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摘  要 

 

本論文提出一個極低功率且高效能之 32 位元嵌入式處理器

ACARM7(ACademic ARM7)的研究成果報告。其一，此一處理器有較佳

的優異性能。此處理器是以 ARM V4 指令集實作，所以此指令集能使

用 ADS(ARM Developer Suite)的編譯器將高階程式語言(C,C++)編譯

成組合語言，再將其組譯為可供 ACARM7 使用的機器語言，以顯示出

此處理器的高使用性。經過與原廠 ARM7TDMI 相比，此處理器不但所

消耗的功率更少，所使用的邏輯閘更少，而且操作時脈更為快速。其

二，本論文提出一套完整且嚴謹的驗證流程。此流程既能在近 10 億
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個模擬週期的比對之下確保其功能行為之正確性，又能確保其合成為

低階邏輯閘電路之後整個轉換正確性。其三，本處理器亦可供做 JPEG

解碼器系統。通過此驗證流程之後，此處理器之設計被燒錄在 FPGA

之上，再使用 ARM926EJ-S Versatile 發展板系統，以完成 JPEG 解碼

器系統。 

總之，本處理器無論在效能、面積、與功率等方面的比較都勝過

ARM7TDMI；此論文提供一套完整且嚴謹的處理器開發驗證流程，以確

保更佳之正確性；本處理器還燒錄在 FPGA 之上供做 JPEG 解碼器系

統，以展示其提供良好的應用性。 
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ABSTRACT 
 

This thesis presents the research result of an ultra low-power and 

high-performance 32-bit embedded processor with JPEG decoder system. This 

processor is named ACARM7 (ACademic ARM7). The ISA (Instruction Set 

Architecture) of ACARM7 adopts the ARM V4 architecture. Hence the ADS (ARM 

Develop Suite) can be directly used. ADS can first be used to compile the high level 

programming language (C, C++) written by users to the assembly language, and then 

can assemble the assemble language to the low level machine code for ACARM7 use. 

It indicates the high usability of ACARM7. Compared with ARM7TDMI, the power 

consumed by the proposed processor is lower; the gate-count of the proposed one is 

less; and the performance is better. Meanwhile, this thesis also provides a thorough 

and rigorous verification flow which assures both the correctness of functional 
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behavior of the proposed processor design after more than two billion simulation 

cycle comparisons and the synthesis correctness of synthesized gate-level netlist 

circuit. Moreover, the proposed processor is mapped onto the FPGA and integrated 

within the ARM926EJ-S Versatile Development Board to implement a JPEG decoder 

system. Based on the experiment result obtained by this research, the higher 

performance, the smaller area, and the lower power are all the advantages of the 

proposed processor compared with ARM7TDMI. The thesis also proposes a thorough 

and rigorous processor verification flow. Moreover, the high applicability of the 

proposed processor is demonstrated by mapping it into an FPGA for implementing a 

JPEG decoder system. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 V 

 



ACKNOWLEDGMENT 
感謝辭 

 

能夠完成這篇論文，首先我要衷心感謝指導教授黃俊達老師。在

整個要求高品質的研究階段中，黃老師總是提供卓越的指導、全力的

支持、以及溫暖的鼓勵；他淵博的知識、豐富的經驗、正確的判斷、

以及熱情的態度也在其平日諄諄教誨之下，對吾儕漸收「滴水穿石與

潛移默化之效」；而黃老師這些做人與做事的特質的確都對我以及實

驗室同學深具莫大的啟發與無窮的裨益。 

我也要感謝本校 ACAR 實驗室的同學：南興、之暉、詠翔、威虢、

瀚蔚、建德以及于翔等諸君，因為你們在各方面給我的協助與建議確

實讓我這兩年的研究生涯過得既充實又有長足的進步。由於你們的共

同陪伴，我有了更深層的體驗：美德與智慧不能獨立達到最高的境

界，所以需要朋友的互助與推愛。 

最後我要感謝父母、長輩、家人、與親戚；您們的厚愛、照顧、

與支持，為我過去、現在、與未來的人生增添絢麗的色彩！這些就是

我此生幸福快樂的不歇之泉。我誠願將這篇論文獻給您們，以回報您

們的慈愛於萬一！ 

                      許哲霖  敬書於交大ACAR實驗室 

 VI 
 



CONTENTS 
ABSTRACT(Chinese).................................................................................................II 
ABSTRACT(English) ............................................................................................... IV 
ACKNOWLEDGMENT .................................................................................................. VI 
CONTENTS .................................................................................................................VII 
LIST OF TABLES ........................................................................................................... X 
LIST OF FIGURES ........................................................................................................ XI 
CHAPTER 1  INTRODUCTION ..................................................................................... 12 
CHAPTER 2  PREVIOUS WORKS ................................................................................ 15 

2.0 Overview ...................................................................................................... 15 
2.1 Prerequisites ................................................................................................ 15 

2.1.0 Overview of Prerequisites ............................................................... 15 
2.1.1 Core Architecture of ARM7TDMI ................................................. 15 
2.1.2 Pipeline Stage of ARM7TDMI ........................................................ 17 
2.1.3 Instruction Set Architecture (ISA) of ARM7TDMI...................... 19 

2.2 Related Works ............................................................................................. 24 
2.2.0 Overview of Related Works ............................................................ 24 
2.2.1 Shift/Rotate Operation by Barrel-shifter....................................... 25 
2.2.2 Mode-switch by Exceptions............................................................. 26 

2.3 Summaries of Previous Works................................................................... 32 
CHAPTER 3  PROPOSED CORE DESIGNS ................................................................... 34 

3.0 Overview ...................................................................................................... 34 
3.1 Architecture of the Proposed Design ......................................................... 34 

3.1.0 Overview of Architecture of the Proposed Design ........................ 34 
3.1.1 Block Diagram of the Proposed Design ......................................... 34 
3.1.2 Control Logic of the Proposed Design............................................ 39 
3.1.3 Arithmetic/ Logical Operation in EX-stage ................................... 41 
3.1.4 Multi-cycle Multiplication in EX-stage .......................................... 43 

3.2 Implementation of Low-power Technique ................................................ 44 
3.2.0 Overview of Implementation of Low-power Technique ............... 44 
3.2.1 Unused Registers Gated .................................................................. 44 
3.2.2 Unexecuted Function Units Gated.................................................. 46 
3.2.3 Low-power Consumption Property of Fong-adder ...................... 47 

3.3 Summaries of Proposed Core Designs ...................................................... 48 
CHAPTER 4  EXPERIMENTAL RESULTS ..................................................................... 51 

4.0 Overview ...................................................................................................... 51 
4.1 Implementation ........................................................................................... 51 

 VII 
 



4.2 Discussion of Experimental Results .......................................................... 52 
4.2.0 Overview of Experimental Results ................................................. 52 
4.2.1 Comprehensive Comparison........................................................... 52 
4.2.2 Timing Comparison ......................................................................... 53 
4.2.3 Area Comparison ............................................................................. 54 
4.2.4 Power Comparison........................................................................... 56 
4.2.5 Other Characteristics ...................................................................... 57 

4.3 Summaries of Experimental Results ......................................................... 58 
CHAPTER 5  PROPOSED VERIFICATION STRATEGY ................................................. 59 

5.0 Overview ...................................................................................................... 59 
5.1 Implementation ........................................................................................... 59 
5.2 Functional Verification ............................................................................... 60 

5.2.0 Overview of Functional Verification .............................................. 60 
5.2.1 Coding Style Checking by Linting Free ......................................... 61 
5.2.2 Deterministic Verification ............................................................... 61 
5.2.3 Input-constrained Random Verification ........................................ 62 
5.2.4 Assertion Based Verification ........................................................... 63 

5.3 Synthesized Netlist Verification ................................................................. 66 
5.3.0 Overview of Synthesized Netlist Verification ................................ 66 
5.3.1 Synthesis by Scripts ......................................................................... 67 
5.3.2 Logic Equivalence Checking (LEC) ............................................... 68 
5.3.3 Gate Level Simulation ..................................................................... 69 
5.3.4 Power Estimation by Prime-power ................................................ 69 

5.4 Test Plan and Testability Measurement .................................................... 69 
5.5 Summaries of Proposed Verification Strategy.......................................... 70 

CHAPTER 6  JPEG DECODER SYSTEM ..................................................................... 71 
6.0 Overview ...................................................................................................... 71 
6.1 Implementation ........................................................................................... 71 
6.2 Architecture of System Level ..................................................................... 72 

6.2.0 Overview of Architecture of System Level .................................... 72 
6.2.1 Major Components of the Proposed System ................................. 72 
6.2.2 Control Flow of the Proposed System ............................................ 73 

6.3 Architecture of Hardware Level ................................................................ 74 
6.3.0 Overview of Architecture of Hardware Level ............................... 74 
6.3.1 AHB Peripherals in FPGA .............................................................. 74 
6.3.2 Core Wrapped with AHB Bus Interface ........................................ 76 
6.3.3 Control Flow within AHB-Wrapper for ACARM7 in FPGA ...... 79 

6.4 Program Control Flow in Software Level................................................. 81 

 VIII 
 



6.5 Experimental Results of Proposed System ............................................... 82 
6.6 Summaries of JPEG Decoder System ....................................................... 83 

CHAPTER 7  CONCLUSIONS....................................................................................... 85 
FUTURE WORKS ......................................................................................................... 87 
BIBLIOGRAPHY ........................................................................................................... 88 

 

 IX 
 



LIST OF TABLES 
Table2.1 Exception vector address .......................................................................... 31 
Table3.1 Transitions saved with Clock gated synthesized CG cell ....................... 46 
Table3.2 PDP Analysis about Fong compared to Hybrid K-S Ling ..................... 48 
Table3.3 Timing Analysis about Fong compared to Hybrid K-S Ling................. 48 
Table3.4 Area Analysis about Fong compared to Hybrid K-S Ling ..................... 48 
Table4.1 Simulation environment setup for experiments...................................... 51 
Table4.2 Comprehensive comparison among 3 different cores ............................ 53 
Table4.3 Performance comparison among 3 different cores................................. 54 
Table4.4 Area/Gate-count comparison among 3 different cores........................... 55 
Table4.5 Power comparison among 3 different cores ............................................ 56 
Table4.6 Power-Delay-Product comparison among 3 different cores .................. 57 
Table5.1 Verification environment setup ................................................................ 59 
Table5.2 All of the bugs found in functional verification phase ........................... 64 
Table5.3 Un-collapsed Stuck Fault Summary Report ........................................... 69 
Table6.1 Verification environment setup ................................................................ 72 
Table6.2 Experimental results of FPGA ................................................................. 83 
 

 X 
 



LIST OF FIGURES 

Fig.2.1 Block diagram of ARM7TDMI architecture ............................................. 17 
Fig.2.2 ARM7TDMI single-cycle instruction 3-stage pipeline operation ............ 18 
Fig.2.3 ARM7TDMI multi-cycle instruction 3-stage pipeline operation ............. 18 
Fig.2.4 ARM7TDMI instruction set encoding format ........................................... 21 
Fig.2.5 ARM7TDMI instruction set ........................................................................ 22 
Fig.2.6 ARM7TDMI instruction set (continued) .................................................... 23 
Fig.2.7 ARM shift/rotate mechanism ...................................................................... 23 
Fig.2.8 Condition code summary ............................................................................. 24 
Fig.2.9 A left-shifted example as N=32 .................................................................... 25 
Fig.2.10 BS MUX Tree with 5 stages adding one final stage ................................. 26 
Fig.2.11 Program status register format ................................................................. 30 
Fig.2.12 ARM operating mode and register usage ................................................. 30 
Fig.2.13 Register organization in ARM state.......................................................... 31 
Fig.3.1 ACARM7 core architecture diagram ......................................................... 35 
Fig.3.2 Core architecture diagram in EX-stage...................................................... 36 
Fig.3.3 Mul 7-stage FSM diagram ........................................................................... 37 
Fig.3.4 Address Register source selection ............................................................... 37 
Fig.3.5 Read/Write data selection............................................................................ 38 
Fig.3.6 FSM of control logic ..................................................................................... 39 
Fig.3.7 Detailed Core architecture diagram in EX-stage ...................................... 42 
Fig.3.8 Registers with Clock gated by RTL and synthesized CG cell................... 45 
Fig.3.9 Input data gated in unexecuted units ......................................................... 47 
Fig.5.1 Functional Verification flow ........................................................................ 60 
Fig.5.2 Input-constrained Random Verification .................................................... 63 
Fig.5.3 Assertion based verification......................................................................... 63 
Fig.5.4 64x64.bmp ..................................................................................................... 65 
Fig.5.5 64x64.jpg ....................................................................................................... 65 
Fig.5.6 176x144.bmp ................................................................................................. 66 
Fig.5.7 176x144.jpg ................................................................................................... 66 
Fig.5.8 Synthesized Netlist Verification flow .......................................................... 67 
Fig.6.1 Block diagram in system level ..................................................................... 73 
Fig.6.2 AHB peripherals configured in the FPGA ................................................. 76 
Fig.6.3 Core refinement with AHB interface FSMs ............................................... 78 
Fig.6.4 AHB Wrapper for ACARM7 (with ARM9EJ-S and SDRAM) ................ 80 
Fig.6.5 ZBTSRAM memory usage .......................................................................... 80 
Fig.6.6 Program control flow in software level....................................................... 82 

 XI 
 



CHAPTER 1  
INTRODUCTION 
 

Nowadays, the number of digital consumer electric products, which includes 

Personal Digital Assistant (PDA), cell-phone, Playstation-Protable (PSP), Apple 

iPod, and so on, has grown up so drastically. Either embedded processors or Digital 

Signal Processors (DSP), whose power is supplied by the batteries, are included in 

all these portable electric products. Therefore, how to save more power of these 

portable electric devices is the most important subject in the competitive market. 

This thesis proposes the research result of an ultra-low power and high performance 

32-bit embedded processor implemented by ARM v.4 ISA. This processor is such a 

quite convenient device due to the fact that the machine code fetched by the 

proposed one can be obtained by ARM Develop Suite (ADS). Small area of the 

proposed processor also saves more space in portable electric products which need 

characteristic of lightness, thinness, shortness, and smallness. 

With the prevalent fashion of System on Chip (SOC), designs of digital 

electric products have become more complicated; therefore, such designs need a 

more rigorous and complete verification strategy to ensure both functional 

correctness of the design and the synthesis correctness of synthesized gate-level 

netlist circuit. This thesis provides a thorough and rigorous verification strategy 

including the coding-style check, deterministic verification, input-constrained 

random verification, and assertion-based verification so that this strategy can get 

functional verification phase passed. In addition, the synthesized netlist verification 

flow is composed of synthesis procedure by scripts, logic equivalence checking, 

gate-level simulation, and power estimation by prime-power. Checking the 
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coding-style of the design by Linting tool will avoid all kinds of simulation errors, 

unexpected latches, misunderstanding naming issues, the failure of DFT (Design for 

Test), and so on. In addition, deterministic verification is made to check all regular 

cases and special corner cases which should be confronted in simulation phase; on 

the other hand, input-constrained random verification is made to detect all of 

unexpected situations that the design may confront with; the more the number of 

simulation cycles, the less the number of bugs existing in the design; and then more 

robust design can be declared. Moreover, Assertion-based verification (also called 

property-based verification, PBV) is implemented in the core design to check out 

whether the functional behavior has been corresponded to the expectation of 

designers; although some bugs may not cause any simulation answer errors and may 

be ignored easily by designers, the PBV can definitely find those bugs out. On the 

other hand, synthesized netlist verification strategy assures that no error occurs in 

the synthesis procedure. The writing and refining of synthesis scripts is the first step 

to obtain a netlist with the characteristic of lower power, smaller area, and higher 

performance. Logic equivalence checking is the second step to verify the 

consistency of an RTL design as it synthesized into gate-level netlist. Gate-level 

simulation is the third step to execute to assure functional correctness after synthesis. 

Preliminary power estimation by prime-power is the last step of the verification flow. 

As a matter of fact, through the proposed rigorous and complete verification strategy 

it is guaranteed that the proposed embedded processor owns high quality of an IP 

(Intelligent Property) with the characteristic of bug-free robustness, high reusability, 

and convenient porting issue.  

Considered only the core design in the hardware issue is not enough in a SOC 

era, more difficulties in system level will be confronted with. For instance, the 

proposed core will be wrapped with an AMBA (Advanced Microcontroller Bus 
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Architecture) wrapper to communicate with other IPs on the AMBA while the core 

is implemented in an ARM-based embedded system. Moreover, the application 

software has to be modified before while is used by an embedded system. Therefore, 

this thesis also provides a developed JPEG decoder system with the proposed core, 

and the high applicability can be proofed. 

As summarized above, the higher performance, the smaller area, and the lower 

power are all the advantages of the proposed processor compared with ARM7TDMI. 

The thesis also proposes a thorough and rigorous verification flow to verify the 

correctness of the proposed core. Moreover, the high applicability of the proposed 

processor can be proved by configuring it into the FPGA for implementing a JPEG 

decoder system. 

The remainder of this thesis is organized as follows: Chapter 2 concisely 

describes the previous works related to the proposed design. Chapter 3 presents the 

architecture of the proposed core and some low power techniques. Chapter 4 shows 

the experiment results of the proposed core compared to other cores. Chapter 5 

provides a complete verification strategy to make the proposed core more robust. 

Chapter 6 presents a JPEG decoder system which is integrated with the proposed 

core design. Chapter 7 concludes this thesis. Future works and bibliography are also 

provided afterward. 
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CHAPTER 2  
PREVIOUS WORKS 
 

2.0 Overview 
This chapter describes some previous works related to ARM7TDMI, which is 

a member of the Advanced RISC Machines (ARM) family of general purpose 32-bit 

embedded processor. Section 2.1 describes some prerequisites about ARM7TDMI, 

and Section 2.2 discusses about some related works. At last, Section 2.3 summarizes 

the previous works and architecture of the proposed core design ACARM7 with 

ultra-low power technique supported will be introduced in the next chapter. 

 

2.1 Prerequisites 

2.1.0 Overview of Prerequisites 

This section describes some prerequisites related to ARM7TDMI, which is a 

member of the Advanced RISC Machines (ARM) family of general purpose 32-bit 

embedded processor. Section 2.1.1 depicts basic architecture of the processor core. 

Section 2.1.2 mentions pipeline stage of it. Section 2.1.3 describes instruction set 

architecture (ISA) of ARM7TDMI. More related works about ARM7TDMI will be 

discussed in the Section 2.2. 

 

2.1.1 Core Architecture of ARM7TDMI  

The ARM7TDMI is based on Reduced Instruction Set Computer (RISC) 

principles, and the ISA and related decode mechanism are much simpler than those 
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of microprogramming Complex Instruction Set Computers (CISCs). This simplicity 

results in a high instruction throughput and impressive real-time interrupt response 

from a small and cost-effective chip. 

The 3-stage pipeline ARM7TDMI organization is illustrated in Fig.2.1 [1]. It 

can be seen that two read ports and one write port of the register bank which access 

all registers. Additional read port and write port are added to access program counter 

(PC). 

The Barrel-shifter, which manipulates the input data to do an operation like 

left-shifted, right-shifted arithmetic, right-shifted logical, and right-rotated and 

which operation should be done depending on the operation-code (OP-code). The 

ALU responds in all of the arithmetic and logical operations, while the address 

register with incrementer, which selects and holds all memory address and generate 

sequential address as required. On the other hand, data register holding data read 

from or written to memory with data alignment. The instruction decoder and 

associated control logic are also included in ARM7TDMI. 
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Fig.2.1 Block diagram of ARM7TDMI architecture 

 

2.1.2 Pipeline Stage of ARM7TDMI 

ARM7TDMI using a 3-stage pipeline structure includes fetch-stage, 

decode-stage, and execute-stage [2]. The first stage fetches instructions from 

memory and places them in the instruction pipeline. The decode-stage decodes the 

fetched instruction for next cycle execution. The last one of the 3-stage makes input 

data shifted or rotated if needed and executes them with ALU or multiplier and the 

processed data will write back the calculated result to the destination register finally.  

At any time, each of the three stages may be occupied by three different 
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instructions; therefore, each stage of the hardware is capable handling the instruction 

within independently. 

While a simple data processing instruction is executed by the processor, one 

instruction can be completed every clock cycle but with three-cycle latency; 

however, the throughput of the processor is one instruction per cycle and this kind of 

instructions is also called single-cycle instructions, as shown in the Fig.2.2. 

 
Fig.2.2 ARM7TDMI single-cycle instruction 3-stage pipeline operation 

In contrast, the execution flow of a multi-cycle instruction is less regular, for 

example, a sequential ADD instructions with a data store instruction STR, occurring 

after the first ADD instruction, as showed in Fig.2.3. The action of address 

calculation and the data transfer which both stay in the execution-stage take two 

cycles; as a result, the third instruction behind the STR stays in the decode-stage 

until the STR instruction completes the data transfer. Therefore, in this instruction 

sequence, all parts of the processor are activated in every cycle and the memory 

access behavior is the mainly limiting factor that limits the cycles taken by a 

sequential instructions. 

 
Fig.2.3 ARM7TDMI multi-cycle instruction 3-stage pipeline operation 
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2.1.3 Instruction Set Architecture (ISA) of ARM7TDMI 

This section describes the instruction set architecture of ARM7TDMI [1]. 

However, ISA of the proposed design is a version of ARM7TDMI adapted to only 

32-bit instruction without Thumb and coprocessor instructions; therefore, only the 

32-bit instruction set of ARM7TDMI will be focused in this section. 

ISA of ARM7TDMI can be classified into 3 types, data processing instructions, 

data transfer instructions, and control flow instructions. The encoding formats can be 

seen in the Fig.2.4. Moreover, all instructions are listed in theFig.2.5 and Fig.2.6. 

Data processing instructions are the only one of 3 classified instruction set types 

listed above which enables to modify data values came from registers by executing 

arithmetic or logical operation on them. They typically require 2 operands and 

produce one single result. Such instructions include arithmetic operations,  bit-wise 

logical operations,  register movement operations , and comparison operations.  

ADD, ADC, and SUB are parts of the first while AND, OR,and XOR belong to the 

second.  Register movement operations include MOV and MVN and comparison 

operations include CMP, CMN, TST, and so on. The Operand2 field of each 

instructions of data processing/PSR transfer includes 12 bits and has the ability to 

make operand2 shifted or rotated by a Barrel-shifter, as can be seen in the Fig.2.4. It 

shows shift/rotate operation mechanism in the Fig.2.7 and means all data processing 

instructions before arithmetic/logical operations can be shifted/rotated if needed. 

Moreover, the conditional codes of each instruction top 4-bit can be modified with 

any of the data processing instructions and more details about conditional codes will 

be discussed in the following paragraphs. 

Data transfer instructions moving data between registers of ARM and memory 

and can be classified as 3 basic forms in the ARM instruction set. They are single 
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register load/store instructions, multiple register load/store instructions, and single 

register swap instructions. Single register load/store instructions, supporting all the 

byte transfer, half-word transfer, and word transfer, use most broadly to transfer data 

between registers and memory. Multiple register load/store instructions transfer data 

between memory and registers by word, less flexible than single data transfer 

instructions; however, being capable of large quantities of data to be transferred more 

efficiently, they are used for procedure entry and exit, to save and restore workspace 

registers, and to copy blocks of data around memory. Single register swap instructions 

allow a value in a register to be exchanged with a value in memory, effectively doing 

both load/store operation in one instruction, and they are little used in user-level 

programs.  

Control flow instructions neither process data nor move it around; however, 

they simply determine which instructions get executed next. The processor normally 

executes instructions sequentially instead it reaches the branch instruction and 

proceeds directly to the destination address which the branch instruction comprehends. 

The mechanism used to control loop entry or exit is conditional branch which 

executes the instruction of branch only if the conditional codes of them get the correct 

value to fulfill some conditions. 
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Fig.2.4 ARM7TDMI instruction set encoding format 

 21 
 



 

Fig.2.5 ARM7TDMI instruction set 
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Fig.2.6 ARM7TDMI instruction set (continued) 

 

Fig.2.7 ARM shift/rotate mechanism 

As mentioned earlier, one unique key-feature of the ARM instruction set is that 

every instruction is conditionally executed which implemented by top 4-bit 

conditional field of each 32-bit instruction field. Each of 15 values(instead of code 

equals to ‘1111’, NV) of the conditional field causes the instruction to be executed or 

skipped according to the value of the N, Z, C and V flags in the CPSR. The 15 

conditions are given in fig.2.8 and every ARM instruction mnemonic may be 
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extended by appending the 2 letters defined here. For example, ‘AL’ means ‘always’ 

condition which may be omitted since the instruction is definitely executed no matter 

what, the execution condition of others are listed in the Fig.2.8. 

 

Fig.2.8 Condition code summary 

 

2.2 Related Works 

2.2.0 Overview of Related Works 

Prerequisites have been discussed in last section, and this section describes 

some related works about ARM7TDMI. Section 2.2.1 depicts shift/rotate operation 

by Barrel-shifter (BS). Section 2.2.2 depicts Mode-switch by Interrupt Mechanism 

of ARM7TDMI. Summaries of Chapter 2 Previous Works will be discussed in 
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Section 2.3. 

2.2.1 Shift/Rotate Operation by Barrel-shifter 

Shift and rotate operation is one of the most essential and basic part in data 

processing phase of a microprocessor and it presents an operation that a data is 

left-shifted, right-shifted arithmetically, right-shifted logically, and right-rotated. It is 

well known that in term of design style this kind of operation is usually implemented 

by a technique named Barrel-shifter, one kind of logarithmic shifter. This shifter 

completes the operation in log2 (N) stages, where N=2n is the word length. The 

moved amount of data in each stage is 2i, where 0≤  i ≤ (n-1), and the data shifted 

by the preceding stage shifts continuously in the present stage; hence, it takes n 

stages to obtain the final result. A left-shifted operation with N=32 example can be 

shown in the Fig.2.9. The lower data from bit0 to bit15 can be moved to higher 

16-bit and filled with zero in lower 16-bit in i=4 stage; as the same as i=4 stage, the 

8-bit from bit16 to bit23 can be moved higher 8-bit and filled with zero in lower 

8-bit in i=3 stage.  

 

Fig.2.9 A left-shifted example as N=32 

In each stage, one of four types of shift/rotate operation which include 

left-shifted, right-shifted arithmetically, right-shifted logically, and right-rotated is 

selected. More hardware detections about conditional codes and greater than 32-bit 

shift-amount should be added in the final stage of BS MUX tree, as shown in the 

 25 
 



Fig.2.10. 

 

Fig.2.10 BS MUX Tree with 5 stages adding one final stage 

 

2.2.2 Mode-switch by Exceptions 

Most programs operate in user mode, however, other privileged operating 

modes which are used to handle exceptions and supervisor calls are switched by 
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different interrupt types. 

The current operating mode is defined by bottom 5-bit M0 to M4 of the CPSR 

register, as shown in the Fig.2.11. In addition, the interpretation of these bits is 

summarized in Fig.2.12 and the privileged mode has associated with it a Saved 

Program Status Register (SPSR), which is used to save the state of the CPSR while 

the privileged mode is entered in order that the user state can be fully restored as the 

user process is resumed. 

Exceptions are generally used to handle unexpected events like interrupts or 

memory faults which arise during the execution of a program. Besides, exceptions is 

also used to cover software interrupt, undefined instruction traps, and the system 

reset function which logically arises before rather than during the execution of a 

program. These events are all grouped under the exception handling since they have 

all the same mechanism within the processor. Therefore, ARM exception can be 

divided into 3 groups, which include directly generated by executing instructions, 

generated as a side-effect of executing instructions, and generated externally, 

unrelated to the instruction flow. Software interrupt, undefined instructions and 

prefetch aborts belong to the first group; data aborts belongs to the second group; 

reset, IRQ, (normal interrupt) and FIQ (fast interrupt) belong to the third group. 

Exception entry which is entered while an exception arises and it caused by a 

side-effect like data abort or an external event like IRQ uses the next instruction in 

the current sequence; however, direct-effect exceptions like software interrupt are 

handled in sequence as they arise. In fact, the processor performs the actions of 

following sequence as exceptions occur. 

 It changes to the operating mode corresponding to the particular exception. 

 It saves the address of the instruction following the exception entry instruction 

in r14 of the new mode. 
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 It saves the old value of the CPSR in the SPSR of the new mode. 

 It disables IRQs by setting bit7 of the CPSR while it disables further fast 

interrupt by setting bit6 of the CPSR if the exception is a fast interrupt. 

 It forces the PC to begin executing as the relevant vector address given by 

Table2.1. 

As can be seen in the Table.2.1, each of exceptions has the corresponded 

vector address and contains a branch instruction to jump to the corresponded 

interrupt service routine (ISR) which includes all the actions should be done while 

an interrupt occurs; however, the vector address of FIQ needs no branch actions but 

starts its ISR immediately since it occupies the highest vector address. 

The two banked registers in each privileged mode, r13_x and r14_x, a stack 

pointer which may be used to save other user registers and a return address holder, 

can be used by ISR in each privileged mode; however, FIQ mode has more 

additional private registers to give better performance by avoiding the need to save 

user registers in most cases where it is used, as shown in the Fig.2.13. 

Once the exception has been handled the user task is normally resumed and 

some following facts need to be guaranteed. 

 Any modified user registers must be restored from the stack of ISR. 

 The CPSR must be restored from the appropriate SPSR. 

 The PC must be changed back to relevant instruction address in the user 

instruction stream. 

To note that the last two steps above need to be carried out together. 

It is necessary to define a priority order to determine the order in which 

exceptions should be handled first since multiple exceptions could arise at the same 

time. These are priorities of all interrupts of ARM:  

1. reset (highest priority); 
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2. data abort; 

3. FIQ; 

4. IRQ; 

5. prefetch abort; 

6. Software interrupt (SWI) and undefined instructions; these two interrupts are 

mutually exclusive instruction encodings and have no chance to occur 

simultaneously. 

Reset starts the processor from a known state and renders all other pending 

exceptions irrelevant. The most complex exception scenario is where an FIQ, an 

IRQ and a third exception (excluding reset) occurs simultaneously. FIQ has higher 

priority than IRQ and also mask it out, so the IRQ will be ignored until the FIQ 

handler explicitly enables IRQ or return to user code. However, as the third 

exception is a data abort, the processor will enter the data abort handler and 

immediately enter FIQ handler, since data abort entry does not mask FIQ out. The 

data abort is remembered in the return path and will be processed when the FIQ 

handler returns. On the other hand, as the third exception is not a data abort, the FIQ 

handler will be entered immediately. While FIQ and IRQ have both completed, the 

program returns to the instruction which generated the third exception, and in all the 

remaining cases the exception will recur and be handled accordingly. 
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Fig.2.11 Program status register format 

 

Fig.2.12 ARM operating mode and register usage 
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Table2.1 Exception vector address 

 

Fig.2.13 Register organization in ARM state 
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2.3 Summaries of Previous Works 
This chapter describes some previous works about ARM7TDMI processor 

design which includes core architecture, pipeline stage, and instruction set 

architecture and some related works like shift/rotate operation by a Barrel-shifter 

and mode switch by exceptions. 

Core architecture of ARM7TDMI is designed by obeying Reduced Instruction 

Set Computer (RISC) principles with 3-stage pipeline implementation which includes 

fetch-stage, decode-stage, and execution-stage. Each of the three stages may be 

executed the instruction within independently and efficiently, therefore, the 

throughput of the processor is one instruction per cycle in an ideal case. The 

ARM7TDMI instruction set including only 32-bit instruction without Thumb is 

discussed in the section for the proposed design is a 32-bit embedded processor. 

Moreover, the ISA of ARM7TDMI can be classified into data processing instructions, 

data transfer instructions, and control flow instructions, and with condition code in 

the top 4-bit in every instruction to execute instructions conditionally. 

Shift and rotate operation is one of the most essential and basic part in data 

processing phase of a microprocessor and is usually implemented by a technique 

named Barrel-shifter, which completes such a operation within log2 (N) stages, 

where N=2n is the word length. On the other hand, programs operate not only in user 

mode, but also other privileged operating modes which are used to handle 

exceptions and supervisor calls are switched by different interrupt types. All 

exceptions has its own vector address to the corresponded ISR and all of user 

registers must be recovered as exception handling is over and comes back to user 

programs. 

Some previous works have been discussed and some important characteristics 
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have been reminded in this chapter; consequently, the proposed design ACARM7 

improves the operating performance, makes power consumption as low as it possible, 

and uses fewer gate-counts to save area consuming while utilizing these previous 

works discussed this section. The proposed design will be described in detail in the 

next section. 

 33 
 



CHAPTER 3  
PROPOSED CORE DESIGNS 
 

3.0 Overview 
This chapter describes the architecture of the proposed core design and 

implementation of low-power technique. Section 3.1 depicts basic architecture of the 

proposed core design. Section 3.2 discusses the implementation of low-power 

technique. Section 3.3 summarizes the proposed core design and experiment results 

of the proposed core will be presented in the next chapter. 

 

3.1 Architecture of the Proposed Design 

3.1.0 Overview of Architecture of the Proposed Design 

This section describes architecture of the proposed design, ACARM7, a 32-bit 

embedded processor with characteristics of ultra low-power, high-performance, and 

low area consuming. Section 3.1.1 depicts the block diagram of the proposed design; 

Section 3.1.2 depicts control logic of the proposed design; Section 3.1.3 depicts how 

an arithmetic/logical operation is functioned in EX-stage; and Section 3.1.4 

describes the mechanism of multi-cycle multiplication in EX-stage. The 

implementation of low-power techniques will be discussed in the Section 3.2. 

 

3.1.1 Block Diagram of the Proposed Design 

The proposed core architecture composed of 8 major functional blocks which 

include decoder, register-file, ALU, 32x8 Multiplier, forwarding unit, address 
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register, read/write data selection, and control logic. The block diagram of the 

proposed design can be seen in the Fig.3.1.  

The decoder unit obtains the instruction from fetch phase and decodes it into 

all information that other function units need.  

The register-file is composed of 31 general purpose 32-bit registers which can 

be divided into 6 banks and 6 status registers. The 6 banks of 31 general purpose 

registers can be used in 6 different modes of ACARM7 execution states including 

system&user mode, FIQ mode, supervisor mode, abort mode, IRQ mode, and 

undefined mode. As shown in the Fig.2.11, Each of 6 status-registers which record 

conditional codes and some control bits including modes bits, state bit, FIQ bit , and 

IRQ bit and it is not necessary to be implemented in 32 bits.  

 

Fig.3.1 ACARM7 core architecture diagram 
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The execution stage includes Barrel-shifter (BS), 64 bits Fong adder [3], and a 

Ling multiplier [4] with 32-bit multiplicand multiplying 8-bit multiplier. , as can 

been shown in Fig.3.2, both arithmetic operation and logical operation are 

implemented with an ALU module whose two inputs, oprand1 and operand2, are 

received from a BS to perform a shift operation if needed.  

 

Fig.3.2 Core architecture diagram in EX-stage 

The 40-bit product of the Ling-multiplier is calculated by the two operand 

inputs with 32-bit operand1 and bottom 8-bit operand2. The cycles of finishing a 

multiplication from 2 to 5 and can be decided by the EX_stage Controller and a 

7-stage FSM (Finite State Machine) in Fig.3.3. More details will be discussed in 

Section 3.1.3 Multi-cycle Multiplication in EX-stage. In an addition, the low-power 

technique is also considered to gate inputs of unexecuted function units and will be 

described in detail in the Section 3.2. 

The forwarding unit forwards the data calculated from the output of the 

execution stage to make next instruction obtain the answer as soon as possible if 

needed, as shown in Fig.3.1. 

One valid address is choosing from four address sources which include 
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program counter incrementer, ALU output, LDM (Load Multiple)/STM (Store 

Multiple) output, and source of interrupt. Consequently, the valid address will be 

sent to the address register (program counter, PC), as can be shown in Fig.3.4

 

Fig.3.3 Mul 7-stage FSM diagram 

 
Fig.3.4 Address Register source selection 
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The function performed by read/write data selection is non-word data aligned 

either read data from a memory or write data to memory in Fig.3.5. As a result, byte 

data or half-word data read from a memory will be shifted to bottom of a 32-bit 

width register and either zero-extended or sign-extended will also be performed to 

complete rest bits to fill with 32-bit data width. On the other hand, byte data written 

to a memory will be copied to 4 pieces to fill with 32-bit data width and half-data 

will be copied to 2 pieces as can be predicted. On the other hand, the discussion of 

control logic implementation of the proposed design will be presented in Section 

3.1.2 Control Logic of the Proposed Design. 

 

Fig.3.5 Read/Write data selection 

The function of each primary block unit of the proposed core design has been 
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described individually in this section and mechanisms and implementation of control 

logic, arithmetic/logical operation in EX-stage, and multi-cycle multiplication 

operation in EX-stage, will be discussed in detail in the following sections.  

 

3.1.2 Control Logic of the Proposed Design 

The control logic controls all the data flows of combinational logic and all the 

state transitions of sequential logic. As can be seen in the Fig.3.6, four Sub-FSMs, 

load/store sub-FSM, shift sub-FSM, multiplication sub-FSM, and branch sub-FSM, 

are controlled by one main normal operation FSM. The main normal operation FSM 

includes only one state and all of the single-cycle instructions can finish their 

execution in this state; for instance, general arithmetic or logical operation. However, 

other instructions can not finish their execution within just one cycle, and they will 

leave for other 4 sub-FSMs. 

 
Fig.3.6 FSM of control logic 

Load/Store sub-FSM includes four types of instructions, store, load without 

branch, load with branch, and swap. Store instructions include single data store and 
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multiple data store, as can be seen in the Fig.3.6. The first state calculates the 

destination address and then the second state writes the data to memory and finishes 

the single data store instruction. While multiple data store instruction continuously 

stays in the second state until all data transfers are done. Besides store instructions, 

all other instructions will finish their last execution cycle backing to the normal 

main state. Load is also composed of single data load and multiple data load like 

store instructions. The load address is calculated in the first cycle, and waits data 

from memory in the second state. Single data load instructions will finish their 

execution in the normal main state; on the other hand, multiple data load instructions 

back to main state until all of their data transfers finished. In contrast, the cycle 

operation of load with branch is the same as load without branch in the first two 

cycles; the difference between them is the former will leave for branch sub-FSM 

which will be discussed later to continue its execution. Swap instruction makes data 

exchange from a register and external memory, and implemented by a lock operation 

of store after load. Therefore, it combines load and store instruction operations 

together; the changing order of states is address calculation, data wait from memory, 

write data to memory, and backing normal main state finally. 

Shift sub-FSM includes two types of instructions, shift with branch and shift 

without branch, and each of them occurs as ALU needs a shift-amount not coming 

from immediate field but contents stored in registers. More cycle is needed since 

shift-amount stored in registers can not be obtained with the other two operands at 

the same time. Therefore, this kind of instruction will lead FSM to jump to the shift 

sub-FSM while the shift-amount stored in the r15 (PC) will lead FSM to jump to the 

shift sub-FSM with branch. 

Multiplication sub-FSM includes all kinds of instructions about multiplication, 

and lasts from 2 cycles to most 7 cycles until the instruction finishes the execution. 
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The finish signal will be sent to the main control logic to be acknowledged and 

backed to main normal FSM. More details about multiplication will be discussed in 

the Section 3.1.4 Multi-cycle Multiplication in EX-stage later. 

As in the branch sub-FSM, a new PC address is calculated in the first state and 

next new instruction will be fetched in the pipeline to fill the empty space behind the 

present instruction in the second state. It has the lowest priority of all the five FSMs 

and can be entered from load/store sub-FSM and shift-sub FSM and both two 

sub-FSMs and Mul sub-FSM are mutually exclusive. Moreover, the four other 

sub-FSMs instead of branch sub-FSM have equal priority and which FSM should be 

entered decided by instruction decoded information.  

 

3.1.3 Arithmetic/ Logical Operation in EX-stage 

Arithmetic or logical operation is handled in the execution stage by ALU, as 

can be seen in the Fig.3.7, a detailed description with block diagram to Fig.3.2. Two 

data inputs, Src_a and Src_b, can be used for 2 data inputs of arithmetic/ logical 

operation instruction or 2 data inputs of multi-cycle multiplication in the pipeline 

stage Ex-stage; the later will be discussed in Section 3.1.3.  

Src_b is fed into a BS which has been discussed in Chapter 2 before and can 

be shifted or rotated by any amounts with any types including left-shifted, 

right-shifted arithmetically, right-shifted logically, and right-rotated according to an 

EX-stage controller. Both output signals from the BS and Src_a are fed into a 

Reverse-Inverse-Multiplexer which decides that whether the 2 inputs enter this 

multiplexer should be inversed due to consideration about subtraction or reversed 

for specific instructions RSB or RSC discussed in Chapter 2.  

The 2 results of the multiplexer are also sent to a logical unit while a logical 
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operation is decoded or a 64-bit Fong adder [3] while an arithmetic operation is 

decoded. All the logical instructions like AND, ORR, and so on will be handled in 

this logical unit; moreover, 4 conditional flags , as shown in fig.2.11, excluding 

V-flag will also be set at the same time. 

On the other hand, all the arithmetic instructions like ADD, SUB, ADC, and so 

on. will be handled in the higher 32-bit part of 64-bit Fong-adder since normal 

addition or subtraction needs only 32-bit data width and lower 32-bit part will be 

filled with zero as no multiplication instructions are executed. 

 

Fig.3.7 Detailed Core architecture diagram in EX-stage 
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3.1.4 Multi-cycle Multiplication in EX-stage 

As the instruction is decoded a multiplication type, Mux_a and Mux_b of the 

Fig.3.7 will select the sources directly from a 32x8 Ling-Multiplier [4] and 64-bit 

result saved in a register calculated last cycle. (While in the first cycle operation, the 

64-bit result is zero in default) These 2 resources will use all 64-bit of the 

Fong-adder [3] since a 32-bit multiplicand multiplies a 32-bit multiplier obtains 

most 64-bit product.  

As can be seen in the Fig.3.3, normal multiplication without accumulation 

operation and writing 64-bit result out needs at least 2 cycles since 40-bit product is 

obtained in the first one cycle and added into 64-bit Fong adder to get final 64-bit 

result. While all 32-bit of multiplier is valid, 4 cycles is needed for 8-bit is calculated 

once. In each cycle, the 64-bit Fong adder result is added by the 40-bit product 

obtained from the preceding cycle. Therefore, normal multiplication takes most 5 

cycles to finish the multiplication. However, multiplication with accumulation 

operation takes one more cycle and writes Long-result of 64-bit out to two 32-bit 

registers also takes one more cycle; as a result, a 32-bit multiplicand multiplies a 

32-bit multiplier with accumulation and writing Long-result of 64-bit out to 2 

registers takes 7 cycles in total. 

While the multi-cycle multiplication finishes, a finish signal will be sent from 

Mul Sub-FSM to main FSM to tell that the multi-cycle operation is finished and may 

take next instruction into EX-stage to continue the program flow. 
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3.2 Implementation of Low-power Technique 

3.2.0 Overview of Implementation of Low-power Technique 

The proposed design is convinced to have a characteristic of ultra low-power 

and is implemented with three significant methods which are composed of unused 

registers gated, unexecuted function units gated, and low-power consumption 

property of Fong-adder [3]. The first will be discussed in Section 3.2.1 Unused 

Registers Gated; the second will be discussed in Section 3.2.2 Unexecuted Function 

Units Gated; and the third will be discussed in Section 3.2.3 Low-power 

Consumption Property of Fong-adder. 

 

3.2.1 Unused Registers Gated 

The data stored in Registers are updated in every clock cycle without any clock 

gating operation; as a result, huge power is consumed and some manipulations must 

be done to avoid so much power wasting of the proposed design. 

One manipulation that makes new data to transmit into D port of the 

FLIP-FLOP only when the enable signal is high can be implemented in RTL level, 

as can be seen in the Fig.3.8. The disadvantage is that the stored data of registers is 

still re-written for holding old data every clock; as a matter of fact, it is still power 

wasting and other manipulations should be done. As can be seen in the Fig.3.8, a 

lower part with a CG cell composed of an enable signal controlled latch will make 

clock of the unused registers gated and guarantee that no data updated any more for 

holding old value. This method can absolutely shut down updating operations of 

unused registers and save unnecessary power consumption as much as it can. This 

synthesis method by using scripts will be discussed in detail in Chapter 5 

Verification Strategy. 
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The numerical report shows that the number of FLIP-FLOPs could be gated is 

1,576 and the number of FLIP-FLOPs could not be gated is 27; in addition, the 

benchmark we used is Dhrystone 2.1 with 8,332 clock cycles, as can be seen in the 

Table3.1. The amazing thing is that while clock gated method is implemented, only 

796,517 transitions occurs. It compares to 13,131,232 transitions occurring without 

implementing gating technique and 93.93% unnecessary power consumption caused 

by FLIP-FLOP transitions will be saved. Even considering the FLIP-FLOPs could 

not be gated, it still saves power consumption about 92.35%. This report is so 

significant and credible that why our proposed design is called ultra low-power. 

Moreover, other methods about implementation of low-power technique will be 

introduced in following sections. 

 

Fig.3.8 Registers with Clock gated by RTL and synthesized CG cell 
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Dhrystone 2.1 with 
8,332 clock cycles 

FLIP-FLOP 
numbers 

FLIP-FLOP 
Transitions no 

clock gated 
implemented 

FLIP-FLOP 
Transitions  
clock gated 

implemented 

Transitions 
can be 

saved (%)

FF could be gated     1,576      13,131,232      796,517 93.93%
FF could not be gated       27        224,964      224,964 0%

Total     1,603      13,356,196     1,021,481 92.35%

Table3.1 Transitions saved with Clock gated synthesized CG cell 

 

3.2.2 Unexecuted Function Units Gated 

Last section a low-power technique used for sequential logic to gate unused 

registers has been proposed, furthermore, another low-power technique used for 

combinational logic of unexecuted units is proposed in this section. For instance, 

signal-A from the Fig.3.9, will be gated in front of combinational logic in the 

unexecuted units to avoid unnecessary combinational logic transitions to cause extra 

power wasting. As can be seen in the Fig.3.9, signal-B and signal-C can be forced to 

zero as enable signal is low; therefore, the combinational logic from signal-B to 

signal-C of unexecuted units can be shut down to save any unnecessary 

combinational logic transitions. Moreover, the Fig.3.9 also shows an example that 

while an instruction is executed in MAC all the combinational logics in ALU will be 

shut down to save power. 

Two different low-power techniques are implemented in Sequential logic in 

preceding section and combinational logic this section; then another low-power 

technique from a point of view of property of function units will be discussed in the 

next section. 
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Fig.3.9 Input data gated in unexecuted units 

 

3.2.3 Low-power Consumption Property of Fong-adder  

Fong-adder [3] is one of the most significant function units in the proposed 

core design due to its low-power consumption, and smaller area using with no 

increasing performance overhead. 

As can be seen in the Table3.2, Fong-adder compares to Hybrid K-S 

Ling-adder [5], a fastest adder at present but power consumption is high and area 

usage is enormous. The former saves 32.40% power as data width is 32-bit and 

12.05% as data width is 64-bit. As can be seen in the Table3.3 and Table3.4, the 

timing analysis of Fong-adder compares to Hybrid K-S Ling-adder is %2 better as 

data width is 32-bit and %6.56 better as data width is 64-bit; in addition, the area 

analysis of Fong-adder compares to Hybrid K-S Ling-adder is also %21.40 better as 

data width is 32-bit and 17.72% better as data width is 64-bit. 

The proposed design implemented with Fong-adder has a characteristic of 

ultra-low power consumption and small area usage but still remains 

high-performance. In fact, this is one of the most outstanding advantages of the 

proposed core design. 
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Power Delay Product Analysis (UMC 0.18um/TT corner) 

Data 
Width 

Hybrid K-S 
Ling-adder 

(power)(mW) 

Fong-adder 
(power)(mW)

Hybrid K-S 
Ling-adder 
(PDP)(pJ) 

Fong-adder 
(PDP)(pJ) 

PDP 
Saving 

32 18.98 12.83 18.98*1.02 12.83*1.00 33.73%
64 32.77 28.82 32.77*1.22 28.82*1.14 17.82%

Table3.2 PDP Analysis about Fong compared to Hybrid K-S Ling 
 

Timing Analysis (UMC 0.18um/TT corner)

Data 
Width 

Hybrid K-S 
Ling-adder 

(ns) 

Fong-adder 
(ns) 

Timing 
Saving 

32 1.02 1.00 2.00% 
64 1.22 1.14 6.56% 

Table3.3 Timing Analysis about Fong compared to Hybrid K-S Ling 

Area Analysis (UMC 0.18um/TT corner) 

Data 
Width 

Hybrid K-S 
Ling-adder 

(um2) 

Fong-adder 
(um2) 

Area 
Saving 

32 14173.790 11140.114 21.40%
64 28839.888 23730.583 17.72%

Table3.4 Area Analysis about Fong compared to Hybrid K-S Ling 

 

3.3 Summaries of Proposed Core Designs 
This section has discussed architecture of the proposed core design which 

includes discussion about block diagrams, control logic, arithmetic/logical operation 

executed in EX-stage, and the mechanism of multi-cycle multiplication in EX-stage.  

Three different implementation types of low-power techniques which include 

unused registers gated, unexecuted function units gated, and low-power 

consumption property of Fong-adder have also been discussed. 

The proposed core architecture is composed of 8 major functional blocks 
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which include instruction decoder, a register-file with 31 general purpose 32-bit 

registers with 6 banks division and 6 status registers, an ALU with a 64-bit 

Fong-adder and a logic unit, a 32x8 Ling-multiplier controlled by multi-cycle 

multiplication Sub-FSM, a forwarding unit, an address register selecting one valid 

address from different sources, read/write data selection with data alignment, and 

control logic. 

The control logic of the proposed design is composed of 4 Sub-FSMs and 1 

main FSM. The 4 sub-FSMs are load/store sub-FSM, shift sub-FSM, multiplication 

sub-FSM, and branch sub-FSM. They are all controlled by the main FSM. Branch 

sub-FSM has the lowest priority of all the 5 FSMs and can be entered from 

load/store sub-FSM and shift-sub FSM. Both load/store sub-FSM and shift-sub FSM 

and Mul sub-FSM are mutually exclusive; moreover, the 4 FSMs instead of branch 

sub-FSM have equal priority and which FSM should be entered decided by 

instruction decoded information.  

Arithmetic or logical operation is handled in the execution stage by ALU 

which is composed by a 64-bit Fong-adder and a logic unit. Src_A and Src_B going 

through a BS will be multiplexed by a Reverse-Inverse-MUX; then 2 output results 

from the Reverse-Inverse-MUX are sent to the logic unit or higher 32-bit part of 

Fong-adder depending on which types of instruction are decoded. 

Normal multiplication without accumulation and writing Long-result of 64-bit 

out needs at least 2 cycles and at most 5 cycles; however, multiplication with 

accumulation operation takes one more cycle and writes Long-result of 64-bit out to 

two 32-bit registers also takes one more cycle. Therefore, a 32-bit multiplicand 

multiplies a 32-bit multiplier with accumulation and needs writing Long-result of 

64-bit out takes 7 cycles in total. 

The data stored in Registers are updated in every clock cycle without any clock 
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gating operation to cause huge power consumed. One manipulation that makes new 

data to transmit into D port of the FLIP-FLOP only when the enable signal is high 

can be implemented in RTL level; on the other hand, a synthesized CG cell will 

make clock of the unused registers gated and guarantee that no data updated any 

more for holding old value. This method using synthesis scripts can absolutely shut 

down updating operations of unused registers and save unnecessary power 

consumption as much as it can and will be discussed in Chapter 5. 

A low-power technique used for combinational logic of unexecuted units is 

that input data will be gated in front of combinational logic in the unexecuted units 

to avoid unnecessary combinational logic transitions to cause extra power wasting.  

Besides the two different low-power techniques implemented in Sequential 

logic and combinational logic, the third low-power technique is implemented by a 

Fong-adder since its characteristics of ultra-low power consumption, small area 

usage, and remaining high-performance compared to Hybrid K-S Ling-adder which 

is the fastest adder at present. 

The proposed design has been discussed in detail this section, and some 

experiment results about power, timing, and area of the proposed design including 

Pre-SIM and Post-SIM will be shown and be analyzed with comparison to other 

processor cores in the next section. 
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CHAPTER 4  
EXPERIMENTAL RESULTS 
 

4.0 Overview 
In this chapter, we provide the experimental results of the proposed design. 

Section 4.1 elaborates the environment for implementation. Section 4.2 provides the 

data and statistics of the experiment and discusses the experimental results.  

 

4.1 Implementation 
This section describes implementation of the simulation environments which 

include coding by Verilog HDL, simulators with Cadence Verilog®-XL and Debussy, 

a synthesizer with Synopsys Design Compiler®, a power analyzer with Synopsys 

PrimePower®, cell library with Artisan TSMC 0.18 μm technology, and 

Place&Route with Cadence SOC Encounter®. All of simulation environment are 

listed in Table4.1. 

  
Coding Verilog HDL  

Simulator Cadence Verilog® -XL; Debussy 
Synthesizer Synopsys Design Compiler®  

Power Analyzer Synopsys PrimePower® 
Cell Library Artisan TSMC 0.18 μm technology 
Place&Route Cadence SOC Encounter® 

Table4.1 Simulation environment setup for experiments 

 

 

 51 
 



4.2 Discussion of Experimental Results 

4.2.0 Overview of Experimental Results 

All results are shown in tabular form with discuss under the tables; besides, the 

improvement rate of each comparison relative to the proposed design are also 

provided in percentage. 

The result of critical path delay in worst case, area cost at critical timing, and 

power consumption will be reported and compared at the following sections.  

 

4.2.1 Comprehensive Comparison 

This section provides all experimental results with a comprehensive 

comparison compared among the proposed core ACARM7, ARM7 Compatible 

Processor (Korus 2005) and ARM7TDMI. As can be seen in the Table4.2, the 

process technology used by the proposed core ACARM7 and ARM7-Korus2005 are 

both 0.18um while ARM7TDMI uses 0.25um technology; therefore, all comparisons 

in the following sections will be normalized to 0.18um technology for correctness.  

The row named “Other characteristics” of the Table4.2 shows some specific 

characteristics which are unique to each of different cores; in addition, the row 

named “Note” indicates some attention notes to clear some misunderstandings might 

be made. The p.s.1 of the note is that all the experimental results of ARM7TDMI are 

come from a TSMC 0.25um hard macro; on the hand, p.s.2 and p.s.3 mentions that  

both benchmarks for power estimation of ACARM7 and ARM7TDMI are based on 

Dhrystone with temperature 25C, but the former is in voltage condition of 1.8V and 

the later is in 2.5V. The last note reminds readers that all experimental results are 

obtained in worse case except power estimation is measured in typical case. 

All the information obtained from Table4.2 like timing, area, and power will 
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be analyzed and compared among the 3 different cores in the following sections. 

Comprehensive Comparisons among Three Different Cores 

 
Proposed Core 

ACARM7 

ARM7 
Compatible 
Core (Korus 

2005) 

ARM7TDMI 
(official 

released) (p.s.1) 

Process(um) 0.18 0.18 0.25 
Gate-count(k) 35.75 52 N/A 

Area(mm2) 0.3567 N/A 1.05 

Performance(MHz) 110 90 55 
Power(mW) 0.17(p.s.2) 1 0.78(p.s.3) 

Pipeline-stage 3 3 3 

Other characteristics 
No Thumb; 

DFT supported
No DFT 

supported 
Hard Core No 
DFT supported 

p.s.1:TSMC 0.25um hard macro 
p.s.2:Dhrystone,1.8V,Temp=25。C 

p.s.3:Dhrystone,2.5V,Temp=25。C Note 

All experiment results are measured in worse case 
except power estimation is in typical case 

Table4.2 Comprehensive comparison among 3 different cores 

 

4.2.2 Timing Comparison 

This section discusses the timing comparison among 3 different cores and the 

performance of ARM7TDMI obtained from Table4.2 should be normalized to 

0.18um technology first by using an equation below: 

55 X (
18.0
25.0 ) = 76 

After normalization, the performance of ARM7TDMI is normalized to 76MHz. 

However, it is still lower than 90MHz of ARM7-Korus2005 and 110MHz of 
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ACARM7. The proposed design has such a high performance because it uses a 

high-performance IPs like Fong-adder and Ling-Multiplier and implements the ISA 

without Thumb instructions. It gains a significant improvement in the critical path. 

As shown in Table4.3, the performance of ACARM7 is improved 44.74% 

compared to a normalized result from ARM7TDMI and even 22.22% better than 

ARM7-Korus2005. 

Performance Comparison among Three Different Cores 

 
Proposed 

Core 
ACARM7

ARM7 
Compatible 
Core (Korus 

2005) 

ARM7TDMI 
(official released) 

Performance(MHz) 110 90 76(p.s.1) 

Improvement compared 
to ARM7TDMI (%) 

44.74 18.42         

Improvement compared 
to ARM7-Korus2005 

(%) 
22.22       -15.56 

Note p.s.1: Obtained from normalization to 0.18um 

Table4.3 Performance comparison among 3 different cores 

The high-performance of the proposed design has been discussed and analyzed 

with experimental results this section, and other analyses which are interested by 

readers will be described in following sections. 

 

4.2.3 Area Comparison 

This section discusses the area comparison among the cores. It should pay 

attention that the area of ACARM7 is in technology of 0.18um and the area of 

ARM7TDMI is in technology 0.25um. Two results of the area with different 
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technologies can not be normalized and compared since design rule check (DRC) 

with different technologies can not be directed normalized by a single equation. 

Nevertheless, the gate-count of ACARM7 is much lower than the one of 

ARM7-Korus2005 and improves 31.25% compared to ARM7-Korus2005, as shown 

in Table4.4. 

Area/Gate-count Comparison among Three Different Cores 

 
Proposed Core 

ACARM7 

ARM7 
Compatible 
Core (Korus 

2005) 

ARM7TDMI 
(official released) 

Gate-count(k) 35.75 52 N/A 

Area(mm2) 0.3567(p.s.1) N/A 1.05(p.s.2) 

Gate-count saving 
compared to 

ARM7-Korus2005 (%) 
31.25       N/A 

p.s.1: 0.18um technology 
Note 

p.s.2: 0.25um technology 

Table4.4 Area/Gate-count comparison among 3 different cores 

The gate-count comparison between the proposed design ACARM7 and 

ARM7-Korus2005 shows that the core size of the former is much smaller for 2 

primary reasons. The first is that no Thumb instruction implementation strategy and 

the second is that more design considerations are taken into account. The small 

area/gate-count is also one reason for low-power designs and is what designers and 

users want to see; On the other hand, power comparison will be analyzed in next 

section. 
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4.2.4 Power Comparison 

This section describes power comparisons among the cores above and the 

power of ARM7TDMI should be normalized to 0.18um technology first by an 

equation come from P=CV2 and listed below: 

0.78 X (
25.0
18.0 )2 = 0.404 

As can be seen in the Table4.5, the power of ARM7TDMI is normalized to 

0.404mW after normalization. However, it is still higher than 0.17mW of ACARM7 

but lower than 1mW of ARM7-Korus2005. An amazing thing occurs that the power 

improvement of ACARM7 compared to the normalized power of ARM7TDMI is 

57.9% better and is 83% better compared to ARM7-Korus2005. 

Power Comparison among Three Different Cores 

 
Proposed Core 

ACARM7 

ARM7 
Compatible 
Core (Korus 

2005) 

ARM7TDMI 
(official released) 

Power(mW) 0.17 1 0.404(p.s.1) 

Power saving compared 
to ARM7TDMI (%) 

57.9 -147         

Power saving compared 
to ARM7-Korus2005 

(%) 
83       59.6 

Note p.s.1: Obtained from normalization to 0.18um 

Table4.5 Power comparison among 3 different cores 

 

The proposed design has a characteristic of ultra low-power for many reasons 

and almost the same with the reasons discussed in Section 4.2.2; in fact, a right 

implementation strategy with no Thumb instructions, a better choice of high quality 
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IP like Fong-adder and Ling-multiplier, and more design consideration taken into 

account brings such a good performance of the proposed design. On the other hand, 

Power-Delay-Product (PDP) is also provided in Table4.6. The table still shows the 

PDP of ACARM7 is 70.7% lower compared to ARM7TDMI and 86% lower 

compared to ARM7-Korus2005.As a matter of fact, ACARM7 is the only one of the 

three cores which can look after both sides inclusive of low-power consumption and 

high-performance. 

Power-Delay-Product Comparison among Three Different Cores 

 
Proposed Core 

ACARM7 

ARM7 
Compatible 
Core (Korus 

2005) 

ARM7TDMI 
(official released) 

Power(mW) 0.17 1 0.404(p.s.1) 
Delay(ns) 9.14 11.1 13.16(p.s.1) 
PDP(pJ) 1.5538 11.1 5.31664(p.s.1) 

PDP saving compared 
to ARM7TDMI (%) 

70.7 -108.7  

PDP saving compared 
to ARM7-Korus2005 

(%) 
86  52.1 

Note p.s.1: Obtained from normalization to 0.18um 

Table4.6 Power-Delay-Product comparison among 3 different cores 

 

4.2.5 Other Characteristics 

Considering of other characteristics of the Table4.2, DFT (Design for 

Testability) is supported by ACARM7 since chips might fail to work due to 

manufacture problem; as a result, additional test circuit shall be added such as scan 

circuit and built-in self test (BIST) circuit. 
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ACARM7 is supported a characteristic of cycle-accurate verified by a behavior 

systemC model and will be discussed in Chapter 5. 

 

4.3 Summaries of Experimental Results 
This chapter has analyzed the experimental results among different cores 

inclusive of the proposed design ACARM7, ARM7 Compatible Core (Korus 2005), 

and ARM7TDMI. First of all, the implementation of the simulation environments is 

introduced and a comprehensive comparison is provided for discussions about 

timing, area, and power in detail. 

In timing comparison, the performance of ARM7TDMI obtained from 

Table4.2 should be normalized to 0.18um technology first and the performance of 

the proposed design improves 44.74% compared to a normalized result from 

ARM7TDMI and 22.22% better than ARM7-Korus2005. 

In area comparison, two areas with different technologies can not be 

normalized and compared directly; however, the gate-count of ACARM7 is much 

lower than the one of ARM7-Korus2005 and improves 31.25% compared to the 

later. 

In power comparison, the power of ARM7TDMI should be normalized to 

0.18um technology first and the power of ACARM7 improves 57.9% compared to a 

normalized result from ARM7TDMI and 83% better than ARM7-Korus2005. On the 

other hand, the PDP of ACARM7 is 70.7% lower compared to ARM7TDMI and 

86% lower compared to ARM7-Korus2005. 

DFT and a characteristic of cycle-accurate verified with a systemC model are 

also supported by ACARM7 and will be discussed in next chapter. 
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CHAPTER 5  
PROPOSED VERIFICATION 
STRATEGY 
5.0 Overview 

With the prevalent fashion of SOC, designs nowadays become more and more 

complicated. The thesis provides a thorough and rigorous verification flow strategy. 

Section 5.1 describes the implementation of verification environment. Section 5.2 

provides functional verification to ensure functional correctness of the design. 

Section 5.3 proposes synthesized netlist verification to ensure the correctness of the 

synthesis procedure. Section 5.4 provides test plan and testability measurement.  

 

5.1 Implementation 
These are implementation of verification environment and listed in Table5.1. 

Design rule check is checked by Novas nLint® with adopted Freescale 

Semiconductor Reuse Standard (SRS); equivalence check is checked by Cadence 

Encounter™ Conformal® Equivalence Checker; coverage analysis is checked by 

TransEDA Verification Navigator®; and assertion-based verification is checked by 

Accelera’s Property Specification Language (PSL).  

Verification  

Design Rule Check 
Novas nLint® with adopted Freescale Semiconductor Reuse 
Standard (SRS) 

Equivalence Check Cadence Encounter™ Conformal® Equivalence Checker 
Coverage Analysis TransEDA Verification Navigator® 

Assertion-based 
Verification 

 Accelera’s Property Specification Language (PSL)  

Table5.1 Verification environment setup 
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5.2 Functional Verification  

5.2.0 Overview of Functional Verification 

A functional verification flow is proposed in this section. Section 5.2.1 

proposes coding style checking by Linting; Section 5.2.2 proposes a deterministic 

verification; Section 5.2.3 proposes an input-constrained random verification; 

Section 5.2.4 proposes an assertion-based verification. 

The functional verification flow diagram is listed in the Fig.5.1 and in each of 

steps the RTL model will be verified with a systemC behavior model which is 

designed for matching all the cyclic behaviors of ADS. All mismatches from the 

comparison will cause the flow back to RTL revision step to modification. 

 

Fig.5.1 Functional Verification flow 
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5.2.1 Coding Style Checking by Linting Free 

This section describes a static coding style check which improves the quality 

of the design in reuse and verification perspectives of RTL verilog. Checking the 

coding-style of the design by Novas nLint tool with 328 lint rules of adopted 

Frescale Semiconductor Reuse Standard (SRS) will avoid all kinds of warnings and 

errors including naming, synthesis, simulation, common syntax, undeclared objects, 

unexpected latches, DFT issue, and so on.  

 

5.2.2 Deterministic Verification 

This section describes deterministic verification which is made to check all 

regular cases and special corner case should be confronted with in the simulation 

phase. Deterministic verification is composed of 3 parts including specialized 

handcrafted pattern, real application pattern, and verification by VN-check (makes 

code coverage to 100%). 

The handcrafted pattern is written in all cases of instructions implemented in 

the proposed design. It checks all results of instructions to be right in the first step in 

deterministic verification. 

The real application patterns are implemented by some benchmarks like 

Dhrystone, Whetstone, and DSPstone. Moreover, a JPEG encoder program is also 

provided to verify the correctness of the design and an encoded result will be 

showed Section 5.2.4. This kind of pattern checks real cases met in applications of 

real world and is essential in deterministic verification phase. 

The third phase of deterministic is code coverage checking by TransEDA’s 

Verification Navigator® (VN-check) which gives metrics on how well the design is 

being verified. For instance, statement coverage shows the number of times each 
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HDL statement is executed and un-executed statements are likely to be redundant in 

the design; and a state coverage inspects that whether any unreachable states exists 

in FSM similarly. According to Motorola’s Semiconductor Reuse Standards, the 

statement, branch and state coverage of a design should achieve 100% while the 

lower bound of condition coverage is not listed. 

After the code coverage verification, it suggests that the test vectors applied to 

the design under verification are sufficient and the next verification step 

input-constrained random verification can be entered.  

 

5.2.3 Input-constrained Random Verification 

Input-constrained random verification is implemented by a constraint-driven 

random pattern generator which generates random pattern to both ISS model and 

RTL model and values of both models are compared cycle by cycle, as shown in 

Fig.5.2. This kind of verification is made to detect all of unexpected cases and the 

random pattern is constrained to the meaningful range to avoid undefined 

instructions generation. More simulation cycles are verified, more vector space is 

spanned by random patterns; therefore, less bugs exists in the design and more 

robust design can be declared. In fact, two billion cycles have been simulated until 

now and 16 bugs founded in the first 100 million cycles. No more bugs have been 

found after then. All bugs found in functional verification will be listed in Table5.2

On the other hand, more cycles have been simulated, harder the bugs can be 

found; therefore, another different powerful verification method will be discussed in 

the next section. 
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Fig.5.2 Input-constrained Random Verification 

5.2.4 Assertion Based Verification 

This section provides a powerful verification method and is indispensable in 

the verification strategy; that is assertion-based verification. An assertion is a 

statement about intended behavior of designers, which should be verified. The 

purpose is to ensure the created design behaves according to the intention of 

designers. 

Unlike traditional simulated-based “black-box” verification, which requires 

stimulus to trigger bugs and the propagate the error response to output, assertion 

based “white-box” verification inserts monitors inside the design signals to report 

incorrect behavior at run-time and allows designers to identify and locate bugs 

instantly. As can be seen in the Fig.5.3, bugs will not be found if no monitoring by 

assertion implemented. 

 

Fig.5.3 Assertion-based verification 
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There are many benefits of using assertion based verification. First of all, 

assertion improves the ability of observation of a design under verification; second, 

assertion reduces the debug time because of better observation and better isolation of 

error; in addition, assertion can be used to check the interfaces of a design, thus 

improving the integration through correct usage checking; moreover, assertion can 

also facilitate formal analysis to help verify a design; finally, assertion also helps to 

reveal the intend of designers clearly by specifying correct behavior unambiguously, 

so that design could be easily reused and verified.  

All bugs found in functional verification phase have been listed below:  

All of the Bugs Found in Functional Verification Phase 
Categories of 

Patterns 
Number Note 

The Reason for Not Early 
Founded 

Real Programs 
(Benchmarks) of 

Deterministic 
Verification 

3 
(a) Control signal decoded error 
about FSMs 

(g) Real application programs are 
more practical than handcrafted 
programs. 

(b) The execution cycle of 
multi-cycle multiplication 
mismatch with ISS model 

(h) Bugs need random patterns 
through a great quantity of 
simulation time to be found out 
since handcrafted pattern is not 
enough. 

(c) Same with (a) (i) Same with (g) 

(d) Exception handler cycle 
determined mismatch 

(j) Same with (g) 

Input-Constrained 
Random 

Verification 
16 

(e) Errors occur in conditional 
execution 

(k) Same with (g) 

Assertion-based 
Verification 

1 
(f) Two different interrupts occur 
simultaneously but correctness is 
not influenced. 

(l) Without assertion, unexpected 
behaviors will not be found if 
functionality is still correct. It 
lowers the quality of an IP. 

Table5.2 All of the bugs found in functional verification phase 
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As can be seen in theTable5.2, after handcrafted pattern verification, bugs still 

exist in the design and other efficient verification methodology should be used to 

make design more robust. Real programs by some benchmarks have found 3 another 

bugs about control signal decoded error of FSMs since real application programs is 

more practical than handcrafted programs. In addition, input-constrained random 

verification has found 16 bugs by many different reasons with the same idea. This 

idea is that some bugs of complicated design need random patterns through a great 

quantity of simulation time to be found out since the quantity of handcrafted pattern 

is not enough. However, some bugs will never be found if we used traditional 

simulated-based “black-box” verification; assertion-based “white-box” verification 

monitors the behavior of the design and finds out any bugs causing unexpected 

behavior even no error answer occurs.  

After thorough and rigorous functional verifications, a real application 

program JPEG encoder is used for verifying the functionality of the proposed design 

and the result can be seen below. The Fig.5.4 is an original bmp file and the Fig.5.5 

is an encoded jpeg file. The same relation is between the Fig.5.6 and the Fig.5.7. 

The time for encoding a 64x64 bmp-file to a 64x64 jpg-file by RTL simulation takes 

1 hour and for a 176x144 bmp-file to a 176x144 jpg-file takes 6 hours.  

                              
Fig.5.4 64x64.bmp 

                              

                  Fig.5.5 64x64.jpg 
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                           Fig.5.6 176x144.bmp 

 
                     Fig.5.7 176x144.jpg 

Therefore, this section has discussed a thorough and rigorous verification flow 

strategy in functional verification phase, and synthesized netlist verification phase 

will be discussed in next section. 

 

5.3 Synthesized Netlist Verification 

5.3.0 Overview of Synthesized Netlist Verification 

This section discusses synthesized netlist verification flow. The synthesis 

procedure by scripts is discussed in Section 5.3.1. Logic equivalence checking is 

discussed in Section 5.3.2. Gate-level simulation is discussed in Section 5.3.3.  

Power estimation by prime-power is discussed in Section 5.3.4. 

The completed synthesized netlist verification flow diagram is listed below in 

the Fig.5.8 and in first step the synthesized netlist is checked whether the timing and 

area meets the specification or RTL of the design will be modified; in second step 

LEC checking will verify the consistency of an RTL design as it synthesized into 

gate-level netlist; in third step gate level simulation will be executed to ensure 
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functional correctness after synthesis; finally, preliminary power estimation by 

prime power is the last step of the verification flow and exact power estimation has 

to be measured after P&R and has been discussed in Chapter 4.  

 

Fig.5.8 Synthesized Netlist Verification flow 

 

5.3.1 Synthesis by Scripts 

This section describes synthesis by scripts. Writing and refining the synthesis 

scripts is the first step to obtain the characteristic of lower power, smaller area, and 

higher performance netlist. Two methods written in scripts are worth being 

discussed below: 
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1. The gated clock technique discussed in Chapter 3 is not directly written in 

RTL but it is implemented by adding commands in scripts and listed 

below:  

i. set_clock_gating_style -sequential_cell latch -minimum_bitwidth 4 

-setup 0 -hold 0 

ii. insert_clock_gating -module_level 

iii. propagate_constraints -gate_clock 

A CG-cell with gated clock will be generated by these commands in 

scripts. The advantage is that the clock signal of RTL is not operated or 

handled directly and makes the RTL design ease to port to other 

embedded systems; for instance, the JPEG decoder system will be 

discussed in Chapter 6. 

2. A command written in scripts ignores the series path which is used for 

scan chain of DFT and makes no timing optimization to that path since 

many buffers will be added in this path and unnecessary area will be 

increased. The command is listed below: 

i. set_case_analysis 0 test_se 

 

5.3.2 Logic Equivalence Checking (LEC) 

This section describes one common formal verification technique named logic 

equivalence checking. Tools of LEC use formal mathematical techniques to verify 

logic functions by comparing input/output conditions and matching an iteration of 

design with the next. LEC enables the determination of logic function equivalence 

between one design and another. Moreover, LEC can verify the consistency of an 

RTL design as it is synthesized into gate-level netlist. 
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5.3.3 Gate Level Simulation 

This section describes that gate level simulation is executed after synthesis 

procedure to ensure functional correctness in low-level netlist. 

5.3.4 Power Estimation by Prime-power 

 This section depicts that preliminary power estimation by prime power is the 

last step of the verification flow and exact power estimation has to be measured after 

P&R and has been discussed in Chapter 4.  

 

5.4 Test Plan and Testability Measurement 
Due to the failure in manufacturing process, 5%-40% of chips will be failed 

after being manufactured and the extra cost can be huge if the chips delivered do not 

work; hence, testing becomes an important procedure to ensure the delivered chips 

work. Design-For-Testability (DFT) synthesis using scripts is one of the test 

methods and additional scan-chain circuit is generated. 

As can be seen in the Table5.3, Test coverage of the proposed design can not 

reach 100% for gated-clock CG-cells composed of latches and AND gate. In fact, it 

is worth using this kind of low-power technique to lower power consumption with a 

small defect. 

Un-collapsed Stuck Fault Summary Report 

Total faults 87428

Test coverage 99.38%

#Internal patterns 418

#Basic scan patterns 418

Table5.3 Un-collapsed Stuck Fault Summary Report 
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5.5 Summaries of Proposed Verification Strategy 
This chapter provides a thorough and rigorous verification flow strategy in two 

phases, functional verification and synthesized netlist verification. The test plan and 

testability measurement of the proposed design is also provided. 

A functional verification has been proposed that in each of steps of the flow 

the RTL model will be verified with a systemC behavior model which is designed 

for matching all the cyclic behaviors of ADS and all mismatches will cause flow 

back to RTL revision step to modification. Deterministic verification, which is made 

to check all regular cases and special corner case should be confronted in simulation 

phase, is composed of 3 parts including specialized handcrafted pattern, real 

application pattern, and verification by VN-check (make code coverage to 100%). 

Input-constrained random verification is made to detect all of unexpected cases and 

the random pattern is constrained to the meaningful range to avoid undefined 

instructions generation. More simulation cycles are verified, more vector space is 

spanned by random patterns; therefore, less bugs exists in the design and more 

robust design can be declared. Assertion-based verification finds out the bugs which 

will never be found if we used traditional simulated-based “black-box” verification; 

however, assertion-based “white-box” verification monitors the behavior of the 

design and finds out any bugs causing unexpected behavior even no error answer 

occurs. The completed synthesized netlist verification flow is composed of synthesis 

procedure by scripts, LEC checking, gate level simulation, and prime power. 

After the verification flow, it is guaranteed that the proposed embedded 

processor owns high quality of an IP, a characteristic of bug-free robustness, high 

reusability and convenient porting issue. On the other hand, a JPEG decoder system 

will be presented in the next chapter  
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CHAPTER 6  
JPEG DECODER SYSTEM 
6.0 Overview 

This chapter presents a JPEG decoder system implemented by the proposed 

core design which is configured in the FPGA as a specific purpose processor and all 

system behaviors are controlled by a ARM9EJ-S processor on the develop board. 

Section 6.1 depicts the implementation of the system. Section 6.2 describes 

architecture of system level. Section 6.3 describes architecture of hardware level. 

Section 6.4 describes program control flow in software level. Section 6.5 discusses 

the experimental results of proposed system. Section 6.6 discusses the Summaries of 

JPEG Decoder System. 

 

6.1 Implementation 
The development board of JPEG decoder system is implemented by Versatile 

RealView Platform Baseboard for ARM926EJ-S® [6]; the proposed core ACARM7 

is configured in an FPGA of Versatile LT-XC2V6000 (Xilinx VirtexII) [7]; the 

decoded file is displayed by a LCD panel, 8.4 VGA (640x480) Color VCD Panel; 

the system is semi-hosted by a PC with an ARM® RealView MultiICE®; All 

develop environment is based on ARM® Developer Suite (ADS) version 1.2; The 

proposed design will be transformed to BIT-file to configure in the FPGA by 

Xilinx® Integrated Software Environment (ISE) 6.2i. All environment setups can be 

seen in the Table6.1. 
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Decoder System  
Development Board Versatile RealView Platform Baseboard for ARM926EJ-S®  

Logic Tile Versatile LT-XC2V6000 (Xilinx VirtexII) 
LCD Kit  8.4 VGA (640x480) Color VCD Panel 

Multi-ICE ARM® RealView MultiICE® 
ADS ARM® Developer Suite (ADS) version 1.2 

Xilinx ISE Xilinx® Integrated Software Environment (ISE) 6.2i 

Table6.1 Verification environment setup 

 

6.2 Architecture of System Level 

6.2.0 Overview of Architecture of System Level 

This section introduces the overview of the proposed system in system level 

view; Section 6.2.1 describes major components of the proposed system and Section 

6.2.2 describes all control flow of the proposed system. 

 

6.2.1 Major Components of the Proposed System 

This section describes major components of the proposed decoder system, 

which is composed of an ARM9EJ-S core, a 128MB SRAM, a 64MB NOR flash, a 

LCD panel, and a Logic Tile. The ARM9EJ-S core controls all behaviors and 

components of the entire system; the data in the SRAM can be loaded or stored by 

the core; The 64MB NOR flash is a nonvolatile storage and data or programs can be 

stored in the flash prepared to be loaded into SRAM automatically as powered up; a 

LCD panel displays the image of decoded pictures; and a Logic Tile includes an 

FPGA, two 2MB ZBTSRAM(Zero Bus Turnaround SRAM), a push bottom which is 

used for interrupt input of the system, and many other devices and components. All 
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components discussed above are shown in the Fig.6.1. 

This section has described major components of the proposed system and more 

details of control flow in system level of the proposed system will be discussed in 

the next section. 

 

Fig.6.1 Block diagram in system level 

 

6.2.2 Control Flow of the Proposed System 

This section describes the control flow of the proposed system. First, all the 

binary data is obtained from ADS tool and is written into the NOR flash in advance 

by a multi-ICE with semi-hosting mechanism; the load address to the SDRAM or 

ZBTSRAM is also designated at the same time. Second, all the binary data is 

auto-loaded from the NOR-flash into SDRAM or ZBTSRAM respectively; In this 

step, the instructions of JPEG decoder are loaded into both ZBTSRAMs on the 
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Logic Tile and all of the un-decoded JPEG files are also loaded into the SDRAM. In 

addition, the main control flow program is also load into SDRAM and executed by 

ARM9EJ-S in the third step. Third, ARM9EJ-S moves two un-decoded JPEG files 

from SDRAM into both ZBTSRAMs; therefore, both instructions and un-decoded 

data are prepared for ACARM7 configured in FPGA of the Logic Tile. Fourth, 

ARM9EJ-S sends a signal to tell ACARM7 to begin to decode the data in 

ZBTSRAM. Fifth, while ACARM7 finishes decoding procedure, it will send a finish 

signal to tell ARM9EJ-S. Sixth, ARM9EJ-S moves the decoded data from both 

ZBTSRAMs of the Logic Tile to the SDRAM. Finally, ARM9EJ-S calls the LCD 

display program to show decoded data on the LCD panel. These are primary steps of 

system control flow and more delicate and efficient control techniques will be 

discussed in Section 6.4 Program Control Flow in Software Level; On the other 

hand, more details about the proposed core wrapped with an AHB interface will be 

discussed in Section 6.3 Architecture of Hardware Level. 

 

6.3 Architecture of Hardware Level 

6.3.0 Overview of Architecture of Hardware Level 

This section describes hardware architecture of the proposed core wrapped 

with AMBA interface in FPGA of the proposed system. Section 6.3.1 describes all 

the AHB peripherals in FPGA. Section 6.3.2 describes core wrapped with AHB bus 

interfece. Section 6.3.3 describes control flow within AHB peripherals in FPGA. 

 

6.3.1 AHB Peripherals in FPGA 

This section describes all the AHB peripherals in FPGA, as can be seen in the 

Fig.6.2. The RTL design should be wrapped to correspond to the AHB specification 
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in advance before they configure into an FPGA or will never be used and activated 

in an FPGA. An example code [8] provided by ARM is implementing AHB 

peripherals in FPGA of Logic Tiles and will be modified for usage of ACARM7. 

As shown in Fig.6.2, the AHB TOP-LEVEL block is the top level HDL 

(Hardware Description Language) configured in the FPGA and instantiates and 

interconnects the main block in the all system; the AHB-APB System block includes 

the bridge of AHB to APB and all the APB peripherals including LED light and 

interrupt controller. On the other hand, the AHB Decoder block decodes the received 

address from the AHB Bus to different IP selection signals which are used to 

activate the corresponded IP to wake up and execute; the AHB Multiplexer block 

selects the right answer from all different source results and selection is decided by 

the IP selection signal generated by AHB Decoder. Furthermore, the AHB-Wrapper 

for ACARM7 block wraps ACARM7 with AHB-wrapper and includes three 

sub-blocks which are ACARM7 with AHB interface, and two ZBTSRAM 

controllers. ACARM7 with AHB Interface block will be discussed in Section 6.3.2 

in detail. Both ZBTSRAM Controllers control all the data movements of the two 

ZBTSRAMs on the Logic Tile.  

This section has discussed all the AHB peripherals in FPGA, and more details 

about core wrapped with AHB bus interface will be described in the next section. 
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Fig.6.2 AHB peripherals configured in the FPGA 

 

6.3.2 Core Wrapped with AHB Bus Interface 

This section discusses the core wrapped with AHB bus interface in FPGA. As 

can be seen in the Fig.6.3, seven FSMs of the AHB-interface block (shown in the 

fig.6.4) control all the behaviors between AHB Bus and ACARM7.  

As the bus in the Idle State which could be due to decoding finish or not valid 

operation, no tasks are executed in this cycle and other tasks will be executed in 

another non-idle state. As the bus jumps into the Write State which is due to writing 

task requested by ARM9EJ-S , the data from AHB Bus will be written into Current 

Status Registers (CSR) which controls behaviors of the bus; on the other hand, the 

information of CSRs of ACARM7 will be read out to put on AHB Bus as the bus 

jumps into the Read State which is due to reading task requested by ARM9EJ-S; for 

 76 
 



example, as ACARM7 finishes a decoding task, a finishing signal will be put on the 

FINISH register of CSRs. The contents of FINISH register of CSRs will be read out 

to put on AHB Bus to tell ARM9EJ-S that the decoding task has done as the bus is in 

Read State. While ARM9EJ-S sends a request to tell ACARM7 to execute the 

decoding task, the Pre-Run State0 or the Pre-Run State1 will be entered. Which state 

will be selected from both of them depends on which ZBTSRAM of both 

ZBTSRAMs is used. The action executed by ACARM7 in both Pre-Run States is to 

reset the bus first to clear all internal registers of the bus to zero and assures the 

correctness of ACARM7 ‘s execution before entering into both Run-States every 

time. ACARM7 does decoding procedure in the Run State and stays in the state until 

it finishes the decoding task. As can be seen in the fig.6.3, while ZBTSRAM0 is 

used for JPEG decoding, Run State0 goes after Pre-Run State0 continuously. So 

does Run State1 and Pre-Run State1 while ZBTSRAM1 is used. 

This section has discussed the AHB bus interface of the core, ACARM7, with 

AHB-wrapper in FPGA and more details about control flow within AHB peripherals 

in FPGA will be described in next section. 

 77 
 



 
Fig.6.3 FSMs of the AHB bus interface 
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6.3.3 Control Flow within AHB-Wrapper for ACARM7 in 

FPGA 

This section discusses the control flow within the block of AHB wrapper for 

ACARM7, as shown in the Fig.6.2 above. As can be seen in the Fig.6.4, the block 

AHB-Wrapper for ACARM7 is the same one in Fig.6.2 and the block AHB Interface 

is the one discussed in Section 6.3.2. ARM9EJ-S, one SDRAM with 128MB, and 

two ZBTSRAMs with 2MB are also displayed in the Fig.6.4. 

Both ZBTSRAMs in the Logic Tile can be used by either ARM9EJ-S or 

ACARM7 with the AHB-Wrapper. As can be seen in the Fig.6.5, the memory usage 

of a ZBTSRAM is divided into three parts which include IM (Instruction Memory), 

DM (Data Memory), and decoded data. The content of the first part comes from 

NOR-flash auto-loading as the whole system powers up. On the other hand, 

ARM9EJ-S requests the un-decoded data moved from the SDRAM to the second 

part of the ZBTSRAM as a DM and this mechanism will be described more in 

Section 6.4. Therefore, the necessary information with both instruction and data are 

prepared for ACARM7 and ACARM7 can use the ZBTSRAM to execute decoding 

procedure. ZBTSRAM Controller is an essential part to access ZBTSRAM and 

needs all information received from a processor. As a result, a multiplexer is 

implemented and selects which processor is in charge of the ZBTSRAM. After 

decoding procedure by ACARM7 has finished,  ARM9EJ-S will take over the 

ZBTSRAM at the moment and moves the decoded data to the SDRAM for display 

on LCD panel later. 

This section has described the control flow within AHB-Wrapper for 

ACARM7 and program flow in software level will be described in next section. 
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Fig.6.4 AHB Wrapper for ACARM7 (with ARM9EJ-S and SDRAM) 

 

Fig.6.5 ZBTSRAM memory usage 
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6.4 Program Control Flow in Software Level 
This section describes the program flow in software level. As can be seen in 

the Fig.6.6, the main control flow program is executed by ARM9EJ-S and JPEG 

instruction program is executed by ACARM7. First of all, ARM9EJ-S moves the 

first un-decoded data from SDRAM to the first ZBTSRAM ZBTSRAM0, and then 

ARM9EJ-S requests ACARM7 to decode the data just moved into ZBTSRAM0. 

The second un-decoded data is moved to ZBTSRAM1 like the first one and then 

ARM9EJ-S waits the finish signal from ACARM7 by a polling mechanism. After 

ACARM7 finishes the first data decoding procedure, ARM9EJ-S requests ACARM7 

to decode the second data in ZBTSRAM1 continuously. ARM9EJ-S moves the first 

decoded data from ZBTSRAM0 to SDRAM and waits ACARM7 to finishes the 

second decoding procedure in ZBTSRAM1. After ACARM7 finishes the second 

decoding procedure, ARM9EJ-S moves the second decoded data from ZBTSRAM1 

to SDRAM in next step. These steps will be proceeding iteratively. After all the 

decoding tasks have been done, ARM9EJ-S will call a LCD display program to 

show all decoded data on the LCD panel to demo the whole system. 

This section has described the main program control flow in software level and 

some experimental results of the proposed system will be provided in the next 

section. 
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Fig.6.6 Program control flow in software level 

 

6.5 Experimental Results of Proposed System 
This section provides some experimental results of the proposed system, as can 

be seen in the Table6.2. The usage of slice of FPGA is about 10% and the minimum 

period of the system after Place & Route is 27.6 ns (maximum frequency is about 
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36.23 MHz). 

Device utilization Summary(FPGA) 

Number of 
Design 
Used 

Total of  
FPGA 

Usage in Percentage (%) 

Slices 3632 33792 10 
Slices FLIP FLOPs 2232 67584 3 

4 input LUTs 6814 67584 10 
Bounded IOBs 401 1104 36 

TBUFs 1 16896 0 
GCLKs 2 16 12 

Selected Device: 2v6000ff1517-6 
P.S.: Minimum period: 27.6ns (Maximum frequency: 36.23MHz) 

Table6.2 Experimental results of FPGA 

 

6.6 Summaries of JPEG Decoder System 
This chapter presents a JPEG decoder system implemented by the proposed 

core design which is configured in the FPGA as a specific purpose processor and all 

system controlled by a ARM9EJ-S processor on the develop board. All system can 

be divided into 3 aspects which include system level, hardware level and software 

level. 

In system level, major components of the proposed decoder system, which is 

composed of an ARM9EJ-S core, a 128MB SRAM, a 64MB NOR flash, a LCD 

panel, and a Logic Tile which includes an FPGA, two 2MB ZBTSRAMs. 

The control flow in the system level can be listed below. First, the data in a 

NOR flash is auto-loaded into the SDRAM as the system powered up. Second, the 

instructions of JPEG decoder and un-decoded JPEG files are loaded into both 

ZBTSRAMs on the Logic Tile. Third, ARM9EJ-S sends a signal to tell ACARM7 to 
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begin to decode the data in ZBTSRAM. Fourth, while ACARM7 finishes decoding 

procedure, it will send a finish signal to tell ARM9EJ-S. Fifth, ARM9EJ-S moves 

the decoded data from ZBTSRAM of the Logic Tile backing to the SDRAM. Finally, 

ARM9EJ-S calls the LCD display program to show decoded data on the LCD panel. 
In hardware level, all major components refigured in the FPGA must connect 

to an AHB Bus first. These major components include the AHB TOP-LEVEL block, 

the AHB-APB System block, the AHB Decoder block, the AHB multiplexer block, 

and the AHB-Wrapper for ACARM7 block which are composed of ACARM7 with 

AHB interface, and two ZBTSRAM Controllers.  

The core wrapped with an AHB interface is the sub-block of the AHB-Wrapper 

for ACARM7 block. Seven stages, Idle, Write, Read, Pre-run0, Pre-run1, Run0, 

Run1, are all included in the sub-block. 

The control flow within the block of AHB-Wrapper for ACARM7 has been 

discussed in Section 6.3.3. The sub-block AHB Interface is the one discussed in 

Section 6.3.2. ARM9EJ-S, one SDRAM with 128MB, and two ZBTSRAM with 

2MB are the other components in the AHB-Wrapper for ACARM7 block.. 

The program flow in software level includes the main control flow program 

executed by ARM9EJ-S and the JPEG instruction program executed by ACARM7 

and the discussion can be founded in Section 6.4. 

Section 6.5 provides some experimental results of the proposed system. The 

usage of slice of FPGA is about 10% and the minimum period of the system after 

Place & Route is 27.6 ns (maximum frequency is about 36.23 MHz). 
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CHAPTER 7  
CONCLUSIONS 

Chapter 1 introduces the motivation that the number of digital consumer 

electric products increases so dramatically nowadays and they are all powered by the 

batteries. Therefore, how to save more power of these portable electric devices is the 

most important subject in the competitive market. An ultra-low power and 

high-performance with small area embedded processor is proposed here. This thesis 

also provides a thorough and rigorous verification strategy to guarantee that the 

proposed embedded core has a high quality of IP characteristic. Moreover, not only 

considering the proposed core in the hardware aspect, but also considering the 

design in the system level to configure the proposed core in an FPGA as a JPEG 

decoder system.  

Chapter 2 describes some previous works related to ARM7TDMI, which is a 

member of general purpose 32-bit embedded processor of the Advanced RISC 

Machines (ARM) family. 

Chapter 3 describes the proposed core design ACARM7 which improves the 

operating performance as high as possible and makes power consumption as low as 

possible. The gate-count used in the design also quite small. The architecture of the 

proposed design has been discussed in this chapter and some low-power techniques 

have been also proposed. 

Chapter 4 analyzes the experimental results among different cores inclusive of 

the proposed design ACARM7, ARM7 Compatible Core (Korus 2005), and 

ARM7TDMI. In timing comparison, the performance of the proposed design is 

44.74% better compared to a normalized result from ARM7TDMI and 22.22% 

better than ARM7-Korus2005. In area comparison, the gate-count of ACARM7 is 
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much lower than the one of ARM7-Korus2005 and is 31.25% better compared to the 

later. In power comparison, the power of ACARM7 is improved by 57.9% compared 

to a normalized result from ARM7TDMI and 83% better than ARM7-Korus2005. 

On the other hand, the PDP of ACARM7 is 70.7% lower compared to ARM7TDMI 

and 86% lower compared to ARM7-Korus2005. 

Chapter 5 provides a thorough and rigorous verification flow strategy in two 

phases, functional verification and synthesized netlist verification. The test plan and 

testability measurement of the proposed design are also provided in this chapter. A 

functional verification has been discussed that in each of steps of functional 

verification flow. The RTL model is verified with a systemC behavior model which 

is designed for matching all the cycle behaviors of ADS. All mismatches will guide 

the flow back to the RTL revision step for modification. The completed synthesized 

netlist verification flow is composed of synthesis procedure by scripts, LEC 

checking, gate-level simulation, and prime power. After the verification flow, it is 

guaranteed that the proposed embedded processor owns high quality of an IP, a 

characteristic of bug-free robustness, high reusability and convenient porting issue. 

Chapter 6 presents a JPEG decoder system implemented by ACARM7 which 

is configured in an FPGA as a specific purpose processor and all system behaviors 

are controlled by an ARM9EJ-S processor on the development board. The system 

can be divided into 3 aspects which include system level, hardware level and 

software level. The usage of slice of FPGA is about 10% and the minimum period of 

the system after Place & Route is 27.6 ns (maximum frequency is about 36.23 

MHz). 

Based on the experiment result, the higher performance, the smaller area, and 

the lower power are all the advantages of the proposed processor compared with 

ARM7TDMI. The thesis also proposes a thorough and rigorous verification flow. 
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Moreover, the high applicability of the proposed processor can be demonstrated by 

configuring it into an FPGA for implementing a JPEG decoder system. 

 

FUTURE WORKS 
 

A more efficient embedded system with a variety of functionality is being 

developed. More control mechanisms about vector interrupt controller will be 

developed continuously; In addition, the issue of software and hardware partition is 

also under research. On the other hand, more functionalities of a system about the 

multimedia application like MP3 decoding will be studied in the future. 
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