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ABSTRACT 
 

H.264/AVC is the newest video coding standard. With many useful tools, H.264 

provides better coding efficiency, which means that it provides better image quality at the 

same coding rate as compared to the previous video coding standard. One of the useful tools 

is deblocking filter. The coding efficiency is improved and blocking artifacts are removed 

by the deblocking filter specified in H.264/AVC. In this thesis, we implemented a high 

throughput deblocking filter with data reuse to achieve the demands on digital TV and 

wireless communication with high resolution. 

For the multi-standard decoder, we successfully integrate the deblocking filter in 

H.264/AVC and post-loop filter. The proposal can save about 30% hardware cost as 

compared to the total hardware cost of implementations separately. 

Besides, we use error concealment methods to decrease the influence of video quality 

caused by the bit-error in video transmission for the applications of real-time video 

transmission. In the thesis, we proposed an algorithm of error concealment based on the 

deblocking filter in H.264/AVC and implemented error-concealed deblocking filter. The 
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proposal saves about 30% hardware cost as compared to the total hardware cost of 

deblocking filter and error concealment.  

Final, we integrated the ECDF into our H.264 decoder and redesigned for the real-time 

mobile applications. From the simulations, the ECDF contributes about 13% and 16% of 

hardware cost and power consumption over H.264/AVC decoder respectively. 
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Chapter 1  
Introduction 
 

1.1 Video Coding Standards 

The video coding standards play an important role in all aspects of entertainment in the 

world. Common video coding standards includes MPEG-1/2/4, H.261/2/3/4. Generally 

speaking, the data of uncompressed video may be larger than the capacity of content storage 

and transmitted with a lot of time by digital broadcasting due to the limitation of bandwidth. 

With the video compression techniques described in these video coding standards, the video 

data can be stored or transmitted more efficiently.  

H.261 is the earliest DCT-based video coding standard and is the basis hybrid video 

coding for other common video coding standards today. H.261 is designed for ISDN 

(Integrated Services Digital Network), the internet system in early day, the applications of 

videophone and videoconferencing. And the targeted bit rate of H.261 is p x 64 (p = 1, …, 

30). MPEG-1/2 are designed and focused on VHS (Video Home System) and widely used 

for Video CD/DVD format. H.263 is designed and focused on the quality at very low bit 

rates (<64Kbps) and has overtaken H.261 to dominate videoconferencing codec. 

Object-based coding is specified in the MPEG-4 which is based on the H.263.  

H.264/AVC is developed by MPEG (Moving Picture Experts Group) and VCEG 

(Video Coding Experts Group) that promises to outperform the earlier standards, 

MPEG-1/2/4 and H.263, providing better visual quality at the same bit rate or lower bit rate 

with the same visual quality.  

With the video coding standards, each frame in video is divided into macroblocks 
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(MBs) and coded with intra/inter prediction each by each. The residual data is encoded with 

discrete cosine transform (DCT) to discard high-frequency data and quantization after 

prediction. Further, the quantized coefficients are coded using variable-length coding 

techniques, such as CAVLC/CABAC specified in H.264/AVC to form the video bit streams. 

On the other hand, the decoder receives the coded video bit streams to reconstruct the coded 

video with reverse operations in encoder. 

1.2 H.264/AVC Standard Overview 

H.264 is the newest high compression digital video codec standard written by the 

ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture 

Experts Group (MPEG). Thanks to its new features, H.264 achieves higher compression 

gain than previous standards, such as MPEG-2 or H.263, as shown in Figure 1.1.  

 

Figure 1.1: PSNR virus bit rate for different standards. 

 

It uses many useful but complex techniques and algorithms to achieve this goal. From 
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the Table 1.1, we can see the different techniques used in MPEG-2 and H.264. The first 

difference of technique is transform block size. While MPEG-2 use 8x8 block size floating 

point DCT, H.264 use 4x4 block size integer DCT. For the motion vector, H.264 use higher 

resolution method and variable block size, 1/4 resolution for luma and 1/8 for chroma on 

motion vector and several block size from 4x4 to 16x16 for motion estimation. Besides, 

several modes are used for the prediction in spatial domain. In the entropy coding, H.264 

used complex method, CAVLC and CABAC, to improve the compression efficiency. Finally, 

H.264 adopts the in-loop filter, deblocking filter, to eliminate the blocking effect caused by 

the DCT or motion estimation and improve the visual quality. 

Table 1.1: Difference between techniques used in MPEG-2 and H.264/AVC. 
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1.2.1 Profiles and Levels 



 

 4 

Like the previous standards, H.264/AVC contains several profiles for different 

applications as shown in Table 1.2. Each profile uses different set of coding tools for 

different applications. Generally speaking, the compression efficiency can be increased as 

well as the complexity with more coding tools. For example, Baseline profile which 

consists of the simplest set of compression tools, such as basic I, P slices, Context Adaptive 

Variable Length Coding and basic chroma format (4:2:0), results the least processing time 

for video decoder. It is suitable for low delay applications such as portable device or video 

conferencing. The main profile uses most compression tools, B slices, Context Adaptive 

Binary Arithmetic Coding, interlaced coding and so on, to improve the compression 

efficiency. The extended profile is also used for wireless mobile devices, but it is used 

primarily for the streaming media applications in PCs. The main difference between 

Baseline and Main profiles is the slice type used in coding. Moreover, the high profiles 

targets at high-definition TV applications such as HD-DVD and Blue-ray Disc. It uses 

higher bits per pixel and higher chroma format to obtain the high visual quality in 

high-definition TV applications.  

Table 1.2: Profiles and coding tools in H.264/AVC. 

 

Much more than MPEG-2 levels can be found in the H.264 standard. We can see the 
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different limitations for different levels in the Table 1.3. From level 1 to level 5.1, maximum 

frame size ranges from 99 to 36,864 macroblocks, maximum video bit rate ranges from 64k 

to 240,000k bits/s for the 4:2:0 chroma format and so on. Other limitations, such as motion 

vector, are not mentioned here but can be found in the standard. These limitations restrict 

the resolution of video to support different applications. 

Table 1.3: All levels defined in H.264/AVC. 

 Based on the illustration of different profiles and levels, each application has the best 

candidate in terms of profile@level. For example, High@L4 is suitable for the 

high-definition TV applications since High profile used more coding tools and level 4 can 

support 1080HD of maximum video resolution. On the other hand, BL@L1 may be suitable 
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for the potable mobile device due to the lower complexity and lower power consumption. 

1.2.2 Encoder/Decoder Block Diagram 

The basic encoding process of H.264/AVC is the same as previous standards with 

hybrid DCT/MC coding infrastructure but more complex in detail. Figure 1.2 shows the 

block diagram of H.264/AVC encoder. The same as the MPEG-2 encoder, an embedded 

decoder exists inside the encoder that calculates the results of the motion compensation or 

intra prediction at the decoder side. With the embedded decoder in encoder side, the encoder 

can foresee the decoded result and calculate the residual values without mismatch to the 

decoder. One of the major improvements for H.264 is intra prediction as we can see in 

Table1.1. H.264 uses not only one prediction mode in spatial domain to improve the 

compression. Hence, there is an intra mode decision unit in the H.264/AVC encoder side as 

shown in Figure 1.2. Besides, inter prediction (motion compensation) has many coding 

tools, such as variable block sizes, multiple reference frames or short/long term prediction, 

to reduce the redundancy in the temporal domain. Further, the residual values are processed 

with DCT, quantization and entropy coding to reduce the coding redundancy. To reduce the 

blocking effect caused by the powerful block-based compression methods and eliminate the 

error propagation between frames, H.264 uses the in-loop filter, deblocking filter, to 

improve the visual quality. Finally, the bit stream of the H.264/AVC format is produced and 

transmitted or stored. 

The decoder is simpler than the encoder because it lacks the decision parts like motion 

estimator and the intra mode decision parts. Instead, the decoder has syntax parser to decode 

syntax elements from the bit stream correctly as shown in Figure 1.3. The syntax parser 

decodes the syntax elements to decide which mode is used in motion compensation or intra 

prediction. The residual part of bit stream is processed with the inverse quantization and 

inverse DCT and transferred into residual values. With the predicted values and residual 
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values, the video can be constructed. Finally, the deblocking filter is invoked to eliminate 

the blocking effects resulted from prediction and DCT to improve the visual quality. 

 

Figure 1.2: A simple block diagram of H.264/AVC video encoder. 



�%

��

 

Figure 1.3: A simple block diagram of H.264/AVC video decoder. 

1.2.3 Deblocking Filter 
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As we mentioned in previous sections, the major purpose of deblocking filter is to 

eliminate the blocking effects and error propagations between frames and improve the 

visual quality.  

 

Figure 1.4: The visual quality with/without deblocking filter. 

From left figure in Figure 1.4, we can see the blocking effects obviously. As we 

discussed in previous section, the blocking effect is caused by the powerful block-based 

compression tools, such as motion estimation, intra prediction, DCT and so on. Each block 

uses different motion vectors, intra modes or coefficients, the smooth regions may become 

discontinued. Hence, the blocking effects appear like the left figure in Figure 1.4. With the 

deblocking filter, the frame with a lot of blocking effects can be smoothed and become the 

right figure in Figure 1.4. Thus, the visual quality is improved and the blocking effects do 

not propagate to subsequent frames due to the in-loop filter, deblocking filter.  

Actually, the blocking effects exist in the previous standards. Some standards has 

post-filter in optional to reduce the influence of blocking effects. But this influence of 

blocking effects becomes serious in H.264/AVC due to the compression tools. The more 

powerful compression tools standard use, more serious the problem is. From Table 1.1, we 

���������	�
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can see a lot of compression tools which may impact blocking effects, such as variable 

block size for motion vectors in motion compensation, intra modes in pixel domain for intra 

prediction and smaller block size for DCT. Hence, the in-loop filter, deblocking filter, is 

necessary for the H.264/AVC to reduce the side effect of the powerful compression tools in 

H.264/AVC and is standardized by H.264/AVC. 

For the purpose of improving the visual quality, deblocking filter has to smooth all 

block edges in one frame. The complexity is mainly based on the high adaptivity of the 

filter, which requires conditional processing on the block edge and sample level. Another 

reason for the high complexity is the small block size employed for residual coding in 

H.264/AVC. Almost every sample in a picture must be loaded from memory, either to be 

modified or determined if neighboring samples will be modified with 1-D filter. Hence, the 

computational time and number of memory access of deblocking filter are larger than that 

of loop filter in H.263 or other post filters, which operate on the 8x8 block edges. Generally, 

the deblocking filter contributes about one-third of the computational complexity of the 

decoder [1], and it is the system bottleneck in terms of processing cycles. The throughput of 

deblocking is the most design issues for high-definition TV applications and power 

consumption is the main challenge for the applications of portable mobile devices. 

1.3 Error Concealment 

Recently consumer electronics have increased demand for efficient and reliable video 

communications. Video consumer devices, such as digital television (DTV), mobile video 

and video telephony, have been developed rapidly. For transmission over bandwidth-limited 

networks, almost all video consumer electronics use compression technologies to reduce 

redundancies in video sequences. But compressed video streams are vulnerable to 

transmission errors, such as bit errors and packet errors. This can degrade the visual quality 

of the decoded sequence drastically because of use of motion-compensated interframe 
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coding and VLC coding as shown in Figure 1.5(a).  

 

(a)                                      (b) 

Figure 1.5: The picture corrupted by the errors (a). The picture concealed by EC (b). 

To protect video sequence against transmission errors, there are several techniques [2]. 

These techniques can be partitioned into three categories; Forward error concealment 

includes methods to add redundancy at the source end to enhance error resilience of the 

video stream. Error concealment by post-processing at the decoder side to recover the 

damaged region based on property of video or image as shown in Figure 1.5(b). The last 

category is interactive error concealment between decoder and encoder. For the approach of 

error resilient, some error control algorithms have been adopted in H.264 [3], like flexible 

macroblock ordering and multiple reference frames. But they are mainly focused on source 

encoder and bring more complexity and delay at the same time. The forward error control 

coding techniques reduces the channel capacity and also has error recovery ability 

limitations. Automatic Retransmission reQuest (ARQ) increases the delay and is not 

suitable for the applications such as conversational and multimedia streaming services with 

constrains on real-time delay and jitter. For the low delay applications, an indispensable 

method is to perform error concealment as post-processing in the decoder side. 

 

1.4 Thesis Organization 
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This thesis is organized as follows. At first, the overview of the deblocking filter and 

review of error concealment are described in Chapter 2. Chapter 3 gives the details of the 

architecture design of deblocking filter for high-definition applications. Then we propose an 

in-loop/post-loop filter for multi-standard decoder based on the high-throughput design. 

Further, a new error concealment algorithm, error- concealed deblocking filter, which is 

based on the algorithm of deblocking filter standardized by H.264/AVC, is proposed for 

mobile applications in Chapter 4. Finally, the implementation details, summary and 

conclusion are presented in Chapter 5 and Chapter 6, respectively. 
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Chapter 2  
Algorithms for Deblocking Filter and 
Error Concealment 
 

2.1 Deblocking Filter for H.264/AVC 

As we discussed in the previous chapter, the deblocking filter is applied to all 4x4 

block edges of one frame due to the use the 4x4 DCT and possible 4x4-block size motion 

compensation. Based on the macroblock-based coding, the macroblocks in a picture are 

processed each by each in a raster scan. And for each macroblock, the deblocking filter 

process has two components, luma and chroma, separately. As shown in Figure 2.1, the 

luma edges are shown with solid lines and chroma edges are shown with dashed lines. 

 

Figure 2.1: The edges applied to deblocking filter in one MB. 

For each macroblock, vertical edges are filtered first, from left to right, followed by the 

horizontal edges from top to bottom. Deblocking filter is performed on four 16-sample 
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edges for luma and two 8-sample edges for each chroma as shown in Figure 2.1. Hence, the 

total number of samples applied by deblocking filter equals 192. The computational time of 

deblocking filter becomes longer for the applications with high resolution video. 

2.1.1 Adaptivity of Deblocking Filter in H.264/AVC 

As we mentioned in previous chapter, the complexity of deblocking filter is mainly 

based on the high adaptivity on each block edge and sample level. The deblocking filter in 

H.264/AVC is adaptive in several levels; on the block-edge level, boundary strength (BS) is 

determined according to the location of edge, intra/inter mode, frame/field mode, absolute 

difference of motion vectors, transform coefficient levels and so on. Then, the deblocking 

filter uses different 1-D filter to smooth the block edge adaptively according to BS. On the 

sample level, correlation in pixel domain and quantizer-dependent thresholds can turn off 

the deblocking filter for each sample. Last, on the slice level, encoder-selectable offsets can 

control the property of deblocking filter by reducing the amount of filtering or increasing 

the amount of filtering. 

2.1.1.1 Block-edge Level Adaptivity 

As shown in Figure 2.2, for each edge between two 4x4 luma block, the BS is assigned 

by an integer from 0 to 4 according to the decoding information, such as macroblock edge, 

intra/inter mode, frame/field mode, absolute difference of motion vectors, transform 

coefficient levels and so on. As the BS is assigned to 4, the deblocking filter allows 

strongest filtering to eliminate the blocking effect due to Mach band effect in the boundary 

of intra-coded MB. The value of BS equals 0 means that the block edge between adjacent 

two blocks has no filtering. For BS equals 1, 2 or 3, the normal filter mode is applied. While 

the value of BS determine the maximum modification on sample value caused by filtering. 

The detail of correlation between BS and filtering is discussed in the section. 

Actually, the decision of BS is more complex for the case of B slice type or 
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macroblock adaptive frame filed coding. For the case of B slice type, the motion vector 

comparison of B slice type consists of forward motion vectors and backward motion vectors. 

Besides, the decision of BS is also influenced by the of reference frame. For the case of 

macroblock adaptive frame/field coding (MBAFF), the frame/field mode of MB also has 

the influence on BS decision. The threshold of motion vectors also modified from 4 to 2 

when the MB is coded as filed mode and the edge belongs to horizontal edge.  
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Figure 2.2: The simple vision decision flow of boundary strength without MBAFF. 

2.1.1.2 Sample Level Adaptivity 

Generally, the blocking effects do not exist everywhere in a frame. To preserve the 

sharpness in image, the ability of distinguishing the artificial edges from actual edges is 

necessary. Hence, the deblocking filter in H.264/AVC has the adaptivity on sample level 

using the image property in pixel domain and quantizer-dependent thresholds, > and ?. 
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Figure 2.3: Samples across a 4x4 block boundary. 

As shown in Figure 2.3, for the adaptivity on sample level, the neighboring pixels on 

each sample edge is loaded and analyzed with the quantizer-dependent thresholds. The 

sample edge is filtered only when the following conditions are true. 

0 0

1 0

1 0

! 0
( )

( )

( )

BS

Abs p q

Abs p p

Abs q q

α
β
β

=
− <
− <
− <

  

The quantizer-dependent thresholds, > and ?, are table-derived according to index 

values that dependent on the average quantization parameter (QP) over the edge and 

encoder selected thresholds, FilterOffsetA and FilterOffsetB, as shown in Eq. (2.1) and  

(2.2). 

( )3 0,51, avindexA Clip qP FilterOffsetA= +                                 (2.1) 

( )3 0,51, avindexB Clip qP FilterOffsetB= +                                 (2.2) 

The clip3 operation limits the value of index from 0 to 51. With the index values, the 

thresholds are determined from the following table standardized by H.264/AVC. 

Table 2.1: Look-up table for thresholds according to index values. 

 Generally, the blocking effect is serious when the QP is larger, since the coding errors 

increases with QP. Thus, the thresholds also increase with QP (index valued is proportional 

to QP) to eliminate the blocking effect caused by block-based compression tools as shown 

in Table 2.1. 
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Table 2.1 (concluded): Look-up table for thresholds according to index values. 

 

2.1.1.3 Slice Level Adaptivity 

On the slice level, the encoder can decide the values of FilterOffsetA and FilterOffsetB 

to adjust the values of thresholds (see the Eqs. (2.1) and (2.2)), > and ?, for different video 

contents. These offset values are transmitted in slice header to control the property of 

deblocking filter. As compared to the zero offset, the amount of filtering increases with the 

positive offset values or decreases with negative offset values. For the video with large 

amount of sharpness in detail, the encoder may select the negative offset values to preserve 

the sharpness in image, since there are fewer blocking effects for high-resolution video 

content. On the other hand, for the lower-resolution video, the encoder may choose the 

positive offset values due to the obvious blocking effect caused by coding errors to improve 

the subjective quality.  

2.1.2 Filtering Process of Deblocking Filter in H.264/AVC 

Two filtering modes are defined and selected according to BS that we discussed in 

previous section in H.264/AVC. The strongest mode is used when BS is assigned to 4; 

normal mode is used otherwise (BS = 1, 2 or 3).  

2.1.2.1 Normal Mode of Deblocking Filter with BS Less than 4 

Up to 2 pixel values at each side of edge can be filtered for luma and 1 pixel value for 

chroma as shown in Figure 2.4. 
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Figure 2.4: Filtered sample in normal filter mode of H.264/AVC. 

The values of p’0 and q’0 are derived with two steps. First, the value of @ is calculated 

as shown in Eq. (2.3). After that, the two neighboring pixels (p0 and q0) plus or subtract the 

value of @ to eliminate the existing blocking effect as shown in Eq. (2.4) and Eq. (2.5). 

( )( ) ( )( )( )( )0 0 1 13 , , 2 4 3C CClip t t q p p q∆ = − − + − +� �                    (2.3) 

( )'
0 01p Clip p= + ∆                                                   (2.4) 

( )'
0 01q Clip q= + ∆                                                   (2.5) 

The threshold of tC is derived as follows. 

( )( ) ( )( )0

0

?1: 0 ?1: 0 ,  

1                                                          ,

C p q
C

C

t a a luma sample
t

t otherwise

β β� + < + <�= �
+��

                 (2.6) 

The threshold tC0 is specified in Table 2.3 according to the values of index A and BS. 

And the two thresholds, ap and aq, are derived as shown in Eq. (2.7) and Eq. (2.8). 

( )2 0pa Abs p p= −                                                   (2.7) 

( )2 0qa Abs q q= −                                                    (2.8) 

Table 2.2: Value of filter clipping variable tC0 as a function of indexA and BS. 
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Table 2.2 (concluded): Value of filter clipping variable tC0 as a function of indexA and BS. 

  For the normal filter mode, deblocking filter has spatial adaptivity here according 

to the pixel values and threshold ?. The filtering of p1 and q1 are applied when the value of 

ap or aq is less than the threshold ? in the case of luma sample separately and the equations 

used for p1 and q1 are almost the same as the equations used for the pixels, p0 and q0, as 

shown in Eq. (2.9) and Eq. (2.10). 

( )( ) ( )( )( )1 1 0 0 2 0 0 1' 3 , , 1 1 1 1C Cp p Clip t t p p q p= + − + + + −� � �            (2.9) 

 ( )( ) ( )( )( )1 1 0 0 2 0 0 1' 3 , , 1 1 1 1C Cq q Clip t t q p q q= + − + + + −� � �            (2.10) 

 As we discussed in previous section, the normal filter mode of deblocking filter 

smoothes the artificial edges with a modification value (@) when BS is less than 4. And 

from the Table 2.2, we can see the maximum modification value is quite small when QP is 

less than 40. Besides, only up to 4 pixels are filtered per block edge in sample level. 

2.1.2.2 Strong Mode of Deblocking Filter with BS Equals 4 

The filtering process uses strong filter mode in H.264/AVC when BS equals 4. From 

Figure 2.5, at most 6 pixels are modified per edge in case of luma sample or 2 pixels are 

modified in case of chroma sample. 

 

Figure 2.5: Filtered samples in strong filter mode in H.264/AVC. 

The methods used for filtering processing with strong filter mode in H.264/AVC are 

similar to weighting averaging method. The values of filtered pixels equal the average of 
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neighboring pixels multiply specified weightings as shown in Eqs. (2.11) to (2.16).  

( )
( )

 2 1 0 0 1
0

1 0 1

2 2 2 4 3, . (2.17)    
'

2 2 2                                                 ,
p p p q q Eq is true in luma

p
p p q otherwise

+ × + × + × + +��= � × + + +��

�

�

     (2.11) 

( )
( )

 2 1 0 0 1
0

1 0 1

2 2 2 4 3, . (2.18)    
'

2 2 2                                                 ,
q q q p p Eq is true in luma

q
q q p otherwise

+ × + × + × + +��= � × + + +��

�

�

      (2.12) 

( )  2 1 0 0
1

1

2 2, . (2.17)    
'

                                                              ,
p p p q Eq is true in luma

p
p otherwise

+ + + +�
= �
�

�

                (2.13) 

( )  2 1 0 0
1

1

2 2, . (2.18)    
'

             q                                                  ,
q q q p Eq is true in luma

q
otherwise

+ + + +�
= �
�

�

                 (2.14) 

( )  3 2 1 0 0
2

2

2 3 4 3, . (2.17)    
'

                                                                               ,
p p p p q Eq is true in luma

p
p otherwise

× + × + + + +�
= �
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        (2.15) 

( )  3 2 1 0 0
2

2 

2 3 4 3, . (2.18)    
'

                                                                              ,
q q q q p Eq is true in luma

q
q otherwise

× + × + + + +�
= �
�

�

        (2.16) 

Adaptivity is applied in spatial domain with strong filter mode here. For the two pixels, 

p0 and q0, which are closest to the edge, there are two weighting sets used according to the 

pixels characters and thresholds, > and ?. Further, the other four pixels (p1, p2, q1 and q2) are 

filtered only when the Eq. (2.17) or Eq. (2.18) is true separately. 

( ) ( )( )0 0& & 2 2pa Abs p qβ α< − < +�                                  (2.17) 

( ) ( )( )0 0& & 2 2qa Abs p qβ α< − < +�                                  (2.18) 

 In summary, we can see adaptivity in variable levels and different domains. The 

adaptivity in slice level, 4x4 block size edge level and sample level determine if the edge is 

artificial edge or actual edge and which filter mode is used according to BS. There are 

different equations used to filter the pixels across the edge even the filter mode is 

determined. That is the major reason for high complexity of deblocking filter in H.264/AVC 

and it contributes about one-third of the computational complexity of the decoder. 
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2.2 Error Concealment 

For a compressed video which uses variable length coding and some predictive coding, 

an error of one bit not only changes values of pixels, but also makes a lot of trouble for 

following decoding due to unexpected value of syntax elements. Therefore, a great 

degradation of video quality will be resulted. This may lose a macro block, a slice, even a 

total frame. The higher compression of a video standard has, the more serious problem is. In 

order to solve this problem, lots of error concealment algorithms have been proposed either 

in the spatial domain or temporal domain. The basic concept of error concealment is to 

predict the lost MB by the spatially neighboring MBs due to the observation of high 

spatially correlation in small areas either MB’s motion vectors or pixels. By doing so, the 

lost MBs will be reconstructed and the quality of video will be improved.  

The main different features between H.264/AVC and the previous coding standards are 

the motion estimation scheme and the multiple reference frame mode as shown in Figure 

2.6. Unlike the previous coding standards, the motion estimation has seven different block 

division sizes. 

0

16x16

MB-Modes

0

8x8

8x8-Modes

16x8

8x4

8x16

4x8

8x8

4x4

0

1

0

1

0 1

0 1

0 1

2 3

0 1

2 3 t-5   t-4   t-3   t-2   t- 1     t     t+1
 

Figure 2.6: Variable block size for motion vectors and multiple reference frames. 

Due to the variable block size of motion estimation and multi-direction intra prediction, 

the algorithms of temporal and spatial error concealment used for the previous standards is 

not suitable for the H.264/AVC any more. Therefore, some modifications of error 

concealment algorithms have been proposed recently. The review of error concealment for 

video is presented in the following section. 
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In this section, some algorithms are shortly described. And comparison of complexity 

and performance between these algorithms will be described. Based on the continuity in one 

frame, the lost pixels will be reconstructed by the spatially neighbor pixels with some 

weighting. And it’s the same as motion vectors. According to the statistical observation that 

motion vectors of spatially neighboring areas are highly correlated, the motion vector of a 

lost MB can be easily predicted from a spatial neighbor MB’s motion vectors. 

2.2.1 Spatial Error Concealment Algorithms  

The error concealment primarily uses the high correlation of neighboring pixels in 

spatial domain to reconstruct the corrupted pixels. The algorithms widely used in spatial 

error concealment (SEC) are bilinear interpolation (BI) and directional interpolation (DI). 

Generally, BI is suitable for texture due to the property of smooth, and DI has better 

performance if there are real edges exist in the corrupted MB. Hence, an algorithm which 

combines the DI and BI with mode decision has been presented. It conceals MB with BI to 

avoid the creating false edges or with DI to preserve the real edges according to the 

directional entropy of neighboring edges. 

2.2.1.1 Bilinear interpolation 

 

Figure 2.7: Bilinear interpolation 
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As shown in Figure 2.7, BI replaces each missed pixel with the weighting average of 

nearest pixels ( 1 2 3 4, , ,Y Y Y Y ) in the neighboring MBs with four directions. The weights they 

used here are inversely proportional to distance of the missing and raw pixels, ( , ) ( , )i j x yd →  as 

shown in Eq. (2.19). And only “Correctly received” neighboring MBs are used for 

concealment if at least two such MBs are available. Otherwise, neighboring “Concealed” 

MBs are also used in the averaging operation. 

{ }
( , ) ( , )

( , )
1 2 3 4

( , ) ( , )
( , )

( , ) 15
( , ) , , , , , ( , )   

i j x y
i j N

i j x y
i j N

Y i j d
Y x y N Y Y Y Y x y lost intra MB

d

→
∈

→
∈

� �× −� �
= = ∈
	

	
(2.19) 

2.2.1.2 Directional Interpolation 

DI consists of edge detection, edge direction ranking and 1-D interpolation [4]. In the 

first step, the edge detection uses Sobel mask to determine the gradient and edge direction 

in the neighborhood of a corrupted MB. With the information, edge direction ranking would 

determine the possible edge through the corrupted MB. Finally, the 1-D interpolation along 

the specified direction is applied to conceal the lost MB with source pixels and weights that 

is inversely proportional to the distance of missing and raw pixel as shown in Figure 2.8. 

 

Figure 2.8: Direction interpolation. 
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2.2.1.3 Interpolation with Mode Decision 

In order to preserve the real edges exist in corrupted MB but avoid the false edge 

creating, the hybrid interpolation method is presented [5]. A complex algorithm combines 

the DI and BI with mode decision to reconstruct the corrupted MB more correctly.  

 

Figure 2.9: Block diagram of the proposed SEC approach. [5] 

The SEC switching algorithm used the entropy of the edge direction data in the 

neighboring MBs which are provided by the edge detection component of the DI to switch 

the algorithm used between DI and BI. Generally, there is no specific edge direction when 

the directional activity is large since edges of different directions interact with each other. 

2.2.2 Temporal Error Concealment Algorithms 

For the corrupted MB with inter coding, the efficiency of error concealment is usually 

better than the intra-coded MB due to the reference frame. Generally, the main purpose of 

temporal error concealment (TEC) is to estimate the proper motion vector (MV) for the 

corrupted MB to reconstruct with pixels in reference frame. The estimated MV may be zero, 

the MVs of an adjacent correctly received MB, average or median of all such available 

adjacent MVs. Here we make a review of temporal error concealment algorithms widely 

used for previous video standards. 
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2.2.2.1 Temporal Replacement  

Temporal replacement is the lowest complex in temporal error concealment algorithms. 

The process of temporal replacement is quite simple. Each lost MB is just the copy of the 

spatially corresponding MB in the previous frame. It means that the lost MB’s motion 

vector is zero. 

2.2.2.2 Boundary Matching Algorithm 

Instead of using the zero, average or median over all neighboring MB’s MVs, the 

Boundary Matching algorithm uses the MV which belongs to one of neighbor MB’s MV to 

make the block boundary smooth as shown in Figure 2.10 [6]. The winning prediction MV 

is the one which minimizes the side match distortion dsm. As shown in Eq. (2.20), dsm is the 

sum of absolute Y pixel value differences of the IN-block and OUT-block pixels. 

 

Figure 2.10: Boundary matching algorithm. 

{ }, , , 1

min arg 1 ˆ( )
dir top bot left right

N
dir IN OUT

sm j j
j

d Y mv Y
N∈ =

= = −	                                 (2.20) 

Generally, the algorithm of boundary Matching can be extended to variable block size 

due to the variable block size used for motion vectors in H.264/AVC.  
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2.2.2.3 Motion Vectors Recovery Based on Polynomial Model 

The MVs have some correlation in small area as the same as the correlation pixels 

have. To describe the change tendency of the MVs within a small area, the polynomial 

model is used to result in an approximate function. Hence, we can estimate the lost MVs in 

corrupted MB with the polynomial function which is used to describe the correlation of 

MVs in the small area as shown in Eq. (2.21) 

0 1( ) m
m mP x a a x a x= + + +�                                           (2.21) 

1
rV1

rV1
rV1

rV4
lV3

lV2
lV1

lV

 

Figure 2.11: Motion vectors across the neighboring and corrupted MB in one-dimensional. 

With the MVs in one-dimensional and corresponding coordinates listed in Table 2.3, 

we can calculate the unknown coefficients ( 0 1, , , ma a a� ) to establish the Eq. (2.21) to 

describe the correlation of those correct MVs ( , 1, 2,3,4l
nV n =  or , 1, 2,3,4r

nV n = ) as close 

as possible. Hence, we can estimate the lost MVs ( , 1,2,3, 4nMv n = ) with approximate 

correlation function more correctly. 

Table 2.3: Corresponding coordinates of motion vectors. 

 

Besides, there are a lot of TEC algorithms presented due to the coding tools in 

H.264/AVC. The multi-frame TEC approaches have also been reported that used more than 

one past/future frame to conceal with the cost of increased complexity and delay.  
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2.2.3 Summary 

So far, many researches focus on EC for the corrupted video bit-stream over an 

error-prone or wireless channel. Most of them have assumption that erroneous or 

incomplete slices are not decoded but discarded before decoding to simplify the simulation 

of proposed algorithm. The EC can be divided into two groups: spatial and temporal error 

concealment (SEC and TEC). The SEC exploits the neighboring correct pixels to recover 

the corrupted MB with the property of high correlation between the closing pixels. This 

kind of EC is used for corrupted MBs in I frames or I MBs in P frames. Unlike the SEC, 

TEC is explored to estimate the lost motion vectors (MV) in corrupted MBs and usually 

have better concealing efficiency than SEC.  

Generally, the error scheme for video standards uses SEC and TEC adaptively 

according to the MB type. However, TEC is not always adequate for concealing errors in 

video sequences. This is especially true for video sequences with irregular motion, abrupt 

scene changes, and intra-coded image frames. To the viewer, poor spatial concealment of 

error regions leads to the error propagation in the subsequent frames.  

Hence, compared to temporal EC, spatial EC is of great importance and challenges. 

Thereafter, we focus on the spatial EC for concealing corrupted region of image frames. 
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Chapter 3  
Design of High Throughput Deblocking 
Filter 
 

3.1 Design for High Throughput and High Resolution 

Applications 

H.264/AVC is the newest video coding standard of Joint Video Team (JVT) [7]. 

H.264/AVC has achieved significant rate-distortion efficiency by many useful tools. 

Deblocking filter placed in the prediction loop is one important tool to remove the blocking 

artifacts. Generally, the deblocking filter contributes about one-third of the computational 

complexity of the decoder [1], and it’s the system bottleneck in terms of processing cycles. 

Compared to the loop filters in H.263 or MPEG-4/H.263 post filters [8], the deblocking 

filter in H.264 operates each filter process on 4x4 block structure instead of 8x8 block 

structure. Therefore, large amount of computation and memory access are its penalty for the 

real-time decoding demand. 

First, we modify the processing order of filtered block boundaries without affecting the 

data dependency to reduce the number of memory access. In the deblocking filter of 

H.264/AVC, vertical edges are filtered first from left to right, and then horizontal edges are 

filtered from top to bottom. For each edge, 4x4-block data is read from memory four times 

and wrote back to memory four times with separate filtering order. To reduce the memory 

access and the processing cycles, we propose a hybrid filtering method to re-schedule the 

filter ordering and reuse the pixel value on the different directions. 



 

 28

Besides, we make a decision of our memory organization between prediction unit and 

deblocking filter in system level. Instead of LOP in [9], we exploit the block ordering which 

is standard-defined to decide the Column-of-Pixel (CoP) memory organization. We can 

reuse the neighboring data in intra or inter prediction unit and reduce the number of 

memory access by using CoP. 

 

Figure 3.1: The different data arrangement in the deblocking filter (a) and prediction unit 

(b). 

3.1.1 Memory Organization between Prediction and Loop-filter 

Different memory organization leads to the different memory access and processing 

latency. The input data of deblocking filter is just the output data of prediction unit, and plus 

the residual data. To improve the overall processing throughput, we use two content 

memories between prediction and deblocking filter. Hence, the video decoder can process in 

MB-level. Further, we apply slice memory to store neighboring data to avoid accessing the 

frame buffer out of system.  

3.1.1.1 Memory Organization 
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We use one Column-of-Pixel (CoP) as the data word size in each memory address. In 

Figure 3.1(a), there are two policies for data arrangement. The Row of Pixel (RoP) is 

labeled with the case of L1 and 2 blocks, and the Column of Pixel (CoP) is in the case of U1 

and 1 blocks. Each row or column of pixel contains four pixels with a total of 32-bit wide. 

For the deblocking filter, RoP (i.e. LOP in [9]) is a straightforward method to arrange the 

pixel value in the vertical edge filtering. However, it will induce extra memory access when 

applying to the horizontal edge filtering. By the same way, this situation is also occurred in 

the CoP arrangement. Different arrangements of CoP or RoP also affect the number of 

memory access in the intra or inter prediction unit. In Figure 3.1(b), the standard-defined 

4x4 block ordering is labeled in each block. There are strong dependencies in the horizontal 

block order. Therefore, we choose CoP data arrangement to reuse the pixel value in the 

block-boundary with white-circle region. Further, we list the hardware profiling in terms of 

memory access in Table 3.1. The evaluated cycles with CoP or RoP data arrangement are 

almost the same in the deblocking filter unit. The reason is that the filtering process will be 

performed on not only horizontal edge but also vertical edge. However, there are 

improvements in the prediction unit when applying the CoP arrangement. Therefore, 

compared to the RoP data arrangement, we choose the CoP data arrangement in each MB to 

reduce the number of memory access. 

Table 3.1: The analysis of average memory access per luma MB. 

Memory Arrangement Intra Prediction

# of memory access
Inter Prediction De-blocking Filter

Improvement
(RoP-CoP)/RoP

CoP

RoP

40

48

17%

313

432

28%

156

156

0%
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3.1.1.2 Slice and Content Memory 

The content memory is used to store the unfiltered pixel value in luma or chroma block. 

The data word-length of memory is based on the 32-bit of CoP, and the address depth of 

content memory is decided by the YUV format (4:4:4, 4:2:2 or 4:2:0). For 4:2:0 format, 

there are 16 blocks of luma and 8 blocks of chroma should be stored. Therefore, the size of 

content memory is (16+8)*4 � 32 in total. Further, the data address is increased as the 

standard-defined block ordering of Figure 3.2(b). The grid region is stored in the slice 

memory and the dotted region is stored in the content memory. 

The slice memory is used to store the neighboring pixel. To reduce the pin counts and 

avoid to access frame buffer, we keep the blocks which are not filtered completely. Further, 

the address depth is decided by the frame width. In Figure 3.2(a), considering the frame size 

with M�N, each square represents the 16x16 MB. Each MB contains the 16 points, and 4x4 

pixels within each point. When the filtering process is performed from the MB index of B to 

B+1, the pixel data within upper and left neighbor will be updated as the arrows show. The 

shaded region should be kept when the filtering index is B+1. Therefore, the slice memory 

is used to keep the pixel value of upper and left neighbor and contains the size of (2N + 20) 

�� 32 for the 4:2:0 format. 

......
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Figure 3.2: The slice memory with grid or shaded region and the content memory with 

black-dotted region. 
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Figure 3.3: The proposed hybrid scheduling method. 

3.1.1.3 Hybrid Scheduling 

To reduce the overhead with the reloaded data when switching the filtering edge from 

horizontal to vertical, we propose a hybrid filter scheduling to re-schedule the 

standard-defined edge. The deblocking filter in H.264/AVC is performed in the vertical 

edge first, and then the horizontal edge. Based on the standard-defined filter ordering, we 

can deduce the filter order on each 4x4 block as Figure 3.3(a). In the filter ordering of one 

4x4-block, left edge is filtered first and lower edge is the last one. We propose a novel filter 

ordering to schedule our filter process on each edge as Figure 3.3(b). Each filter order of 

one block obeys the rules of the left edge first and the lower edge last. Compared to the 

traditional scheduling [9][10], our proposed method prevents the re-access for different 

direction and combine the vertical and horizontal filter at the rule of standard-compliance. 

We use four 4x4 pixel buffer to keep the temporary data in our hybrid scheduling 

process. In Figure 3.4(a), each MB has been partitioned into two main parts (i.e. Loop 

Filter-MB-Upper or Lower) to reduce the kept buffer size. Each part is composed of eight 

time-instances to process the filtering procedure in Figure 3.4(b). The grid region represents 

the neighboring block and the shaded region is the position of kept data buffer with the size 
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of four 4x4 blocks. There is no need to keep the neighboring block as the data buffer in each 

time instance (except for the initial state t1 since we use the CoP data arrangement) because 

the neighboring block and current MB are located at different memory module. Both data of 

them can be accessed at the same time instance and sent to the input of edge filter. 

+=LF-MB
LF-MB-U

LF-MB-L

t1 t2 t3 t4

t5 t6 t7 t8

(a)

(b)

 

 Figure 3.4: The partitioned MB and each time instance when applying the hybrid 

scheduling method. 

We derived the filter ordering of the proposed hybrid scheduling method in Figure 

3.4(b). Each bold line represents the edge to be filtered in each time instance. The filtered 

ordering complied with the hybrid scheduling in Figure 3.3(a) at each time instance (t1~t8). 

By the same way, the proposed scheduling is also performed in the 4x4-block of chroma. 

The main problem of the deblocking filter in H.264/AVC is the considerable amount of 

memory access and processing cycles. To apply the proposed hybrid scheduling into the 

overall system and enhance the system throughput, we propose a high-throughput 

architecture design of deblocking filter. 

3.1.1.4 Proposed Architecture of Deblocking Filter 

Figure 3.5 shows the proposed design with block diagram and data flow representation. 

The size and organization of content and slice memory have been presented in previous 

section. We choose CoP memory arrangement to improve the pixel data utilization and 
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reduce the memory access in the prediction unit. The external frame buffer is an off-chip 

memory, and the size is decided by the frame size and the frame number for the long-term 

prediction. The shaded-arrows denote the data flow inside the deblocking filter unit, and the 

black-arrows denote the data flow outside. The pixel buffer is used to store the intermediate 

pixel value when applying the proposed hybrid scheduling. It contains the four 4x4 pixel 

values. Moreover, in each time instance, it locates at the position as the shaded regions of 

Figure 3.4(b) shows. The edge filter is a simple parallel in and parallel out process. It 

exploits the 3, 4 or 5-tap filter to attenuate the blocking artifacts due to the motion 

compensation or prediction error coding in each block boundary. More detailed algorithms 

are described in [1].  
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Figure 3.5: The block diagram and data flow of the proposed design. 

The detailed architecture for the deblocking filter unit of Figure 3.5 has been shown in 

Figure 3.6. All the data signals are 32-bit wide and contain the LoP of memory organization 

discussed in previous section. There are four input signals {wt_B_0, wt_B_1, wt_B_2, 

wt_B_3} to write the buffers with 4 blocks. Further, there are three output signals {rd_B_0, 

rd_B_1, rd_B_2} to read three of them to perform the edge filter, and then write to the 

frame buffer, pixel buffer or slice memory. In addition, the write result of the 4 blocks is 

shown in Figure 3.4(b) to achieve the hybrid filtering and avoids the extra access from the 

filtering of different direction. By the same naming rule, each data flow represents the 
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writing/reading to/from the storage module including slice memory, content memory or 

frame buffer. 
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Figure 3.6: The detailed architecture for the deblocking filter. 

After the behavioral illustration of pixel buffer, we use one MB with 48 edges in 

Figure 3.3(b) as an example to illustrate the other behavior of Figure 3.6. The behavior of 

Figure 3.6 can be partitioned into two main parts. 

Write Process is a writing mechanism through the signal {wt_S_0~2, wt_F_0~1, 

wt_B_0~3}.  

Read Process is a reading mechanism through the signal {rd_S_0~1, rd_C_0, 

rd_B_0~2}. 

For writing to slice memory, wt_S_0 is used to write the filtered data into the slice 

memory, and it will be activated only on the edge 6, 10, 14 and 16 (see Figure 3.3(b)). For 

the edge 6, the lower block will become the next neighboring block of LF-MB_L in Figure 

3.4(b). The same condition is also applied on the edge 10, 14 and 16. Further, the wt_S_1 

will be activated on the edge 31, 32, 40 and 48. The wt_S_2 is performed to write the dotted 

block data of Figure 3.3(b) into the slice memory. For the writing signal of frame buffer, 

wt_F_0 is used to write filtered data into the external frame buffer. It will be activated on 

each filtering of horizontal edge except for the edge of activated signal wt_S_1 and wt_B_0, 
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since wt_F_0, wt_S_1 and wt_B_0 have the same root-signal of P’_Pixel. For the edge 6 as 

an example, the upper block of edge 6 is the P’_Pixel of edge filter’s output. This block will 

write to the external frame buffer since it has been filtered completely for all the edges of 

{1,3,5,6}. The wt_F_1 is performed in the same way except that the input signal comes 

from the output of pixel buffer. 

For the reading process of slice memory, rd_S_0 is only activated on the edge of 

{1,2,17,18,31,33,34,39,41,42,47}. For the edge 1, the rd_S_0 is the input of pixel buffer. We 

need to keep the pixel value since we apply the CoP arrangement of each data. That’s why 

we keep the left neighboring as the pixel buffer in the t1 of Figure 3.4(b). However, for the 

vertical filtering of edge {5,9,13,15,21,25,29,37,45}, it can directly feed through the edge 

filter by rd_S_1. Finally, compared to the existing approach, the content memory of our 

proposed design is only used for read. There is no need to store the filtered result into the 

content memory in one direction, and read them in another direction. By our proposed 

hybrid scheduling, we combine the horizontal and vertical filtering process in one filtering 

flow. Therefore, we need 4 blocks at most to perform the hybrid filtering. 

3.1.2 Simulation Results 

In Table 3.2, based on the proposed architecture for high throughput deblocking filter, 

the evaluated cycle counts are 148 cycles for Luma block and 88 cycles for chroma block. 

Specifically, we need 8 cycles (LF-MB-U + LF-MB-L) in the initial states. Further, there are 

4x32 cycles to filter each horizontal and vertical edge in one luma MB. Finally, we need 20 

cycles to write the filter result for the edge {16,30,32} and incur 3 cycles due to the data 

hazard in our filtering process. In sum, we need 148 (i.e. 8+4x32+12) cycles to filter 

horizontal and vertical edge of luma MB. By the same analysis, we need 88 (i.e. 

4+4x8+8+=44 for each chroma) cycles to filter the horizontal and vertical edges in chroma 

block. Therefore, there are total 243 cycles with extra 7 cycles for data hazard. 
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Table 3.2: The cycle analysis within the deblocking filter unit. 

Cycle Counts
Vertical / Horizontal

[ 10 ]����s basic
Seperated

[ 9 ]
Seperated

Proposed
Hybrid

Luma
128
200

Horizontal
Vertical

104
110 148

Chroma
64
112

Horizontal
Vertical

N/A
N/A 88

Total 504 214 + N/A 236+7
 

The simulation results are summarized in Table 3.3. The target technology is 0.18�m, 

and the synthesized gate count is 19.64K excluding the slice and content memory. Two 

single port SRAM is organized to store the content of YUV data and the neighboring data. 

They contain the size of 96�32 and (2N+20)�32 where N means the width of the coded 

frame.  

Table 3.3: The comparison of architecture and processing cycles for the deblocking filter in 
H.264/AVC. 

 

We use “foreman” as our test sequence. The evaluated cycle counts per MB are 243 

cycles. Further, compared with the existing approach [9][10], our proposed architecture can 

save about one-half of processing cycles per MB. We use the hybrid-scheduling scheme to 

combine the horizontal and vertical filtering process, and slightly increase gate counts to 

keep the intermediate pixel value. With a pipeline methodology, Figure 3.7 shows the 

average processing cycles per one 16x16 MB with the decoding of first frame. Originally, 

the deblocking filter is a system bottleneck in terms of processing cycles. Based on the 
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proposed architecture, we can greatly reduce the processing cycles and improve the system 

throughput (i.e. 350cycle/MB = 9523MB/frame with 30fps@100MHz). Therefore, this 

processing capability can real-time decode 1080HD (1920x1088, i.e. 8160MB/frame) or 

higher with 4:2:0 format when the working frequency is 100MHz. 

cycle count / 16x16 (MB)

Pipeline Stage i

CAVLC

Intra Prediction

Inverse Transform

De-blocking Filter

~350

96

96

~250 ~500

 

Figure 3.7: The average processing cycles in pipeline stage i. 

3.1.3 Summary 

We present a Column-of-Pixel (CoP) memory arrangement to reuse the pixel between 

the deblocking filter and the prediction unit. Further, we propose a hybrid scheduling to 

reduce the processing cycles and improve the system throughput. The main idea is that we 

use four pixel buffers to keep the intermediate pixel value and perform the horizontal and 

vertical filtering process in one hybrid scheduling flow. Moreover, the proposed design is 

implemented on the hardware architecture. Based on the working frequency of 100MHz, the 

synthesized gate counts are very small. Finally, the proposed architecture can easily achieve 

the real-time decoding with 1080HD@30fps in 4:2:0 format. 

3.2 Design for Multi-standard Applications 

3.2.1 Motivation 

Various video coding standards are in use recently. Traditional MPEG standards 

support the features of backward compatibility. However, H.264/AVC [7] is the newest 

video standard, and there is no backward compatibility of H.264/AVC to the former H.263 

and MPEG-4 (Part-2) video coding standards. Therefore, the development of combined 
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video coding standard is a must to meet the different system requirements. Both H.264/AVC 

and MPEG-4 adopt the deblocking filter to eliminate the blocking artifacts. However, the 

H.264/AVC adopts the deblocking filter as an in-loop process and the other standards adopt 

it as a post-loop process. The detailed features of deblocking filter are listed in Table 3.4. To 

provide the unique architecture for multiple video standards, we propose a hybrid scheme to 

integrate the standardized in-loop filter and the informative post-loop filter. We call it as 

loop/post deblocking filter. 

Due to the non-standardization of post-filter [11], it provides high freedom to develop 

a certain suitable algorithm for the integration with loop-filter. Based on the original 

algorithm of 4x4 loop-filters, an 8x8 post-filter has been developed. We modify the filtered 

ordering and the number of related pixel. Therefore, the modified post-filter can easily be 

integrated with the 4x4 loop-filter. Simulation results also show that the proposed loop/post 

filter incurs the penalty of slight PSNR loss (less than 0.05dB). 

Table 3.4: Features of the deblocking filter in different standards. 

De-blocking Filter
Standardization

In-loop
normative

Post-loop
informative

STANDARD H.264/AVC MPEG-4 (Annex F.3) H.263 (Annex J)

Filtered boundary 4x4 Edge 8x8 Edge 8x8 Edge

Filtered ordering Vertical edge first Horizontal edge first Horizontal edge first

No. of related pel (max.) 8 (4-pel per side) 10 (5-pel per side) 4 (2-pel per side)
 

3.2.2 Loop/Post Deblocking Filter 

To reduce the cost overhead of deblocking filter for multiple standards, it is required to 

develop a hybrid algorithm and unique architecture of deblocking filter. The video standards 

of H.264/AVC and former MPEG adopt deblocking filter as in-loop and post-loop process 

respectively. However, the performance improvement is very mild when applying the loop 

filter as the post filter in MPEG-4. Therefore, we propose a hybrid algorithm to make a 

compromise between the integration cost and the performance loss. Figure 3.8 shows the 
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decision of our proposed loop/post filter. The proposed hybrid algorithm retains the original 

loop filter due to the standardization in H.264/AVC. In addition, we modify the post filter 

(marked as the underline in Table 3.5) to easily integrate into original loop filter design. 

Table 3.5: Parameter selection of the proposed loop/post deblocking filter. 

 

The proposed algorithm exploits the features of loop and post filters. It can be 

partitioned into three main parts as identified in Table 3.5. In the filtered control, we retain 

the filtered edge of 4x4 and 8x8 respectively. The reason is that the basic transformation 

unit is located on the 4x4 sub-block and 8x8 block. Further, we modify the filtered ordering 

in post filter to unify into a hybrid structure.  

3.2.2.1 Mode Decision 

There are several differences between the mode decision of loop and post filter as 

shown in Figure 3.8. The loop filter is performed in the coding loop and controlled by the 

syntax parser. As we discussed in previous sections, BS is determined according to 

intra/inter mode, coded block pattern or motion vectors for each 4x4-block boundary. And 

the value of BS ranges from 0 to 4. However, the post filter is applied after the video 

decoder and can be considered as a post-processing unit. The variable used to decide filter 

mode is not the same as BS and is calculated according to neighboring pixels per sample 

edge. And the value of T2 and T3 are fixed experimented values. To merge the mode 

decision, we retain the mode decision features of loop and post filter. Further, we modified 

the mode decision of post filter into the 8-pixel related algorithm. Besides, the value of T2 

and T3 are modified to dynamic values according to the syntax parser.  
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Figure 3.8: The mode decision used in in-loop filter and post-loop filter. 

3.2.2.2 Filtering Mode 

To combine the edge filtering between in-loop and post-loop filters, we modify the 

default mode of post filter and apply the process of “bS=4” into the DC offset mode of post 

filter. As shown in Figure 3.8, the filtering mode can be partitioned into strong and weak 

mode. Since the strong filtering mode in post filter is similar to the one in the loop filter, we 

apply the strong filtering mode instead of the original DC offset mode in MPEG-4 Annex 

F.3 [11]. Further, we modify the approximated DCT kernel (i.e. [2 -5 5 -2]) into the [2 -4 4 

-2] for the delta generation in post-loop filter. Therefore, we can exploit shifter instead of 

constant multiplier. All the modification of post filter design can be summarized in the 

underline of Table 3.5. In Figure 3.9, we show the architecture of weak filtering strength for 

the detailed descriptions. 

We implement a Pixel-in-Pixel-out edge filter (P-i-P-o Edge Filter) to integrate the 

loop and post filters into unified architecture. From Figure 3.9, the incurred MUX is 

exploited to switch different filtering functions. In the loop filter, the filtering algorithm of 

H.264 is implied. The modified filtering algorithm of MPEG-4 Annex F.3 [11] is also 

realized in the loop/post filter architecture. Therefore, the proposed loop/post filter is 

suitable for the implementation of multiple video standards. 
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Figure 3.9: The pixel-in-pixel-out filtering process with weak strength of the proposed 

loop/post filter. 

We implement an area efficient deblocking filter by exploiting the computational 

redundancy between the loop and post filter. The proposed loop/post filter with weak 

strength has been depicted in Figure 3.9 (only p0’, q0’ shown). The extra shaded regions are 

allocated to perform the post filter on the original loop filter design. We partition the 

proposed loop/post filter into three main phases. They are the phases of difference 

generation, delta generation and the pixel generation respectively. The difference generation 

phase is the pixel-difference initialization of edge filtering. After that, the delta generation 

phase is performed to generate the delta metric between the un-filtered and the filtered pixel. 

They use the CLIP operation to limit the delta value between UB (Upper Bound) and LB 

(Lower Bound). The phase of pixel generation adds the unfiltered data to obtain the final 

results. 

3.2.3 Simulation Result 

The target technology is 0.18�m, and the synthesized gate count is 21.1K excluding 

embedded memory. Compare to the total hardware cost of in-loop and post-loop filter, the 

proposal reduce about 30% hardware cost. We modify the post filter algorithm in [11] and 

make a compromise between the integration cost and the performance loss. We use 
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“Foreman” and “Stefan” as our test sequences. In Figure 3.10, the average performance 

degradation of the modified post filter is less than 0.05dB as compared to the traditional 

post filter [11]. In addition, the processing cycles of post-loop filter are identical to that of 

in-loop filter because they use the same control flow. 
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Figure 3.10: The performance comparison due to the modification of post filter. 

3.2.4 Summary 

An area-efficient and high-throughput deblocking filter has been presented to meet the 

different requirements for multiple video coding standards. We modify the post filter 

algorithm to make a compromise between hardware integration complexity and 

performance loss. The proposal saves about 30% hardware cost as compared to total 

hardware cost of in-loop and post-loop filter with penalty of slight performance degradation 

which is less than 0.05dB. 
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Chapter 4  
Joint Architecture of Error-concealed 
Deblocking Filter for H.264 Decoder 
 

4.1 Design for Low-cost and Real-time Application for 

video transmission 

Of all modalities desirable for future mobile multimedia systems, high-quality motion 

video over a reliable transmission is the most demanding. However, the transmitted visual 

quality may suffer abruptly because the channel deteriorates due to fading, co-channel 

interference, and signal attenuations. To deal with the transmission errors over an 

error-prone channel, much effort has been invested to improve the error-robustness in the 

source decoding procedures, such as error resilient and concealment tools. 

4.1.1 Problem Formulation 

So far, many researches focus on error concealment (EC) for the corrupted video 

bit-stream over an error-prone or wireless channel. The EC can be divided into two groups: 

spatial and temporal error concealment (SEC and TEC). Generally, the error scheme for 

video standards uses SEC and TEC adaptively according to the MB type. However, TEC is 

not always adequate for concealing errors in video sequences. This is especially true for 

video sequences with irregular motion, abrupt scene changes, and intra-coded image frames. 

To the viewer, poor spatial concealment of error regions leads to the error propagation in the 

subsequent frames.  

Hence, compared to temporal EC, spatial EC is of great importance and challenges. 
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Thereafter, we focus on the spatial EC for concealing corrupted region of image frames. 

For the SEC, it is significant to preserve the existing edges without creating new strong 

ones. For the case, the algorithm of DI is given to prolong the edges entering to the 

corrupted MB. But for the texture area, the performance of BI is better than DI. So the 

algorithm which uses DI and BI with mode decision has been presented to improve the 

visual quality according to the edge activities [5]. However, such kind of algorithm belong 

to frame-based EC due to the thing that usage of pixels in four direction pixels. In order to 

keep the neighboring macroblocks available, the encoder has to support the FMO. Besides, 

the decoding system needs additional memory or local buffer to store the pixels on the 

boundary of neighboring MBs. These algorithms which are widely used in I frames could 

have an acceptable performance with FMO, but the performance would decrease a lots 

without FMO. Here we propose a new SEC which only needs the pixels on the top and left 

side stored in the slice memory used by deblocking filter [12]. The proposed SEC is 

combined with deblocking filter to reduce the hardware cost and reuse the memory capacity. 

4.1.2 Error-Concealed Deblocking Filter 

As we know, the deblocking filter doesn’t work when the decoded MB is erroneous, 

and the EC will not be activated when the decoded MB is correct. Based on the design 

concepts, we combine the deblocking filter and EC to reduce hardware cost. Moreover we 

limit the pixels used to conceal corrupted MBs to the top and left neighboring 4x4-blocks. 

As shown in Figure 4.1, the pixels used in EC are the dotted 4x4-blocks stored in slice 

memory [12]. 

The ECDF consists of edge detection, replacement, smoothing and deblocking filter 

[12] which is based on our previous work. The ECDF filters all edges in a correct or 

corrupted MB. In Figure 4.2, the grid blocks are additional parts for error concealment 

capabilities and the signal, Corrupted MB, is transmitted from error detection. ECDF works 



 

 45

as deblocking or EC according to the signal. The pixel buffer stores the pixels from content 

memory or slice memory [12]. 1-D filter and boundary strength are the algorithms 

standardized in H.264. The pixels Q on the right (bottom) side are replaced pixels in a 

specified direction determined by edge detection. Therefore, the edges extended into the 

corrupted MB can be preserved slightly. Further, we modify the algorithm of boundary 

strength and filterSamplesFlag to reconstruct texture area well.  

 

Figure 4.1: The dotted 4x4-blocks are stored in slice memory. 
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Figure 4.2: The block diagram of ECDF. Dotted regions are additional parts for the 

capability of error concealment. 
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4.1.2.1 Edge Detection 
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In practice, Sobel mask is used to determine the magnitude of gradient and edge slope 

of existing edge in the neighboring 4x4-blocks as shown in Eqs. (4.1), (4.2) and (4.3). 

Further, the edge direction is determined by ranking the edge slope. 
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Figure 4.3: The behavior of edge detection a corrupted 4x4-block in MB. 

At first, the Sobel mask calculates the proper edge directions (Direction1, Direction2, 

Direction3 and Direction4) and gradients in grid region (neighboring correct 4x4-blocks) as 

shown in Figure 4.3. Then we use edge information to predict the edge direction 

(Directionesti.) in the dotted region (corrupted 4x4-block). The Directionesti is selected from 
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the four edge directions according to the value of the edge gradients in neighboring correct 

region and the location of corrupted block. The gradients are used to judge if there is a real 

edge or not and the location of corrupted block determines the priority of four edge 

directions. If the gradient is larger than the fixed threshold evaluated by simulations, the 

edge is regarded as real one. Besides, if the location of corrupted block is close to top 

boundary of MB, the priority of Direction3 becomes highest and priority of Direction1 is 

lowest. The process of edge detection is employed in vertical edges of 4x4-block. Therefore, 

we can support multiple edges extended from the top and left neighboring blocks of this 

corrupted 4x4-block. 

4.1.2.2 Replacement 

When the proper edge is estimated by edge detection in the corrupted block, 

replacement reconstructs the missed pixels in 4x4-block by duplicating instead of 

interpolation along the edge direction estimated in practice. By ranking the edge slope with 

thresholds evaluated from simulations, four replacing modes are used to recover the missed 

pixels as Figure 4.4 shows. 

Diagonal_Down_Left mode

Horizontal  mode

Diagonal_Down_Right mode

Vertical mode

Diagonal_Down_Left mode

Horizontal  mode

Diagonal_Down_Right mode

Vertical mode

 

Figure 4.4: Four kinds of replacing mode. 
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4.1.2.3 Smoothing 

After replacing the missing pixels on the right (bottom) side in the corrupted 4x4-block, 

the deblocking filter starts to smooth the edges of the corrupted block to improve the visual 

quality. There are two modifications in the algorithm of deblocking filter in H.264. One of 

the modifications is that we force the boundary strength (BS) equals 4 when the decoded 

MB is erroneous. With the strong filter (BS equals 4) specified in H.264, 6 pixels can be 

smoothed per edge. For the weak filter (BS<4), there are only 4 pixels can be filtered. The 

other modification is that we force the signal, filterSamplesFlag, which is specified in H.264 

standard [7] as shown in Eq. (4.4), to be true when the decoded MB is corrupted.  

( )0 0 1 0 1 00 & & & & & &filterSampleFlag BS p q p p q qα β β= ≠ − < − < − <   (4.4) 

There is one problem for edge detection if the neighboring blocks of corrupted 

4x4-block are concealed ones. The predicted edge in corrupted block may be not proper due 

to the edge information in the neighboring blocks strongly depends on replacing mode. It 

means that one erroneous block recovered using horizontal replacing mode has the 

horizontal edge information.  

 

Figure 4.5: The number on the boundaries of blocks is the filtering order. 
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Taking Figure 4.5 as an example, the neighboring blocks (B, C) are replaced ones. If 

we conceal each block by normal order, the edge information in blocks (B, C) strongly 

depend on replacing mode due to that blocks (B, C) are replaced by other neighboring 

pixels. On the other hand, the blocks (B, C) can be smoothed by filtering edges (2, 3, 5, 6) 

with hybrid order before we use the edge information in blocks B, C to predict the proper 

edge in corrupted block (dotted block). 

4.1.2.4 Reconstructing flow 

As shown in Figure 4.6, the process of ECDF for capability of error concealment can 

be divided into two parts. For the vertical edges, replacement selects the correct neighboring 

pixels from pixel buffer and reconstructs the corrupted 4x4-blcok by duplicating according 

to edge direction estimated by edge detection. For the horizontal edges, a strong filter mode 

is used directly to smooth the recovered pixels. 

 

Figure 4.6: The behaviors of ECDF for vertical edges and horizontal edges. 

4.1.3 Simulation Results 

For simulations, we consider the sequence patterns which are encoded with CIF 

resolution using dispersed FMO and slice size of 198 MBs in JM9.8. The number of frame 

is equal to 30 frames. With dispersed FMO, there are different type of corrupted MB we can 

conceal to see the average performance in directional or texture areas. Further, we assume 
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that error detection is perfect when decoding process and EC is operated in MB-based 

processing. It means that there is no information used on the right (bottom) side of one 

corrupted MB in EC. From the simulation results which are shown in Table 4.1, we can see 

that the performance of proposal strongly depends on the sequence patterns. Since we use 

edge detection in our algorithm, the proposal is suitable for directional area, such as the 

background of “foreman”, but not suitable for texture area, such as the background of 

“table”. Generally, the performance gain of proposed algorithm ranges from 0.1dB to 0.4dB 

as compared to BIlimit (BI with top and left information only). For the sequence pattern 

which has obvious directional areas, the performance of ECDF is significantly higher than 

BIlimit. As we can see in Table 4.1, the average PSNR of ECDF and BIlimit for sequence of 

“foreman” are 23.83dB and 22.43dB separately. On the other hand, the performance of 

ECDF is slightly worst than BIlimit. As shown in Table 4.1, the average PSNR of ECDF and 

BIlimit for sequence of “table” are 23.90dB and 23.99dB separately. 

Table 4.1: The performance of ECDF and BIlimit. 

��������� table� stefan� Mobile� foreman� news�

ECDF� 23.90� 20.20� 17.73� 23.83� 21.98�

BIlimit� 23.99� 20.11� 17.5� 22.43� 21.60�

 

 

Figure 4.7: The improvement of PSNR for the sequence of “foreman”. 
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To see the performance improvement for each technique of proposal, the Figure 4.7 is 

presented here. We take the 1st frame of sequence “foreman” as an example. For the basic 

situation of using the BIlimit, the PSNR is about 22.7dB. With the edge detection and 

replacement, the PSNR can be improved to 23.1 dB. By using the deblocking filter to 

smooth all the boundaries of blocks, the PSNR can be improved to 23.9 dB. The final PSNR 

is 24dB with hybrid order. Finally, the Figure 4.8(a) and 4.8(b) are presented here to show 

the subjective quality of frames which are concealed by ECDF and BIlimit separately. 

 

Figure 4.8: PSNR of concealed frame with the ECDF (a) and concealed frame with BIlimit in 

JM9.8 (b).  

4.1.4 Implementation results 

Table 4.2: The comparison of architecture and processing time per MB for the error 
concealment in H.264/AVC. 

 

With the 0.13Fm process, the gate count of the BI is about 12.7K including local buffer 

with clock period equals 20ns as shown in Table 4.2. To store all the correct neighboring 
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pixels around the corrupted MB, we need 512-bits (i.e. 16x4x8) registers. Hence, the total 

gate count for the deblocking filter and error concealment becomes about 27.7K (15K for 

the deblocking filter [12] and 12.7K for BI). The processing cycles per corrupted MB is 384 

cycles due to the number of missed pixels are 384 per MB. The original processing cycles 

per correct MB of deblocking filter is 243 cycles. 

On the other hand, the gate count of ECDF is 19.5K with 0.13Fm process. Since the 

reconstructing flow is the same as filtering flow in deblocking filter, the processing cycles 

are 243 cycles which equals the one of deblocking filter [12] for a correct or corrupted MB. 

Therefore, the ECDF achieves 70% of hardware cost as compared with the direct 

implementation. And the power consumption can be reduced due to the reduction of 

hardware cost and external memory access. 

4.1.5 Summary 

The ECDF which combines the EC with deblocking filter in H.264 is proposed here. 

The proposal is easily implemented and integrated into the deblocking filter in H.264. The 

hardware cost and memory access can be reduced by sharing the memory used by 

deblocking filter and using the deblocking to support the capability of error concealment 

instead of interpolation. The proposal reduces 30% of hardware cost compared to direct 

implementation. Although the influence of FMO is significant to EC, not all the decoder 

supports FMO due to the high complexity. Hence, we focus on the simulations without 

FMO and try to upgrade the performance of ECDF without FMO to approach the 

performance of BI in JM9.8. The PSNR of ECDF is 1.4dB better than BIlimit and 

comparable to BI in JM9.8 for the sequence of “foreman”.  

4.2 Performance Analysis of ECDF 

4.2.1 Motivation 

Although the hardware cost of ECDF can be decreased largely by hardware and 
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memory sharing as shown in Table 4.2. The performance is still not good enough as 

compared to BI algorithm used in JM9.8 with FMO. Hence, we modified the main roles in 

the ECDF, replacement and edge detection, to improve the performance further. Followed 

are some simulations to see the upper bound performance of ECDF. 

4.2.2 Ideal Functions 

As we know, the more complex algorithms we use, the better performance is. Here we 

focus on functions of the edge detection and replacement without considering the 

complexity to see the best performance it has. 

4.2.2.1 Edge Detection 

There are challenges for the edge detection. Although the Sobel mask is useful to 

calculate the edge gradient and direction. But the problem is that we do not know the actual 

value of missed pixels in corrupted MB. So all we can do is to estimate the edge direction in 

erroneous 4x4-block closed to the MB edge by using the edge information in the correct 

neighboring correct 4x4-blocks. Then, we use these estimated edge information to estimate 

the edge in the deep erroneous 4x4-blocks. Here comes error propagation problem we need 

to overcome. 

Before finding the best method, we do simulations to see the theoretical performance 

influenced by edge detection. Instead of estimating each edge direction in 4x4-block, we 

choose the best replacing direction according to the minimal absolute of sum. The absolute 

of sum is the difference measurement between correct block (Pcorr.) and replacing one (Pdir.) 

as shown in Eq. (4.4). It means that we calculate the absolute of sum for each replacing 

block with different direction to find the best edge direction for each 4x4-block in one 

corrupted MB. Than we use the edge information which comes from best results to conceal 

all blocks in corrupted MB in raster scan order. 



 

 54

( ) ( ) { }

24
2size

dir. corr.n
dir.{ } i 0

8

4
min P i P i            i 0,..., ,size 1,2, 4

size


 �
� 

� �

×π
=

� �� �
 �− ∈ ∈� �� 

� �� �� �

	

           (4.4) 

From the simulation result, we can see that the performance of ECDF can be improved 

significantly with ideal function of edge detection as shown in Figure 4.9. And the PSNR of 

ideal ECDF without FMO is 2.4dB higher than implemented ECDF [13] and is even 1.1dB 

higher than the BI with FMO used in JM.9.8 in average.  
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Figure 4.9: Simulation result for the ideal edge detection. 

4.2.2.2 Replacing 

In order to improve the performance of replacing, we modified the replacing with two 

ways. The first way is that we use additional replacing directions. There are four replacing 

modes used in the implemented ECDF [13]. Here we extend the replacing direction from 

four to eight to see the performance gain as shown in Figure 4.10.   
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Figure 4.10: Modified replacing directions. 

Second, we scale down the basic unit of edge detection to support more complicated 

edges. As we know that the DI algorithm has been used for EC for a long time. The basic 

unit of DI used for MPEG is belongs to MB level. It means that all missed pixels in MB are 

interpolated by using the same direction. And for the H.264, the basic unit of DI is 

4x4-block due to the intra prediction described in H.264. Here we divide each 4x4-block 

into four 2x2-block or sixteen pixels to see the performance gain as Figure 4.11 shows. By 

doing so, the edge can be preserved more correctly.  

$8G

$8G

 

Figure 4.11: Basic unit for Edge information. 

From the simulation result shown in Figure 12, we can see that about 0.2dB can be 

gained if we using eight directions for replacement as compared to four directions. Further, 

about 0.55 dB can be improved when we replace each 2x2-block with one specified 

direction as compared to 4x4-block. Finally, the PSNR gain can be improved to 0.88 dB if 
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we use each pixel as basic unit for replacing. 
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Figure 4.12: Simulation result for different basic unit. 

4.2.3 Simulation Result 

Table 4.3: Performance of Ideal ECDF. 

 

As shown in Table 4.3, the performance using only top and left side neighboring 

4x4-blocks to conceal corrupted MBs can be better than the one of BI used in JM9.8 with 

PSNR(dB) table� stefan� mobile� foreman� news�

Ideal ECDF� 26.58� 22.92� 20.44� 27.02� 24.86�

BI� 25.76� 21.80� 19.16� 25.06� 23.68�

ECDF� 23.90� 20.20� 17.73� 23.83� 21.98�

BIlimit� 23.99� 20.11� 17.53� 22.43� 21.60�
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FMO. The performance gain of ideal ECDF ranges from 0.8dB to 1.96dB as compared to 

the one of BI in JM9.8 for difference sequence patterns. 

Finally, the concealed frames with ideal ECDF and BI with correct information in four 

directions are presented to see the subjective performance as shown in Figure 4.13. If the 

video stream is corrupted due to bit error caused by video transmission, the decoded frame 

which is encoded into two slices with FMO may become the frame in Figure 4.13(a). The 

frames concealed by using the ideal ECDF and BI in JM9.8 are presented in Figure 4.13(b) 

and 4.13(c) separately. 

 

 

Figure 4.13: (a) Corrupted frame due to bit error. The concealed frames by BI (c) and ideal 

ECDF (b). 

4.2.4 Summary 

In this section, we presented the ideal function of ECDF and the upper-bound of 

performance. From the simulation results, the PSNR of ideal ECDF is significantly high 

than other algorithm. The main challenge of implementation of ideal ECDF is the edge 

detection in the filed of image processing. 
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Chapter 5  
Chip Implementation for Mobile 
Applications 

 
5.1 System Specification 

For the real-time portable mobile applications, the low-power and low-delay are the 

most significant issues. We choose the baseline profile to take advantages of low coding 

delay since they do not use B-frames and MBAFF. And we select the level 2 as our design 

target for the portable devices. The details of coding tools used in baseline profile and bit 

rate constraint in level 2 are listed in Table 1.2 and Table 1.3. 

The maximum computational capability is to support real time decoding of CIF H.264 

video sequence in 30fps. Our operational frequency required for H.264 is 79.64MHz. 

5.2 Design Flow 

We use the standard cell based design flow. Figure 5.1 shows our design flow from 

system specification to physical-level. 

 

Figure 5.1 Design flow from system specification to physical-level 

In the front-end design, we use standard-released reference software (Joint Model, JM) 

to be a high-level C-language model. The design problems are formulated and analyzed on 
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algorithmic level, included of the out-of-standard module, ECDF, or the post-filter for 

MPEG-2. After deciding the algorithms we use, we estimate the required throughput for the 

different applications, high-definition or low-power.  

Different architectures we use cause different results, such as hardware cost, power 

consumption or throughput. Generally, we use Verilog RTL-level descriptions to implement 

a basic version design which has perfect function without considering the hardware cost. 

Than, we adopt some techniques in architecture level based on the basic design, such as the 

hybrid filtering order, memory organization and so on, to satisfy the specification we 

estimate.  

After completing the high-throughput deblocking filter to satisfy the system 

specification, we integrate the deblocking filter into the whole system [14]. As for the 

functional verification, we use conformance patterns listed on the web site [18]. The coded 

block patter, QP, motion vectors, intra/inter/PCM mode, pixels in one MB or other syntax 

elements are dumped from the software, JM. When the inputs of the deblocking in hardware 

level are correct with those dumped from JM, we make functional verification by checking 

the outputs of hardware and software. 

In the back-end design, we synthesize and route with Cadence® RTL Compiler and 

SoC EncounterTM. The design margin, technology used, some physical effects on deep 

sub-micron circuits are also needed to be considered. At the end of the physical design stage, 

the layout verification and simulation have been made. 

5.3 Implementation Result 

In this work, we implemented a BL@L2 of H.264 decoder with error concealment 

which is combined with deblocking filter standardized in H.264/AVC for the mobile 

handheld applications. From table 5.1, we can see the five capabilities defined by DVB-H 

[15] for the mobile applications. Consider the power consumption and handheld suitable 
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resolution, our work targets capability C. 

Table 5.1: Capability defined by DVB-H for mobile applications. 
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Table 5.2 Chip details 

Items Specification 

Function H.264 Baseline@Level 2 

Gate counts 279,420 (On-chip SRAM included) 

153,170 (Excluded on-chip SRAM) 

Technology 0.13um 1P6M 

Supply voltage 3.3V/1.8V 

Die size 2.2x2.2mm2 

Core size 1.2x1.2mm2 

Package CQFP128 

Max working frequency 50MHz 

Core Power Consumption  1.19mW: QCIF @ 30Hz 

1.69mW: CIF @ 30Hz 

The detail chip specification is shown in Table 5.2. Here we assume the error detection 

is correct and determined out of design. This work supports the CIF resolution with 

maximum working frequency 50MHz for the mobile applications. The total gate count is 

153.1K excluding embedded SRAM and core size is 1.2x1.2mm2 in 0.13Fm technology. 
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The gate count distribution in H.264/AVC decoder and chip view is shown in Figure 5.2 and 

Figure 5.3 respectively.  

Gate count distribution in H.264 decoder

43722.5, 28%

30996, 20%21984.5, 14%

19480.5, 13%

13302.75, 9%

6823.25, 4% 992, 1%2844, 2%4169.5, 3%

8854.75, 6%

Motion Compesation

Pixel Reconstruction

Dequant

ECDF

Intra Prediction

Syntax Parser

CAVLC

IDCT

PCM

Others
 

Figure 5.2: The gate count distribution of H.264/AVC decoder. 

 

Figure 5.3: Layout of this work 
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5.4 Measurement Results and Comparison 

The throughput per MB for different sequence is various according to the bit rate. 

When the bit rate is higher enough, the throughput of decoder system is dominated by 

throughput of CAVLC. On the other hand, the throughput of deblocking filter is the system 

bottleneck when decoding low bit rate sequence.  

For the power consumption issue, we use the post-layout power simulation reported by 

Prime Power. The worst power consumptions of decoding QCIF and CIF at 30Hz are 

1.81mW and 5.57mW with working frequency 6.67MHz and 25MHz respectively. For the 

low bit rate (<100K) sequence, the operating frequency can be reduced to 1.25MHz and 

4MHz for QCIF and CIF. And the power consumptions are 0.47mW and 1.10mW 

respectively. The detail power reports for different sequence and working frequency are 

shown in Table 5.3. 

Table 5.3 Power report 

Items (Core Power) QCIF @ 30Hz CIF @ 30Hz 

100K bit rate 0.47mW@1.25MHz 1.10mW@4MHz 

2000K bit rate 1.19mW@4MHz 1.69mW@6.67MHz 

Worst Case 1.85mW@6.67MHz 5.57mW@25MHz 
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Figure 5.4: Power distribution of H.264/AVC decoder. 
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Further, the power distribution of H.264/AVC decoder is shown in Figure 5.4. As 

we can see, the power consumption of ECDF consists of 16% over the system. And 

embedded EC contributes 15% power consumption of ECDF.  

With the embedded EC combined with deblocking filter in H.264/AVC, the post 

processing of EC to recover the lost MB is applied at MB-level. The ECDF 

reconstructs the lost MB by pixels stored in the slice memory on the top and left side 

without accessing the external memory. The additional hardware cost of embedded EC 

is 3.5K, 20% in ECDF, as shown in Figure 5.4. And the detail distribution of gate count 

in embedded EC is shown in Figure 5.5.  

Gate count distribution in ECDF

5576.25, 32%

3526.25, 20%2867, 16%
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Figure 5.5: the gate count distribution in ECDF. 
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Figure 5.6: the gate count distribution in ECDF. 
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 For the fair comparison, we select the ASIC designs of [10], [16] and [17] to see 

the throughput and gate count as shown in Table 5.4. Because the power consumption 

of memory is significant, we also estimate the number of memory access between 

existing different designs. Generally, the throughputs of existing designs are close to 

the optimal throughput of deblocking filter in H.264/AVC.  

 

Table 5.4: A detail comparison for the deblocking filter. 

Design [10] [16] [17] proposed 

Function In-loop In-loop In-loop In-loop/EC 

Filtering order Separate Hybrid Hybrid Hybrid 

# of 4x4 array 2 8 2 4 

Memory 

 

1P 96x32 

1P 64x32 

2 2P 96x32x2 

DP 64x32 

1P 96x32 

2P 32x32 

1P (1.5xFW)x32 

2 1P 96x32 

1P (2xFW+20)x32 

Processing cycle 878 446 214 or 246 243/275 

Process 0.25Fm 0.25Fm 0.18Fm 0.13Fm 

Gate count 18.91K 24K 20.9K 23.6K 

MB memory read 320 160 96 96 

MB memory write 224 64 0 0 

Slice read 0 0 64 64+16 

Slice write 0 0 52 52+16 

External read 64 64 0 0 

External write 160 160 108 108 
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Chapter 6  
Conclusion and Future Work 
 
6.1 Conclusions 

Design requirements are different for different applications. In this thesis, we have 

implemented a high throughput deblocking filter with little memory access by data reusing 

for high-definition TV applications. Besides, we integrate the post-loop filter and in-loop 

filter for multi-standard requirement. Further, we propose and ECDF which combines the 

deblocking filter standardized by H.264/AVC and error concealment for the real-time 

portable devices over error-prone or wireless channel. Finally, we integrated the ECDF into 

BL@L2 H.264/AVC decoder for the mobile applications. The details of each design are 

presented in following section. 

6.1.1 High-throughput Design 

For the deblocking filter, we proposed the memory organization which saves the 

number of memory access significantly. Besides, we use parallel architecture to tack charge 

of the processing of BS and 1-D filter at the same time. Finally, we adopt the hybrid 

filtering order which still satisfies the filtering order described in standard in H.264/AVC to 

reuse the data, by which we can save the memory access further. By using the techniques, 

the processing cycle of deblocking filter can be improved to 243 cycles with single port 

SRAMs. The processing cycle is close to the lower-bound of throughput of deblocking filter, 

192 cycles when all edges are belonged to artificial edges per MB, and gate count equals 

19.64K using 0.18�m technology. This work is suitable for low-power mobile applications 

due to the low memory access. Besides, it also supports the high-definition applications due 
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to the high throughput.  

6.1.2 In/Post-loop filter  

Further, we proposed multi-standard solution for the applications which support 

multiple standards, such as DVD player and DVB. Actually, the performance improvement 

is very mild when applying the loop filter as the post filter in MPEG-4. Hence, we proposed 

a hybrid algorithm for H.264/AVC and MPEG-4. The proposed hybrid algorithm retains the 

original loop filter due to the standardization in H.264/AVC. In addition, we modified the 

post filter to easily integrate into original loop filter design as shown in Table 3.5. To reduce 

the complexity of control unit, the filtering order of post-loop filter [11] is modified to 

hybrid order which is the same as the filtering order of in-loop filter. For the strength 

decision, we modified the fixed threshold values of post-loop filter to dynamic ones which 

vary according to the syntax parser, such as intra/inter mode, coded block pattern, locations 

of boundary or motion vectors. Finally, filter equation is modified to reduce the hardware 

cost: the strong mode in post-loop filter is replaced by the one applied for in-loop filter due 

to the similarity and the equation of weak mode used in post-loop filter is modified to avoid 

using multipliers. From the simulation results, the proposal saves 30% hardware cost as 

compared to total cost of in-loop filter and post-loop filter with performance degradation 

less than 0.05dB. 

6.1.3 Error-concealed Deblocking Filter 

We also proposed new spatial error concealment method, ECDF, for a real-time 

decoding system over an error-prone or wireless channel. There are several advantages of 

ECDF. The first is that ECDF can conceal I frames without the need of FMO. Second, the 

hardware cost of interpolation can be saved. Third, the required information for error 

concealment only includes the pixels in the top and left neighbors of current corrupted MB. 

Hence, we can conceal the corrupted MB without requiring the information in the right and 



 

 67

bottom side, leading to the reduction of memory space as well as bandwidth. The 

implementation results show that the hardware cost of ECDF can be saved about 30% 

compared to direct implementation. Without the right and bottom correct pixels, the 

proposal gains 1.4dB in PSNR compared to BI with top and left side information in JM9.8. 

6.1.4 Chip Implementation 

For the chip implementation, we integrated the ECDF into BL@L2 H.264 decoder for 

the real-time mobile devices. From the simulations results, the total gate count of H.264 

decoder is 153K excluding embedded SRAM. The power consumption of H.264 decoder is 

1.19mW and 1.69mW for QCIF@30Hz and CIF@30Hz at 4MHz and 6.67MHz 

respectively. The ECDF contributes 13% and 16% of hardware cost and power consumption 

over the decoder respectively. 

6.2 Future Works 

6.2.1 Error Detection 

For the error concealment in the decoder we discussed in previous chapter, we assume 

that the error detection works perfectly. It means that we accurately know the locations of 

MBs in one Frame are corrupted due to the errors over error-prone or wireless channel. 

Hence, we can use the error concealment to reconstruct the corrupted pixels to recover the 

visual quality in the correct positions, not use the error concealment in the correct MB to 

degrade the visual quality. The implementation of error detection is necessary for an 

error-concealed decoder for those real-time applications. Generally, error detection can be 

divided into two groups, hard detection [19] and soft detection [20].  

For hard error detection, a list of error-checking conditions derived from the 

constraints on the H.264/AVC video bit stream syntax is checked: An invalid codeword is 

found for the VLC code, DCT coefficients, macroblock type or other syntax elements. 

Physically impossible video data are detected, such as the problem of out of frame range for 
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prediction. As for the soft detection, the soft information is introduced based on the 

multi-level de-quantization process in each demodulated symbol. It accumulates the square 

difference between received soft streams and decoded codeword to determine if the error 

occurs.  

Generally, the hard error detection has the advantages of low-complexity and is easy to 

be implemented. But it has low performance on the error localization. It means that the hard 

error detection often detects the error when the several MBs are decoded after the first 

erroneous MB. There are many corrupted MBs determined as correct ones in this situation 

and degrade the visual quality significantly since we do not use error concealment on those 

MBs which we consider correct. On the other hand, the soft error detection has better error 

detection capabilities as compared to the hard error detection but is hard implemented. For a 

real-time decoder with ability of error concealment, a low-complexity implementation of 

error detection with acceptable performance on error localization is needed to reconstruct 

the corrupted MBs. 

6.2.2 Temporal Error Concealment 

As we discussed in Chapter 2, the major purpose of temporal error concealment is to 

find the lost MV in corrupted MB. Hence, we can reconstruct the corrupted MB with 

estimated MV and reference pixels without residual. The complexity of those algorithms 

which use zero, average or median of neighboring MVs as estimated MV is quite low. 

However, these low-complexity algorithms have worse performance as compared to BMA 

or overlapping BMA (OBMA) [21]. The BMA or OBMA obtain the better result with 

excellently high memory access and complexity to accumulate the best matching in the 

neighboring area. However, TEC is not always adequate for concealing errors in video 

sequences. This is especially true for video sequences with irregular motion, abrupt scene 

changes, and intra-coded image frames. Hence, the error concealment scheme is necessary 
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to integrate the TEC with SEC with mode decision. The mode decision determines which 

algorithm to be used to reconstruct the corrupted MB according the information in 

neighboring correct MBs, such as macroblock type, motion vectors and coded block pattern. 

6.2.3 Multi-standard solution 

DVB-H supports not only video standard of MPEG-2 and H.264/AVC, but also 

supports video standard of VC-1. An in-loop filter is defined in VC-1 with different 

algorithm with the one of H.264/AVC. They are different on filtering order. As we discussed 

in previous sections, the filtering order in H.264/AVC is vertical edge first. But the filtering 

order in VC-1 is horizontal edge first. Besides, deblocking filter is applied for each 

4x4-block edges in H.264. And deblocking filter of VC-1 is applied to variable block size. 

Hence, the multi-standard deblocking filter for H.264/AVC and VC-1 is more complexity 

than the one for H.264/AVC and MPEG-2 we proposed in previous sections because the 

different standardized algorithm adopted by H.264/AVC and VC-1. For the mobile 

applications use DVB-H, hardware implemented video decoder which supports 

multi-standard can reduce the power consumption and complexity of coprocessor. Hence, 

the hardware integration for deblocking filter is a challenge for low-cost design. 
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