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低成本高效率內容適應性可變長度編碼器之設計 

學生 : 吳秈璟 指導教授 : 張添烜 博士 

國立交通大學 

電子工程學系  電子研究所碩士班 

摘要 

本論文提出一個低成本高效率的內容適應性可變長度編碼器。本論文的動機是為了

補償編碼區塊樣式先決的低效能以達到高效率，使得我們所提出的內容適應性可變長度

編碼器能支援每秒處理30張1080p畫面。此外，在如此高效率之下，我們必須維持少量

的邏輯閘。編碼區塊樣式先決能跳過一些零方塊的編碼流程來提高效率。然而，我們的

統計數據指出有大量的零係數無法被編碼區塊樣式先決偵測到，使得許多的週期數被浪

費在零係數。在我們的設計裡，除了採用編碼區塊樣式先決，我們還使用可以直接對非

零係數作編碼的新奇架構，以避免花費時間在零係數：零方塊碼字表與非零索引表。 

當我們所提出的內容適應性可變長度編碼器在一個週期內讀取一個方塊的所有係

數時，非零索引表同時記錄那些係數是非零的。然後非零索引表會分辦這個方塊是否為

全零。假如這方塊是全零，零方塊碼字表可以在不用跑完整套內容適應性可變長度編碼

流程的情況下，直接產生這個方塊的全部碼字。另一方面，如果這個方塊含有至少一個

非零係數，非零索引表使用組合電路找出非零係數的位置，使得零係數被忽略。再者，
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當非零索引表鎖定一個非零係數時，這個非零係數的碼字會直接被連接到H.264/AVC的

位元串流。因此，我們不需要額外的緩衝存儲器來儲存這個非零係數，使得少量的邏輯

閘被消耗。 

最後，基於聯華電子點一三微米製程，我們所提出的設計在145 MHz的工作時脈之

下，消耗了9.03 K個邏輯閘，且可支援每秒處理30張1080p的畫面。和其它的設計相較之

下，我們可以節省61%的邏輯閘與29%的週期數。 
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ABSTRACT 

This thesis proposes a low cost and high throughput CAVLC encoder. The motivation is 

to compensate the inefficiency of CBP Look-Ahead to achieve higher throughput such that the 

proposed CAVLC encoder can support 1080p at 30 fps. Moreover, under such high 

throughput, we must keep logic gate count low. CBP Look-Ahead can skip encoding flow of 

some zero blocks such that throughput can be improved. However, our statistics show that 

abundant zero coefficients cannot be detected by CBP Look-Ahead such that many cycle 

counts are wasted on the zero coefficients. In our design, we use novel direct significance 

encoding architectures, as well as CBP Look-Ahead, to avoid spending time on zero 

coefficients: Zero-block Codeword Table and Nonzero Index Table. 

Nonzero Index Table concurrently records which coefficients are significant while the 

proposed CAVLC encoder is reading all coefficients of a block in one cycle. Then Nonzero 

Index Table determines whether the block is all-zero. If the block is all-zero, Zero-block 
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Codeword Table will generate the overall codeword of the block without going through the 

whole CAVLC encoding flow. On the other hand, if the block consists of at least one 

significant coefficient, Nonzero Index Table uses combinational circuits to locate significant 

coefficients such that zero coefficients are ignored. In addition, while Nonzero Index Table is 

aiming for a significant coefficient, the codeword of the significant coefficient can be directly 

concatenated into the H.264/AVC bit-stream. Hence, we do not need additional buffers to 

store the significant coefficient such that small logic gate count is consumed. 

Eventually, based on 0.13um UMC technology, the proposed design can support 1080p 

at 30 fps while consuming 9.03 K gate count at 145 MHz. Compared with other designs, we 

can reduce 61% logic gate count and 29% cycle count. 
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Chapter 1. Introduction 

1.1 Motivation 

H.264/AVC [1] is the latest standard for video coding. H.264/AVC is the result of the 

collaboration between the ISO/IEC Moving Picture Experts Group and the ITU-T Video 

Coding Experts Group [2]. H.264/AVC is designed to address a large range of applications, 

such as storage, entertainment, multimedia short message, videophone, videoconference, 

HDTV broadcasting, and Internet streaming. Compared to previous video coding standards, 

H.264/AVC can achieve 50% bit-rate reduction under the same quality [10]. The better 

compression efficiency results from innovative coding tools such as multiple reference frames, 

variable block size motion estimation, and in-loop de-blocking filter [3]. 

The essence of H.264/AVC is block-based motion estimation transform coding [3]. For 

H.264/AVC Baseline profile, context-based adaptive variable length coding (CAVLC) is used 

to encode quantized transform coefficients of the residual images [2]. Compared with entropy 

coders of previous standards, CAVLC removes more statistical redundancy by switching VLC 

tables according to previously transmitted symbols [2]. However, coding is not started until 

syntax elements are extracted by scanning all coefficients of a block such that throughput is 

very low [3]. To support high-end applications such as 1080p at 30 fps, we must improve 

throughput of CAVLC encoder. 

H.264/AVC specification stipulates that some all-zero blocks can be skipped according 

to the coded block pattern (CBP) [1]. For example, Chen [3] uses CBP Look-Ahead to 

improve throughput. However, our statistics show abundant zero coefficients are not covered 
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by the CBP. Therefore, we propose two zero-skipping methods to avoid wasting cycles on 

zero coefficients such that throughput is improved. The resulting architecture not only has a 

high throughput but also consumes small area. 

1.2 Organization of thesis 

This thesis is organized as follows. In Chapter 2, we present the algorithm of CAVLC in 

H.264/AVC. Chapter 3 presents the proposed design with the two throughput enhancement 

methods. Moreover, we present related statistics to prove that the methods are necessary. 

Chapter 4 presents simulation results, implementation results, and comparison with other 

designs. Chapter 5 concludes this thesis. 
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Chapter 2. Overview of CAVLC in 

H.264/AVC 

2.1 Overview of an H.264/AVC 

encoder 

Fig. 1 shows the block diagram of an H.264/AVC encoder. An input frame is processed 

in units of a macro-block [16]. The data flow in Fig. 1 can be divided into the following three 

steps: 

Macro-block of 
Input Frame Signal +

Intra-Frame 
Prediction

Macro-block 
Compensated 

Prediction

Motion 
Estimation

Reference Frame 
Memory

+

Transform Quantize

Prediction 
Error Signal

Quantized 
Coefficients Entropy 

Coding

Motion Vector

Intra/Inter

H.264 Bit-stream

Prediction Signal

Inverse 
Trans.

Inverse 
Quant.

Reconstructed 
Macro-block

 

Fig. 1 Block Diagram of an H.264/AVC encoder [2] 
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1. First, we calculate the prediction signal of the macro-block. In general, there are two 

prediction modes: Intra and Inter. In Intra mode, the prediction signal is calculated 

according to pixels in the current frame, which have been encoded, reconstructed and 

stored into Reference Frame Memory. In Inter mode, we use Motion Estimation to 

estimate the motion vectors, which refer to the corresponding position of the 

macro-block in an already transmitted (to decoder) frame stored in Reference Frame 

Memory [2]. Then the prediction signal is generated by Macro-block Compensated 

Prediction. Note that the motion vectors must be encoded into H.264/AVC bit-stream by 

Entropy Coding. 

2. Second, we subtract the prediction signal from the macro-block to obtain the prediction 

error signal. Then the prediction error signal is transformed and quantized to generate 

quantized coefficients, which is compressed into H.264/AVC bit-stream by Entropy 

Coding. H.264/AVC has two major entropy coding tools: CAVLC for the Baseline 

Profile and CABAC for the High Profile [1]. 

3. Third, the quantized coefficients are inverse quantized, inverse transformed, and added 

to the prediction signal. The result is the reconstructed macro-block which is stored into 

Reference Frame Memory in order to calculate the prediction signal of the future 

macro-block. 

2.2 Overview of block types 

2.2.1 Partitions of a macro-block 

As mentioned in section 2.1, Inter mode or Intra mode finds prediction signal of a 

macro-block [2]. The residual data is obtained by subtracting the prediction signal from the 

macro-block. Then we apply transform matrices on the residual data to obtain so-called 



 5

quantized transform coefficients [2]. The coefficients of a macro-block can be divided into 

three components as follows: luminance Y, chrominance U, and chrominance V. The 

component Y comprises 16 by 16 coefficients. The component U comprises 8 by 8 

coefficients, and the component V does, too.  

The main purpose of CAVLC is to encode the coefficients. Before encoded by CAVLC, 

the three components of a macro-block are individually divided into several smaller blocks. 

For the component Y, we divide it into sixteen 4x4 sub-blocks, as Fig. 2 shows. Each of the 

sixteen sub-blocks has a DC coefficient. If Intra_16x16 [1] is the prediction mode of the 

macro-block, we separate the DC coefficients to form another 4x4 sub-block, as Fig. 3 shows. 

 

Fig. 2 Division of Y component in a macro-block 
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Fig. 3 Separation of DC and AC for Y 

The component U is divided into four 4x4 sub-blocks, as Fig. 4 shows. Each of the four 

4x4 sub-blocks has a DC coefficient. No matter which prediction mode the macro-block uses, 

we separate the DC coefficients to form another 2x2 sub-block, as Fig. 5 shows. V and U use 

the identical scheme of partition, as Fig. 6 shows. 

 

Fig. 4 Division of U component in a macro-block 

 

Fig. 5 Separation of DC and AC for U 
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Fig. 6 Separation of DC and AC for V 

In conclusion, macro-blocks have only two types in point of CAVLC. First, an 

Intra_16x16 macro-block is divided as Fig. 7 shows. Sub-blocks “0”-“16” represent Y, “17” 

and “19”-“22” represent U, and the remaining sub-blocks represent V. The numbers represent 

the order in which the sub-blocks are encoded by CAVLC [1].  

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

19 20

21 22

23 24

25 26

17 18

0

 

Fig. 7 Division of an Intra_16x16 macro-block 

Second, a non-Intra_16x16 macro-block is divided as Fig. 8 shows. Sub-blocks “0”-“15” 

represent Y, “16” and “18”-“21” represent U, and the remaining sub-blocks represent V. The 

numbers in Fig. 8 and Fig. 7 have the same meaning. 
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0 1 4 5

2 3 6 7

18 19

20 21

22 23

24 25

8 9 12 13

10 11 14 1516 17

 

Fig. 8 Division of a non-Intra_16x16 macro-block 

2.2.2 The five sub-block types 

After a macro-block is divided into several sub-blocks, the sub-blocks are individually 

encoded by CAVLC in order as mentioned in section 2.2.1. The sub-blocks are divided into 

five types [9]. For every type the flow of CAVLC is similar but little different. The first type 

is LUMA_DC referring to sub-block “0” in Fig. 7. LUMA_DC comprises 16 coefficients. The 

second type is LUMA_AC referring to sub-blocks “1”-“16” in Fig. 7. Each LUMA_AC 

sub-block comprises 15 coefficients. The third type is CHROMA_DC referring to sub-blocks 

“17”-“18” in Fig. 7. Each CHROMA_DC sub-block comprises four coefficients. In Fig. 8 

sub-blocks “16” and “17” are also CHROMA_DC. The fourth type is CHROMA_AC 

referring to sub-blocks “19”-“26” in Fig. 7. Each CHROMA_AC comprises 15 coefficients. 

Sub-blocks “18”-“25” of Fig. 8 are also classified as CHROMA_AC. The final type is LUMA 

referring to sub-blocks “0”-“15” in Fig. 8. A LUMA comprises 16 coefficients. 

In conclusion, an Intra_16x16 macro-block comprises one sub-block of LUMA_DC, 

sixteen sub-blocks of LUMA_AC, two sub-blocks of CHROMA_DC, and eight sub-blocks of 

CHROMA_AC. In a non-Intra_16x16 macro-block, there are sixteen sub-blocks of LUMA, 
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two sub-blocks of CHROMA_DC, and eight sub-blocks of CHROMA_AC. 

2.2.3 Coded block pattern 

The coded block pattern is a syntax element in H.264/AVC [1]. Every macro-block has a 

coded block pattern which comprises six bits. The lower four bits represent the component Y 

and the upper two bits represent U and V. We use it to indicate which sub-blocks comprise 

only zero coefficients. 

For an Intra_16x16 macro-block, we present the definition of the coded block pattern 

below. The 16 LUMA_AC sub-blocks are divided into four groups, as Fig. 9 shows. 

group_0 group_1

group_2 group_3

 

Fig. 9 Four groups of an Intra_16x16 macro-block 

Each group comprises four LUMA_AC sub-blocks. The 0th bit (LSB) of the coded block 

pattern, corresponds to group_0, the 1st bit corresponds to group_1, and so on. If all 

coefficients of some group are zero, its corresponding bit is zero. Bit “1” means that the 

corresponding group comprises at least one nonzero coefficient. As for U and V, the upper 

two bits are defined as TABLE 1. 
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TABLE 1 Definition of the coded block pattern for chrominance part [1] 

CodedBlockPatternChroma Description 

0 All chroma transform coefficient levels are equal to 0. 

1 One or more chroma DC transform coefficient levels are non-zero.  
All chroma AC transform coefficient levels are equal to 0. 

2 Zero or more chroma DC transform coefficient levels are non-zero valued. 
One or more chroma AC transform coefficient levels are non-zero valued. 

 

Only three combinations of the 5th (MSB) and 4th bit are possible, and we describe the 

combinations in detail as follows: 

1. “00” means that every sub-block is all-zero, including two CHROMA_DC sub-blocks 

and eight CHROMA_AC sub-blocks. 

2. “01” means that either CHROMA_DC sub-block comprises at least one nonzero 

coefficient but each CHROMA_AC sub-block is all-zero. 

3. “10” means that at least one nonzero coefficient is among the eight CHROMA_AC 

sub-blocks. 

For a non-Intra_16x16 macro-block, we present the definition of the coded block pattern 

below. The sixteen LUMA sub-blocks are divided into four groups as Fig. 10 shows. 

group_0 group_1

group_2 group_3

 

Fig. 10 Four groups of a non_Intra16x16 macro-block 
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Each group comprises four LUMA sub-blocks. The 0th bit (LSB) corresponds to group_0, the 

1st bit corresponds to group_1, and so on. If group_0 consists of only zero coefficients, the 0th 

bit is zero. The 0th bit is one means that group_0 comprises at least one nonzero coefficient. 

For the remaining three groups, the meaning of their corresponding bits in the coded block 

pattern is identical with group_0. The definition for the U and V is identical with an 

Intra_16x16 macro-block. 

We describe how H.264/AVC specification skips sub-blocks according to the coded 

block pattern below. Because LUMA_DC has no relation to the coded block pattern, even an 

all-zero LUMA_DC sub-block must be encoded by CAVLC. As for LUMA, CHROMA_DC, 

and CHROMA_AC, CAVLC can ignore the sub-block as long as the coded block pattern 

indicates that the sub-block is all-zero. As for LUMA_AC, skip condition is defined as Eq. 1 

shows [1] [9]. 

blocks-sub LUMA_ACsixteen  all encodes CAVLC  
else

blocks-sub LUMA_ACsixteen  all ignores CAVLC  
d0)4'  0]:(CBP[3 if ==

 

 Eq. 1 

In conclusion, all sub-block types except LUMA_DC have relation to the coded block 

pattern. We can check the coded block pattern to determine whether CAVLC can skip a 

sub-block to save cycle counts. 

2.2.4 Neighbor sub-blocks 

In the flow of CAVLC, every sub-block type except CHROMA_DC needs neighbor 

information [9]. The information comes from the sub-blocks neighboring to the left and to the 
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top of the current one. We define the neighbor sub-blocks for the four sub-block types, 

including LUMA, LUMA_AC, LUMA_DC, and CHROMA_AC.  

For convenience of explanation, a frame is divided into three parts which respectively 

represent Y, U, and V. We refer to the three parts as Y-frame, U-frame, and V-frame 

respectively. A macro-block comprises 16 sub-blocks in Y-frame, as Fig. 11 shows. 

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

mb_0

mb_1 mb_2

 

Fig. 11 Three adjacent macro-blocks in Y-frame 

For an Intra_16x16 macro-block the sixteen sub-blocks are LUMA_AC. The sixteen 

sub-blocks of a non-Intra_16x16 macro-block are LUMA. For “12” of mb_2 in Fig. 11, the 

left neighbor is “9” and the top neighbor is “6”. Some sub-blocks are on the border of a 

macro-block such as “2” of mb_2, so their neighbor may reside in a different macro-block. 

For example, the left neighbor of “2” in mb_2 is “7” of mb_1. In a frame, some macro-blocks 

are Intra_16x16 and some are not, so the neighbor of LUMA may be LUMA_AC. Moreover, 

some sub-blocks falls on the edge of a frame such that their neighbors may be not available. 

As for a LUMA_DC sub-block, for example, we assume mb_2 is Intra_16x16; The 
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LUMA_DC sub-block and “0” have the identical neighbors. 

A macro-block comprises four CHROMA_AC sub-blocks in U-frame, as Fig. 12 shows. 

The neighbors are the sub-blocks neighboring to the left and to the top of the current 

sub-block. For example, in mb_2 the left neighbor of “3” is “2”, and the top neighbor is “1”. 

If a sub-block is on the border of a macro-block such as “2” of mb_2, its neighbors may be in 

another macro-block. As for a macro-block on the border of a frame, some sub-blocks’ 

neighbors may be not available. 

0 1

2 3

0 1

2 3

0 1

2 3
mb_0

mb_1 mb_2

 

Fig. 12 Three adjacent macro-blocks in U-frame 

A macro-block comprises four CHROMA_AC sub-blocks in V-frame, as Fig. 13 shows. 

V-frame and U-frame have the identical explanation for neighbors. 

0 1

2 3

0 1

2 3

0 1

2 3
mb_0

mb_1 mb_2

 

Fig. 13 Three adjacent macro-blocks in V-frame 
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2.3 Flow of CAVLC in H.264/AVC 

A sub-block is a coding unit of CAVLC. We describe the flow of CAVLC for each 

sub-block type below. 

2.3.1 Encoding flow of LUMA_DC 

A LUMA_DC sub-block comprises sixteen coefficients as Fig. 14 shows [11]. The 

coefficients are scanned in zigzag scan order, as Fig. 15 shows [1]. Then the coefficients are 

mapped to a 1-D array, Array_Coeff, as Fig. 16 shows. 

0 3 -1 0

0 -1 1 0

1 0 0 0

0 0 0 0
 

Fig. 14 A LUMA_DC sub-block 
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0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

 

Fig. 15 Zigzag scan order 

index
Array_Coeff
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1
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Fig. 16 Structure of Array_Coeff 

We analyze Array_Coeff to obtain syntax elements as follows [9]: 

1. TotalCoeff 

2. TrailingOnes 

3. Trailing_one_sign_flag 

4. Level 

5. Total_zeros 

6. Run_before 

TotalCoeff is the number of nonzero coefficients in Array_Coeff. TrailingOnes means the 

number of trailing ones (T1s). To define trailing ones, we scan the coefficients in Array_Coeff 

from index “15” one by one until the occurrence of a nonzero coefficient whose magnitude is 

greater than one. If we find a coefficient with magnitude equal to one, the coefficient is 

so-called trailing one. In H.264/AVC the maximum of TrailingOnes is three such that 
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Array_Coeff[3] is not classified as a trailing one. H.264/AVC combines TotalCoeff and 

TrailingOnes into Coeff_token, an H.264/AVC syntax element [1]. Each trailing one has a 

corresponding trailing_one_sign_flag which comprises only one bit. If the trailing one is 

negative, its trailing_one_sign_flag is equal to one. A zero trailing_one_sign_flag means that 

the corresponding trailing one is positive. A level refers to the nonzero coefficient which is 

not a trailing one. Each nonzero coefficient has a corresponding run_before which is the 

number of consecutive zeros before the nonzero coefficient in Array_Coeff. For example, the 

run_before of Array_Coeff[7] is one and that of Array_Coeff[4] is zero. Finally, total_zeros is 

the sum of all run_before. 

After all syntax elements are obtained, we encode them in numerical order as follows 

[9]: 

1. Coeff_token 

2. Trailing_one_sign_flags 

3. Levels  

4. Total_zeros 

5. Run_befores 

Therefore, the structure of H.264/AVC bit-stream is as Fig. 17 shows. 

Coeff_token trailing_one_sign_flags levels total_zeros run_befores

 

Fig. 17 Structure of H.264/AVC bit-stream 

First, we encode Coeff_token by TABLE 2. 
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TABLE 2 coeff_token mapping to TotalCoeff and TrailingOnes [1] 

TrailingOnes 
( coeff_token ) 

TotalCoeff 
( coeff_token ) 

0  <=  nC  <  
2 

2  <=  nC  <  
4 

4  <=  nC  <  
8 

8  <=  
nC 

nC  = =  
-1 

0 0 1 11 1111 0000 11 01 

0 1 0001 01 0010 11 0011 11 0000 00 0001 11 

1 1 01 10 1110 0000 01 1 

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00 

1 2 0001 00 0011 1 0111 1 0001 01 0001 10 

2 2 001 011 1101 0001 10 001 

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11 

1 3 0000 0110 0010 10 0110 0 0010 01 0000 011 

2 3 0000 101 0010 01 0111 0 0010 10 0000 010 

3 3 0001 1 0101 1100 0010 11 0001 01 

0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10 

1 4 0000 0011 0 0001 10 0101 0 0011 01 0000 0011 

2 4 0000 0101 0001 01 0101 1 0011 10 0000 0010 

3 4 0000 11 0100 1011 0011 11 0000 000 

0 5 0000 0000 111 0000 0100 0001 011 0100 00 - 

1 5 0000 0001 10 0000 110 0100 0 0100 01 - 

2 5 0000 0010 1 0000 101 0100 1 0100 10 - 

3 5 0000 100 0011 0 1010 0100 11 - 

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 - 

1 6 0000 0000 110 0000 0110 0011 10 0101 01 - 

2 6 0000 0001 01 0000 0101 0011 01 0101 10 - 

3 6 0000 0100 0010 00 1001 0101 11 - 

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 - 

1 7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 - 

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 - 

3 7 0000 0010 0 0001 00 1000 0110 11 - 

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 - 

1 8 0000 0000 0101 0 0000 0001 110 0001 110 0111 01 - 

2 8 0000 0000 0110 1 0000 0001 101 0001 101 0111 10 - 

3 8 0000 0001 00 0000 100 0110 1 0111 11 - 

0 9 0000 0000 0011 
11 

0000 0000 1111 0000 1011 1000 00 - 
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1 9 0000 0000 0011 
10 

0000 0001 010 0000 1110 1000 01 - 

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 - 

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 - 

0 10 0000 0000 0010 
11 

0000 0000 1011 0000 0111 1 1001 00 - 

1 10 0000 0000 0010 
10 

0000 0000 1110 0000 1010 1001 01 - 

2 10 0000 0000 0011 
01 

0000 0000 1101 0000 1101 1001 10 - 

3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 - 

0 11 0000 0000 0001 
111 

0000 0000 1000 0000 0101 1 1010 00 - 

1 11 0000 0000 0001 
110 

0000 0000 1010 0000 0111 0 1010 01 - 

2 11 0000 0000 0010 
01 

0000 0000 1001 0000 1001 1010 10 - 

3 11 0000 0000 0011 
00 

0000 0001 000 0000 1100 1010 11 - 

0 12 0000 0000 0001 
011 

0000 0000 0111 
1 

0000 0100 0 1011 00 - 

1 12 0000 0000 0001 
010 

0000 0000 0111 
0 

0000 0101 0 1011 01 - 

2 12 0000 0000 0001 
101 

0000 0000 0110 
1 

0000 0110 1 1011 10 - 

3 12 0000 0000 0010 
00 

0000 0000 1100 0000 1000 1011 11 - 

0 13 0000 0000 0000 
1111 

0000 0000 0101 
1 

0000 0011 01 1100 00 - 

1 13 0000 0000 0000 
001 

0000 0000 0101 
0 

0000 0011 1 1100 01 - 

2 13 0000 0000 0001 
001 

0000 0000 0100 
1 

0000 0100 1 1100 10 - 

3 13 0000 0000 0001 
100 

0000 0000 0110 
0 

0000 0110 0 1100 11 - 

0 14 0000 0000 0000 
1011 

0000 0000 0011 
1 

0000 0010 01 1101 00 - 

1 14 0000 0000 0000 
1110 

0000 0000 0010 
11 

0000 0011 00 1101 01 - 

2 14 0000 0000 0000 
1101 

0000 0000 0011 
0 

0000 0010 11 1101 10 - 

3 14 0000 0000 0001 
000 

0000 0000 0100 
0 

0000 0010 10 1101 11 - 

0 15 0000 0000 0000 
0111 

0000 0000 0010 
01 

0000 0001 01 1110 00 - 
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1 15 0000 0000 0000 
1010 

0000 0000 0010 
00 

0000 0010 00 1110 01 - 

2 15 0000 0000 0000 
1001 

0000 0000 0010 
10 

0000 0001 11 1110 10 - 

3 15 0000 0000 0000 
1100 

0000 0000 0000 
1 

0000 0001 10 1110 11 - 

0 16 0000 0000 0000 
0100 

0000 0000 0001 
11 

0000 0000 01 1111 00 - 

1 16 0000 0000 0000 
0110 

0000 0000 0001 
10 

0000 0001 00 1111 01 - 

2 16 0000 0000 0000 
0101 

0000 0000 0001 
01 

0000 0000 11 1111 10 - 

3 16 0000 0000 0000 
1000 

0000 0000 0001 
00 

0000 0000 10 1111 11 - 

The symbol nC represents the average of TotalCoeff of the neighbor sub-blocks. Eq. 2 shows 

the algorithm of calculating nC [9]. “left_available” represents the availability of the left 

neighbor and nL is the TotalCoeff of the left neighbor. “top_available” represents the 

availability of the top neighbor and nU is the TotalCoeff of the top neighbor. 

0;nC  
else

nU; nC  
able) top_avail&& ableleft_availif(! else

nL; nC  
le)top_avalab! && ailableif(left_av else

1)/2;nL(nU  nC  
able) top_avail&& lable(left_avai if

=

=

=

++=

 

 Eq. 2 

Second, the number of bits for trailing_one_sing_flags is equal to TrailingOnes. We 

encode T1s from high frequency to low frequency such that “011” is the codeword of T1s for 

Array_Coeff, where “0” represents Array_Coeff[7] (see Fig. 16). 

Third, we encode each level from high frequency to low frequency. There are seven VLC 

tables to encode a level and the choice of tables depends on already encoded levels. Eq. 3 
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shows the algorithm of selecting the VLC table for the first encoded level [9]. Each table has 

a serial number: vlcnum. Because we have seven VLC tables, vlcnum ranges from zero to six. 

0;     vlcnum
else

1;     vlcnum
3) esTrailingOn  &&  10  f(TotalCoef if

=

=
<>

 

 Eq. 3 

The VLC table for the second encoded level depends on the absolute value of the first 

encoded level. If the absolute value is greater than three, we add one to vlcnum. Otherwise, 

the second and the first use the identical table. The third encoded level and the following use 

the identical algorithm to choose the VLC table, as Eq. 4 shows [9]. 

;   vlcnum
num])incVlc[vlc)(abs(level if

8};24,48,3276{0,3,6,12,  incVlc[]int 

++
>

=

 

 Eq. 4 

The choice of VLC table for the third encoded level depends on the absolute value of the 

second encoded level, the fourth depends on the third, and so on. Each table corresponds to a 

threshold denoted by incVlc in Eq. 4. If the absolute value of the second encoded level is 

greater than the threshold corresponding to the table used by the second encoded level, we 

add one to vlcnum such that the third encoded level use an updated table. Otherwise, we apply 

the identical VLC table on the third encoded level. 

Fourth, total_zeros is encoded by TABLE 3. 



 21

TABLE 3 total_zeros tables for LUMA, LUMA_DC, LUMA_AC, CHROMA_AC [1] 

total_zeros TotalCoeff( coeff_token ) 

 1 2 3 4 5 6 7 

0 1 111 0101 0001 1 0101 0000 01 0000 01

1 011 110 111 111 0100 0000 1 0000 1 

2 010 101 110 0101 0011 111 101 

3 0011 100 101 0100 111 110 100 

4 0010 011 0100 110 110 101 011 

5 0001 1 0101 0011 101 101 100 11 

6 0001 0 0100 100 100 100 011 010 

7 0000 11 0011 011 0011 011 010 0001 

8 0000 10 0010 0010 011 0010 0001 001 

9 0000 011 0001 1 0001 1 0010 0000 1 001 0000 00

10 0000 010 0001 0 0001 0 0001 0 0001 0000 00  

11 0000 0011 0000 11 0000 01 0000 1 0000 0   

12 0000 0010 0000 10 0000 1 0000 0    

13 0000 0001 1 0000 01 0000 00     

14 0000 0001 0 0000 00      

15 0000 0000 1       

total_zeros TotalCoeff( coeff_token ) 

 8 9 10 11 12 13 14 15 

0 0000 01 0000 01 0000 1 0000 0000 000 00 0 

1 0001 0000 00 0000 0 0001 0001 001 01 1 

2 0000 1 0001 001 001 01 1 1  

3 011 11 11 010 1 01   

4 11 10 10 1 001    

5 10 001 01 011     

6 010 01 0001      

7 001 0000 1       

8 0000 00        

Finally, we encode each run_before except the nonzero coefficient of the lowest 

frequency such as Array_Coeff[1] (see Fig. 16). Run_befores are encoded from high 
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frequency to low frequency such that the first encoded run_before belongs to Array_Coeff[7]. 

The codeword is looked up in TABLE 4, where zerosLeft means how many run_befores are 

not encoded including the current run_before. For example, the zerosLeft of Array_Coeff[7] 

is three and that of Array_Coeff[5] is two. When zerosLeft is equal to zero, the encoding 

process for the current and the following run_befores can be terminated in advance [11]. 

TABLE 4 Tables for run_before [1] 

zerosLeft run_before 
 1 2 3 4 5 6 >6 

0 1 1 11 11 11 11 111 

1 0 01 10 10 10 000 110 

2 - 00 01 01 011 001 101 

3 - - 00 001 010 011 100 

4 - - - 000 001 010 011 

5 - - - - 000 101 010 

6 - - - - - 100 001 

7 - - - - - - 0001 

8  - - - - - 00001 

9 - - - - - - 000001 

10 - - - - - - 0000001 

11 - - - - - - 00000001 

12 - - - - - - 000000001 

13 - - - - - - 0000000001 

14 - - - - - - 00000000001 

2.3.2 Encoding flow of LUMA, LUMA_AC, 

and CHROMA_AC 

The CAVLC flow of LUMA is the same as LUMA_DC. LUMA_AC comprises fifteen 

coefficients such that the operation of scanning the coefficients into Array_Coeff is different 
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from LUMA_DC, as Fig. 18 shows. 

0 4 5

1 3 6 11

2 7 10 12

8 9 13 14
 

Fig. 18 Scanning for a LUMA_AC sub-block 

Then the following processing of Array_Coeff is similar to LUMA_DC and the differences 

are described below. If TotalCoeff is equal to 15, we can skip encoding of total_zeros and 

run_befores [9]. Finally, the CAVLC flow of CHROMA_AC is the same as LUMA_AC. 

2.3.3 Encoding flow of CHROMA_DC 

CHROMA_DC comprises four coefficients and Fig. 19 represents the scanning order for 

the coefficients into Array_Coeff. The following processing of Array_Coeff is similar to 

LUMA_DC and the differences are described below. First, nC is always set as -1 when we 

apply TABLE 2 on Coeff_token [1]. Second, we use TABLE 5 for total_zeros instead of 

TABLE 3. Moreover, if TotalCoeff is equal to four, we can skip encoding of total_zeros and 

run_befores [9].  

0 1
2 3

 

Fig. 19 Scanning for a CHROMA_DC sub-block 
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TABLE 5 total_zeros tables for CHROMA_DC [1] 

total_zeros TotalCoeff( coeff_token )

 1 2 3 

0 1 1 1 

1 01 01 0 

2 001 00  

3 000   
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Chapter 3. Architecture Design of 

the Proposed CAVLC Encoder 

3.1 Motivation: statistics of zero 

coefficients 

For a sub-block, we can check the coded block pattern to decide whether the CAVLC 

flow can be skipped. However, there are many zero coefficients that cannot be skipped by the 

coded block pattern. For example, Fig. 20 represents a group of four LUMA sub-blocks, 

where only subblock_0 comprises one nonzero coefficient and another three sub-blocks are 

all-zero. As mentioned in section 2.2.3, all sub-blocks must go through the CAVLC flow such 

that many cycle counts are wasted on zeros.  

subblock_0 subblock_1

subblock_2 subblock_3

x

 

Fig. 20 A group of four LUMA sub-blocks 

In the section, we represent statistics to show that abundant zeros cannot be skipped by 

the coded block pattern. To obtain the statistics, we ran several simulations using the 
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H.264/AVC reference software [9]. The test sequences include the following (motion from 

low to high): akiyo, coastguard, foreman, mobile_calendar, and Stefan. TABLE 6 shows the 

simulation setting. Two types of statistics are obtained and described below. 

TABLE 6 Simulation setting 

Video Size CIF 

Frame Number 300 

Intra Period 10 

Number of Reference 

Frames 
1 

Use FME ON 

RD Optimization OFF 

3.1.1 Statistics of nonzero coefficients in 

NS4B 

NS4B (Not Skipped 4x4 Block) denotes a sub-block, excluding CHROMA_DC, which 

cannot be skipped by the coded block pattern. Fig. 21 represents the average number of 

nonzero coefficients in a NS4B. CHROMA_DC is excluded because maximal TotalCoeff of 

CHROMA_DC is only four such that the average is reduced unfairly. Note that 

Mobile_calendar with QP equal to 12 has the highest bit-rate. Even for the highest bit-rate, a 

NS4B comprises less than seven nonzero coefficients; in other words, up to 60% of 

coefficients are zero. 
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Fig. 21 Average number of nonzero coefficients per NS4B sub-block 

3.1.2 Statistics of NSZB 

NSZB (Not Skipped Zero Block) denotes an all-zero sub-block, which cannot be skipped 

by the coded block pattern. For example, subblock_1 of Fig. 20 can be classified as a NSZB. 

Fig. 22 shows how many percent of all-zero sub-blocks are NSZB. Note that a higher bit-rate 

results in a higher percentage. This is because a lower bit-rate induces more zero CBP bits 

such that more all-zero sub-blocks are covered by the CBP. Note that the percentage is 

significant at middle QP and low QP. Therefore, Fig. 22 proves that many all-zero sub-blocks 

cannot be skipped by the coded block pattern in most cases. 
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Fig. 22 Percentage of NSZB in all-zero sub-blocks 

3.1.3 Summary 

In this section, we show the statistics to prove that abundant zero coefficients cannot be 

skipped by the coded block pattern. Thus CBP Look-Ahead is an inefficient method to skip 

zeros. To solve the problem, we propose two methods such that more zeros can be ignored. 

First, we use Nonzero Index Table to skip zeros in a non-all-zero sub-block. Second, we use 

Zero-block Codeword Table to directly encode a NSZB without going through the whole 

course of CAVLC flow. The two methods will be examined in section 3.4 
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3.2 System consideration of CAVLC 

in H.264/AVC encoder 

Fig. 23 shows the partial system architecture of an H.264/AVC encoder. The encoder 

adopts a macro-block pipeline schedule. Global Control Unit administers the progress of 

macro-blocks in the pipeline, where each stage comprises and processes one macro-block. 

Global Control Unit generates the following two things which are propagated through the 

pipeline registers: 

1. Syntax elements which are so-called header information such as mb_type [1]. 

2. Information about the macro-block at PR0 (Pipeline Register 0) such as coordinates. 
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Fig. 23 Partial system architecture of an H.264/AVC encoder 
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Prediction Engine uses data in PR0 to execute Inter or Intra prediction algorithms such 

that the best prediction signal can be worked out. Then Prediction Engine subtracts the 

prediction signal from the macro-block to obtain residual data. Finally, Prediction Engine 

applies transform and quantization on the residual data to obtain quantized transform 

coefficients. CBP Generator examines whether some coefficients are zero to determine the 

coded block pattern which will be stored into PR1. Moreover, the coefficients are stored into 

Residual Buffer. After all stages are finished, Global Control Unit grants the progress of the 

pipeline such that the data in PR0 goes into PR1.  

Header information in PR1 is encoded in predefined order which Global Control Unit 

maintain by MUX 0 (Multiplexer 0) and MUX 1 (Multiplexer 1). The codeword of header 

information is generated by Exp-Golomb Coding Unit and is concatenated by Bit-stream 

Packer such that H.264/AVC bit-stream is formed. The bit-stream is written into External 

Memory via Bus Interface. 

After encoding of header information is finished, Entropy SRAM Interface fetches 

coefficients of one sub-block from Residual Buffer to CAVLC Encoder. The codeword of 

each syntax element such as Coeff_token is sent to Bit-stream Packer via MUX 1. When 

encoding of the sub-block is finished, CAVLC Encoder will request Entropy SRAM Interface 

to fetch the next sub-block. 

3.2.1 Residual Buffer 

Residual Buffer comprises five parts. The first part is Luma SRAM, which is 

implemented as an SRAM. Luma SRAM stores the Y component of one macro-block and Fig. 

24 shows the organization of Luma SRAM. 
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Fig. 24 Organization of Luma SRAM 

As mentioned in section 2.1, a macro-block comprises sixteen Y sub-blocks and one word 

stores one sub-block in Luma SRAM. Fig. 25 represents the mapping relation between the 

sub-blocks and the words. 

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15
 

Fig. 25 Y sub-blocks of a macro-block 

Fig. 26 shows the organization of a word in Luma SRAM, where we use 14 bits to represent a 

coefficient. Fig. 27 shows the mapping relation between the numerical labels and the 

coefficients of a LUMA sub-block.  

0 1 …… 14 15

14 bits

MSB LSB

 

Fig. 26 Organization of a word in Luma SRAM 
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Fig. 27 The coefficients of a LUMA sub-block 

Fig. 28 shows the mapping relation between the numerical labels of Fig. 26 and the 

coefficients of a LUMA_AC sub-block. As for LUM_AC, the position “0” in Fig. 26 is 

useless because the DC is separated. In brief, Luma SRAM comprises 16x16x14 bits. 
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X

 

Fig. 28 The coefficients of a LUMA_AC sub-block 

The second part is Chroma SRAM, which is implemented as an SRAM and is used to 

store CHROMA_AC sub-blocks. Fig. 29 shows the organization of Chroma SRAM. 

word 0 

word 1

…
…

word 6

word 7

Chroma SRAM

 

Fig. 29 Organization of Chroma SRAM 
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A macro-block comprises eight CHROMA_AC sub-blocks and one word stores one 

sub-block in Chroma SRAM, so there are totally eight words in Chroma SRAM. Fig. 30 

shows the mapping relation between the words of Chroma SRAM and the CHROMA_AC 

sub-blocks of a macro-block.  

0 1 4 5

2 3 6 7

U V  

Fig. 30 U and V sub-blocks of a macro-block 

Fig. 31 shows the organization of one word in Chroma SRAM, where we use 12 bits to 

represent one coefficient. Fig. 32 shows the mapping relation between the numerical labels of 

Fig. 31 and the coefficients of a CHROMA_AC sub-block. Because the DC is separated, the 

position “0” in Fig. 31 is always useless; however, it exists for the regularity of hardware 

architecture. In brief, Chroma SRAM comprises 8x16x12 bits. 

0 1 …… 14 15

12 bits

MSB LSB

 

Fig. 31 Organization of one word in Chroma SRAM 
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Fig. 32 Coefficients of a CHROMA_AC sub-block 

The third part is LDC (Luma DC) Register, which is implemented as a register and is 

used to store one LUMA_DC sub-block. Fig. 33 shows the organization of LDC Register, 

where we use 14 bits to represent one coefficient. Fig. 34 shows the mapping relation between 

the numerical labels of Fig. 33 and the coefficients of a LUMA_DC sub-block. In brief, LDC 

Register comprises 1x16x14 bits because there are at most one LUMA_DC sub-block in one 

macro-block. 
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Fig. 33 Organization of LDC Register 
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Fig. 34 Coefficients of a LUMA_DC sub-block 

The fourth part is CDCU (Chroma DC U) Register, which is implemented as a register 
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and is used to store one CHROMA_DC sub-block of U component. Fig. 35 shows the 

organization of CDCU Register, where we use 14 bits to store one coefficient. Fig. 36 shows 

the mapping relation between the numerical labels of Fig. 35 and the coefficients of a 

CHROMA_DC sub-block. In brief, CDCU Register comprises 1x4x14 bits because U 

component consists of only one CHROMA_DC sub-block. 

0 1 2 3

14 bits

MSB LSB

 

Fig. 35 Organization of CDCU Register 
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1 3
 

Fig. 36 Coefficients of a CHROMA_DC sub-block 

The final part is CDCV (Chroma DC V) Register, which is implemented as a register and 

is used to store one CHROMA_DC sub-block of V component. The organization of CDCV 

Register is the same as CDCU Register. The permutation of the coefficients in CDCV Resister 

is the same as Fig. 36 shows. In brief, CDCV Register comprises 1x4x14 bits because V 

component consists of only one CHROMA_DC sub-block. 

Last but not least, as for Luma SRAM one word comprises 224 bits such that the bus 

seems a little wider. This is because we can write one sub-block per cycle to reduce cycle 

counts on macro-block level and to improve the throughput of the macro-block pipeline 

schedule. On the contrary, if a narrower bus is adopted, we must spend more cycle counts on 
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writing one macro-block into Residual Buffer than a wider bus. 

3.2.2 CBP Generator 

Fig. 37 shows the architecture of CBP Generator. Prediction Engine writes one sub-block 

into Residual Buffer per cycle. Global Control Unit provides Global Counter for Prediction 

Engine to determine which sub-block is written now. In CBP Generator, we use Global 

Counter to generate Sub-block Index which represents one of the twenty-six sub-block as Fig. 

38 shows. 
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Fig. 37 Architecture of CBP Generator 
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Fig. 38 Sub-block Index of each sub-blocks in a macro-block 

Prediction Engine uses luma_cof to send coefficients to Luma SRAM, uses chroma_cof 

to send coefficients to Chroma SRAM, uses u_dc to send coefficients to CDCU Register, and 

uses v_dc to send coefficients to CDCV Register. For example, when Sub-block Index is 

equal to three, luma_cof now comprises coefficients of sub-block “3” in Fig. 38. We use 

comparator to examine whether it is an all-zero sub-block. If the sub-block is all-zero, we set 

zero to the 3rd bit in Nonzero Block Tag, which is a 26-bit register. After the 26 sub-blocks are 

examined through, Nonzero Block Tag is settled and Coded Block Pattern of Fig. 37, a 

combinational circuit, can generate the coded block pattern for the macro-block. 

3.2.3 Entropy SRAM Interface 

Fig. 39 shows the architecture of Entropy SRAM Interface. Global Control Unit defines 

a serial number, syntax_idx_cur, for each syntax element. When syntax_idx_cur is equal to 

some value, it means encoding of coefficients is started and esi_enable is activated to enable 

Entropy SRAM Interface. 
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Fig. 39 Architecture of Entropy SRAM Interface 

“fetch_step_cur” is initialized as zero and BlkIdx_cur is initialized as zero or one 

depending on the macro-block type. If the macro-block is an Intra_16x16, BlkIdx_cur is 

initialized as zero; otherwise, BlkIdx_cur is initialized as one. BlkIdx_cur represents which 

sub-block Entropy SRAM Interface fetches right now. Fig. 40 shows the mapping relation 

between BlkIdx_cur and the sub-blocks of an Intra_16x16 macro-block. Fig. 41 shows the 

mapping relation between BlkIdx_cur and the sub-blocks of a non-Intra_16x16 macro-block. 
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Fig. 40 BlkIdx_cur for each sub-block of an Intra_16x16 macro-block 
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Fig. 41 BlkIdx_cur for each sub-block of a non-Intra_16x16 macro-block 

“fetch_step_cur” represents the steps during the interaction between Entropy SRAM 

Interface and Residual Buffer. Fig. 42 shows the timing schedule of fetch_step_cur. 
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ADDR DATA REG

BlkIdx_cur (0)

fetch_step_cur 0 1 2 3  

Fig. 42 Timing schedule of fetch_step_cur 

When fetch_step_cur is equal to one, Residual Buffer Controller sends read address to 

Residual Buffer according to BlkIdx_cur. Then, when fetch_step_cur is equal to two, the read 

data is ready at the output of Residual Buffer. The output of Residual Buffer refers to 

sram_Luma_data, sram_Chroma_data, reg_LumaDC, reg_ChroDCU, and reg_ChroDCV in 

Fig. 39. “q_cof” selects one of the five output signals according to BlkIdx_cur. Finally, when 

fetch_step_cur is equal to three, the coefficients of the sub-block are stored into CAVLC 

Encoder. Moreover, Sub-block Type calculates the type of sub-block according to the current 

BlkIdx_cur. 

3.2.4 Exp-Golomb Coding Unit 

Fig. 43 shows the architecture of Exp-Golomb Coding Unit. “data” is the syntax 

elements from PR1 (see Fig. 23). As for Exp-Golomb Coding Unit, the syntax elements are 

divided into three categories as follows: UE (Unsigned Exp-Golomb), SE (Signed 

Exp-Golomb), and CBP [1]. Global Control Unit sends “mode” to indicate which category 

according to the current syntax element. We must calculate codeNum [1] of the current syntax 

element to generate the codeword by Exp-Golomb Code Table.  
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Fig. 43 Architecture of Exp-Golomb Coding Unit 

As for UE, the syntax element is equal to codeNum such that “data” can be directly sent 

to Exp-Golomb Code Table via MUX. As for SE and CBP, we use SE_CN and CBP_CN to 

calculate the codeNumb respectively. 

TABLE 7 shows the structure of Exp-Golomb Code Table. 

TABLE 7 Structure of Exp-Golomb Code Table [1] 

Codeword Range of codeNum

          1 0 

        0 1 x0 1-2 

      0 0 1 x1 x0 3-6 

    0 0 0 1 x2 x1 x0 7-14 

  0 0 0 0 1 x3 x2 x1 x0 15-30 

0 0 0 0 0 1 x4 x3 x2 x1 x0 31-62 

… … 

Fig. 44 shows the structure of codeword in TABLE 7. “M” represents the number of prefix 

zero bits and INFO is the value of suffix bits [11]. “codeNum” is expressed as Eq. 5 shows. 
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0 0 0 1 x2 x1 x0

M INFO  

Fig. 44 Structure of Exp-Golomb codeword 

INFOcodeNum M +−= 12  

 Eq. 5 

TABLE 8 shows Exp-Golomb Code Table in explicit form. SE_CN and CBP_CN are 

implementations of TABLE 9 and TABLE 10 respectively. As for TABLE 10, note that the 

mapping is different between Intra and Inter. 

TABLE 8 Exp-Golomb Code Table in explicit form [1] 

Bit string codeNum 

1 0 

0 1 0 1 

0 1 1 2 

0 0 1 0 0 3 

0 0 1 0 1 4 

0 0 1 1 0 5 

0 0 1 1 1 6 

0 0 0 1 0 0 0 7 

0 0 0 1 0 0 1 8 

0 0 0 1 0 1 0 9 

… … 

TABLE 9 Assignment of syntax element to codeNum for signed Exp-Golomb [1] 

codeNum syntax element value

0 0 

1 1 

2 –1 

3 2 

4 –2 
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5 3 

6 –3 

k (–1)k+1 Ceil( k÷2 ) 

 

TABLE 10 Assignment of codeNum to values of CBP [1] 

codeNum CBP 

 Intra Inter 

0 47 0 

1 31 16 

2 15 1 

3 0 2 

4 23 4 

5 27 8 

6 29 32 

7 30 3 

8 7 5 

9 11 10 

10 13 12 

11 14 15 

12 39 47 

13 43 7 

14 45 11 

15 46 13 

16 16 14 

17 3 6 

18 5 9 

19 10 31 

20 12 35 

21 19 37 

22 21 42 

23 26 44 

24 28 33 

25 35 34 

26 37 36 
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27 42 40 

28 44 39 

29 1 43 

30 2 45 

31 4 46 

32 8 17 

33 17 18 

34 18 20 

35 20 24 

36 24 19 

37 6 21 

38 9 26 

39 22 28 

40 25 23 

41 32 27 

42 33 29 

43 34 30 

44 36 22 

45 40 25 

46 38 38 

47 41 41 

 

3.2.5 Bit-stream Packer 

Fig. 45 shows the input and output ports of Bit-stream Packer. Fig. 46 shows the 

architecture of Bit-stream Packer. 
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Fig. 45 Input and Output ports of Bit-stream Packer 
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Fig. 46 Architecture of Bit-stream Packer 

“mux_word”, “mux_length”, and “mux_valid” are output signals of MUX 1 (See Fig. 23). 

“mux_word” carries the codeword of some syntax element and mux_length represents the 

length of the codeword. Fig. 47 shows the structure of mux_word, where the codeword is 

“00101” and mux_length is equal to five. Note that mux_word is left-alignment. 
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Fig. 47 Structure of mux_word 

When mux_valid is high, it means that mux_word is valid and that we must concatenate 

mux_word into residual_word_cur, a 32-bit register. The length of the codeword in 

residual_word_cur is represented by residual_length_cur. Fig. 48 shows the structure of 

residual_word_cur, where the codeword is “00101” and residual_length_cur is equal to five. 

Note that residual_word_cur is right-alignment. 

0 0 1 0 10 0 …… 0

“00101＂

residual_word_cur

32 bits

 

Fig. 48 Structure of residual_word_cur 

When mux_valid is high, if the sum of mux_length and residual_length_cur is smaller 

than 32 (longer_than_31 is low), residual_word_cur is updated by left_shifter as Fig. 49 

shows. 
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Fig. 49 Updating of residual_word_cur by left_shifter when longer_than_31 is low 

“left_shifter” is a right-alignment signal of 64 bits and consists of the concatenation of 

residual_word_cur and mux_word. On the other hand, if the sum of residual_length_cur and 

mux_length is larger than 31 (longer_than_31 is high), bitstream_cur is updated as shown in 

Fig. 50 and bitstream_valid_cur is high such that Bus Interface (see Fig. 23) can fetch the 

updated bitstream_cur. 
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Fig. 50 Updating of bitstream_cur by right_shifter 

“bitstream_cur” is a register of 32 bits; in other words, we send 32 bits of bit-stream to Bus 

Interface in one cycle. “right_shifter” is a left-alignment signal of 64 bits and consists of the 

concatenation of residual_word_cur and mux_word. The remaining part, “C”, is stored into 

residual_word_cur. 

Moreover, TwoByteBuf_cur is a register of 16 bits and comprises the last two bytes of 

H.264/AVC bit-stream stored in External Memory (see Fig. 23). We use TwoByteBuf_cur and 

right_shiter to determine whether emulation prevention byte [1], a byte equal to 0x03, is 

necessary to be inserted into bitstream_cur. The main purpose of emulation prevention bytes 

is to ensure that start code prefix [1], a sequence of three bytes equal to 0x000001, occurs 

only at the beginning of the H.264/AVC bit-stream. When the following successive three 

bytes are found in the raw byte sequence, emulation prevention byte is inserted: 

1. 0x000000  0x00000300 
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2. 0x000001  0x00000301 

3. 0x000002  0x00000302 

4. 0x000003  0x00000303 

The usage of TwoByteBuf_cur is illustrated in Fig. 51. “right_shifter[63:32]” is divided 

into four bytes and the arrowhead is the insert position of emulation prevention byte. There 

are only seven cases according to the analysis [12]. For example, case 1 is illustrated in Fig. 

52, where the number is hexadecimal. After insertion, bitstream_cur becomes 0x03000003 

and 0x0002 is stored into residual_word_cur. 

right_shifter[63:32]TwoByteBuf_cur

case 0 case 1

case 2 case 3

case 4 case 5

case 6

 

Fig. 51 Usage of TwoByteBuf_cur 
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00 00 00 00 00 02

TwoByteBuf_cur right_shifter[63:32]

Insertion...

03 00 00 03 00 02
 

Fig. 52 Example for case 1 

3.3 Encoding flow of proposed 

CAVLC encoder 

Fig. 53 represents encoding flow of the proposed CAVLC encoder. Entropy SRAM 

Interface provides the proposed CAVLC encoder with the coded block pattern and coefficients 

of a sub-block. 
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Fig. 53 Encoding flow of the proposed CAVLC encoder 

The proposed CAVLC encoder uses the coded block pattern to determine whether the 

sub-block can be skipped. If the sub-block can be skipped, there are no further steps and we 

fetch the next sub-block from Entropy SRAM Interface. Otherwise, if the sub-block cannot be 

skipped, the coefficients are loaded into Input Buffer, as Fig. 54 shows. Nonzero Index Table 

concurrently records which coefficients are nonzero by setting bit “1”. Both Input Buffer and 

Nonzero Index Table are registers constructed in the proposed CAVLC encoder. 
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0 0 0 0 0 0 0 0 1 0 -1 -1 1 0 3 0Input Buffer
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Fig. 54 Input Buffer and Nonzero Index Table 

If all bits are zero in Nonzero Index Table, as Fig. 55 shows, it means that the sub-block 

is NSZB. Zero-block Codeword Table generates the codeword of the NSZB and Bit-stream 

Packer concatenates the codeword in parallel. Then the encoding flow is terminated earlier 

such that we save cycle counts for collecting syntax elements of the NSZB. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 

Fig. 55 Nonzero Index Table for an all-zero sub-block 

Otherwise, if Nonzero Index Table consists of nonzero bits (see Fig. 54), it means that 

the sub-block consists of nonzero coefficients. This thesis refers to a sub-block comprising 

nonzero coefficients as NAZ (Not All Zero). We analyze Nonzero Index Table to obtain 

syntax elements whose codeword are generated by combinational circuits and are 

concatenated by Bit-stream Packer. After all syntax elements of the sub-block are encoded 

into H.264/AVC bit-stream, the encoding of the NAZ sub-block is finished and we can fetch 

the next sub-block. 
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Nonzero Index Table makes it possible to directly encode significant coefficients such 

that we can save cycle counts on zero coefficients in NAZ. We can encode one nonzero 

coefficient every cycle by updating Nonzero Index Table. Fig. 56 and Fig. 57 show the 

updating. At some cycle, as shown in Fig. 56, we aim at the coefficient at index “7” and the 

codeword of the coefficient is concurrently generated by combinational circuits. At the next 

cycle (see Fig. 57), Nonzero Index Table is updated and we aim at the coefficient at index “4” 

such that the zeros between index “4” and “7” are ignored. Hence, Nonzero Index Table saves 

cycle counts on zero coefficients in NAZ. 

0 0 0 0 0 0 0 0 1 0 0 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 

Fig. 56 Coefficient at index 7 is being encoded 

0 0 0 0 0 0 0 0 1 0 0 -1 1 0 3 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0Nonzero Index Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 

Fig. 57 Coefficient at index 4 is being encoded 
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3.4 Architecture of proposed CAVLC 

encoder 

According to section 3.3, sub-blocks can be divided into three categories in terms of 

encoding flow: 

1. NAZ: as mentioned in section 3.3. 

2. NSZB: as mentioned in section 3.1.2. 

3. CS (CBP Skip): a sub-block which can be skipped by the coded block pattern. 

In this section, we first describe the architecture of the proposed CAVLC encoder. Then, in the 

following three sections, we cycle-wise explain the hardware operation for NAZ, NSZB, and 

CS to manifest the advantages of our design. 

Fig. 58 shows the architecture of the proposed CAVLC encoder. “cavlc_data_ready” 

fetches sixteen coefficients in one cycle. If the sub-block comprises less than sixteen 

coefficients like CHROMA_DC, Entropy SRAM Interface automatically appends zeros. 

According to the sub-block type and the coded block pattern, we determine whether the 

sub-block is CS. 
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Fig. 58 Architecture of the proposed CAVLC encoder 

As for a sub-block of NSZB or NAZ, the sixteen coefficients including the appending 

zeros are stored into Input Buffer, which comprises sixteen 16-bit registers, as Fig. 59 shows. 

Input Buffer is constructed in cavlc_data_ready. The coefficients are put into Input Buffer in 

zigzag scan order. We consider Input Buffer as a 1-D array and index “0” represents the DC. 

The greater the index is, the higher the frequency is. Nonzero Index Table comprises sixteen 

1-bit registers and indicates which coefficients are nonzero. When the coefficients are stored, 

we concurrently check which coefficients are zeros. If a coefficient is nonzero, we set one to 

the corresponding bit in Nonzero Index Table. The index of Nonzero Index Table is the same 

as Input Buffer. 
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Fig. 59 Structure of Input Buffer and Nonzero Index Table 

“sram_nonzero” is an SRAM which records the TotalCoeff of already encoded 

sub-blocks. “cavlc_nunl” reads neighbor TotalCoeff from sram_nonzero and calculates nC. 

Then cavlc_nunl writes the current TotalCoeff into sram_nonzero. 

“cavlc_scan” extracts syntax elements from Nonzero Index Table. We explain the 

operation of cavlc_scan cycle-wise below. 

At the first cycle, cavlc_scan uses a simple adder to calculate the number of bit “1” in 

Nonzero Index Table, which is TotalCoeff. Then, cavlc_scan uses start index and stop index to 

scan Nonzero Index Table, as Fig. 60 shows. Start index is a register and we initialize it as 

fifteen. This is because the coefficients of higher frequency are encoded earlier [9]. Stop index 

indicates the leading bit “1” in Nonzero Index Table from index 15 to 0. Stop index is the 

output of FindLeadingOne, a combinational circuit constructed in cavlc_scan. After stop 

index and TotalCoeff are known, total_zeros can be defined as Eq. 6. 
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Fig. 60 Start index and stop index with Nonzero Index Table 

TotalCoeff-  1 index  stop +  

 Eq. 6 

On the other hand, if FindLeadingOne cannot find any one bit in Nonzero Index Table, the 

sub-block is NSZB. We encode the NSZB by Zero-block Codeword Table (see Fig. 61) and 

the encoding of the NSZB is finished in advance. In fact, Zero-block Codeword Table is the 

first row of TABLE 2 because “all-zero” means both TotalCoeff and TrailingOnes are equal to 

zero. 

0<=nC<2 2<=nC<4 4<=nC<8 8<=nC nC==-1

1 11 1111 000011 01
 

Fig. 61 Zero-block Codeword Table 

At the second cycle, Nonzero Index Table is updated as shown in Fig. 62, where the bit 

at the position of stop index is set zero and start index moves to the new zero bit. Now we can 

calculate the run_before of the coefficient pointed by stop index at previous cycle, which is 

expressed as Eq. 7. For example, the run_before is one for the coefficient at index seven. 
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Fig. 62 Updating for Nonzero Index Table 

1 -index  stop -index start  

 Eq. 7 

At the following cycles, we do the same things as the second cycle. 

Every cycle we examine whether the coefficient pointed by stop index is a trailing one. If 

the coefficient is a trailing one, we add one to TrailingOnes and the trailing_one_sign_flag is 

concurrently determined. As soon as TrailingOnes is settled, cavlc_mux permits the codeword 

of Coeff_token and trailing_one_sign_flags to be sent to Bit-stream Packer. The codeword of 

Coeff_token is the concurrent output of cavlc_coding in which TABLE 2 is implemented. 

Because trailing_one_sign_flags are codeword in itself, no additional circuit is necessary. 

After trailing_one_sign_flags are encoded into the bit-stream, the coefficient pointed by 

stop index is sure to be a level. In such cases, cavlc_mux certainly grants the codeword of the 

level to be sent to Bit-stream Packer. The codeword of the level is the concurrent output of 

cavlc_coding_level which is adapted from JM encoder reference software [9]. In JM encoder, 

levels are encoded by a simple calculation instead of one-to-one mapping tables like TABLE 

2. 
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After each level is encoded into the bit-stream, cavlc_mux grants the codeword of 

total_zeros to be sent to Bit-stream Packer. The codeword of total_zeros is the output of 

cavlc_coding in which TABLE 3 and TABLE 5 are implemented. 

Although run_befores are the final syntax element in the bit-stream, we can obtain a 

run_before accompanied with a level or a trailing one in one cycle. The codeword of the 

run_before is concurrently generated by cavlc_coding_crun in which TABLE 4 is 

implemented. “cavlc_coding_crun” concatenates each run_before codeword into a 32-bit 

register before sent to Bit-stream Packer. According to TABLE 4, we can reason that the total 

length of all run_before codeword for a sub-block is always smaller than 32. After total_zeros 

is encoded into the bit-stream, we spend only one cycle to send the concatenated codeword to 

Bit-stream Packer. 

3.4.1 Hardware operation for encoding a NAZ 

We assume the sub-block is LUMA as Fig. 63 shows. The hardware operation of the 

proposed CAVLC encoder is described cycle-wise below: 

3 -3 0 0

-1 1 2 -1

0 1 -1 -1

0 0 0 0
 

Fig. 63 Coefficients of a LUMA sub-block 

1. 0th cycle:  Entropy SRAM Interface updates BlkIdx_cur for the sub-block. 
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2. 1st cycle:  According to BlkIdx_cur, Entropy SRAM Interface does the following 

two things. First, Entropy SRAM Interface sends read address to Residual 

Buffer (see Fig. 23). Second, Entropy SRAM Interface sends block_type and 

block_idx to CAVLC encoder. “block_type” refers to the sub-block type as 

mentioned in section 2.2.2. “block_idx” has the same definition as the 

numerical labels of Fig. 87. “block_idx” is used to determine read address of 

sram_nonzero to fetch neighbor TotalCoeff. “block_idx” is stored into 

blk_idx_cur and block_type is stored into blk_typ_cur, where both 

blk_idx_cur and blk_typ_cur are registers constructed in cavlc_data_ready.  

Moreover, CAVLC encoder obtains mb_x and mb_y from PR1. 

“mb_x” and mb_y are coordinates of the current macro-block. We use mb_x 

and mb_y to determine whether the sub-block is on border of frame. “mb_x” 

and mb_y are stored into mb_x_cur and mb_y_cur respectively. Both 

mb_x_cur and mb_y_cur are registers constructed in cavlc_data_ready. 

Finally, CAVLC encoder obtains the coded block pattern of the current 

macro-block from PR1. The CBP is stored into cbp_cur, which is a register 

constructed in cavlc_data_ready. 

3. 2nd cycle:  All coefficients of the sub-block are ready on the output of Residual 

Buffer. Moreover, cavlc_nunl sends read address of top neighbor to 

sram_nonzero. 

4. 3rd cycle:   “cavlc_nunl” sends read address of left neighbor to sram_nonzero. All 

coefficients are loaded into Input Buffer as Fig. 64 shows, and Nonzero 

Index Table is determined at the same time. Start index is initialized as 

fifteen (see section 3.4). 
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coefficient

Input Buffer =

0

Nonzero 
Index Table  

Fig. 64 Loading of Input Buffer and determination of Nonzero Index Table 

5. 4th cycle:   Start index is equal to 15 and stop index points to “13”, as shown in Fig. 

65. TotalCoeff is determined by a combinational adder as Fig. 66 shows. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 65 State of Nonzero Index Table at 4th cycle 
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0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+
…… ……

TotalCoeff

num_nz_cur  

Fig. 66 Determination of TotalCoeff by Nonzero Index Table 

TotalCoeff is stored into num_nz_cur which is a register constructed in 

cavlc_scan. “total_zeros” is determined by Eq. 6 as shown in Fig. 67. 

“total_zeros” is stored into total_run_cur which is a register constructed in 

cavlc_scan. 

+stop index 

1

-TotalCoeff total_zeros

total_run_cur  

Fig. 67 Determination of total_zeros 

The coefficient pointed by stop index is a trailing one whose 

trailing_one_sign_flag is one, so num_t1_cur, a register constructed in 

cavlc_scan, is increased as Fig. 68 shows. The meaning of num_t1_cur is the 

same as TrailingOnes. Trailing_one_sign_flags are stored into sign_t1_cur, a 
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register constructed in cavlc_scan. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer

MUX

…… ……

stop index

=
1 -1

num_t1_cur  

Fig. 68 Determination of TrailingOnes 

6. 5th cycle:   The TotalCoeff of top neighbor comes from sram_nonzero and is stored 

into nu_cur, which is a register constructed in cavlc_nunl. Nonzero Index 

Table is updated as Fig. 69 shows. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 69 State of Nonzero Index Table at 5th cycle 

The coefficient pointed by stop index, denoted by Input Buffer [12], is 
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a trailing one whose trailing_one_sign_flag is one, so num_t1_cur is 

increased. The run_before of Input Buffer [13] can be calculated by Eq. 7 as 

shown in Fig. 70. 

start 
index

stop 
index 1

run_before

TABLE 4

crun_word_cur

cavlc_coding_crun 

Fig. 70 Determination and concatenation of run_before 

The codeword (“11”) of the run_before is generated by TABLE 4, 

implemented as a combinational circuit in cavlc_coding_crun. The 

codeword is concatenated into crun_word_cur, a 32-bit register constructed 

in cavlc_coding_crun. 

7. 6th cycle:   The TotalCoeff of left neighbor comes from sram_nonzero and is stored 

into nl_cur, which is a register constructed in cavlc_nunl. Now that nu_cur 

and nl_cur are settled, nC can be determined in the cycle. Nonzero Index 

Table is updated as Fig. 71 shows. 



 65

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 71 State of Nonzero Index Table at 6th cycle 

The coefficient pointed by stop index is a trailing one whose 

trailing_one_sign_flag is one, so num_t1_cur is increased. The run_before 

of Input Buffer [12] is zero and the run_before codeword (“11”) is 

concatenated into crun_word_cur. 

8. 7th cycle:   Nonzero Index Table is updated as Fig. 72 shows. The value of 

num_t1_cur is equal to three which is the maximum of TrailingOnes, so the 

coefficient pointed by stop index is not a trailing one, although its magnitude 

is equal to one. Because the coefficient pointed by stop index is not a trailing 

one, trailing ones never occur at the following coefficients such that 

num_t1_cur and sign_t1_cur are settled.  

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 72 State of Nonzero Index Table at 7th cycle 
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Now that nC, TotalCoeff, and TrailingOnes are settled, the coeff_token 

codeword is valid and is concatenated into Bit-stream Packer. The codeword 

of coeff_token is generated by TABLE 2, which is implemented as a 

combinational circuit in cavlc_coding as Fig. 73 shows.  

The run_before of Input Buffer [11] is two and the run_before 

codeword (“011”) is concatenated into crun_word_cur. 

TABLE 2

cavlc_coding

num_nz_curnum_t1_curnC

coeff_token 
codeword

 

Fig. 73 Generation of coeff_token codeword 

9. 8th cycle:   “sign_t1_cur” is concatenated into Bit-stream Packer. No updating of 

Nonzero Index Table occurs. 

10. 9th cycle:   The state of Nonzero Index Table is the same as 7th cycle. See Fig. 72, 

Input Buffer [8] is a level, which is the coefficient at stop index. The level 

codeword, generated by cavlc_coding_level as shown in Fig. 74, is 

concatenated into Bit-stream Packer. 
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0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer

MUX

…… ……

stop index

level  
codeword

cavlc_coding_level

 

Fig. 74 Generation of level codeword 

11. 10th cycle:   Nonzero Index Table is updated as Fig. 75 shows. The level codeword 

of Input Buffer [7], the coefficient as stop index, is concatenated into 

Bit-stream Packer. The run_before codeword (“11”) of Input Buffer [8] is 

concatenated into crun_word_cur. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 75 State of Nonzero Index Table at 10th cycle 

12. 11th cycle:   Nonzero Index Table is updated as shown in Fig. 76. The level 

codeword of Input Buffer [4], the coefficient at stop index, is concatenated 
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into Bit-stream Packer. The run_before codeword (“01”) of Input Buffer [7] 

is concatenated into crun_word_cur. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 76 State of Nonzero Index Table at 11th cycle 

13. 12th cycle:   Nonzero Index Table is updated as shown in Fig. 77. The level 

codeword of Input Buffer [2], the coefficient at stop index, is concatenated 

into Bit-stream Packer. The run_before codeword (“0”) of Input Buffer [4] is 

concatenated into crun_word_cur. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 77 State of Nonzero Index Table at 12th cycle 

14. 13th cycle:   Nonzero Index Table is updated as shown in Fig. 78. The level 

codeword of Input Buffer [1], the coefficient at stop index, is concatenated 
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into Bit-stream Packer. Note that we have encoded all run_befores at 12th 

cycle such that zerosLeft becomes zero. Therefore, no run_before is encoded 

after 12th cycle (see section 2.3.1). 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 78 State of Nonzero Index Table at 13th cycle 

15. 14th cycle:   Nonzero Index Table is updated as shown in Fig. 79. The level 

codeword of Input Buffer [0], the coefficient at stop index, is concatenated 

into Bit-stream Packer. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index

stop 
index  

Fig. 79 State of Nonzero Index Table at 14th cycle 

16. 15th cycle:   Nonzero Index Table is updated as Fig. 80 shows. Note that no one bit 

exists in Nonzero Index Table. The fact means that encoding of levels is 
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done. 

0 0 -1 -1 -1 0 0 1 2 0 0 1 0 -1 -3 3Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index  

Fig. 80 State of Nonzero Index Table at 15th cycle 

17. 16th cycle:   The total_zeros codeword, generated by cavlc_coding as shown in Fig. 

81, is concatenated into Bit-stream Packer. Because total_run_cur and 

num_nz_cur have been settled at 4th cycle, the total_zeros codeword is valid 

right now. Note that TABLE 3 is constructed as a combinational circuit in 

cavlc_coding. 

TABLE 3

cavlc_coding

num_nz_curtotal_run_cur

total_zeros 
codeword

 

Fig. 81 Generation of total_zeros codeword 
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18. 17th cycle:   “crun_word_cur” is concatenated into Bit-stream Packer, which is the 

concatenation of each run_before codeword. Then, the encoding of the NAZ 

is finished. 

3.4.2 Hardware operation for encoding a 

NSZB 

We assume the sub-block is LUMA. The hardware operation of the proposed CAVLC 

encoder is described cycle-wise below: 

1. 0th - 2nd cycle:  The same as section 3.4.1. 

2. 3rd cycle:   Input Buffer and Nonzero Index Table are shown in Fig. 82. As shown 

in Fig. 83, if FindLeadingOne cannot find any nonzero bit in Nonzero Index 

Table, zero_blk_cur is set one to indicate that the sub-block is all-zero. 

“zero_blk_cur” is 1-bit register constructed in cavlc_scan. Moreover, 

“cavlc_nunl” sends read address of left neighbor to sram_nonzero. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Input Buffer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

start 
index  

Fig. 82 State of Nonzero Index Table at 3rd cycle for NSZB 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Nonzero Index Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FindLeadingOne

zero_blk_cur

cavlc_scan  

Fig. 83 Determination of an all-zero sub-block 

3. 4th cycle:   The TotalCoeff of top neighbor comes from sram_nonzero and is stored 

into nu_cur. 

4. 5th cycle:   The TotalCoeff of left neighbor comes from sram_nonzero and is stored 

into nl_cur. Because nu_cur and nl_cur are settled, nC can be determined in 

the cycle. Therefore, the codeword generated by Zero-block Codeword 

Table (see Fig. 61) is valid and it can be concatenated into Bit-stream Packer. 

Then, the encoding of the NSZB is finished. 

3.4.3 Hardware operation for encoding a CS 

1. 0th - 1st cycle: The same as section 3.4.1. 

2. 2nd cycle:  According to blk_idx_cur, blk_typ_cur, and cbp_cur, we can confirm 

that the sub-block is a CS. No codeword is generated and the encoding of 

the CS is finished. 
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3.5 Memory system 

In this section, we present the size requirement and organization of SRAM 

(sram_nonzero) constructed in the proposed CAVLC encoder. Section 2.2.4 shows that a 

macro-block has 24 sub-blocks which may be neighbors of other sub-blocks. For calculating 

nC, we must record TotalCoeff of the 24 sub-blocks. The neighbors may come from other 

macro-blocks as shown in Fig. 84. Fig. 84 shows a frame of M by N macro-blocks. The 

macro-blocks of Row 1 need information from those of Row 0 to calculate nC. Thus we must 

record the information of macro-blocks in one row of a frame such that the size of SRAM 

depends on the frame’s width. 

……

M

N

……Row 0

Row 1

 

Fig. 84 Two adjacent rows in a frame 

We take QCIF as an example and Fig. 85 shows the organization of sram_nonzero for 

QCIF. Because QCIF’s width is equal to 11 macro-blocks, four bits are necessary to represent 

the macro-blocks. We use five bits to represent the 24 sub-blocks in one macro-block. 

Therefore the address of SRAM comprises nine bits and the structure of the address is shown 
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in Fig. 86 

0
1
2

…

31

mb_addr 0

0
1
2

…

31

…
…

0
1
2

…

31

mb_addr 1

mb_addr 15

 

Fig. 85 Organization of sram_nonzero for QCIF 

mb_addr sb_addr
MSB LSB

4 bits 5 bits  

Fig. 86 Structure of sram_nonzero address 

The former four bits are denoted as mb_addr which indicate one of the 11 macro-blocks; the 

remaining five bits are denoted as sb_addr which indicate one of the 24 sub-blocks in a 

macro-block. One word comprises five bits because the maximum of TotalCoeff is equal to 16. 

Therefore the size of SRAM for QCIF is equal to 2560 bits, which is expressed as Eq. 8. 

)/(5)(29 wordbitsword ×  
 Eq. 8 
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Fig. 87 shows the mapping relation between the numbers in Fig. 85 and the 24 

sub-blocks of a macro-block. The smaller the number of a sub-block is, the earlier the 

sub-block is encoded (see section 2.2.1). For the current sub-block, we read the TotalCoeff of 

the top and left neighbors and then write the current TotalCoeff into the SRAM, as Fig. 88 

shows. 

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

16 17

18 19

20 21

22 23
 

Fig. 87 Mapping relation between sub-blocks and sram_nonzero for a macro-block 

Time

read top 
neighbor

read left 
neighbor

write current
TotalCoeff

 

Fig. 88 Timing schedule of sram_nonzero 

For each sub-block in Fig. 87, TABLE 11 represents the read addresses to access the 

neighbors and the write address to record the current TotalCoeff. “X” denotes the current 

macro-block’s mb_addr, X-1 denotes the left macro-block’s mb_addr, and an address is 

denoted as {mb_addr, sb_addr}. 

TABLE 11 Read and write address of sram_nonzero for a sub-block 

Sub-block top read address left read address current write address 
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0 {X, 10} {X-1, 5} {X, 0} 
1 {X, 11} {X, 0} {X, 1} 
2 {X, 0} {X-1, 7} {X, 2} 
3 {X, 1} {X, 2} {X, 3} 
4 {X, 14} {X, 1} {X, 4} 
5 {X, 15} {X, 4} {X, 5} 
6 {X, 4} {X, 3} {X, 6} 
7 {X, 5} {X, 6} {X, 7} 
8 {X, 2} {X-1, 13} {X, 8} 
9 {X, 3} {X, 8} {X, 9} 
10 {X, 8} {X-1, 15} {X, 10} 
11 {X, 9} {X, 10} {X, 11} 
12 {X, 6} {X, 9} {X, 12} 
13 {X, 7} {X, 12} {X, 13} 
14 {X, 12} {X, 11} {X, 14} 
15 {X, 13} {X, 14} {X, 15} 
16 {X, 18} {X-1, 17} {X, 16} 
17 {X, 19} {X, 16} {X, 17} 
18 {X, 16} {X-1, 19} {X, 18} 
19 {X, 17} {X, 18} {X, 19} 
20 {X, 22} {X-1, 21} {X, 20} 
21 {X, 23} {X, 20} {X, 21} 
22 {X, 20} {X-1, 23} {X, 22} 
23 {X, 21} {X, 22} {X, 23} 

For example, Fig. 89 shows a QCIF frame, where the red square is the current macro-block 

and the green squares are already encoded macro-blocks. The information of the green 

macro-block is stored in the SRAM and the number on each green macro-block is the 

corresponding mb_addr, so X is equal to four. The encoding order of sub-blocks can 

guarantees that a word in the SRAM is never updated before the word is read by other 

sub-blocks. 
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0 1 2 3

4 5 6 7 8 9 10

 

Fig. 89 Current macro-block in a QCIF frame 

3.6 Summary 

In this chapter, we propose two methods to save cycle counts on zeros which the CBP 

cannot skip. First, we use Zero-block Codeword Table to encode a NSZB such that the 

encoding flow can be terminated earlier. Second, Nonzero Index Table with stop index 

directly jumps to a nonzero coefficient in Input Buffer. Thus zeros in NAZ sub-blocks are 

skipped. Moreover, we present the size requirement and organization of SRAM in which 

already encoded TotalCoeff is stored. 
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Chapter 4. Results and Comparison 

4.1 Cycle count analysis 

As mentioned in section 3.4, sub-blocks can be divided into the following three 

categories: NAZ, NSZB, and CS. Below, we show the cycle count analysis for each category. 

Fig. 90 shows the timing schedule for encoding a NAZ. “x” is defined as TABLE 12 

shows and “y” is defined as Eq. 9. The following things are done during the first 5+x cycles: 

1. Fetch coefficients from Entropy SRAM Interface. 

2. “cavlc_nunl” interacts with sram_nonzero to calculate nC. 

3. Coeff_token, trailing_one_sign_flags, and total_zeros are settled by analyzing Nonzero 

Index Table. 

4. The trailing ones’ run_before codeword is concatenated into cavlc_coding_crun 

Afterwards, each syntax element codeword is sent to Bit-stream Packer. 

5+x 
cycles 1 cycle

Coeff_token trailing_one_sign_flags

1 cycle

levels

y  
cycles

total_zeros

1 cycle 1 cycle

run_befores  

Fig. 90 Timing schedule for encoding a NAZ sub-block 

TABLE 12 Definition of variable “x” 

TrailingOnes x
0 0
1 1
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2 2
3 2

1 esTrailingOn-TotalCoeff +  

 Eq. 9 

Fig. 91 shows the timing schedule for encoding of an NSZB. The following things are 

done during the first five cycles: 

1. Fetch coefficients from Entropy SRAM Interface. 

2. “cavlc_nunl” interacts with sram_nonzero to calculate nC. 

3. The fact that it is an NSZB is confirmed by analyzing Nonzero Index Table. 

4. Zero-block Codeword Table generates Coeff_token codeword. 

Afterwards, Coeff_token codeword is sent to Bit-stream Packer and encoding of the NSZB is 

done. 

5 
cycles 1 cycle

Coeff_token  

Fig. 91 Timing schedule for encoding of an NSZB sub-block 

Fig. 92 shows the timing schedule for encoding of a CS. The following things are done 

during the three cycles: 

1. Fetch coefficients from Entropy SRAM Interface 

2. Entropy SRAM provides the coded block pattern and the sub-block type. 

3. The fact that it is a CS is confirmed by the coded block pattern and the sub-block type. 

Afterwards, no codeword is sent to Bit-stream Packer and encoding of the CS is done. 
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3 
cycles  

Fig. 92 Timing schedule for encoding of a CS sub-block 

In conclusion, TABLE 13 shows the total cycle counts for encoding a NAZ, NSZB, and 

CS respectively. 

TABLE 13 Total cycle counts for CS, NSZB and NAZ 

 Total cycle counts per sub-block
CS 3 

NSZB 6 
NAZ 9+x+y 

 

4.2 Simulation result 

Simulation setting is the same as section 3.1. The results are calculated according to the 

analysis in section 4.1. Fig. 93 shows the average cycle counts to encode a sub-block, 

including CS, NSZB, and NAZ. Fig. 94 shows the average cycle counts we need to encode a 

macro-block. We choose 145 MHz as the working frequency of the proposed CAVLC encoder. 

Fig. 95 presents how many macro-blocks on average are encoded in one second. 
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Fig. 93 Average encoding cycles per sub-block 
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Fig. 94 Average encoding cycles per macro-block 
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Fig. 95 Average number of macro-blocks encoded per cycle 

The red line in Fig. 95 denotes “244800” that is the throughput requirement of 1080p at 

30 fps, as TABLE 14 shows [10]. Each case in Fig. 95 is above the requirement and we prove 

that the proposed CAVLC encoder can support 1080p at 30 fps. 

TABLE 14 Requirement of 1080 HD 

Format Width Height MBs Total MBs/second 
1080p 1920 1088 8160 244800 

 

4.3 Implementation results and 

comparison 

We used Verilog and UMC 0.13um cell library to implement the proposed CAVLC 

encoder, which consumes 9.03 K logic gates at 145 MHz. TABLE 15 shows the gate count 
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profile (see Fig. 58) and TABLE 16 shows on-chip memory requirement. TABLE 17 shows 

the comparison with other designs, where the serial numbers for zero-skipping methods are 

defined in TABLE 18. In TABLE 17, note that the gate count of Lai [14] includes the 

bit-stream packer. TABLE 19 shows the gate count profile comparison, where “statistic 

buffer” only refers to the storage element storing the syntax elements of a sub-block. 

TABLE 15 Gate count profile of the propose CAVLC encoder 

Item Gate Count 
cavlc_data_ready 3074 

cavlc_scan 1252 
cavlc_coding 1302 

cavlc_coding_level 1176 
cavlc_coding_crun 1410 

cavlc_nunl 570 
cavlc_mux 244 

Total 9028 
 

TABLE 16 On-chip memory requirement of the proposed CAVLC encoder 

 Number of word Bits per word Total bits 
QCIF 512 5 2560 

1080 HD 4096 5 20480 
 

TABLE 17 Comparison with other CAVLC encoder designs 

  Proposed [3] [15] [4] [13] [14] 

Technology  
UMC 

0.13um 
UMC 

0.18um
TSMC 
0.18um

FPGA 
0.18um 
CMOS 

TSMC 
0.35um

Frequency  145MHz 100MHz 27MHz 100MHz 125MHz 28MHz

Gate Count 
CAVLC 

Core 
9028 17635 23281 22128 9724 9171 

Foreman 301 350 225 
Mobile 397 430 360 
Stefan 361 400 na 

na na na 
Cycle Count 

per MB 
(QP=12) 

Akiyo 155 na na na na na 
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Coast 326      
Average 308 393 293 432 402 

 

Zero-skipping 
method 

 1, 2, 3 1 1, 2 none 1 none 

 

TABLE 18 Definition of serial numbers for zero-skipping methods 

Serial number Definition 
1 CBP Look-Ahead 
2 Nonzero Index Table 
3 Zero-block Codeword Table

 

TABLE 19 Gate count profile comparison 

 Proposed [3] [15] [4] [13] [14] 
coeff_token 864 298 554 
total_zeros 

1302 
646 564 420 

levels 1176 1012 2249 1208 
run_befores 1410 263 

3758

1361 432 
statistic buffer 0 12283 0 5325 
control 5140 2567 19523

17656
1785 

na 

Total 9028 17635 23281 22128 9724 9171 
 

Chen [3] is an improved version of the CAVLC encoder in Huang [6]. The architecture 

of Huang [6] is shown in Fig. 96. 

Scan Phase Coding PhaseStatistic Buffer

 

Fig. 96 Architecture of Huang [6] 

In Scan Phase, Huang [6] reads one coefficient per cycle and concurrently examine whether 

the coefficient is nonzero to update TotalCoeff. TotalCoeff is not settled until all coefficients 
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of a sub-block are read. For example, as for a LUMA sub-block, Huang [6] spends at least 

sixteen cycles to make TotalCoeff settled even if the sub-block consists of many zero 

coefficients. As a result, many cycle counts are wasted on zero coefficients. Because 

TotalCoeff is the first syntax element to be encoded into H.264/AVC bit-stream, Huang [6] 

must use Statistic Buffer to store the syntax elements obtained before TotalCoeff during the 

sixteen cycles, including levels and run_befores. Otherwise, the syntax elements except 

TotalCoeff will evaporate after the sixteen cycles. After all syntax elements are ready in 

Statistic Buffer, Coding Phase generates the codeword of the syntax elements from Statistic 

Buffer. While Coding Phase is generating the codeword of the current sub-block, Scan Phase 

cannot write the syntax elements of the next sub-block into Statistic Buffer. Otherwise, Scan 

Phase will destroy the data of the current sub-block in Statistic Buffer. Therefore, Scan Phase 

and Coding Phase cannot work in parallel such that the utilization of hardware is halved. To 

double the utilization, Chen [3] use two statistic buffers switched in ping-pong manner, as 

shown in Fig. 97. 

Scan Phase

Statistic Buffer 
0

Statistic Buffer 
1

Coding Phase

 

Fig. 97 Architecture of Chen [3] 

While Coding Phase is generating the codeword of the current sub-block, whose syntax 

elements are stored in Statistic Buffer 1, Scan Phase writes the syntax elements of the next 

sub-block into Statistic Buffer 0, so Scan Phase never destroys the data of the current 

sub-block in Statistic Buffer 1. Therefore, Scan Phase and Coding Phase can work in parallel 

such that the utilization is doubled. 
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On the contrary, the proposed design reads sixteen coefficients in one cycle and 

TotalCoeff is concurrently settled by Nonzero Index Table. After a few cycles when stop 

index meets a level for the first time, Coeff_token and trailing_one_sign_flags have been 

encoded into H.264/AVC bit-stream. Therefore, we can immediately send the level codeword, 

output of combinational circuits, to the Bit-stream Packer, so the additional redundant buffers 

are not necessary. As for the run_before, we also use a buffer to store its codeword before sent 

to Bit-steam Packer. However, Chen [3] and Huang [6] store the un-encoded value of the 

run_before but we store the encoded codeword of the run_before. Therefore, our buffer gate 

count is sure to be smaller than Chen [3]. In summary, the proposed design does not need 

Statistic Buffers to save syntax elements, so the proposed design consumes less logic gates 

than Chen [3]. Moreover, Chen [3] spends at least sixteen cycles for a sub-block even if the 

sub-block consists of many zero coefficients. As a result, Chen [3] wastes many cycle counts 

on zero coefficients. That is the reason why the proposed design can spend less cycle counts 

per macro-block than Chen [3]. 

The architecture of Kim [4] is similar to Huang [6], as Fig. 98 shows. Compared with 

Fig. 96, Kim [4] replaces Statistic Buffer with FIFO. Although Kim [4] has only one storage 

element, Kim [4] has the same pipelining schedule as Chen [3]. In other words, Kim [4] can 

process two sub-blocks at the same time. 

Scan Phase Coding PhaseFIFO

 

Fig. 98 Architecture of Kim [4] 

This is because the FIFO is an IP with a handshaking protocol [8] which grants the new data 
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coming in without destructing the old data. However, Kim [4] spends more cycle counts per 

macro-block than Chen [3] because Chen [3] takes advantage of CBP Look-Ahead [3]. The 

FIFO is the reason why Kim [4] consumes more logic gates than the proposed design. 

The architecture of Chien [13] is similar to Huang [6], as Fig. 99 shows. Compared with 

Fig. 96, Chien [13] replaces Statistic Buffer with SIPO (Serial Input Parallel Output). 

Scan Phase Coding Phase

SIPO  

Fig. 99 Architecture of Chien [13] 

Although Chien [13] has only one storage element, Chien [13] can concurrently process two 

sub-blocks as Chen [3]. That is because SIPO accepts one syntax element per cycle from Scan 

Phase and SIPO sends two syntax elements per cycle to Coding Phase. Therefore the old data 

are fetched by Coding Phase before they are destroyed by the new data from Scan Phase. 

However, SIPO is the reason why Chien [13] consumes more logic gates than the proposed 

design. On the other hand, Chien [13] spends more cycle counts than the proposed design 

because CBP Look-Ahead is the only zero-skipping method. 

The architecture of Lai [14] is similar to Huang [6], as Fig. 100 shows. Compared with 

Fig. 96, Lai [14] replaces Statistic Buffer with Stack. The Stack is also a storage element to 

store syntax elements generated by Scan Phase. 
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Scan Phase Coding PhaseStack

 

Fig. 100 Architecture of Lai [14] 

Like Huang [6], while Coding Phase fetches syntax elements from the Stack, Scan Phase 

cannot write the syntax elements of the next sub-block into the Stack. Moreover, Scan Phase 

also spends at least sixteen cycle counts to obtain all syntax elements of a sub-block. Thus, 

Lai [14] may spend as many cycle counts in encoding a sub-block as Huang [6]. So Lai [14] 

should spend more cycle counts per macro-block than the proposed design. On the other hand, 

Lai [14] should consume more logic gates than the proposed design because of the Stack. 

Note that the total gate count of Lai [14] is close to that of the proposed design. This is 

because Lai [14] chooses a much lower working frequency than the proposed design does. 

Fig. 101 shows the architecture of Tsai [15]. TQ (Transform Quantize) Stage [15] writes 

coefficients of a macro-block into Residual SRAM [15]. At the same time, TQ Stage records 

which coefficients are nonzero in Non-zero Flag Reg [15] and TQ Stage records which 

coefficients are 1 or -1 in Abs-one Flag Reg [15]. A macro-block consists of about 384 

coefficients, including luminance and chrominance, so both Non-zero Flag Reg and Abs-one 

Flag Reg comprise 384 bits. 
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Fig. 101 Architecture of Tsai [15] 

First, Symbol Look Ahead Module [15] uses Non-zero Flag Reg and Abs-one Flag Reg to 

generate TotalCoeff and TrailingOnes in one cycle, whose codeword is concurrently 

calculated by Table classes [3] and concatenated by Bit-stream Packer. Then Symbol Look 

Ahead Module directly accesses one nonzero coefficient per cycle according to Non-zero Flag 

Reg, whose codeword is calculated by Table classes at the same time. Like the proposed 

design, because TotalCoeff and TrailingOnes have been encoded, Tsai [15] does not need any 

Statistic Buffer to store the coefficient and the codeword can be immediately concatenated 

into Bit-stream Packer. However, Tsai [15] consumes more logic gates than the proposed 

design. The large gate count of Tsai [15] results from the MB-sized Non-zero Flag Reg and 

Abs-one Flag Reg. On the other hand, note that Tsai [15] spends fewer cycle counts than the 

proposed design. The reasons may be the following: 

1. The operation of Non-zero Flag Reg is similar to that of Nonzero Index Table, because 

both can skip zero coefficients in NAZ. 

2. Abs-one Flag Reg makes Tsai [15] spend fewer cycle counts on calculating TrailingOnes 

than the proposed design. 

3. In TABLE 17, the cycle count of the proposed design includes not only the time for the 
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CAVLC core process but also the time for interacting with Entropy SRAM Interface, as 

mentioned in section 3.4.1 and section 4.1. However, Tsai [15] does not disclose the 

method of calculating cycle count. 

Last but not least, we consume less logic gates under higher frequency. In other words, 

although we have no such statistic buffers to pipeline, the proposed design has a shorter 

critical path than other designs. Moreover, the demand for the statistic buffer originates from 

data evaporation. Therefore, critical path is not a point of controversy. 

In summary, the designs which need statistic buffers often consume large logic gate 

count, as TABLE 19 shows. TABLE 17 shows the proposed design can achieve up to 61% 

decrease in logic gate count. On the other hand, Nonzero Index Table and Zero-block 

Codeword Table can skip zero coefficients which CBP Look-Ahead [3] cannot detect. In other 

words, the proposed design can skip every zero coefficient in a macro-block. Therefore, the 

proposed design achieves higher throughput than other designs. TABLE 17 shows the 

proposed design can achieve up to 29% decrease in cycle count. 
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Chapter 5. Conclusions 

The main contribution of this thesis is to propose two new hardware architectures which 

permit direct significance encoding. The proposed architectures compensate for drawbacks of 

conventional CBP Look-Ahead such that CAVLC encoder for H.264/AVC can achieve a 

higher throughput. CBP Look-Ahead uses the coded block pattern to detect occurrence of an 

all-zero sub-block in advance such that encoding time for the all-zero sub-block can be saved. 

However, our statistics in section 3.1.2 shows that many all-zero sub-blocks are not covered 

by the coded block pattern, especially at middle QP and low QP. Moreover, a NAZ sub-block 

is sure to comprise some zero coefficients, which the coded block pattern cannot detect by 

definition. Our statistics in section 3.1.1 shows that a NAZ sub-block comprises up to 60% 

zero coefficients on average. As a result, CBP Look-Ahead is not enough to significantly 

improve throughput of a CAVLC encoder. Thus we propose two new architectures to save 

encoding cycle counts of the zero coefficients which the coded block pattern cannot take into 

account. First, Zero-block Codeword Table permits encoding flow to be terminated in advance 

for an NSZB sub-block. Second, Nonzero Index Table directly skips several zero coefficients 

in one cycle for a NAZ sub-block. The proposed CAVLC encoder adopts Zero-block 

Codeword, Nonzero Index Table, as well as CBP Look-Ahead, such that we can save 

encoding time of all zero coefficients in a macro-block. Comparison in section 4.3 shows that 

the proposed design achieves a higher throughput than other designs. Simulation results in 

section 4.2 shows that the proposed design can support 1080p at 30fps. 

Moreover, the proposed design has the advantage of fewer gate counts even at a higher 

working frequency. This is because our design does not need statistic buffers to save 

intermediate syntax elements, as mentioned in section 4.3.  
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Eventually, the proposed design can support 1080p at 30 fps with 9.03 K gate count at 

145 MHz. We save 61% logic gate count and 29% cycle count. 
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