig. 22 Percentage of NSZB in all-zero sub-blocks ...28
Fig. 23 Partial system architecture of an H.264/AVC encoder...29
Fig. 24 Organization of Luma SRAM..31
Fig. 25 Y sub-blocks of a macro-block...31
Fig. 26 Organization of a word in Luma SRAM..31
Fig. 27 The coefficients of a LUMA sub-block..32
Fig. 28 The coefficients of a LUMA_AC sub-block..32
Fig. 29 Organization of Chroma SRAM ..32
Fig. 30 U and V sub-blocks of a macro-block..33
Fig. 31 Organization of one word in Chroma SRAM ..33
Fig. 32 Coefficients of a CHROMA_AC sub-block ..34
Fig. 33 Organization of LDC Register ...34
Fig. 34 Coefficients of a LUMA_DC sub-block ..34

 ix

Fig. 35 Organization of CDCU Register ..35
Fig. 36 Coefficients of a CHROMA_DC sub-block ..35
Fig. 37 Architecture of CBP Generator ..36
Fig. 38 Sub-block Index of each sub-blocks in a macro-block ..37
Fig. 39 Architecture of Entropy SRAM Interface ..38
Fig. 40 BlkIdx_cur for each sub-block of an Intra_16x16 macro-block39
Fig. 41 BlkIdx_cur for each sub-block of a non-Intra_16x16 macro-block.............................39
Fig. 42 Timing schedule of fetch_step_cur ..40
Fig. 43 Architecture of Exp-Golomb Coding Unit ...41
Fig. 44 Structure of Exp-Golomb codeword ..42
Fig. 45 Input and Output ports of Bit-stream Packer ...45
Fig. 46 Architecture of Bit-stream Packer ..45
Fig. 47 Structure of mux_word...46
Fig. 48 Structure of residual_word_cur..46
Fig. 49 Updating of residual_word_cur by left_shifter when longer_than_31 is low..............47
Fig. 50 Updating of bitstream_cur by right_shifter..48
Fig. 51 Usage of TwoByteBuf_cur...49
Fig. 52 Example for case 1 ...50
Fig. 53 Encoding flow of the proposed CAVLC encoder...51
Fig. 54 Input Buffer and Nonzero Index Table...52
Fig. 55 Nonzero Index Table for an all-zero sub-block..52
Fig. 56 Coefficient at index 7 is being encoded ...53
Fig. 57 Coefficient at index 4 is being encoded ...53
Fig. 58 Architecture of the proposed CAVLC encoder ..55
Fig. 59 Structure of Input Buffer and Nonzero Index Table...56
Fig. 60 Start index and stop index with Nonzero Index Table ...57
Fig. 61 Zero-block Codeword Table...57
Fig. 62 Updating for Nonzero Index Table...58
Fig. 63 Coefficients of a LUMA sub-block..59
Fig. 64 Loading of Input Buffer and determination of Nonzero Index Table61
Fig. 65 State of Nonzero Index Table at 4th cycle...61
Fig. 66 Determination of TotalCoeff by Nonzero Index Table...62
Fig. 67 Determination of total_zeros..62
Fig. 68 Determination of TrailingOnes ..63
Fig. 69 State of Nonzero Index Table at 5th cycle...63
Fig. 70 Determination and concatenation of run_before..64
Fig. 71 State of Nonzero Index Table at 6th cycle...65
Fig. 72 State of Nonzero Index Table at 7th cycle...65
Fig. 73 Generation of coeff_token codeword...66

 x

Fig. 74 Generation of level codeword ..67
Fig. 75 State of Nonzero Index Table at 10th cycle...67
Fig. 76 State of Nonzero Index Table at 11th cycle...68
Fig. 77 State of Nonzero Index Table at 12th cycle...68
Fig. 78 State of Nonzero Index Table at 13th cycle...69
Fig. 79 State of Nonzero Index Table at 14th cycle...69
Fig. 80 State of Nonzero Index Table at 15th cycle...70
Fig. 81 Generation of total_zeros codeword ..70
Fig. 82 State of Nonzero Index Table at 3rd cycle for NSZB ...71
Fig. 83 Determination of an all-zero sub-block..72
Fig. 84 Two adjacent rows in a frame...73
Fig. 85 Organization of sram_nonzero for QCIF ...74
Fig. 86 Structure of sram_nonzero address ..74
Fig. 87 Mapping relation between sub-blocks and sram_nonzero for a macro-block75
Fig. 88 Timing schedule of sram_nonzero ...75
Fig. 89 Current macro-block in a QCIF frame ...77
Fig. 90 Timing schedule for encoding a NAZ sub-block ...78
Fig. 91 Timing schedule for encoding of an NSZB sub-block...79
Fig. 92 Timing schedule for encoding of a CS sub-block ..80
Fig. 93 Average encoding cycles per sub-block ...81
Fig. 94 Average encoding cycles per macro-block...82
Fig. 95 Average number of macro-blocks encoded per cycle...83
Fig. 96 Architecture of Huang [6] ..85
Fig. 97 Architecture of Chen [3]...86
Fig. 98 Architecture of Kim [4] ..87
Fig. 99 Architecture of Chien [13] ...88
Fig. 100 Architecture of Lai [14]..89
Fig. 101 Architecture of Tsai [15] ..90

 xi

List of Tables
TABLE 1 Definition of the coded block pattern for chrominance part [1]10
TABLE 2 coeff_token mapping to TotalCoeff and TrailingOnes [1]17
TABLE 3 total_zeros tables for LUMA, LUMA_DC, LUMA_AC, CHROMA_AC [1]........21
TABLE 4 Tables for run_before [1] ...22
TABLE 5 total_zeros tables for CHROMA_DC [1] ..24
TABLE 6 Simulation setting ..26
TABLE 7 Structure of Exp-Golomb Code Table [1] ..41
TABLE 8 Exp-Golomb Code Table in explicit form [1] ..42
TABLE 9 Assignment of syntax element to codeNum for signed Exp-Golomb [1]42
TABLE 10 Assignment of codeNum to values of CBP [1] ..43
TABLE 11 Read and write address of sram_nonzero for a sub-block75
TABLE 12 Definition of variable “x” ..78
TABLE 13 Total cycle counts for CS, NSZB and NAZ...80
TABLE 14 Requirement of 1080 HD...83
TABLE 15 Gate count profile of the propose CAVLC encoder ...84
TABLE 16 On-chip memory requirement of the proposed CAVLC encoder84
TABLE 17 Comparison with other CAVLC encoder designs ..84
TABLE 18 Definition of serial numbers for zero-skipping methods85
TABLE 19 Gate count profile comparison...85

 1

Chapter 1. Introduction

1.1 Motivation

H.264/AVC [1] is the latest standard for video coding. H.264/AVC is the result of the

collaboration between the ISO/IEC Moving Picture Experts Group and the ITU-T Video

Coding Experts Group [2]. H.264/AVC is designed to address a large range of applications,

such as storage, entertainment, multimedia short message, videophone, videoconference,

HDTV broadcasting, and Internet streaming. Compared to previous video coding standards,

H.264/AVC can achieve 50% bit-rate reduction under the same quality [10]. The better

compression efficiency results from innovative coding tools such as multiple reference frames,

variable block size motion estimation, and in-loop de-blocking filter [3].

The essence of H.264/AVC is block-based motion estimation transform coding [3]. For

H.264/AVC Baseline profile, context-based adaptive variable length coding (CAVLC) is used

to encode quantized transform coefficients of the residual images [2]. Compared with entropy

coders of previous standards, CAVLC removes more statistical redundancy by switching VLC

tables according to previously transmitted symbols [2]. However, coding is not started until

syntax elements are extracted by scanning all coefficients of a block such that throughput is

very low [3]. To support high-end applications such as 1080p at 30 fps, we must improve

throughput of CAVLC encoder.

H.264/AVC specification stipulates that some all-zero blocks can be skipped according

to the coded block pattern (CBP) [1]. For example, Chen [3] uses CBP Look-Ahead to

improve throughput. However, our statistics show abundant zero coefficients are not covered

 2

by the CBP. Therefore, we propose two zero-skipping methods to avoid wasting cycles on

zero coefficients such that throughput is improved. The resulting architecture not only has a

high throughput but also consumes small area.

1.2 Organization of thesis

This thesis is organized as follows. In Chapter 2, we present the algorithm of CAVLC in

H.264/AVC. Chapter 3 presents the proposed design with the two throughput enhancement

methods. Moreover, we present related statistics to prove that the methods are necessary.

Chapter 4 presents simulation results, implementation results, and comparison with other

designs. Chapter 5 concludes this thesis.

 3

Chapter 2. Overview of CAVLC in

H.264/AVC

2.1 Overview of an H.264/AVC

encoder

Fig. 1 shows the block diagram of an H.264/AVC encoder. An input frame is processed

in units of a macro-block [16]. The data flow in Fig. 1 can be divided into the following three

steps:

Macro-block of
Input Frame Signal +

Intra-Frame
Prediction

Macro-block
Compensated

Prediction

Motion
Estimation

Reference Frame
Memory

+

Transform Quantize

Prediction
Error Signal

Quantized
Coefficients Entropy

Coding

Motion Vector

Intra/Inter

H.264 Bit-stream

Prediction Signal

Inverse
Trans.

Inverse
Quant.

Reconstructed
Macro-block

Fig. 1 Block Diagram of an H.264/AVC encoder [2]

 4

1. First, we calculate the prediction signal of the macro-block. In general, there are two

prediction modes: Intra and Inter. In Intra mode, the prediction signal is calculated

according to pixels in the current frame, which have been encoded, reconstructed and

stored into Reference Frame Memory. In Inter mode, we use Motion Estimation to

estimate the motion vectors, which refer to the corresponding position of the

macro-block in an already transmitted (to decoder) frame stored in Reference Frame

Memory [2]. Then the prediction signal is generated by Macro-block Compensated

Prediction. Note that the motion vectors must be encoded into H.264/AVC bit-stream by

Entropy Coding.

2. Second, we subtract the prediction signal from the macro-block to obtain the prediction

error signal. Then the prediction error signal is transformed and quantized to generate

quantized coefficients, which is compressed into H.264/AVC bit-stream by Entropy

Coding. H.264/AVC has two major entropy coding tools: CAVLC for the Baseline

Profile and CABAC for the High Profile [1].

3. Third, the quantized coefficients are inverse quantized, inverse transformed, and added

to the prediction signal. The result is the reconstructed macro-block which is stored into

Reference Frame Memory in order to calculate the prediction signal of the future

macro-block.

2.2 Overview of block types

2.2.1 Partitions of a macro-block

As mentioned in section 2.1, Inter mode or Intra mode finds prediction signal of a

macro-block [2]. The residual data is obtained by subtracting the prediction signal from the

macro-block. Then we apply transform matrices on the residual data to obtain so-called

 5

quantized transform coefficients [2]. The coefficients of a macro-block can be divided into

three components as follows: luminance Y, chrominance U, and chrominance V. The

component Y comprises 16 by 16 coefficients. The component U comprises 8 by 8

coefficients, and the component V does, too.

The main purpose of CAVLC is to encode the coefficients. Before encoded by CAVLC,

the three components of a macro-block are individually divided into several smaller blocks.

For the component Y, we divide it into sixteen 4x4 sub-blocks, as Fig. 2 shows. Each of the

sixteen sub-blocks has a DC coefficient. If Intra_16x16 [1] is the prediction mode of the

macro-block, we separate the DC coefficients to form another 4x4 sub-block, as Fig. 3 shows.

Fig. 2 Division of Y component in a macro-block

 6

Fig. 3 Separation of DC and AC for Y

The component U is divided into four 4x4 sub-blocks, as Fig. 4 shows. Each of the four

4x4 sub-blocks has a DC coefficient. No matter which prediction mode the macro-block uses,

we separate the DC coefficients to form another 2x2 sub-block, as Fig. 5 shows. V and U use

the identical scheme of partition, as Fig. 6 shows.

Fig. 4 Division of U component in a macro-block

Fig. 5 Separation of DC and AC for U

 7

Fig. 6 Separation of DC and AC for V

In conclusion, macro-blocks have only two types in point of CAVLC. First, an

Intra_16x16 macro-block is divided as Fig. 7 shows. Sub-blocks “0”-“16” represent Y, “17”

and “19”-“22” represent U, and the remaining sub-blocks represent V. The numbers represent

the order in which the sub-blocks are encoded by CAVLC [1].

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

19 20

21 22

23 24

25 26

17 18

0

Fig. 7 Division of an Intra_16x16 macro-block

Second, a non-Intra_16x16 macro-block is divided as Fig. 8 shows. Sub-blocks “0”-“15”

represent Y, “16” and “18”-“21” represent U, and the remaining sub-blocks represent V. The

numbers in Fig. 8 and Fig. 7 have the same meaning.

 8

0 1 4 5

2 3 6 7

18 19

20 21

22 23

24 25

8 9 12 13

10 11 14 1516 17

Fig. 8 Division of a non-Intra_16x16 macro-block

2.2.2 The five sub-block types

After a macro-block is divided into several sub-blocks, the sub-blocks are individually

encoded by CAVLC in order as mentioned in section 2.2.1. The sub-blocks are divided into

five types [9]. For every type the flow of CAVLC is similar but little different. The first type

is LUMA_DC referring to sub-block “0” in Fig. 7. LUMA_DC comprises 16 coefficients. The

second type is LUMA_AC referring to sub-blocks “1”-“16” in Fig. 7. Each LUMA_AC

sub-block comprises 15 coefficients. The third type is CHROMA_DC referring to sub-blocks

“17”-“18” in Fig. 7. Each CHROMA_DC sub-block comprises four coefficients. In Fig. 8

sub-blocks “16” and “17” are also CHROMA_DC. The fourth type is CHROMA_AC

referring to sub-blocks “19”-“26” in Fig. 7. Each CHROMA_AC comprises 15 coefficients.

Sub-blocks “18”-“25” of Fig. 8 are also classified as CHROMA_AC. The final type is LUMA

referring to sub-blocks “0”-“15” in Fig. 8. A LUMA comprises 16 coefficients.

In conclusion, an Intra_16x16 macro-block comprises one sub-block of LUMA_DC,

sixteen sub-blocks of LUMA_AC, two sub-blocks of CHROMA_DC, and eight sub-blocks of

CHROMA_AC. In a non-Intra_16x16 macro-block, there are sixteen sub-blocks of LUMA,

 9

two sub-blocks of CHROMA_DC, and eight sub-blocks of CHROMA_AC.

2.2.3 Coded block pattern

The coded block pattern is a syntax element in H.264/AVC [1]. Every macro-block has a

coded block pattern which comprises six bits. The lower four bits represent the component Y

and the upper two bits represent U and V. We use it to indicate which sub-blocks comprise

only zero coefficients.

For an Intra_16x16 macro-block, we present the definition of the coded block pattern

below. The 16 LUMA_AC sub-blocks are divided into four groups, as Fig. 9 shows.

group_0 group_1

group_2 group_3

Fig. 9 Four groups of an Intra_16x16 macro-block

Each group comprises four LUMA_AC sub-blocks. The 0th bit (LSB) of the coded block

pattern, corresponds to group_0, the 1st bit corresponds to group_1, and so on. If all

coefficients of some group are zero, its corresponding bit is zero. Bit “1” means that the

corresponding group comprises at least one nonzero coefficient. As for U and V, the upper

two bits are defined as TABLE 1.

 10

TABLE 1 Definition of the coded block pattern for chrominance part [1]

CodedBlockPatternChroma Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels are non-zero.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels are non-zero valued.

Only three combinations of the 5th (MSB) and 4th bit are possible, and we describe the

combinations in detail as follows:

1. “00” means that every sub-block is all-zero, including two CHROMA_DC sub-blocks

and eight CHROMA_AC sub-blocks.

2. “01” means that either CHROMA_DC sub-block comprises at least one nonzero

coefficient but each CHROMA_AC sub-block is all-zero.

3. “10” means that at least one nonzero coefficient is among the eight CHROMA_AC

sub-blocks.

For a non-Intra_16x16 macro-block, we present the definition of the coded block pattern

below. The sixteen LUMA sub-blocks are divided into four groups as Fig. 10 shows.

group_0 group_1

group_2 group_3

Fig. 10 Four groups of a non_Intra16x16 macro-block

 11

Each group comprises four LUMA sub-blocks. The 0th bit (LSB) corresponds to group_0, the

1st bit corresponds to group_1, and so on. If group_0 consists of only zero coefficients, the 0th

bit is zero. The 0th bit is one means that group_0 comprises at least one nonzero coefficient.

For the remaining three groups, the meaning of their corresponding bits in the coded block

pattern is identical with group_0. The definition for the U and V is identical with an

Intra_16x16 macro-block.

We describe how H.264/AVC specification skips sub-blocks according to the coded

block pattern below. Because LUMA_DC has no relation to the coded block pattern, even an

all-zero LUMA_DC sub-block must be encoded by CAVLC. As for LUMA, CHROMA_DC,

and CHROMA_AC, CAVLC can ignore the sub-block as long as the coded block pattern

indicates that the sub-block is all-zero. As for LUMA_AC, skip condition is defined as Eq. 1

shows [1] [9].

blocks-sub LUMA_ACsixteen all encodes CAVLC
else

blocks-sub LUMA_ACsixteen all ignores CAVLC
d0)4' 0]:(CBP[3 if ==

 Eq. 1

In conclusion, all sub-block types except LUMA_DC have relation to the coded block

pattern. We can check the coded block pattern to determine whether CAVLC can skip a

sub-block to save cycle counts.

2.2.4 Neighbor sub-blocks

In the flow of CAVLC, every sub-block type except CHROMA_DC needs neighbor

information [9]. The information comes from the sub-blocks neighboring to the left and to the

 12

top of the current one. We define the neighbor sub-blocks for the four sub-block types,

including LUMA, LUMA_AC, LUMA_DC, and CHROMA_AC.

For convenience of explanation, a frame is divided into three parts which respectively

represent Y, U, and V. We refer to the three parts as Y-frame, U-frame, and V-frame

respectively. A macro-block comprises 16 sub-blocks in Y-frame, as Fig. 11 shows.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

mb_0

mb_1 mb_2

Fig. 11 Three adjacent macro-blocks in Y-frame

For an Intra_16x16 macro-block the sixteen sub-blocks are LUMA_AC. The sixteen

sub-blocks of a non-Intra_16x16 macro-block are LUMA. For “12” of mb_2 in Fig. 11, the

left neighbor is “9” and the top neighbor is “6”. Some sub-blocks are on the border of a

macro-block such as “2” of mb_2, so their neighbor may reside in a different macro-block.

For example, the left neighbor of “2” in mb_2 is “7” of mb_1. In a frame, some macro-blocks

are Intra_16x16 and some are not, so the neighbor of LUMA may be LUMA_AC. Moreover,

some sub-blocks falls on the edge of a frame such that their neighbors may be not available.

As for a LUMA_DC sub-block, for example, we assume mb_2 is Intra_16x16; The

 13

LUMA_DC sub-block and “0” have the identical neighbors.

A macro-block comprises four CHROMA_AC sub-blocks in U-frame, as Fig. 12 shows.

The neighbors are the sub-blocks neighboring to the left and to the top of the current

sub-block. For example, in mb_2 the left neighbor of “3” is “2”, and the top neighbor is “1”.

If a sub-block is on the border of a macro-block such as “2” of mb_2, its neighbors may be in

another macro-block. As for a macro-block on the border of a frame, some sub-blocks’

neighbors may be not available.

0 1

2 3

0 1

2 3

0 1

2 3
mb_0

mb_1 mb_2

Fig. 12 Three adjacent macro-blocks in U-frame

A macro-block comprises four CHROMA_AC sub-blocks in V-frame, as Fig. 13 shows.

V-frame and U-frame have the identical explanation for neighbors.

0 1

2 3

0 1

2 3

0 1

2 3
mb_0

mb_1 mb_2

Fig. 13 Three adjacent macro-blocks in V-frame

 14

2.3 Flow of CAVLC in H.264/AVC

A sub-block is a coding unit of CAVLC. We describe the flow of CAVLC for each

sub-block type below.

2.3.1 Encoding flow of LUMA_DC

A LUMA_DC sub-block comprises sixteen coefficients as Fig. 14 shows [11]. The

coefficients are scanned in zigzag scan order, as Fig. 15 shows [1]. Then the coefficients are

mapped to a 1-D array, Array_Coeff, as Fig. 16 shows.

0 3 -1 0

0 -1 1 0

1 0 0 0

0 0 0 0

Fig. 14 A LUMA_DC sub-block

 15

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

Fig. 15 Zigzag scan order

index
Array_Coeff

0
0

1
3

2
0

3
1

4
-1

5
-1

6
0

7
1

index
Array_Coeff

8
0

9
0

10
0

11
0

12
0

13
0

14
0

15
0

Fig. 16 Structure of Array_Coeff

We analyze Array_Coeff to obtain syntax elements as follows [9]:

1. TotalCoeff

2. TrailingOnes

3. Trailing_one_sign_flag

4. Level

5. Total_zeros

6. Run_before

TotalCoeff is the number of nonzero coefficients in Array_Coeff. TrailingOnes means the

number of trailing ones (T1s). To define trailing ones, we scan the coefficients in Array_Coeff

from index “15” one by one until the occurrence of a nonzero coefficient whose magnitude is

greater than one. If we find a coefficient with magnitude equal to one, the coefficient is

so-called trailing one. In H.264/AVC the maximum of TrailingOnes is three such that

 16

Array_Coeff[3] is not classified as a trailing one. H.264/AVC combines TotalCoeff and

TrailingOnes into Coeff_token, an H.264/AVC syntax element [1]. Each trailing one has a

corresponding trailing_one_sign_flag which comprises only one bit. If the trailing one is

negative, its trailing_one_sign_flag is equal to one. A zero trailing_one_sign_flag means that

the corresponding trailing one is positive. A level refers to the nonzero coefficient which is

not a trailing one. Each nonzero coefficient has a corresponding run_before which is the

number of consecutive zeros before the nonzero coefficient in Array_Coeff. For example, the

run_before of Array_Coeff[7] is one and that of Array_Coeff[4] is zero. Finally, total_zeros is

the sum of all run_before.

After all syntax elements are obtained, we encode them in numerical order as follows

[9]:

1. Coeff_token

2. Trailing_one_sign_flags

3. Levels

4. Total_zeros

5. Run_befores

Therefore, the structure of H.264/AVC bit-stream is as Fig. 17 shows.

Coeff_token trailing_one_sign_flags levels total_zeros run_befores

Fig. 17 Structure of H.264/AVC bit-stream

First, we encode Coeff_token by TABLE 2.

 17

TABLE 2 coeff_token mapping to TotalCoeff and TrailingOnes [1]

TrailingOnes
(coeff_token)

TotalCoeff
(coeff_token)

0 <= nC <
2

2 <= nC <
4

4 <= nC <
8

8 <=
nC

nC = =
-1

0 0 1 11 1111 0000 11 01

0 1 0001 01 0010 11 0011 11 0000 00 0001 11

1 1 01 10 1110 0000 01 1

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00

1 2 0001 00 0011 1 0111 1 0001 01 0001 10

2 2 001 011 1101 0001 10 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11

1 3 0000 0110 0010 10 0110 0 0010 01 0000 011

2 3 0000 101 0010 01 0111 0 0010 10 0000 010

3 3 0001 1 0101 1100 0010 11 0001 01

0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10

1 4 0000 0011 0 0001 10 0101 0 0011 01 0000 0011

2 4 0000 0101 0001 01 0101 1 0011 10 0000 0010

3 4 0000 11 0100 1011 0011 11 0000 000

0 5 0000 0000 111 0000 0100 0001 011 0100 00 -

1 5 0000 0001 10 0000 110 0100 0 0100 01 -

2 5 0000 0010 1 0000 101 0100 1 0100 10 -

3 5 0000 100 0011 0 1010 0100 11 -

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 -

1 6 0000 0000 110 0000 0110 0011 10 0101 01 -

2 6 0000 0001 01 0000 0101 0011 01 0101 10 -

3 6 0000 0100 0010 00 1001 0101 11 -

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 -

1 7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 -

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 -

3 7 0000 0010 0 0001 00 1000 0110 11 -

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 -

1 8 0000 0000 0101 0 0000 0001 110 0001 110 0111 01 -

2 8 0000 0000 0110 1 0000 0001 101 0001 101 0111 10 -

3 8 0000 0001 00 0000 100 0110 1 0111 11 -

0 9 0000 0000 0011
11

0000 0000 1111 0000 1011 1000 00 -

 18

1 9 0000 0000 0011
10

0000 0001 010 0000 1110 1000 01 -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 -

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 -

0 10 0000 0000 0010
11

0000 0000 1011 0000 0111 1 1001 00 -

1 10 0000 0000 0010
10

0000 0000 1110 0000 1010 1001 01 -

2 10 0000 0000 0011
01

0000 0000 1101 0000 1101 1001 10 -

3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 -

0 11 0000 0000 0001
111

0000 0000 1000 0000 0101 1 1010 00 -

1 11 0000 0000 0001
110

0000 0000 1010 0000 0111 0 1010 01 -

2 11 0000 0000 0010
01

0000 0000 1001 0000 1001 1010 10 -

3 11 0000 0000 0011
00

0000 0001 000 0000 1100 1010 11 -

0 12 0000 0000 0001
011

0000 0000 0111
1

0000 0100 0 1011 00 -

1 12 0000 0000 0001
010

0000 0000 0111
0

0000 0101 0 1011 01 -

2 12 0000 0000 0001
101

0000 0000 0110
1

0000 0110 1 1011 10 -

3 12 0000 0000 0010
00

0000 0000 1100 0000 1000 1011 11 -

0 13 0000 0000 0000
1111

0000 0000 0101
1

0000 0011 01 1100 00 -

1 13 0000 0000 0000
001

0000 0000 0101
0

0000 0011 1 1100 01 -

2 13 0000 0000 0001
001

0000 0000 0100
1

0000 0100 1 1100 10 -

3 13 0000 0000 0001
100

0000 0000 0110
0

0000 0110 0 1100 11 -

0 14 0000 0000 0000
1011

0000 0000 0011
1

0000 0010 01 1101 00 -

1 14 0000 0000 0000
1110

0000 0000 0010
11

0000 0011 00 1101 01 -

2 14 0000 0000 0000
1101

0000 0000 0011
0

0000 0010 11 1101 10 -

3 14 0000 0000 0001
000

0000 0000 0100
0

0000 0010 10 1101 11 -

0 15 0000 0000 0000
0111

0000 0000 0010
01

0000 0001 01 1110 00 -

 19

1 15 0000 0000 0000
1010

0000 0000 0010
00

0000 0010 00 1110 01 -

2 15 0000 0000 0000
1001

0000 0000 0010
10

0000 0001 11 1110 10 -

3 15 0000 0000 0000
1100

0000 0000 0000
1

0000 0001 10 1110 11 -

0 16 0000 0000 0000
0100

0000 0000 0001
11

0000 0000 01 1111 00 -

1 16 0000 0000 0000
0110

0000 0000 0001
10

0000 0001 00 1111 01 -

2 16 0000 0000 0000
0101

0000 0000 0001
01

0000 0000 11 1111 10 -

3 16 0000 0000 0000
1000

0000 0000 0001
00

0000 0000 10 1111 11 -

The symbol nC represents the average of TotalCoeff of the neighbor sub-blocks. Eq. 2 shows

the algorithm of calculating nC [9]. “left_available” represents the availability of the left

neighbor and nL is the TotalCoeff of the left neighbor. “top_available” represents the

availability of the top neighbor and nU is the TotalCoeff of the top neighbor.

0;nC
else

nU; nC
able) top_avail&& ableleft_availif(! else

nL; nC
le)top_avalab! && ailableif(left_av else

1)/2;nL(nU nC
able) top_avail&& lable(left_avai if

=

=

=

++=

 Eq. 2

Second, the number of bits for trailing_one_sing_flags is equal to TrailingOnes. We

encode T1s from high frequency to low frequency such that “011” is the codeword of T1s for

Array_Coeff, where “0” represents Array_Coeff[7] (see Fig. 16).

Third, we encode each level from high frequency to low frequency. There are seven VLC

tables to encode a level and the choice of tables depends on already encoded levels. Eq. 3

 20

shows the algorithm of selecting the VLC table for the first encoded level [9]. Each table has

a serial number: vlcnum. Because we have seven VLC tables, vlcnum ranges from zero to six.

0; vlcnum
else

1; vlcnum
3) esTrailingOn && 10 f(TotalCoef if

=

=
<>

 Eq. 3

The VLC table for the second encoded level depends on the absolute value of the first

encoded level. If the absolute value is greater than three, we add one to vlcnum. Otherwise,

the second and the first use the identical table. The third encoded level and the following use

the identical algorithm to choose the VLC table, as Eq. 4 shows [9].

; vlcnum
num])incVlc[vlc)(abs(level if

8};24,48,3276{0,3,6,12, incVlc[]int

++
>

=

 Eq. 4

The choice of VLC table for the third encoded level depends on the absolute value of the

second encoded level, the fourth depends on the third, and so on. Each table corresponds to a

threshold denoted by incVlc in Eq. 4. If the absolute value of the second encoded level is

greater than the threshold corresponding to the table used by the second encoded level, we

add one to vlcnum such that the third encoded level use an updated table. Otherwise, we apply

the identical VLC table on the third encoded level.

Fourth, total_zeros is encoded by TABLE 3.

 21

TABLE 3 total_zeros tables for LUMA, LUMA_DC, LUMA_AC, CHROMA_AC [1]

total_zeros TotalCoeff(coeff_token)

 1 2 3 4 5 6 7

0 1 111 0101 0001 1 0101 0000 01 0000 01

1 011 110 111 111 0100 0000 1 0000 1

2 010 101 110 0101 0011 111 101

3 0011 100 101 0100 111 110 100

4 0010 011 0100 110 110 101 011

5 0001 1 0101 0011 101 101 100 11

6 0001 0 0100 100 100 100 011 010

7 0000 11 0011 011 0011 011 010 0001

8 0000 10 0010 0010 011 0010 0001 001

9 0000 011 0001 1 0001 1 0010 0000 1 001 0000 00

10 0000 010 0001 0 0001 0 0001 0 0001 0000 00

11 0000 0011 0000 11 0000 01 0000 1 0000 0

12 0000 0010 0000 10 0000 1 0000 0

13 0000 0001 1 0000 01 0000 00

14 0000 0001 0 0000 00

15 0000 0000 1

total_zeros TotalCoeff(coeff_token)

 8 9 10 11 12 13 14 15

0 0000 01 0000 01 0000 1 0000 0000 000 00 0

1 0001 0000 00 0000 0 0001 0001 001 01 1

2 0000 1 0001 001 001 01 1 1

3 011 11 11 010 1 01

4 11 10 10 1 001

5 10 001 01 011

6 010 01 0001

7 001 0000 1

8 0000 00

Finally, we encode each run_before except the nonzero coefficient of the lowest

frequency such as Array_Coeff[1] (see Fig. 16). Run_befores are encoded from high

 22

frequency to low frequency such that the first encoded run_before belongs to Array_Coeff[7].

The codeword is looked up in TABLE 4, where zerosLeft means how many run_befores are

not encoded including the current run_before. For example, the zerosLeft of Array_Coeff[7]

is three and that of Array_Coeff[5] is two. When zerosLeft is equal to zero, the encoding

process for the current and the following run_befores can be terminated in advance [11].

TABLE 4 Tables for run_before [1]

zerosLeft run_before
 1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - - 00000000001

2.3.2 Encoding flow of LUMA, LUMA_AC,

and CHROMA_AC

The CAVLC flow of LUMA is the same as LUMA_DC. LUMA_AC comprises fifteen

coefficients such that the operation of scanning the coefficients into Array_Coeff is different

 23

from LUMA_DC, as Fig. 18 shows.

0 4 5

1 3 6 11

2 7 10 12

8 9 13 14

Fig. 18 Scanning for a LUMA_AC sub-block

Then the following processing of Array_Coeff is similar to LUMA_DC and the differences

are described below. If TotalCoeff is equal to 15, we can skip encoding of total_zeros and

run_befores [9]. Finally, the CAVLC flow of CHROMA_AC is the same as LUMA_AC.

2.3.3 Encoding flow of CHROMA_DC

CHROMA_DC comprises four coefficients and Fig. 19 represents the scanning order for

the coefficients into Array_Coeff. The following processing of Array_Coeff is similar to

LUMA_DC and the differences are described below. First, nC is always set as -1 when we

apply TABLE 2 on Coeff_token [1]. Second, we use TABLE 5 for total_zeros instead of

TABLE 3. Moreover, if TotalCoeff is equal to four, we can skip encoding of total_zeros and

run_befores [9].

0 1
2 3

Fig. 19 Scanning for a CHROMA_DC sub-block

 24

TABLE 5 total_zeros tables for CHROMA_DC [1]

total_zeros TotalCoeff(coeff_token)

 1 2 3

0 1 1 1

1 01 01 0

2 001 00

3 000

 25

Chapter 3. Architecture Design of

the Proposed CAVLC Encoder

3.1 Motivation: statistics of zero

coefficients

For a sub-block, we can check the coded block pattern to decide whether the CAVLC

flow can be skipped. However, there are many zero coefficients that cannot be skipped by the

coded block pattern. For example, Fig. 20 represents a group of four LUMA sub-blocks,

where only subblock_0 comprises one nonzero coefficient and another three sub-blocks are

all-zero. As mentioned in section 2.2.3, all sub-blocks must go through the CAVLC flow such

that many cycle counts are wasted on zeros.

subblock_0 subblock_1

subblock_2 subblock_3

x

Fig. 20 A group of four LUMA sub-blocks

In the section, we represent statistics to show that abundant zeros cannot be skipped by

the coded block pattern. To obtain the statistics, we ran several simulations using the

 26

H.264/AVC reference software [9]. The test sequences include the following (motion from

low to high): akiyo, coastguard, foreman, mobile_calendar, and Stefan. TABLE 6 shows the

simulation setting. Two types of statistics are obtained and described below.

TABLE 6 Simulation setting

Video Size CIF

Frame Number 300

Intra Period 10

Number of Reference

Frames
1

Use FME ON

RD Optimization OFF

3.1.1 Statistics of nonzero coefficients in

NS4B

NS4B (Not Skipped 4x4 Block) denotes a sub-block, excluding CHROMA_DC, which

cannot be skipped by the coded block pattern. Fig. 21 represents the average number of

nonzero coefficients in a NS4B. CHROMA_DC is excluded because maximal TotalCoeff of

CHROMA_DC is only four such that the average is reduced unfairly. Note that

Mobile_calendar with QP equal to 12 has the highest bit-rate. Even for the highest bit-rate, a

NS4B comprises less than seven nonzero coefficients; in other words, up to 60% of

coefficients are zero.

 27

0

1

2

3

4

5

6

7

8 12 16 20 24 28 32 36 40 44

QP

N
um

be
r

Mobile

Akiyo

Coast

Stefan

Foreman

Fig. 21 Average number of nonzero coefficients per NS4B sub-block

3.1.2 Statistics of NSZB

NSZB (Not Skipped Zero Block) denotes an all-zero sub-block, which cannot be skipped

by the coded block pattern. For example, subblock_1 of Fig. 20 can be classified as a NSZB.

Fig. 22 shows how many percent of all-zero sub-blocks are NSZB. Note that a higher bit-rate

results in a higher percentage. This is because a lower bit-rate induces more zero CBP bits

such that more all-zero sub-blocks are covered by the CBP. Note that the percentage is

significant at middle QP and low QP. Therefore, Fig. 22 proves that many all-zero sub-blocks

cannot be skipped by the coded block pattern in most cases.

 28

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

8 12 16 20 24 28 32 36 40 44

QP

P
er

ce
nt

ag
e

Akiyo

Coast

Stefan

Foreman

Mobile

Fig. 22 Percentage of NSZB in all-zero sub-blocks

3.1.3 Summary

In this section, we show the statistics to prove that abundant zero coefficients cannot be

skipped by the coded block pattern. Thus CBP Look-Ahead is an inefficient method to skip

zeros. To solve the problem, we propose two methods such that more zeros can be ignored.

First, we use Nonzero Index Table to skip zeros in a non-all-zero sub-block. Second, we use

Zero-block Codeword Table to directly encode a NSZB without going through the whole

course of CAVLC flow. The two methods will be examined in section 3.4

 29

3.2 System consideration of CAVLC

in H.264/AVC encoder

Fig. 23 shows the partial system architecture of an H.264/AVC encoder. The encoder

adopts a macro-block pipeline schedule. Global Control Unit administers the progress of

macro-blocks in the pipeline, where each stage comprises and processes one macro-block.

Global Control Unit generates the following two things which are propagated through the

pipeline registers:

1. Syntax elements which are so-called header information such as mb_type [1].

2. Information about the macro-block at PR0 (Pipeline Register 0) such as coordinates.

P
R
0 Prediction

Engine

Global Control Unit

quantized
transform

coefficients
CBP

Generator

Residual
Buffer

P
R
1

M
U
X
0

UVLC

Entropy
SRAM

Interface

Exp-Golomb
Coding Unit

CAVLC
Encoder

M
U
X
1

Bit-stream
Packer

H.264/AVC
bit-stream

Bus
Interface

External
Memory

Fig. 23 Partial system architecture of an H.264/AVC encoder

 30

Prediction Engine uses data in PR0 to execute Inter or Intra prediction algorithms such

that the best prediction signal can be worked out. Then Prediction Engine subtracts the

prediction signal from the macro-block to obtain residual data. Finally, Prediction Engine

applies transform and quantization on the residual data to obtain quantized transform

coefficients. CBP Generator examines whether some coefficients are zero to determine the

coded block pattern which will be stored into PR1. Moreover, the coefficients are stored into

Residual Buffer. After all stages are finished, Global Control Unit grants the progress of the

pipeline such that the data in PR0 goes into PR1.

Header information in PR1 is encoded in predefined order which Global Control Unit

maintain by MUX 0 (Multiplexer 0) and MUX 1 (Multiplexer 1). The codeword of header

information is generated by Exp-Golomb Coding Unit and is concatenated by Bit-stream

Packer such that H.264/AVC bit-stream is formed. The bit-stream is written into External

Memory via Bus Interface.

After encoding of header information is finished, Entropy SRAM Interface fetches

coefficients of one sub-block from Residual Buffer to CAVLC Encoder. The codeword of

each syntax element such as Coeff_token is sent to Bit-stream Packer via MUX 1. When

encoding of the sub-block is finished, CAVLC Encoder will request Entropy SRAM Interface

to fetch the next sub-block.

3.2.1 Residual Buffer

Residual Buffer comprises five parts. The first part is Luma SRAM, which is

implemented as an SRAM. Luma SRAM stores the Y component of one macro-block and Fig.

24 shows the organization of Luma SRAM.

 31

word 0

word 1

…
…

word 14

word 15

Luma SRAM

Fig. 24 Organization of Luma SRAM

As mentioned in section 2.1, a macro-block comprises sixteen Y sub-blocks and one word

stores one sub-block in Luma SRAM. Fig. 25 represents the mapping relation between the

sub-blocks and the words.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Fig. 25 Y sub-blocks of a macro-block

Fig. 26 shows the organization of a word in Luma SRAM, where we use 14 bits to represent a

coefficient. Fig. 27 shows the mapping relation between the numerical labels and the

coefficients of a LUMA sub-block.

0 1 …… 14 15

14 bits

MSB LSB

Fig. 26 Organization of a word in Luma SRAM

 32

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Fig. 27 The coefficients of a LUMA sub-block

Fig. 28 shows the mapping relation between the numerical labels of Fig. 26 and the

coefficients of a LUMA_AC sub-block. As for LUM_AC, the position “0” in Fig. 26 is

useless because the DC is separated. In brief, Luma SRAM comprises 16x16x14 bits.

4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

X

Fig. 28 The coefficients of a LUMA_AC sub-block

The second part is Chroma SRAM, which is implemented as an SRAM and is used to

store CHROMA_AC sub-blocks. Fig. 29 shows the organization of Chroma SRAM.

word 0

word 1

…
…

word 6

word 7

Chroma SRAM

Fig. 29 Organization of Chroma SRAM

 33

A macro-block comprises eight CHROMA_AC sub-blocks and one word stores one

sub-block in Chroma SRAM, so there are totally eight words in Chroma SRAM. Fig. 30

shows the mapping relation between the words of Chroma SRAM and the CHROMA_AC

sub-blocks of a macro-block.

0 1 4 5

2 3 6 7

U V

Fig. 30 U and V sub-blocks of a macro-block

Fig. 31 shows the organization of one word in Chroma SRAM, where we use 12 bits to

represent one coefficient. Fig. 32 shows the mapping relation between the numerical labels of

Fig. 31 and the coefficients of a CHROMA_AC sub-block. Because the DC is separated, the

position “0” in Fig. 31 is always useless; however, it exists for the regularity of hardware

architecture. In brief, Chroma SRAM comprises 8x16x12 bits.

0 1 …… 14 15

12 bits

MSB LSB

Fig. 31 Organization of one word in Chroma SRAM

 34

4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

X

Fig. 32 Coefficients of a CHROMA_AC sub-block

The third part is LDC (Luma DC) Register, which is implemented as a register and is

used to store one LUMA_DC sub-block. Fig. 33 shows the organization of LDC Register,

where we use 14 bits to represent one coefficient. Fig. 34 shows the mapping relation between

the numerical labels of Fig. 33 and the coefficients of a LUMA_DC sub-block. In brief, LDC

Register comprises 1x16x14 bits because there are at most one LUMA_DC sub-block in one

macro-block.

0 1 …… 14 15

14 bits

MSB LSB

Fig. 33 Organization of LDC Register

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Fig. 34 Coefficients of a LUMA_DC sub-block

The fourth part is CDCU (Chroma DC U) Register, which is implemented as a register

 35

and is used to store one CHROMA_DC sub-block of U component. Fig. 35 shows the

organization of CDCU Register, where we use 14 bits to store one coefficient. Fig. 36 shows

the mapping relation between the numerical labels of Fig. 35 and the coefficients of a

CHROMA_DC sub-block. In brief, CDCU Register comprises 1x4x14 bits because U

component consists of only one CHROMA_DC sub-block.

0 1 2 3

14 bits

MSB LSB

Fig. 35 Organization of CDCU Register

0 2

1 3

Fig. 36 Coefficients of a CHROMA_DC sub-block

The final part is CDCV (Chroma DC V) Register, which is implemented as a register and

is used to store one CHROMA_DC sub-block of V component. The organization of CDCV

Register is the same as CDCU Register. The permutation of the coefficients in CDCV Resister

is the same as Fig. 36 shows. In brief, CDCV Register comprises 1x4x14 bits because V

component consists of only one CHROMA_DC sub-block.

Last but not least, as for Luma SRAM one word comprises 224 bits such that the bus

seems a little wider. This is because we can write one sub-block per cycle to reduce cycle

counts on macro-block level and to improve the throughput of the macro-block pipeline

schedule. On the contrary, if a narrower bus is adopted, we must spend more cycle counts on

 36

writing one macro-block into Residual Buffer than a wider bus.

3.2.2 CBP Generator

Fig. 37 shows the architecture of CBP Generator. Prediction Engine writes one sub-block

into Residual Buffer per cycle. Global Control Unit provides Global Counter for Prediction

Engine to determine which sub-block is written now. In CBP Generator, we use Global

Counter to generate Sub-block Index which represents one of the twenty-six sub-block as Fig.

38 shows.

Global Counter

Sub-block
Index

Comparatorluma_cof

chroma_cof Comparator

u_dc Comparator

v_dc Comparator

M
U
X

M
U
X

0

1

…
…

24

25

…
…

Nonzero Block Tag

Coded Block Pattern coded block pattern

Fig. 37 Architecture of CBP Generator

 37

0 1 4 5

2 3 6 7

18 19

20 21

22 23

24 25

8 9 12 13

10 11 14 1516 17

Fig. 38 Sub-block Index of each sub-blocks in a macro-block

Prediction Engine uses luma_cof to send coefficients to Luma SRAM, uses chroma_cof

to send coefficients to Chroma SRAM, uses u_dc to send coefficients to CDCU Register, and

uses v_dc to send coefficients to CDCV Register. For example, when Sub-block Index is

equal to three, luma_cof now comprises coefficients of sub-block “3” in Fig. 38. We use

comparator to examine whether it is an all-zero sub-block. If the sub-block is all-zero, we set

zero to the 3rd bit in Nonzero Block Tag, which is a 26-bit register. After the 26 sub-blocks are

examined through, Nonzero Block Tag is settled and Coded Block Pattern of Fig. 37, a

combinational circuit, can generate the coded block pattern for the macro-block.

3.2.3 Entropy SRAM Interface

Fig. 39 shows the architecture of Entropy SRAM Interface. Global Control Unit defines

a serial number, syntax_idx_cur, for each syntax element. When syntax_idx_cur is equal to

some value, it means encoding of coefficients is started and esi_enable is activated to enable

Entropy SRAM Interface.

 38

BlkIdx_cur

Residual Buffer
Controller

fetch_step_cur

sram_Chro_data
reg_LumaDC
reg_ChroDCU
reg_ChroDCV

Sub-block Type

sram_Luma_data

esi_enable

syntax_idx_cur

q_cof

Fig. 39 Architecture of Entropy SRAM Interface

“fetch_step_cur” is initialized as zero and BlkIdx_cur is initialized as zero or one

depending on the macro-block type. If the macro-block is an Intra_16x16, BlkIdx_cur is

initialized as zero; otherwise, BlkIdx_cur is initialized as one. BlkIdx_cur represents which

sub-block Entropy SRAM Interface fetches right now. Fig. 40 shows the mapping relation

between BlkIdx_cur and the sub-blocks of an Intra_16x16 macro-block. Fig. 41 shows the

mapping relation between BlkIdx_cur and the sub-blocks of a non-Intra_16x16 macro-block.

 39

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

19 20

21 22

23 24

25 26

17 18

0

Fig. 40 BlkIdx_cur for each sub-block of an Intra_16x16 macro-block

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

19 20

21 22

23 24

25 26

17 18

Fig. 41 BlkIdx_cur for each sub-block of a non-Intra_16x16 macro-block

“fetch_step_cur” represents the steps during the interaction between Entropy SRAM

Interface and Residual Buffer. Fig. 42 shows the timing schedule of fetch_step_cur.

 40

esi_enable

ADDR DATA REG

BlkIdx_cur (0)

fetch_step_cur 0 1 2 3

Fig. 42 Timing schedule of fetch_step_cur

When fetch_step_cur is equal to one, Residual Buffer Controller sends read address to

Residual Buffer according to BlkIdx_cur. Then, when fetch_step_cur is equal to two, the read

data is ready at the output of Residual Buffer. The output of Residual Buffer refers to

sram_Luma_data, sram_Chroma_data, reg_LumaDC, reg_ChroDCU, and reg_ChroDCV in

Fig. 39. “q_cof” selects one of the five output signals according to BlkIdx_cur. Finally, when

fetch_step_cur is equal to three, the coefficients of the sub-block are stored into CAVLC

Encoder. Moreover, Sub-block Type calculates the type of sub-block according to the current

BlkIdx_cur.

3.2.4 Exp-Golomb Coding Unit

Fig. 43 shows the architecture of Exp-Golomb Coding Unit. “data” is the syntax

elements from PR1 (see Fig. 23). As for Exp-Golomb Coding Unit, the syntax elements are

divided into three categories as follows: UE (Unsigned Exp-Golomb), SE (Signed

Exp-Golomb), and CBP [1]. Global Control Unit sends “mode” to indicate which category

according to the current syntax element. We must calculate codeNum [1] of the current syntax

element to generate the codeword by Exp-Golomb Code Table.

 41

SE_CN

CBP_CN

Exp-Golomb
Code Table

M
U
X

data

mode

codewordcodeNum

Fig. 43 Architecture of Exp-Golomb Coding Unit

As for UE, the syntax element is equal to codeNum such that “data” can be directly sent

to Exp-Golomb Code Table via MUX. As for SE and CBP, we use SE_CN and CBP_CN to

calculate the codeNumb respectively.

TABLE 7 shows the structure of Exp-Golomb Code Table.

TABLE 7 Structure of Exp-Golomb Code Table [1]

Codeword Range of codeNum

 1 0

 0 1 x0 1-2

 0 0 1 x1 x0 3-6

 0 0 0 1 x2 x1 x0 7-14

 0 0 0 0 1 x3 x2 x1 x0 15-30

0 0 0 0 0 1 x4 x3 x2 x1 x0 31-62

… …

Fig. 44 shows the structure of codeword in TABLE 7. “M” represents the number of prefix

zero bits and INFO is the value of suffix bits [11]. “codeNum” is expressed as Eq. 5 shows.

 42

0 0 0 1 x2 x1 x0

M INFO

Fig. 44 Structure of Exp-Golomb codeword

INFOcodeNum M +−= 12

 Eq. 5

TABLE 8 shows Exp-Golomb Code Table in explicit form. SE_CN and CBP_CN are

implementations of TABLE 9 and TABLE 10 respectively. As for TABLE 10, note that the

mapping is different between Intra and Inter.

TABLE 8 Exp-Golomb Code Table in explicit form [1]

Bit string codeNum

1 0

0 1 0 1

0 1 1 2

0 0 1 0 0 3

0 0 1 0 1 4

0 0 1 1 0 5

0 0 1 1 1 6

0 0 0 1 0 0 0 7

0 0 0 1 0 0 1 8

0 0 0 1 0 1 0 9

… …

TABLE 9 Assignment of syntax element to codeNum for signed Exp-Golomb [1]

codeNum syntax element value

0 0

1 1

2 –1

3 2

4 –2

 43

5 3

6 –3

k (–1)k+1 Ceil(k÷2)

TABLE 10 Assignment of codeNum to values of CBP [1]

codeNum CBP

 Intra Inter

0 47 0

1 31 16

2 15 1

3 0 2

4 23 4

5 27 8

6 29 32

7 30 3

8 7 5

9 11 10

10 13 12

11 14 15

12 39 47

13 43 7

14 45 11

15 46 13

16 16 14

17 3 6

18 5 9

19 10 31

20 12 35

21 19 37

22 21 42

23 26 44

24 28 33

25 35 34

26 37 36

 44

27 42 40

28 44 39

29 1 43

30 2 45

31 4 46

32 8 17

33 17 18

34 18 20

35 20 24

36 24 19

37 6 21

38 9 26

39 22 28

40 25 23

41 32 27

42 33 29

43 34 30

44 36 22

45 40 25

46 38 38

47 41 41

3.2.5 Bit-stream Packer

Fig. 45 shows the input and output ports of Bit-stream Packer. Fig. 46 shows the

architecture of Bit-stream Packer.

 45

mux_word
mux_length Bit-stream Packer
mux_valid

bitstream _cur

bitstream _valid_cur

Fig. 45 Input and Output ports of Bit-stream Packer

residual_length_cur

mux_length
longer_than_31

residual_word_cur

mux_word left_shifter

residual_word_cur

mux_word right_shifter

residual_word_cur

TwoByteBuf_cur

mux_valid

mux_valid

bitstream_cur

bitstream_valid_cur

longer_than_31

longer_than_31

Fig. 46 Architecture of Bit-stream Packer

“mux_word”, “mux_length”, and “mux_valid” are output signals of MUX 1 (See Fig. 23).

“mux_word” carries the codeword of some syntax element and mux_length represents the

length of the codeword. Fig. 47 shows the structure of mux_word, where the codeword is

“00101” and mux_length is equal to five. Note that mux_word is left-alignment.

 46

0 0 1 0 1 0 0 …… 0

“00101＂

mux_word

32 bits

Fig. 47 Structure of mux_word

When mux_valid is high, it means that mux_word is valid and that we must concatenate

mux_word into residual_word_cur, a 32-bit register. The length of the codeword in

residual_word_cur is represented by residual_length_cur. Fig. 48 shows the structure of

residual_word_cur, where the codeword is “00101” and residual_length_cur is equal to five.

Note that residual_word_cur is right-alignment.

0 0 1 0 10 0 …… 0

“00101＂

residual_word_cur

32 bits

Fig. 48 Structure of residual_word_cur

When mux_valid is high, if the sum of mux_length and residual_length_cur is smaller

than 32 (longer_than_31 is low), residual_word_cur is updated by left_shifter as Fig. 49

shows.

 47

32 bits

mux_word

32 bits

residual_word_cur

left_shifter

32 bits 32 bits

32 bits

residual_word_cur

update...

Fig. 49 Updating of residual_word_cur by left_shifter when longer_than_31 is low

“left_shifter” is a right-alignment signal of 64 bits and consists of the concatenation of

residual_word_cur and mux_word. On the other hand, if the sum of residual_length_cur and

mux_length is larger than 31 (longer_than_31 is high), bitstream_cur is updated as shown in

Fig. 50 and bitstream_valid_cur is high such that Bus Interface (see Fig. 23) can fetch the

updated bitstream_cur.

 48

32 bits

mux_word

32 bits

residual_word_cur

right_shifter

32 bits 32 bits

32 bits

bitstream_cur

update...

A B C

A B

Fig. 50 Updating of bitstream_cur by right_shifter

“bitstream_cur” is a register of 32 bits; in other words, we send 32 bits of bit-stream to Bus

Interface in one cycle. “right_shifter” is a left-alignment signal of 64 bits and consists of the

concatenation of residual_word_cur and mux_word. The remaining part, “C”, is stored into

residual_word_cur.

Moreover, TwoByteBuf_cur is a register of 16 bits and comprises the last two bytes of

H.264/AVC bit-stream stored in External Memory (see Fig. 23). We use TwoByteBuf_cur and

right_shiter to determine whether emulation prevention byte [1], a byte equal to 0x03, is

necessary to be inserted into bitstream_cur. The main purpose of emulation prevention bytes

is to ensure that start code prefix [1], a sequence of three bytes equal to 0x000001, occurs

only at the beginning of the H.264/AVC bit-stream. When the following successive three

bytes are found in the raw byte sequence, emulation prevention byte is inserted:

1. 0x000000 0x00000300

 49

2. 0x000001 0x00000301

3. 0x000002 0x00000302

4. 0x000003 0x00000303

The usage of TwoByteBuf_cur is illustrated in Fig. 51. “right_shifter[63:32]” is divided

into four bytes and the arrowhead is the insert position of emulation prevention byte. There

are only seven cases according to the analysis [12]. For example, case 1 is illustrated in Fig.

52, where the number is hexadecimal. After insertion, bitstream_cur becomes 0x03000003

and 0x0002 is stored into residual_word_cur.

right_shifter[63:32]TwoByteBuf_cur

case 0 case 1

case 2 case 3

case 4 case 5

case 6

Fig. 51 Usage of TwoByteBuf_cur

 50

00 00 00 00 00 02

TwoByteBuf_cur right_shifter[63:32]

Insertion...

03 00 00 03 00 02

Fig. 52 Example for case 1

3.3 Encoding flow of proposed

CAVLC encoder

Fig. 53 represents encoding flow of the proposed CAVLC encoder. Entropy SRAM

Interface provides the proposed CAVLC encoder with the coded block pattern and coefficients

of a sub-block.

 51

Fetch a sub-block

CBP skip

Yes

No

Zero-block
Codeword

Table
Yes

Analyze Nonzero
Index Table

No

zero block Bit-stream
Packer

codeword

finish ...

Combinational
Circuits

syntax elements

codeword

Bit-stream
Packer

finish ...

Fig. 53 Encoding flow of the proposed CAVLC encoder

The proposed CAVLC encoder uses the coded block pattern to determine whether the

sub-block can be skipped. If the sub-block can be skipped, there are no further steps and we

fetch the next sub-block from Entropy SRAM Interface. Otherwise, if the sub-block cannot be

skipped, the coefficients are loaded into Input Buffer, as Fig. 54 shows. Nonzero Index Table

concurrently records which coefficients are nonzero by setting bit “1”. Both Input Buffer and

Nonzero Index Table are registers constructed in the proposed CAVLC encoder.

 52

0 0 0 0 0 0 0 0 1 0 -1 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 54 Input Buffer and Nonzero Index Table

If all bits are zero in Nonzero Index Table, as Fig. 55 shows, it means that the sub-block

is NSZB. Zero-block Codeword Table generates the codeword of the NSZB and Bit-stream

Packer concatenates the codeword in parallel. Then the encoding flow is terminated earlier

such that we save cycle counts for collecting syntax elements of the NSZB.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 55 Nonzero Index Table for an all-zero sub-block

Otherwise, if Nonzero Index Table consists of nonzero bits (see Fig. 54), it means that

the sub-block consists of nonzero coefficients. This thesis refers to a sub-block comprising

nonzero coefficients as NAZ (Not All Zero). We analyze Nonzero Index Table to obtain

syntax elements whose codeword are generated by combinational circuits and are

concatenated by Bit-stream Packer. After all syntax elements of the sub-block are encoded

into H.264/AVC bit-stream, the encoding of the NAZ sub-block is finished and we can fetch

the next sub-block.

 53

Nonzero Index Table makes it possible to directly encode significant coefficients such

that we can save cycle counts on zero coefficients in NAZ. We can encode one nonzero

coefficient every cycle by updating Nonzero Index Table. Fig. 56 and Fig. 57 show the

updating. At some cycle, as shown in Fig. 56, we aim at the coefficient at index “7” and the

codeword of the coefficient is concurrently generated by combinational circuits. At the next

cycle (see Fig. 57), Nonzero Index Table is updated and we aim at the coefficient at index “4”

such that the zeros between index “4” and “7” are ignored. Hence, Nonzero Index Table saves

cycle counts on zero coefficients in NAZ.

0 0 0 0 0 0 0 0 1 0 0 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 56 Coefficient at index 7 is being encoded

0 0 0 0 0 0 0 0 1 0 0 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 57 Coefficient at index 4 is being encoded

 54

3.4 Architecture of proposed CAVLC

encoder

According to section 3.3, sub-blocks can be divided into three categories in terms of

encoding flow:

1. NAZ: as mentioned in section 3.3.

2. NSZB: as mentioned in section 3.1.2.

3. CS (CBP Skip): a sub-block which can be skipped by the coded block pattern.

In this section, we first describe the architecture of the proposed CAVLC encoder. Then, in the

following three sections, we cycle-wise explain the hardware operation for NAZ, NSZB, and

CS to manifest the advantages of our design.

Fig. 58 shows the architecture of the proposed CAVLC encoder. “cavlc_data_ready”

fetches sixteen coefficients in one cycle. If the sub-block comprises less than sixteen

coefficients like CHROMA_DC, Entropy SRAM Interface automatically appends zeros.

According to the sub-block type and the coded block pattern, we determine whether the

sub-block is CS.

 55

cavlc_data
_ready cavlc_scan

cavlc_coding

cavlc_coding_level

cavlc_coding_crun

cavlc_mux

cavlc_nunl

sram_nonzero

Entropy
SRAM

Interface

Bit-stream
Packer

Nonzero
Index Table

Zero-block
Codeword

Table

Fig. 58 Architecture of the proposed CAVLC encoder

As for a sub-block of NSZB or NAZ, the sixteen coefficients including the appending

zeros are stored into Input Buffer, which comprises sixteen 16-bit registers, as Fig. 59 shows.

Input Buffer is constructed in cavlc_data_ready. The coefficients are put into Input Buffer in

zigzag scan order. We consider Input Buffer as a 1-D array and index “0” represents the DC.

The greater the index is, the higher the frequency is. Nonzero Index Table comprises sixteen

1-bit registers and indicates which coefficients are nonzero. When the coefficients are stored,

we concurrently check which coefficients are zeros. If a coefficient is nonzero, we set one to

the corresponding bit in Nonzero Index Table. The index of Nonzero Index Table is the same

as Input Buffer.

 56

0 0 0 0 0 0 0 0 1 0 -1 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0

16x1 bits

Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16x16 bits

Fig. 59 Structure of Input Buffer and Nonzero Index Table

“sram_nonzero” is an SRAM which records the TotalCoeff of already encoded

sub-blocks. “cavlc_nunl” reads neighbor TotalCoeff from sram_nonzero and calculates nC.

Then cavlc_nunl writes the current TotalCoeff into sram_nonzero.

“cavlc_scan” extracts syntax elements from Nonzero Index Table. We explain the

operation of cavlc_scan cycle-wise below.

At the first cycle, cavlc_scan uses a simple adder to calculate the number of bit “1” in

Nonzero Index Table, which is TotalCoeff. Then, cavlc_scan uses start index and stop index to

scan Nonzero Index Table, as Fig. 60 shows. Start index is a register and we initialize it as

fifteen. This is because the coefficients of higher frequency are encoded earlier [9]. Stop index

indicates the leading bit “1” in Nonzero Index Table from index 15 to 0. Stop index is the

output of FindLeadingOne, a combinational circuit constructed in cavlc_scan. After stop

index and TotalCoeff are known, total_zeros can be defined as Eq. 6.

 57

0 0 0 0 0 0 0 0 1 0 -1 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 60 Start index and stop index with Nonzero Index Table

TotalCoeff- 1 index stop +

 Eq. 6

On the other hand, if FindLeadingOne cannot find any one bit in Nonzero Index Table, the

sub-block is NSZB. We encode the NSZB by Zero-block Codeword Table (see Fig. 61) and

the encoding of the NSZB is finished in advance. In fact, Zero-block Codeword Table is the

first row of TABLE 2 because “all-zero” means both TotalCoeff and TrailingOnes are equal to

zero.

0<=nC<2 2<=nC<4 4<=nC<8 8<=nC nC==-1

1 11 1111 000011 01

Fig. 61 Zero-block Codeword Table

At the second cycle, Nonzero Index Table is updated as shown in Fig. 62, where the bit

at the position of stop index is set zero and start index moves to the new zero bit. Now we can

calculate the run_before of the coefficient pointed by stop index at previous cycle, which is

expressed as Eq. 7. For example, the run_before is one for the coefficient at index seven.

 58

0 0 0 0 0 0 0 0 1 0 -1 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 62 Updating for Nonzero Index Table

1 -index stop -index start

 Eq. 7

At the following cycles, we do the same things as the second cycle.

Every cycle we examine whether the coefficient pointed by stop index is a trailing one. If

the coefficient is a trailing one, we add one to TrailingOnes and the trailing_one_sign_flag is

concurrently determined. As soon as TrailingOnes is settled, cavlc_mux permits the codeword

of Coeff_token and trailing_one_sign_flags to be sent to Bit-stream Packer. The codeword of

Coeff_token is the concurrent output of cavlc_coding in which TABLE 2 is implemented.

Because trailing_one_sign_flags are codeword in itself, no additional circuit is necessary.

After trailing_one_sign_flags are encoded into the bit-stream, the coefficient pointed by

stop index is sure to be a level. In such cases, cavlc_mux certainly grants the codeword of the

level to be sent to Bit-stream Packer. The codeword of the level is the concurrent output of

cavlc_coding_level which is adapted from JM encoder reference software [9]. In JM encoder,

levels are encoded by a simple calculation instead of one-to-one mapping tables like TABLE

2.

 59

After each level is encoded into the bit-stream, cavlc_mux grants the codeword of

total_zeros to be sent to Bit-stream Packer. The codeword of total_zeros is the output of

cavlc_coding in which TABLE 3 and TABLE 5 are implemented.

Although run_befores are the final syntax element in the bit-stream, we can obtain a

run_before accompanied with a level or a trailing one in one cycle. The codeword of the

run_before is concurrently generated by cavlc_coding_crun in which TABLE 4 is

implemented. “cavlc_coding_crun” concatenates each run_before codeword into a 32-bit

register before sent to Bit-stream Packer. According to TABLE 4, we can reason that the total

length of all run_before codeword for a sub-block is always smaller than 32. After total_zeros

is encoded into the bit-stream, we spend only one cycle to send the concatenated codeword to

Bit-stream Packer.

3.4.1 Hardware operation for encoding a NAZ

We assume the sub-block is LUMA as Fig. 63 shows. The hardware operation of the

proposed CAVLC encoder is described cycle-wise below:

3 -3 0 0

-1 1 2 -1

0 1 -1 -1

0 0 0 0

Fig. 63 Coefficients of a LUMA sub-block

1. 0th cycle: Entropy SRAM Interface updates BlkIdx_cur for the sub-block.

 60

2. 1st cycle: According to BlkIdx_cur, Entropy SRAM Interface does the following

two things. First, Entropy SRAM Interface sends read address to Residual

Buffer (see Fig. 23). Second, Entropy SRAM Interface sends block_type and

block_idx to CAVLC encoder. “block_type” refers to the sub-block type as

mentioned in section 2.2.2. “block_idx” has the same definition as the

numerical labels of Fig. 87. “block_idx” is used to determine read address of

sram_nonzero to fetch neighbor TotalCoeff. “block_idx” is stored into

blk_idx_cur and block_type is stored into blk_typ_cur, where both

blk_idx_cur and blk_typ_cur are registers constructed in cavlc_data_ready.

Moreover, CAVLC encoder obtains mb_x and mb_y from PR1.

“mb_x” and mb_y are coordinates of the current macro-block. We use mb_x

and mb_y to determine whether the sub-block is on border of frame. “mb_x”

and mb_y are stored into mb_x_cur and mb_y_cur respectively. Both

mb_x_cur and mb_y_cur are registers constructed in cavlc_data_ready.

Finally, CAVLC encoder obtains the coded block pattern of the current

macro-block from PR1. The CBP is stored into cbp_cur, which is a register

constructed in cavlc_data_ready.

3. 2nd cycle: All coefficients of the sub-block are ready on the output of Residual

Buffer. Moreover, cavlc_nunl sends read address of top neighbor to

sram_nonzero.

4. 3rd cycle: “cavlc_nunl” sends read address of left neighbor to sram_nonzero. All

coefficients are loaded into Input Buffer as Fig. 64 shows, and Nonzero

Index Table is determined at the same time. Start index is initialized as

fifteen (see section 3.4).

 61

coefficient

Input Buffer =

0

Nonzero
Index Table

Fig. 64 Loading of Input Buffer and determination of Nonzero Index Table

5. 4th cycle: Start index is equal to 15 and stop index points to “13”, as shown in Fig.

65. TotalCoeff is determined by a combinational adder as Fig. 66 shows.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 65 State of Nonzero Index Table at 4th cycle

 62

0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+
…… ……

TotalCoeff

num_nz_cur

Fig. 66 Determination of TotalCoeff by Nonzero Index Table

TotalCoeff is stored into num_nz_cur which is a register constructed in

cavlc_scan. “total_zeros” is determined by Eq. 6 as shown in Fig. 67.

“total_zeros” is stored into total_run_cur which is a register constructed in

cavlc_scan.

+stop index

1

-TotalCoeff total_zeros

total_run_cur

Fig. 67 Determination of total_zeros

The coefficient pointed by stop index is a trailing one whose

trailing_one_sign_flag is one, so num_t1_cur, a register constructed in

cavlc_scan, is increased as Fig. 68 shows. The meaning of num_t1_cur is the

same as TrailingOnes. Trailing_one_sign_flags are stored into sign_t1_cur, a

 63

register constructed in cavlc_scan.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer

MUX

…… ……

stop index

=
1 -1

num_t1_cur

Fig. 68 Determination of TrailingOnes

6. 5th cycle: The TotalCoeff of top neighbor comes from sram_nonzero and is stored

into nu_cur, which is a register constructed in cavlc_nunl. Nonzero Index

Table is updated as Fig. 69 shows.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 69 State of Nonzero Index Table at 5th cycle

The coefficient pointed by stop index, denoted by Input Buffer [12], is

 64

a trailing one whose trailing_one_sign_flag is one, so num_t1_cur is

increased. The run_before of Input Buffer [13] can be calculated by Eq. 7 as

shown in Fig. 70.

start
index

stop
index 1

run_before

TABLE 4

crun_word_cur

cavlc_coding_crun

Fig. 70 Determination and concatenation of run_before

The codeword (“11”) of the run_before is generated by TABLE 4,

implemented as a combinational circuit in cavlc_coding_crun. The

codeword is concatenated into crun_word_cur, a 32-bit register constructed

in cavlc_coding_crun.

7. 6th cycle: The TotalCoeff of left neighbor comes from sram_nonzero and is stored

into nl_cur, which is a register constructed in cavlc_nunl. Now that nu_cur

and nl_cur are settled, nC can be determined in the cycle. Nonzero Index

Table is updated as Fig. 71 shows.

 65

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 71 State of Nonzero Index Table at 6th cycle

The coefficient pointed by stop index is a trailing one whose

trailing_one_sign_flag is one, so num_t1_cur is increased. The run_before

of Input Buffer [12] is zero and the run_before codeword (“11”) is

concatenated into crun_word_cur.

8. 7th cycle: Nonzero Index Table is updated as Fig. 72 shows. The value of

num_t1_cur is equal to three which is the maximum of TrailingOnes, so the

coefficient pointed by stop index is not a trailing one, although its magnitude

is equal to one. Because the coefficient pointed by stop index is not a trailing

one, trailing ones never occur at the following coefficients such that

num_t1_cur and sign_t1_cur are settled.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 72 State of Nonzero Index Table at 7th cycle

 66

Now that nC, TotalCoeff, and TrailingOnes are settled, the coeff_token

codeword is valid and is concatenated into Bit-stream Packer. The codeword

of coeff_token is generated by TABLE 2, which is implemented as a

combinational circuit in cavlc_coding as Fig. 73 shows.

The run_before of Input Buffer [11] is two and the run_before

codeword (“011”) is concatenated into crun_word_cur.

TABLE 2

cavlc_coding

num_nz_curnum_t1_curnC

coeff_token
codeword

Fig. 73 Generation of coeff_token codeword

9. 8th cycle: “sign_t1_cur” is concatenated into Bit-stream Packer. No updating of

Nonzero Index Table occurs.

10. 9th cycle: The state of Nonzero Index Table is the same as 7th cycle. See Fig. 72,

Input Buffer [8] is a level, which is the coefficient at stop index. The level

codeword, generated by cavlc_coding_level as shown in Fig. 74, is

concatenated into Bit-stream Packer.

 67

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer

MUX

…… ……

stop index

level
codeword

cavlc_coding_level

Fig. 74 Generation of level codeword

11. 10th cycle: Nonzero Index Table is updated as Fig. 75 shows. The level codeword

of Input Buffer [7], the coefficient as stop index, is concatenated into

Bit-stream Packer. The run_before codeword (“11”) of Input Buffer [8] is

concatenated into crun_word_cur.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 75 State of Nonzero Index Table at 10th cycle

12. 11th cycle: Nonzero Index Table is updated as shown in Fig. 76. The level

codeword of Input Buffer [4], the coefficient at stop index, is concatenated

 68

into Bit-stream Packer. The run_before codeword (“01”) of Input Buffer [7]

is concatenated into crun_word_cur.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 76 State of Nonzero Index Table at 11th cycle

13. 12th cycle: Nonzero Index Table is updated as shown in Fig. 77. The level

codeword of Input Buffer [2], the coefficient at stop index, is concatenated

into Bit-stream Packer. The run_before codeword (“0”) of Input Buffer [4] is

concatenated into crun_word_cur.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 77 State of Nonzero Index Table at 12th cycle

14. 13th cycle: Nonzero Index Table is updated as shown in Fig. 78. The level

codeword of Input Buffer [1], the coefficient at stop index, is concatenated

 69

into Bit-stream Packer. Note that we have encoded all run_befores at 12th

cycle such that zerosLeft becomes zero. Therefore, no run_before is encoded

after 12th cycle (see section 2.3.1).

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 78 State of Nonzero Index Table at 13th cycle

15. 14th cycle: Nonzero Index Table is updated as shown in Fig. 79. The level

codeword of Input Buffer [0], the coefficient at stop index, is concatenated

into Bit-stream Packer.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

stop
index

Fig. 79 State of Nonzero Index Table at 14th cycle

16. 15th cycle: Nonzero Index Table is updated as Fig. 80 shows. Note that no one bit

exists in Nonzero Index Table. The fact means that encoding of levels is

 70

done.

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

Fig. 80 State of Nonzero Index Table at 15th cycle

17. 16th cycle: The total_zeros codeword, generated by cavlc_coding as shown in Fig.

81, is concatenated into Bit-stream Packer. Because total_run_cur and

num_nz_cur have been settled at 4th cycle, the total_zeros codeword is valid

right now. Note that TABLE 3 is constructed as a combinational circuit in

cavlc_coding.

TABLE 3

cavlc_coding

num_nz_curtotal_run_cur

total_zeros
codeword

Fig. 81 Generation of total_zeros codeword

 71

18. 17th cycle: “crun_word_cur” is concatenated into Bit-stream Packer, which is the

concatenation of each run_before codeword. Then, the encoding of the NAZ

is finished.

3.4.2 Hardware operation for encoding a

NSZB

We assume the sub-block is LUMA. The hardware operation of the proposed CAVLC

encoder is described cycle-wise below:

1. 0th - 2nd cycle: The same as section 3.4.1.

2. 3rd cycle: Input Buffer and Nonzero Index Table are shown in Fig. 82. As shown

in Fig. 83, if FindLeadingOne cannot find any nonzero bit in Nonzero Index

Table, zero_blk_cur is set one to indicate that the sub-block is all-zero.

“zero_blk_cur” is 1-bit register constructed in cavlc_scan. Moreover,

“cavlc_nunl” sends read address of left neighbor to sram_nonzero.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start
index

Fig. 82 State of Nonzero Index Table at 3rd cycle for NSZB

 72

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FindLeadingOne

zero_blk_cur

cavlc_scan

Fig. 83 Determination of an all-zero sub-block

3. 4th cycle: The TotalCoeff of top neighbor comes from sram_nonzero and is stored

into nu_cur.

4. 5th cycle: The TotalCoeff of left neighbor comes from sram_nonzero and is stored

into nl_cur. Because nu_cur and nl_cur are settled, nC can be determined in

the cycle. Therefore, the codeword generated by Zero-block Codeword

Table (see Fig. 61) is valid and it can be concatenated into Bit-stream Packer.

Then, the encoding of the NSZB is finished.

3.4.3 Hardware operation for encoding a CS

1. 0th - 1st cycle: The same as section 3.4.1.

2. 2nd cycle: According to blk_idx_cur, blk_typ_cur, and cbp_cur, we can confirm

that the sub-block is a CS. No codeword is generated and the encoding of

the CS is finished.

 73

3.5 Memory system

In this section, we present the size requirement and organization of SRAM

(sram_nonzero) constructed in the proposed CAVLC encoder. Section 2.2.4 shows that a

macro-block has 24 sub-blocks which may be neighbors of other sub-blocks. For calculating

nC, we must record TotalCoeff of the 24 sub-blocks. The neighbors may come from other

macro-blocks as shown in Fig. 84. Fig. 84 shows a frame of M by N macro-blocks. The

macro-blocks of Row 1 need information from those of Row 0 to calculate nC. Thus we must

record the information of macro-blocks in one row of a frame such that the size of SRAM

depends on the frame’s width.

……

M

N

……Row 0

Row 1

Fig. 84 Two adjacent rows in a frame

We take QCIF as an example and Fig. 85 shows the organization of sram_nonzero for

QCIF. Because QCIF’s width is equal to 11 macro-blocks, four bits are necessary to represent

the macro-blocks. We use five bits to represent the 24 sub-blocks in one macro-block.

Therefore the address of SRAM comprises nine bits and the structure of the address is shown

 74

in Fig. 86

0
1
2

…

31

mb_addr 0

0
1
2

…

31

…
…

0
1
2

…

31

mb_addr 1

mb_addr 15

Fig. 85 Organization of sram_nonzero for QCIF

mb_addr sb_addr
MSB LSB

4 bits 5 bits

Fig. 86 Structure of sram_nonzero address

The former four bits are denoted as mb_addr which indicate one of the 11 macro-blocks; the

remaining five bits are denoted as sb_addr which indicate one of the 24 sub-blocks in a

macro-block. One word comprises five bits because the maximum of TotalCoeff is equal to 16.

Therefore the size of SRAM for QCIF is equal to 2560 bits, which is expressed as Eq. 8.

)/(5)(29 wordbitsword ×
 Eq. 8

 75

Fig. 87 shows the mapping relation between the numbers in Fig. 85 and the 24

sub-blocks of a macro-block. The smaller the number of a sub-block is, the earlier the

sub-block is encoded (see section 2.2.1). For the current sub-block, we read the TotalCoeff of

the top and left neighbors and then write the current TotalCoeff into the SRAM, as Fig. 88

shows.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

16 17

18 19

20 21

22 23

Fig. 87 Mapping relation between sub-blocks and sram_nonzero for a macro-block

Time

read top
neighbor

read left
neighbor

write current
TotalCoeff

Fig. 88 Timing schedule of sram_nonzero

For each sub-block in Fig. 87, TABLE 11 represents the read addresses to access the

neighbors and the write address to record the current TotalCoeff. “X” denotes the current

macro-block’s mb_addr, X-1 denotes the left macro-block’s mb_addr, and an address is

denoted as {mb_addr, sb_addr}.

TABLE 11 Read and write address of sram_nonzero for a sub-block

Sub-block top read address left read address current write address

 76

0 {X, 10} {X-1, 5} {X, 0}
1 {X, 11} {X, 0} {X, 1}
2 {X, 0} {X-1, 7} {X, 2}
3 {X, 1} {X, 2} {X, 3}
4 {X, 14} {X, 1} {X, 4}
5 {X, 15} {X, 4} {X, 5}
6 {X, 4} {X, 3} {X, 6}
7 {X, 5} {X, 6} {X, 7}
8 {X, 2} {X-1, 13} {X, 8}
9 {X, 3} {X, 8} {X, 9}
10 {X, 8} {X-1, 15} {X, 10}
11 {X, 9} {X, 10} {X, 11}
12 {X, 6} {X, 9} {X, 12}
13 {X, 7} {X, 12} {X, 13}
14 {X, 12} {X, 11} {X, 14}
15 {X, 13} {X, 14} {X, 15}
16 {X, 18} {X-1, 17} {X, 16}
17 {X, 19} {X, 16} {X, 17}
18 {X, 16} {X-1, 19} {X, 18}
19 {X, 17} {X, 18} {X, 19}
20 {X, 22} {X-1, 21} {X, 20}
21 {X, 23} {X, 20} {X, 21}
22 {X, 20} {X-1, 23} {X, 22}
23 {X, 21} {X, 22} {X, 23}

For example, Fig. 89 shows a QCIF frame, where the red square is the current macro-block

and the green squares are already encoded macro-blocks. The information of the green

macro-block is stored in the SRAM and the number on each green macro-block is the

corresponding mb_addr, so X is equal to four. The encoding order of sub-blocks can

guarantees that a word in the SRAM is never updated before the word is read by other

sub-blocks.

 77

0 1 2 3

4 5 6 7 8 9 10

Fig. 89 Current macro-block in a QCIF frame

3.6 Summary

In this chapter, we propose two methods to save cycle counts on zeros which the CBP

cannot skip. First, we use Zero-block Codeword Table to encode a NSZB such that the

encoding flow can be terminated earlier. Second, Nonzero Index Table with stop index

directly jumps to a nonzero coefficient in Input Buffer. Thus zeros in NAZ sub-blocks are

skipped. Moreover, we present the size requirement and organization of SRAM in which

already encoded TotalCoeff is stored.

 78

Chapter 4. Results and Comparison

4.1 Cycle count analysis

As mentioned in section 3.4, sub-blocks can be divided into the following three

categories: NAZ, NSZB, and CS. Below, we show the cycle count analysis for each category.

Fig. 90 shows the timing schedule for encoding a NAZ. “x” is defined as TABLE 12

shows and “y” is defined as Eq. 9. The following things are done during the first 5+x cycles:

1. Fetch coefficients from Entropy SRAM Interface.

2. “cavlc_nunl” interacts with sram_nonzero to calculate nC.

3. Coeff_token, trailing_one_sign_flags, and total_zeros are settled by analyzing Nonzero

Index Table.

4. The trailing ones’ run_before codeword is concatenated into cavlc_coding_crun

Afterwards, each syntax element codeword is sent to Bit-stream Packer.

5+x
cycles 1 cycle

Coeff_token trailing_one_sign_flags

1 cycle

levels

y
cycles

total_zeros

1 cycle 1 cycle

run_befores

Fig. 90 Timing schedule for encoding a NAZ sub-block

TABLE 12 Definition of variable “x”

TrailingOnes x
0 0
1 1

 79

2 2
3 2

1 esTrailingOn-TotalCoeff +

 Eq. 9

Fig. 91 shows the timing schedule for encoding of an NSZB. The following things are

done during the first five cycles:

1. Fetch coefficients from Entropy SRAM Interface.

2. “cavlc_nunl” interacts with sram_nonzero to calculate nC.

3. The fact that it is an NSZB is confirmed by analyzing Nonzero Index Table.

4. Zero-block Codeword Table generates Coeff_token codeword.

Afterwards, Coeff_token codeword is sent to Bit-stream Packer and encoding of the NSZB is

done.

5
cycles 1 cycle

Coeff_token

Fig. 91 Timing schedule for encoding of an NSZB sub-block

Fig. 92 shows the timing schedule for encoding of a CS. The following things are done

during the three cycles:

1. Fetch coefficients from Entropy SRAM Interface

2. Entropy SRAM provides the coded block pattern and the sub-block type.

3. The fact that it is a CS is confirmed by the coded block pattern and the sub-block type.

Afterwards, no codeword is sent to Bit-stream Packer and encoding of the CS is done.

 80

3
cycles

Fig. 92 Timing schedule for encoding of a CS sub-block

In conclusion, TABLE 13 shows the total cycle counts for encoding a NAZ, NSZB, and

CS respectively.

TABLE 13 Total cycle counts for CS, NSZB and NAZ

 Total cycle counts per sub-block
CS 3

NSZB 6
NAZ 9+x+y

4.2 Simulation result

Simulation setting is the same as section 3.1. The results are calculated according to the

analysis in section 4.1. Fig. 93 shows the average cycle counts to encode a sub-block,

including CS, NSZB, and NAZ. Fig. 94 shows the average cycle counts we need to encode a

macro-block. We choose 145 MHz as the working frequency of the proposed CAVLC encoder.

Fig. 95 presents how many macro-blocks on average are encoded in one second.

 81

0

2

4

6

8

10

12

14

16

18

8 12 16 20 24 28 32 36 40 44

QP

C
yc

le

Akiyo

Coast

Stefan

Foreman

Mobile

Fig. 93 Average encoding cycles per sub-block

 82

0

50

100

150

200

250

300

350

400

450

8 12 16 20 24 28 32 36 40 44

QP

C
yc

le

Akiyo

Coast

Stefan

Foreman

Mobile

Fig. 94 Average encoding cycles per macro-block

 83

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

8 12 16 20 24 28 32 36 40 44

QP

C
yc

le

Akiyo

Coast

Stefan

Foreman

Mobile

1080p@30fps

Fig. 95 Average number of macro-blocks encoded per cycle

The red line in Fig. 95 denotes “244800” that is the throughput requirement of 1080p at

30 fps, as TABLE 14 shows [10]. Each case in Fig. 95 is above the requirement and we prove

that the proposed CAVLC encoder can support 1080p at 30 fps.

TABLE 14 Requirement of 1080 HD

Format Width Height MBs Total MBs/second
1080p 1920 1088 8160 244800

4.3 Implementation results and

comparison

We used Verilog and UMC 0.13um cell library to implement the proposed CAVLC

encoder, which consumes 9.03 K logic gates at 145 MHz. TABLE 15 shows the gate count

 84

profile (see Fig. 58) and TABLE 16 shows on-chip memory requirement. TABLE 17 shows

the comparison with other designs, where the serial numbers for zero-skipping methods are

defined in TABLE 18. In TABLE 17, note that the gate count of Lai [14] includes the

bit-stream packer. TABLE 19 shows the gate count profile comparison, where “statistic

buffer” only refers to the storage element storing the syntax elements of a sub-block.

TABLE 15 Gate count profile of the propose CAVLC encoder

Item Gate Count
cavlc_data_ready 3074

cavlc_scan 1252
cavlc_coding 1302

cavlc_coding_level 1176
cavlc_coding_crun 1410

cavlc_nunl 570
cavlc_mux 244

Total 9028

TABLE 16 On-chip memory requirement of the proposed CAVLC encoder

 Number of word Bits per word Total bits
QCIF 512 5 2560

1080 HD 4096 5 20480

TABLE 17 Comparison with other CAVLC encoder designs

 Proposed [3] [15] [4] [13] [14]

Technology
UMC

0.13um
UMC

0.18um
TSMC
0.18um

FPGA
0.18um
CMOS

TSMC
0.35um

Frequency 145MHz 100MHz 27MHz 100MHz 125MHz 28MHz

Gate Count
CAVLC

Core
9028 17635 23281 22128 9724 9171

Foreman 301 350 225
Mobile 397 430 360
Stefan 361 400 na

na na na
Cycle Count

per MB
(QP=12)

Akiyo 155 na na na na na

 85

Coast 326
Average 308 393 293 432 402

Zero-skipping
method

 1, 2, 3 1 1, 2 none 1 none

TABLE 18 Definition of serial numbers for zero-skipping methods

Serial number Definition
1 CBP Look-Ahead
2 Nonzero Index Table
3 Zero-block Codeword Table

TABLE 19 Gate count profile comparison

 Proposed [3] [15] [4] [13] [14]
coeff_token 864 298 554
total_zeros

1302
646 564 420

levels 1176 1012 2249 1208
run_befores 1410 263

3758

1361 432
statistic buffer 0 12283 0 5325
control 5140 2567 19523

17656
1785

na

Total 9028 17635 23281 22128 9724 9171

Chen [3] is an improved version of the CAVLC encoder in Huang [6]. The architecture

of Huang [6] is shown in Fig. 96.

Scan Phase Coding PhaseStatistic Buffer

Fig. 96 Architecture of Huang [6]

In Scan Phase, Huang [6] reads one coefficient per cycle and concurrently examine whether

the coefficient is nonzero to update TotalCoeff. TotalCoeff is not settled until all coefficients

 86

of a sub-block are read. For example, as for a LUMA sub-block, Huang [6] spends at least

sixteen cycles to make TotalCoeff settled even if the sub-block consists of many zero

coefficients. As a result, many cycle counts are wasted on zero coefficients. Because

TotalCoeff is the first syntax element to be encoded into H.264/AVC bit-stream, Huang [6]

must use Statistic Buffer to store the syntax elements obtained before TotalCoeff during the

sixteen cycles, including levels and run_befores. Otherwise, the syntax elements except

TotalCoeff will evaporate after the sixteen cycles. After all syntax elements are ready in

Statistic Buffer, Coding Phase generates the codeword of the syntax elements from Statistic

Buffer. While Coding Phase is generating the codeword of the current sub-block, Scan Phase

cannot write the syntax elements of the next sub-block into Statistic Buffer. Otherwise, Scan

Phase will destroy the data of the current sub-block in Statistic Buffer. Therefore, Scan Phase

and Coding Phase cannot work in parallel such that the utilization of hardware is halved. To

double the utilization, Chen [3] use two statistic buffers switched in ping-pong manner, as

shown in Fig. 97.

Scan Phase

Statistic Buffer
0

Statistic Buffer
1

Coding Phase

Fig. 97 Architecture of Chen [3]

While Coding Phase is generating the codeword of the current sub-block, whose syntax

elements are stored in Statistic Buffer 1, Scan Phase writes the syntax elements of the next

sub-block into Statistic Buffer 0, so Scan Phase never destroys the data of the current

sub-block in Statistic Buffer 1. Therefore, Scan Phase and Coding Phase can work in parallel

such that the utilization is doubled.

 87

On the contrary, the proposed design reads sixteen coefficients in one cycle and

TotalCoeff is concurrently settled by Nonzero Index Table. After a few cycles when stop

index meets a level for the first time, Coeff_token and trailing_one_sign_flags have been

encoded into H.264/AVC bit-stream. Therefore, we can immediately send the level codeword,

output of combinational circuits, to the Bit-stream Packer, so the additional redundant buffers

are not necessary. As for the run_before, we also use a buffer to store its codeword before sent

to Bit-steam Packer. However, Chen [3] and Huang [6] store the un-encoded value of the

run_before but we store the encoded codeword of the run_before. Therefore, our buffer gate

count is sure to be smaller than Chen [3]. In summary, the proposed design does not need

Statistic Buffers to save syntax elements, so the proposed design consumes less logic gates

than Chen [3]. Moreover, Chen [3] spends at least sixteen cycles for a sub-block even if the

sub-block consists of many zero coefficients. As a result, Chen [3] wastes many cycle counts

on zero coefficients. That is the reason why the proposed design can spend less cycle counts

per macro-block than Chen [3].

The architecture of Kim [4] is similar to Huang [6], as Fig. 98 shows. Compared with

Fig. 96, Kim [4] replaces Statistic Buffer with FIFO. Although Kim [4] has only one storage

element, Kim [4] has the same pipelining schedule as Chen [3]. In other words, Kim [4] can

process two sub-blocks at the same time.

Scan Phase Coding PhaseFIFO

Fig. 98 Architecture of Kim [4]

This is because the FIFO is an IP with a handshaking protocol [8] which grants the new data

 88

coming in without destructing the old data. However, Kim [4] spends more cycle counts per

macro-block than Chen [3] because Chen [3] takes advantage of CBP Look-Ahead [3]. The

FIFO is the reason why Kim [4] consumes more logic gates than the proposed design.

The architecture of Chien [13] is similar to Huang [6], as Fig. 99 shows. Compared with

Fig. 96, Chien [13] replaces Statistic Buffer with SIPO (Serial Input Parallel Output).

Scan Phase Coding Phase

SIPO

Fig. 99 Architecture of Chien [13]

Although Chien [13] has only one storage element, Chien [13] can concurrently process two

sub-blocks as Chen [3]. That is because SIPO accepts one syntax element per cycle from Scan

Phase and SIPO sends two syntax elements per cycle to Coding Phase. Therefore the old data

are fetched by Coding Phase before they are destroyed by the new data from Scan Phase.

However, SIPO is the reason why Chien [13] consumes more logic gates than the proposed

design. On the other hand, Chien [13] spends more cycle counts than the proposed design

because CBP Look-Ahead is the only zero-skipping method.

The architecture of Lai [14] is similar to Huang [6], as Fig. 100 shows. Compared with

Fig. 96, Lai [14] replaces Statistic Buffer with Stack. The Stack is also a storage element to

store syntax elements generated by Scan Phase.

 89

Scan Phase Coding PhaseStack

Fig. 100 Architecture of Lai [14]

Like Huang [6], while Coding Phase fetches syntax elements from the Stack, Scan Phase

cannot write the syntax elements of the next sub-block into the Stack. Moreover, Scan Phase

also spends at least sixteen cycle counts to obtain all syntax elements of a sub-block. Thus,

Lai [14] may spend as many cycle counts in encoding a sub-block as Huang [6]. So Lai [14]

should spend more cycle counts per macro-block than the proposed design. On the other hand,

Lai [14] should consume more logic gates than the proposed design because of the Stack.

Note that the total gate count of Lai [14] is close to that of the proposed design. This is

because Lai [14] chooses a much lower working frequency than the proposed design does.

Fig. 101 shows the architecture of Tsai [15]. TQ (Transform Quantize) Stage [15] writes

coefficients of a macro-block into Residual SRAM [15]. At the same time, TQ Stage records

which coefficients are nonzero in Non-zero Flag Reg [15] and TQ Stage records which

coefficients are 1 or -1 in Abs-one Flag Reg [15]. A macro-block consists of about 384

coefficients, including luminance and chrominance, so both Non-zero Flag Reg and Abs-one

Flag Reg comprise 384 bits.

 90

Residual
SRAM

Non-zero
Flag Reg

Symbol Look
Ahead Module

Table
classes

Abs-one
Flag Reg

TQ
Stage

Bit-stream
Packer

codeword

Fig. 101 Architecture of Tsai [15]

First, Symbol Look Ahead Module [15] uses Non-zero Flag Reg and Abs-one Flag Reg to

generate TotalCoeff and TrailingOnes in one cycle, whose codeword is concurrently

calculated by Table classes [3] and concatenated by Bit-stream Packer. Then Symbol Look

Ahead Module directly accesses one nonzero coefficient per cycle according to Non-zero Flag

Reg, whose codeword is calculated by Table classes at the same time. Like the proposed

design, because TotalCoeff and TrailingOnes have been encoded, Tsai [15] does not need any

Statistic Buffer to store the coefficient and the codeword can be immediately concatenated

into Bit-stream Packer. However, Tsai [15] consumes more logic gates than the proposed

design. The large gate count of Tsai [15] results from the MB-sized Non-zero Flag Reg and

Abs-one Flag Reg. On the other hand, note that Tsai [15] spends fewer cycle counts than the

proposed design. The reasons may be the following:

1. The operation of Non-zero Flag Reg is similar to that of Nonzero Index Table, because

both can skip zero coefficients in NAZ.

2. Abs-one Flag Reg makes Tsai [15] spend fewer cycle counts on calculating TrailingOnes

than the proposed design.

3. In TABLE 17, the cycle count of the proposed design includes not only the time for the

 91

CAVLC core process but also the time for interacting with Entropy SRAM Interface, as

mentioned in section 3.4.1 and section 4.1. However, Tsai [15] does not disclose the

method of calculating cycle count.

Last but not least, we consume less logic gates under higher frequency. In other words,

although we have no such statistic buffers to pipeline, the proposed design has a shorter

critical path than other designs. Moreover, the demand for the statistic buffer originates from

data evaporation. Therefore, critical path is not a point of controversy.

In summary, the designs which need statistic buffers often consume large logic gate

count, as TABLE 19 shows. TABLE 17 shows the proposed design can achieve up to 61%

decrease in logic gate count. On the other hand, Nonzero Index Table and Zero-block

Codeword Table can skip zero coefficients which CBP Look-Ahead [3] cannot detect. In other

words, the proposed design can skip every zero coefficient in a macro-block. Therefore, the

proposed design achieves higher throughput than other designs. TABLE 17 shows the

proposed design can achieve up to 29% decrease in cycle count.

 92

Chapter 5. Conclusions

The main contribution of this thesis is to propose two new hardware architectures which

permit direct significance encoding. The proposed architectures compensate for drawbacks of

conventional CBP Look-Ahead such that CAVLC encoder for H.264/AVC can achieve a

higher throughput. CBP Look-Ahead uses the coded block pattern to detect occurrence of an

all-zero sub-block in advance such that encoding time for the all-zero sub-block can be saved.

However, our statistics in section 3.1.2 shows that many all-zero sub-blocks are not covered

by the coded block pattern, especially at middle QP and low QP. Moreover, a NAZ sub-block

is sure to comprise some zero coefficients, which the coded block pattern cannot detect by

definition. Our statistics in section 3.1.1 shows that a NAZ sub-block comprises up to 60%

zero coefficients on average. As a result, CBP Look-Ahead is not enough to significantly

improve throughput of a CAVLC encoder. Thus we propose two new architectures to save

encoding cycle counts of the zero coefficients which the coded block pattern cannot take into

account. First, Zero-block Codeword Table permits encoding flow to be terminated in advance

for an NSZB sub-block. Second, Nonzero Index Table directly skips several zero coefficients

in one cycle for a NAZ sub-block. The proposed CAVLC encoder adopts Zero-block

Codeword, Nonzero Index Table, as well as CBP Look-Ahead, such that we can save

encoding time of all zero coefficients in a macro-block. Comparison in section 4.3 shows that

the proposed design achieves a higher throughput than other designs. Simulation results in

section 4.2 shows that the proposed design can support 1080p at 30fps.

Moreover, the proposed design has the advantage of fewer gate counts even at a higher

working frequency. This is because our design does not need statistic buffers to save

intermediate syntax elements, as mentioned in section 4.3.

 93

Eventually, the proposed design can support 1080p at 30 fps with 9.03 K gate count at

145 MHz. We save 61% logic gate count and 29% cycle count.

 94

Bibliography
[1] Advanced video coding for generic audiovisual services. ITU-T Recommendation

H.264, March 2005.
[2] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.

Stockhammer, T. Wedi, “Video coding with H.264/AVC: tools, performance, and
complexity”, in IEEE Circuits and Systems Magazine, vol. 4, no. 1, 2004, pp. 7-28

[3] T.-C. Chen, Y.-W. Huang, C.-Y. Tsai, B.-Y. Hsieh, L.-G. Chen, “Architecture Design
of Context-Based Adaptive Variable-Length Coding for H.264/AVC”, IEEE
Transactions on Circuits and Systems Part II: Express Briefs, vol. 53, no. 9, pp.
832-836, September 2006.

[4] Daeok Kim, Eungu Jung, Hyunho Park, Hosoon Shin, Dongsoo Har,
“Implementation of High Performance CAVLC for H.264/AVC Video Codec”, The
6th International Workshop on System-on-Chip for Real-Time Applications, pp.
20-23, December 2006.

[5] Min-Chi Tsai, Tian-Sheuan Chang, “High Performance Context Adaptive Variable
Length Coding Encoder for MPEG-4 AVC/H.264 Video Coding”, IEEE Asia Pacific
Conference on Circuits and Systems, pp. 586-589, December 2006.

[6] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, Liang-Gee Chen, “Hardware
architecture design for H.264/AVC intra frame coder”, Proceedings of the 2004
International Symposium on Circuits and Systems, vol. 2, pp. 269-272, May 2004.

[7] Tung-Chien Chen, Yu-Wen Huang, Chuan-Yong Tsai, Bing-Yu Hsieh, Liang-Gee
Chen, “Dual-block-pipelined VLSI architecture of entropy coding for H.264/AVC
baseline profile”, IEEE VLSI-TSA International Symposium on VLSI Design,
Automation and Test, pp. 271-274, April 2005.

[8] Synchronous FIFO 5.0, Product Specification. Available: http://www.xillinx.com.
[9] Joint Video Team Reference Software JM9.0. Available:

http://iphome.hhi.de/suehring/tml/download/old_jm/
[10] Yi-Hong Huang, “Context Adaptive Binary Arithmetic Decoder of H.264/AVC for

Digital TV Application,” M.S. thesis, Dept. Elect. Eng., Inst. Elect. Eng., N.C.T.U.,
Taiwan, 2006.

[11] Iain Richardson. (2002, October 17). H.264 / MPEG-4 Part 10 White Paper.
Available: http://www.vcodex.com

[12] Ribin Zan, Asral Bahari, A.T. Erdogan, T. Arslan, “Low power CAVLC architecture
for MPEG-4 Advanced Video Coding,” unpublished.

[13] Chih-Da Chien, Keng-Po Lu, Yi-Hung Shih, Jiun-In Guo, “A high performance
CAVLC encoder design for MPEG-4 AVC/H.264 video coding applications”, IEEE

 95

International Symposium on Circuits and Systems, pp. 3838-3841, May 2006.
[14] Yeong-Kang Lai, Chih-Chung Chou, Yu-Chieh Chung, “A simple and cost effective

video encoder with memory-reducing CAVLC”, IEEE International Symposium on
Circuits and Systems, vol. 1, pp. 432-435, May 2005.

[15] Chuan-Yung Tsai, Tung-Chien Chen, Liang-Gee Chen, “Low Power Entropy
Coding Hardware Design for H.264/AVC Baseline Profile Encoder”, IEEE
International Conference on Multimedia and Expo, pp. 1941-1944, July 2006.

[16] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for
Next Generation Multimedia. Wiley, 2003, pp. 160 - 161.

 96

作者簡歷
姓名: 吳秈璟

籍貫: 嘉義市

學歷: 雲林縣斗六市私立正心高級中學 (1998 年 9 月-2001 年 6 月)

 國立交通大學電子工程學系 學士 (2001 年 9 月-2005 年 6 月)

 國立交通大學電子研究所 碩士 (2005 年 9 月-2007 年 6 月)

