
��

����������������������������

����

� 	
 � ��� 	
 � ��� 	
 � ��� 	
 � �� ��������� 	
 � � ���� 	
 � � ���� 	
 � � ���� 	
 � � ��� ����

����

��

����

����

����

������������ � � � � � 	
 � �� � � � � 	
 � �� � � � � 	
 � �� � � � � 	
 � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � � ����

����

A Deblocking Filter for H.264/AVC Applications

�

� � ���� � � �

� 	
 � ���� �
 �
 � �

�

� � � � � � � 	
 �� � � � � � � 	
 �� � � � � � � 	
 �� � � � � � � 	
 � ����

������������ � � � � � 	
 � �� � � � � 	
 � �� � � � � 	
 � �� � � � � 	
 � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � � ����

�

A Deblocking Filter for H.264/AVC Applications

� � ��� �� Student�Wen-Ping Lee

� 	
 � �� �
 Advisor�Chen-Yi Lee

� � � � � �
� � � � �� � � ��� ���

� � � �

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering

July 2007

Hsinchu, Taiwan, Republic of China

� � � � � � � � � �

 i

������������ � � � � � 	
 � �� � � � � 	
 � �� � � � � 	
 � �� � � � � 	
 � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � � ����

����

����

� � �� � � ���������������������� 	
 � �� �
 �
 � �

� �
 � � �� �
 � � �� �
 � � �� �
 � � � ����

� � � � � �� � � � � �� � � � � �� � � � � � ����� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � ����

����

� �� �� �� � ����

H.264/AVC��������	
��
� � � � � � � � �� � �� � � � �

������H.264 � � ! " �	
� # �$ � % �	
& ' (� � !) �* + ,

-
. / �0 � � 1 �2 � 3 4 5 6 7 8 �� 9 	
� ' 9 : � ; < � � ' = > ?

4 5 @ �A B � ; C D , -
$ E F G / �H I J K �0 L M N O � � �" P 3 4

5 6 7 8 �Q R # S T " U V W �X Y Z �[\] ^ �_�* + U ` a b

c d # e f � g ��h ` ���U ` 8 �H I i j = k l m � $ n % ����

�3 4 5 6 7 8 �& o p q 3 � r s J t u v w �r s i E x l �H I u � y z �{

| 3 4 5 6 7 8 # } (~ 30%�r s i E

� � �c d � � * + ^ ��m � �H I 2 � � � � � �� � : � � * + , -$ �

� � � / � T � � u � i �* �
$ E F G / �H I � y : 3 4 5 6 7 8 � � � �

� � � � � � � �< J K �0 � � � � � j # �3 4 5 6 7 8
� � � �� �� �

� � � � � �H I u � y z � � � � � � � r s �� � } (~ 30%�r s i E

�� �H I � E F G u � �� � � � � j # � 3 4 5 6 8 k l T H.264 U ` 8

 ii

_
� | � _� : 9 � �H I u � y �3 4 5 6 8 $ r s i E � j ' ¡ _¢ £ k

0 U ` 8 � 13%¤ 16%

 iii

A Deblocking Filter for H.264/AVC Applications

Student : Wen-Ping Lee Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

H.264/AVC is the newest video coding standard. With many useful tools, H.264

provides better coding efficiency, which means that it provides better image quality at the

same coding rate as compared to the previous video coding standard. One of the useful tools

is deblocking filter. The coding efficiency is improved and blocking artifacts are removed

by the deblocking filter specified in H.264/AVC. In this thesis, we implemented a high

throughput deblocking filter with data reuse to achieve the demands on digital TV and

wireless communication with high resolution.

For the multi-standard decoder, we successfully integrate the deblocking filter in

H.264/AVC and post-loop filter. The proposal can save about 30% hardware cost as

compared to the total hardware cost of implementations separately.

Besides, we use error concealment methods to decrease the influence of video quality

caused by the bit-error in video transmission for the applications of real-time video

transmission. In the thesis, we proposed an algorithm of error concealment based on the

deblocking filter in H.264/AVC and implemented error-concealed deblocking filter. The

 iv

proposal saves about 30% hardware cost as compared to the total hardware cost of

deblocking filter and error concealment.

Final, we integrated the ECDF into our H.264 decoder and redesigned for the real-time

mobile applications. From the simulations, the ECDF contributes about 13% and 16% of

hardware cost and power consumption over H.264/AVC decoder respectively.

 v

� �� � � � � � �

 � ¥ ¦ § ¨ © ª « �¬ ­ § ¨ �: � ® � ¯ ° ± ² ³ ­ ´ µ¶ · �² ¸ � ¹ º »

¼ �½ ¾ � �¿� � À I �Á Â [Ã Ä �Å # � Æ ¶ �H
Ç

Ç È É º » ¼ H �Ê Ë Ì Í Î Ï Ð
Ñ Ò Ê Ë �Ó : z Ô Õ Ö � × Ø �Ù �$ �Ú

Q �Û �Ü Ý / �Ê Ë Þ � ß à �d á â \ � \ ã Ô # ä½ å æ = » ç T Ê Ë $ ´ µ

_�ª è én ê �́ µ� ë _ì �í S î ï _�/ ð B ñ ò �î ï / x �� � � � �

�� ó
¤ô Ê Ë © ´ µõ ��n � � 9 �) ö
Ç

Ç ÷ z º » ¼ ø ù ú u � �i û
ü ý I þ ����� �� � � � A �� Â [% 	 ¹

õ
 �� � �
 � � � � = � � �¿� ² � äH # $ � N �� è / : �� �� � � �

n � = © ´ µ
� ¿� � ¥ � �� � �� � n �! " # $ � � � � � % & ê ' ä

H # $ () � * + ! , ÷ © - .
% � » ¼ H ¬ $ � �/ 0 1 (2 3 �4 5 I
6 %

7 8 � 9 � : ; � Þ t J �< = < ª > = ? @ A B C � �D � �$ ² E �� � / �ä

H F G u � ´ µ_ì � è _�H I Þ n J �N �÷ y K
Ç

Ç �� » ¼ H �� ½
� � ¾ � * � �G � � n � > H �b ü L M é* T � / D d

� N �)) % & Þ e � � O P é² E � Q R : � e � äH # S Q T U � V � ª > ´

µ�� T U � � q ½ �T ¨ W X
Ç

Ç ª « ± ¬ ­ : � ´ µ± ² ³ ­ �± Y Ñ Ò Õ Ö G � Z J �� � H [G � \]
¿

� À I �u � y t $ H ´ µ± ± Y �½ �¼ ¼
Ç

 vi

Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 VIDEO CODING STANDARDS.. 1

1.2 H.264/AVC STANDARD OVERVIEW .. 2

1.2.1 Profiles and Levels ... 3

1.2.2 Encoder/Decoder Block Diagram.. 6

1.2.3 Deblocking Filter ... 7

1.3 ERROR CONCEALMENT ... 9

1.4 THESIS ORGANIZATION ... 10

CHAPTER 2 ALGORITHMS FOR DEBLOCKING FILTER AND ERROR

CONCEALMENT ... 12

2.1 DEBLOCKING FILTER FOR H.264/AVC .. 12

2.1.1 Adaptivity of Deblocking Filter in H.264/AVC .. 13

2.1.1.1 Block-edge Level Adaptivity ... 13

2.1.1.2 Sample Level Adaptivity.. 14

2.1.1.3 Slice Level Adaptivity.. 16

2.1.2 Filtering Process of Deblocking Filter in H.264/AVC..................................... 16

2.1.2.1 Normal Mode of Deblocking Filter with BS Less than 4 16

2.1.2.2 Strong Mode of Deblocking Filter with BS Equals 4 18

2.2 ERROR CONCEALMENT ... 20

 vii

2.2.1 Spatial Error Concealment Algorithms ..21

2.2.1.1 Bilinear interpolation..21

2.2.1.2 Directional Interpolation...22

2.2.1.3 Interpolation with Mode Decision..23

2.2.2 Temporal Error Concealment Algorithms ..23

2.2.2.1 Temporal Replacement ...24

2.2.2.2 Boundary Matching Algorithm...24

2.2.2.3 Motion Vectors Recovery Based on Polynomial Model25

2.2.3 Summary ...26

CHAPTER 3 DESIGN OF HIGH THROUGHPUT DEBLOCKING FILTER.......................27

3.1 DESIGN FOR HIGH THROUGHPUT AND HIGH RESOLUTION APPLICATIONS..................27

3.1.1 Memory Organization between Prediction and Loop-filter28

3.1.1.1 Memory Organization...28

3.1.1.2 Slice and Content Memory...30

3.1.1.3 Hybrid Scheduling..31

3.1.1.4 Proposed Architecture of Deblocking Filter...32

3.1.2 Simulation Results ..35

3.1.3 Summary ...37

3.2 DESIGN FOR MULTI-STANDARD APPLICATIONS ..37

3.2.1 Motivation...37

3.2.2 Loop/Post Deblocking Filter ..38

3.2.2.1 Mode Decision..39

3.2.2.2 Filtering Mode ..40

3.2.3 Simulation Result..41

3.2.4 Summary ...42

 viii

CHAPTER 4 JOINT ARCHITECTURE OF ERROR-CONCEALED DEBLOCKING

FILTER FOR H.264 DECODER... 43

4.1 DESIGN FOR LOW-COST AND REAL-TIME APPLICATION FOR VIDEO TRANSMISSION ... 43

4.1.1 Problem Formulation... 43

4.1.2 Error-Concealed Deblocking Filter... 44

4.1.2.1 Edge Detection... 46

4.1.2.2 Replacement... 47

4.1.2.3 Smoothing .. 48

4.1.2.4 Reconstructing flow ... 49

4.1.3 Simulation Results.. 49

4.1.4 Implementation results ... 51

4.1.5 Summary... 52

4.2 PERFORMANCE ANALYSIS OF ECDF ... 52

4.2.1 Motivation .. 52

4.2.2 Ideal Functions .. 53

4.2.2.1 Edge Detection... 53

4.2.2.2 Replacing ... 54

4.2.3 Simulation Result ... 56

4.2.4 Summary... 57

CHAPTER 5 CHIP IMPLEMENTATION FOR MOBILE APPLICATIONS......................... 58

5.1 SYSTEM SPECIFICATION .. 58

5.2 DESIGN FLOW ... 58

5.3 IMPLEMENTATION RESULT... 59

5.4 MEASUREMENT RESULTS AND COMPARISON... 62

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 65

 ix

6.1 CONCLUSIONS ...65

6.1.1 High-throughput Design...65

6.1.2 In/Post-loop filter ...66

6.1.3 Error-concealed Deblocking Filter ..66

6.1.4 Chip Implementation ..67

6.2 FUTURE WORKS ..67

6.2.1 Error Detection...67

6.2.2 Temporal Error Concealment ...68

6.2.3 Multi-standard solution ..69

BIBLIOGRAPHY ..70

 x

List of Figures

FIGURE 1.1: PSNR VIRUS BIT RATE FOR DIFFERENT STANDARDS. .. 2

FIGURE 1.2: A SIMPLE BLOCK DIAGRAM OF H.264/AVC VIDEO ENCODER. 7

FIGURE 1.3: A SIMPLE BLOCK DIAGRAM OF H.264/AVC VIDEO DECODER. 7

FIGURE 1.4: THE VISUAL QUALITY WITH/WITHOUT DEBLOCKING FILTER. 8

FIGURE 1.5: THE PICTURE CORRUPTED BY THE ERRORS (A). THE PICTURE CONCEALED BY EC

(B). .. 10

FIGURE 2.1: THE EDGES APPLIED TO DEBLOCKING FILTER IN ONE MB....................................... 12

FIGURE 2.2: THE SIMPLE VISION DECISION FLOW OF BOUNDARY STRENGTH WITHOUT MBAFF. 14

FIGURE 2.3: SAMPLES ACROSS A 4X4 BLOCK BOUNDARY. .. 15

FIGURE 2.4: FILTERED SAMPLE IN NORMAL FILTER MODE OF H.264/AVC. 17

FIGURE 2.5: FILTERED SAMPLES IN STRONG FILTER MODE IN H.264/AVC. 18

FIGURE 2.6: VARIABLE BLOCK SIZE FOR MOTION VECTORS AND MULTIPLE REFERENCE FRAMES.20

FIGURE 2.7: BILINEAR INTERPOLATION ... 21

FIGURE 2.8: DIRECTION INTERPOLATION... 22

FIGURE 2.9: BLOCK DIAGRAM OF THE PROPOSED SEC APPROACH. [5] 23

FIGURE 2.10: BOUNDARY MATCHING ALGORITHM... 24

FIGURE 2.11: MOTION VECTORS ACROSS THE NEIGHBORING AND CORRUPTED MB IN

ONE-DIMENSIONAL. ... 25

FIGURE 3.1: THE DIFFERENT DATA ARRANGEMENT IN THE DEBLOCKING FILTER (A) AND

PREDICTION UNIT (B). .. 28

 xi

FIGURE 3.2: THE SLICE MEMORY WITH GRID OR SHADED REGION AND THE CONTENT MEMORY

WITH BLACK-DOTTED REGION..30

FIGURE 3.3: THE PROPOSED HYBRID SCHEDULING METHOD...31

FIGURE 3.4: THE PARTITIONED MB AND EACH TIME INSTANCE WHEN APPLYING THE HYBRID

SCHEDULING METHOD..32

FIGURE 3.5: THE BLOCK DIAGRAM AND DATA FLOW OF THE PROPOSED DESIGN.33

FIGURE 3.6: THE DETAILED ARCHITECTURE FOR THE DEBLOCKING FILTER.................................34

FIGURE 3.7: THE AVERAGE PROCESSING CYCLES IN PIPELINE STAGE I.37

FIGURE 3.8: THE MODE DECISION USED IN IN-LOOP FILTER AND POST-LOOP FILTER....................40

FIGURE 3.9: THE PIXEL-IN-PIXEL-OUT FILTERING PROCESS WITH WEAK STRENGTH OF THE

PROPOSED LOOP/POST FILTER. ..41

FIGURE 3.10: THE PERFORMANCE COMPARISON DUE TO THE MODIFICATION OF POST FILTER.42

FIGURE 4.1: THE DOTTED 4X4-BLOCKS ARE STORED IN SLICE MEMORY.45

FIGURE 4.2: THE BLOCK DIAGRAM OF ECDF. DOTTED REGIONS ARE ADDITIONAL PARTS FOR

THE CAPABILITY OF ERROR CONCEALMENT. ...45

FIGURE 4.3: THE BEHAVIOR OF EDGE DETECTION A CORRUPTED 4X4-BLOCK IN MB..................46

FIGURE 4.4: FOUR KINDS OF REPLACING MODE..47

FIGURE 4.5: THE NUMBER ON THE BOUNDARIES OF BLOCKS IS THE FILTERING ORDER.48

FIGURE 4.6: THE BEHAVIORS OF ECDF FOR VERTICAL EDGES AND HORIZONTAL EDGES.49

FIGURE 4.7: THE IMPROVEMENT OF PSNR FOR THE SEQUENCE OF “FOREMAN”.........................50

FIGURE 4.8: PSNR OF CONCEALED FRAME WITH THE ECDF (A) AND CONCEALED FRAME WITH

BILIMIT IN JM9.8 (B)..51

FIGURE 4.9: SIMULATION RESULT FOR THE IDEAL EDGE DETECTION...54

FIGURE 4.10: MODIFIED REPLACING DIRECTIONS. ...55

FIGURE 4.11: BASIC UNIT FOR EDGE INFORMATION. ..55

FIGURE 4.12: SIMULATION RESULT FOR DIFFERENT BASIC UNIT. ..56

 xii

FIGURE 4.13: (A) CORRUPTED FRAME DUE TO BIT ERROR. THE CONCEALED FRAMES BY BI (C)

AND IDEAL ECDF (B). ... 57

FIGURE 5.1 DESIGN FLOW FROM SYSTEM SPECIFICATION TO PHYSICAL-LEVEL 58

FIGURE 5.2: THE GATE COUNT DISTRIBUTION OF H.264/AVC DECODER.................................... 61

FIGURE 5.3: LAYOUT OF THIS WORK .. 61

FIGURE 5.4: POWER DISTRIBUTION OF H.264/AVC DECODER. .. 62

FIGURE 5.5: THE GATE COUNT DISTRIBUTION IN ECDF.. 63

FIGURE 5.6: THE GATE COUNT DISTRIBUTION IN ECDF.. 63

 xiii

List of Tables

TABLE 1.1: DIFFERENCE BETWEEN TECHNIQUES USED IN MPEG-2 AND H.264/AVC.3

TABLE 1.2: PROFILES AND CODING TOOLS IN H.264/AVC..4

TABLE 1.3: ALL LEVELS DEFINED IN H.264/AVC...5

TABLE 2.1: LOOK-UP TABLE FOR THRESHOLDS ACCORDING TO INDEX VALUES...........................15

TABLE 2.1 (CONCLUDED): LOOK-UP TABLE FOR THRESHOLDS ACCORDING TO INDEX VALUES....16

TABLE 2.2: VALUE OF FILTER CLIPPING VARIABLE TC0 AS A FUNCTION OF INDEXA AND BS.........17

TABLE 2.2 (CONCLUDED): VALUE OF FILTER CLIPPING VARIABLE TC0 AS A FUNCTION OF INDEXA

AND BS..18

TABLE 2.3: CORRESPONDING COORDINATES OF MOTION VECTORS...25

TABLE 3.1: THE ANALYSIS OF AVERAGE MEMORY ACCESS PER LUMA MB.29

TABLE 3.2: THE CYCLE ANALYSIS WITHIN THE DEBLOCKING FILTER UNIT.36

TABLE 3.3: THE COMPARISON OF ARCHITECTURE AND PROCESSING CYCLES FOR THE

DEBLOCKING FILTER IN H.264/AVC. ...36

TABLE 3.4: FEATURES OF THE DEBLOCKING FILTER IN DIFFERENT STANDARDS.38

TABLE 3.5: PARAMETER SELECTION OF THE PROPOSED LOOP/POST DEBLOCKING FILTER............39

TABLE 4.1: THE PERFORMANCE OF ECDF AND BILIMIT. ..50

TABLE 4.2: THE COMPARISON OF ARCHITECTURE AND PROCESSING TIME PER MB FOR THE

ERROR CONCEALMENT IN H.264/AVC. ..51

TABLE 4.3: PERFORMANCE OF IDEAL ECDF. ...56

TABLE 5.1: CAPABILITY DEFINED BY DVB-H FOR MOBILE APPLICATIONS..................................60

TABLE 5.2 CHIP DETAILS ..60

TABLE 5.3 POWER REPORT ...62

 xiv

TABLE 5.4: A DETAIL COMPARISON FOR THE DEBLOCKING FILTER. .. 64

 1

Chapter 1
Introduction

1.1 Video Coding Standards

The video coding standards play an important role in all aspects of entertainment in the

world. Common video coding standards includes MPEG-1/2/4, H.261/2/3/4. Generally

speaking, the data of uncompressed video may be larger than the capacity of content storage

and transmitted with a lot of time by digital broadcasting due to the limitation of bandwidth.

With the video compression techniques described in these video coding standards, the video

data can be stored or transmitted more efficiently.

H.261 is the earliest DCT-based video coding standard and is the basis hybrid video

coding for other common video coding standards today. H.261 is designed for ISDN

(Integrated Services Digital Network), the internet system in early day, the applications of

videophone and videoconferencing. And the targeted bit rate of H.261 is p x 64 (p = 1, …,

30). MPEG-1/2 are designed and focused on VHS (Video Home System) and widely used

for Video CD/DVD format. H.263 is designed and focused on the quality at very low bit

rates (<64Kbps) and has overtaken H.261 to dominate videoconferencing codec.

Object-based coding is specified in the MPEG-4 which is based on the H.263.

H.264/AVC is developed by MPEG (Moving Picture Experts Group) and VCEG

(Video Coding Experts Group) that promises to outperform the earlier standards,

MPEG-1/2/4 and H.263, providing better visual quality at the same bit rate or lower bit rate

with the same visual quality.

With the video coding standards, each frame in video is divided into macroblocks

 2

(MBs) and coded with intra/inter prediction each by each. The residual data is encoded with

discrete cosine transform (DCT) to discard high-frequency data and quantization after

prediction. Further, the quantized coefficients are coded using variable-length coding

techniques, such as CAVLC/CABAC specified in H.264/AVC to form the video bit streams.

On the other hand, the decoder receives the coded video bit streams to reconstruct the coded

video with reverse operations in encoder.

1.2 H.264/AVC Standard Overview

H.264 is the newest high compression digital video codec standard written by the

ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture

Experts Group (MPEG). Thanks to its new features, H.264 achieves higher compression

gain than previous standards, such as MPEG-2 or H.263, as shown in Figure 1.1.

Figure 1.1: PSNR virus bit rate for different standards.

It uses many useful but complex techniques and algorithms to achieve this goal. From

 3

the Table 1.1, we can see the different techniques used in MPEG-2 and H.264. The first

difference of technique is transform block size. While MPEG-2 use 8x8 block size floating

point DCT, H.264 use 4x4 block size integer DCT. For the motion vector, H.264 use higher

resolution method and variable block size, 1/4 resolution for luma and 1/8 for chroma on

motion vector and several block size from 4x4 to 16x16 for motion estimation. Besides,

several modes are used for the prediction in spatial domain. In the entropy coding, H.264

used complex method, CAVLC and CABAC, to improve the compression efficiency. Finally,

H.264 adopts the in-loop filter, deblocking filter, to eliminate the blocking effect caused by

the DCT or motion estimation and improve the visual quality.

Table 1.1: Difference between techniques used in MPEG-2 and H.264/AVC.

������ ���	
��
�

��������� �������

�
���������

��������� ��������

!�"����� #�"�����

$	�$	���%�$	����� $	�$	� ��
�
���

����& ���%������'�"�& (���

$����������������)�������'
�(� �"����������&��"�& (���

'�"�& (����&���*��(��%�����������&�

��&��������� ��"�& (������� +���((��

, ��-+ �%�"��%�& ����.��%��-/

0"� ����"��%�& ��� $���%��.����%�����/
���1��� �����%���."�����%�����/

0"�&���&�"��%�& ��������&+����

�� ��"1�&�%��-
2�
��� �� ��%�" ����
2�

��� �� ��%�" ����'����1���� +�����%��-

��� ���� ����- ��*��&���-���� ������&�%��-����"

3(�� �4� ��� , ��-+ �%��� ��&��
�� ��%�%���%������

��� ��& ������(�����%�&+����

�� ����&��"���� ���

1.2.1 Profiles and Levels

 4

Like the previous standards, H.264/AVC contains several profiles for different

applications as shown in Table 1.2. Each profile uses different set of coding tools for

different applications. Generally speaking, the compression efficiency can be increased as

well as the complexity with more coding tools. For example, Baseline profile which

consists of the simplest set of compression tools, such as basic I, P slices, Context Adaptive

Variable Length Coding and basic chroma format (4:2:0), results the least processing time

for video decoder. It is suitable for low delay applications such as portable device or video

conferencing. The main profile uses most compression tools, B slices, Context Adaptive

Binary Arithmetic Coding, interlaced coding and so on, to improve the compression

efficiency. The extended profile is also used for wireless mobile devices, but it is used

primarily for the streaming media applications in PCs. The main difference between

Baseline and Main profiles is the slice type used in coding. Moreover, the high profiles

targets at high-definition TV applications such as HD-DVD and Blue-ray Disc. It uses

higher bits per pixel and higher chroma format to obtain the high visual quality in

high-definition TV applications.

Table 1.2: Profiles and coding tools in H.264/AVC.

Much more than MPEG-2 levels can be found in the H.264 standard. We can see the

 5

different limitations for different levels in the Table 1.3. From level 1 to level 5.1, maximum

frame size ranges from 99 to 36,864 macroblocks, maximum video bit rate ranges from 64k

to 240,000k bits/s for the 4:2:0 chroma format and so on. Other limitations, such as motion

vector, are not mentioned here but can be found in the standard. These limitations restrict

the resolution of video to support different applications.

Table 1.3: All levels defined in H.264/AVC.

 Based on the illustration of different profiles and levels, each application has the best

candidate in terms of profile@level. For example, High@L4 is suitable for the

high-definition TV applications since High profile used more coding tools and level 4 can

support 1080HD of maximum video resolution. On the other hand, BL@L1 may be suitable

 6

for the potable mobile device due to the lower complexity and lower power consumption.

1.2.2 Encoder/Decoder Block Diagram

The basic encoding process of H.264/AVC is the same as previous standards with

hybrid DCT/MC coding infrastructure but more complex in detail. Figure 1.2 shows the

block diagram of H.264/AVC encoder. The same as the MPEG-2 encoder, an embedded

decoder exists inside the encoder that calculates the results of the motion compensation or

intra prediction at the decoder side. With the embedded decoder in encoder side, the encoder

can foresee the decoded result and calculate the residual values without mismatch to the

decoder. One of the major improvements for H.264 is intra prediction as we can see in

Table1.1. H.264 uses not only one prediction mode in spatial domain to improve the

compression. Hence, there is an intra mode decision unit in the H.264/AVC encoder side as

shown in Figure 1.2. Besides, inter prediction (motion compensation) has many coding

tools, such as variable block sizes, multiple reference frames or short/long term prediction,

to reduce the redundancy in the temporal domain. Further, the residual values are processed

with DCT, quantization and entropy coding to reduce the coding redundancy. To reduce the

blocking effect caused by the powerful block-based compression methods and eliminate the

error propagation between frames, H.264 uses the in-loop filter, deblocking filter, to

improve the visual quality. Finally, the bit stream of the H.264/AVC format is produced and

transmitted or stored.

The decoder is simpler than the encoder because it lacks the decision parts like motion

estimator and the intra mode decision parts. Instead, the decoder has syntax parser to decode

syntax elements from the bit stream correctly as shown in Figure 1.3. The syntax parser

decodes the syntax elements to decide which mode is used in motion compensation or intra

prediction. The residual part of bit stream is processed with the inverse quantization and

inverse DCT and transferred into residual values. With the predicted values and residual

 7

values, the video can be constructed. Finally, the deblocking filter is invoked to eliminate

the blocking effects resulted from prediction and DCT to improve the visual quality.

Figure 1.2: A simple block diagram of H.264/AVC video encoder.

�%

��

Figure 1.3: A simple block diagram of H.264/AVC video decoder.

1.2.3 Deblocking Filter

 8

As we mentioned in previous sections, the major purpose of deblocking filter is to

eliminate the blocking effects and error propagations between frames and improve the

visual quality.

Figure 1.4: The visual quality with/without deblocking filter.

From left figure in Figure 1.4, we can see the blocking effects obviously. As we

discussed in previous section, the blocking effect is caused by the powerful block-based

compression tools, such as motion estimation, intra prediction, DCT and so on. Each block

uses different motion vectors, intra modes or coefficients, the smooth regions may become

discontinued. Hence, the blocking effects appear like the left figure in Figure 1.4. With the

deblocking filter, the frame with a lot of blocking effects can be smoothed and become the

right figure in Figure 1.4. Thus, the visual quality is improved and the blocking effects do

not propagate to subsequent frames due to the in-loop filter, deblocking filter.

Actually, the blocking effects exist in the previous standards. Some standards has

post-filter in optional to reduce the influence of blocking effects. But this influence of

blocking effects becomes serious in H.264/AVC due to the compression tools. The more

powerful compression tools standard use, more serious the problem is. From Table 1.1, we

���������	�
��
���
�	����
��
���

 9

can see a lot of compression tools which may impact blocking effects, such as variable

block size for motion vectors in motion compensation, intra modes in pixel domain for intra

prediction and smaller block size for DCT. Hence, the in-loop filter, deblocking filter, is

necessary for the H.264/AVC to reduce the side effect of the powerful compression tools in

H.264/AVC and is standardized by H.264/AVC.

For the purpose of improving the visual quality, deblocking filter has to smooth all

block edges in one frame. The complexity is mainly based on the high adaptivity of the

filter, which requires conditional processing on the block edge and sample level. Another

reason for the high complexity is the small block size employed for residual coding in

H.264/AVC. Almost every sample in a picture must be loaded from memory, either to be

modified or determined if neighboring samples will be modified with 1-D filter. Hence, the

computational time and number of memory access of deblocking filter are larger than that

of loop filter in H.263 or other post filters, which operate on the 8x8 block edges. Generally,

the deblocking filter contributes about one-third of the computational complexity of the

decoder [1], and it is the system bottleneck in terms of processing cycles. The throughput of

deblocking is the most design issues for high-definition TV applications and power

consumption is the main challenge for the applications of portable mobile devices.

1.3 Error Concealment

Recently consumer electronics have increased demand for efficient and reliable video

communications. Video consumer devices, such as digital television (DTV), mobile video

and video telephony, have been developed rapidly. For transmission over bandwidth-limited

networks, almost all video consumer electronics use compression technologies to reduce

redundancies in video sequences. But compressed video streams are vulnerable to

transmission errors, such as bit errors and packet errors. This can degrade the visual quality

of the decoded sequence drastically because of use of motion-compensated interframe

 10

coding and VLC coding as shown in Figure 1.5(a).

(a) (b)

Figure 1.5: The picture corrupted by the errors (a). The picture concealed by EC (b).

To protect video sequence against transmission errors, there are several techniques [2].

These techniques can be partitioned into three categories; Forward error concealment

includes methods to add redundancy at the source end to enhance error resilience of the

video stream. Error concealment by post-processing at the decoder side to recover the

damaged region based on property of video or image as shown in Figure 1.5(b). The last

category is interactive error concealment between decoder and encoder. For the approach of

error resilient, some error control algorithms have been adopted in H.264 [3], like flexible

macroblock ordering and multiple reference frames. But they are mainly focused on source

encoder and bring more complexity and delay at the same time. The forward error control

coding techniques reduces the channel capacity and also has error recovery ability

limitations. Automatic Retransmission reQuest (ARQ) increases the delay and is not

suitable for the applications such as conversational and multimedia streaming services with

constrains on real-time delay and jitter. For the low delay applications, an indispensable

method is to perform error concealment as post-processing in the decoder side.

1.4 Thesis Organization

 11

This thesis is organized as follows. At first, the overview of the deblocking filter and

review of error concealment are described in Chapter 2. Chapter 3 gives the details of the

architecture design of deblocking filter for high-definition applications. Then we propose an

in-loop/post-loop filter for multi-standard decoder based on the high-throughput design.

Further, a new error concealment algorithm, error- concealed deblocking filter, which is

based on the algorithm of deblocking filter standardized by H.264/AVC, is proposed for

mobile applications in Chapter 4. Finally, the implementation details, summary and

conclusion are presented in Chapter 5 and Chapter 6, respectively.

 12

Chapter 2
Algorithms for Deblocking Filter and
Error Concealment

2.1 Deblocking Filter for H.264/AVC

As we discussed in the previous chapter, the deblocking filter is applied to all 4x4

block edges of one frame due to the use the 4x4 DCT and possible 4x4-block size motion

compensation. Based on the macroblock-based coding, the macroblocks in a picture are

processed each by each in a raster scan. And for each macroblock, the deblocking filter

process has two components, luma and chroma, separately. As shown in Figure 2.1, the

luma edges are shown with solid lines and chroma edges are shown with dashed lines.

Figure 2.1: The edges applied to deblocking filter in one MB.

For each macroblock, vertical edges are filtered first, from left to right, followed by the

horizontal edges from top to bottom. Deblocking filter is performed on four 16-sample

 13

edges for luma and two 8-sample edges for each chroma as shown in Figure 2.1. Hence, the

total number of samples applied by deblocking filter equals 192. The computational time of

deblocking filter becomes longer for the applications with high resolution video.

2.1.1 Adaptivity of Deblocking Filter in H.264/AVC

As we mentioned in previous chapter, the complexity of deblocking filter is mainly

based on the high adaptivity on each block edge and sample level. The deblocking filter in

H.264/AVC is adaptive in several levels; on the block-edge level, boundary strength (BS) is

determined according to the location of edge, intra/inter mode, frame/field mode, absolute

difference of motion vectors, transform coefficient levels and so on. Then, the deblocking

filter uses different 1-D filter to smooth the block edge adaptively according to BS. On the

sample level, correlation in pixel domain and quantizer-dependent thresholds can turn off

the deblocking filter for each sample. Last, on the slice level, encoder-selectable offsets can

control the property of deblocking filter by reducing the amount of filtering or increasing

the amount of filtering.

2.1.1.1 Block-edge Level Adaptivity

As shown in Figure 2.2, for each edge between two 4x4 luma block, the BS is assigned

by an integer from 0 to 4 according to the decoding information, such as macroblock edge,

intra/inter mode, frame/field mode, absolute difference of motion vectors, transform

coefficient levels and so on. As the BS is assigned to 4, the deblocking filter allows

strongest filtering to eliminate the blocking effect due to Mach band effect in the boundary

of intra-coded MB. The value of BS equals 0 means that the block edge between adjacent

two blocks has no filtering. For BS equals 1, 2 or 3, the normal filter mode is applied. While

the value of BS determine the maximum modification on sample value caused by filtering.

The detail of correlation between BS and filtering is discussed in the section.

Actually, the decision of BS is more complex for the case of B slice type or

 14

macroblock adaptive frame filed coding. For the case of B slice type, the motion vector

comparison of B slice type consists of forward motion vectors and backward motion vectors.

Besides, the decision of BS is also influenced by the of reference frame. For the case of

macroblock adaptive frame/field coding (MBAFF), the frame/field mode of MB also has

the influence on BS decision. The threshold of motion vectors also modified from 4 to 2

when the MB is coded as filed mode and the edge belongs to horizontal edge.

�����3����

�� ���&�%�%

�%-����� +��

*�(�%��1�����'

�����3�&�� �����

����4����&�����&��� �

������

����������������

��������%�3

������5��������������

��������%�3

6�
�.�/� � ��
�.3/�6�

≥

'07
'078'07�

'07$ '079

�%-��*� :���� :��

�%;�&�� �*��&�

<

<<

<

<

<

=

=

=

=

=

=

Figure 2.2: The simple vision decision flow of boundary strength without MBAFF.

2.1.1.2 Sample Level Adaptivity

Generally, the blocking effects do not exist everywhere in a frame. To preserve the

sharpness in image, the ability of distinguishing the artificial edges from actual edges is

necessary. Hence, the deblocking filter in H.264/AVC has the adaptivity on sample level

using the image property in pixel domain and quantizer-dependent thresholds, > and ?.

 15

Figure 2.3: Samples across a 4x4 block boundary.

As shown in Figure 2.3, for the adaptivity on sample level, the neighboring pixels on

each sample edge is loaded and analyzed with the quantizer-dependent thresholds. The

sample edge is filtered only when the following conditions are true.

0 0

1 0

1 0

! 0
()

()

()

BS

Abs p q

Abs p p

Abs q q

α
β
β

=
− <
− <
− <

The quantizer-dependent thresholds, > and ?, are table-derived according to index

values that dependent on the average quantization parameter (QP) over the edge and

encoder selected thresholds, FilterOffsetA and FilterOffsetB, as shown in Eq. (2.1) and

(2.2).

()3 0,51, avindexA Clip qP FilterOffsetA= + (2.1)

()3 0,51, avindexB Clip qP FilterOffsetB= + (2.2)

The clip3 operation limits the value of index from 0 to 51. With the index values, the

thresholds are determined from the following table standardized by H.264/AVC.

Table 2.1: Look-up table for thresholds according to index values.

 Generally, the blocking effect is serious when the QP is larger, since the coding errors

increases with QP. Thus, the thresholds also increase with QP (index valued is proportional

to QP) to eliminate the blocking effect caused by block-based compression tools as shown

in Table 2.1.

 16

Table 2.1 (concluded): Look-up table for thresholds according to index values.

2.1.1.3 Slice Level Adaptivity

On the slice level, the encoder can decide the values of FilterOffsetA and FilterOffsetB

to adjust the values of thresholds (see the Eqs. (2.1) and (2.2)), > and ?, for different video

contents. These offset values are transmitted in slice header to control the property of

deblocking filter. As compared to the zero offset, the amount of filtering increases with the

positive offset values or decreases with negative offset values. For the video with large

amount of sharpness in detail, the encoder may select the negative offset values to preserve

the sharpness in image, since there are fewer blocking effects for high-resolution video

content. On the other hand, for the lower-resolution video, the encoder may choose the

positive offset values due to the obvious blocking effect caused by coding errors to improve

the subjective quality.

2.1.2 Filtering Process of Deblocking Filter in H.264/AVC

Two filtering modes are defined and selected according to BS that we discussed in

previous section in H.264/AVC. The strongest mode is used when BS is assigned to 4;

normal mode is used otherwise (BS = 1, 2 or 3).

2.1.2.1 Normal Mode of Deblocking Filter with BS Less than 4

Up to 2 pixel values at each side of edge can be filtered for luma and 1 pixel value for

chroma as shown in Figure 2.4.

 17

Figure 2.4: Filtered sample in normal filter mode of H.264/AVC.

The values of p’0 and q’0 are derived with two steps. First, the value of @ is calculated

as shown in Eq. (2.3). After that, the two neighboring pixels (p0 and q0) plus or subtract the

value of @ to eliminate the existing blocking effect as shown in Eq. (2.4) and Eq. (2.5).

()() ()()()()0 0 1 13 , , 2 4 3C CClip t t q p p q∆ = − − + − +� � (2.3)

()'
0 01p Clip p= + ∆ (2.4)

()'
0 01q Clip q= + ∆ (2.5)

The threshold of tC is derived as follows.

()() ()()0

0

?1: 0 ?1: 0 ,

1 ,

C p q
C

C

t a a luma sample
t

t otherwise

β β� + < + <�= �
+��

 (2.6)

The threshold tC0 is specified in Table 2.3 according to the values of index A and BS.

And the two thresholds, ap and aq, are derived as shown in Eq. (2.7) and Eq. (2.8).

()2 0pa Abs p p= − (2.7)

()2 0qa Abs q q= − (2.8)

Table 2.2: Value of filter clipping variable tC0 as a function of indexA and BS.

 18

Table 2.2 (concluded): Value of filter clipping variable tC0 as a function of indexA and BS.

 For the normal filter mode, deblocking filter has spatial adaptivity here according

to the pixel values and threshold ?. The filtering of p1 and q1 are applied when the value of

ap or aq is less than the threshold ? in the case of luma sample separately and the equations

used for p1 and q1 are almost the same as the equations used for the pixels, p0 and q0, as

shown in Eq. (2.9) and Eq. (2.10).

()() ()()()1 1 0 0 2 0 0 1' 3 , , 1 1 1 1C Cp p Clip t t p p q p= + − + + + −� � � (2.9)

 ()() ()()()1 1 0 0 2 0 0 1' 3 , , 1 1 1 1C Cq q Clip t t q p q q= + − + + + −� � � (2.10)

 As we discussed in previous section, the normal filter mode of deblocking filter

smoothes the artificial edges with a modification value (@) when BS is less than 4. And

from the Table 2.2, we can see the maximum modification value is quite small when QP is

less than 40. Besides, only up to 4 pixels are filtered per block edge in sample level.

2.1.2.2 Strong Mode of Deblocking Filter with BS Equals 4

The filtering process uses strong filter mode in H.264/AVC when BS equals 4. From

Figure 2.5, at most 6 pixels are modified per edge in case of luma sample or 2 pixels are

modified in case of chroma sample.

Figure 2.5: Filtered samples in strong filter mode in H.264/AVC.

The methods used for filtering processing with strong filter mode in H.264/AVC are

similar to weighting averaging method. The values of filtered pixels equal the average of

 19

neighboring pixels multiply specified weightings as shown in Eqs. (2.11) to (2.16).

()
()

 2 1 0 0 1
0

1 0 1

2 2 2 4 3, . (2.17)
'

2 2 2 ,
p p p q q Eq is true in luma

p
p p q otherwise

+ × + × + × + +��= � × + + +��

�

�

 (2.11)

()
()

 2 1 0 0 1
0

1 0 1

2 2 2 4 3, . (2.18)
'

2 2 2 ,
q q q p p Eq is true in luma

q
q q p otherwise

+ × + × + × + +��= � × + + +��

�

�

 (2.12)

() 2 1 0 0
1

1

2 2, . (2.17)
'

 ,
p p p q Eq is true in luma

p
p otherwise

+ + + +�
= �
�

�

 (2.13)

() 2 1 0 0
1

1

2 2, . (2.18)
'

 q ,
q q q p Eq is true in luma

q
otherwise

+ + + +�
= �
�

�

 (2.14)

() 3 2 1 0 0
2

2

2 3 4 3, . (2.17)
'

 ,
p p p p q Eq is true in luma

p
p otherwise

× + × + + + +�
= �
�

�

 (2.15)

() 3 2 1 0 0
2

2

2 3 4 3, . (2.18)
'

 ,
q q q q p Eq is true in luma

q
q otherwise

× + × + + + +�
= �
�

�

 (2.16)

Adaptivity is applied in spatial domain with strong filter mode here. For the two pixels,

p0 and q0, which are closest to the edge, there are two weighting sets used according to the

pixels characters and thresholds, > and ?. Further, the other four pixels (p1, p2, q1 and q2) are

filtered only when the Eq. (2.17) or Eq. (2.18) is true separately.

() ()()0 0& & 2 2pa Abs p qβ α< − < +� (2.17)

() ()()0 0& & 2 2qa Abs p qβ α< − < +� (2.18)

 In summary, we can see adaptivity in variable levels and different domains. The

adaptivity in slice level, 4x4 block size edge level and sample level determine if the edge is

artificial edge or actual edge and which filter mode is used according to BS. There are

different equations used to filter the pixels across the edge even the filter mode is

determined. That is the major reason for high complexity of deblocking filter in H.264/AVC

and it contributes about one-third of the computational complexity of the decoder.

 20

2.2 Error Concealment

For a compressed video which uses variable length coding and some predictive coding,

an error of one bit not only changes values of pixels, but also makes a lot of trouble for

following decoding due to unexpected value of syntax elements. Therefore, a great

degradation of video quality will be resulted. This may lose a macro block, a slice, even a

total frame. The higher compression of a video standard has, the more serious problem is. In

order to solve this problem, lots of error concealment algorithms have been proposed either

in the spatial domain or temporal domain. The basic concept of error concealment is to

predict the lost MB by the spatially neighboring MBs due to the observation of high

spatially correlation in small areas either MB’s motion vectors or pixels. By doing so, the

lost MBs will be reconstructed and the quality of video will be improved.

The main different features between H.264/AVC and the previous coding standards are

the motion estimation scheme and the multiple reference frame mode as shown in Figure

2.6. Unlike the previous coding standards, the motion estimation has seven different block

division sizes.

0

16x16

MB-Modes

0

8x8

8x8-Modes

16x8

8x4

8x16

4x8

8x8

4x4

0

1

0

1

0 1

0 1

0 1

2 3

0 1

2 3 t-5 t-4 t-3 t-2 t- 1 t t+1

Figure 2.6: Variable block size for motion vectors and multiple reference frames.

Due to the variable block size of motion estimation and multi-direction intra prediction,

the algorithms of temporal and spatial error concealment used for the previous standards is

not suitable for the H.264/AVC any more. Therefore, some modifications of error

concealment algorithms have been proposed recently. The review of error concealment for

video is presented in the following section.

 21

In this section, some algorithms are shortly described. And comparison of complexity

and performance between these algorithms will be described. Based on the continuity in one

frame, the lost pixels will be reconstructed by the spatially neighbor pixels with some

weighting. And it’s the same as motion vectors. According to the statistical observation that

motion vectors of spatially neighboring areas are highly correlated, the motion vector of a

lost MB can be easily predicted from a spatial neighbor MB’s motion vectors.

2.2.1 Spatial Error Concealment Algorithms

The error concealment primarily uses the high correlation of neighboring pixels in

spatial domain to reconstruct the corrupted pixels. The algorithms widely used in spatial

error concealment (SEC) are bilinear interpolation (BI) and directional interpolation (DI).

Generally, BI is suitable for texture due to the property of smooth, and DI has better

performance if there are real edges exist in the corrupted MB. Hence, an algorithm which

combines the DI and BI with mode decision has been presented. It conceals MB with BI to

avoid the creating false edges or with DI to preserve the real edges according to the

directional entropy of neighboring edges.

2.2.1.1 Bilinear interpolation

Figure 2.7: Bilinear interpolation

 22

As shown in Figure 2.7, BI replaces each missed pixel with the weighting average of

nearest pixels (1 2 3 4, , ,Y Y Y Y) in the neighboring MBs with four directions. The weights they

used here are inversely proportional to distance of the missing and raw pixels, (,) (,)i j x yd → as

shown in Eq. (2.19). And only “Correctly received” neighboring MBs are used for

concealment if at least two such MBs are available. Otherwise, neighboring “Concealed”

MBs are also used in the averaging operation.

{ }
(,) (,)

(,)
1 2 3 4

(,) (,)
(,)

(,) 15
(,) , , , , , (,)

i j x y
i j N

i j x y
i j N

Y i j d
Y x y N Y Y Y Y x y lost intra MB

d

→
∈

→
∈

� �× −� �
= = ∈
	

	
(2.19)

2.2.1.2 Directional Interpolation

DI consists of edge detection, edge direction ranking and 1-D interpolation [4]. In the

first step, the edge detection uses Sobel mask to determine the gradient and edge direction

in the neighborhood of a corrupted MB. With the information, edge direction ranking would

determine the possible edge through the corrupted MB. Finally, the 1-D interpolation along

the specified direction is applied to conceal the lost MB with source pixels and weights that

is inversely proportional to the distance of missing and raw pixel as shown in Figure 2.8.

Figure 2.8: Direction interpolation.

 23

2.2.1.3 Interpolation with Mode Decision

In order to preserve the real edges exist in corrupted MB but avoid the false edge

creating, the hybrid interpolation method is presented [5]. A complex algorithm combines

the DI and BI with mode decision to reconstruct the corrupted MB more correctly.

Figure 2.9: Block diagram of the proposed SEC approach. [5]

The SEC switching algorithm used the entropy of the edge direction data in the

neighboring MBs which are provided by the edge detection component of the DI to switch

the algorithm used between DI and BI. Generally, there is no specific edge direction when

the directional activity is large since edges of different directions interact with each other.

2.2.2 Temporal Error Concealment Algorithms

For the corrupted MB with inter coding, the efficiency of error concealment is usually

better than the intra-coded MB due to the reference frame. Generally, the main purpose of

temporal error concealment (TEC) is to estimate the proper motion vector (MV) for the

corrupted MB to reconstruct with pixels in reference frame. The estimated MV may be zero,

the MVs of an adjacent correctly received MB, average or median of all such available

adjacent MVs. Here we make a review of temporal error concealment algorithms widely

used for previous video standards.

 24

2.2.2.1 Temporal Replacement

Temporal replacement is the lowest complex in temporal error concealment algorithms.

The process of temporal replacement is quite simple. Each lost MB is just the copy of the

spatially corresponding MB in the previous frame. It means that the lost MB’s motion

vector is zero.

2.2.2.2 Boundary Matching Algorithm

Instead of using the zero, average or median over all neighboring MB’s MVs, the

Boundary Matching algorithm uses the MV which belongs to one of neighbor MB’s MV to

make the block boundary smooth as shown in Figure 2.10 [6]. The winning prediction MV

is the one which minimizes the side match distortion dsm. As shown in Eq. (2.20), dsm is the

sum of absolute Y pixel value differences of the IN-block and OUT-block pixels.

Figure 2.10: Boundary matching algorithm.

{ }, , , 1

min arg 1 ˆ()
dir top bot left right

N
dir IN OUT

sm j j
j

d Y mv Y
N∈ =

= = −	 (2.20)

Generally, the algorithm of boundary Matching can be extended to variable block size

due to the variable block size used for motion vectors in H.264/AVC.

 25

2.2.2.3 Motion Vectors Recovery Based on Polynomial Model

The MVs have some correlation in small area as the same as the correlation pixels

have. To describe the change tendency of the MVs within a small area, the polynomial

model is used to result in an approximate function. Hence, we can estimate the lost MVs in

corrupted MB with the polynomial function which is used to describe the correlation of

MVs in the small area as shown in Eq. (2.21)

0 1() m
m mP x a a x a x= + + +� (2.21)

1
rV1

rV1
rV1

rV4
lV3

lV2
lV1

lV

Figure 2.11: Motion vectors across the neighboring and corrupted MB in one-dimensional.

With the MVs in one-dimensional and corresponding coordinates listed in Table 2.3,

we can calculate the unknown coefficients (0 1, , , ma a a�) to establish the Eq. (2.21) to

describe the correlation of those correct MVs (, 1, 2,3,4l
nV n = or , 1, 2,3,4r

nV n =) as close

as possible. Hence, we can estimate the lost MVs (, 1,2,3, 4nMv n =) with approximate

correlation function more correctly.

Table 2.3: Corresponding coordinates of motion vectors.

Besides, there are a lot of TEC algorithms presented due to the coding tools in

H.264/AVC. The multi-frame TEC approaches have also been reported that used more than

one past/future frame to conceal with the cost of increased complexity and delay.

 26

2.2.3 Summary

So far, many researches focus on EC for the corrupted video bit-stream over an

error-prone or wireless channel. Most of them have assumption that erroneous or

incomplete slices are not decoded but discarded before decoding to simplify the simulation

of proposed algorithm. The EC can be divided into two groups: spatial and temporal error

concealment (SEC and TEC). The SEC exploits the neighboring correct pixels to recover

the corrupted MB with the property of high correlation between the closing pixels. This

kind of EC is used for corrupted MBs in I frames or I MBs in P frames. Unlike the SEC,

TEC is explored to estimate the lost motion vectors (MV) in corrupted MBs and usually

have better concealing efficiency than SEC.

Generally, the error scheme for video standards uses SEC and TEC adaptively

according to the MB type. However, TEC is not always adequate for concealing errors in

video sequences. This is especially true for video sequences with irregular motion, abrupt

scene changes, and intra-coded image frames. To the viewer, poor spatial concealment of

error regions leads to the error propagation in the subsequent frames.

Hence, compared to temporal EC, spatial EC is of great importance and challenges.

Thereafter, we focus on the spatial EC for concealing corrupted region of image frames.

 27

Chapter 3
Design of High Throughput Deblocking
Filter

3.1 Design for High Throughput and High Resolution

Applications

H.264/AVC is the newest video coding standard of Joint Video Team (JVT) [7].

H.264/AVC has achieved significant rate-distortion efficiency by many useful tools.

Deblocking filter placed in the prediction loop is one important tool to remove the blocking

artifacts. Generally, the deblocking filter contributes about one-third of the computational

complexity of the decoder [1], and it’s the system bottleneck in terms of processing cycles.

Compared to the loop filters in H.263 or MPEG-4/H.263 post filters [8], the deblocking

filter in H.264 operates each filter process on 4x4 block structure instead of 8x8 block

structure. Therefore, large amount of computation and memory access are its penalty for the

real-time decoding demand.

First, we modify the processing order of filtered block boundaries without affecting the

data dependency to reduce the number of memory access. In the deblocking filter of

H.264/AVC, vertical edges are filtered first from left to right, and then horizontal edges are

filtered from top to bottom. For each edge, 4x4-block data is read from memory four times

and wrote back to memory four times with separate filtering order. To reduce the memory

access and the processing cycles, we propose a hybrid filtering method to re-schedule the

filter ordering and reuse the pixel value on the different directions.

 28

Besides, we make a decision of our memory organization between prediction unit and

deblocking filter in system level. Instead of LOP in [9], we exploit the block ordering which

is standard-defined to decide the Column-of-Pixel (CoP) memory organization. We can

reuse the neighboring data in intra or inter prediction unit and reduce the number of

memory access by using CoP.

Figure 3.1: The different data arrangement in the deblocking filter (a) and prediction unit

(b).

3.1.1 Memory Organization between Prediction and Loop-filter

Different memory organization leads to the different memory access and processing

latency. The input data of deblocking filter is just the output data of prediction unit, and plus

the residual data. To improve the overall processing throughput, we use two content

memories between prediction and deblocking filter. Hence, the video decoder can process in

MB-level. Further, we apply slice memory to store neighboring data to avoid accessing the

frame buffer out of system.

3.1.1.1 Memory Organization

 29

We use one Column-of-Pixel (CoP) as the data word size in each memory address. In

Figure 3.1(a), there are two policies for data arrangement. The Row of Pixel (RoP) is

labeled with the case of L1 and 2 blocks, and the Column of Pixel (CoP) is in the case of U1

and 1 blocks. Each row or column of pixel contains four pixels with a total of 32-bit wide.

For the deblocking filter, RoP (i.e. LOP in [9]) is a straightforward method to arrange the

pixel value in the vertical edge filtering. However, it will induce extra memory access when

applying to the horizontal edge filtering. By the same way, this situation is also occurred in

the CoP arrangement. Different arrangements of CoP or RoP also affect the number of

memory access in the intra or inter prediction unit. In Figure 3.1(b), the standard-defined

4x4 block ordering is labeled in each block. There are strong dependencies in the horizontal

block order. Therefore, we choose CoP data arrangement to reuse the pixel value in the

block-boundary with white-circle region. Further, we list the hardware profiling in terms of

memory access in Table 3.1. The evaluated cycles with CoP or RoP data arrangement are

almost the same in the deblocking filter unit. The reason is that the filtering process will be

performed on not only horizontal edge but also vertical edge. However, there are

improvements in the prediction unit when applying the CoP arrangement. Therefore,

compared to the RoP data arrangement, we choose the CoP data arrangement in each MB to

reduce the number of memory access.

Table 3.1: The analysis of average memory access per luma MB.

Memory Arrangement Intra Prediction

of memory access
Inter Prediction De-blocking Filter

Improvement
(RoP-CoP)/RoP

CoP

RoP

40

48

17%

313

432

28%

156

156

0%

 30

3.1.1.2 Slice and Content Memory

The content memory is used to store the unfiltered pixel value in luma or chroma block.

The data word-length of memory is based on the 32-bit of CoP, and the address depth of

content memory is decided by the YUV format (4:4:4, 4:2:2 or 4:2:0). For 4:2:0 format,

there are 16 blocks of luma and 8 blocks of chroma should be stored. Therefore, the size of

content memory is (16+8)*4 � 32 in total. Further, the data address is increased as the

standard-defined block ordering of Figure 3.2(b). The grid region is stored in the slice

memory and the dotted region is stored in the content memory.

The slice memory is used to store the neighboring pixel. To reduce the pin counts and

avoid to access frame buffer, we keep the blocks which are not filtered completely. Further,

the address depth is decided by the frame width. In Figure 3.2(a), considering the frame size

with M�N, each square represents the 16x16 MB. Each MB contains the 16 points, and 4x4

pixels within each point. When the filtering process is performed from the MB index of B to

B+1, the pixel data within upper and left neighbor will be updated as the arrows show. The

shaded region should be kept when the filtering index is B+1. Therefore, the slice memory

is used to keep the pixel value of upper and left neighbor and contains the size of (2N + 20)

�� 32 for the 4:2:0 format.

......

......

......

frame width = N

frame
height = M

Upper
Neighbor

Left
Neighbor

16x16
MB

.
....
....

.

.

.... 0 1

2 3

4 5

6 7
8 9

10 11

12 13

14 15

16 17
18 19

20 21

22 23

(a) (b)

B B+1

Figure 3.2: The slice memory with grid or shaded region and the content memory with

black-dotted region.

 31

211 2

3

4

(a) (b)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Figure 3.3: The proposed hybrid scheduling method.

3.1.1.3 Hybrid Scheduling

To reduce the overhead with the reloaded data when switching the filtering edge from

horizontal to vertical, we propose a hybrid filter scheduling to re-schedule the

standard-defined edge. The deblocking filter in H.264/AVC is performed in the vertical

edge first, and then the horizontal edge. Based on the standard-defined filter ordering, we

can deduce the filter order on each 4x4 block as Figure 3.3(a). In the filter ordering of one

4x4-block, left edge is filtered first and lower edge is the last one. We propose a novel filter

ordering to schedule our filter process on each edge as Figure 3.3(b). Each filter order of

one block obeys the rules of the left edge first and the lower edge last. Compared to the

traditional scheduling [9][10], our proposed method prevents the re-access for different

direction and combine the vertical and horizontal filter at the rule of standard-compliance.

We use four 4x4 pixel buffer to keep the temporary data in our hybrid scheduling

process. In Figure 3.4(a), each MB has been partitioned into two main parts (i.e. Loop

Filter-MB-Upper or Lower) to reduce the kept buffer size. Each part is composed of eight

time-instances to process the filtering procedure in Figure 3.4(b). The grid region represents

the neighboring block and the shaded region is the position of kept data buffer with the size

 32

of four 4x4 blocks. There is no need to keep the neighboring block as the data buffer in each

time instance (except for the initial state t1 since we use the CoP data arrangement) because

the neighboring block and current MB are located at different memory module. Both data of

them can be accessed at the same time instance and sent to the input of edge filter.

+=LF-MB
LF-MB-U

LF-MB-L

t1 t2 t3 t4

t5 t6 t7 t8

(a)

(b)

 Figure 3.4: The partitioned MB and each time instance when applying the hybrid

scheduling method.

We derived the filter ordering of the proposed hybrid scheduling method in Figure

3.4(b). Each bold line represents the edge to be filtered in each time instance. The filtered

ordering complied with the hybrid scheduling in Figure 3.3(a) at each time instance (t1~t8).

By the same way, the proposed scheduling is also performed in the 4x4-block of chroma.

The main problem of the deblocking filter in H.264/AVC is the considerable amount of

memory access and processing cycles. To apply the proposed hybrid scheduling into the

overall system and enhance the system throughput, we propose a high-throughput

architecture design of deblocking filter.

3.1.1.4 Proposed Architecture of Deblocking Filter

Figure 3.5 shows the proposed design with block diagram and data flow representation.

The size and organization of content and slice memory have been presented in previous

section. We choose CoP memory arrangement to improve the pixel data utilization and

 33

reduce the memory access in the prediction unit. The external frame buffer is an off-chip

memory, and the size is decided by the frame size and the frame number for the long-term

prediction. The shaded-arrows denote the data flow inside the deblocking filter unit, and the

black-arrows denote the data flow outside. The pixel buffer is used to store the intermediate

pixel value when applying the proposed hybrid scheduling. It contains the four 4x4 pixel

values. Moreover, in each time instance, it locates at the position as the shaded regions of

Figure 3.4(b) shows. The edge filter is a simple parallel in and parallel out process. It

exploits the 3, 4 or 5-tap filter to attenuate the blocking artifacts due to the motion

compensation or prediction error coding in each block boundary. More detailed algorithms

are described in [1].

Intra/inter
Prediction

Content
Memory

Slice Memory

Pixel Buffer
(4 4x4 block)

E
dg

e
Fi

lte
r

External
Frame
Buffer

De-Blocking
Filter Unit

p0~3

q0~3

p0~3

q0~3

�
�

Control Unit

+IDCT

Figure 3.5: The block diagram and data flow of the proposed design.

The detailed architecture for the deblocking filter unit of Figure 3.5 has been shown in

Figure 3.6. All the data signals are 32-bit wide and contain the LoP of memory organization

discussed in previous section. There are four input signals {wt_B_0, wt_B_1, wt_B_2,

wt_B_3} to write the buffers with 4 blocks. Further, there are three output signals {rd_B_0,

rd_B_1, rd_B_2} to read three of them to perform the edge filter, and then write to the

frame buffer, pixel buffer or slice memory. In addition, the write result of the 4 blocks is

shown in Figure 3.4(b) to achieve the hybrid filtering and avoids the extra access from the

filtering of different direction. By the same naming rule, each data flow represents the

 34

writing/reading to/from the storage module including slice memory, content memory or

frame buffer.

E
dg

e
Fi

lte
r

Pixel Buffer
(4 4x4 block)

Control Unit

Content
Read

Slice
Read

Slice
Write

Frame
Write

MUX0

M
U

X
1

P_Pixel

Q_Pixel

P_Pixel

Q_Pixel

�� ��
�� ��

wt_B_0

wt_B_1

wt_B_2

wt_B_3

rd_B_0

rd_B_2

rd_B_1

wt_F_0

rd_S_1

wt_F_1

M
U

X
2

wt_S_0

w
t_S

_2

wt_S_1
{bS,C0,alpha..}

ctrl0

ctrl1

ctrl2

{ctrl0~2, bS,C0,alpha..}

32-bit wide in the
whole data path

32

32

32

32

rd_C_0

rd_S_0

Figure 3.6: The detailed architecture for the deblocking filter.

After the behavioral illustration of pixel buffer, we use one MB with 48 edges in

Figure 3.3(b) as an example to illustrate the other behavior of Figure 3.6. The behavior of

Figure 3.6 can be partitioned into two main parts.

Write Process is a writing mechanism through the signal {wt_S_0~2, wt_F_0~1,

wt_B_0~3}.

Read Process is a reading mechanism through the signal {rd_S_0~1, rd_C_0,

rd_B_0~2}.

For writing to slice memory, wt_S_0 is used to write the filtered data into the slice

memory, and it will be activated only on the edge 6, 10, 14 and 16 (see Figure 3.3(b)). For

the edge 6, the lower block will become the next neighboring block of LF-MB_L in Figure

3.4(b). The same condition is also applied on the edge 10, 14 and 16. Further, the wt_S_1

will be activated on the edge 31, 32, 40 and 48. The wt_S_2 is performed to write the dotted

block data of Figure 3.3(b) into the slice memory. For the writing signal of frame buffer,

wt_F_0 is used to write filtered data into the external frame buffer. It will be activated on

each filtering of horizontal edge except for the edge of activated signal wt_S_1 and wt_B_0,

 35

since wt_F_0, wt_S_1 and wt_B_0 have the same root-signal of P’_Pixel. For the edge 6 as

an example, the upper block of edge 6 is the P’_Pixel of edge filter’s output. This block will

write to the external frame buffer since it has been filtered completely for all the edges of

{1,3,5,6}. The wt_F_1 is performed in the same way except that the input signal comes

from the output of pixel buffer.

For the reading process of slice memory, rd_S_0 is only activated on the edge of

{1,2,17,18,31,33,34,39,41,42,47}. For the edge 1, the rd_S_0 is the input of pixel buffer. We

need to keep the pixel value since we apply the CoP arrangement of each data. That’s why

we keep the left neighboring as the pixel buffer in the t1 of Figure 3.4(b). However, for the

vertical filtering of edge {5,9,13,15,21,25,29,37,45}, it can directly feed through the edge

filter by rd_S_1. Finally, compared to the existing approach, the content memory of our

proposed design is only used for read. There is no need to store the filtered result into the

content memory in one direction, and read them in another direction. By our proposed

hybrid scheduling, we combine the horizontal and vertical filtering process in one filtering

flow. Therefore, we need 4 blocks at most to perform the hybrid filtering.

3.1.2 Simulation Results

In Table 3.2, based on the proposed architecture for high throughput deblocking filter,

the evaluated cycle counts are 148 cycles for Luma block and 88 cycles for chroma block.

Specifically, we need 8 cycles (LF-MB-U + LF-MB-L) in the initial states. Further, there are

4x32 cycles to filter each horizontal and vertical edge in one luma MB. Finally, we need 20

cycles to write the filter result for the edge {16,30,32} and incur 3 cycles due to the data

hazard in our filtering process. In sum, we need 148 (i.e. 8+4x32+12) cycles to filter

horizontal and vertical edge of luma MB. By the same analysis, we need 88 (i.e.

4+4x8+8+=44 for each chroma) cycles to filter the horizontal and vertical edges in chroma

block. Therefore, there are total 243 cycles with extra 7 cycles for data hazard.

 36

Table 3.2: The cycle analysis within the deblocking filter unit.

Cycle Counts
Vertical / Horizontal

[10]����s basic
Seperated

[9]
Seperated

Proposed
Hybrid

Luma
128
200

Horizontal
Vertical

104
110 148

Chroma
64
112

Horizontal
Vertical

N/A
N/A 88

Total 504 214 + N/A 236+7

The simulation results are summarized in Table 3.3. The target technology is 0.18�m,

and the synthesized gate count is 19.64K excluding the slice and content memory. Two

single port SRAM is organized to store the content of YUV data and the neighboring data.

They contain the size of 96�32 and (2N+20)�32 where N means the width of the coded

frame.

Table 3.3: The comparison of architecture and processing cycles for the deblocking filter in
H.264/AVC.

We use “foreman” as our test sequence. The evaluated cycle counts per MB are 243

cycles. Further, compared with the existing approach [9][10], our proposed architecture can

save about one-half of processing cycles per MB. We use the hybrid-scheduling scheme to

combine the horizontal and vertical filtering process, and slightly increase gate counts to

keep the intermediate pixel value. With a pipeline methodology, Figure 3.7 shows the

average processing cycles per one 16x16 MB with the decoding of first frame. Originally,

the deblocking filter is a system bottleneck in terms of processing cycles. Based on the

 37

proposed architecture, we can greatly reduce the processing cycles and improve the system

throughput (i.e. 350cycle/MB = 9523MB/frame with 30fps@100MHz). Therefore, this

processing capability can real-time decode 1080HD (1920x1088, i.e. 8160MB/frame) or

higher with 4:2:0 format when the working frequency is 100MHz.

cycle count / 16x16 (MB)

Pipeline Stage i

CAVLC

Intra Prediction

Inverse Transform

De-blocking Filter

~350

96

96

~250 ~500

Figure 3.7: The average processing cycles in pipeline stage i.

3.1.3 Summary

We present a Column-of-Pixel (CoP) memory arrangement to reuse the pixel between

the deblocking filter and the prediction unit. Further, we propose a hybrid scheduling to

reduce the processing cycles and improve the system throughput. The main idea is that we

use four pixel buffers to keep the intermediate pixel value and perform the horizontal and

vertical filtering process in one hybrid scheduling flow. Moreover, the proposed design is

implemented on the hardware architecture. Based on the working frequency of 100MHz, the

synthesized gate counts are very small. Finally, the proposed architecture can easily achieve

the real-time decoding with 1080HD@30fps in 4:2:0 format.

3.2 Design for Multi-standard Applications

3.2.1 Motivation

Various video coding standards are in use recently. Traditional MPEG standards

support the features of backward compatibility. However, H.264/AVC [7] is the newest

video standard, and there is no backward compatibility of H.264/AVC to the former H.263

and MPEG-4 (Part-2) video coding standards. Therefore, the development of combined

 38

video coding standard is a must to meet the different system requirements. Both H.264/AVC

and MPEG-4 adopt the deblocking filter to eliminate the blocking artifacts. However, the

H.264/AVC adopts the deblocking filter as an in-loop process and the other standards adopt

it as a post-loop process. The detailed features of deblocking filter are listed in Table 3.4. To

provide the unique architecture for multiple video standards, we propose a hybrid scheme to

integrate the standardized in-loop filter and the informative post-loop filter. We call it as

loop/post deblocking filter.

Due to the non-standardization of post-filter [11], it provides high freedom to develop

a certain suitable algorithm for the integration with loop-filter. Based on the original

algorithm of 4x4 loop-filters, an 8x8 post-filter has been developed. We modify the filtered

ordering and the number of related pixel. Therefore, the modified post-filter can easily be

integrated with the 4x4 loop-filter. Simulation results also show that the proposed loop/post

filter incurs the penalty of slight PSNR loss (less than 0.05dB).

Table 3.4: Features of the deblocking filter in different standards.

De-blocking Filter
Standardization

In-loop
normative

Post-loop
informative

STANDARD H.264/AVC MPEG-4 (Annex F.3) H.263 (Annex J)

Filtered boundary 4x4 Edge 8x8 Edge 8x8 Edge

Filtered ordering Vertical edge first Horizontal edge first Horizontal edge first

No. of related pel (max.) 8 (4-pel per side) 10 (5-pel per side) 4 (2-pel per side)

3.2.2 Loop/Post Deblocking Filter

To reduce the cost overhead of deblocking filter for multiple standards, it is required to

develop a hybrid algorithm and unique architecture of deblocking filter. The video standards

of H.264/AVC and former MPEG adopt deblocking filter as in-loop and post-loop process

respectively. However, the performance improvement is very mild when applying the loop

filter as the post filter in MPEG-4. Therefore, we propose a hybrid algorithm to make a

compromise between the integration cost and the performance loss. Figure 3.8 shows the

 39

decision of our proposed loop/post filter. The proposed hybrid algorithm retains the original

loop filter due to the standardization in H.264/AVC. In addition, we modify the post filter

(marked as the underline in Table 3.5) to easily integrate into original loop filter design.

Table 3.5: Parameter selection of the proposed loop/post deblocking filter.

The proposed algorithm exploits the features of loop and post filters. It can be

partitioned into three main parts as identified in Table 3.5. In the filtered control, we retain

the filtered edge of 4x4 and 8x8 respectively. The reason is that the basic transformation

unit is located on the 4x4 sub-block and 8x8 block. Further, we modify the filtered ordering

in post filter to unify into a hybrid structure.

3.2.2.1 Mode Decision

There are several differences between the mode decision of loop and post filter as

shown in Figure 3.8. The loop filter is performed in the coding loop and controlled by the

syntax parser. As we discussed in previous sections, BS is determined according to

intra/inter mode, coded block pattern or motion vectors for each 4x4-block boundary. And

the value of BS ranges from 0 to 4. However, the post filter is applied after the video

decoder and can be considered as a post-processing unit. The variable used to decide filter

mode is not the same as BS and is calculated according to neighboring pixels per sample

edge. And the value of T2 and T3 are fixed experimented values. To merge the mode

decision, we retain the mode decision features of loop and post filter. Further, we modified

the mode decision of post filter into the 8-pixel related algorithm. Besides, the value of T2

and T3 are modified to dynamic values according to the syntax parser.

 40

9

$

�

8

9

�8

��

A

'0 �BC&�

0 ���-���%�

, ������%�

0DE����%�

E�����"

� ���- +

��� ����"

� ���- +

]

Figure 3.8: The mode decision used in in-loop filter and post-loop filter.

3.2.2.2 Filtering Mode

To combine the edge filtering between in-loop and post-loop filters, we modify the

default mode of post filter and apply the process of “bS=4” into the DC offset mode of post

filter. As shown in Figure 3.8, the filtering mode can be partitioned into strong and weak

mode. Since the strong filtering mode in post filter is similar to the one in the loop filter, we

apply the strong filtering mode instead of the original DC offset mode in MPEG-4 Annex

F.3 [11]. Further, we modify the approximated DCT kernel (i.e. [2 -5 5 -2]) into the [2 -4 4

-2] for the delta generation in post-loop filter. Therefore, we can exploit shifter instead of

constant multiplier. All the modification of post filter design can be summarized in the

underline of Table 3.5. In Figure 3.9, we show the architecture of weak filtering strength for

the detailed descriptions.

We implement a Pixel-in-Pixel-out edge filter (P-i-P-o Edge Filter) to integrate the

loop and post filters into unified architecture. From Figure 3.9, the incurred MUX is

exploited to switch different filtering functions. In the loop filter, the filtering algorithm of

H.264 is implied. The modified filtering algorithm of MPEG-4 Annex F.3 [11] is also

realized in the loop/post filter architecture. Therefore, the proposed loop/post filter is

suitable for the implementation of multiple video standards.

 41

Figure 3.9: The pixel-in-pixel-out filtering process with weak strength of the proposed

loop/post filter.

We implement an area efficient deblocking filter by exploiting the computational

redundancy between the loop and post filter. The proposed loop/post filter with weak

strength has been depicted in Figure 3.9 (only p0’, q0’ shown). The extra shaded regions are

allocated to perform the post filter on the original loop filter design. We partition the

proposed loop/post filter into three main phases. They are the phases of difference

generation, delta generation and the pixel generation respectively. The difference generation

phase is the pixel-difference initialization of edge filtering. After that, the delta generation

phase is performed to generate the delta metric between the un-filtered and the filtered pixel.

They use the CLIP operation to limit the delta value between UB (Upper Bound) and LB

(Lower Bound). The phase of pixel generation adds the unfiltered data to obtain the final

results.

3.2.3 Simulation Result

The target technology is 0.18�m, and the synthesized gate count is 21.1K excluding

embedded memory. Compare to the total hardware cost of in-loop and post-loop filter, the

proposal reduce about 30% hardware cost. We modify the post filter algorithm in [11] and

make a compromise between the integration cost and the performance loss. We use

 42

“Foreman” and “Stefan” as our test sequences. In Figure 3.10, the average performance

degradation of the modified post filter is less than 0.05dB as compared to the traditional

post filter [11]. In addition, the processing cycles of post-loop filter are identical to that of

in-loop filter because they use the same control flow.

��������	
���
�������������

��

��

��

��

��

�	

��

�		 �		 �		 �		 �		

�������� !"#�

�
�
�
�
�$
�
%
&
�'
�
�

$�("(#�'

$(#����)���

%(���)���

��������	
���
����*�(��������

��

��

��

��

��

�		 �		 �		 �		 �		

�������� !"#�

�
*
�(
�
�
�$
�
%
&
�'
�
�

$�("(#�'

$(#����)���

%(���)���

�(������	
���
�������������

��

�	

��

��

��

��

��

��

��

�		 �		 �		 �		 �		

�������� !"#�

�
�
�
�
�$
�
%
&
�'
�
�

$�("(#�'

$(#����)���

%(���)���

�(������	
���
����*�(��������

��

��

��

��

�	

��

��

�		 �		 �		 �		 �		

�������� !"#�

�
*
�(
�
�
�$
�
%
&
�'
�
�

$�("(#�'

$(#����)���

%(���)���

Figure 3.10: The performance comparison due to the modification of post filter.

3.2.4 Summary

An area-efficient and high-throughput deblocking filter has been presented to meet the

different requirements for multiple video coding standards. We modify the post filter

algorithm to make a compromise between hardware integration complexity and

performance loss. The proposal saves about 30% hardware cost as compared to total

hardware cost of in-loop and post-loop filter with penalty of slight performance degradation

which is less than 0.05dB.

 43

Chapter 4
Joint Architecture of Error-concealed
Deblocking Filter for H.264 Decoder

4.1 Design for Low-cost and Real-time Application for

video transmission

Of all modalities desirable for future mobile multimedia systems, high-quality motion

video over a reliable transmission is the most demanding. However, the transmitted visual

quality may suffer abruptly because the channel deteriorates due to fading, co-channel

interference, and signal attenuations. To deal with the transmission errors over an

error-prone channel, much effort has been invested to improve the error-robustness in the

source decoding procedures, such as error resilient and concealment tools.

4.1.1 Problem Formulation

So far, many researches focus on error concealment (EC) for the corrupted video

bit-stream over an error-prone or wireless channel. The EC can be divided into two groups:

spatial and temporal error concealment (SEC and TEC). Generally, the error scheme for

video standards uses SEC and TEC adaptively according to the MB type. However, TEC is

not always adequate for concealing errors in video sequences. This is especially true for

video sequences with irregular motion, abrupt scene changes, and intra-coded image frames.

To the viewer, poor spatial concealment of error regions leads to the error propagation in the

subsequent frames.

Hence, compared to temporal EC, spatial EC is of great importance and challenges.

 44

Thereafter, we focus on the spatial EC for concealing corrupted region of image frames.

For the SEC, it is significant to preserve the existing edges without creating new strong

ones. For the case, the algorithm of DI is given to prolong the edges entering to the

corrupted MB. But for the texture area, the performance of BI is better than DI. So the

algorithm which uses DI and BI with mode decision has been presented to improve the

visual quality according to the edge activities [5]. However, such kind of algorithm belong

to frame-based EC due to the thing that usage of pixels in four direction pixels. In order to

keep the neighboring macroblocks available, the encoder has to support the FMO. Besides,

the decoding system needs additional memory or local buffer to store the pixels on the

boundary of neighboring MBs. These algorithms which are widely used in I frames could

have an acceptable performance with FMO, but the performance would decrease a lots

without FMO. Here we propose a new SEC which only needs the pixels on the top and left

side stored in the slice memory used by deblocking filter [12]. The proposed SEC is

combined with deblocking filter to reduce the hardware cost and reuse the memory capacity.

4.1.2 Error-Concealed Deblocking Filter

As we know, the deblocking filter doesn’t work when the decoded MB is erroneous,

and the EC will not be activated when the decoded MB is correct. Based on the design

concepts, we combine the deblocking filter and EC to reduce hardware cost. Moreover we

limit the pixels used to conceal corrupted MBs to the top and left neighboring 4x4-blocks.

As shown in Figure 4.1, the pixels used in EC are the dotted 4x4-blocks stored in slice

memory [12].

The ECDF consists of edge detection, replacement, smoothing and deblocking filter

[12] which is based on our previous work. The ECDF filters all edges in a correct or

corrupted MB. In Figure 4.2, the grid blocks are additional parts for error concealment

capabilities and the signal, Corrupted MB, is transmitted from error detection. ECDF works

 45

as deblocking or EC according to the signal. The pixel buffer stores the pixels from content

memory or slice memory [12]. 1-D filter and boundary strength are the algorithms

standardized in H.264. The pixels Q on the right (bottom) side are replaced pixels in a

specified direction determined by edge detection. Therefore, the edges extended into the

corrupted MB can be preserved slightly. Further, we modify the algorithm of boundary

strength and filterSamplesFlag to reconstruct texture area well.

Figure 4.1: The dotted 4x4-blocks are stored in slice memory.
�

��*
��

&�
��

-
���� �����

��
��

	

Figure 4.2: The block diagram of ECDF. Dotted regions are additional parts for the

capability of error concealment.

 46

4.1.2.1 Edge Detection

() () { }

24
2size

dir. corr.n
dir.{ } i 0

8

4
min P i P i i 0,..., ,size 1, 2, 4

size

 �
�

� �

×π
=

� �� �
 �− ∈ ∈� ��

� �� �� �

	 (4.4)

In practice, Sobel mask is used to determine the magnitude of gradient and edge slope

of existing edge in the neighboring 4x4-blocks as shown in Eqs. (4.1), (4.2) and (4.3).

Further, the edge direction is determined by ranking the edge slope.

1, 1 , 1 1, 1

1, , 1,

1, 1 , 1 1, 1

1 0 1 1 2 1
2 0 2 , 0 0 0 ,
1 0 1 1 2 1

i j i j i j

x y i j i j i j

i j i j i j

p p p

S S F p p p
p p p

− − − + −

− +

− + + + +

� �−� � � �
� �� � � �= − = = � �� � � �
� �� � � �− − − −� � � � � �

 (4.1)

() (),
TT

x x y yG S F G S F= = (4.2)

2 2 , y
x y

x

G
G G G slope

G
= + = (4.3)

���
����
��	

���
����
��

���
����
���

���
����
���

���
����
���
�

��

������������

Figure 4.3: The behavior of edge detection a corrupted 4x4-block in MB.

At first, the Sobel mask calculates the proper edge directions (Direction1, Direction2,

Direction3 and Direction4) and gradients in grid region (neighboring correct 4x4-blocks) as

shown in Figure 4.3. Then we use edge information to predict the edge direction

(Directionesti.) in the dotted region (corrupted 4x4-block). The Directionesti is selected from

 47

the four edge directions according to the value of the edge gradients in neighboring correct

region and the location of corrupted block. The gradients are used to judge if there is a real

edge or not and the location of corrupted block determines the priority of four edge

directions. If the gradient is larger than the fixed threshold evaluated by simulations, the

edge is regarded as real one. Besides, if the location of corrupted block is close to top

boundary of MB, the priority of Direction3 becomes highest and priority of Direction1 is

lowest. The process of edge detection is employed in vertical edges of 4x4-block. Therefore,

we can support multiple edges extended from the top and left neighboring blocks of this

corrupted 4x4-block.

4.1.2.2 Replacement

When the proper edge is estimated by edge detection in the corrupted block,

replacement reconstructs the missed pixels in 4x4-block by duplicating instead of

interpolation along the edge direction estimated in practice. By ranking the edge slope with

thresholds evaluated from simulations, four replacing modes are used to recover the missed

pixels as Figure 4.4 shows.

Diagonal_Down_Left mode

Horizontal mode

Diagonal_Down_Right mode

Vertical mode

Diagonal_Down_Left mode

Horizontal mode

Diagonal_Down_Right mode

Vertical mode

Figure 4.4: Four kinds of replacing mode.

 48

4.1.2.3 Smoothing

After replacing the missing pixels on the right (bottom) side in the corrupted 4x4-block,

the deblocking filter starts to smooth the edges of the corrupted block to improve the visual

quality. There are two modifications in the algorithm of deblocking filter in H.264. One of

the modifications is that we force the boundary strength (BS) equals 4 when the decoded

MB is erroneous. With the strong filter (BS equals 4) specified in H.264, 6 pixels can be

smoothed per edge. For the weak filter (BS<4), there are only 4 pixels can be filtered. The

other modification is that we force the signal, filterSamplesFlag, which is specified in H.264

standard [7] as shown in Eq. (4.4), to be true when the decoded MB is corrupted.

()0 0 1 0 1 00 & & & & & &filterSampleFlag BS p q p p q qα β β= ≠ − < − < − < (4.4)

There is one problem for edge detection if the neighboring blocks of corrupted

4x4-block are concealed ones. The predicted edge in corrupted block may be not proper due

to the edge information in the neighboring blocks strongly depends on replacing mode. It

means that one erroneous block recovered using horizontal replacing mode has the

horizontal edge information.

Figure 4.5: The number on the boundaries of blocks is the filtering order.

 49

Taking Figure 4.5 as an example, the neighboring blocks (B, C) are replaced ones. If

we conceal each block by normal order, the edge information in blocks (B, C) strongly

depend on replacing mode due to that blocks (B, C) are replaced by other neighboring

pixels. On the other hand, the blocks (B, C) can be smoothed by filtering edges (2, 3, 5, 6)

with hybrid order before we use the edge information in blocks B, C to predict the proper

edge in corrupted block (dotted block).

4.1.2.4 Reconstructing flow

As shown in Figure 4.6, the process of ECDF for capability of error concealment can

be divided into two parts. For the vertical edges, replacement selects the correct neighboring

pixels from pixel buffer and reconstructs the corrupted 4x4-blcok by duplicating according

to edge direction estimated by edge detection. For the horizontal edges, a strong filter mode

is used directly to smooth the recovered pixels.

Figure 4.6: The behaviors of ECDF for vertical edges and horizontal edges.

4.1.3 Simulation Results

For simulations, we consider the sequence patterns which are encoded with CIF

resolution using dispersed FMO and slice size of 198 MBs in JM9.8. The number of frame

is equal to 30 frames. With dispersed FMO, there are different type of corrupted MB we can

conceal to see the average performance in directional or texture areas. Further, we assume

 50

that error detection is perfect when decoding process and EC is operated in MB-based

processing. It means that there is no information used on the right (bottom) side of one

corrupted MB in EC. From the simulation results which are shown in Table 4.1, we can see

that the performance of proposal strongly depends on the sequence patterns. Since we use

edge detection in our algorithm, the proposal is suitable for directional area, such as the

background of “foreman”, but not suitable for texture area, such as the background of

“table”. Generally, the performance gain of proposed algorithm ranges from 0.1dB to 0.4dB

as compared to BIlimit (BI with top and left information only). For the sequence pattern

which has obvious directional areas, the performance of ECDF is significantly higher than

BIlimit. As we can see in Table 4.1, the average PSNR of ECDF and BIlimit for sequence of

“foreman” are 23.83dB and 22.43dB separately. On the other hand, the performance of

ECDF is slightly worst than BIlimit. As shown in Table 4.1, the average PSNR of ECDF and

BIlimit for sequence of “table” are 23.90dB and 23.99dB separately.

Table 4.1: The performance of ECDF and BIlimit.

��������� table� stefan� Mobile� foreman� news�

ECDF� 23.90� 20.20� 17.73� 23.83� 21.98�

BIlimit� 23.99� 20.11� 17.5� 22.43� 21.60�

Figure 4.7: The improvement of PSNR for the sequence of “foreman”.

 51

To see the performance improvement for each technique of proposal, the Figure 4.7 is

presented here. We take the 1st frame of sequence “foreman” as an example. For the basic

situation of using the BIlimit, the PSNR is about 22.7dB. With the edge detection and

replacement, the PSNR can be improved to 23.1 dB. By using the deblocking filter to

smooth all the boundaries of blocks, the PSNR can be improved to 23.9 dB. The final PSNR

is 24dB with hybrid order. Finally, the Figure 4.8(a) and 4.8(b) are presented here to show

the subjective quality of frames which are concealed by ECDF and BIlimit separately.

Figure 4.8: PSNR of concealed frame with the ECDF (a) and concealed frame with BIlimit in

JM9.8 (b).

4.1.4 Implementation results

Table 4.2: The comparison of architecture and processing time per MB for the error
concealment in H.264/AVC.

With the 0.13Fm process, the gate count of the BI is about 12.7K including local buffer

with clock period equals 20ns as shown in Table 4.2. To store all the correct neighboring

 52

pixels around the corrupted MB, we need 512-bits (i.e. 16x4x8) registers. Hence, the total

gate count for the deblocking filter and error concealment becomes about 27.7K (15K for

the deblocking filter [12] and 12.7K for BI). The processing cycles per corrupted MB is 384

cycles due to the number of missed pixels are 384 per MB. The original processing cycles

per correct MB of deblocking filter is 243 cycles.

On the other hand, the gate count of ECDF is 19.5K with 0.13Fm process. Since the

reconstructing flow is the same as filtering flow in deblocking filter, the processing cycles

are 243 cycles which equals the one of deblocking filter [12] for a correct or corrupted MB.

Therefore, the ECDF achieves 70% of hardware cost as compared with the direct

implementation. And the power consumption can be reduced due to the reduction of

hardware cost and external memory access.

4.1.5 Summary

The ECDF which combines the EC with deblocking filter in H.264 is proposed here.

The proposal is easily implemented and integrated into the deblocking filter in H.264. The

hardware cost and memory access can be reduced by sharing the memory used by

deblocking filter and using the deblocking to support the capability of error concealment

instead of interpolation. The proposal reduces 30% of hardware cost compared to direct

implementation. Although the influence of FMO is significant to EC, not all the decoder

supports FMO due to the high complexity. Hence, we focus on the simulations without

FMO and try to upgrade the performance of ECDF without FMO to approach the

performance of BI in JM9.8. The PSNR of ECDF is 1.4dB better than BIlimit and

comparable to BI in JM9.8 for the sequence of “foreman”.

4.2 Performance Analysis of ECDF

4.2.1 Motivation

Although the hardware cost of ECDF can be decreased largely by hardware and

 53

memory sharing as shown in Table 4.2. The performance is still not good enough as

compared to BI algorithm used in JM9.8 with FMO. Hence, we modified the main roles in

the ECDF, replacement and edge detection, to improve the performance further. Followed

are some simulations to see the upper bound performance of ECDF.

4.2.2 Ideal Functions

As we know, the more complex algorithms we use, the better performance is. Here we

focus on functions of the edge detection and replacement without considering the

complexity to see the best performance it has.

4.2.2.1 Edge Detection

There are challenges for the edge detection. Although the Sobel mask is useful to

calculate the edge gradient and direction. But the problem is that we do not know the actual

value of missed pixels in corrupted MB. So all we can do is to estimate the edge direction in

erroneous 4x4-block closed to the MB edge by using the edge information in the correct

neighboring correct 4x4-blocks. Then, we use these estimated edge information to estimate

the edge in the deep erroneous 4x4-blocks. Here comes error propagation problem we need

to overcome.

Before finding the best method, we do simulations to see the theoretical performance

influenced by edge detection. Instead of estimating each edge direction in 4x4-block, we

choose the best replacing direction according to the minimal absolute of sum. The absolute

of sum is the difference measurement between correct block (Pcorr.) and replacing one (Pdir.)

as shown in Eq. (4.4). It means that we calculate the absolute of sum for each replacing

block with different direction to find the best edge direction for each 4x4-block in one

corrupted MB. Than we use the edge information which comes from best results to conceal

all blocks in corrupted MB in raster scan order.

 54

() () { }

24
2size

dir. corr.n
dir.{ } i 0

8

4
min P i P i i 0,..., ,size 1,2, 4

size

 �
�

� �

×π
=

� �� �
 �− ∈ ∈� ��

� �� �� �

	

 (4.4)

From the simulation result, we can see that the performance of ECDF can be improved

significantly with ideal function of edge detection as shown in Figure 4.9. And the PSNR of

ideal ECDF without FMO is 2.4dB higher than implemented ECDF [13] and is even 1.1dB

higher than the BI with FMO used in JM.9.8 in average.

���
���
�	�
�
�
���
��

�
�
�
�
���
���

� � � ��� ��� ��� �
� ���
�����������
 ��"!��#�

$% &
'() *
+ ����������	

 � � �
 � � ���� � ��
� � � �

��

Figure 4.9: Simulation result for the ideal edge detection.

4.2.2.2 Replacing

In order to improve the performance of replacing, we modified the replacing with two

ways. The first way is that we use additional replacing directions. There are four replacing

modes used in the implemented ECDF [13]. Here we extend the replacing direction from

four to eight to see the performance gain as shown in Figure 4.10.

 55

Figure 4.10: Modified replacing directions.

Second, we scale down the basic unit of edge detection to support more complicated

edges. As we know that the DI algorithm has been used for EC for a long time. The basic

unit of DI used for MPEG is belongs to MB level. It means that all missed pixels in MB are

interpolated by using the same direction. And for the H.264, the basic unit of DI is

4x4-block due to the intra prediction described in H.264. Here we divide each 4x4-block

into four 2x2-block or sixteen pixels to see the performance gain as Figure 4.11 shows. By

doing so, the edge can be preserved more correctly.

$8G

$8G

Figure 4.11: Basic unit for Edge information.

From the simulation result shown in Figure 12, we can see that about 0.2dB can be

gained if we using eight directions for replacement as compared to four directions. Further,

about 0.55 dB can be improved when we replace each 2x2-block with one specified

direction as compared to 4x4-block. Finally, the PSNR gain can be improved to 0.88 dB if

 56

we use each pixel as basic unit for replacing.

�

�-, �

�-,

�-, �

�-,.�

�

�/, �

� � � ��� �#� �	� �
� ���
���#�#�0�1�

�"!����

$ 2 3
4 53
678
92
: 7; 8
() *
+ �=<�> �?��@�A >CB �EDGF��#�HF >JI ��K

�=<�> �?��@�A >CB �EDGF��#� �LI��
M !�K B @ON
�=<�> �?��@�A >CB �EDGF��#�
�I

�M !�K B @ON

Figure 4.12: Simulation result for different basic unit.

4.2.3 Simulation Result

Table 4.3: Performance of Ideal ECDF.

As shown in Table 4.3, the performance using only top and left side neighboring

4x4-blocks to conceal corrupted MBs can be better than the one of BI used in JM9.8 with

PSNR(dB) table� stefan� mobile� foreman� news�

Ideal ECDF� 26.58� 22.92� 20.44� 27.02� 24.86�

BI� 25.76� 21.80� 19.16� 25.06� 23.68�

ECDF� 23.90� 20.20� 17.73� 23.83� 21.98�

BIlimit� 23.99� 20.11� 17.53� 22.43� 21.60�

 57

FMO. The performance gain of ideal ECDF ranges from 0.8dB to 1.96dB as compared to

the one of BI in JM9.8 for difference sequence patterns.

Finally, the concealed frames with ideal ECDF and BI with correct information in four

directions are presented to see the subjective performance as shown in Figure 4.13. If the

video stream is corrupted due to bit error caused by video transmission, the decoded frame

which is encoded into two slices with FMO may become the frame in Figure 4.13(a). The

frames concealed by using the ideal ECDF and BI in JM9.8 are presented in Figure 4.13(b)

and 4.13(c) separately.

Figure 4.13: (a) Corrupted frame due to bit error. The concealed frames by BI (c) and ideal

ECDF (b).

4.2.4 Summary

In this section, we presented the ideal function of ECDF and the upper-bound of

performance. From the simulation results, the PSNR of ideal ECDF is significantly high

than other algorithm. The main challenge of implementation of ideal ECDF is the edge

detection in the filed of image processing.

 58

Chapter 5
Chip Implementation for Mobile
Applications

5.1 System Specification

For the real-time portable mobile applications, the low-power and low-delay are the

most significant issues. We choose the baseline profile to take advantages of low coding

delay since they do not use B-frames and MBAFF. And we select the level 2 as our design

target for the portable devices. The details of coding tools used in baseline profile and bit

rate constraint in level 2 are listed in Table 1.2 and Table 1.3.

The maximum computational capability is to support real time decoding of CIF H.264

video sequence in 30fps. Our operational frequency required for H.264 is 79.64MHz.

5.2 Design Flow

We use the standard cell based design flow. Figure 5.1 shows our design flow from

system specification to physical-level.

Figure 5.1 Design flow from system specification to physical-level

In the front-end design, we use standard-released reference software (Joint Model, JM)

to be a high-level C-language model. The design problems are formulated and analyzed on

 59

algorithmic level, included of the out-of-standard module, ECDF, or the post-filter for

MPEG-2. After deciding the algorithms we use, we estimate the required throughput for the

different applications, high-definition or low-power.

Different architectures we use cause different results, such as hardware cost, power

consumption or throughput. Generally, we use Verilog RTL-level descriptions to implement

a basic version design which has perfect function without considering the hardware cost.

Than, we adopt some techniques in architecture level based on the basic design, such as the

hybrid filtering order, memory organization and so on, to satisfy the specification we

estimate.

After completing the high-throughput deblocking filter to satisfy the system

specification, we integrate the deblocking filter into the whole system [14]. As for the

functional verification, we use conformance patterns listed on the web site [18]. The coded

block patter, QP, motion vectors, intra/inter/PCM mode, pixels in one MB or other syntax

elements are dumped from the software, JM. When the inputs of the deblocking in hardware

level are correct with those dumped from JM, we make functional verification by checking

the outputs of hardware and software.

In the back-end design, we synthesize and route with Cadence® RTL Compiler and

SoC EncounterTM. The design margin, technology used, some physical effects on deep

sub-micron circuits are also needed to be considered. At the end of the physical design stage,

the layout verification and simulation have been made.

5.3 Implementation Result

In this work, we implemented a BL@L2 of H.264 decoder with error concealment

which is combined with deblocking filter standardized in H.264/AVC for the mobile

handheld applications. From table 5.1, we can see the five capabilities defined by DVB-H

[15] for the mobile applications. Consider the power consumption and handheld suitable

 60

resolution, our work targets capability C.

Table 5.1: Capability defined by DVB-H for mobile applications.

��"�*��� 1
��������H �

2����

'2�H �2$

�����������

��4��H ��4

3�EI�H �$G

�����*� ��� ��

.�*� ���/

$���

'2�H �2$�� �EI�H �$G�� 8�
'

'2�H �2� �EI�H �89 �999�

�����H �28 	�G�0��H ��G $9999�

��-+�H �2
 �D�$D�H �89 �9999�

Table 5.2 Chip details

Items Specification

Function H.264 Baseline@Level 2

Gate counts 279,420 (On-chip SRAM included)

153,170 (Excluded on-chip SRAM)

Technology 0.13um 1P6M

Supply voltage 3.3V/1.8V

Die size 2.2x2.2mm2

Core size 1.2x1.2mm2

Package CQFP128

Max working frequency 50MHz

Core Power Consumption 1.19mW: QCIF @ 30Hz

1.69mW: CIF @ 30Hz

The detail chip specification is shown in Table 5.2. Here we assume the error detection

is correct and determined out of design. This work supports the CIF resolution with

maximum working frequency 50MHz for the mobile applications. The total gate count is

153.1K excluding embedded SRAM and core size is 1.2x1.2mm2 in 0.13Fm technology.

 61

The gate count distribution in H.264/AVC decoder and chip view is shown in Figure 5.2 and

Figure 5.3 respectively.

Gate count distribution in H.264 decoder

43722.5, 28%

30996, 20%21984.5, 14%

19480.5, 13%

13302.75, 9%

6823.25, 4% 992, 1%2844, 2%4169.5, 3%

8854.75, 6%

Motion Compesation

Pixel Reconstruction

Dequant

ECDF

Intra Prediction

Syntax Parser

CAVLC

IDCT

PCM

Others

Figure 5.2: The gate count distribution of H.264/AVC decoder.

Figure 5.3: Layout of this work

�
����

�
�
�
�

�
�
�
�

�
�
�

 62

5.4 Measurement Results and Comparison

The throughput per MB for different sequence is various according to the bit rate.

When the bit rate is higher enough, the throughput of decoder system is dominated by

throughput of CAVLC. On the other hand, the throughput of deblocking filter is the system

bottleneck when decoding low bit rate sequence.

For the power consumption issue, we use the post-layout power simulation reported by

Prime Power. The worst power consumptions of decoding QCIF and CIF at 30Hz are

1.81mW and 5.57mW with working frequency 6.67MHz and 25MHz respectively. For the

low bit rate (<100K) sequence, the operating frequency can be reduced to 1.25MHz and

4MHz for QCIF and CIF. And the power consumptions are 0.47mW and 1.10mW

respectively. The detail power reports for different sequence and working frequency are

shown in Table 5.3.

Table 5.3 Power report

Items (Core Power) QCIF @ 30Hz CIF @ 30Hz

100K bit rate 0.47mW@1.25MHz 1.10mW@4MHz

2000K bit rate 1.19mW@4MHz 1.69mW@6.67MHz

Worst Case 1.85mW@6.67MHz 5.57mW@25MHz

POQ?R�SUT
V?W X.Y T W Z�[#Y W Q?\]Q?^�_�` a�b?c]V?SedfQ�V?SUTPOQ?R�SUT
V?W X.Y T W Z�[#Y W Q?\]Q?^�_�` a�b?c]V?SedfQ�V?SUTPOQ?R�SUT
V?W X.Y T W Z�[#Y W Q?\]Q?^�_�` a�b?c]V?SedfQ�V?SUTPOQ?R�SUT
V?W X.Y T W Z�[#Y W Q?\]Q?^�_�` a�b?c]V?SedfQ�V?SUT

geh�i

jek i
l h�i

lCm i n�i k i k i l i oqper s pet	uvpewEx?yfz {|r s pet} s ~�yv�#� yUuvpet�z � ��u|r s pet���L�
�
� {|��� u|��� ����� � � } � o
� t�r � {
x�� yv��s u|r s pet��� t�r {|~�x�{C� z y|�
o����?w-yvw�pf� �� r �?y|�

Figure 5.4: Power distribution of H.264/AVC decoder.

 63

Further, the power distribution of H.264/AVC decoder is shown in Figure 5.4. As

we can see, the power consumption of ECDF consists of 16% over the system. And

embedded EC contributes 15% power consumption of ECDF.

With the embedded EC combined with deblocking filter in H.264/AVC, the post

processing of EC to recover the lost MB is applied at MB-level. The ECDF

reconstructs the lost MB by pixels stored in the slice memory on the top and left side

without accessing the external memory. The additional hardware cost of embedded EC

is 3.5K, 20% in ECDF, as shown in Figure 5.4. And the detail distribution of gate count

in embedded EC is shown in Figure 5.5.

Gate count distribution in ECDF

5576.25, 32%

3526.25, 20%2867, 16%

2846.25, 16%

1364.25, 8% 1333, 8%

Local Buffer

Embedded EC

Control Unit

1-D Filter

Adapativity

Address Genrator

Figure 5.5: the gate count distribution in ECDF.

Gate count distribution in embedded EC

1589.25, 45%

848, 24%

766.75, 22%

322.25, 9% EC_local buffer

Control Unit

Edge Detection

Replacement

Figure 5.6: the gate count distribution in ECDF.

 64

 For the fair comparison, we select the ASIC designs of [10], [16] and [17] to see

the throughput and gate count as shown in Table 5.4. Because the power consumption

of memory is significant, we also estimate the number of memory access between

existing different designs. Generally, the throughputs of existing designs are close to

the optimal throughput of deblocking filter in H.264/AVC.

Table 5.4: A detail comparison for the deblocking filter.

Design [10] [16] [17] proposed

Function In-loop In-loop In-loop In-loop/EC

Filtering order Separate Hybrid Hybrid Hybrid

of 4x4 array 2 8 2 4

Memory

1P 96x32

1P 64x32

2 2P 96x32x2

DP 64x32

1P 96x32

2P 32x32

1P (1.5xFW)x32

2 1P 96x32

1P (2xFW+20)x32

Processing cycle 878 446 214 or 246 243/275

Process 0.25Fm 0.25Fm 0.18Fm 0.13Fm

Gate count 18.91K 24K 20.9K 23.6K

MB memory read 320 160 96 96

MB memory write 224 64 0 0

Slice read 0 0 64 64+16

Slice write 0 0 52 52+16

External read 64 64 0 0

External write 160 160 108 108

 65

Chapter 6
Conclusion and Future Work

6.1 Conclusions

Design requirements are different for different applications. In this thesis, we have

implemented a high throughput deblocking filter with little memory access by data reusing

for high-definition TV applications. Besides, we integrate the post-loop filter and in-loop

filter for multi-standard requirement. Further, we propose and ECDF which combines the

deblocking filter standardized by H.264/AVC and error concealment for the real-time

portable devices over error-prone or wireless channel. Finally, we integrated the ECDF into

BL@L2 H.264/AVC decoder for the mobile applications. The details of each design are

presented in following section.

6.1.1 High-throughput Design

For the deblocking filter, we proposed the memory organization which saves the

number of memory access significantly. Besides, we use parallel architecture to tack charge

of the processing of BS and 1-D filter at the same time. Finally, we adopt the hybrid

filtering order which still satisfies the filtering order described in standard in H.264/AVC to

reuse the data, by which we can save the memory access further. By using the techniques,

the processing cycle of deblocking filter can be improved to 243 cycles with single port

SRAMs. The processing cycle is close to the lower-bound of throughput of deblocking filter,

192 cycles when all edges are belonged to artificial edges per MB, and gate count equals

19.64K using 0.18�m technology. This work is suitable for low-power mobile applications

due to the low memory access. Besides, it also supports the high-definition applications due

 66

to the high throughput.

6.1.2 In/Post-loop filter

Further, we proposed multi-standard solution for the applications which support

multiple standards, such as DVD player and DVB. Actually, the performance improvement

is very mild when applying the loop filter as the post filter in MPEG-4. Hence, we proposed

a hybrid algorithm for H.264/AVC and MPEG-4. The proposed hybrid algorithm retains the

original loop filter due to the standardization in H.264/AVC. In addition, we modified the

post filter to easily integrate into original loop filter design as shown in Table 3.5. To reduce

the complexity of control unit, the filtering order of post-loop filter [11] is modified to

hybrid order which is the same as the filtering order of in-loop filter. For the strength

decision, we modified the fixed threshold values of post-loop filter to dynamic ones which

vary according to the syntax parser, such as intra/inter mode, coded block pattern, locations

of boundary or motion vectors. Finally, filter equation is modified to reduce the hardware

cost: the strong mode in post-loop filter is replaced by the one applied for in-loop filter due

to the similarity and the equation of weak mode used in post-loop filter is modified to avoid

using multipliers. From the simulation results, the proposal saves 30% hardware cost as

compared to total cost of in-loop filter and post-loop filter with performance degradation

less than 0.05dB.

6.1.3 Error-concealed Deblocking Filter

We also proposed new spatial error concealment method, ECDF, for a real-time

decoding system over an error-prone or wireless channel. There are several advantages of

ECDF. The first is that ECDF can conceal I frames without the need of FMO. Second, the

hardware cost of interpolation can be saved. Third, the required information for error

concealment only includes the pixels in the top and left neighbors of current corrupted MB.

Hence, we can conceal the corrupted MB without requiring the information in the right and

 67

bottom side, leading to the reduction of memory space as well as bandwidth. The

implementation results show that the hardware cost of ECDF can be saved about 30%

compared to direct implementation. Without the right and bottom correct pixels, the

proposal gains 1.4dB in PSNR compared to BI with top and left side information in JM9.8.

6.1.4 Chip Implementation

For the chip implementation, we integrated the ECDF into BL@L2 H.264 decoder for

the real-time mobile devices. From the simulations results, the total gate count of H.264

decoder is 153K excluding embedded SRAM. The power consumption of H.264 decoder is

1.19mW and 1.69mW for QCIF@30Hz and CIF@30Hz at 4MHz and 6.67MHz

respectively. The ECDF contributes 13% and 16% of hardware cost and power consumption

over the decoder respectively.

6.2 Future Works

6.2.1 Error Detection

For the error concealment in the decoder we discussed in previous chapter, we assume

that the error detection works perfectly. It means that we accurately know the locations of

MBs in one Frame are corrupted due to the errors over error-prone or wireless channel.

Hence, we can use the error concealment to reconstruct the corrupted pixels to recover the

visual quality in the correct positions, not use the error concealment in the correct MB to

degrade the visual quality. The implementation of error detection is necessary for an

error-concealed decoder for those real-time applications. Generally, error detection can be

divided into two groups, hard detection [19] and soft detection [20].

For hard error detection, a list of error-checking conditions derived from the

constraints on the H.264/AVC video bit stream syntax is checked: An invalid codeword is

found for the VLC code, DCT coefficients, macroblock type or other syntax elements.

Physically impossible video data are detected, such as the problem of out of frame range for

 68

prediction. As for the soft detection, the soft information is introduced based on the

multi-level de-quantization process in each demodulated symbol. It accumulates the square

difference between received soft streams and decoded codeword to determine if the error

occurs.

Generally, the hard error detection has the advantages of low-complexity and is easy to

be implemented. But it has low performance on the error localization. It means that the hard

error detection often detects the error when the several MBs are decoded after the first

erroneous MB. There are many corrupted MBs determined as correct ones in this situation

and degrade the visual quality significantly since we do not use error concealment on those

MBs which we consider correct. On the other hand, the soft error detection has better error

detection capabilities as compared to the hard error detection but is hard implemented. For a

real-time decoder with ability of error concealment, a low-complexity implementation of

error detection with acceptable performance on error localization is needed to reconstruct

the corrupted MBs.

6.2.2 Temporal Error Concealment

As we discussed in Chapter 2, the major purpose of temporal error concealment is to

find the lost MV in corrupted MB. Hence, we can reconstruct the corrupted MB with

estimated MV and reference pixels without residual. The complexity of those algorithms

which use zero, average or median of neighboring MVs as estimated MV is quite low.

However, these low-complexity algorithms have worse performance as compared to BMA

or overlapping BMA (OBMA) [21]. The BMA or OBMA obtain the better result with

excellently high memory access and complexity to accumulate the best matching in the

neighboring area. However, TEC is not always adequate for concealing errors in video

sequences. This is especially true for video sequences with irregular motion, abrupt scene

changes, and intra-coded image frames. Hence, the error concealment scheme is necessary

 69

to integrate the TEC with SEC with mode decision. The mode decision determines which

algorithm to be used to reconstruct the corrupted MB according the information in

neighboring correct MBs, such as macroblock type, motion vectors and coded block pattern.

6.2.3 Multi-standard solution

DVB-H supports not only video standard of MPEG-2 and H.264/AVC, but also

supports video standard of VC-1. An in-loop filter is defined in VC-1 with different

algorithm with the one of H.264/AVC. They are different on filtering order. As we discussed

in previous sections, the filtering order in H.264/AVC is vertical edge first. But the filtering

order in VC-1 is horizontal edge first. Besides, deblocking filter is applied for each

4x4-block edges in H.264. And deblocking filter of VC-1 is applied to variable block size.

Hence, the multi-standard deblocking filter for H.264/AVC and VC-1 is more complexity

than the one for H.264/AVC and MPEG-2 we proposed in previous sections because the

different standardized algorithm adopted by H.264/AVC and VC-1. For the mobile

applications use DVB-H, hardware implemented video decoder which supports

multi-standard can reduce the power consumption and complexity of coprocessor. Hence,

the hardware integration for deblocking filter is a challenge for low-cost design.

 70

Bibliography

[1] P. List, A. Joch, J. Lainema, G. Bjøntegaard and M. Karczewicz, “ Adaptive

Deblocking Filter”, IEEE Trans. Circuit Systems for Video Technology, vol. 13, pp.
614-619, July 2003.

[2] Y. Wang and Q. F. Zhu, “ Error control and concealment for video communication: a
review,” Proceedings of the IEEE, vol. 86, no.5, pp 974-997, May 1998.

[3] Thomas Wiegand, Gray J. Sullivan, G. Bjøntegaard and Ajay Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Trans. Circuits System for Video
Technology, Vol. 13, no. 7, pp. 560-576, July 2003.

[4] J.W. Suh, Y.S. Ho, “Error Concealment based on Directional Interpolation,” IEEE Trans.
on consumer Electronics, vol. 43, no. 3, pp. 295-302, Aug. 1997.

[5] Dimitris Agrafiotis, David R. Bull and C. Nishan Canagarajah, “Enhanced Error
Concealment with Mode Selection,” IEEE trans. on Circuits and Systems, vol. 16, issue
8, pp 960-973, Aug. 2006.

[6] Pei-Jun Lee, H.H. Chen and Liang-Gee Chen, “A new error concealment algorithm for
H.264 video transmission,” in Proc. 2004 Int. Symp. Multimedia video and Speech
Processing, pp. 619~622, Oct. 2004.

[7] Final Draft International Standard of Joint Video Specification (ITU-T Rec.
H.264/ISO/IEC 14496-10 AVC), Mar. 2003.

[8] ITU-T Recommendation H.263: “Video Coding for Low Bitrate Communication”,
March 1996.

[9] Miao Sima, Yuanhua Zhou and Wei Zhang, “an Efficient Architecture for Adaptive
Deblocking Filter of H.264/AVC Video Coding” IEEE Transactions on Consumer
Electronics, Vol. 50, Issue 1, pp. 292-296, Feb. 2004.

 71

[10] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh , Tu-Chih Wang, Te-Hao Chang and
Liang-Gee Chen, “Architecture Design for Deblocking Filter in H.264/JVT/AVC”
International Conference on Multimedia and Expo(ICME’03), Vol. 1, pp. I-693-6, July
2003.

[11] ISO/IEC 14496-2:2001, “Information Technology – Generic Coding of Audio-Visual
Object Part 2: Visual”, 3rd Ed. Annex F.3 – Post processing for coding noise reduction,
Mar. 2003

[12] Tsu-Ming Liu, Wen-Ping Lee, Ting-An lin and Chen-Yi Lee, “A Memory-Efficient
Deblocking Filter for H.264/AVC Video Coding,” IEEE International Symposium on
Circuit and System (ISCAS’05), pp. 2140-2143, Kobe, Japan, May 2005.

[13] Wen-Ping Lee, Tsu-Ming Liu and Chen-Yi Lee, “A Joint Architecture of
Error-Concealed Deblocking Filter for H.264/AVC Video Transmission,” IEEE
International Symposium on VLSI Design, Automation and Test (VLSI-DAT’07), Apr.
2007.

[14] Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Kang-Zheng Hou,
Jiun-Yan Yang and Chen-Yi Lee, “An 865-FW H.264/AVC Video Decoder for Mobile
Applications”, IEEE Asian Solid-state Circuit Conference (A-SSCC’05), pp. 301-304,
HsinChu, Nov. 2005.

[15] ETSI TS 102 005, Digital Video Broadcasting (DVB); Specification for the use of
Video and Audio Coding in DVB services delivered directly over IP.

[16] B. Sheng, W. Gao and D. Wu, “An Implemented Architecture of Deblocking Filter for
H.264/AVC”, IEEE International Conference on Image Processing, Vol. 1, pp.
665-668, Oct. 2004.

[17] Shen-Yu Shih, Cheng-Ru Chang and Youn-Long Lin, “ A near optimal deblocking
filter for H.264 advanced video coding.” In Proc. IEEE ASP-DAC, pp. 170-175, Jan.
2006.

[18] http://ftp3.itu.int/av-arch/jvt-site/draft_conformance/

[19] Yen-Lin Tung, Hsiu-Chen Shu and Jin-Jang Leou, “an Error Detection and
Concealment Scheme for H.264 Video Transmission,” IEEE International Conference
on Multimedia and Expo. (ICME’04), pp. 1735-1738, 2004.

 72

[20] Tsu-Ming Liu and Chen-Yi Lee, “An Improved Soft-Input CAVLC Decoder for Mobile
Communication Applications.” IEEE Asia-Pacific Conference on Circuits and Systems
(APCCAS’06), pp583-586, Singapore, Dec. 2006.

[21] Donghyung Kim, Siyoung Yang and Jechang Jeong, “A New Temporal Error
Concealment Method for H.264 using Adaptive Block Sizes,” IEEE International
Conference on Image Processing, vol. 3, pp. 928 – 931, Sept. 2005.

 73

��� ��� ��� ��

 �� � � � �

 � � �	

 � � �
 � � � � �

 � � � �1983. 09. 19

 � � �0911-122523

 � � � 1989. 9 ~ 1995. 6 � � � � � � � � � �

 1995. 9 ~ 1998. 6 � � � � � � � � �

 1998. 9 ~ 2001. 6 � � ! � � � " # �

 2001. 9 ~ 2005. 6 � � $ % & � � ' () * � +

 2005. 9 ~ 2007. 6 � � $ % & � � ' , - . * / 0 1 +

� � � 	

 2005/05 2005 2 � IC 3 4 5 6 3 4 7 8 9

 74

 � �

� Wen-Ping Lee, Tsu-Ming Liu and Chen-Yi Lee, “ A Joint Architecture of

Error-Concealed Deblocking Filter for H.264/AVC Video Transmission,”

IEEE International Symposium on VLSI Design, Automation and Test

(VLSI-DAT’07), Apr. 2007.

� Tsu-Ming Liu, Wen-Ping Lee, Ting-An lin, Chen-Yi Lee, “ A

Memory-Efficient Deblocking Filter for H.264/AVC Video Coding,” IEEE

International Symposium on Circuit and System (ISCAS’05), pp.

2140-2143, Kobe, Japan, May 2005.

� Tsu-Ming Liu, Wen-Ping Lee, Chen-Yi Lee, “ An Area-Efficient and

High-Throughput Deblocking Filter for Multi-standard Video

Applications,” IEEE International Conference on Image Processing

(ICIP’05), pp. III-1044 – 1047, Genoa, Italy, Sept. 2005.

� Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee,

Kang-Zheng Hou, Jiun-Yan Yang and Chen-Yi Lee, “ An 865-FW

H.264/AVC Video Decoder for Mobile Applications” , IEEE Asian

Solid-state Circuit Conference (A-SSCC’05), pp. 301-304, HsinChu, Nov.

2005.

� Tsu-Ming Liu, Wen-Ping Lee and Chen-Yi Lee, “ An In/Post-Loop

Deblocking Filter with Hybrid Filtering Schedule,” IEEE Transaction on

 75

Circuit and System for Video Technology.

� Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee,

Kang-Cheng Hou, Jiun-Yan Yang and Chen-Yi Lee, “ A 125FW, Fully

Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile

Applications,” IEEE Journal of Solid-State Circuits, vol.42, no. 1, pp.

160-169, Jan. 2007.

