o A7 P B AT 2
32 7 g NN IR B
eg JPEG 38 %

A

£
s

Ultra Low-Power and High-Performance
32-Bit Embedded Processor
With JPEG Decoder System

SRR
TEE SRS T B

PoE R m 4 Lo o& 4

Ultra Low-Power and High-Performance
32-Bit Embedded Processor
With JPEG Decoder System

o2 ETH Student: Je-Ling Hsu
R ARE B Advisor: Dr. Juinn-Dar Huang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements for
the Degree of Master in Electronics Engineering & Institute of Electronics
August 2007
Hsinchu, Taiwan, Republic of China

PERARA LA EAL

Frd iFwTH R a kg B

A - BRI YRR 2 32 A R R
ACARM7(ACademic ARMT) &= 3 & % 4f 4 o H— » gt — £2J? B4 i id
iR R o S RIEE A ARM VA g £ B 0T it dn 4 B i
* ADSCARM Developer Suite) %= 45 FF 4257 3 (C, C+) %
S LET 0 LBH WL T 2 ACARMT @@ * ei$ B3E 2 > B

PR B eg € F 1o i Ry ARMTTDMI 4p it > ot @ B 7 fe A7
WA F L o BER L 0 0w 2 IR 5 ik o H

= o AHYE AN - BREY BRI o PR A T 10 TR

II

BiEFH 2 TaFRE AR TR YR EiRE &G
M BER TR R REE T = AP BT R JPEG
AFE R kAL WM ERTE AR 1S 0 M R B2 W AESR B FPGA
2.+ o £ & % ARM926EJ-S Versatile % & 4% % %> 11 = = JPEG f# 75

B2 ML EEG BT G~ B PR G o RS
ARMTTDMI 5 3k~ - 2 R F P B ahedl BR B F A7 AR
{2 A AT BREE A FPGA 2 F i JPEG 245 B

B MR R R Ul A

I

Ultra Low-Power and High-Performance
32-Bit Embedded Processor
With JPEG Decoder System

Student: Je-Ling Hsu Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &
Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis presents the research result of an wultra low-power and
high-performance 32-bit embedded processor with JPEG decoder system. This
processor is named ACARM7 (ACademic ARM7). The ISA (Instruction Set
Architecture) of ACARM7 adopts the ARM V4 architecture. Hence the ADS (ARM
Develop Suite) can be directly used. ADS can first be used to compile the high level
programming language (C, C++) written by users to the assembly language, and then
can assemble the assemble language to the low level machine code for ACARMY7 use.
It indicates the high usability of ACARM7. Compared with ARM7TDMI, the power
consumed by the proposed processor is lower; the gate-count of the proposed one is
less; and the performance is better. Meanwhile, this thesis also provides a thorough

and rigorous verification flow which assures both the correctness of functional

v

behavior of the proposed processor design after more than two billion simulation
cycle comparisons and the synthesis correctness of synthesized gate-level netlist
circuit. Moreover, the proposed processor is mapped onto the FPGA and integrated
within the ARM926EJ-S Versatile Development Board to implement a JPEG decoder
system. Based on the experiment result obtained by this research, the higher
performance, the smaller area, and the lower power are all the advantages of the
proposed processor compared with ARM7TDMI. The thesis also proposes a thorough
and rigorous processor verification flow. Moreover, the high applicability of the
proposed processor is demonstrated by mapping it into an FPGA for implementing a

JPEG decoder system.

ACKNOWLEDGMENT

& P

NN EE ,_,: PR i ?\.u}&&ﬁﬂﬁ-?{j@c BiEEE o B
ERERFSTrmi ey FEFaipeddaihE 24 m
LS AR L AR s G SIS S I RE] EF S

PR B R B R TP SRR T W b Tk R A

L0

A BRI 2 3% 5 @ F REF R A BT mﬁ@‘rmﬁ*m a1z @

FRENES EDFT A RGER LR L AR o d 3Rk
PR A 0 LR ER D FRETE? b2 2T K3 S
Lo L Z R A ehI BB E o

>;;+h_§;g.g§‘1—q—a‘_g,§\ﬁ NGO M T L w) A ﬁ@)@ﬁ\
BAFE SNEE CRECEARDIHF YR] GE L

g AR T B K AR R R BT e R

ES
Ky
=)
Py
pull'™
&
o)
“k
A
=
(]
=
=)
bl
AR
bl

VI

CONTENTS

ABSTRACT(CRINESE).....viiuiieeeeeieeeeeeeeete ettt ettt ettt ettt e ereeaeeaeeae s II
ABSTRACT(ENGIISN) ..ottt v
ACKNOWLEDGMENT ...uttiiitieiieeitesiteettesiteeteesieeenseeseessteesseesaseanseesnseeseesnseenseesnseeseas VI
CONTENTS ittt ettt ettt ettt e et et e et e e ae e et e e bt e e bt e sateeabeessteenbeesnbeenbeesaseenseasnseenseans VII
LIST OF TABLES ...ttt ettt ettt ettt ettt et e et e et esat e e bt e snteenbeesateenbeesneeenseens X
LIST OF FIGURES ...ttt ettt ettt ettt ettt ettt et e sttt e st e et e sateenbeesnseenseas XI
CHAPTER 1 INTRODUCTION ...cccuttitiiitttetietieeteesieeeteesieesnbeesieeeateesseesateeseesneeenseennns 12
CHAPTER 2 PREVIOUS WORKS.ctiiiiiiieiie et esiie et ite ettt st setesteeteesneeennee e 15
2.0 OVEIVIBW ...ttt ettt ettt a e besaeeaeeseesaesae s e sesesaeeseenas 15

2.1 PrerEOUISITES ...c.veieiieeeeeeeeee ettt ettt e ae s 15
2.1.0 Overview of PrerequUISItesc.coveeieveevieeieieeieee e 15

2.1.1 Core Architecture of ARM7TDMIcccoovioiiiiieieieieeeeeee 15

2.1.2 Pipeline Stage of ARMT7TDMIooviiiiiiiiicieeeeeeeeeee, 17

2.1.3 Instruction Set Architecture (ISA) of ARM7TDMI 19

2.2 Related WOIKScoveeveee st B e 24
2.2.0 Overview of Related WOIKS. ..c.....li..ooovevierieiececeeieicieieeie e 24

2.2.1 Shift/Rotate Operation by Barrel-shifter................ccccooeveverinnnnnen. 25

2.2.2 Mode-switch by EXCEPLIONS............ccccveieiieieeieeeeeeeeieiee e 26

2.3 Summaries of Previous WorKS i e 32
CHAPTER 3 PROPOSED CORE DESIGNS........coift ittt 34
3.0 OVEIVIBW ...ttt ettt ettt b et s aeeseeseesaesaessesesesseeseenas 34

3.1 Architecture of the Proposed DeSignc.occeeveeieieceeieeeeeeeeeeee. 34
3.1.0 Overview of Architecture of the Proposed Design........................ 34

3.1.1 Block Diagram of the Proposed Designcccceueeveevecreeneennne. 34

3.1.2 Control Logic of the Proposed Design............ccccoveeueeeveeiecreereenee. 39

3.1.3 Arithmetic/ Logical Operation in EX-stage...........ccccevveevvevenenne. 41

3.1.4 Multi-cycle Multiplication in EX-sStage..........cccooveeveevveeiecreeneenene. 43

3.2 Implementation of Low-power TeChnique..........cccoooveeveeeiieeecieieeiee. 44
3.2.0 Overview of Implementation of Low-power Technique............... 44

3.2.1 Unused Registers Gatedccccvevieieerieiiieeceeeeeieeeeeve e 44

3.2.2 Unexecuted Function Units Gated.............cccoecveeeieieieniesienieenenen, 46

3.2.3 Low-power Consumption Property of Fong-adder 47

3.3 Summaries of Proposed Core DESIgNScceevveeveeieereecieeieereeeieeeeeveenne 48
CHAPTER 4 EXPERIMENTAL RESULTSoiiiiiiiiieiie ettt 51
4.0 OVEIVIBW ...ttt ettt ettt est et e b e saaebeeseeseesaessensensensessense e 51

4.2 IMPIeMENTAtIONocveiiiiiecee et 51

VII

4.2 Discussion of Experimental ReSUILSc..cccoeveeieiiieieiieeceeeee, 52

4.2.0 Overview of Experimental ReSults.............cccccveiieieiiiieciccieen, 52
4.2.1 Comprehensive COmMPariSON............cocvevueeeeireecieeieereeeieeeeereeere e 52
4.2.2 TIMING COMPATISONoovviivieeieieeeeeeie ettt ettt ereeanens 53
4.2.3 Area COMPATISONccveeivieiiiitieeieeeeeeeete ettt e ereeanens 54
4.2.4 POWEr COMPATISON......ccviiiiitieeteeieeteeete ettt ettt eeae e ereeeveeanens 56
4.2.5 Other CharacCteristiCsccocvevvevieriereeiseeeeeeeeeeee e 57

4.3 Summaries of Experimental ReSUItS.............cccooveeiiiieiiiiceeeeeee, 58
CHAPTERS PROPOSED VERIFICATION STRATEGY ...ocvutiiiieiieeiieniieeieenieeseeeieeene 59
5.0 OVEIVIBW ...ttt ettt a e b e st seesaesa et e aessesseeseenas 59
5.1 IMPIeMENtationcc.oooviiviiiiieiiceee et 59
5.2 Functional Verificationccocveieieieiieieeseeeee e 60
5.2.0 Overview of Functional Verificationccocoeevevvevievieneneenenen, 60
5.2.1 Coding Style Checking by Linting Free.........c.cccccovveveeveeneeneenee. 61
5.2.2 Deterministic VerifiCationccccovevieniniieiicieeeieieesie e 61
5.2.3 Input-constrained Random Verification...............ccccccoeveevienenne. 62
5.2.4 Assertion Based Verification:.............cccccevverireeeeieieieieiesieeenens 63

5.3 Synthesized Netlist VerifiCation . .. coifieeverrereeieeeeeeeieieeiee e 66
5.3.0 Overview of Synthesized:Netlist-\Verificationc..ccccceeenne. 66
5.3.1 Synthesis BY SCIIPTS ..o it et 67
5.3.2 Logic Equivalence Checking (LEC)ccevveveiecierieieieeenen, 68
5.3.3 Gate Level SIMUlationate e 69
5.3.4 Power Estimation by PFIME-POWENccceevveeeecrieieerieereeeeenn, 69

5.4 Test Plan and Testability Measurement..............cccoooveeeevieeieeeeciecieenenee. 69
5.5 Summaries of Proposed Verification Strategy...........ccccoeveevveeieeecieenenen. 70
CHAPTER G JPEG DECODER SYSTEMciiiiiiiiieiieeiieiie ettt ettt 71
B.0 OVEIVIBW ...ttt ettt ettt st se et sa s e s e sesbeeseenas 71
6.1 IMPIeMENTAtiONccveeiiiiiieeeceeee et 71
6.2 Architecture of System Levelccoooooiiiiiiiiieeceeeeeeeeeeeen 72
6.2.0 Overview of Architecture of System Levelccccoeveevienenne. 72
6.2.1 Major Components of the Proposed Systemc.cccevveveneee. 72
6.2.2 Control Flow of the Proposed System............cccooveevvevieeiecrecieenee, 73

6.3 Architecture of Hardware Levelcccccovvevevieeieieieieieeeee e 74
6.3.0 Overview of Architecture of Hardware Levelc.ccccoouenne.. 74
6.3.1 AHB Peripherals IN FPGA ..o 74
6.3.2 Core Wrapped with AHB Bus Interface............cccccoeveeveevienennn. 76
6.3.3 Control Flow within AHB-Wrapper for ACARM7 in FPGA....... 79

6.4 Program Control Flow in Software Level............c.cccooovevieviiiicicie. 81

VIII

6.5 Experimental Results of Proposed Systemcccocooevevieieieccecieenenee. 82

6.6 Summaries of JPEG Decoder SYStemcccocvevvevieeviecieceeceeceeeeeene. 83
CHAPTER 7 CONCLUSIONS.....cuttiiitiieeiteeeitteeeiteeesteeesseeessseeassseeassseesssseessseesssesessnes 85
FUTURE WORKS ...ttt ettt ettt e e ive e et e e eaaeeeateeensaaesnsaeesssseesnsseesssaeennnes 87
BIBLIOGRAPHY ..ottt ettt ettt eitte et e et eeeaveeetaeeassaeeeabeesssaeesnsseesssseeansseessseeensses 88

IX

LIST OF TABLES

Table2.1 Exception VECTOr addressccveeuievieieieeeieereeeieeeeeeeee et 31
Table3.1 Transitions saved with Clock gated synthesized CG cell 46
Table3.2 PDP Analysis about Fong compared to Hybrid K-S Ling 48
Table3.3 Timing Analysis about Fong compared to Hybrid K-S Ling................. 48
Table3.4 Area Analysis about Fong compared to Hybrid K-S Ling.................... 48
Table4.1 Simulation environment setup for experiments............c..ccccocveeveeveeneenen. 51
Table4.2 Comprehensive comparison among 3 different cores.............cccooeun..... 53
Table4.3 Performance comparison among 3 different cores...........c.cccccevevenee.. 54
Table4.4 Area/Gate-count comparison among 3 different cores............c.cocu....... 55
Table4.5 Power comparison among 3 different Cores...........cccoovevvevveeieciecieeneenee. 56
Table4.6 Power-Delay-Product comparison among 3 different cores.................. 57
Table5.1 Verification environmMent SETUPcoeoveeieiieieeeeeeeece e 59
Table5.2 All of the bugs found in functional verification phase............c..c.......... 64
Table5.3 Un-collapsed Stuck Fault Summary Reportc.ccooevievievieciecienenen. 69
Table6.1 Verification environment SEMUPLIL R . .veveieieieeieeieeeeeeeeeee e 72
Table6.2 Experimental results OfiIFPGA i ool eieieieieceeeeeeeeeeeee e 83

LIST OF FIGURES

Fig.2.1 Block diagram of ARM7TDMI architeCturecccoeeveevvevieeiecriecieenn, 17
Fig.2.2 ARM7TDMI single-cycle instruction 3-stage pipeline operation 18
Fig.2.3 ARM7TDMI multi-cycle instruction 3-stage pipeline operation 18
Fig.2.4 ARM7TDMI instruction set encoding formatcccoeooeeieviiiieieennnn, 21
Fig.2.5 ARM7TDMI INStrUCLION S ...c.ooovvivieiiceieceeeeeee e 22
Fig.2.6 ARM7TDMI instruction set (continued)..........c.cocoeeveeeeieeiccecieeeeeee, 23
Fig.2.7 ARM shift/rotate mechaniSmccoovioiiiieiiiieeeeeeeeee e 23
Fig.2.8 Condition COde SUMMANYccocouiiuieeiieieereeeieeee et 24
Fig.2.9 A left-shifted example @S N=32.......c..ooiiiiiiioieeceeeeeeeeee e 25
Fig.2.10 BS MUX Tree with 5 stages adding one final stage.............ccccceevvenennn. 26
Fig.2.11 Program status register formatcccooeeeviiieoicceceeeeeeeeeeeee 30
Fig.2.12 ARM operating mode and regiSter USAge...........cooveeveeveereecreeeeereeeneennens 30
Fig.2.13 Register organization in ARM State............cccocceeveeieeeeiieciecieceeereeeeeee, 31
Fig.3.1 ACARMY core architecture diagramc.ccccoevveeieeeeieeiecieeeeeeeee e, 35
Fig.3.2 Core architecture diagram IREX-Stage..........ccceveeerieieieieieieieseeie e 36
Fig.3.3 Mul 7-stage FSM diagran....... s i cosisheererreneneneeeeeeseesessessessessesseenes 37
Fig.3.4 Address Register source selectionot it e 37
Fig.3.5 Read/Write data SEleCtiON ... oo ettt 38
Fig.3.6 FSM of control 10giC ... i i i i e 39
Fig.3.7 Detailed Core architecture diagram in EX-stagecccceevevvevievrenreenenne. 42
Fig.3.8 Registers with Clock gated by RTL and synthesized CG cell................... 45
Fig.3.9 Input data gated in unexecuted UNItSc..cceeieeieiieeieeeecieceereeee e, 47
Fig.5.1 Functional Verification floOWcccooviiiiiiiiicecceceeeee 60
Fig.5.2 Input-constrained Random Verificationcccccoeeeeiiiiiiicicciee, 63
Fig.5.3 Assertion based VerifiCation...............cccoooveoiiiiiiiiiceeeeeeeee e 63
Fig.5.4 BAXOA.DMP ..o 65
FIQ.5.5 BAXOA.JPU . eveeveeeteeee ettt ettt ettt ettt ettt e eereeeaeeanen 65
Fig.5.6 L76X1A4.DMP ..eviiniieeieeeeee et 66
FIQ.5.7 LTOXLA4.JPU . veeeeeeeeeeeeeeeee ettt ettt et te e e eveeeaeeanens 66
Fig.5.8 Synthesized Netlist Verification flOwc.cccoovviiiiiiiiiiieeee, 67
Fig.6.1 Block diagram in system [eVelccooovioiiiiiiiieeeceeceeeeee, 73
Fig.6.2 AHB peripherals configured inthe FPGAccooveoieiieiceeeeeeee, 76
Fig.6.3 Core refinement with AHB interface FSMS...........cccccoooevieiiiiciecicee, 78
Fig.6.4 AHB Wrapper for ACARM7 (with ARM9EJ-S and SDRAM)................ 80
Fig.6.5 ZBTSRAM MEMOIY USAQJEcoveeureereerienteereeeteeeeeteeereeereeeeeveeereeaeereeeseennens 80
Fig.6.6 Program control flow in software level.............c.cccooieiiiiiiciicieeee, 82

XI

CHAPTER 1
INTRODUCTION

Nowadays, the number of digital consumer electric products, which includes
Personal Digital Assistant (PDA), cell-phone, Playstation-Protable (PSP), Apple
iPod, and so on, has grown up so drastically. Either embedded processors or Digital
Signal Processors (DSP), whose power is supplied by the batteries, are included in
all these portable electric products. Therefore, how to save more power of these
portable electric devices is the most important subject in the competitive market.
This thesis proposes the research result of an ultra-low power and high performance
32-bit embedded processor implemented by ARM.v.4 ISA. This processor is such a
quite convenient device due to the fact that the machine code fetched by the
proposed one can be obtained by ARM.Develop Suite (ADS). Small area of the
proposed processor also saves mote Space in-portable electric products which need
characteristic of lightness, thinness, shortness, and smallness.

With the prevalent fashion of System on Chip (SOC), designs of digital
electric products have become more complicated; therefore, such designs need a
more rigorous and complete verification strategy to ensure both functional
correctness of the design and the synthesis correctness of synthesized gate-level
netlist circuit. This thesis provides a thorough and rigorous verification strategy
including the coding-style check, deterministic verification, input-constrained
random verification, and assertion-based verification so that this strategy can get
functional verification phase passed. In addition, the synthesized netlist verification
flow is composed of synthesis procedure by scripts, logic equivalence checking,

gate-level simulation, and power estimation by prime-power. Checking the

12

coding-style of the design by Linting tool will avoid all kinds of simulation errors,
unexpected latches, misunderstanding naming issues, the failure of DFT (Design for
Test), and so on. In addition, deterministic verification is made to check all regular
cases and special corner cases which should be confronted in simulation phase; on
the other hand, input-constrained random verification is made to detect all of
unexpected situations that the design may confront with; the more the number of
simulation cycles, the less the number of bugs existing in the design; and then more
robust design can be declared. Moreover, Assertion-based verification (also called
property-based verification, PBV) is implemented in the core design to check out
whether the functional behavior has been corresponded to the expectation of
designers; although some bugs may not cause any simulation answer errors and may
be ignored easily by designers, the PBV can definitely find those bugs out. On the
other hand, synthesized netlist -verification strategy assures that no error occurs in
the synthesis procedure. The writing land-refining of synthesis scripts is the first step
to obtain a netlist with the characteristic of lower power, smaller area, and higher
performance. Logic equivalence checking is the second step to verify the
consistency of an RTL design as it synthesized into gate-level netlist. Gate-level
simulation is the third step to execute to assure functional correctness after synthesis.
Preliminary power estimation by prime-power is the last step of the verification flow.
As a matter of fact, through the proposed rigorous and complete verification strategy
it is guaranteed that the proposed embedded processor owns high quality of an IP
(Intelligent Property) with the characteristic of bug-free robustness, high reusability,
and convenient porting issue.

Considered only the core design in the hardware issue is not enough in a SOC
era, more difficulties in system level will be confronted with. For instance, the

proposed core will be wrapped with an AMBA (Advanced Microcontroller Bus

13

Architecture) wrapper to communicate with other IPs on the AMBA while the core
is implemented in an ARM-based embedded system. Moreover, the application
software has to be modified before while is used by an embedded system. Therefore,
this thesis also provides a developed JPEG decoder system with the proposed core,
and the high applicability can be proofed.

As summarized above, the higher performance, the smaller area, and the lower
power are all the advantages of the proposed processor compared with ARM7TDMI.
The thesis also proposes a thorough and rigorous verification flow to verify the
correctness of the proposed core. Moreover, the high applicability of the proposed
processor can be proved by configuring it into the FPGA for implementing a JPEG
decoder system.

The remainder of this thesi$ 1s organized as follows: Chapter 2 concisely
describes the previous works related to the proposed-design. Chapter 3 presents the
architecture of the proposed core and some-low;power techniques. Chapter 4 shows
the experiment results of the proposed. core-compared to other cores. Chapter 5
provides a complete verification strategy to make the proposed core more robust.
Chapter 6 presents a JPEG decoder system which is integrated with the proposed
core design. Chapter 7 concludes this thesis. Future works and bibliography are also

provided afterward.

14

CHAPTER 2
PREVIOUS WORKS

2.0 Overview

This chapter describes some previous works related to ARM7TDMI, which is
a member of the Advanced RISC Machines (ARM) family of general purpose 32-bit
embedded processor. Section 2.1 describes some prerequisites about ARM7TDMI,
and Section 2.2 discusses about some related works. At last, Section 2.3 summarizes
the previous works and architecture of the proposed core design ACARM?7 with

ultra-low power technique supported will be introduced in the next chapter.

2.1 Prerequisites

2.1.0 Overview of Prerequisites

This section describes some prerequisites related to ARM7TDMI, which is a
member of the Advanced RISC Machines (ARM) family of general purpose 32-bit
embedded processor. Section 2.1.1 depicts basic architecture of the processor core.
Section 2.1.2 mentions pipeline stage of it. Section 2.1.3 describes instruction set
architecture (ISA) of ARM7TDMI. More related works about ARM7TDMI will be

discussed in the Section 2.2.

2.1.1 Core Architecture of ARM7TDMI

The ARM7TDMI is based on Reduced Instruction Set Computer (RISC)

principles, and the ISA and related decode mechanism are much simpler than those

15

of microprogramming Complex Instruction Set Computers (CISCs). This simplicity
results in a high instruction throughput and impressive real-time interrupt response
from a small and cost-effective chip.

The 3-stage pipeline ARM7TDMI organization is illustrated in Fig.2.1 [1]. It
can be seen that two read ports and one write port of the register bank which access
all registers. Additional read port and write port are added to access program counter
(PC).

The Barrel-shifter, which manipulates the input data to do an operation like
left-shifted, right-shifted arithmetic, right-shifted logical, and right-rotated and
which operation should be done depending on the operation-code (OP-code). The
ALU responds in all of the arithmetic and logical operations, while the address
register with incrementer, which selects and holds.all memory address and generate
sequential address as required.-On.the other~hand, data register holding data read
from or written to memory with data-alignment.; The instruction decoder and

associated control logic are also included in ARM7TDMI.

16

A[31:0]
I ALE T\r ABE I T
n
Scan
! 1 ‘ Control
Address Register e
M
P 4 L e
C n le—= DBGRQI
incrementer | & PR
E r - DBGACK
e > ECLK
b > nEXEC
Register Bank A g le— ISYNC
(31 x 32-bit registers) N— 3-
A (6 status registers) :: E:E’[E 0
5 = MCLK
le= NWAIT
b = nRW
u L MAS[1:0]
s A Sbu Instruction le— nIRQ
Multiplier b Decoder le— NFIQ
i u & = NRESET
: 2 Control le= ABORT
B Logic =» NTRANS
= nMREQ
T l» NOPC
Shifter : ECEJSK
= nCFI
~ 4 = o
\ 32-bit ALU / le— CPB
] = nM[4:0]
I le—= TBE
= TBIT
= HIGHZ
=y it it
Instruction Pipeline
Write Data Register & Read Data Register
& Thumb Instruction Decoder
NENOUT | nENIN T
DBE D[31:0]

Fig.2.1 Block diagram of ARM7TDMI architecture

2.1.2 Pipeline Stage of ARM7TDMI

ARM7TDMI wusing a 3-stage pipeline structure includes fetch-stage,
decode-stage, and execute-stage [2]. The first stage fetches instructions from
memory and places them in the instruction pipeline. The decode-stage decodes the
fetched instruction for next cycle execution. The last one of the 3-stage makes input
data shifted or rotated if needed and executes them with ALU or multiplier and the
processed data will write back the calculated result to the destination register finally.

At any time, each of the three stages may be occupied by three different

17

instructions; therefore, each stage of the hardware is capable handling the instruction
within independently.

While a simple data processing instruction is executed by the processor, one
instruction can be completed every clock cycle but with three-cycle latency;
however, the throughput of the processor is one instruction per cycle and this kind of

instructions is also called single-cycle instructions, as shown in the Fig.2.2.

1 [fetch | decode | execute |

2 [fetch [decode | execute |

3 [fetch | decode | execute |
instruction

> time

Fig.2.2 ARM7TDMI single-cycle instruction 3-stage pipeline operation

In contrast, the execution flow of a multi-eycle instruction is less regular, for
example, a sequential ADD instructions with.a data store instruction STR, occurring
after the first ADD instruction, a$-Showed-in Fig.2.3. The action of address
calculation and the data transfer which both-stay in the execution-stage take two
cycles; as a result, the third instruction behind the STR stays in the decode-stage
until the STR instruction completes the data transfer. Therefore, in this instruction
sequence, all parts of the processor are activated in every cycle and the memory
access behavior is the mainly limiting factor that limits the cycles taken by a

sequential instructions.

1 [feich ADD] decode [execute |

=]

[fetch STR | decode [cal. addr. | data xfer |

1 [fetch ADDT decode | decode | execute |
4 [fetch ADD| decode | decode | execcuic |
3 [fetch ADD | decode | execute

= limc

Fig.2.3 ARM7TDMI multi-cycle instruction 3-stage pipeline operation

18

2.1.3 Instruction Set Architecture (ISA) of ARM7TDMI

This section describes the instruction set architecture of ARM7TDMI [1].
However, ISA of the proposed design is a version of ARM7TDMI adapted to only
32-bit instruction without Thumb and coprocessor instructions; therefore, only the
32-bit instruction set of ARM7TDMI will be focused in this section.

ISA of ARM7TDMI can be classified into 3 types, data processing instructions,
data transfer instructions, and control flow instructions. The encoding formats can be
seen in the Fig.2.4. Moreover, all instructions are listed in theFig.2.5 and Fig.2.6.

Data processing instructions are the only one of 3 classified instruction set types
listed above which enables to modify data values came from registers by executing
arithmetic or logical operation on them., They typically require 2 operands and
produce one single result. Such instructions ificlude arithmetic operations, bit-wise
logical operations, register movement operations., and comparison operations.
ADD, ADC, and SUB are parts-of the.first-while AND, OR,and XOR belong to the
second. Register movement operations include MOV and MVN and comparison
operations include CMP, CMN, TST, and so on. The Operand2 field of each
instructions of data processing/PSR transfer includes 12 bits and has the ability to
make operand?2 shifted or rotated by a Barrel-shifter, as can be seen in the Fig.2.4. It
shows shift/rotate operation mechanism in the Fig.2.7 and means all data processing
instructions before arithmetic/logical operations can be shifted/rotated if needed.
Moreover, the conditional codes of each instruction top 4-bit can be modified with
any of the data processing instructions and more details about conditional codes will
be discussed in the following paragraphs.

Data transfer instructions moving data between registers of ARM and memory

and can be classified as 3 basic forms in the ARM instruction set. They are single

19

register load/store instructions, multiple register load/store instructions, and single
register swap instructions. Single register load/store instructions, supporting all the
byte transfer, half-word transfer, and word transfer, use most broadly to transfer data
between registers and memory. Multiple register load/store instructions transfer data
between memory and registers by word, less flexible than single data transfer
instructions; however, being capable of large quantities of data to be transferred more
efficiently, they are used for procedure entry and exit, to save and restore workspace
registers, and to copy blocks of data around memory. Single register swap instructions
allow a value in a register to be exchanged with a value in memory, effectively doing
both load/store operation in one instruction, and they are little used in user-level
programs.

Control flow instructions neither process data nor move it around; however,
they simply determine which instructions get.executed next. The processor normally
executes instructions sequentially instead-it-reaches the branch instruction and
proceeds directly to the destination'addtess which the branch instruction comprehends.
The mechanism used to control loop entry or exit is conditional branch which
executes the instruction of branch only if the conditional codes of them get the correct

value to fulfill some conditions.

20

31 30 2828 27 26 25 24 23 22 21 20

181317 161514 131211 10 2 8

Cond (0[0|1]| Opcode |S Rn Rd Operand 2
Ccend |0[0lo[ofofoals| Rd Rn Rs |1]olo]1] Rm
Cond |0[0|0{0[1|U[A[S| RdHi RdLo Rn [1{0f0|1] Rm
cend |0f0l0[1]0[B|0o]0] Rn rd [olofolol1|ofol1] Rm
Cond 000100101|1|1|11|1|1‘111110001 Rn
Cend |0f0|o|[P|ulofw|L] Rn rRd |o|o|olol1|s|H[1] Rm
Cond |oO[0lo[P[Ul1[w|L] Rn Rd Offset | 1[S|H|1] Offset
Cond |O0|1]1|P|{U|B[W|L Rn Rd Offset
Cond |0f1]1 ‘1|
Cond [1[0]0]P u‘s|w |_| Rn Register List
Cond [1|0|1]|L Offsat
Cond [1[1]0[P|U[N[w|L] Rn CRd CP# Offset
Cond |1[1|1|0] CPOpc | CRn CRd CP# cP |0| CRm
Cond |1[1]1]0]cP OpeL| CRn Rd CP# cP [1| crRm
Cond [T[{1[1[1 Ignored by processor

AN 30202827 ME2BM2221W181817 161514 13121110 2 8 7 &6 5 4 3 2 1

Data Processing /
PSR Transfer

Muitiply

Muitiply Long

Single Data Swap
Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immediate offset

Single Data Transfar
Undefined

Block Data Transfer
Branch

Coprocessor Data
Transfar

Coprocessor Data
Operation

Coprocessor Register
Transfer

Software Interrupt

Fig.2.4 ARM7TDMIinstruetion set encoding format

21

Mnemonic | Instruction Action
ADC Add with carry Rd := Rn + Op2 + Carry
ADD Add Rd :=Rn + Op2
AND AND Rd = Rn AND Op2
B Branch R15 ;= address
BIC Bit Clear Rd = Rn AND NOT Op2
BL Branch with Link R14 = R135, R15 ;= address
BX Branch and Exchange R15:=Rn,
T bit := Rn[0]
CDP Coprocesor Data Processing | (Coprocessor-specific)
CMMN Compare Negative CPSR flags := Rn + Op2
CMP Compare CPSH flags .= Rn - Op2
EOR Exclusive OR Rd ;= (Rn AND NOT Op2)
OR (op2 AND NOT Rn)
LDC Load coprocessor from Coprocessor load
memory
LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from memory Rd = (address)
MCR Move CPU register to cRn = rln {<op=cRm}
coprocessor register
MLA Multiply Accumulate Rd = (Rm * Rs) + Rn
MOV Move register or constant Rd:=0p2
MRC Move from coprocessor Rn = cRn {<op>cRm}
register to CPU register
MRS Move PSR statusiflags to Rn = FSRK
register
MSH Move register to PSR PSR :=REm
status/flags
MUL Multiply Rd:=Rm*Rs
WM Move negative register Rd = 0xFFFFFFFF EOR Op2
ORR OR Rd = Rn OR Op2

Fig.2.5 ARM7TDMI instruction set

22

Mnemonic | Instruction Action
RSB Reverse Subtract Rd = Cp2-Rn
RSC Reverse Subtract with Carry | Rd = 0Op2 - Rn - 1 + Carry
SBC Subtract with Carry Rd = Rn- Op2 - 1 + Cary
STC Store coprocessor registerto | address .= CRn

memory
STM Store Multiple Stack manipulation (Push)
STR Store register to memory <address> = Rd
sSUB Subtract Rd .= Rn - Op2
SWi Software Interrupt OS5 call
SWP Swap register with memory Rd = [Rn], [Rn] := Rm
TEQ Test bitwise equality CPSR flags := Rn EOR Op2
TST Test bits CPSR flags .= Rn AND Op2

Fig.2.6 ARM7TDMI instructien set (continued)

11

0

T L
Shift type

00 = logical left

01 = logical right

10 = arithmetic rght
11 = rotate right

Shift amount

8 bit unsigned nteger

11 8 7 6 3 4
Rs 0 1
T L
Shift type

00 = logical left
01 = lagical right
10 = anthmetic right
11 = rotate right

Shift register
Shift amount specified in
bottom byt of Rs

Fig.2.7 ARM shift/rotate mechanism

As mentioned earlier, one unique key-feature of the ARM instruction set is that

every instruction is conditionally executed which implemented by top 4-bit

conditional field of each 32-bit instruction field. Each of 15 values(instead of code

equals to ‘1111°, NV) of the conditional field causes the instruction to be executed or

skipped according to the value of the N, Z, C and V flags in the CPSR. The 15

conditions are given in fig.2.8 and every ARM instruction mnemonic may be

23

extended by appending the 2 letters defined here. For example, ‘AL’ means ‘always’
condition which may be omitted since the instruction is definitely executed no matter

what, the execution condition of others are listed in the Fig.2.8.

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 Cs C set unsigned higher or same
0011 CcC C clear unsigned lower

0100 M N set negative

0101 PL N clear positive ar Zero

0110 VS W oset overflow

0111 VC V clear no overflow

1000 HI C setand Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same
1010 GE M equals Vv greater or equal

1011 LT N not equal to Vv less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

Fig.2.8 Condition code summary

2.2 Related Works

2.2.0 Overview of Related Works

Prerequisites have been discussed in last section, and this section describes
some related works about ARM7TDMI. Section 2.2.1 depicts shift/rotate operation
by Barrel-shifter (BS). Section 2.2.2 depicts Mode-switch by Interrupt Mechanism

of ARM7TDMI. Summaries of Chapter 2 Previous Works will be discussed in

24

Section 2.3.

2.2.1 Shift/Rotate Operation by Barrel-shifter

Shift and rotate operation is one of the most essential and basic part in data
processing phase of a microprocessor and it presents an operation that a data is
left-shifted, right-shifted arithmetically, right-shifted logically, and right-rotated. It is
well known that in term of design style this kind of operation is usually implemented
by a technique named Barrel-shifter, one kind of logarithmic shifter. This shifter
completes the operation in log, (N) stages, where N=2"is the word length. The
moved amount of data in each stage is 2! where 0< i <(n-1), and the data shifted
by the preceding stage shifts continuously in the present stage; hence, it takes n
stages to obtain the final result. A left-shifted operation with N=32 example can be
shown in the Fig.2.9. The lower:data from'bit0 to bitl5 can be moved to higher
16-bit and filled with zero in lower 16-bit in 1=4 stage; as the same as i=4 stage, the
8-bit from bitl6 to bit23 can be moved higher 8-bit and filled with zero in lower

8-bit in i=3 stage.

o3 16 15 0
= | |

31 2423 15 0
i=3 | [16'b0 |
o3l 4 0
2| | 2450 |

Fig.2.9 A left-shifted example as N=32

In each stage, one of four types of shift/rotate operation which include
left-shifted, right-shifted arithmetically, right-shifted logically, and right-rotated is
selected. More hardware detections about conditional codes and greater than 32-bit

shift-amount should be added in the final stage of BS MUX tree, as shown in the

25

Fig.2.10.

*
L-SH ‘SHA SHL ROI

bt'lge

R R R

=3
Stage

L-SH -SHA SHL ROT

Stdge
ifi- Other
amount=32 requirement

Shift-
amount<32

L-SH:Left-shifted
R-SHA:Right-shifted Arithmetically
R-SHL:Right-shifted Logically
R-ROT:Right-rotated

Final
Decision
Stage

Fig.2.10 BS MUX Tree with 5 stages adding one final stage

2.2.2 Mode-switch by Exceptions

Most programs operate in user mode, however, other privileged operating

modes which are used to handle exceptions and supervisor calls are switched by

26

different interrupt types.

The current operating mode is defined by bottom 5-bit MO to M4 of the CPSR
register, as shown in the Fig.2.11. In addition, the interpretation of these bits is
summarized in Fig.2.12 and the privileged mode has associated with it a Saved
Program Status Register (SPSR), which is used to save the state of the CPSR while
the privileged mode is entered in order that the user state can be fully restored as the
user process is resumed.

Exceptions are generally used to handle unexpected events like interrupts or
memory faults which arise during the execution of a program. Besides, exceptions is
also used to cover software interrupt, undefined instruction traps, and the system
reset function which logically arises before rather than during the execution of a
program. These events are all grouped under the exception handling since they have
all the same mechanism within the' processor. Therefore, ARM exception can be
divided into 3 groups, which include directly-generated by executing instructions,
generated as a side-effect of executing imstructions, and generated externally,
unrelated to the instruction flow. Software interrupt, undefined instructions and
prefetch aborts belong to the first group; data aborts belongs to the second group;
reset, IRQ, (normal interrupt) and FIQ (fast interrupt) belong to the third group.

Exception entry which is entered while an exception arises and it caused by a
side-effect like data abort or an external event like IRQ uses the next instruction in
the current sequence; however, direct-effect exceptions like software interrupt are
handled in sequence as they arise. In fact, the processor performs the actions of
following sequence as exceptions occur.
® [t changes to the operating mode corresponding to the particular exception.
® [t saves the address of the instruction following the exception entry instruction

in r14 of the new mode.

27

® [t saves the old value of the CPSR in the SPSR of the new mode.

® [t disables IRQs by setting bit7 of the CPSR while it disables further fast
interrupt by setting bit6 of the CPSR if the exception is a fast interrupt.

® [t forces the PC to begin executing as the relevant vector address given by

Table2.1.

As can be seen in the Table.2.1, each of exceptions has the corresponded
vector address and contains a branch instruction to jump to the corresponded
interrupt service routine (ISR) which includes all the actions should be done while
an interrupt occurs; however, the vector address of FIQ needs no branch actions but
starts its ISR immediately since it occupies the highest vector address.

The two banked registers in each privileged mode, r13 x and r14 x, a stack
pointer which may be used to save other user registers and a return address holder,
can be used by ISR in each=privileged mode; however, FIQ mode has more
additional private registers to give better-performance by avoiding the need to save
user registers in most cases where it‘isused, as'shown in the Fig.2.13.

Once the exception has been handled the user task is normally resumed and
some following facts need to be guaranteed.
® Any modified user registers must be restored from the stack of ISR.
® The CPSR must be restored from the appropriate SPSR.
® The PC must be changed back to relevant instruction address in the user

instruction stream.

To note that the last two steps above need to be carried out together.

It is necessary to define a priority order to determine the order in which
exceptions should be handled first since multiple exceptions could arise at the same
time. These are priorities of all interrupts of ARM:

1. reset (highest priority);

28

2. data abort;

3. FIQ;

4. 1RQ;

5. prefetch abort;

6. Software interrupt (SWI) and undefined instructions; these two interrupts are
mutually exclusive instruction encodings and have no chance to occur
simultaneously.

Reset starts the processor from a known state and renders all other pending
exceptions irrelevant. The most complex exception scenario is where an FIQ, an
IRQ and a third exception (excluding reset) occurs simultaneously. FIQ has higher
priority than IRQ and also mask it out, so the IRQ will be ignored until the FIQ
handler explicitly enables IRQ or return to user code. However, as the third
exception is a data abort, the- processor will enter the data abort handler and
immediately enter FIQ handler,since data-aboit entry does not mask FIQ out. The
data abort is remembered in the return. path-and will be processed when the FIQ
handler returns. On the other hand, as the third exception is not a data abort, the FIQ
handler will be entered immediately. While FIQ and IRQ have both completed, the
program returns to the instruction which generated the third exception, and in all the

remaining cases the exception will recur and be handled accordingly.

condition code flags (reserved) control bits

| 1 1

31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N | Z|C|V]|. . . oo . .| 1| F|T| M4 M3 M2 M1 MO

| |
L Qverflow \— Mode bits
Carry / Borrow State bit
/ Extend FIQ disable
Zero IRQ disable

Negative / Less Than

29

Fig.2.11 Program status register format

M[4:0] Mode Visible THUMB state Visible ARM state
registers registers
10000 User R7..RO, R14..R0O,
LR, SP PC, CPSR
PC, CPSR
10001 FlQ R7..R0O, R7..R0O,
LR_fig. SP_fig R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiqg PC, CPSR, SPSR_fiq
10010 IRQ R7..RO, R12..R0O,
LR_irg, SP_irqg R14_irq..R13_irqg,
PC, CPSR, SPSR_irg PC, CPSR, SPSR_irg
10011 Supervisor R7..R0O, R12..R0O,
LR_svec, SP_svc, R14_svc..R13_svc,
PC, CPSR, SPSR_svc PC, CPSR, SPSR_svc
10111 Abort R7..RO, R12..R0O,
LR_abt, SP_abt, R14_abt..R13_abt,
PC, CPSR, SPSR_abt PC, CPSR, SPSR_abt
11011 Undefined R7..R0 R12..R0O,
LR_und, SP_und, R14_und..R13_und,
PC, CPSR, SPSR_und PC, CPSR
11111 System R7..RO, R14..R0O,
LR, SP PC, CPSR
PC, CPSR

Fig.2.12 ARM operating mode and register usage

30

Address Exception Mode on entry
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software interrupt Supervisor
O0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FlQ FlQ

Table2.1 Exception vector address

ARM State General Registers and Program Counter

System & User FlQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 Ri R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 RS R5 RS RS RS
R6 R6 R6 R& R6 R6
R7 R7 R7 R7 R7 R7
R8 BRB_ﬁq R8 RS RS RS
R9 RY_fiq R9 R9 R9 R9
R10 R10_fig R10 R10 R10 R10
Ri11 R11_fiq RI1 R11 R11 R11
R12 R12_fig Ri12 Ri2 R12 R12
R13 R13_fig R13_svc R13_abt R13_irg R13_und
R14 R14_fig R14_svc BRM_abt R14_irg R14_und
R15 (FC) R15 (PC) R15 (PC) ‘ R15 (PC) R15 (PC) R15 (PC)
ARM State Program Status Registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fig SPSR_svc SPSR_abt SPSR_ir SPSR_und

B = banked register

Fig.2.13 Register organization in ARM state

31

2.3 Summaries of Previous Works

This chapter describes some previous works about ARM7TDMI processor
design which includes core architecture, pipeline stage, and instruction set
architecture and some related works like shift/rotate operation by a Barrel-shifter
and mode switch by exceptions.

Core architecture of ARM7TDMI is designed by obeying Reduced Instruction
Set Computer (RISC) principles with 3-stage pipeline implementation which includes
fetch-stage, decode-stage, and execution-stage. Each of the three stages may be
executed the instruction within independently and efficiently, therefore, the
throughput of the processor is one instruction per cycle in an ideal case. The
ARM7TDMI instruction set including, only 32-bit instruction without Thumb is
discussed in the section for the‘proposed design'is a 32-bit embedded processor.
Moreover, the ISA of ARM7TDMI can be elassified into data processing instructions,
data transfer instructions, and centrol flow-instructions, and with condition code in
the top 4-bit in every instruction to execute instructions conditionally.

Shift and rotate operation is one of the most essential and basic part in data
processing phase of a microprocessor and is usually implemented by a technique
named Barrel-shifter, which completes such a operation within log, (N) stages,
where N=2"is the word length. On the other hand, programs operate not only in user
mode, but also other privileged operating modes which are used to handle
exceptions and supervisor calls are switched by different interrupt types. All
exceptions has its own vector address to the corresponded ISR and all of user
registers must be recovered as exception handling is over and comes back to user
programs.

Some previous works have been discussed and some important characteristics

32

have been reminded in this chapter; consequently, the proposed design ACARM7
improves the operating performance, makes power consumption as low as it possible,
and uses fewer gate-counts to save area consuming while utilizing these previous
works discussed this section. The proposed design will be described in detail in the

next section.

33

CHAPTER 3
PROPOSED CORE DESIGNS

3.0 Overview

This chapter describes the architecture of the proposed core design and
implementation of low-power technique. Section 3.1 depicts basic architecture of the
proposed core design. Section 3.2 discusses the implementation of low-power
technique. Section 3.3 summarizes the proposed core design and experiment results

of the proposed core will be presented in the next chapter.

3.1 Architecture of the Pnoposed Design

3.1.0 Overview of Architecture of the Proposed Design

This section describes architeeture of the proposed design, ACARM7, a 32-bit
embedded processor with characteristics of ultra low-power, high-performance, and
low area consuming. Section 3.1.1 depicts the block diagram of the proposed design;
Section 3.1.2 depicts control logic of the proposed design; Section 3.1.3 depicts how
an arithmetic/logical operation is functioned in EX-stage; and Section 3.1.4
describes the mechanism of multi-cycle multiplication in EX-stage. The

implementation of low-power techniques will be discussed in the Section 3.2.

3.1.1 Block Diagram of the Proposed Design

The proposed core architecture composed of 8 major functional blocks which

include decoder, register-file, ALU, 32x8 Multiplier, forwarding unit, address

34

register, read/write data selection, and control logic. The block diagram of the
proposed design can be seen in the Fig.3.1.

The decoder unit obtains the instruction from fetch phase and decodes it into
all information that other function units need.

The register-file is composed of 31 general purpose 32-bit registers which can
be divided into 6 banks and 6 status registers. The 6 banks of 31 general purpose
registers can be used in 6 different modes of ACARM7 execution states including
system&user mode, FIQ mode, supervisor mode, abort mode, IRQ mode, and
undefined mode. As shown in the Fig.2.11, Each of 6 status-registers which record
conditional codes and some control bits including modes bits, state bit, FIQ bit , and

IRQ bit and it is not necessary to be implemented in 32 bits.

al31:0 Address |-
Register |g J
din[31:0 | T =
als S
7 - - Mk
g~ 7| Decoder ™ gegsiter "Ti_ .
& File g ALU
=
o o &=
g > z »{ 32x8
7 o =
. = MUL
> Rea;.i eIIJam — Forwarding
Unit
P dout[31:0] | Write Data |
- Sel -

Fig.3.1 ACARMY core architecture diagram

35

The execution stage includes Barrel-shifter (BS), 64 bits Fong adder [3], and a
Ling multiplier [4] with 32-bit multiplicand multiplying 8-bit multiplier. , as can
been shown in Fig.3.2, both arithmetic operation and logical operation are
implemented with an ALU module whose two inputs, oprandl and operand2, are

received from a BS to perform a shift operation if needed.

" Operand2
A J L

Operand] 1 BS
hd 32 { Operand2_BS
k. h 4 T Y
12:(2.% 64-bit l'-xong LU EX Stage
ing Adder Controller
Multiplier
ALU

40 $ﬁ4

Fig.3.2 Core architecture diagram in EX-stage

The 40-bit product of the Ling-multiplier is calculated by the two operand
inputs with 32-bit operandl and bottom 8-bit operand2. The cycles of finishing a
multiplication from 2 to 5 and can be decided by the EX stage Controller and a
7-stage FSM (Finite State Machine) in Fig.3.3. More details will be discussed in
Section 3.1.3 Multi-cycle Multiplication in EX-stage. In an addition, the low-power
technique is also considered to gate inputs of unexecuted function units and will be
described in detail in the Section 3.2.

The forwarding unit forwards the data calculated from the output of the
execution stage to make next instruction obtain the answer as soon as possible if
needed, as shown in Fig.3.1.

One valid address is choosing from four address sources which include

36

program counter incrementer, ALU output, LDM (Load Multiple)/STM (Store
Multiple) output, and source of interrupt. Consequently, the valid address will be

sent to the address register (program counter, PC), as can be shown in Fig.3.4

else else

mulier shift mulier shift
right Sbit right 8-bit o

S Finish S Finish

. Finis} Finish ..
If{([31:8]-=24'b0) N {[i’l—:g']‘fi; w0y IR 3 = ab0) If(([31:8]=24'b0)

clse

mulier shift
right 8-bit

52 83

S4

MLA en==0
Lwrite_en==

If{MLA en==0}&(Lwrite en==0})
==>finish=1

finish=1 if(Lwrite_en==0)

==finish=1

Lwrite_en==1

Fig.3.3 Mul 7-stage FSM diagram

Program
Counter ALU LDM/STM Interrupt
Incrementer

* *‘ll #

4to | MUX ‘

Y
Address
Register

%32

Fig.3.4 Address Register source selection

37

The function performed by read/write data selection is non-word data aligned
either read data from a memory or write data to memory in Fig.3.5. As a result, byte
data or half-word data read from a memory will be shifted to bottom of a 32-bit
width register and either zero-extended or sign-extended will also be performed to
complete rest bits to fill with 32-bit data width. On the other hand, byte data written
to a memory will be copied to 4 pieces to fill with 32-bit data width and half-data
will be copied to 2 pieces as can be predicted. On the other hand, the discussion of
control logic implementation of the proposed design will be presented in Section

3.1.2 Control Logic of the Proposed Design.

Load half-word
/ / 31 16 15 0
XNNN_XXXD [‘ zero/signed extend [data]
XRXX XXXN
31 87 0
v zerofsigned extend ‘ data |
n=04.8.C
Load byte
XXXK_KKKH .
o 31 16 15 0
Store|half-word data data
xxxx_xxxn
31 2423 16 15 8 7 0
[data [data data | data |

Store byte

Fig.3.5 Read/Write data selection

The function of each primary block unit of the proposed core design has been

38

described individually in this section and mechanisms and implementation of control
logic, arithmetic/logical operation in EX-stage, and multi-cycle multiplication

operation in EX-stage, will be discussed in detail in the following sections.

3.1.2 Control Logic of the Proposed Design

The control logic controls all the data flows of combinational logic and all the
state transitions of sequential logic. As can be seen in the Fig.3.6, four Sub-FSMs,
load/store sub-FSM, shift sub-FSM, multiplication sub-FSM, and branch sub-FSM,
are controlled by one main normal operation FSM. The main normal operation FSM
includes only one state and all of the single-cycle instructions can finish their
execution in this state; for instance, general arithmetic or logical operation. However,
other instructions can not finish their exécution within just one cycle, and they will

leave for other 4 sub-FSMs.

Shift
y ~—— Sub FSM __—
R — . = —
Sir Addr | Write Data L.oadffst::' ' Shifi-amt \ /" Shift-amt
e Sub_FSM Wait+Br it A
\hﬂ;// (Finish Cyele), \\-_:Jll _i/” \\‘m__lk_ail___//
e
7 Ldr Addr N\ aTh
Cal+Br Wait+Br L Addrcal
Branch
Sub_FSM
(Ldr Addr FBf_hl&
. etchée
Refil Mul
T : Sub FSM
Y
—_— — ——_.
f'/Swap Addr\\ Write 7 Normal | |/ Mul Exee \\I
Hﬂf/, Data "t\t]‘nlh'h(W‘ '\\‘ME‘EE’//
Main FSM

Fig.3.6 FSM of control logic

Load/Store sub-FSM includes four types of instructions, store, load without

branch, load with branch, and swap. Store instructions include single data store and

39

multiple data store, as can be seen in the Fig.3.6. The first state calculates the
destination address and then the second state writes the data to memory and finishes
the single data store instruction. While multiple data store instruction continuously
stays in the second state until all data transfers are done. Besides store instructions,
all other instructions will finish their last execution cycle backing to the normal
main state. Load is also composed of single data load and multiple data load like
store instructions. The load address is calculated in the first cycle, and waits data
from memory in the second state. Single data load instructions will finish their
execution in the normal main state; on the other hand, multiple data load instructions
back to main state until all of their data transfers finished. In contrast, the cycle
operation of load with branch is the same as load without branch in the first two
cycles; the difference between them 1s the former will leave for branch sub-FSM
which will be discussed later to-continue its execution. Swap instruction makes data
exchange from a register and external memeorys-and implemented by a lock operation
of store after load. Therefore, it ‘combines doad and store instruction operations
together; the changing order of states is address calculation, data wait from memory,
write data to memory, and backing normal main state finally.

Shift sub-FSM includes two types of instructions, shift with branch and shift
without branch, and each of them occurs as ALU needs a shift-amount not coming
from immediate field but contents stored in registers. More cycle is needed since
shift-amount stored in registers can not be obtained with the other two operands at
the same time. Therefore, this kind of instruction will lead FSM to jump to the shift
sub-FSM while the shift-amount stored in the r15 (PC) will lead FSM to jump to the
shift sub-FSM with branch.

Multiplication sub-FSM includes all kinds of instructions about multiplication,

and lasts from 2 cycles to most 7 cycles until the instruction finishes the execution.

40

The finish signal will be sent to the main control logic to be acknowledged and
backed to main normal FSM. More details about multiplication will be discussed in
the Section 3.1.4 Multi-cycle Multiplication in EX-stage later.

As in the branch sub-FSM, a new PC address is calculated in the first state and
next new instruction will be fetched in the pipeline to fill the empty space behind the
present instruction in the second state. It has the lowest priority of all the five FSMs
and can be entered from load/store sub-FSM and shift-sub FSM and both two
sub-FSMs and Mul sub-FSM are mutually exclusive. Moreover, the four other
sub-FSMs instead of branch sub-FSM have equal priority and which FSM should be

entered decided by instruction decoded information.

3.1.3 Arithmetic/ Logical Operation:in EX-stage

Arithmetic or logical opetration is handled in the execution stage by ALU, as
can be seen in the Fig.3.7, a detailed:description with block diagram to Fig.3.2. Two
data inputs, Src_a and Src b, can be ‘used for 2 data inputs of arithmetic/ logical
operation instruction or 2 data inputs of multi-cycle multiplication in the pipeline
stage Ex-stage; the later will be discussed in Section 3.1.3.

Src b is fed into a BS which has been discussed in Chapter 2 before and can
be shifted or rotated by any amounts with any types including left-shifted,
right-shifted arithmetically, right-shifted logically, and right-rotated according to an
EX-stage controller. Both output signals from the BS and Src a are fed into a
Reverse-Inverse-Multiplexer which decides that whether the 2 inputs enter this
multiplexer should be inversed due to consideration about subtraction or reversed
for specific instructions RSB or RSC discussed in Chapter 2.

The 2 results of the multiplexer are also sent to a logical unit while a logical

41

operation is decoded or a 64-bit Fong adder [3] while an arithmetic operation is
decoded. All the logical instructions like AND, ORR, and so on will be handled in
this logical unit; moreover, 4 conditional flags , as shown in fig.2.11, excluding
V-flag will also be set at the same time.

On the other hand, all the arithmetic instructions like ADD, SUB, ADC, and so
on. will be handled in the higher 32-bit part of 64-bit Fong-adder since normal
addition or subtraction needs only 32-bit data width and lower 32-bit part will be

filled with zero as no multiplication instructions are executed.

Sre_a Src_ b
32 32
+ v
32x8 32-bit
Ling Barrel
Multiplier Shifter
EX_Stage
i y Controller
Rev
Inv
MUX
[.
¥
Mux a Mux b -
Y Y L J Y
32-bit 32-bit 32-bit
Hi-part Lo-part Logic
Fong-adder Fong-adder Unit

Y

clk_p —1§

Fig.3.7 Detailed Core architecture diagram in EX-stage

40

3.1.4 Multi-cycle Multiplication in EX-stage

As the instruction is decoded a multiplication type, Mux _a and Mux b of the
Fig.3.7 will select the sources directly from a 32x8 Ling-Multiplier [4] and 64-bit
result saved in a register calculated last cycle. (While in the first cycle operation, the
64-bit result is zero in default) These 2 resources will use all 64-bit of the
Fong-adder [3] since a 32-bit multiplicand multiplies a 32-bit multiplier obtains
most 64-bit product.

As can be seen in the Fig.3.3, normal multiplication without accumulation
operation and writing 64-bit result out needs at least 2 cycles since 40-bit product is
obtained in the first one cycle and added into 64-bit Fong adder to get final 64-bit
result. While all 32-bit of multiplier is valid, 4 cycles is needed for 8-bit is calculated
once. In each cycle, the 64-bit Fong adder result.is added by the 40-bit product
obtained from the preceding cycle. Therefore, normal multiplication takes most 5
cycles to finish the multiplications Howewver, multiplication with accumulation
operation takes one more cycle and writes' Long-result of 64-bit out to two 32-bit
registers also takes one more cycle; as a result, a 32-bit multiplicand multiplies a
32-bit multiplier with accumulation and writing Long-result of 64-bit out to 2
registers takes 7 cycles in total.

While the multi-cycle multiplication finishes, a finish signal will be sent from
Mul Sub-FSM to main FSM to tell that the multi-cycle operation is finished and may

take next instruction into EX-stage to continue the program flow.

43

3.2 Implementation of Low-power Technique

3.2.0 Overview of Implementation of Low-power Technique

The proposed design is convinced to have a characteristic of ultra low-power
and is implemented with three significant methods which are composed of unused
registers gated, unexecuted function units gated, and low-power consumption
property of Fong-adder [3]. The first will be discussed in Section 3.2.1 Unused
Registers Gated; the second will be discussed in Section 3.2.2 Unexecuted Function
Units Gated; and the third will be discussed in Section 3.2.3 Low-power

Consumption Property of Fong-adder.

3.2.1 Unused Registers Gated

The data stored in Registers are updated.in every clock cycle without any clock
gating operation; as a result, huge power-is-consumed and some manipulations must
be done to avoid so much power wasting of the proposed design.

One manipulation that makes new data to transmit into D port of the
FLIP-FLOP only when the enable signal is high can be implemented in RTL level,
as can be seen in the Fig.3.8. The disadvantage is that the stored data of registers is
still re-written for holding old data every clock; as a matter of fact, it is still power
wasting and other manipulations should be done. As can be seen in the Fig.3.8, a
lower part with a CG cell composed of an enable signal controlled latch will make
clock of the unused registers gated and guarantee that no data updated any more for
holding old value. This method can absolutely shut down updating operations of
unused registers and save unnecessary power consumption as much as it can. This
synthesis method by using scripts will be discussed in detail in Chapter 5

Verification Strategy.

44

The numerical report shows that the number of FLIP-FLOPs could be gated is
1,576 and the number of FLIP-FLOPs could not be gated is 27; in addition, the
benchmark we used is Dhrystone 2.1 with 8,332 clock cycles, as can be seen in the
Table3.1. The amazing thing is that while clock gated method is implemented, only
796,517 transitions occurs. It compares to 13,131,232 transitions occurring without
implementing gating technique and 93.93% unnecessary power consumption caused
by FLIP-FLOP transitions will be saved. Even considering the FLIP-FLOPs could
not be gated, it still saves power consumption about 92.35%. This report is so
significant and credible that why our proposed design is called ultra low-power.
Moreover, other methods about implementation of low-power technique will be

introduced in following sections.

always @(posedge clk)
if(en)
q <= q_nxt; D Q

en——-

clk

CG Cell

Fig.3.8 Registers with Clock gated by RTL and synthesized CG cell

45

FLIP-FLOP FLIP-FLOP ..
. - » Transitions
Dhrystone 2.1 with [FLIP-FLOP| Transitions no Transitions b
can be
8,332 clock cycles | numbers clock gated clock gated
: : saved (%)
implemented implemented
FF could be gated 1,576 13,131,232 796,517 93.93%
FF could not be gated 27 224,964 224,964 0%
Total 1,603 13,356,196 1,021,481 92.35%

Table3.1 Transitions saved with Clock gated synthesized CG cell

3.2.2 Unexecuted Function Units Gated

Last section a low-power technique used for sequential logic to gate unused
registers has been proposed, furthermoze,.another low-power technique used for
combinational logic of unexecuted units is-proposed in this section. For instance,
signal-A from the Fig.3.9, will be gateéd in front of combinational logic in the
unexecuted units to avoid unnecessary combinational logic transitions to cause extra
power wasting. As can be seen in the Fig.3.9, signal-B and signal-C can be forced to
zero as enable signal is low; therefore, the combinational logic from signal-B to
signal-C of unexecuted units can be shut down to save any unnecessary
combinational logic transitions. Moreover, the Fig.3.9 also shows an example that
while an instruction is executed in MAC all the combinational logics in ALU will be
shut down to save power.

Two different low-power techniques are implemented in Sequential logic in
preceding section and combinational logic this section; then another low-power
technique from a point of view of property of function units will be discussed in the

next section.

46

A MAC in

B
| e
Combo —iEE
enable —1— — B
cock T\ 1\ B_MAC_in
enable [\ /
a DX DT AAUin
8 |\ i a— B,
c I\ [ITTTITTTZTTTX
Combo transition power can
be saved when enable is low B ALU in

Fig.3.9 Input data gated in unexecuted units

3.2.3 Low-power Consumption Property of Fong-adder

Fong-adder [3] is one of the most signiﬁcant function units in the proposed
core design due to its low—pOWer consumption, éﬁd smaller area using with no
increasing performance overhead. :

As can be seen in the: Table3‘.2, VFV(‘)'ng‘-‘é,dder compares to Hybrid K-S
Ling-adder [5], a fastest adder at present but power consumption is high and area
usage is enormous. The former saves 32.40% power as data width is 32-bit and
12.05% as data width is 64-bit. As can be seen in the Table3.3 and Table3.4, the
timing analysis of Fong-adder compares to Hybrid K-S Ling-adder is %2 better as
data width is 32-bit and %6.56 better as data width is 64-bit; in addition, the area
analysis of Fong-adder compares to Hybrid K-S Ling-adder is also %21.40 better as
data width is 32-bit and 17.72% better as data width is 64-bit.

The proposed design implemented with Fong-adder has a characteristic of
ultra-low power consumption and small area wusage but still remains
high-performance. In fact, this is one of the most outstanding advantages of the

proposed core design.

47

output

Power Delay Product Analysis (UMC 0.18um/TT corner)

Hybrid K-S Hybrid K-S
Data y & Fong-adder y & Fong-adder = PDP
: Ling-adder Ling-adder .
Width (power)(mW) (PDP)(pJ) Saving
(power)(mW) (PDP)(pJ)
32 18.98 12.83 18.98*%1.02 12.83*1.00 33.73%
64 32.77 28.82 32.77%1.22 28.82*1.14 17.82%

Table3.2 PDP Analysis about Fong compared to Hybrid K-S Ling

Timing Analysis (UMC 0.18um/TT corner)

Hybrid K-S ..
Data i Fong-adder Timing
_ Ling-adder ,
Width (ns) Saving
(ns)
32 1.02 1.00 2.00%
64 1.22 1.14 6.56%

Table3.3 Timing Analysis about Fong compared to Hybrid K-S Ling

Area Analysis (UMC 0.18um/TT corner)

Hybrid K-S
Data i Fong-adder Area
: Ling-adder P :
Width 2 (um”) Saving
(um®)

32 14173.790 11140.114 21.40%
64 28839.888 23730.583 17.72%

Table3.4 Area Analysis about Fong compared to Hybrid K-S Ling

3.3 Summaries of Proposed Core Designs

This section has discussed architecture of the proposed core design which
includes discussion about block diagrams, control logic, arithmetic/logical operation
executed in EX-stage, and the mechanism of multi-cycle multiplication in EX-stage.
Three different implementation types of low-power techniques which include
unused registers gated, unexecuted function units gated, and low-power
consumption property of Fong-adder have also been discussed.

The proposed core architecture is composed of 8 major functional blocks

48

which include instruction decoder, a register-file with 31 general purpose 32-bit
registers with 6 banks division and 6 status registers, an ALU with a 64-bit
Fong-adder and a logic unit, a 32x8 Ling-multiplier controlled by multi-cycle
multiplication Sub-FSM, a forwarding unit, an address register selecting one valid
address from different sources, read/write data selection with data alignment, and
control logic.

The control logic of the proposed design is composed of 4 Sub-FSMs and 1
main FSM. The 4 sub-FSMs are load/store sub-FSM, shift sub-FSM, multiplication
sub-FSM, and branch sub-FSM. They are all controlled by the main FSM. Branch
sub-FSM has the lowest priority of all the 5 FSMs and can be entered from
load/store sub-FSM and shift-sub FSM. Both load/store sub-FSM and shift-sub FSM
and Mul sub-FSM are mutually execlusive; moreover, the 4 FSMs instead of branch
sub-FSM have equal priority=and' which- FSM. should be entered decided by
instruction decoded information:

Arithmetic or logical operation-is handled in the execution stage by ALU
which is composed by a 64-bit Fong-adder and a logic unit. Src_ A and Src_B going
through a BS will be multiplexed by a Reverse-Inverse-MUX; then 2 output results
from the Reverse-Inverse-MUX are sent to the logic unit or higher 32-bit part of
Fong-adder depending on which types of instruction are decoded.

Normal multiplication without accumulation and writing Long-result of 64-bit
out needs at least 2 cycles and at most 5 cycles; however, multiplication with
accumulation operation takes one more cycle and writes Long-result of 64-bit out to
two 32-bit registers also takes one more cycle. Therefore, a 32-bit multiplicand
multiplies a 32-bit multiplier with accumulation and needs writing Long-result of
64-bit out takes 7 cycles in total.

The data stored in Registers are updated in every clock cycle without any clock

49

gating operation to cause huge power consumed. One manipulation that makes new
data to transmit into D port of the FLIP-FLOP only when the enable signal is high
can be implemented in RTL level; on the other hand, a synthesized CG cell will
make clock of the unused registers gated and guarantee that no data updated any
more for holding old value. This method using synthesis scripts can absolutely shut
down updating operations of unused registers and save unnecessary power
consumption as much as it can and will be discussed in Chapter 5.

A low-power technique used for combinational logic of unexecuted units is
that input data will be gated in front of combinational logic in the unexecuted units
to avoid unnecessary combinational logic transitions to cause extra power wasting.

Besides the two different low-power techniques implemented in Sequential
logic and combinational logic, the'third low-power technique is implemented by a
Fong-adder since its characteristics of ultra<low. power consumption, small area
usage, and remaining high-performance compated to Hybrid K-S Ling-adder which
is the fastest adder at present.

The proposed design has been discussed in detail this section, and some
experiment results about power, timing, and area of the proposed design including
Pre-SIM and Post-SIM will be shown and be analyzed with comparison to other

processor cores in the next section.

50

CHAPTER 4
EXPERIMENTAL RESULTS

4.0 Overview

In this chapter, we provide the experimental results of the proposed design.
Section 4.1 elaborates the environment for implementation. Section 4.2 provides the

data and statistics of the experiment and discusses the experimental results.

4.1 Implementation

This section describes implementation of:the simulation environments which
include coding by Verilog HDL,'simulators with Cadence Verilog®-XL and Debussy,
a synthesizer with Synopsys Design Compiler®, a power analyzer with Synopsys
PrimePower®, cell library with. Artisan TSMC 0.18 pum technology, and
Place&Route with Cadence SOC Encounter®. All of simulation environment are

listed in Table4.1.

Coding Verilog HDL

Simulator Cadence Verilog® -XL; Debussy

Synthesizer Synopsys Design Compiler®

Power Analyzer |Synopsys PrimePower®

Cell Library Artisan TSMC 0.18 um technology
Place&Route Cadence SOC Encounter®

Table4.1 Simulation environment setup for experiments

51

4.2 Discussion of Experimental Results

4.2.0 Overview of Experimental Results

All results are shown in tabular form with discuss under the tables; besides, the
improvement rate of each comparison relative to the proposed design are also
provided in percentage.

The result of critical path delay in worst case, area cost at critical timing, and

power consumption will be reported and compared at the following sections.

4.2.1 Comprehensive Comparison

This section provides all experimental results with a comprehensive
comparison compared among the proposed core ACARM7, ARM7 Compatible
Processor (Korus 2005) and ARM7TDMI. As can: be seen in the Table4.2, the
process technology used by the proposed.core-ACARM7 and ARM7-Korus2005 are
both 0.18um while ARM7TDMI uses 0:25um-technology; therefore, all comparisons
in the following sections will be normalized to 0.18um technology for correctness.

The row named “Other characteristics” of the Table4.2 shows some specific
characteristics which are unique to each of different cores; in addition, the row
named “Note” indicates some attention notes to clear some misunderstandings might
be made. The p.s.1 of the note is that all the experimental results of ARM7TDMI are
come from a TSMC 0.25um hard macro; on the hand, p.s.2 and p.s.3 mentions that
both benchmarks for power estimation of ACARM7 and ARM7TDMI are based on
Dhrystone with temperature 25C, but the former is in voltage condition of 1.8V and
the later is in 2.5V. The last note reminds readers that all experimental results are
obtained in worse case except power estimation is measured in typical case.

All the information obtained from Table4.2 like timing, area, and power will

52

be analyzed and compared among the 3 different cores in the following sections.

Comprehensive Comparisons among Three Different Cores

ARM?7
ARM7TDMI
Proposed Core | Compatible .
(official
ACARM7 Core (Korus
released) (p.s.1)
2005)
Process(um) 0.18 0.18 0.25
Gate-count(k) 35.75 52 N/A
Area(mm?) 0.3567 N/A 1.05
Performance(MHz) 110 90 55
Power(mW) 0.17(p.s.2) 1 0.78(p.s.3)
Pipeline-stage 3 3 3
_ No Thumb; No DFT Hard Core No
Other characteristics
DFT supported supported DFT supported

p.s.1:TSMC 0.25um hard macro
p.s.2:Dhrystone, 1.8V, Temp=25 C
Note p.s.3:Dhrystone,2.5V,Temp=25 C

All experiment results are measured in worse case

except power estimation is in typical case

Table4.2 Comprehensive comparison among 3 different cores

4.2.2 Timing Comparison

This section discusses the timing comparison among 3 different cores and the
performance of ARM7TDMI obtained from Table4.2 should be normalized to

0.18um technology first by using an equation below:
55X (E) =76
0.18

After normalization, the performance of ARM7TDMI is normalized to 76MHz.

However, it is still lower than 90MHz of ARM7-Korus2005 and 110MHz of

53

ACARMY7. The proposed design has such a high performance because it uses a
high-performance IPs like Fong-adder and Ling-Multiplier and implements the ISA
without Thumb instructions. It gains a significant improvement in the critical path.
As shown in Table4.3, the performance of ACARM?7 is improved 44.74%
compared to a normalized result from ARM7TDMI and even 22.22% better than

ARM7-Korus2005.

Performance Comparison among Three Different Cores
ARM7
Proposed :
Core Compatible ARM7TDMI
ACARM? Core (Korus |(official released)
2005)
Performance(MHz) 110 90 76(p.s.1)
Improvement compared
44.74 18.42
to ARM7TDMI (%)
Improvement compared
to ARM7-Korus2005 22.22 -15.56
(%)
Note p.s.1: Obtained from normalization to 0.18um

Table4.3 Performance comparison among 3 different cores

The high-performance of the proposed design has been discussed and analyzed
with experimental results this section, and other analyses which are interested by

readers will be described in following sections.

4.2.3 Area Comparison

This section discusses the area comparison among the cores. It should pay
attention that the area of ACARM?7 is in technology of 0.18um and the area of

ARMT7TDMI is in technology 0.25um. Two results of the area with different

54

technologies can not be normalized and compared since design rule check (DRC)
with different technologies can not be directed normalized by a single equation.
Nevertheless, the gate-count of ACARM?7 is much lower than the one of
ARM?7-Korus2005 and improves 31.25% compared to ARM7-Korus2005, as shown

in Table4 .4.

Area/Gate-count Comparison among Three Different Cores

ARM7
Proposed Core | Compatible ARM7TDMI
ACARM?7 Core (Korus |(official released)

2005)
Gate-count(k) 35.75 52 N/A
Area(mm?) 0.3567(p.s.1) N/A 1.05(p.s.2)
Gate-count saving
compared to 31.25 N/A

ARM7-Korus2005 (%)

.s.1: 0.18um technolo
Note P &Y

p.s.2: 0.25um technology

Table4.4 Area/Gate-count comparison among 3 different cores

The gate-count comparison between the proposed design ACARM7 and
ARM?7-Korus2005 shows that the core size of the former is much smaller for 2
primary reasons. The first is that no Thumb instruction implementation strategy and
the second is that more design considerations are taken into account. The small
area/gate-count is also one reason for low-power designs and is what designers and
users want to see; On the other hand, power comparison will be analyzed in next

section.

55

4.2.4 Power Comparison

This section describes power comparisons among the cores above and the
power of ARM7TDMI should be normalized to 0.18um technology first by an

equation come from P=CV? and listed below:

0.18

0.78 X (-2
0.25

) =0.404

As can be seen in the Table4.5, the power of ARM7TDMI is normalized to
0.404mW after normalization. However, it is still higher than 0.17mW of ACARM7
but lower than 1mW of ARM7-Korus2005. An amazing thing occurs that the power
improvement of ACARM?7 compared to the normalized power of ARM7TDMI is

57.9% better and is 83% better compared to ARM7-Korus2005.

Power Comparison among Three Different Cores
ARM?7
Proposed Core | Compatible ARM7TDMI
ACARM7 Core (Korus |(official released)
2005)
Power(mW) 0.17 1 0.404(p.s.1)
Power saving compared
57.9 -147
to ARM7TDMI (%)
Power saving compared
to ARM7-Korus2005 83 59.6
(%)
Note p.s.1: Obtained from normalization to 0.18um

Table4.5 Power comparison among 3 different cores

The proposed design has a characteristic of ultra low-power for many reasons
and almost the same with the reasons discussed in Section 4.2.2; in fact, a right

implementation strategy with no Thumb instructions, a better choice of high quality

56

IP like Fong-adder and Ling-multiplier, and more design consideration taken into
account brings such a good performance of the proposed design. On the other hand,
Power-Delay-Product (PDP) is also provided in Table4.6. The table still shows the
PDP of ACARM?7 is 70.7% lower compared to ARM7TDMI and 86% lower
compared to ARM7-Korus2005.As a matter of fact, ACARM7 is the only one of the
three cores which can look after both sides inclusive of low-power consumption and

high-performance.

Power-Delay-Product Comparison among Three Different Cores
ARM7
Proposed Core | Compatible ARM7TDMI
ACARM7 Core (Korus |(official released)
2005)
Power(mW) 0.17 1 0.404(p.s.1)
Delay(ns) 9.14 11.1 13.16(p.s.1)
PDP(pJ) 1.5538 11.1 5.31664(p.s.1)
PDP saving compared
to ARM7TDMI (%) 707 1087
PDP saving compared
to ARM7-Korus2005 86 52.1
(%)
Note p.s.1: Obtained from normalization to 0.18um

Table4.6 Power-Delay-Product comparison among 3 different cores

4.2.5 Other Characteristics

Considering of other characteristics of the Table4.2, DFT (Design for
Testability) is supported by ACARM7 since chips might fail to work due to
manufacture problem; as a result, additional test circuit shall be added such as scan

circuit and built-in self test (BIST) circuit.

57

ACARMY is supported a characteristic of cycle-accurate verified by a behavior

systemC model and will be discussed in Chapter 5.

4.3 Summaries of Experimental Results

This chapter has analyzed the experimental results among different cores
inclusive of the proposed design ACARM7, ARM7 Compatible Core (Korus 2005),
and ARM7TDML. First of all, the implementation of the simulation environments is
introduced and a comprehensive comparison is provided for discussions about
timing, area, and power in detail.

In timing comparison, the performance of ARM7TDMI obtained from
Table4.2 should be normalized to 0.18um technology first and the performance of
the proposed design improves.44.74% jcompared to a normalized result from
ARM7TDMI and 22.22% bettet than ARM7-Korus2005.

In area comparison, two- areas with--different technologies can not be
normalized and compared directly; however, ‘the gate-count of ACARM?7 is much
lower than the one of ARM7-Korus2005 and improves 31.25% compared to the
later.

In power comparison, the power of ARM7TDMI should be normalized to
0.18um technology first and the power of ACARM7 improves 57.9% compared to a
normalized result from ARM7TDMI and 83% better than ARM7-Korus2005. On the
other hand, the PDP of ACARMT7 is 70.7% lower compared to ARM7TDMI and
86% lower compared to ARM7-Korus2005.

DFT and a characteristic of cycle-accurate verified with a systemC model are

also supported by ACARM7 and will be discussed in next chapter.

58

CHAPTER S
PROPOSED VERIFICATION
STRATEGY

5.0 Overview

With the prevalent fashion of SOC, designs nowadays become more and more
complicated. The thesis provides a thorough and rigorous verification flow strategy.
Section 5.1 describes the implementation of verification environment. Section 5.2
provides functional verification to ensure functional correctness of the design.
Section 5.3 proposes synthesized netlist verification to ensure the correctness of the

synthesis procedure. Section 5.4 provides,test plan and testability measurement.

5.1 Implementation

These are implementation Of verification environment and listed in Table5.1.
Design rule check is checked by Novas nlLint® with adopted Freescale
Semiconductor Reuse Standard (SRS); equivalence check is checked by Cadence
Encounter™ Conformal® Equivalence Checker; coverage analysis is checked by
TransEDA Verification Navigator®; and assertion-based verification is checked by

Accelera’s Property Specification Language (PSL).
Verification

Novas nLint® with adopted Freescale Semiconductor Reuse

Design Rule Check
Standard (SRS)

Equivalence Check |Cadence Encounter™ Conformal® Equivalence Checker

Coverage Analysis |TransEDA Verification Navigator®

Assertion-based))
Accelera’s Property Specification Language (PSL)

Verification

Table5.1 Verification environment setup

59

5.2 Functional Verification

5.2.0 Overview of Functional Verification

A functional verification flow is proposed in this section. Section 5.2.1
proposes coding style checking by Linting; Section 5.2.2 proposes a deterministic
verification; Section 5.2.3 proposes an input-constrained random verification;
Section 5.2.4 proposes an assertion-based verification.

The functional verification flow diagram is listed in the Fig.5.1 and in each of
steps the RTL model will be verified with a systemC behavior model which is
designed for matching all the cyclic behaviors of ADS. All mismatches from the

comparison will cause the flow back to RTL revision step to modification.

Re-verification

Linting free |
+ if{bug_finding==1)
RTL compared with
system(C specialized handerafted pattern
Lod real application pattern
VN-check (make code
A\ coverage to 100%) f(bug_finding==1
Deterministic Verification
systemC behavior
model ¢ Y Y
Input Constrained ifibug_finding=+1)
A A Random Verification o ..
. . RTL Revision
_ with hundred of
RTL compared with millions cycles
systemC '}
Y
white box black box ifibug_finding==1)
RTL compared with -
systemC Assertion Based Verification
using PSL

Verification Continued
to Wext Phase

Fig.5.1 Functional Verification flow

60

5.2.1 Coding Style Checking by Linting Free

This section describes a static coding style check which improves the quality
of the design in reuse and verification perspectives of RTL verilog. Checking the
coding-style of the design by Novas nLint tool with 328 lint rules of adopted
Frescale Semiconductor Reuse Standard (SRS) will avoid all kinds of warnings and
errors including naming, synthesis, simulation, common syntax, undeclared objects,

unexpected latches, DFT issue, and so on.

5.2.2 Deterministic Verification

This section describes deterministic verification which is made to check all
regular cases and special corner case should be confronted with in the simulation
phase. Deterministic verification is composed. of*3 parts including specialized
handcrafted pattern, real application pattern, and verification by VN-check (makes
code coverage to 100%).

The handcrafted pattern is written in all cases of instructions implemented in
the proposed design. It checks all results of instructions to be right in the first step in
deterministic verification.

The real application patterns are implemented by some benchmarks like
Dhrystone, Whetstone, and DSPstone. Moreover, a JPEG encoder program is also
provided to verify the correctness of the design and an encoded result will be
showed Section 5.2.4. This kind of pattern checks real cases met in applications of
real world and is essential in deterministic verification phase.

The third phase of deterministic is code coverage checking by TransEDA’s
Verification Navigator® (VN-check) which gives metrics on how well the design is

being verified. For instance, statement coverage shows the number of times each

61

HDL statement is executed and un-executed statements are likely to be redundant in
the design; and a state coverage inspects that whether any unreachable states exists
in FSM similarly. According to Motorola’s Semiconductor Reuse Standards, the
statement, branch and state coverage of a design should achieve 100% while the
lower bound of condition coverage is not listed.

After the code coverage verification, it suggests that the test vectors applied to
the design under verification are sufficient and the next verification step

input-constrained random verification can be entered.

5.2.3 Input-constrained Random Verification

Input-constrained random verification,is implemented by a constraint-driven
random pattern generator which.generates random. pattern to both ISS model and
RTL model and values of both: models are’compared cycle by cycle, as shown in
Fig.5.2. This kind of verification is made-to-detect-all of unexpected cases and the
random pattern is constrained to ‘the ‘meaningful range to avoid undefined
instructions generation. More simulation cycles are verified, more vector space is
spanned by random patterns; therefore, less bugs exists in the design and more
robust design can be declared. In fact, two billion cycles have been simulated until
now and 16 bugs founded in the first 100 million cycles. No more bugs have been
found after then. All bugs found in functional verification will be listed in Table5.2

On the other hand, more cycles have been simulated, harder the bugs can be
found; therefore, another different powerful verification method will be discussed in

the next section.

62

Constraint-Driven
Random Pattern
Generator

~ ~

output output
RTL Model ISS Model

Fig.5.2 Input-constrained Random Verification

5.2.4 Assertion Based Verification

This section provides a powerful verification method and is indispensable in
the verification strategy; that is assertion-based verification. An assertion is a
statement about intended behavior of designers, which should be verified. The
purpose is to ensure the created design .behaves according to the intention of
designers.

Unlike traditional simulated-based “black-box> verification, which requires
stimulus to trigger bugs and the propagate‘the error response to output, assertion
based “white-box™ verification inserts*monitors inside the design signals to report
incorrect behavior at run-time and allows designers to identify and locate bugs
instantly. As can be seen in the Fig.5.3, bugs will not be found if no monitoring by

assertion implemented.

.—:- Better Observability

Fig.5.3 Assertion-based verification

63

There are many benefits of using assertion based verification. First of all,

assertion improves the ability of observation of a design under verification; second,

assertion reduces the debug time because of better observation and better isolation of

error; in addition, assertion can be used to check the interfaces of a design, thus

improving the integration through correct usage checking; moreover, assertion can

also facilitate formal analysis to help verify a design; finally, assertion also helps to

reveal the intend of designers clearly by specifying correct behavior unambiguously,

so that design could be easily reused and verified.

All bugs found in functional verification phase have been listed below:

All of the Bugs Found in Functional Verification Phase

Categories of The Reason for Not Early
Number Note
Patterns Founded
Real Programs o
. (g) Real application programs are
(Benchmarks) of (a) Control signal decoded error .
- 3 more practical than handcrafted
Deterministic about FSMs
rograms.
Verification P
(h) Bugs need random patterns
(b) The execution cycle of through a great quantity of
multi-cycle multiplication simulation time to be found out
mismatch with ISS model since handcrafted pattern is not
Input-Constrained enough.
R £ (c) Same with (a) (1) Same with (g)
Verification :
(d) Exception handler cycle . .
. . (j) Same with (g)
determined mismatch
(e) Errors occur in conditional .
. (k) Same with (g)
execution
]] (1) Without assertion, unexpected
: (f) Two different interrupts occur)]]
Assertion-based i . |behaviors will not be found if
1 simultaneously but correctness is

Verification

not influenced.

functionality is still correct. It

lowers the quality of an IP.

Table5.2 All of the bugs found in functional verification phase

64

As can be seen in theTable5.2, after handcrafted pattern verification, bugs still
exist in the design and other efficient verification methodology should be used to
make design more robust. Real programs by some benchmarks have found 3 another
bugs about control signal decoded error of FSMs since real application programs is
more practical than handcrafted programs. In addition, input-constrained random
verification has found 16 bugs by many different reasons with the same idea. This
idea is that some bugs of complicated design need random patterns through a great
quantity of simulation time to be found out since the quantity of handcrafted pattern
is not enough. However, some bugs will never be found if we used traditional
simulated-based “black-box” verification; assertion-based “white-box™ verification
monitors the behavior of the design and finds out any bugs causing unexpected
behavior even no error answer OCCUrs.

After thorough and rigerous functional wverifications, a real application
program JPEG encoder is used for veérifying the functionality of the proposed design
and the result can be seen below. The Fig.5.4.18 an original bmp file and the Fig.5.5
is an encoded jpeg file. The same relation is between the Fig.5.6 and the Fig.5.7.
The time for encoding a 64x64 bmp-file to a 64x64 jpg-file by RTL simulation takes

1 hour and for a 176x144 bmp-file to a 176x144 jpg-file takes 6 hours.

'*
-

Fig.5.4 64x64.bmp

Fig.5.5 64x64.jpg

65

Fig.5.7 176x144.jpg

Therefore, this section has discussed a thorough and rigorous verification flow

5.3.0 Overview of Synthesized Netlist Verification

This section discusses synthesized netlist verification flow. The synthesis
procedure by scripts is discussed in Section 5.3.1. Logic equivalence checking is
discussed in Section 5.3.2. Gate-level simulation is discussed in Section 5.3.3.
Power estimation by prime-power is discussed in Section 5.3.4.

The completed synthesized netlist verification flow diagram is listed below in
the Fig.5.8 and in first step the synthesized netlist is checked whether the timing and
area meets the specification or RTL of the design will be modified; in second step
LEC checking will verify the consistency of an RTL design as it synthesized into

gate-level netlist; in third step gate level simulation will be executed to ensure

66

functional correctness after synthesis; finally, preliminary power estimation by
prime power is the last step of the verification flow and exact power estimation has

to be measured after P&R and has been discussed in Chapter 4.

maodel

Synthesis by
scripts If ((Timing || Area) not met)

== modify RTL model

If (not equivalent)

LEC => check RTL model
Equivalence
Checking

Y

If {(bug finding==1)

Gate level == check RTL model
simulation
l If (power is not met)

== modify RTL model

Prime Power

Synthesized
Metlist Verification
Finished

Fig.5.8 Synthesized Netlist Verification flow

5.3.1 Synthesis by Scripts

This section describes synthesis by scripts. Writing and refining the synthesis
scripts is the first step to obtain the characteristic of lower power, smaller area, and
higher performance netlist. Two methods written in scripts are worth being

discussed below:

67

1. The gated clock technique discussed in Chapter 3 is not directly written in
RTL but it is implemented by adding commands in scripts and listed
below:

1. set_clock gating style -sequential cell latch -minimum_bitwidth 4
-setup 0 -hold 0
il. insert_clock gating -module_level
1. propagate constraints -gate clock
A CG-cell with gated clock will be generated by these commands in
scripts. The advantage is that the clock signal of RTL is not operated or
handled directly and makes the RTL design ease to port to other
embedded systems; for instance, the JPEG decoder system will be
discussed in Chapter 6.

2. A command written 4n scripts igneres.the series path which is used for
scan chain of DFT and makes-no-timing optimization to that path since
many buffers will be added.in this path and unnecessary area will be
increased. The command is listed below:

1. set case analysis 0 test_se

5.3.2 Logic Equivalence Checking (LEC)

This section describes one common formal verification technique named logic
equivalence checking. Tools of LEC use formal mathematical techniques to verify
logic functions by comparing input/output conditions and matching an iteration of
design with the next. LEC enables the determination of logic function equivalence
between one design and another. Moreover, LEC can verify the consistency of an

RTL design as it is synthesized into gate-level netlist.

68

5.3.3 Gate Level Simulation

This section describes that gate level simulation is executed after synthesis

procedure to ensure functional correctness in low-level netlist.

5.3.4 Power Estimation by Prime-power

This section depicts that preliminary power estimation by prime power is the
last step of the verification flow and exact power estimation has to be measured after

P&R and has been discussed in Chapter 4.

5.4 Test Plan and Testability Measurement

Due to the failure in manufacturing process, 5%-40% of chips will be failed
after being manufactured and theextra cost can.be huge if the chips delivered do not
work; hence, testing becomes an important‘procedure to ensure the delivered chips
work. Design-For-Testability (DET) synthesis using scripts is one of the test
methods and additional scan-chain circuit is'generated.

As can be seen in the Table5.3, Test coverage of the proposed design can not
reach 100% for gated-clock CG-cells composed of latches and AND gate. In fact, it
is worth using this kind of low-power technique to lower power consumption with a

small defect.

Un-collapsed Stuck Fault Summary Report
Total faults 87428
Test coverage 99.38%
#Internal patterns 418
#Basic scan patterns 418

Table5.3 Un-collapsed Stuck Fault Summary Report

69

5.5 Summaries of Proposed Verification Strategy

This chapter provides a thorough and rigorous verification flow strategy in two
phases, functional verification and synthesized netlist verification. The test plan and
testability measurement of the proposed design is also provided.

A functional verification has been proposed that in each of steps of the flow
the RTL model will be verified with a systemC behavior model which is designed
for matching all the cyclic behaviors of ADS and all mismatches will cause flow
back to RTL revision step to modification. Deterministic verification, which is made
to check all regular cases and special corner case should be confronted in simulation
phase, is composed of 3 parts including specialized handcrafted pattern, real
application pattern, and verification by .VN-check (make code coverage to 100%).
Input-constrained random verification is/made to detect all of unexpected cases and
the random pattern is constrained to the“meaningful range to avoid undefined
instructions generation. More simulation'cyeles are verified, more vector space is
spanned by random patterns; therefore, less”bugs exists in the design and more
robust design can be declared. Assertion-based verification finds out the bugs which
will never be found if we used traditional simulated-based “black-box’ verification;
however, assertion-based “white-box” verification monitors the behavior of the
design and finds out any bugs causing unexpected behavior even no error answer
occurs. The completed synthesized netlist verification flow is composed of synthesis
procedure by scripts, LEC checking, gate level simulation, and prime power.

After the verification flow, it is guaranteed that the proposed embedded
processor owns high quality of an IP, a characteristic of bug-free robustness, high
reusability and convenient porting issue. On the other hand, a JPEG decoder system

will be presented in the next chapter

70

CHAPTER 6
JPEG DECODER SYSTEM

6.0 Overview

This chapter presents a JPEG decoder system implemented by the proposed
core design which is configured in the FPGA as a specific purpose processor and all
system behaviors are controlled by a ARM9EJ-S processor on the develop board.
Section 6.1 depicts the implementation of the system. Section 6.2 describes
architecture of system level. Section 6.3 describes architecture of hardware level.
Section 6.4 describes program control flow in software level. Section 6.5 discusses
the experimental results of proposed system. Section 6.6 discusses the Summaries of

JPEG Decoder System.

6.1 Implementation

The development board of JPEG"decoder system is implemented by Versatile
RealView Platform Baseboard for ARM926EJ-S® [6], the proposed core ACARM?7
is configured in an FPGA of Versatile LT-XC2V6000 (Xilinx VirtexIl) [7]; the
decoded file is displayed by a LCD panel, 8.4 VGA (640x480) Color VCD Panel,;
the system is semi-hosted by a PC with an ARM® RealView MultilCE®,; All
develop environment is based on ARM® Developer Suite (ADS) version 1.2; The
proposed design will be transformed to BIT-file to configure in the FPGA by
Xilinx® Integrated Software Environment (ISE) 6.2i. All environment setups can be

seen in the Table6.1.

71

Decoder System

Development Board |Versatile RealView Platform Baseboard for ARM926EJ-S®

Logic Tile Versatile LT-XC2V6000 (Xilinx VirtexIl)

LCD Kit 8.4 VGA (640x480) Color VCD Panel
Multi-ICE ARM® RealView MultilCE®
ADS ARM® Developer Suite (ADS) version 1.2

Xilinx ISE Xilinx® Integrated Software Environment (ISE) 6.2i

Table6.1 Verification environment setup

6.2 Architecture of System Level

6.2.0 Overview of Architecture.of System Level

This section introduces the:overview of the proposed system in system level
view; Section 6.2.1 describes major components of the proposed system and Section

6.2.2 describes all control flow of the proposed system.

6.2.1 Major Components of the Proposed System

This section describes major components of the proposed decoder system,
which is composed of an ARM9EJ-S core, a 128MB SRAM, a 64MB NOR flash, a
LCD panel, and a Logic Tile. The ARMYEJ-S core controls all behaviors and
components of the entire system; the data in the SRAM can be loaded or stored by
the core; The 64MB NOR flash is a nonvolatile storage and data or programs can be
stored in the flash prepared to be loaded into SRAM automatically as powered up; a
LCD panel displays the image of decoded pictures; and a Logic Tile includes an
FPGA, two 2MB ZBTSRAM(Zero Bus Turnaround SRAM), a push bottom which is

used for interrupt input of the system, and many other devices and components. All

72

components discussed above are shown in the Fig.6.1.
This section has described major components of the proposed system and more
details of control flow in system level of the proposed system will be discussed in

the next section.

. 128MB 64MB
ARMYEI-S
II;iDI {Core of the LS NOR
e board) FLASH
AHB BUS
D FPGA
Two 2MB
ZBTSRAM
Interrupt
(") Bottom Logic Tile

Main Board

Fig.6.1 Block diagram in system level

6.2.2 Control Flow of the Proposed System

This section describes the control flow of the proposed system. First, all the
binary data is obtained from ADS tool and is written into the NOR flash in advance
by a multi-ICE with semi-hosting mechanism; the load address to the SDRAM or
ZBTSRAM is also designated at the same time. Second, all the binary data is
auto-loaded from the NOR-flash into SDRAM or ZBTSRAM respectively; In this

step, the instructions of JPEG decoder are loaded into both ZBTSRAMs on the

73

Logic Tile and all of the un-decoded JPEG files are also loaded into the SDRAM. In
addition, the main control flow program is also load into SDRAM and executed by
ARMOEIJ-S in the third step. Third, ARM9EJ-S moves two un-decoded JPEG files
from SDRAM into both ZBTSRAMSs; therefore, both instructions and un-decoded
data are prepared for ACARM?7 configured in FPGA of the Logic Tile. Fourth,
ARMOEIJ-S sends a signal to tell ACARM7 to begin to decode the data in
ZBTSRAM. Fifth, while ACARMY finishes decoding procedure, it will send a finish
signal to tell ARMO9EJ-S. Sixth, ARMO9EJ-S moves the decoded data from both
ZBTSRAMs of the Logic Tile to the SDRAM. Finally, ARM9EJ-S calls the LCD
display program to show decoded data on the LCD panel. These are primary steps of
system control flow and more delicate and efficient control techniques will be
discussed in Section 6.4 Program®Control Flow'in Software Level; On the other
hand, more details about the preposed core wrapped-with an AHB interface will be

discussed in Section 6.3 Architecturetof Hardware Level.

6.3 Architecture of Hardware Level

6.3.0 Overview of Architecture of Hardware Level

This section describes hardware architecture of the proposed core wrapped
with AMBA interface in FPGA of the proposed system. Section 6.3.1 describes all
the AHB peripherals in FPGA. Section 6.3.2 describes core wrapped with AHB bus

interfece. Section 6.3.3 describes control flow within AHB peripherals in FPGA.

6.3.1 AHB Peripherals in FPGA

This section describes all the AHB peripherals in FPGA, as can be seen in the

Fig.6.2. The RTL design should be wrapped to correspond to the AHB specification

74

in advance before they configure into an FPGA or will never be used and activated
in an FPGA. An example code [8] provided by ARM is implementing AHB
peripherals in FPGA of Logic Tiles and will be modified for usage of ACARM?7.

As shown in Fig.6.2, the AHB TOP-LEVEL block is the top level HDL
(Hardware Description Language) configured in the FPGA and instantiates and
interconnects the main block in the all system; the AHB-APB System block includes
the bridge of AHB to APB and all the APB peripherals including LED light and
interrupt controller. On the other hand, the AHB Decoder block decodes the received
address from the AHB Bus to different IP selection signals which are used to
activate the corresponded IP to wake up and execute; the AHB Multiplexer block
selects the right answer from all different source results and selection is decided by
the IP selection signal generated by AHB Decoder. Furthermore, the AHB-Wrapper
for ACARM7 block wraps ACARM7 with AHB-wrapper and includes three
sub-blocks which are ACARM?7 iwith--AHB interface, and two ZBTSRAM
controllers. ACARM?7 with AHB Interface block will be discussed in Section 6.3.2
in detail. Both ZBTSRAM Controllers control all the data movements of the two
ZBTSRAMs on the Logic Tile.

This section has discussed all the AHB peripherals in FPGA, and more details

about core wrapped with AHB bus interface will be described in the next section.

75

AHB AHB-APB
TOP-LEVEL System

Y

AHB
Decoder

h

AHB
Multiplexer

h 4

AHB-Wrapper o ACARMT with
For ACARM?7 o AHB Interface

ZBTSRAM
Controller0

h 4

ZBTSRAM

Controllerl

Fig.6.2 AHB peripherals configured in the FPGA

6.3.2 Core Wrapped with AHB Bus Interface

This section discusses the core wrapped with AHB bus interface in FPGA. As
can be seen in the Fig.6.3, seven FSMs of the AHB-interface block (shown in the
fig.6.4) control all the behaviors between AHB Bus and ACARM?7.

As the bus in the Idle State which could be due to decoding finish or not valid
operation, no tasks are executed in this cycle and other tasks will be executed in
another non-idle state. As the bus jumps into the Write State which is due to writing
task requested by ARMOEIJ-S , the data from AHB Bus will be written into Current
Status Registers (CSR) which controls behaviors of the bus; on the other hand, the
information of CSRs of ACARM?7 will be read out to put on AHB Bus as the bus

jumps into the Read State which is due to reading task requested by ARM9EIJ-S; for

76

example, as ACARMY7 finishes a decoding task, a finishing signal will be put on the
FINISH register of CSRs. The contents of FINISH register of CSRs will be read out
to put on AHB Bus to tell ARM9EJ-S that the decoding task has done as the bus is in
Read State. While ARMOYEJ-S sends a request to tell ACARM?7 to execute the
decoding task, the Pre-Run StateO or the Pre-Run Statel will be entered. Which state
will be selected from both of them depends on which ZBTSRAM of both
ZBTSRAMs is used. The action executed by ACARM7 in both Pre-Run States is to
reset the bus first to clear all internal registers of the bus to zero and assures the
correctness of ACARM?7 ‘s execution before entering into both Run-States every
time. ACARMY7 does decoding procedure in the Run State and stays in the state until
it finishes the decoding task. As can be seen in the fig.6.3, while ZBTSRAMO is
used for JPEG decoding, Run State0 goes after.Pre-Run State0 continuously. So
does Run Statel and Pre-Run Statel while ZBTSRAMI is used.

This section has discussed-the AHB-bus-interface of the core, ACARM?7, with
AHB-wrapper in FPGA and more details about control flow within AHB peripherals

in FPGA will be described in next section.

77

Keep Decoding Keep Decoding

Finish Finish

Pre-Run Pre-Run
Stated Statel

Keep Keep
Writing Reading

Decoding Task
Requested
By ARM9

#+ Writing Task
Requested
By ARM9

#hE Reading Task
Requested
By ARM9

X Not Valid
Fig.6.3 FSMs of the AHB bus interface

78

6.3.3 Control Flow within AHB-Wrapper for ACARMY in

FPGA

This section discusses the control flow within the block of AHB wrapper for
ACARM?7, as shown in the Fig.6.2 above. As can be seen in the Fig.6.4, the block
AHB-Wrapper for ACARMY is the same one in Fig.6.2 and the block AHB Interface
is the one discussed in Section 6.3.2. ARMO9EJ-S, one SDRAM with 128MB, and
two ZBTSRAMs with 2MB are also displayed in the Fig.6.4.

Both ZBTSRAMs in the Logic Tile can be used by either ARM9EJ-S or
ACARMT7 with the AHB-Wrapper. As can be seen in the Fig.6.5, the memory usage
of a ZBTSRAM is divided into three parts which include IM (Instruction Memory),
DM (Data Memory), and decoded .data. The tontent of the first part comes from
NOR-flash auto-loading as the whole system. powers up. On the other hand,
ARMOIEJ-S requests the un-decoded data moved from the SDRAM to the second
part of the ZBTSRAM as a DM and this mechanism will be described more in
Section 6.4. Therefore, the necessary information with both instruction and data are
prepared for ACARM7 and ACARM?7 can use the ZBTSRAM to execute decoding
procedure. ZBTSRAM Controller is an essential part to access ZBTSRAM and
needs all information received from a processor. As a result, a multiplexer is
implemented and selects which processor is in charge of the ZBTSRAM. After
decoding procedure by ACARM7 has finished, ARMOYEJ-S will take over the
ZBTSRAM at the moment and moves the decoded data to the SDRAM for display
on LCD panel later.

This section has described the control flow within AHB-Wrapper for

ACARMY7 and program flow in software level will be described in next section.

79

ARMOYEJ-S SDRAM

128MB
« AHB Bus Y + N
Y
Y
MUX CSR MUX
ACARM7T
th
ZBTSRAM (the core) ZBTSRAM
ControllerD AHB Interface Controller]
{(core refinement discussed
in Section6.3.2)
AHB Wrapper for ACARM?7
Y J
ZBTSRAMO ZBTSRAMI
2MB 2MB

Fig.6.4 AHB Wrapper for ACARM7 (with ARM9EJ-S and SDRAM)

1M
(JPEG Decoding
Program)

DM
{Un-decoded Data
JPEG File)

Decoded Data

(RGB File)
IM: Instruction Memory
DM: Data Memory
ZBTSRAM
With
ZMB

Fig.6.5 ZBTSRAM memory usage

80

6.4 Program Control Flow in Software Level

This section describes the program flow in software level. As can be seen in
the Fig.6.6, the main control flow program is executed by ARM9EJ-S and JPEG
instruction program is executed by ACARMY7. First of all, ARM9EJ-S moves the
first un-decoded data from SDRAM to the first ZBTSRAM ZBTSRAMO, and then
ARMOIEJ-S requests ACARM?7 to decode the data just moved into ZBTSRAMO.
The second un-decoded data is moved to ZBTSRAMI like the first one and then
ARMOEIJ-S waits the finish signal from ACARM?7 by a polling mechanism. After
ACARMY finishes the first data decoding procedure, ARMIEJ-S requests ACARM7
to decode the second data in ZBTSRAMI1 continuously. ARMIEJ-S moves the first
decoded data from ZBTSRAMO to SDRAM and waits ACARM?7 to finishes the
second decoding procedure in ZBTSRAMI. Aftet. ACARM7 finishes the second
decoding procedure, ARM9EJ-S moves the'second decoded data from ZBTSRAM1
to SDRAM in next step. Thesé- steps.will-be proceeding iteratively. After all the
decoding tasks have been done, ARMO9EJ-8"will call a LCD display program to
show all decoded data on the LCD panel to demo the whole system.

This section has described the main program control flow in software level and
some experimental results of the proposed system will be provided in the next

section.

81

Main Control Flow Program
Executed by ARMYEI-S

Moves 1st Data from
SDRAM to ZBTSRANMIO

Requests ACARMT to
Decodes JPEG Data with
ZBTSRAMO

Decoding Start

Moves 2nd Data from
SDRAM to ZBTSRAMI

Waiting Finish Signal from
ACARMT

Decoding Finish

Requests ACARMT to
Decodes JPEG Data with
ZBTSRAMI

Decoding Start
R

JPEG Instruction Programs
Executed by ACARM7

ACARMT7T Decodes The JPEG
File with ZBTSRAMI)

Moves 1st Data from
ZBTSRAMO to SDRAM

Waiting Finish Signal
from ACARM7

Decoding Finish

ACARMT7T Decodes The JPEG
File with ZBTSRAM

A

Movwves 2nd Data from
ZBTSRAMI to SDRAM

Decoded Data Slide Show
On LCD Panel
Implemented by Interrupt
Bottom on The Logic Tile

Fig.6.6 Program control flow in software level

This section provides some experimental results of the proposed system, as can

82

6.5 Experimental Results of Proposed System

be seen in the Table6.2. The usage of slice of FPGA is about 10% and the minimum

period of the system after Place & Route is 27.6 ns (maximum frequency is about

36.23 MHz).

Device utilization Summary(FPGA)

Number of Design | Total of Usage in Percentage (%)
Used FPGA
Slices 3632 33792 10
Slices FLIP FLOPs 2232 67584 3
4 input LUTs 6814 67584 10
Bounded I0OBs 401 1104 36
TBUFs 1 16896 0
GCLKs 2 16 12

Selected Device: 2v6000£f1517-6
P.S.: Minimum period: 27.6ns (Maximum frequency: 36.23MHz)

Table6.2 Experimental results of FPGA

6.6 Summaries of JPEG/Decoder System

This chapter presents a JPEG decoder system implemented by the proposed
core design which is configured in the FPGA as a specific purpose processor and all
system controlled by a ARMO9EJ-S processor on the develop board. All system can
be divided into 3 aspects which include system level, hardware level and software
level.

In system level, major components of the proposed decoder system, which is
composed of an ARMOIEJ-S core, a 128MB SRAM, a 64MB NOR flash, a LCD
panel, and a Logic Tile which includes an FPGA, two 2MB ZBTSRAM:s.

The control flow in the system level can be listed below. First, the data in a
NOR flash is auto-loaded into the SDRAM as the system powered up. Second, the
instructions of JPEG decoder and un-decoded JPEG files are loaded into both

ZBTSRAMs on the Logic Tile. Third, ARM9EJ-S sends a signal to tell ACARM7 to

83

begin to decode the data in ZBTSRAM. Fourth, while ACARM?7 finishes decoding
procedure, it will send a finish signal to tell ARM9EJ-S. Fifth, ARMIEJ-S moves
the decoded data from ZBTSRAM of the Logic Tile backing to the SDRAM. Finally,
ARMOEIJ-S calls the LCD display program to show decoded data on the LCD panel.

In hardware level, all major components refigured in the FPGA must connect
to an AHB Bus first. These major components include the AHB TOP-LEVEL block,
the AHB-APB System block, the AHB Decoder block, the AHB multiplexer block,
and the AHB-Wrapper for ACARM7 block which are composed of ACARM?7 with
AHB interface, and two ZBTSRAM Controllers.

The core wrapped with an AHB interface is the sub-block of the AHB-Wrapper
for ACARM7 block. Seven stages, Idle, Write, Read, Pre-run0, Pre-runl, Run0,
Runl, are all included in the sub-block.

The control flow within the, block of AHB-Wrapper for ACARM?7 has been
discussed in Section 6.3.3. The sub=block-AHB Interface is the one discussed in
Section 6.3.2. ARMYEIJ-S, one SDRAM with 128MB, and two ZBTSRAM with
2MB are the other components in the AHB-Wrapper for ACARM7 block..

The program flow in software level includes the main control flow program
executed by ARMOIEJ-S and the JPEG instruction program executed by ACARM7
and the discussion can be founded in Section 6.4.

Section 6.5 provides some experimental results of the proposed system. The
usage of slice of FPGA is about 10% and the minimum period of the system after

Place & Route is 27.6 ns (maximum frequency is about 36.23 MHz).

84

CHAPTER 7
CONCLUSIONS

Chapter 1 introduces the motivation that the number of digital consumer
electric products increases so dramatically nowadays and they are all powered by the
batteries. Therefore, how to save more power of these portable electric devices is the
most important subject in the competitive market. An ultra-low power and
high-performance with small area embedded processor is proposed here. This thesis
also provides a thorough and rigorous verification strategy to guarantee that the
proposed embedded core has a high quality of IP characteristic. Moreover, not only
considering the proposed core in the hardware aspect, but also considering the
design in the system level to configure the proposed core in an FPGA as a JPEG
decoder system.

Chapter 2 describes some:previous-works related to ARM7TDMI, which is a
member of general purpose 32-bit. embedded processor of the Advanced RISC
Machines (ARM) family.

Chapter 3 describes the proposed core design ACARM?7 which improves the
operating performance as high as possible and makes power consumption as low as
possible. The gate-count used in the design also quite small. The architecture of the
proposed design has been discussed in this chapter and some low-power techniques
have been also proposed.

Chapter 4 analyzes the experimental results among different cores inclusive of
the proposed design ACARM7, ARM7 Compatible Core (Korus 2005), and
ARM7TDMI. In timing comparison, the performance of the proposed design is
44.74% better compared to a normalized result from ARM7TDMI and 22.22%

better than ARM7-Korus2005. In area comparison, the gate-count of ACARM?7 is

85

much lower than the one of ARM7-Korus2005 and is 31.25% better compared to the
later. In power comparison, the power of ACARM7 is improved by 57.9% compared
to a normalized result from ARM7TDMI and 83% better than ARM7-Korus2005.
On the other hand, the PDP of ACARM7 is 70.7% lower compared to ARM7TDMI
and 86% lower compared to ARM7-Korus2005.

Chapter 5 provides a thorough and rigorous verification flow strategy in two
phases, functional verification and synthesized netlist verification. The test plan and
testability measurement of the proposed design are also provided in this chapter. A
functional verification has been discussed that in each of steps of functional
verification flow. The RTL model is verified with a systemC behavior model which
is designed for matching all the cycle behaviors of ADS. All mismatches will guide
the flow back to the RTL revisionsstep for modification. The completed synthesized
netlist verification flow is compoesed of synthesis procedure by scripts, LEC
checking, gate-level simulationy and:prime-power. After the verification flow, it is
guaranteed that the proposed embedded processor owns high quality of an IP, a
characteristic of bug-free robustness, high reusability and convenient porting issue.

Chapter 6 presents a JPEG decoder system implemented by ACARM?7 which
is configured in an FPGA as a specific purpose processor and all system behaviors
are controlled by an ARM9EIJ-S processor on the development board. The system
can be divided into 3 aspects which include system level, hardware level and
software level. The usage of slice of FPGA is about 10% and the minimum period of
the system after Place & Route is 27.6 ns (maximum frequency is about 36.23
MHz).

Based on the experiment result, the higher performance, the smaller area, and
the lower power are all the advantages of the proposed processor compared with

ARMT7TDMI. The thesis also proposes a thorough and rigorous verification flow.

86

Moreover, the high applicability of the proposed processor can be demonstrated by

configuring it into an FPGA for implementing a JPEG decoder system.

FUTURE WORKS

A more efficient embedded system with a variety of functionality is being
developed. More control mechanisms about vector interrupt controller will be
developed continuously; In addition, the issue of software and hardware partition is
also under research. On the other hand, more functionalities of a system about the

multimedia application like MP3 decoding will be studied in the future.

87

BIBLIOGRAPHY

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Advanced RISC Machines Ltd (ARM) Data Sheet, ARM7TDMI Data Sheet,
Advanced RISC Machines Ltd (ARM) Data Sheet, 1995.

Steve Furber, ARM System-on-Chip Architecture, Second Edition, Addison
Wesley, 2000, pp.49-68, pp.74-78, pp.105-112.

Y. -C. Fong, "A High-Speed Area-Minimized Reconfigurable Adder Design,"
Master’s thesis, National Chiao Tung University, Department of Electronics
Engineering, Jul. 2006.

H. -K. Ling, "A High-Performance Reconfigurable Sub-Word Parallel
Multiplier-Accumulator Design,' 1 Master’s thesis, National Chiao Tung
University, Department of Electronics Engineeting, Jul. 2006.
Dimitrakopoulos, G.; Nikolos, D.,”High-speed parallel-prefix VLSI Ling
adders” , IEEE Trans. Computers; vol. 54, Issue 2, pp. 225-231, Feb. 2005.
Advanced RISC Machines Ltd (ARM) User Guide, RealView Olatform
Baseboard for ARM926EJ-S HBI-0117, Advanced RISC Machines Ltd (ARM)
Data Sheet, 2003.

Advanced RISC Machines Ltd (ARM) User Guide, Versatile/LT-XC2V4000+
Logic Tile, Advanced RISC Machines Ltd (ARM) Data Sheet, 2002.

Advanced RISC Machines Ltd (ARM), Appl. Note119.

88

