

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

極低功率且高效能之

32 位元嵌入式處理器設計

伴隨 JPEG 解碼器系統

Ultra Low-Power and High-Performance

32-Bit Embedded Processor

With JPEG Decoder System

研 究 生：許哲霖

 指導教授：黃俊達 博士

中 華 民 國 九 十 六 年 九 月

極低功率且高效能之

32 位元嵌入式處理器設計

伴隨 JPEG 解碼器系統

Ultra Low-Power and High-Performance

32-Bit Embedded Processor

With JPEG Decoder System

研 究 生：許哲霖 Student: Je-Ling Hsu

指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements for
the Degree of Master in Electronics Engineering & Institute of Electronics

August 2007
Hsinchu, Taiwan, Republic of China

中華民國九十六年九月

極低功率且高效能之

32 位元嵌入式處理器設計

伴隨 JPEG 解碼器系統

研究生：許哲霖 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所

摘 要

本論文提出一個極低功率且高效能之 32 位元嵌入式處理器

ACARM7(ACademic ARM7)的研究成果報告。其一，此一處理器有較佳

的優異性能。此處理器是以 ARM V4 指令集實作，所以此指令集能使

用 ADS(ARM Developer Suite)的編譯器將高階程式語言(C,C++)編譯

成組合語言，再將其組譯為可供 ACARM7 使用的機器語言，以顯示出

此處理器的高使用性。經過與原廠 ARM7TDMI 相比，此處理器不但所

消耗的功率更少，所使用的邏輯閘更少，而且操作時脈更為快速。其

二，本論文提出一套完整且嚴謹的驗證流程。此流程既能在近 10 億

 II

個模擬週期的比對之下確保其功能行為之正確性，又能確保其合成為

低階邏輯閘電路之後整個轉換正確性。其三，本處理器亦可供做 JPEG

解碼器系統。通過此驗證流程之後，此處理器之設計被燒錄在 FPGA

之上，再使用 ARM926EJ-S Versatile 發展板系統，以完成 JPEG 解碼

器系統。

總之，本處理器無論在效能、面積、與功率等方面的比較都勝過

ARM7TDMI；此論文提供一套完整且嚴謹的處理器開發驗證流程，以確

保更佳之正確性；本處理器還燒錄在 FPGA 之上供做 JPEG 解碼器系

統，以展示其提供良好的應用性。

 III

Ultra Low-Power and High-Performance

32-Bit Embedded Processor

With JPEG Decoder System

Student: Je-Ling Hsu Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &
Institute of Electronics

National Chiao Tung University

ABSTRACT

This thesis presents the research result of an ultra low-power and

high-performance 32-bit embedded processor with JPEG decoder system. This

processor is named ACARM7 (ACademic ARM7). The ISA (Instruction Set

Architecture) of ACARM7 adopts the ARM V4 architecture. Hence the ADS (ARM

Develop Suite) can be directly used. ADS can first be used to compile the high level

programming language (C, C++) written by users to the assembly language, and then

can assemble the assemble language to the low level machine code for ACARM7 use.

It indicates the high usability of ACARM7. Compared with ARM7TDMI, the power

consumed by the proposed processor is lower; the gate-count of the proposed one is

less; and the performance is better. Meanwhile, this thesis also provides a thorough

and rigorous verification flow which assures both the correctness of functional

 IV

behavior of the proposed processor design after more than two billion simulation

cycle comparisons and the synthesis correctness of synthesized gate-level netlist

circuit. Moreover, the proposed processor is mapped onto the FPGA and integrated

within the ARM926EJ-S Versatile Development Board to implement a JPEG decoder

system. Based on the experiment result obtained by this research, the higher

performance, the smaller area, and the lower power are all the advantages of the

proposed processor compared with ARM7TDMI. The thesis also proposes a thorough

and rigorous processor verification flow. Moreover, the high applicability of the

proposed processor is demonstrated by mapping it into an FPGA for implementing a

JPEG decoder system.

 V

ACKNOWLEDGMENT
感謝辭

能夠完成這篇論文，首先我要衷心感謝指導教授黃俊達老師。在

整個要求高品質的研究階段中，黃老師總是提供卓越的指導、全力的

支持、以及溫暖的鼓勵；他淵博的知識、豐富的經驗、正確的判斷、

以及熱情的態度也在其平日諄諄教誨之下，對吾儕漸收「滴水穿石與

潛移默化之效」；而黃老師這些做人與做事的特質的確都對我以及實

驗室同學深具莫大的啟發與無窮的裨益。

我也要感謝本校 ACAR 實驗室的同學：南興、之暉、詠翔、威虢、

瀚蔚、建德以及于翔等諸君，因為你們在各方面給我的協助與建議確

實讓我這兩年的研究生涯過得既充實又有長足的進步。由於你們的共

同陪伴，我有了更深層的體驗：美德與智慧不能獨立達到最高的境

界，所以需要朋友的互助與推愛。

最後我要感謝父母、長輩、家人、與親戚；您們的厚愛、照顧、

與支持，為我過去、現在、與未來的人生增添絢麗的色彩！這些就是

我此生幸福快樂的不歇之泉。我誠願將這篇論文獻給您們，以回報您

們的慈愛於萬一！

 許哲霖 敬書於交大ACAR實驗室

 VI

CONTENTS
ABSTRACT(Chinese)...II
ABSTRACT(English) ... IV
ACKNOWLEDGMENT .. VI
CONTENTS ...VII
LIST OF TABLES ... X
LIST OF FIGURES .. XI
CHAPTER 1 INTRODUCTION ... 12
CHAPTER 2 PREVIOUS WORKS .. 15

2.0 Overview .. 15
2.1 Prerequisites .. 15

2.1.0 Overview of Prerequisites ... 15
2.1.1 Core Architecture of ARM7TDMI ... 15
2.1.2 Pipeline Stage of ARM7TDMI .. 17
2.1.3 Instruction Set Architecture (ISA) of ARM7TDMI...................... 19

2.2 Related Works ... 24
2.2.0 Overview of Related Works .. 24
2.2.1 Shift/Rotate Operation by Barrel-shifter....................................... 25
2.2.2 Mode-switch by Exceptions... 26

2.3 Summaries of Previous Works... 32
CHAPTER 3 PROPOSED CORE DESIGNS ... 34

3.0 Overview .. 34
3.1 Architecture of the Proposed Design ... 34

3.1.0 Overview of Architecture of the Proposed Design 34
3.1.1 Block Diagram of the Proposed Design ... 34
3.1.2 Control Logic of the Proposed Design.. 39
3.1.3 Arithmetic/ Logical Operation in EX-stage 41
3.1.4 Multi-cycle Multiplication in EX-stage .. 43

3.2 Implementation of Low-power Technique .. 44
3.2.0 Overview of Implementation of Low-power Technique 44
3.2.1 Unused Registers Gated .. 44
3.2.2 Unexecuted Function Units Gated.. 46
3.2.3 Low-power Consumption Property of Fong-adder 47

3.3 Summaries of Proposed Core Designs .. 48
CHAPTER 4 EXPERIMENTAL RESULTS ... 51

4.0 Overview .. 51
4.1 Implementation ... 51

 VII

4.2 Discussion of Experimental Results .. 52
4.2.0 Overview of Experimental Results ... 52
4.2.1 Comprehensive Comparison... 52
4.2.2 Timing Comparison ... 53
4.2.3 Area Comparison ... 54
4.2.4 Power Comparison... 56
4.2.5 Other Characteristics .. 57

4.3 Summaries of Experimental Results ... 58
CHAPTER 5 PROPOSED VERIFICATION STRATEGY ... 59

5.0 Overview .. 59
5.1 Implementation ... 59
5.2 Functional Verification ... 60

5.2.0 Overview of Functional Verification .. 60
5.2.1 Coding Style Checking by Linting Free ... 61
5.2.2 Deterministic Verification ... 61
5.2.3 Input-constrained Random Verification .. 62
5.2.4 Assertion Based Verification ... 63

5.3 Synthesized Netlist Verification ... 66
5.3.0 Overview of Synthesized Netlist Verification 66
5.3.1 Synthesis by Scripts ... 67
5.3.2 Logic Equivalence Checking (LEC) ... 68
5.3.3 Gate Level Simulation ... 69
5.3.4 Power Estimation by Prime-power .. 69

5.4 Test Plan and Testability Measurement .. 69
5.5 Summaries of Proposed Verification Strategy.. 70

CHAPTER 6 JPEG DECODER SYSTEM ... 71
6.0 Overview .. 71
6.1 Implementation ... 71
6.2 Architecture of System Level ... 72

6.2.0 Overview of Architecture of System Level 72
6.2.1 Major Components of the Proposed System 72
6.2.2 Control Flow of the Proposed System .. 73

6.3 Architecture of Hardware Level .. 74
6.3.0 Overview of Architecture of Hardware Level 74
6.3.1 AHB Peripherals in FPGA .. 74
6.3.2 Core Wrapped with AHB Bus Interface .. 76
6.3.3 Control Flow within AHB-Wrapper for ACARM7 in FPGA 79

6.4 Program Control Flow in Software Level... 81

 VIII

6.5 Experimental Results of Proposed System ... 82
6.6 Summaries of JPEG Decoder System ... 83

CHAPTER 7 CONCLUSIONS... 85
FUTURE WORKS ... 87
BIBLIOGRAPHY ... 88

 IX

LIST OF TABLES
Table2.1 Exception vector address .. 31
Table3.1 Transitions saved with Clock gated synthesized CG cell 46
Table3.2 PDP Analysis about Fong compared to Hybrid K-S Ling 48
Table3.3 Timing Analysis about Fong compared to Hybrid K-S Ling................. 48
Table3.4 Area Analysis about Fong compared to Hybrid K-S Ling 48
Table4.1 Simulation environment setup for experiments...................................... 51
Table4.2 Comprehensive comparison among 3 different cores 53
Table4.3 Performance comparison among 3 different cores................................. 54
Table4.4 Area/Gate-count comparison among 3 different cores........................... 55
Table4.5 Power comparison among 3 different cores .. 56
Table4.6 Power-Delay-Product comparison among 3 different cores 57
Table5.1 Verification environment setup .. 59
Table5.2 All of the bugs found in functional verification phase 64
Table5.3 Un-collapsed Stuck Fault Summary Report ... 69
Table6.1 Verification environment setup .. 72
Table6.2 Experimental results of FPGA ... 83

 X

LIST OF FIGURES

Fig.2.1 Block diagram of ARM7TDMI architecture ... 17
Fig.2.2 ARM7TDMI single-cycle instruction 3-stage pipeline operation 18
Fig.2.3 ARM7TDMI multi-cycle instruction 3-stage pipeline operation 18
Fig.2.4 ARM7TDMI instruction set encoding format ... 21
Fig.2.5 ARM7TDMI instruction set .. 22
Fig.2.6 ARM7TDMI instruction set (continued) .. 23
Fig.2.7 ARM shift/rotate mechanism .. 23
Fig.2.8 Condition code summary ... 24
Fig.2.9 A left-shifted example as N=32 .. 25
Fig.2.10 BS MUX Tree with 5 stages adding one final stage 26
Fig.2.11 Program status register format ... 30
Fig.2.12 ARM operating mode and register usage ... 30
Fig.2.13 Register organization in ARM state.. 31
Fig.3.1 ACARM7 core architecture diagram ... 35
Fig.3.2 Core architecture diagram in EX-stage.. 36
Fig.3.3 Mul 7-stage FSM diagram ... 37
Fig.3.4 Address Register source selection ... 37
Fig.3.5 Read/Write data selection.. 38
Fig.3.6 FSM of control logic ... 39
Fig.3.7 Detailed Core architecture diagram in EX-stage 42
Fig.3.8 Registers with Clock gated by RTL and synthesized CG cell................... 45
Fig.3.9 Input data gated in unexecuted units ... 47
Fig.5.1 Functional Verification flow .. 60
Fig.5.2 Input-constrained Random Verification .. 63
Fig.5.3 Assertion based verification... 63
Fig.5.4 64x64.bmp ... 65
Fig.5.5 64x64.jpg ... 65
Fig.5.6 176x144.bmp ... 66
Fig.5.7 176x144.jpg ... 66
Fig.5.8 Synthesized Netlist Verification flow .. 67
Fig.6.1 Block diagram in system level ... 73
Fig.6.2 AHB peripherals configured in the FPGA ... 76
Fig.6.3 Core refinement with AHB interface FSMs ... 78
Fig.6.4 AHB Wrapper for ACARM7 (with ARM9EJ-S and SDRAM) 80
Fig.6.5 ZBTSRAM memory usage .. 80
Fig.6.6 Program control flow in software level... 82

 XI

CHAPTER 1
INTRODUCTION

Nowadays, the number of digital consumer electric products, which includes

Personal Digital Assistant (PDA), cell-phone, Playstation-Protable (PSP), Apple

iPod, and so on, has grown up so drastically. Either embedded processors or Digital

Signal Processors (DSP), whose power is supplied by the batteries, are included in

all these portable electric products. Therefore, how to save more power of these

portable electric devices is the most important subject in the competitive market.

This thesis proposes the research result of an ultra-low power and high performance

32-bit embedded processor implemented by ARM v.4 ISA. This processor is such a

quite convenient device due to the fact that the machine code fetched by the

proposed one can be obtained by ARM Develop Suite (ADS). Small area of the

proposed processor also saves more space in portable electric products which need

characteristic of lightness, thinness, shortness, and smallness.

With the prevalent fashion of System on Chip (SOC), designs of digital

electric products have become more complicated; therefore, such designs need a

more rigorous and complete verification strategy to ensure both functional

correctness of the design and the synthesis correctness of synthesized gate-level

netlist circuit. This thesis provides a thorough and rigorous verification strategy

including the coding-style check, deterministic verification, input-constrained

random verification, and assertion-based verification so that this strategy can get

functional verification phase passed. In addition, the synthesized netlist verification

flow is composed of synthesis procedure by scripts, logic equivalence checking,

gate-level simulation, and power estimation by prime-power. Checking the

 12

coding-style of the design by Linting tool will avoid all kinds of simulation errors,

unexpected latches, misunderstanding naming issues, the failure of DFT (Design for

Test), and so on. In addition, deterministic verification is made to check all regular

cases and special corner cases which should be confronted in simulation phase; on

the other hand, input-constrained random verification is made to detect all of

unexpected situations that the design may confront with; the more the number of

simulation cycles, the less the number of bugs existing in the design; and then more

robust design can be declared. Moreover, Assertion-based verification (also called

property-based verification, PBV) is implemented in the core design to check out

whether the functional behavior has been corresponded to the expectation of

designers; although some bugs may not cause any simulation answer errors and may

be ignored easily by designers, the PBV can definitely find those bugs out. On the

other hand, synthesized netlist verification strategy assures that no error occurs in

the synthesis procedure. The writing and refining of synthesis scripts is the first step

to obtain a netlist with the characteristic of lower power, smaller area, and higher

performance. Logic equivalence checking is the second step to verify the

consistency of an RTL design as it synthesized into gate-level netlist. Gate-level

simulation is the third step to execute to assure functional correctness after synthesis.

Preliminary power estimation by prime-power is the last step of the verification flow.

As a matter of fact, through the proposed rigorous and complete verification strategy

it is guaranteed that the proposed embedded processor owns high quality of an IP

(Intelligent Property) with the characteristic of bug-free robustness, high reusability,

and convenient porting issue.

Considered only the core design in the hardware issue is not enough in a SOC

era, more difficulties in system level will be confronted with. For instance, the

proposed core will be wrapped with an AMBA (Advanced Microcontroller Bus

 13

Architecture) wrapper to communicate with other IPs on the AMBA while the core

is implemented in an ARM-based embedded system. Moreover, the application

software has to be modified before while is used by an embedded system. Therefore,

this thesis also provides a developed JPEG decoder system with the proposed core,

and the high applicability can be proofed.

As summarized above, the higher performance, the smaller area, and the lower

power are all the advantages of the proposed processor compared with ARM7TDMI.

The thesis also proposes a thorough and rigorous verification flow to verify the

correctness of the proposed core. Moreover, the high applicability of the proposed

processor can be proved by configuring it into the FPGA for implementing a JPEG

decoder system.

The remainder of this thesis is organized as follows: Chapter 2 concisely

describes the previous works related to the proposed design. Chapter 3 presents the

architecture of the proposed core and some low power techniques. Chapter 4 shows

the experiment results of the proposed core compared to other cores. Chapter 5

provides a complete verification strategy to make the proposed core more robust.

Chapter 6 presents a JPEG decoder system which is integrated with the proposed

core design. Chapter 7 concludes this thesis. Future works and bibliography are also

provided afterward.

 14

CHAPTER 2
PREVIOUS WORKS

2.0 Overview
This chapter describes some previous works related to ARM7TDMI, which is

a member of the Advanced RISC Machines (ARM) family of general purpose 32-bit

embedded processor. Section 2.1 describes some prerequisites about ARM7TDMI,

and Section 2.2 discusses about some related works. At last, Section 2.3 summarizes

the previous works and architecture of the proposed core design ACARM7 with

ultra-low power technique supported will be introduced in the next chapter.

2.1 Prerequisites

2.1.0 Overview of Prerequisites

This section describes some prerequisites related to ARM7TDMI, which is a

member of the Advanced RISC Machines (ARM) family of general purpose 32-bit

embedded processor. Section 2.1.1 depicts basic architecture of the processor core.

Section 2.1.2 mentions pipeline stage of it. Section 2.1.3 describes instruction set

architecture (ISA) of ARM7TDMI. More related works about ARM7TDMI will be

discussed in the Section 2.2.

2.1.1 Core Architecture of ARM7TDMI

The ARM7TDMI is based on Reduced Instruction Set Computer (RISC)

principles, and the ISA and related decode mechanism are much simpler than those

 15

of microprogramming Complex Instruction Set Computers (CISCs). This simplicity

results in a high instruction throughput and impressive real-time interrupt response

from a small and cost-effective chip.

The 3-stage pipeline ARM7TDMI organization is illustrated in Fig.2.1 [1]. It

can be seen that two read ports and one write port of the register bank which access

all registers. Additional read port and write port are added to access program counter

(PC).

The Barrel-shifter, which manipulates the input data to do an operation like

left-shifted, right-shifted arithmetic, right-shifted logical, and right-rotated and

which operation should be done depending on the operation-code (OP-code). The

ALU responds in all of the arithmetic and logical operations, while the address

register with incrementer, which selects and holds all memory address and generate

sequential address as required. On the other hand, data register holding data read

from or written to memory with data alignment. The instruction decoder and

associated control logic are also included in ARM7TDMI.

 16

Fig.2.1 Block diagram of ARM7TDMI architecture

2.1.2 Pipeline Stage of ARM7TDMI

ARM7TDMI using a 3-stage pipeline structure includes fetch-stage,

decode-stage, and execute-stage [2]. The first stage fetches instructions from

memory and places them in the instruction pipeline. The decode-stage decodes the

fetched instruction for next cycle execution. The last one of the 3-stage makes input

data shifted or rotated if needed and executes them with ALU or multiplier and the

processed data will write back the calculated result to the destination register finally.

At any time, each of the three stages may be occupied by three different

 17

instructions; therefore, each stage of the hardware is capable handling the instruction

within independently.

While a simple data processing instruction is executed by the processor, one

instruction can be completed every clock cycle but with three-cycle latency;

however, the throughput of the processor is one instruction per cycle and this kind of

instructions is also called single-cycle instructions, as shown in the Fig.2.2.

Fig.2.2 ARM7TDMI single-cycle instruction 3-stage pipeline operation

In contrast, the execution flow of a multi-cycle instruction is less regular, for

example, a sequential ADD instructions with a data store instruction STR, occurring

after the first ADD instruction, as showed in Fig.2.3. The action of address

calculation and the data transfer which both stay in the execution-stage take two

cycles; as a result, the third instruction behind the STR stays in the decode-stage

until the STR instruction completes the data transfer. Therefore, in this instruction

sequence, all parts of the processor are activated in every cycle and the memory

access behavior is the mainly limiting factor that limits the cycles taken by a

sequential instructions.

Fig.2.3 ARM7TDMI multi-cycle instruction 3-stage pipeline operation

 18

2.1.3 Instruction Set Architecture (ISA) of ARM7TDMI

This section describes the instruction set architecture of ARM7TDMI [1].

However, ISA of the proposed design is a version of ARM7TDMI adapted to only

32-bit instruction without Thumb and coprocessor instructions; therefore, only the

32-bit instruction set of ARM7TDMI will be focused in this section.

ISA of ARM7TDMI can be classified into 3 types, data processing instructions,

data transfer instructions, and control flow instructions. The encoding formats can be

seen in the Fig.2.4. Moreover, all instructions are listed in theFig.2.5 and Fig.2.6.

Data processing instructions are the only one of 3 classified instruction set types

listed above which enables to modify data values came from registers by executing

arithmetic or logical operation on them. They typically require 2 operands and

produce one single result. Such instructions include arithmetic operations, bit-wise

logical operations, register movement operations , and comparison operations.

ADD, ADC, and SUB are parts of the first while AND, OR,and XOR belong to the

second. Register movement operations include MOV and MVN and comparison

operations include CMP, CMN, TST, and so on. The Operand2 field of each

instructions of data processing/PSR transfer includes 12 bits and has the ability to

make operand2 shifted or rotated by a Barrel-shifter, as can be seen in the Fig.2.4. It

shows shift/rotate operation mechanism in the Fig.2.7 and means all data processing

instructions before arithmetic/logical operations can be shifted/rotated if needed.

Moreover, the conditional codes of each instruction top 4-bit can be modified with

any of the data processing instructions and more details about conditional codes will

be discussed in the following paragraphs.

Data transfer instructions moving data between registers of ARM and memory

and can be classified as 3 basic forms in the ARM instruction set. They are single

 19

register load/store instructions, multiple register load/store instructions, and single

register swap instructions. Single register load/store instructions, supporting all the

byte transfer, half-word transfer, and word transfer, use most broadly to transfer data

between registers and memory. Multiple register load/store instructions transfer data

between memory and registers by word, less flexible than single data transfer

instructions; however, being capable of large quantities of data to be transferred more

efficiently, they are used for procedure entry and exit, to save and restore workspace

registers, and to copy blocks of data around memory. Single register swap instructions

allow a value in a register to be exchanged with a value in memory, effectively doing

both load/store operation in one instruction, and they are little used in user-level

programs.

Control flow instructions neither process data nor move it around; however,

they simply determine which instructions get executed next. The processor normally

executes instructions sequentially instead it reaches the branch instruction and

proceeds directly to the destination address which the branch instruction comprehends.

The mechanism used to control loop entry or exit is conditional branch which

executes the instruction of branch only if the conditional codes of them get the correct

value to fulfill some conditions.

 20

Fig.2.4 ARM7TDMI instruction set encoding format

 21

Fig.2.5 ARM7TDMI instruction set

 22

Fig.2.6 ARM7TDMI instruction set (continued)

Fig.2.7 ARM shift/rotate mechanism

As mentioned earlier, one unique key-feature of the ARM instruction set is that

every instruction is conditionally executed which implemented by top 4-bit

conditional field of each 32-bit instruction field. Each of 15 values(instead of code

equals to ‘1111’, NV) of the conditional field causes the instruction to be executed or

skipped according to the value of the N, Z, C and V flags in the CPSR. The 15

conditions are given in fig.2.8 and every ARM instruction mnemonic may be

 23

extended by appending the 2 letters defined here. For example, ‘AL’ means ‘always’

condition which may be omitted since the instruction is definitely executed no matter

what, the execution condition of others are listed in the Fig.2.8.

Fig.2.8 Condition code summary

2.2 Related Works

2.2.0 Overview of Related Works

Prerequisites have been discussed in last section, and this section describes

some related works about ARM7TDMI. Section 2.2.1 depicts shift/rotate operation

by Barrel-shifter (BS). Section 2.2.2 depicts Mode-switch by Interrupt Mechanism

of ARM7TDMI. Summaries of Chapter 2 Previous Works will be discussed in

 24

Section 2.3.

2.2.1 Shift/Rotate Operation by Barrel-shifter

Shift and rotate operation is one of the most essential and basic part in data

processing phase of a microprocessor and it presents an operation that a data is

left-shifted, right-shifted arithmetically, right-shifted logically, and right-rotated. It is

well known that in term of design style this kind of operation is usually implemented

by a technique named Barrel-shifter, one kind of logarithmic shifter. This shifter

completes the operation in log2 (N) stages, where N=2n is the word length. The

moved amount of data in each stage is 2i, where 0≤ i ≤ (n-1), and the data shifted

by the preceding stage shifts continuously in the present stage; hence, it takes n

stages to obtain the final result. A left-shifted operation with N=32 example can be

shown in the Fig.2.9. The lower data from bit0 to bit15 can be moved to higher

16-bit and filled with zero in lower 16-bit in i=4 stage; as the same as i=4 stage, the

8-bit from bit16 to bit23 can be moved higher 8-bit and filled with zero in lower

8-bit in i=3 stage.

Fig.2.9 A left-shifted example as N=32

In each stage, one of four types of shift/rotate operation which include

left-shifted, right-shifted arithmetically, right-shifted logically, and right-rotated is

selected. More hardware detections about conditional codes and greater than 32-bit

shift-amount should be added in the final stage of BS MUX tree, as shown in the

 25

Fig.2.10.

Fig.2.10 BS MUX Tree with 5 stages adding one final stage

2.2.2 Mode-switch by Exceptions

Most programs operate in user mode, however, other privileged operating

modes which are used to handle exceptions and supervisor calls are switched by

 26

different interrupt types.

The current operating mode is defined by bottom 5-bit M0 to M4 of the CPSR

register, as shown in the Fig.2.11. In addition, the interpretation of these bits is

summarized in Fig.2.12 and the privileged mode has associated with it a Saved

Program Status Register (SPSR), which is used to save the state of the CPSR while

the privileged mode is entered in order that the user state can be fully restored as the

user process is resumed.

Exceptions are generally used to handle unexpected events like interrupts or

memory faults which arise during the execution of a program. Besides, exceptions is

also used to cover software interrupt, undefined instruction traps, and the system

reset function which logically arises before rather than during the execution of a

program. These events are all grouped under the exception handling since they have

all the same mechanism within the processor. Therefore, ARM exception can be

divided into 3 groups, which include directly generated by executing instructions,

generated as a side-effect of executing instructions, and generated externally,

unrelated to the instruction flow. Software interrupt, undefined instructions and

prefetch aborts belong to the first group; data aborts belongs to the second group;

reset, IRQ, (normal interrupt) and FIQ (fast interrupt) belong to the third group.

Exception entry which is entered while an exception arises and it caused by a

side-effect like data abort or an external event like IRQ uses the next instruction in

the current sequence; however, direct-effect exceptions like software interrupt are

handled in sequence as they arise. In fact, the processor performs the actions of

following sequence as exceptions occur.

 It changes to the operating mode corresponding to the particular exception.

 It saves the address of the instruction following the exception entry instruction

in r14 of the new mode.

 27

 It saves the old value of the CPSR in the SPSR of the new mode.

 It disables IRQs by setting bit7 of the CPSR while it disables further fast

interrupt by setting bit6 of the CPSR if the exception is a fast interrupt.

 It forces the PC to begin executing as the relevant vector address given by

Table2.1.

As can be seen in the Table.2.1, each of exceptions has the corresponded

vector address and contains a branch instruction to jump to the corresponded

interrupt service routine (ISR) which includes all the actions should be done while

an interrupt occurs; however, the vector address of FIQ needs no branch actions but

starts its ISR immediately since it occupies the highest vector address.

The two banked registers in each privileged mode, r13_x and r14_x, a stack

pointer which may be used to save other user registers and a return address holder,

can be used by ISR in each privileged mode; however, FIQ mode has more

additional private registers to give better performance by avoiding the need to save

user registers in most cases where it is used, as shown in the Fig.2.13.

Once the exception has been handled the user task is normally resumed and

some following facts need to be guaranteed.

 Any modified user registers must be restored from the stack of ISR.

 The CPSR must be restored from the appropriate SPSR.

 The PC must be changed back to relevant instruction address in the user

instruction stream.

To note that the last two steps above need to be carried out together.

It is necessary to define a priority order to determine the order in which

exceptions should be handled first since multiple exceptions could arise at the same

time. These are priorities of all interrupts of ARM:

1. reset (highest priority);

 28

2. data abort;

3. FIQ;

4. IRQ;

5. prefetch abort;

6. Software interrupt (SWI) and undefined instructions; these two interrupts are

mutually exclusive instruction encodings and have no chance to occur

simultaneously.

Reset starts the processor from a known state and renders all other pending

exceptions irrelevant. The most complex exception scenario is where an FIQ, an

IRQ and a third exception (excluding reset) occurs simultaneously. FIQ has higher

priority than IRQ and also mask it out, so the IRQ will be ignored until the FIQ

handler explicitly enables IRQ or return to user code. However, as the third

exception is a data abort, the processor will enter the data abort handler and

immediately enter FIQ handler, since data abort entry does not mask FIQ out. The

data abort is remembered in the return path and will be processed when the FIQ

handler returns. On the other hand, as the third exception is not a data abort, the FIQ

handler will be entered immediately. While FIQ and IRQ have both completed, the

program returns to the instruction which generated the third exception, and in all the

remaining cases the exception will recur and be handled accordingly.

 29

Fig.2.11 Program status register format

Fig.2.12 ARM operating mode and register usage

 30

Table2.1 Exception vector address

Fig.2.13 Register organization in ARM state

 31

2.3 Summaries of Previous Works
This chapter describes some previous works about ARM7TDMI processor

design which includes core architecture, pipeline stage, and instruction set

architecture and some related works like shift/rotate operation by a Barrel-shifter

and mode switch by exceptions.

Core architecture of ARM7TDMI is designed by obeying Reduced Instruction

Set Computer (RISC) principles with 3-stage pipeline implementation which includes

fetch-stage, decode-stage, and execution-stage. Each of the three stages may be

executed the instruction within independently and efficiently, therefore, the

throughput of the processor is one instruction per cycle in an ideal case. The

ARM7TDMI instruction set including only 32-bit instruction without Thumb is

discussed in the section for the proposed design is a 32-bit embedded processor.

Moreover, the ISA of ARM7TDMI can be classified into data processing instructions,

data transfer instructions, and control flow instructions, and with condition code in

the top 4-bit in every instruction to execute instructions conditionally.

Shift and rotate operation is one of the most essential and basic part in data

processing phase of a microprocessor and is usually implemented by a technique

named Barrel-shifter, which completes such a operation within log2 (N) stages,

where N=2n is the word length. On the other hand, programs operate not only in user

mode, but also other privileged operating modes which are used to handle

exceptions and supervisor calls are switched by different interrupt types. All

exceptions has its own vector address to the corresponded ISR and all of user

registers must be recovered as exception handling is over and comes back to user

programs.

Some previous works have been discussed and some important characteristics

 32

have been reminded in this chapter; consequently, the proposed design ACARM7

improves the operating performance, makes power consumption as low as it possible,

and uses fewer gate-counts to save area consuming while utilizing these previous

works discussed this section. The proposed design will be described in detail in the

next section.

 33

CHAPTER 3
PROPOSED CORE DESIGNS

3.0 Overview
This chapter describes the architecture of the proposed core design and

implementation of low-power technique. Section 3.1 depicts basic architecture of the

proposed core design. Section 3.2 discusses the implementation of low-power

technique. Section 3.3 summarizes the proposed core design and experiment results

of the proposed core will be presented in the next chapter.

3.1 Architecture of the Proposed Design

3.1.0 Overview of Architecture of the Proposed Design

This section describes architecture of the proposed design, ACARM7, a 32-bit

embedded processor with characteristics of ultra low-power, high-performance, and

low area consuming. Section 3.1.1 depicts the block diagram of the proposed design;

Section 3.1.2 depicts control logic of the proposed design; Section 3.1.3 depicts how

an arithmetic/logical operation is functioned in EX-stage; and Section 3.1.4

describes the mechanism of multi-cycle multiplication in EX-stage. The

implementation of low-power techniques will be discussed in the Section 3.2.

3.1.1 Block Diagram of the Proposed Design

The proposed core architecture composed of 8 major functional blocks which

include decoder, register-file, ALU, 32x8 Multiplier, forwarding unit, address

 34

register, read/write data selection, and control logic. The block diagram of the

proposed design can be seen in the Fig.3.1.

The decoder unit obtains the instruction from fetch phase and decodes it into

all information that other function units need.

The register-file is composed of 31 general purpose 32-bit registers which can

be divided into 6 banks and 6 status registers. The 6 banks of 31 general purpose

registers can be used in 6 different modes of ACARM7 execution states including

system&user mode, FIQ mode, supervisor mode, abort mode, IRQ mode, and

undefined mode. As shown in the Fig.2.11, Each of 6 status-registers which record

conditional codes and some control bits including modes bits, state bit, FIQ bit , and

IRQ bit and it is not necessary to be implemented in 32 bits.

Fig.3.1 ACARM7 core architecture diagram

 35

The execution stage includes Barrel-shifter (BS), 64 bits Fong adder [3], and a

Ling multiplier [4] with 32-bit multiplicand multiplying 8-bit multiplier. , as can

been shown in Fig.3.2, both arithmetic operation and logical operation are

implemented with an ALU module whose two inputs, oprand1 and operand2, are

received from a BS to perform a shift operation if needed.

Fig.3.2 Core architecture diagram in EX-stage

The 40-bit product of the Ling-multiplier is calculated by the two operand

inputs with 32-bit operand1 and bottom 8-bit operand2. The cycles of finishing a

multiplication from 2 to 5 and can be decided by the EX_stage Controller and a

7-stage FSM (Finite State Machine) in Fig.3.3. More details will be discussed in

Section 3.1.3 Multi-cycle Multiplication in EX-stage. In an addition, the low-power

technique is also considered to gate inputs of unexecuted function units and will be

described in detail in the Section 3.2.

The forwarding unit forwards the data calculated from the output of the

execution stage to make next instruction obtain the answer as soon as possible if

needed, as shown in Fig.3.1.

One valid address is choosing from four address sources which include

 36

program counter incrementer, ALU output, LDM (Load Multiple)/STM (Store

Multiple) output, and source of interrupt. Consequently, the valid address will be

sent to the address register (program counter, PC), as can be shown in Fig.3.4

Fig.3.3 Mul 7-stage FSM diagram

Fig.3.4 Address Register source selection

 37

The function performed by read/write data selection is non-word data aligned

either read data from a memory or write data to memory in Fig.3.5. As a result, byte

data or half-word data read from a memory will be shifted to bottom of a 32-bit

width register and either zero-extended or sign-extended will also be performed to

complete rest bits to fill with 32-bit data width. On the other hand, byte data written

to a memory will be copied to 4 pieces to fill with 32-bit data width and half-data

will be copied to 2 pieces as can be predicted. On the other hand, the discussion of

control logic implementation of the proposed design will be presented in Section

3.1.2 Control Logic of the Proposed Design.

Fig.3.5 Read/Write data selection

The function of each primary block unit of the proposed core design has been

 38

described individually in this section and mechanisms and implementation of control

logic, arithmetic/logical operation in EX-stage, and multi-cycle multiplication

operation in EX-stage, will be discussed in detail in the following sections.

3.1.2 Control Logic of the Proposed Design

The control logic controls all the data flows of combinational logic and all the

state transitions of sequential logic. As can be seen in the Fig.3.6, four Sub-FSMs,

load/store sub-FSM, shift sub-FSM, multiplication sub-FSM, and branch sub-FSM,

are controlled by one main normal operation FSM. The main normal operation FSM

includes only one state and all of the single-cycle instructions can finish their

execution in this state; for instance, general arithmetic or logical operation. However,

other instructions can not finish their execution within just one cycle, and they will

leave for other 4 sub-FSMs.

Fig.3.6 FSM of control logic

Load/Store sub-FSM includes four types of instructions, store, load without

branch, load with branch, and swap. Store instructions include single data store and

 39

multiple data store, as can be seen in the Fig.3.6. The first state calculates the

destination address and then the second state writes the data to memory and finishes

the single data store instruction. While multiple data store instruction continuously

stays in the second state until all data transfers are done. Besides store instructions,

all other instructions will finish their last execution cycle backing to the normal

main state. Load is also composed of single data load and multiple data load like

store instructions. The load address is calculated in the first cycle, and waits data

from memory in the second state. Single data load instructions will finish their

execution in the normal main state; on the other hand, multiple data load instructions

back to main state until all of their data transfers finished. In contrast, the cycle

operation of load with branch is the same as load without branch in the first two

cycles; the difference between them is the former will leave for branch sub-FSM

which will be discussed later to continue its execution. Swap instruction makes data

exchange from a register and external memory, and implemented by a lock operation

of store after load. Therefore, it combines load and store instruction operations

together; the changing order of states is address calculation, data wait from memory,

write data to memory, and backing normal main state finally.

Shift sub-FSM includes two types of instructions, shift with branch and shift

without branch, and each of them occurs as ALU needs a shift-amount not coming

from immediate field but contents stored in registers. More cycle is needed since

shift-amount stored in registers can not be obtained with the other two operands at

the same time. Therefore, this kind of instruction will lead FSM to jump to the shift

sub-FSM while the shift-amount stored in the r15 (PC) will lead FSM to jump to the

shift sub-FSM with branch.

Multiplication sub-FSM includes all kinds of instructions about multiplication,

and lasts from 2 cycles to most 7 cycles until the instruction finishes the execution.

 40

The finish signal will be sent to the main control logic to be acknowledged and

backed to main normal FSM. More details about multiplication will be discussed in

the Section 3.1.4 Multi-cycle Multiplication in EX-stage later.

As in the branch sub-FSM, a new PC address is calculated in the first state and

next new instruction will be fetched in the pipeline to fill the empty space behind the

present instruction in the second state. It has the lowest priority of all the five FSMs

and can be entered from load/store sub-FSM and shift-sub FSM and both two

sub-FSMs and Mul sub-FSM are mutually exclusive. Moreover, the four other

sub-FSMs instead of branch sub-FSM have equal priority and which FSM should be

entered decided by instruction decoded information.

3.1.3 Arithmetic/ Logical Operation in EX-stage

Arithmetic or logical operation is handled in the execution stage by ALU, as

can be seen in the Fig.3.7, a detailed description with block diagram to Fig.3.2. Two

data inputs, Src_a and Src_b, can be used for 2 data inputs of arithmetic/ logical

operation instruction or 2 data inputs of multi-cycle multiplication in the pipeline

stage Ex-stage; the later will be discussed in Section 3.1.3.

Src_b is fed into a BS which has been discussed in Chapter 2 before and can

be shifted or rotated by any amounts with any types including left-shifted,

right-shifted arithmetically, right-shifted logically, and right-rotated according to an

EX-stage controller. Both output signals from the BS and Src_a are fed into a

Reverse-Inverse-Multiplexer which decides that whether the 2 inputs enter this

multiplexer should be inversed due to consideration about subtraction or reversed

for specific instructions RSB or RSC discussed in Chapter 2.

The 2 results of the multiplexer are also sent to a logical unit while a logical

 41

operation is decoded or a 64-bit Fong adder [3] while an arithmetic operation is

decoded. All the logical instructions like AND, ORR, and so on will be handled in

this logical unit; moreover, 4 conditional flags , as shown in fig.2.11, excluding

V-flag will also be set at the same time.

On the other hand, all the arithmetic instructions like ADD, SUB, ADC, and so

on. will be handled in the higher 32-bit part of 64-bit Fong-adder since normal

addition or subtraction needs only 32-bit data width and lower 32-bit part will be

filled with zero as no multiplication instructions are executed.

Fig.3.7 Detailed Core architecture diagram in EX-stage

 42

3.1.4 Multi-cycle Multiplication in EX-stage

As the instruction is decoded a multiplication type, Mux_a and Mux_b of the

Fig.3.7 will select the sources directly from a 32x8 Ling-Multiplier [4] and 64-bit

result saved in a register calculated last cycle. (While in the first cycle operation, the

64-bit result is zero in default) These 2 resources will use all 64-bit of the

Fong-adder [3] since a 32-bit multiplicand multiplies a 32-bit multiplier obtains

most 64-bit product.

As can be seen in the Fig.3.3, normal multiplication without accumulation

operation and writing 64-bit result out needs at least 2 cycles since 40-bit product is

obtained in the first one cycle and added into 64-bit Fong adder to get final 64-bit

result. While all 32-bit of multiplier is valid, 4 cycles is needed for 8-bit is calculated

once. In each cycle, the 64-bit Fong adder result is added by the 40-bit product

obtained from the preceding cycle. Therefore, normal multiplication takes most 5

cycles to finish the multiplication. However, multiplication with accumulation

operation takes one more cycle and writes Long-result of 64-bit out to two 32-bit

registers also takes one more cycle; as a result, a 32-bit multiplicand multiplies a

32-bit multiplier with accumulation and writing Long-result of 64-bit out to 2

registers takes 7 cycles in total.

While the multi-cycle multiplication finishes, a finish signal will be sent from

Mul Sub-FSM to main FSM to tell that the multi-cycle operation is finished and may

take next instruction into EX-stage to continue the program flow.

 43

3.2 Implementation of Low-power Technique

3.2.0 Overview of Implementation of Low-power Technique

The proposed design is convinced to have a characteristic of ultra low-power

and is implemented with three significant methods which are composed of unused

registers gated, unexecuted function units gated, and low-power consumption

property of Fong-adder [3]. The first will be discussed in Section 3.2.1 Unused

Registers Gated; the second will be discussed in Section 3.2.2 Unexecuted Function

Units Gated; and the third will be discussed in Section 3.2.3 Low-power

Consumption Property of Fong-adder.

3.2.1 Unused Registers Gated

The data stored in Registers are updated in every clock cycle without any clock

gating operation; as a result, huge power is consumed and some manipulations must

be done to avoid so much power wasting of the proposed design.

One manipulation that makes new data to transmit into D port of the

FLIP-FLOP only when the enable signal is high can be implemented in RTL level,

as can be seen in the Fig.3.8. The disadvantage is that the stored data of registers is

still re-written for holding old data every clock; as a matter of fact, it is still power

wasting and other manipulations should be done. As can be seen in the Fig.3.8, a

lower part with a CG cell composed of an enable signal controlled latch will make

clock of the unused registers gated and guarantee that no data updated any more for

holding old value. This method can absolutely shut down updating operations of

unused registers and save unnecessary power consumption as much as it can. This

synthesis method by using scripts will be discussed in detail in Chapter 5

Verification Strategy.

 44

The numerical report shows that the number of FLIP-FLOPs could be gated is

1,576 and the number of FLIP-FLOPs could not be gated is 27; in addition, the

benchmark we used is Dhrystone 2.1 with 8,332 clock cycles, as can be seen in the

Table3.1. The amazing thing is that while clock gated method is implemented, only

796,517 transitions occurs. It compares to 13,131,232 transitions occurring without

implementing gating technique and 93.93% unnecessary power consumption caused

by FLIP-FLOP transitions will be saved. Even considering the FLIP-FLOPs could

not be gated, it still saves power consumption about 92.35%. This report is so

significant and credible that why our proposed design is called ultra low-power.

Moreover, other methods about implementation of low-power technique will be

introduced in following sections.

Fig.3.8 Registers with Clock gated by RTL and synthesized CG cell

 45

Dhrystone 2.1 with
8,332 clock cycles

FLIP-FLOP
numbers

FLIP-FLOP
Transitions no

clock gated
implemented

FLIP-FLOP
Transitions
clock gated

implemented

Transitions
can be

saved (%)

FF could be gated 1,576 13,131,232 796,517 93.93%
FF could not be gated 27 224,964 224,964 0%

Total 1,603 13,356,196 1,021,481 92.35%

Table3.1 Transitions saved with Clock gated synthesized CG cell

3.2.2 Unexecuted Function Units Gated

Last section a low-power technique used for sequential logic to gate unused

registers has been proposed, furthermore, another low-power technique used for

combinational logic of unexecuted units is proposed in this section. For instance,

signal-A from the Fig.3.9, will be gated in front of combinational logic in the

unexecuted units to avoid unnecessary combinational logic transitions to cause extra

power wasting. As can be seen in the Fig.3.9, signal-B and signal-C can be forced to

zero as enable signal is low; therefore, the combinational logic from signal-B to

signal-C of unexecuted units can be shut down to save any unnecessary

combinational logic transitions. Moreover, the Fig.3.9 also shows an example that

while an instruction is executed in MAC all the combinational logics in ALU will be

shut down to save power.

Two different low-power techniques are implemented in Sequential logic in

preceding section and combinational logic this section; then another low-power

technique from a point of view of property of function units will be discussed in the

next section.

 46

Fig.3.9 Input data gated in unexecuted units

3.2.3 Low-power Consumption Property of Fong-adder

Fong-adder [3] is one of the most significant function units in the proposed

core design due to its low-power consumption, and smaller area using with no

increasing performance overhead.

As can be seen in the Table3.2, Fong-adder compares to Hybrid K-S

Ling-adder [5], a fastest adder at present but power consumption is high and area

usage is enormous. The former saves 32.40% power as data width is 32-bit and

12.05% as data width is 64-bit. As can be seen in the Table3.3 and Table3.4, the

timing analysis of Fong-adder compares to Hybrid K-S Ling-adder is %2 better as

data width is 32-bit and %6.56 better as data width is 64-bit; in addition, the area

analysis of Fong-adder compares to Hybrid K-S Ling-adder is also %21.40 better as

data width is 32-bit and 17.72% better as data width is 64-bit.

The proposed design implemented with Fong-adder has a characteristic of

ultra-low power consumption and small area usage but still remains

high-performance. In fact, this is one of the most outstanding advantages of the

proposed core design.

 47

Power Delay Product Analysis (UMC 0.18um/TT corner)

Data
Width

Hybrid K-S
Ling-adder

(power)(mW)

Fong-adder
(power)(mW)

Hybrid K-S
Ling-adder
(PDP)(pJ)

Fong-adder
(PDP)(pJ)

PDP
Saving

32 18.98 12.83 18.98*1.02 12.83*1.00 33.73%
64 32.77 28.82 32.77*1.22 28.82*1.14 17.82%

Table3.2 PDP Analysis about Fong compared to Hybrid K-S Ling

Timing Analysis (UMC 0.18um/TT corner)

Data
Width

Hybrid K-S
Ling-adder

(ns)

Fong-adder
(ns)

Timing
Saving

32 1.02 1.00 2.00%
64 1.22 1.14 6.56%

Table3.3 Timing Analysis about Fong compared to Hybrid K-S Ling

Area Analysis (UMC 0.18um/TT corner)

Data
Width

Hybrid K-S
Ling-adder

(um2)

Fong-adder
(um2)

Area
Saving

32 14173.790 11140.114 21.40%
64 28839.888 23730.583 17.72%

Table3.4 Area Analysis about Fong compared to Hybrid K-S Ling

3.3 Summaries of Proposed Core Designs
This section has discussed architecture of the proposed core design which

includes discussion about block diagrams, control logic, arithmetic/logical operation

executed in EX-stage, and the mechanism of multi-cycle multiplication in EX-stage.

Three different implementation types of low-power techniques which include

unused registers gated, unexecuted function units gated, and low-power

consumption property of Fong-adder have also been discussed.

The proposed core architecture is composed of 8 major functional blocks

 48

which include instruction decoder, a register-file with 31 general purpose 32-bit

registers with 6 banks division and 6 status registers, an ALU with a 64-bit

Fong-adder and a logic unit, a 32x8 Ling-multiplier controlled by multi-cycle

multiplication Sub-FSM, a forwarding unit, an address register selecting one valid

address from different sources, read/write data selection with data alignment, and

control logic.

The control logic of the proposed design is composed of 4 Sub-FSMs and 1

main FSM. The 4 sub-FSMs are load/store sub-FSM, shift sub-FSM, multiplication

sub-FSM, and branch sub-FSM. They are all controlled by the main FSM. Branch

sub-FSM has the lowest priority of all the 5 FSMs and can be entered from

load/store sub-FSM and shift-sub FSM. Both load/store sub-FSM and shift-sub FSM

and Mul sub-FSM are mutually exclusive; moreover, the 4 FSMs instead of branch

sub-FSM have equal priority and which FSM should be entered decided by

instruction decoded information.

Arithmetic or logical operation is handled in the execution stage by ALU

which is composed by a 64-bit Fong-adder and a logic unit. Src_A and Src_B going

through a BS will be multiplexed by a Reverse-Inverse-MUX; then 2 output results

from the Reverse-Inverse-MUX are sent to the logic unit or higher 32-bit part of

Fong-adder depending on which types of instruction are decoded.

Normal multiplication without accumulation and writing Long-result of 64-bit

out needs at least 2 cycles and at most 5 cycles; however, multiplication with

accumulation operation takes one more cycle and writes Long-result of 64-bit out to

two 32-bit registers also takes one more cycle. Therefore, a 32-bit multiplicand

multiplies a 32-bit multiplier with accumulation and needs writing Long-result of

64-bit out takes 7 cycles in total.

The data stored in Registers are updated in every clock cycle without any clock

 49

gating operation to cause huge power consumed. One manipulation that makes new

data to transmit into D port of the FLIP-FLOP only when the enable signal is high

can be implemented in RTL level; on the other hand, a synthesized CG cell will

make clock of the unused registers gated and guarantee that no data updated any

more for holding old value. This method using synthesis scripts can absolutely shut

down updating operations of unused registers and save unnecessary power

consumption as much as it can and will be discussed in Chapter 5.

A low-power technique used for combinational logic of unexecuted units is

that input data will be gated in front of combinational logic in the unexecuted units

to avoid unnecessary combinational logic transitions to cause extra power wasting.

Besides the two different low-power techniques implemented in Sequential

logic and combinational logic, the third low-power technique is implemented by a

Fong-adder since its characteristics of ultra-low power consumption, small area

usage, and remaining high-performance compared to Hybrid K-S Ling-adder which

is the fastest adder at present.

The proposed design has been discussed in detail this section, and some

experiment results about power, timing, and area of the proposed design including

Pre-SIM and Post-SIM will be shown and be analyzed with comparison to other

processor cores in the next section.

 50

CHAPTER 4
EXPERIMENTAL RESULTS

4.0 Overview
In this chapter, we provide the experimental results of the proposed design.

Section 4.1 elaborates the environment for implementation. Section 4.2 provides the

data and statistics of the experiment and discusses the experimental results.

4.1 Implementation
This section describes implementation of the simulation environments which

include coding by Verilog HDL, simulators with Cadence Verilog®-XL and Debussy,

a synthesizer with Synopsys Design Compiler®, a power analyzer with Synopsys

PrimePower®, cell library with Artisan TSMC 0.18 μm technology, and

Place&Route with Cadence SOC Encounter®. All of simulation environment are

listed in Table4.1.

Coding Verilog HDL

Simulator Cadence Verilog® -XL; Debussy
Synthesizer Synopsys Design Compiler®

Power Analyzer Synopsys PrimePower®
Cell Library Artisan TSMC 0.18 μm technology
Place&Route Cadence SOC Encounter®

Table4.1 Simulation environment setup for experiments

 51

4.2 Discussion of Experimental Results

4.2.0 Overview of Experimental Results

All results are shown in tabular form with discuss under the tables; besides, the

improvement rate of each comparison relative to the proposed design are also

provided in percentage.

The result of critical path delay in worst case, area cost at critical timing, and

power consumption will be reported and compared at the following sections.

4.2.1 Comprehensive Comparison

This section provides all experimental results with a comprehensive

comparison compared among the proposed core ACARM7, ARM7 Compatible

Processor (Korus 2005) and ARM7TDMI. As can be seen in the Table4.2, the

process technology used by the proposed core ACARM7 and ARM7-Korus2005 are

both 0.18um while ARM7TDMI uses 0.25um technology; therefore, all comparisons

in the following sections will be normalized to 0.18um technology for correctness.

The row named “Other characteristics” of the Table4.2 shows some specific

characteristics which are unique to each of different cores; in addition, the row

named “Note” indicates some attention notes to clear some misunderstandings might

be made. The p.s.1 of the note is that all the experimental results of ARM7TDMI are

come from a TSMC 0.25um hard macro; on the hand, p.s.2 and p.s.3 mentions that

both benchmarks for power estimation of ACARM7 and ARM7TDMI are based on

Dhrystone with temperature 25C, but the former is in voltage condition of 1.8V and

the later is in 2.5V. The last note reminds readers that all experimental results are

obtained in worse case except power estimation is measured in typical case.

All the information obtained from Table4.2 like timing, area, and power will

 52

be analyzed and compared among the 3 different cores in the following sections.

Comprehensive Comparisons among Three Different Cores

Proposed Core

ACARM7

ARM7
Compatible
Core (Korus

2005)

ARM7TDMI
(official

released) (p.s.1)

Process(um) 0.18 0.18 0.25
Gate-count(k) 35.75 52 N/A

Area(mm2) 0.3567 N/A 1.05

Performance(MHz) 110 90 55
Power(mW) 0.17(p.s.2) 1 0.78(p.s.3)

Pipeline-stage 3 3 3

Other characteristics
No Thumb;

DFT supported
No DFT

supported
Hard Core No
DFT supported

p.s.1:TSMC 0.25um hard macro
p.s.2:Dhrystone,1.8V,Temp=25。C

p.s.3:Dhrystone,2.5V,Temp=25。C Note

All experiment results are measured in worse case
except power estimation is in typical case

Table4.2 Comprehensive comparison among 3 different cores

4.2.2 Timing Comparison

This section discusses the timing comparison among 3 different cores and the

performance of ARM7TDMI obtained from Table4.2 should be normalized to

0.18um technology first by using an equation below:

55 X (
18.0
25.0) = 76

After normalization, the performance of ARM7TDMI is normalized to 76MHz.

However, it is still lower than 90MHz of ARM7-Korus2005 and 110MHz of

 53

ACARM7. The proposed design has such a high performance because it uses a

high-performance IPs like Fong-adder and Ling-Multiplier and implements the ISA

without Thumb instructions. It gains a significant improvement in the critical path.

As shown in Table4.3, the performance of ACARM7 is improved 44.74%

compared to a normalized result from ARM7TDMI and even 22.22% better than

ARM7-Korus2005.

Performance Comparison among Three Different Cores

Proposed

Core
ACARM7

ARM7
Compatible
Core (Korus

2005)

ARM7TDMI
(official released)

Performance(MHz) 110 90 76(p.s.1)

Improvement compared
to ARM7TDMI (%)

44.74 18.42

Improvement compared
to ARM7-Korus2005

(%)
22.22 -15.56

Note p.s.1: Obtained from normalization to 0.18um

Table4.3 Performance comparison among 3 different cores

The high-performance of the proposed design has been discussed and analyzed

with experimental results this section, and other analyses which are interested by

readers will be described in following sections.

4.2.3 Area Comparison

This section discusses the area comparison among the cores. It should pay

attention that the area of ACARM7 is in technology of 0.18um and the area of

ARM7TDMI is in technology 0.25um. Two results of the area with different

 54

technologies can not be normalized and compared since design rule check (DRC)

with different technologies can not be directed normalized by a single equation.

Nevertheless, the gate-count of ACARM7 is much lower than the one of

ARM7-Korus2005 and improves 31.25% compared to ARM7-Korus2005, as shown

in Table4.4.

Area/Gate-count Comparison among Three Different Cores

Proposed Core

ACARM7

ARM7
Compatible
Core (Korus

2005)

ARM7TDMI
(official released)

Gate-count(k) 35.75 52 N/A

Area(mm2) 0.3567(p.s.1) N/A 1.05(p.s.2)

Gate-count saving
compared to

ARM7-Korus2005 (%)
31.25 N/A

p.s.1: 0.18um technology
Note

p.s.2: 0.25um technology

Table4.4 Area/Gate-count comparison among 3 different cores

The gate-count comparison between the proposed design ACARM7 and

ARM7-Korus2005 shows that the core size of the former is much smaller for 2

primary reasons. The first is that no Thumb instruction implementation strategy and

the second is that more design considerations are taken into account. The small

area/gate-count is also one reason for low-power designs and is what designers and

users want to see; On the other hand, power comparison will be analyzed in next

section.

 55

4.2.4 Power Comparison

This section describes power comparisons among the cores above and the

power of ARM7TDMI should be normalized to 0.18um technology first by an

equation come from P=CV2 and listed below:

0.78 X (
25.0
18.0)2 = 0.404

As can be seen in the Table4.5, the power of ARM7TDMI is normalized to

0.404mW after normalization. However, it is still higher than 0.17mW of ACARM7

but lower than 1mW of ARM7-Korus2005. An amazing thing occurs that the power

improvement of ACARM7 compared to the normalized power of ARM7TDMI is

57.9% better and is 83% better compared to ARM7-Korus2005.

Power Comparison among Three Different Cores

Proposed Core

ACARM7

ARM7
Compatible
Core (Korus

2005)

ARM7TDMI
(official released)

Power(mW) 0.17 1 0.404(p.s.1)

Power saving compared
to ARM7TDMI (%)

57.9 -147

Power saving compared
to ARM7-Korus2005

(%)
83 59.6

Note p.s.1: Obtained from normalization to 0.18um

Table4.5 Power comparison among 3 different cores

The proposed design has a characteristic of ultra low-power for many reasons

and almost the same with the reasons discussed in Section 4.2.2; in fact, a right

implementation strategy with no Thumb instructions, a better choice of high quality

 56

IP like Fong-adder and Ling-multiplier, and more design consideration taken into

account brings such a good performance of the proposed design. On the other hand,

Power-Delay-Product (PDP) is also provided in Table4.6. The table still shows the

PDP of ACARM7 is 70.7% lower compared to ARM7TDMI and 86% lower

compared to ARM7-Korus2005.As a matter of fact, ACARM7 is the only one of the

three cores which can look after both sides inclusive of low-power consumption and

high-performance.

Power-Delay-Product Comparison among Three Different Cores

Proposed Core

ACARM7

ARM7
Compatible
Core (Korus

2005)

ARM7TDMI
(official released)

Power(mW) 0.17 1 0.404(p.s.1)
Delay(ns) 9.14 11.1 13.16(p.s.1)
PDP(pJ) 1.5538 11.1 5.31664(p.s.1)

PDP saving compared
to ARM7TDMI (%)

70.7 -108.7

PDP saving compared
to ARM7-Korus2005

(%)
86 52.1

Note p.s.1: Obtained from normalization to 0.18um

Table4.6 Power-Delay-Product comparison among 3 different cores

4.2.5 Other Characteristics

Considering of other characteristics of the Table4.2, DFT (Design for

Testability) is supported by ACARM7 since chips might fail to work due to

manufacture problem; as a result, additional test circuit shall be added such as scan

circuit and built-in self test (BIST) circuit.

 57

ACARM7 is supported a characteristic of cycle-accurate verified by a behavior

systemC model and will be discussed in Chapter 5.

4.3 Summaries of Experimental Results
This chapter has analyzed the experimental results among different cores

inclusive of the proposed design ACARM7, ARM7 Compatible Core (Korus 2005),

and ARM7TDMI. First of all, the implementation of the simulation environments is

introduced and a comprehensive comparison is provided for discussions about

timing, area, and power in detail.

In timing comparison, the performance of ARM7TDMI obtained from

Table4.2 should be normalized to 0.18um technology first and the performance of

the proposed design improves 44.74% compared to a normalized result from

ARM7TDMI and 22.22% better than ARM7-Korus2005.

In area comparison, two areas with different technologies can not be

normalized and compared directly; however, the gate-count of ACARM7 is much

lower than the one of ARM7-Korus2005 and improves 31.25% compared to the

later.

In power comparison, the power of ARM7TDMI should be normalized to

0.18um technology first and the power of ACARM7 improves 57.9% compared to a

normalized result from ARM7TDMI and 83% better than ARM7-Korus2005. On the

other hand, the PDP of ACARM7 is 70.7% lower compared to ARM7TDMI and

86% lower compared to ARM7-Korus2005.

DFT and a characteristic of cycle-accurate verified with a systemC model are

also supported by ACARM7 and will be discussed in next chapter.

 58

CHAPTER 5
PROPOSED VERIFICATION
STRATEGY
5.0 Overview

With the prevalent fashion of SOC, designs nowadays become more and more

complicated. The thesis provides a thorough and rigorous verification flow strategy.

Section 5.1 describes the implementation of verification environment. Section 5.2

provides functional verification to ensure functional correctness of the design.

Section 5.3 proposes synthesized netlist verification to ensure the correctness of the

synthesis procedure. Section 5.4 provides test plan and testability measurement.

5.1 Implementation
These are implementation of verification environment and listed in Table5.1.

Design rule check is checked by Novas nLint® with adopted Freescale

Semiconductor Reuse Standard (SRS); equivalence check is checked by Cadence

Encounter™ Conformal® Equivalence Checker; coverage analysis is checked by

TransEDA Verification Navigator®; and assertion-based verification is checked by

Accelera’s Property Specification Language (PSL).

Verification

Design Rule Check
Novas nLint® with adopted Freescale Semiconductor Reuse
Standard (SRS)

Equivalence Check Cadence Encounter™ Conformal® Equivalence Checker
Coverage Analysis TransEDA Verification Navigator®

Assertion-based
Verification

 Accelera’s Property Specification Language (PSL)

Table5.1 Verification environment setup

 59

5.2 Functional Verification

5.2.0 Overview of Functional Verification

A functional verification flow is proposed in this section. Section 5.2.1

proposes coding style checking by Linting; Section 5.2.2 proposes a deterministic

verification; Section 5.2.3 proposes an input-constrained random verification;

Section 5.2.4 proposes an assertion-based verification.

The functional verification flow diagram is listed in the Fig.5.1 and in each of

steps the RTL model will be verified with a systemC behavior model which is

designed for matching all the cyclic behaviors of ADS. All mismatches from the

comparison will cause the flow back to RTL revision step to modification.

Fig.5.1 Functional Verification flow

 60

5.2.1 Coding Style Checking by Linting Free

This section describes a static coding style check which improves the quality

of the design in reuse and verification perspectives of RTL verilog. Checking the

coding-style of the design by Novas nLint tool with 328 lint rules of adopted

Frescale Semiconductor Reuse Standard (SRS) will avoid all kinds of warnings and

errors including naming, synthesis, simulation, common syntax, undeclared objects,

unexpected latches, DFT issue, and so on.

5.2.2 Deterministic Verification

This section describes deterministic verification which is made to check all

regular cases and special corner case should be confronted with in the simulation

phase. Deterministic verification is composed of 3 parts including specialized

handcrafted pattern, real application pattern, and verification by VN-check (makes

code coverage to 100%).

The handcrafted pattern is written in all cases of instructions implemented in

the proposed design. It checks all results of instructions to be right in the first step in

deterministic verification.

The real application patterns are implemented by some benchmarks like

Dhrystone, Whetstone, and DSPstone. Moreover, a JPEG encoder program is also

provided to verify the correctness of the design and an encoded result will be

showed Section 5.2.4. This kind of pattern checks real cases met in applications of

real world and is essential in deterministic verification phase.

The third phase of deterministic is code coverage checking by TransEDA’s

Verification Navigator® (VN-check) which gives metrics on how well the design is

being verified. For instance, statement coverage shows the number of times each

 61

HDL statement is executed and un-executed statements are likely to be redundant in

the design; and a state coverage inspects that whether any unreachable states exists

in FSM similarly. According to Motorola’s Semiconductor Reuse Standards, the

statement, branch and state coverage of a design should achieve 100% while the

lower bound of condition coverage is not listed.

After the code coverage verification, it suggests that the test vectors applied to

the design under verification are sufficient and the next verification step

input-constrained random verification can be entered.

5.2.3 Input-constrained Random Verification

Input-constrained random verification is implemented by a constraint-driven

random pattern generator which generates random pattern to both ISS model and

RTL model and values of both models are compared cycle by cycle, as shown in

Fig.5.2. This kind of verification is made to detect all of unexpected cases and the

random pattern is constrained to the meaningful range to avoid undefined

instructions generation. More simulation cycles are verified, more vector space is

spanned by random patterns; therefore, less bugs exists in the design and more

robust design can be declared. In fact, two billion cycles have been simulated until

now and 16 bugs founded in the first 100 million cycles. No more bugs have been

found after then. All bugs found in functional verification will be listed in Table5.2

On the other hand, more cycles have been simulated, harder the bugs can be

found; therefore, another different powerful verification method will be discussed in

the next section.

 62

Fig.5.2 Input-constrained Random Verification

5.2.4 Assertion Based Verification

This section provides a powerful verification method and is indispensable in

the verification strategy; that is assertion-based verification. An assertion is a

statement about intended behavior of designers, which should be verified. The

purpose is to ensure the created design behaves according to the intention of

designers.

Unlike traditional simulated-based “black-box” verification, which requires

stimulus to trigger bugs and the propagate the error response to output, assertion

based “white-box” verification inserts monitors inside the design signals to report

incorrect behavior at run-time and allows designers to identify and locate bugs

instantly. As can be seen in the Fig.5.3, bugs will not be found if no monitoring by

assertion implemented.

Fig.5.3 Assertion-based verification

 63

There are many benefits of using assertion based verification. First of all,

assertion improves the ability of observation of a design under verification; second,

assertion reduces the debug time because of better observation and better isolation of

error; in addition, assertion can be used to check the interfaces of a design, thus

improving the integration through correct usage checking; moreover, assertion can

also facilitate formal analysis to help verify a design; finally, assertion also helps to

reveal the intend of designers clearly by specifying correct behavior unambiguously,

so that design could be easily reused and verified.

All bugs found in functional verification phase have been listed below:

All of the Bugs Found in Functional Verification Phase
Categories of

Patterns
Number Note

The Reason for Not Early
Founded

Real Programs
(Benchmarks) of

Deterministic
Verification

3
(a) Control signal decoded error
about FSMs

(g) Real application programs are
more practical than handcrafted
programs.

(b) The execution cycle of
multi-cycle multiplication
mismatch with ISS model

(h) Bugs need random patterns
through a great quantity of
simulation time to be found out
since handcrafted pattern is not
enough.

(c) Same with (a) (i) Same with (g)

(d) Exception handler cycle
determined mismatch

(j) Same with (g)

Input-Constrained
Random

Verification
16

(e) Errors occur in conditional
execution

(k) Same with (g)

Assertion-based
Verification

1
(f) Two different interrupts occur
simultaneously but correctness is
not influenced.

(l) Without assertion, unexpected
behaviors will not be found if
functionality is still correct. It
lowers the quality of an IP.

Table5.2 All of the bugs found in functional verification phase

 64

As can be seen in theTable5.2, after handcrafted pattern verification, bugs still

exist in the design and other efficient verification methodology should be used to

make design more robust. Real programs by some benchmarks have found 3 another

bugs about control signal decoded error of FSMs since real application programs is

more practical than handcrafted programs. In addition, input-constrained random

verification has found 16 bugs by many different reasons with the same idea. This

idea is that some bugs of complicated design need random patterns through a great

quantity of simulation time to be found out since the quantity of handcrafted pattern

is not enough. However, some bugs will never be found if we used traditional

simulated-based “black-box” verification; assertion-based “white-box” verification

monitors the behavior of the design and finds out any bugs causing unexpected

behavior even no error answer occurs.

After thorough and rigorous functional verifications, a real application

program JPEG encoder is used for verifying the functionality of the proposed design

and the result can be seen below. The Fig.5.4 is an original bmp file and the Fig.5.5

is an encoded jpeg file. The same relation is between the Fig.5.6 and the Fig.5.7.

The time for encoding a 64x64 bmp-file to a 64x64 jpg-file by RTL simulation takes

1 hour and for a 176x144 bmp-file to a 176x144 jpg-file takes 6 hours.

Fig.5.4 64x64.bmp

 Fig.5.5 64x64.jpg

 65

 Fig.5.6 176x144.bmp

 Fig.5.7 176x144.jpg

Therefore, this section has discussed a thorough and rigorous verification flow

strategy in functional verification phase, and synthesized netlist verification phase

will be discussed in next section.

5.3 Synthesized Netlist Verification

5.3.0 Overview of Synthesized Netlist Verification

This section discusses synthesized netlist verification flow. The synthesis

procedure by scripts is discussed in Section 5.3.1. Logic equivalence checking is

discussed in Section 5.3.2. Gate-level simulation is discussed in Section 5.3.3.

Power estimation by prime-power is discussed in Section 5.3.4.

The completed synthesized netlist verification flow diagram is listed below in

the Fig.5.8 and in first step the synthesized netlist is checked whether the timing and

area meets the specification or RTL of the design will be modified; in second step

LEC checking will verify the consistency of an RTL design as it synthesized into

gate-level netlist; in third step gate level simulation will be executed to ensure

 66

functional correctness after synthesis; finally, preliminary power estimation by

prime power is the last step of the verification flow and exact power estimation has

to be measured after P&R and has been discussed in Chapter 4.

Fig.5.8 Synthesized Netlist Verification flow

5.3.1 Synthesis by Scripts

This section describes synthesis by scripts. Writing and refining the synthesis

scripts is the first step to obtain the characteristic of lower power, smaller area, and

higher performance netlist. Two methods written in scripts are worth being

discussed below:

 67

1. The gated clock technique discussed in Chapter 3 is not directly written in

RTL but it is implemented by adding commands in scripts and listed

below:

i. set_clock_gating_style -sequential_cell latch -minimum_bitwidth 4

-setup 0 -hold 0

ii. insert_clock_gating -module_level

iii. propagate_constraints -gate_clock

A CG-cell with gated clock will be generated by these commands in

scripts. The advantage is that the clock signal of RTL is not operated or

handled directly and makes the RTL design ease to port to other

embedded systems; for instance, the JPEG decoder system will be

discussed in Chapter 6.

2. A command written in scripts ignores the series path which is used for

scan chain of DFT and makes no timing optimization to that path since

many buffers will be added in this path and unnecessary area will be

increased. The command is listed below:

i. set_case_analysis 0 test_se

5.3.2 Logic Equivalence Checking (LEC)

This section describes one common formal verification technique named logic

equivalence checking. Tools of LEC use formal mathematical techniques to verify

logic functions by comparing input/output conditions and matching an iteration of

design with the next. LEC enables the determination of logic function equivalence

between one design and another. Moreover, LEC can verify the consistency of an

RTL design as it is synthesized into gate-level netlist.

 68

5.3.3 Gate Level Simulation

This section describes that gate level simulation is executed after synthesis

procedure to ensure functional correctness in low-level netlist.

5.3.4 Power Estimation by Prime-power

 This section depicts that preliminary power estimation by prime power is the

last step of the verification flow and exact power estimation has to be measured after

P&R and has been discussed in Chapter 4.

5.4 Test Plan and Testability Measurement
Due to the failure in manufacturing process, 5%-40% of chips will be failed

after being manufactured and the extra cost can be huge if the chips delivered do not

work; hence, testing becomes an important procedure to ensure the delivered chips

work. Design-For-Testability (DFT) synthesis using scripts is one of the test

methods and additional scan-chain circuit is generated.

As can be seen in the Table5.3, Test coverage of the proposed design can not

reach 100% for gated-clock CG-cells composed of latches and AND gate. In fact, it

is worth using this kind of low-power technique to lower power consumption with a

small defect.

Un-collapsed Stuck Fault Summary Report

Total faults 87428

Test coverage 99.38%

#Internal patterns 418

#Basic scan patterns 418

Table5.3 Un-collapsed Stuck Fault Summary Report

 69

5.5 Summaries of Proposed Verification Strategy
This chapter provides a thorough and rigorous verification flow strategy in two

phases, functional verification and synthesized netlist verification. The test plan and

testability measurement of the proposed design is also provided.

A functional verification has been proposed that in each of steps of the flow

the RTL model will be verified with a systemC behavior model which is designed

for matching all the cyclic behaviors of ADS and all mismatches will cause flow

back to RTL revision step to modification. Deterministic verification, which is made

to check all regular cases and special corner case should be confronted in simulation

phase, is composed of 3 parts including specialized handcrafted pattern, real

application pattern, and verification by VN-check (make code coverage to 100%).

Input-constrained random verification is made to detect all of unexpected cases and

the random pattern is constrained to the meaningful range to avoid undefined

instructions generation. More simulation cycles are verified, more vector space is

spanned by random patterns; therefore, less bugs exists in the design and more

robust design can be declared. Assertion-based verification finds out the bugs which

will never be found if we used traditional simulated-based “black-box” verification;

however, assertion-based “white-box” verification monitors the behavior of the

design and finds out any bugs causing unexpected behavior even no error answer

occurs. The completed synthesized netlist verification flow is composed of synthesis

procedure by scripts, LEC checking, gate level simulation, and prime power.

After the verification flow, it is guaranteed that the proposed embedded

processor owns high quality of an IP, a characteristic of bug-free robustness, high

reusability and convenient porting issue. On the other hand, a JPEG decoder system

will be presented in the next chapter

 70

CHAPTER 6
JPEG DECODER SYSTEM
6.0 Overview

This chapter presents a JPEG decoder system implemented by the proposed

core design which is configured in the FPGA as a specific purpose processor and all

system behaviors are controlled by a ARM9EJ-S processor on the develop board.

Section 6.1 depicts the implementation of the system. Section 6.2 describes

architecture of system level. Section 6.3 describes architecture of hardware level.

Section 6.4 describes program control flow in software level. Section 6.5 discusses

the experimental results of proposed system. Section 6.6 discusses the Summaries of

JPEG Decoder System.

6.1 Implementation
The development board of JPEG decoder system is implemented by Versatile

RealView Platform Baseboard for ARM926EJ-S® [6]; the proposed core ACARM7

is configured in an FPGA of Versatile LT-XC2V6000 (Xilinx VirtexII) [7]; the

decoded file is displayed by a LCD panel, 8.4 VGA (640x480) Color VCD Panel;

the system is semi-hosted by a PC with an ARM® RealView MultiICE®; All

develop environment is based on ARM® Developer Suite (ADS) version 1.2; The

proposed design will be transformed to BIT-file to configure in the FPGA by

Xilinx® Integrated Software Environment (ISE) 6.2i. All environment setups can be

seen in the Table6.1.

 71

Decoder System
Development Board Versatile RealView Platform Baseboard for ARM926EJ-S®

Logic Tile Versatile LT-XC2V6000 (Xilinx VirtexII)
LCD Kit 8.4 VGA (640x480) Color VCD Panel

Multi-ICE ARM® RealView MultiICE®
ADS ARM® Developer Suite (ADS) version 1.2

Xilinx ISE Xilinx® Integrated Software Environment (ISE) 6.2i

Table6.1 Verification environment setup

6.2 Architecture of System Level

6.2.0 Overview of Architecture of System Level

This section introduces the overview of the proposed system in system level

view; Section 6.2.1 describes major components of the proposed system and Section

6.2.2 describes all control flow of the proposed system.

6.2.1 Major Components of the Proposed System

This section describes major components of the proposed decoder system,

which is composed of an ARM9EJ-S core, a 128MB SRAM, a 64MB NOR flash, a

LCD panel, and a Logic Tile. The ARM9EJ-S core controls all behaviors and

components of the entire system; the data in the SRAM can be loaded or stored by

the core; The 64MB NOR flash is a nonvolatile storage and data or programs can be

stored in the flash prepared to be loaded into SRAM automatically as powered up; a

LCD panel displays the image of decoded pictures; and a Logic Tile includes an

FPGA, two 2MB ZBTSRAM(Zero Bus Turnaround SRAM), a push bottom which is

used for interrupt input of the system, and many other devices and components. All

 72

components discussed above are shown in the Fig.6.1.

This section has described major components of the proposed system and more

details of control flow in system level of the proposed system will be discussed in

the next section.

Fig.6.1 Block diagram in system level

6.2.2 Control Flow of the Proposed System

This section describes the control flow of the proposed system. First, all the

binary data is obtained from ADS tool and is written into the NOR flash in advance

by a multi-ICE with semi-hosting mechanism; the load address to the SDRAM or

ZBTSRAM is also designated at the same time. Second, all the binary data is

auto-loaded from the NOR-flash into SDRAM or ZBTSRAM respectively; In this

step, the instructions of JPEG decoder are loaded into both ZBTSRAMs on the

 73

Logic Tile and all of the un-decoded JPEG files are also loaded into the SDRAM. In

addition, the main control flow program is also load into SDRAM and executed by

ARM9EJ-S in the third step. Third, ARM9EJ-S moves two un-decoded JPEG files

from SDRAM into both ZBTSRAMs; therefore, both instructions and un-decoded

data are prepared for ACARM7 configured in FPGA of the Logic Tile. Fourth,

ARM9EJ-S sends a signal to tell ACARM7 to begin to decode the data in

ZBTSRAM. Fifth, while ACARM7 finishes decoding procedure, it will send a finish

signal to tell ARM9EJ-S. Sixth, ARM9EJ-S moves the decoded data from both

ZBTSRAMs of the Logic Tile to the SDRAM. Finally, ARM9EJ-S calls the LCD

display program to show decoded data on the LCD panel. These are primary steps of

system control flow and more delicate and efficient control techniques will be

discussed in Section 6.4 Program Control Flow in Software Level; On the other

hand, more details about the proposed core wrapped with an AHB interface will be

discussed in Section 6.3 Architecture of Hardware Level.

6.3 Architecture of Hardware Level

6.3.0 Overview of Architecture of Hardware Level

This section describes hardware architecture of the proposed core wrapped

with AMBA interface in FPGA of the proposed system. Section 6.3.1 describes all

the AHB peripherals in FPGA. Section 6.3.2 describes core wrapped with AHB bus

interfece. Section 6.3.3 describes control flow within AHB peripherals in FPGA.

6.3.1 AHB Peripherals in FPGA

This section describes all the AHB peripherals in FPGA, as can be seen in the

Fig.6.2. The RTL design should be wrapped to correspond to the AHB specification

 74

in advance before they configure into an FPGA or will never be used and activated

in an FPGA. An example code [8] provided by ARM is implementing AHB

peripherals in FPGA of Logic Tiles and will be modified for usage of ACARM7.

As shown in Fig.6.2, the AHB TOP-LEVEL block is the top level HDL

(Hardware Description Language) configured in the FPGA and instantiates and

interconnects the main block in the all system; the AHB-APB System block includes

the bridge of AHB to APB and all the APB peripherals including LED light and

interrupt controller. On the other hand, the AHB Decoder block decodes the received

address from the AHB Bus to different IP selection signals which are used to

activate the corresponded IP to wake up and execute; the AHB Multiplexer block

selects the right answer from all different source results and selection is decided by

the IP selection signal generated by AHB Decoder. Furthermore, the AHB-Wrapper

for ACARM7 block wraps ACARM7 with AHB-wrapper and includes three

sub-blocks which are ACARM7 with AHB interface, and two ZBTSRAM

controllers. ACARM7 with AHB Interface block will be discussed in Section 6.3.2

in detail. Both ZBTSRAM Controllers control all the data movements of the two

ZBTSRAMs on the Logic Tile.

This section has discussed all the AHB peripherals in FPGA, and more details

about core wrapped with AHB bus interface will be described in the next section.

 75

Fig.6.2 AHB peripherals configured in the FPGA

6.3.2 Core Wrapped with AHB Bus Interface

This section discusses the core wrapped with AHB bus interface in FPGA. As

can be seen in the Fig.6.3, seven FSMs of the AHB-interface block (shown in the

fig.6.4) control all the behaviors between AHB Bus and ACARM7.

As the bus in the Idle State which could be due to decoding finish or not valid

operation, no tasks are executed in this cycle and other tasks will be executed in

another non-idle state. As the bus jumps into the Write State which is due to writing

task requested by ARM9EJ-S , the data from AHB Bus will be written into Current

Status Registers (CSR) which controls behaviors of the bus; on the other hand, the

information of CSRs of ACARM7 will be read out to put on AHB Bus as the bus

jumps into the Read State which is due to reading task requested by ARM9EJ-S; for

 76

example, as ACARM7 finishes a decoding task, a finishing signal will be put on the

FINISH register of CSRs. The contents of FINISH register of CSRs will be read out

to put on AHB Bus to tell ARM9EJ-S that the decoding task has done as the bus is in

Read State. While ARM9EJ-S sends a request to tell ACARM7 to execute the

decoding task, the Pre-Run State0 or the Pre-Run State1 will be entered. Which state

will be selected from both of them depends on which ZBTSRAM of both

ZBTSRAMs is used. The action executed by ACARM7 in both Pre-Run States is to

reset the bus first to clear all internal registers of the bus to zero and assures the

correctness of ACARM7 ‘s execution before entering into both Run-States every

time. ACARM7 does decoding procedure in the Run State and stays in the state until

it finishes the decoding task. As can be seen in the fig.6.3, while ZBTSRAM0 is

used for JPEG decoding, Run State0 goes after Pre-Run State0 continuously. So

does Run State1 and Pre-Run State1 while ZBTSRAM1 is used.

This section has discussed the AHB bus interface of the core, ACARM7, with

AHB-wrapper in FPGA and more details about control flow within AHB peripherals

in FPGA will be described in next section.

 77

Fig.6.3 FSMs of the AHB bus interface

 78

6.3.3 Control Flow within AHB-Wrapper for ACARM7 in

FPGA

This section discusses the control flow within the block of AHB wrapper for

ACARM7, as shown in the Fig.6.2 above. As can be seen in the Fig.6.4, the block

AHB-Wrapper for ACARM7 is the same one in Fig.6.2 and the block AHB Interface

is the one discussed in Section 6.3.2. ARM9EJ-S, one SDRAM with 128MB, and

two ZBTSRAMs with 2MB are also displayed in the Fig.6.4.

Both ZBTSRAMs in the Logic Tile can be used by either ARM9EJ-S or

ACARM7 with the AHB-Wrapper. As can be seen in the Fig.6.5, the memory usage

of a ZBTSRAM is divided into three parts which include IM (Instruction Memory),

DM (Data Memory), and decoded data. The content of the first part comes from

NOR-flash auto-loading as the whole system powers up. On the other hand,

ARM9EJ-S requests the un-decoded data moved from the SDRAM to the second

part of the ZBTSRAM as a DM and this mechanism will be described more in

Section 6.4. Therefore, the necessary information with both instruction and data are

prepared for ACARM7 and ACARM7 can use the ZBTSRAM to execute decoding

procedure. ZBTSRAM Controller is an essential part to access ZBTSRAM and

needs all information received from a processor. As a result, a multiplexer is

implemented and selects which processor is in charge of the ZBTSRAM. After

decoding procedure by ACARM7 has finished, ARM9EJ-S will take over the

ZBTSRAM at the moment and moves the decoded data to the SDRAM for display

on LCD panel later.

This section has described the control flow within AHB-Wrapper for

ACARM7 and program flow in software level will be described in next section.

 79

Fig.6.4 AHB Wrapper for ACARM7 (with ARM9EJ-S and SDRAM)

Fig.6.5 ZBTSRAM memory usage

 80

6.4 Program Control Flow in Software Level
This section describes the program flow in software level. As can be seen in

the Fig.6.6, the main control flow program is executed by ARM9EJ-S and JPEG

instruction program is executed by ACARM7. First of all, ARM9EJ-S moves the

first un-decoded data from SDRAM to the first ZBTSRAM ZBTSRAM0, and then

ARM9EJ-S requests ACARM7 to decode the data just moved into ZBTSRAM0.

The second un-decoded data is moved to ZBTSRAM1 like the first one and then

ARM9EJ-S waits the finish signal from ACARM7 by a polling mechanism. After

ACARM7 finishes the first data decoding procedure, ARM9EJ-S requests ACARM7

to decode the second data in ZBTSRAM1 continuously. ARM9EJ-S moves the first

decoded data from ZBTSRAM0 to SDRAM and waits ACARM7 to finishes the

second decoding procedure in ZBTSRAM1. After ACARM7 finishes the second

decoding procedure, ARM9EJ-S moves the second decoded data from ZBTSRAM1

to SDRAM in next step. These steps will be proceeding iteratively. After all the

decoding tasks have been done, ARM9EJ-S will call a LCD display program to

show all decoded data on the LCD panel to demo the whole system.

This section has described the main program control flow in software level and

some experimental results of the proposed system will be provided in the next

section.

 81

Fig.6.6 Program control flow in software level

6.5 Experimental Results of Proposed System
This section provides some experimental results of the proposed system, as can

be seen in the Table6.2. The usage of slice of FPGA is about 10% and the minimum

period of the system after Place & Route is 27.6 ns (maximum frequency is about

 82

36.23 MHz).

Device utilization Summary(FPGA)

Number of
Design
Used

Total of
FPGA

Usage in Percentage (%)

Slices 3632 33792 10
Slices FLIP FLOPs 2232 67584 3

4 input LUTs 6814 67584 10
Bounded IOBs 401 1104 36

TBUFs 1 16896 0
GCLKs 2 16 12

Selected Device: 2v6000ff1517-6
P.S.: Minimum period: 27.6ns (Maximum frequency: 36.23MHz)

Table6.2 Experimental results of FPGA

6.6 Summaries of JPEG Decoder System
This chapter presents a JPEG decoder system implemented by the proposed

core design which is configured in the FPGA as a specific purpose processor and all

system controlled by a ARM9EJ-S processor on the develop board. All system can

be divided into 3 aspects which include system level, hardware level and software

level.

In system level, major components of the proposed decoder system, which is

composed of an ARM9EJ-S core, a 128MB SRAM, a 64MB NOR flash, a LCD

panel, and a Logic Tile which includes an FPGA, two 2MB ZBTSRAMs.

The control flow in the system level can be listed below. First, the data in a

NOR flash is auto-loaded into the SDRAM as the system powered up. Second, the

instructions of JPEG decoder and un-decoded JPEG files are loaded into both

ZBTSRAMs on the Logic Tile. Third, ARM9EJ-S sends a signal to tell ACARM7 to

 83

begin to decode the data in ZBTSRAM. Fourth, while ACARM7 finishes decoding

procedure, it will send a finish signal to tell ARM9EJ-S. Fifth, ARM9EJ-S moves

the decoded data from ZBTSRAM of the Logic Tile backing to the SDRAM. Finally,

ARM9EJ-S calls the LCD display program to show decoded data on the LCD panel.
In hardware level, all major components refigured in the FPGA must connect

to an AHB Bus first. These major components include the AHB TOP-LEVEL block,

the AHB-APB System block, the AHB Decoder block, the AHB multiplexer block,

and the AHB-Wrapper for ACARM7 block which are composed of ACARM7 with

AHB interface, and two ZBTSRAM Controllers.

The core wrapped with an AHB interface is the sub-block of the AHB-Wrapper

for ACARM7 block. Seven stages, Idle, Write, Read, Pre-run0, Pre-run1, Run0,

Run1, are all included in the sub-block.

The control flow within the block of AHB-Wrapper for ACARM7 has been

discussed in Section 6.3.3. The sub-block AHB Interface is the one discussed in

Section 6.3.2. ARM9EJ-S, one SDRAM with 128MB, and two ZBTSRAM with

2MB are the other components in the AHB-Wrapper for ACARM7 block..

The program flow in software level includes the main control flow program

executed by ARM9EJ-S and the JPEG instruction program executed by ACARM7

and the discussion can be founded in Section 6.4.

Section 6.5 provides some experimental results of the proposed system. The

usage of slice of FPGA is about 10% and the minimum period of the system after

Place & Route is 27.6 ns (maximum frequency is about 36.23 MHz).

 84

CHAPTER 7
CONCLUSIONS

Chapter 1 introduces the motivation that the number of digital consumer

electric products increases so dramatically nowadays and they are all powered by the

batteries. Therefore, how to save more power of these portable electric devices is the

most important subject in the competitive market. An ultra-low power and

high-performance with small area embedded processor is proposed here. This thesis

also provides a thorough and rigorous verification strategy to guarantee that the

proposed embedded core has a high quality of IP characteristic. Moreover, not only

considering the proposed core in the hardware aspect, but also considering the

design in the system level to configure the proposed core in an FPGA as a JPEG

decoder system.

Chapter 2 describes some previous works related to ARM7TDMI, which is a

member of general purpose 32-bit embedded processor of the Advanced RISC

Machines (ARM) family.

Chapter 3 describes the proposed core design ACARM7 which improves the

operating performance as high as possible and makes power consumption as low as

possible. The gate-count used in the design also quite small. The architecture of the

proposed design has been discussed in this chapter and some low-power techniques

have been also proposed.

Chapter 4 analyzes the experimental results among different cores inclusive of

the proposed design ACARM7, ARM7 Compatible Core (Korus 2005), and

ARM7TDMI. In timing comparison, the performance of the proposed design is

44.74% better compared to a normalized result from ARM7TDMI and 22.22%

better than ARM7-Korus2005. In area comparison, the gate-count of ACARM7 is

 85

much lower than the one of ARM7-Korus2005 and is 31.25% better compared to the

later. In power comparison, the power of ACARM7 is improved by 57.9% compared

to a normalized result from ARM7TDMI and 83% better than ARM7-Korus2005.

On the other hand, the PDP of ACARM7 is 70.7% lower compared to ARM7TDMI

and 86% lower compared to ARM7-Korus2005.

Chapter 5 provides a thorough and rigorous verification flow strategy in two

phases, functional verification and synthesized netlist verification. The test plan and

testability measurement of the proposed design are also provided in this chapter. A

functional verification has been discussed that in each of steps of functional

verification flow. The RTL model is verified with a systemC behavior model which

is designed for matching all the cycle behaviors of ADS. All mismatches will guide

the flow back to the RTL revision step for modification. The completed synthesized

netlist verification flow is composed of synthesis procedure by scripts, LEC

checking, gate-level simulation, and prime power. After the verification flow, it is

guaranteed that the proposed embedded processor owns high quality of an IP, a

characteristic of bug-free robustness, high reusability and convenient porting issue.

Chapter 6 presents a JPEG decoder system implemented by ACARM7 which

is configured in an FPGA as a specific purpose processor and all system behaviors

are controlled by an ARM9EJ-S processor on the development board. The system

can be divided into 3 aspects which include system level, hardware level and

software level. The usage of slice of FPGA is about 10% and the minimum period of

the system after Place & Route is 27.6 ns (maximum frequency is about 36.23

MHz).

Based on the experiment result, the higher performance, the smaller area, and

the lower power are all the advantages of the proposed processor compared with

ARM7TDMI. The thesis also proposes a thorough and rigorous verification flow.

 86

Moreover, the high applicability of the proposed processor can be demonstrated by

configuring it into an FPGA for implementing a JPEG decoder system.

FUTURE WORKS

A more efficient embedded system with a variety of functionality is being

developed. More control mechanisms about vector interrupt controller will be

developed continuously; In addition, the issue of software and hardware partition is

also under research. On the other hand, more functionalities of a system about the

multimedia application like MP3 decoding will be studied in the future.

 87

BIBLIOGRAPHY

[1] Advanced RISC Machines Ltd (ARM) Data Sheet, ARM7TDMI Data Sheet,

Advanced RISC Machines Ltd (ARM) Data Sheet, 1995.

[2] Steve Furber, ARM System-on-Chip Architecture, Second Edition, Addison

Wesley, 2000, pp.49-68, pp.74-78, pp.105-112.

[3] Y. -C. Fong, "A High-Speed Area-Minimized Reconfigurable Adder Design,"

Master’s thesis, National Chiao Tung University, Department of Electronics

Engineering, Jul. 2006.

[4] H. -K. Ling, "A High-Performance Reconfigurable Sub-Word Parallel

Multiplier-Accumulator Design," Master’s thesis, National Chiao Tung

University, Department of Electronics Engineering, Jul. 2006.

[5] Dimitrakopoulos, G.; Nikolos, D., ”High-speed parallel-prefix VLSI Ling

adders” , IEEE Trans. Computers, vol. 54, Issue 2, pp. 225-231, Feb. 2005.

[6] Advanced RISC Machines Ltd (ARM) User Guide, RealView Olatform

Baseboard for ARM926EJ-S HBI-0117, Advanced RISC Machines Ltd (ARM)

Data Sheet, 2003.

[7] Advanced RISC Machines Ltd (ARM) User Guide, Versatile/LT-XC2V4000+

Logic Tile, Advanced RISC Machines Ltd (ARM) Data Sheet, 2002.

[8] Advanced RISC Machines Ltd (ARM), Appl. Note119.

 88

