T3 1AeE x5
4

44
kit
o+
T
4 A]

-
37 =3
«

B E A BB B2
M5 S M ISP e R TR

Sequential Way-Access Set-Associative Cache

Architecture for Low Power

BF*BEERE 3L

GRS Y) S S U E S

Sequential Way-Access Set-Associative Cache

Architecture for Low Power

Student: Chih-Hui Ting
Advisor: Dr. Juinn-Dar Huang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in

Electronics Engineering & Institute of Electronics

September 2007

Hsinchu, Taiwan, Republic of China

PoER L EA

LS Tt £ ﬁﬁﬂ@*%bw%V%"%WXF/P%”%@mié
O P e Pl i B R e KA RS B s e Al frid A Renat
$oo H R F AR S B (A T P I A R A REL R &Y
BALf L& L0 s s SRS - B et e F
BBz R Al T B PEAL T A chze R S Bp o

BAREY P AP ARG R E S P R T PP

i

ﬁﬁ%mﬁﬁﬁ°??%ﬁ%¢4ﬁ%%%%@ﬁ%%@ﬁfﬁﬁ“ﬁ’ﬁﬁ“

BRIGE-R > 3R R FQEFOR T - 5 EPeREe? - B
RS FF O > RABLIEE ik g B’\ﬁ&? AR G “,f ° %”F‘?\z’ FH P R BLITE 2

Beit fuk o ST R e S RIOF b Y KA e —H Rt R B
B 5 B AL 5 cPBL chlic B o o 0 BIEE Y AL T B enR EF A RE R B G
AR MBI R 47 DY NER S RS L B S] FT
PR o BRI hd GRS A s B I P R
HAvehz B Hdic e BT 0 AP¥T BAL32KBo B B & M TP e > iR

SRR AR R BB £ M AT 00 23 8t e B A -

Sequential Way-Access Set-Associative Cache
Architecture for Low Power

Student: Chih-Hui Ting Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Modern cache architectures utilize set-associative notion to increase the hit rate while
maintaining fast access time. However, set-associative cache results in tremendous
waste in power since all the ways are prabed on each:-cache access but actually only the
matching way is required. In order to reduce cache; power consumption, a possible
solution is to reduce the number of activated memory.arrays on each cache access.

In this thesis, we examine the concept.of sequential way access to reduce the number
of ways being activated on each cache access. Sequential way access probes each way
sequentially, from the first way to the last way on each cache access. The access
sequence terminates when a cache hit is detected. A cache hit in an earlier accessed way
can eliminate subsequent accesses on later ways. By using certain smarter placement
and replacement policies, the hit rate on the earliest accessed way can be increased
therefore the number ways being activated on each cache access can be further reduced.
Since the accessed way on each cycle is predetermined, the fanout on the hit-signal to
the multiplexer which selects the matching data block in conventional set-associative
cache can be eliminated. The reduced loading on the hit-signal reduces cache cycle time
and therefore can compromise the increased cache access cycle count. Experimental
result shows that a 32KB 2-way sequential way-access set-associative cache reduces the
power-delay product by an average of 23.8% compared to the conventional
set-associative cache of the same size and associativity.

=

\ 2

ERY
i

%ﬁ:].
@1,;@1\.“

245

MR R WA R SRR R L, AL A Y A ol
LFAFE L RE, bpd EYRF LT

WAL TR R 2 B R

B R

, 38
B R A
B R Heng f Lr*ﬁ *

=)

I LD Rl s AR S
B, Fbu e a7 LA o
R AR AFIG, R B GRILT 5P R e F

FHr TR AR, F AR, oo R, T
31"\!7_—;_ ’Jl‘ j\;}p %"} ’g‘}\‘ﬁ_{;ﬁ Ay oy ég‘}\“ %F’ ' %mﬁ“‘,‘ﬁﬁ 1‘]”3‘]’!,1 IFB o
Bfs s B HITH B %7k o ?‘e‘#iﬁ’ﬁ: FRB RAMmBEL U E 5P
A o A2k T %~ frdbpg 24785 % L A4 4 g - Bk
I"P‘—mm]ﬁ:ﬁ AKkAaFFT A F;E» ﬁﬁg—-ﬁ?‘J °
FEThHme A gEAEE T
A Fedl

B F

m?"}}%, 4

Contents

CRINESE ADSIIACT.iivieiieie ettt e e te st e saeeaeeneesreeneeeneenneans i
ENQLISN ADSEFACEecveeciice ettt nne s ii
U LTSRS iii
LISE OF TADIES ...t bbbt b et %
LISt OF FIQUIES ...ttt ettt e esre e steenaesreenteeneenres Vi
Chapter 1 INEFOTUCTION .. et 1
1.1. 0] (A7 LA o] o S 1

1.2. Proposed ArChITECIUIEccveiieeieciese e 2

1.3. ThesiS OrganiZation.........c.ccviveieerieciese e e e nre s 3
Chapter 2 Related WOIKSee st i it 4
2.1 Way-Predicting Set-ASSOCIatiVe CaCNE i,eiveeieeeieeiecee e 4

2.2 Non-Uniform Cache-Architecture (NUCA)cooovririiiiieicnenc e 7
Chapter 3 Proposed Low-Power Cache ArchiteCturecccoovvevveeevivesesiieseennns 10
3.1 Drawbacks of Conventional Set-Assogiative Cacheccccoecvvenirennnnne, 10

3.2 Sequential Way ACCESS ... o i e 16

3.3 Placement and Replacement POLICY.........ccccoviiiiiiiiiiieieeece e 19
Chapter 4 Experimental EValuationcccooeiiiiiiiie e 25
4.1 Experimental ENVIFONMENL.........cccooiiiiiiieciecr e 25

4.2 Experimental RESUILooviiiiiii e 27

421 MEMOIY ACHIVILY ..ocvveiiieieiiccie e 27

B.2.2 POWET ..ttt ettt et nn e nee s 31

4.2.3 CYCIE COUNL ...t 34

424 CYCIE TIME ooiieeie ettt nae s 38

4.25 MemOory ACCESS TIME.....ccouiiieieiieie e sttt 39

4.2.6 Power-Delay Product..........ccccooiiiiiiniiiinneee e 40

Chapter 5 (OF0] 1[04 (113 [0 3 SRR 41
RETEIENCES ...ttt b et be et et sbe e beeneenrs 42

List of Tables

Table 3.1 Access time of sub-structures of 2-way set-associative cache....................... 15
Table 4.1: Parameters 0f ACARMYT ..ot 26
Table 4.2: EDA NVIFONIMENT ...c.voiieiieiecie ettt eesseesteenaesseesseeneesnens 27
Table 4.3: Memory activities of benchmarks on tag arrays of 32-KB D-caches............ 31
Table 4.4: Memory activities of benchmarks on data arrays of 32-KB D-caches.......... 31
Table 4.5: Power consumptions on D-cache running JPEG encoder..........ccccccevvevennen. 32
Table 4.6: Power consumptions on I-cache running JPEG encoder.............ccccevervenene. 33
Table 4.7: Power consumptions of benchmarks on 32-KB D-caches...........c.ccccevevennen. 34
Table 4.8: Cycle count on D-cache running JPEG encoder (mem_short) 35
Table 4.9: Cycle count on D-cache running JBPEG encoder (mem_long)ccccceeeneen. 35
Table 4.10: Cycle counts of benchmarks on,32-KB D-caches (mem_short)................. 38
Table 4.11: Cycle counts of benchmarks on 32-KB D-caches (mem_long).................. 38
Table 4.12: CYCIE TIME .ottt ifadinnannains e seeha Bt e taenteaseesteessesseesteensesreesseeneennens 39
Table 4.13: Memory access time of benchmarks on 32-KB D-cachescccccceenee. 40
Table 4.14: Power-delay product of benchmarks on 32-KB D-caches...........cccccvevenen. 40

List of Figures

Figure 2.1: Way-Predicting Set-Associative Cacheccceeevieiiiiiiicseee e 4
FIGUIE 2.2: INUGCA L.ttt ettt r e be et beesbeeneenneas 8
Figure 3.1: Conventional 2-Way Set-Associative Cache...........cccoceveniiinininieieiene, 10
Figure 3.2: Read access on conventional set-associative cache..........c.cccceeevveresvennnn, 11
Figure 3.3: Large fanout on the hit-signalcccccoeiiiii i, 12
Figure 3.4: Decomposition of conventional direct-mapped cache..........cccccovveieninnenn. 13
Figure 3.5: Decomposition of conventional set-associative cache............c.ccoceoeveinene. 14
Figure 3.6: Basic architecture of conventional 2-way set-associative cache 14
Figure 3.7: 2-way sequential way-access set-associative cache.............cccceevvereieennnn, 17
Figure 3.8: Priority replacement policy (LLRU i Way 0).......cccceviiiiniiniiinieee e, 21
Figure 3.9: Priority replacement policy (LRU-: Wayd)........ccooviiiiiiniiiiniiicceee, 22
Figure 3.10: Promotion placement policy (hitS inWay-1)c.ccccevvvevvrinrneresiennen, 23
Figure 3.11: Promotion on frequently accessed BIOCK a..........ccocevvevveiiiieceece e, 24
Figure 4.1: Simulation framework ..o et e 25
Figure 4.2: Memory activities on D-cache running JPEG encoder...........c.ccoovvvveviennenne. 28
Figure 4.3: Memory activities on D-cache running JPEG encoder............cccccvevvvrrvennenn. 30
Figure 4.4: Power reduction rate on D-caches running JPEG encoderccccueene.... 32
Figure 4.5: Power reduction rate on I-caches running JPEG encoder............cccccerueenen. 33

Figure 4.6: Cycle count increased on D-cache running JPEG encoder (mem_short).... 35

Figure 4.7 : Cycle count increased on D-cache running JPEG encoder (mem_long).... 36

Vi

Chapter 1 Introduction

1.1. Motivation

Continuous advances in VLSI technology have led to more powerful and
sophisticated microprocessor designs. The significant improvements in performance
are due to both better circuit design and fabrication technology. On the other hand,
state-of-the-art designs also cause power consumption of microprocessor to increase
dramatically in recent years. The power density of current chips is already higher than
a hot plate. If this trend holds, the power density of chips will close to a nuclear
reactor before the year 2010 [1].

High-performance cache dissipates significant power due to charging and
discharging of highly capacitive hit*lines and-sense amplifiers. Several published
reports have also shown that cache consumes: substantial fraction of overall chip
power. The on-chip caches of :StrongARM SA110 dissipate about 43% of the total
chip power [2]. In the 300 MHZ" hipolar CPU reported by Jouppi et al [3], 50% of
power is dissipated by caches.

To increase cache efficiency, modern microprocessors employ set-associative
cache, which increases the performance by reducing thrashings among cache blocks
that map to the same cache set and therefore reduces conflict miss. To achieve fast
access, set-associative cache probes both tag and data arrays in parallel, and then
selects the data block form the matching way according to tag comparison result. The
advantage of parallel access is that no additional memory access is required after the
matching way is found. But on the other hand, parallel access causes tremendous
waste in power since all the ways are probed on each cache access but actually only

the matching way is required.

One possible solution for this problem is to access tag array and data array serially,
which is used by Alpha21164’s L2 cache [4]. The concept was first introduced by
Hasegawa et al [5] and was referred to as phase cache by [6]. In phase cache, tag
arrays are probed first to determine the matching way. Once the matching way is
determined, only the data array of the matching way is then accessed. This reduces the
number of data arrays being accessed and thus reduces cache power, especially when
the associativity is high. But on the other hand, as opposed to parallel tag-data access
in conventional set-associative cache, serial tag-data access has to wait until the
matching way is known before access on data array can take place and therefore is not
quit suitable for time critical L1 cache. While serial tag-data access suffers from long
latency, the concept of using serial access to reduce the number of arrays being

probed does provide means to reduce cache power.consumption.

1.2. Proposed Architecture

In order to achieve cache low power: consumption while maintaining fast access
clock rate, we propose a cache architecture call sequential way-access set-associative
cache. Sequential way-access set-associative cache accesses each way (both tag and
data array) sequentially, and eliminates subsequent accesses when a cache hit is
found. Unlike Way Predicting Cache [6][7], which requires a prediction mechanism
to determine which way should be probed first, Sequential way-access set-associative
cache ranks a priority of each way and always probes the way of the highest priority
first. Since tag and data array are probed in parallel for each way access, the access
latency for each way is about the same as conventional set-associative cache. If the
first way hits, subsequent accesses on other ways are saved with the access latency

almost identical to conventional set-associative cache. On the other hand, additional

access cycles and memory accesses are required if the first way misses. By using
more efficient placement and replacement techniques, we are able to increase the hit
rate on the earliest accessed way by placing recently accessed blocks in the earliest
accessed way. This further reduces the number of redundant memory accesses and
eases additional access latency. Experimental result shows that the proposed
architecture has a lower power-delay product compared to the conventional
set-associative cache of the same size and associativity, especially when the miss
penalty is high. A 32KB 2-way sequential way-access set-associative cache reduces
the power-delay product by an average of 23.8% compared to the conventional

set-associative cache of the same size and associativity

1.3. Thesis Organization

The remainder of the thesis=is organized as follows: Chapter 2 discusses several
related works; Chapter 3 gives a-detailed description on the proposed model; Chapter
4 describes the experiment setup andsimulation result; and Chapter 5 concludes the

thesis.

Chapter 2 Related Works

2.1 'Way-Predicting Set-Associative Cache

Several approaches have been proposed to reduce cache power consumption by
reducing the number of access on memory arrays [5, 6, 7, 8, 13, 14]. One such
approach is Way-Prediction Set-associative cache [7]. Way-Predicting
Set-Associative Cache speculatively chooses one way to probe prior to the actual
cache access base on certain prediction mechanism. If the prediction is correct, the
cache access completes in a single cycle as shown in Figure 3.1(a). Since only the
predicted way is activated, cache power consumption is reduced compared to
conventional set-associative cache. On the other hand, if the predicted way misses, as
shown in Figure 3.1(b), additional .access cycle is required to probe the remaining
ways in order to search for the matching way which:increases the cache access cycle
count. To make things worse, since all the remaining ways are activated, no memory

access is saved compared to conventional set-associative cache.

Tag Data Predicted Way

~9 i
Way0 Way1§
| L

Predicted Way

Cyclel

| nux-drive

L

L 4 h J
EEEEEEEE NN EEEEEENEENENEEEEENENEEEEENENEENEENENENEEEER

i1 Accessed Subarray

mux-driv

(a) Prediction-Hit (b) Prediction-Miss

Figure 2.1: Way-Predicting Set-Associative Cache
4

A correct prediction reduces cache energy consumption while maintaining high
access speed (in terms of access cycle count). On the other hand, an incorrect
prediction not only fails to reduce cache energy but increases cache access cycle
count. Consequently prediction accuracy plays an important role on cache
energy-delay product. The average energy consumption (Ecache) and the average cache
hit cycle count (Tcache) for each cache access on the way-predicting 4-way

set-associative cache can be expressed as follows:

Ecache = (ETag + EData) + (1 - PHR) x (3 ETag + 3EData) (D)

Teache = 1 + (1 - PHR) x 1 (2)

B Ery, Epan @ Energy consumed, for accessing a tag-array and data array,
respectively.

B PHR : Prediction hitrate.

To increase accuracy of way prediction, Way-Predicting Set-Associative cache
employs a way-prediction policy based on an MRU (Most Recently Used) algorithm.
This policy requires a flag to store the MRU information for each set. All flags are
stored in an MRU way-prediction table which is accessed using the same address that
determines the activated set. In the case of a 16KB 4-way set-associative cache, the
prediction flag is 2 bits and therefore additional 4KB of memory storage is required
for the MRU way-prediction table. The predicted way number is read out before the
actual cache access takes place in order to get the prediction.

Although Way-Predicting Set-Associative cache seems attractive in reducing cache
power, there are several drawbacks. Its way-prediction policy requires a large
way-prediction table to store the MRU information for each set. Looking up such a

large table also causes substantial power consumption. Furthermore, since actual
5

cache access can not take place until the predicted way is read out from the
way-prediction table and since way-prediction table lookup requires the actual data
address as its index, the prediction procedure cannot be hidden and therefore cause
additional cache access time even if the prediction is correct.

To reduce prediction time, using different information other than the actual data
address as index for the way-prediction table allows prediction process to start before
the data address is calculated and can therefore hide the prediction time to early stage.
Two possible sources for index are: the load PC address and the approximate data
address formed by XORing the load’s source register with the load offset [8]. The
load PC is available much earlier than the approximate data address but the
approximate data address is more accurate since a single load instruction may
reference data with widely varying:access patterns:[9].

To obtain a better balance -between energy consumption and overall speed for
way-predicting cache, two different access-schemes are proposed by Huang, et al [10]
based on the concept of phased cache.

In the first scheme, called Fall Back Phased, the first probe activates only the
predicted way in the same way as Way-Predicting Set-Associative cache. If the first
probe misses, the second probe acts as a phased cache which probes all the remaining
tag arrays but not the data arrays. If a match is detected, the corresponding data array
is then accessed. Otherwise cache miss encounters and no data arrays are then
accessed. This scheme favors energy saving at the expense of speed.

On the other hand, the second scheme, called predictive phased, activates all tag
arrays and data arrays of the predicted way in the first probe. In this case, additional
tag arrays are activated even if the prediction is correct. However, if the prediction is
incorrect, the matching way (if any) is known and is subsequently accessed. This

scheme has the same access speed as Way-Predicting Set-Associative cache but might
6

not be as energy-efficient as Way-Predicting Set-Associative cache, since more tag
arrays are activated on prediction hit but less data arrays are activated on prediction

miss. This scheme favors when the prediction accuracy is low.

2.2 Non-Uniform Cache Architecture (NUCA)

Continuous advances in VLSI technology increase the processor clock rate
dramatically in recent years. On the other hand, improvements in memory speed have
not kept pace with processor speed and result in ever widen performance gap. This
increases the number of cycle the processor has to wait for the memory accesses
dramatically and results in serious overall performance degradation. It is well known
that the smaller caches run faster. Therefore the L1 cache is usually made small in
order to keep up with the processor speed., However, low level cache must remain
large enough to maintain low:global miss rate therefore results in relative slower
access speed. Traditional cache “architectures assume that each level in the cache
hierarchy has a single, uniform access time. Since large low level caches are usually
made by combining many smaller SRAM sub-arrays, its access time is determined by
the longest access time among all sub-arrays. However, such uniform access fails to
exploit the difference in latencies among sub-arrays.

To increase average access speed on large low level cache, a recent work proposed
adaptive, non-uniform cache architecture (NUCA) [11]. NUCA exploits the variation
in access time by partitioning the large low level cache into several, smaller
sub-arrays. Each sub-array has different access time and can be probed independently.
Since large low level caches are usually made up of many SRAM sub-arrays which
are spread out throughout the chip and are connected through long wires, this partition

can be done easily. The basic architecture of NUCA is shown in Figure2.2. NUCA
7

allows fast access to close sub-arrays while maintaining slow access to far sub-arrays.
For each cache set, each way is placed among different sub-arrays of different access
latency. On cache access, NUCA searches the ways sequentially, accessing both tag
and data array, from the fastest way to the slowest way. The search completes when a

hit is detected, and subsequent accesses on slower sub-arrays are saved.

Figure 2.2: NUCA

To increase cache efficiency, NUCA! pioneer the concept of data placement by
allowing frequently accessed data to be placed in faster ways while infrequently
accessed data are placed in slower ways. This is done by allowing the hit block to be
swapped to the faster ways within a set. A newly introduced block is initially placed
in the slowest way. If a block is accessed frequently, this block will “bubbles” toward
the fastest way. On the other hand, an infrequently accessed data will remain in the
slower way.

To ensure equal performance for every set in the cache, every sub-array must
contain equal number of ways for each set in the cache. This implies that the NUCA
can only place a small number of ways for each set in the fastest sub-array. To

increase efficiency on the fastest sub-array, Chishti, et al proposed NuRAPID

(Non-uniform access with Replacement And Placement using Distance associative)
[12] cache which employs the concept of distance-associative to completely decouple
tag placement with data placement. This is done by adding a forward pointer for each
tag to indicate the location of its corresponding data block. Distance-associative
allows the tag placement to maintain set-associative for accessibility but allows data
blocks to be placed in any sub-array without restriction. Therefore, unlike the original
NUCA, all the frequently accessed blocks can migrate to the fastest sub-array whether
they are in the same set or not. This can increase the hit rate on the fastest sub-array
and therefore can reduce average access latency. Distance-associative also enables
serial tag-data access, which is commonly used in low level caches to reduce cache
power since data array is much larger, therefore slower than tag array in low level
cache.

Although intended for reducing.access latency.on- low-level caches, by increasing
the hit rate on earlier accessed isub-arrays. using smarter placement policies,
substantial energy can also be saved by. NUCA since subsequent accesses on slower
sub-arrays may be saved. NURAPID further increases the performance by allowing
efficient data placement using distance-associative. However, distance-associative
requires a forward pointer for each tag entry and therefore large additional memory

storage is required for tag array which increases tag array access time.

Chapter 3 Proposed Low-Power Cache Architecture

3.1 Drawbacks of Conventional Set-Associative Cache

The basic architecture of conventional 2-way set-associative cache is shown in
figure 3.1. Each way consists of one tag array and one data array. For each tag array, a
comparator is required to compare the accessed tag from the tag array with the request
tag. A read access first probes all tag arrays and data arrays. The accessed tags are
then compared with the request tag to determine if there is a match. If a match is
detected, the corresponding data block of the matching way is then selected by the
multiplexer to the output. The write access follows similar access procedure as the

read access except that data arrays can not be written until a match is detected.

0 _
[1:0]
32
| » Data0
2 >
offset
3 Data
1<
32
= Datal
index
- Tag0 F =
tﬂg)
-~ Tagl

Figure 3.1: Conventional 2-Way Set-Associative Cache

Two problems on set-associative cache are observed. These problems are stated

below.

10

(1) Redundant Memory Access

During a cache access, both ways are accessed, but actually only the matching way

is needed. The energy spent accessing the other ways is therefore wasted. Figure 3.2

shows the example on read access which hits in Way 0. It can be seen that the

accesses on the tag array and data array of the un-matched way, which is Way 1, have

no effect on the result and therefore the energy spent accessing these arrays are

wasted. The write access has similar result except that since data array can not be

written until a match is detected, only the access on the tag array of the un-matched

way is wasted.

Data0

Datal
Read Access UL

Tag0
Redundant!!

Tagl

Comp

Comp

Figure 3.2: Read access on conventional set-associative cache

11

Data

Hit

(2) Hit-Signal Fanout

The second problem concerns about the fanout on the hit-signal. The hit-signal
generally refers to the outputs of the tag comparators in the cache to indicate if a way
hits. In set-associative cache, a multiplexer is required to select the hit data among all
the ways to the output. Since the size of data blocks are usually large (32-bit or 64-bit
for recent processors), the loading of this multiplexer is usually quit large. To achieve
one cycle hit time, conventional set-associative cache accesses tag arrays and data
arrays in parallel. The hit-signal determined by comparator is then used as the select
signal of the multiplexer that used to select hit data block among all the ways.
Therefore the multiplexer causes a large fanout on the hit-signal as shown in figure
3.3. Although tag arrays are usually smaller than data arrays and therefore have faster
access time, the total access time .on tag array plus its subsequent comparator, which
determines the hit-signal, is usually longer than.the access time on data array and

therefore contributes to the critical path'of set-associative cache.

[1:0]

Y

Data0

Data

L
=]

Y

Datal — 1

Address T~
»- \

Large fan-out!!
Ta go j Hit

- Tagl

L

Figure 3.3: Large fanout on the hit-signal
12

To understand the effect of the fanout of the hit-signal on the critical path of
set-associative cache, the access times on several sub-structures of a 2-way
set-associative cache are derived. The sub-structures that are examined are shown in
figure 3.4, figure 3.5, and figure 3.6. In Figure 3.4, the access time of the two basic
structures of a conventional direct-mapped cache, which are the data array (data) and
the tag array plus comparator (tag+comp), are examined. In Figure 3.5, the access
time of the way-matching part (tag+comp+or) and the data accessing part
(data+mux) of the conventional 2-way set-associative cache are examined. Finally,
the basic structure of conventional 2-way set-associative cache, which is formed by
connecting the hit-signal derived from (tag+comp-+or) to the select signal of the

multiplexer in (data+mux) of figure 3.5, is examined as shown in figure 3.6.

4 3 2 1 0
lag index line_offset
N
I:[I:O]
i 3
data > Data) —~—— Data
" Tag0
L=
Comp - Hit
tag+comp

Figure 3.4: Decomposition of conventional direct-mapped cache

13

4 3 2 1 0

lag inadex |I:’n=_uf£s=| | |

tag+comp+tor

4 3 2 0

tag | index | line_affset | |
— | 2-way
L[1:0]
+—+Datal ==
M
U
x
Datal == 1

D

Figure 3.6: Basic architecture of conventional 2-way set-associative cache

14

Table 3.1 shows the access time of sub-structures of 2-way set-associative cache.
The memory cells are generated using Artisan UMC 0.18um memory compiler and
the access times are determined using Synopsys 0.18um design compiler. The size of
each data block is 32 bytes and each cache line contains 4 blocks. The minimum and
maximum sizes of memory cell the memory compiler can generate are 1KB and
32KB. (data+tmux), (tag+comp+or), and (2_way) require 2 individual memory cells

for each way therefore the minimum size available for these three structures are 2KB.

cache size data tag+comp data+muz tag+comp+or 2_way
1k 2.29 2.19 — — —
2k 2.3 217 2.51 224 274
4k 2.33 216 2.52 2.23 374
gk 2.38 2.15 2.55 3.22 372
16k 241 214 256 221 N
32k 297 217 263 221 273
6k — — 218 3.24 373

Table 3.1 Access time of sub-structures of 2-way set-associative cache

By comparing the access time of (data) and (tag+comp), it can be seen that the tag
access part has longer access time than the data access part and therefore contributes
to the critical path of direct-mapped cache. The situation remains the same on
set-associative cache by comparing the access time of (datatmux) and
(tag+comp-+or), even though a multiplexer is added to the data access part. These
results reveal that the critical path of conventional set-associative cache is the tag
access part plus the multiplexer that selects the hit data block using the hit-signal
derived from the tag access part as select signal.

The delay of the multiplexer in (data+mux) can be derived by subtracting the
access time of (data+mux) by the access time of (data), which is about 0.2ns. While

the delay of the same multiplexer in (2-way), which is the access time difference

15

between (2-way) and (tag+comp) increase to about 0.55ns. The large fanout on the
hit-signal due to the multiplexer weaken its driving ability, results in increases the
access time on the multiplexer and therefore increases the overall cache access cycle

time

3.2 Sequential Way Access

Phase cache reduces the number of access by accessing tag arrays first to
determine the matching way and then accesses only the data array of the matched way
if there is a hit. However, since serial tag-data access has the wait until the matching
way is known before the access on data array can begin, cache access latency on each
cache access is therefore increased.

To reduce redundant memory: accesses while. maintaining fast cache access clock
rate, we propose sequential way-access set-associative cache which searches each
way sequentially, accessing both the tag array and the data array of the searched way,
from the first way to the last way. The access sequence terminates when a match is
detected and subsequent accesses on the remained ways are then saved. Unlike the
phase cache, which reduces the number of redundant memory accesses by reducing
the number of data arrays accessed, sequential way set-associative cache reduces the
number of redundant memory accesses by reducing the number of redundant way
accesses. Since both tag and data array are probed in parallel for each way access, the
access latency for each way is about the same as conventional set-associative cache.
By letting each way access to take one cycle, the cache access clock rate of sequential
way-access set-associative cache can be compatible with the conventional

set-associative cache.

16

Figure 3.7 shows an example of 2-way sequential way-access set-associative cache.
During the first cycle of cache access, only the tag array and the data array of way 0
are probed. If way 0 hits, as shown in Figure 3.7(a), the cache access is completed in
one cycle as the same as conventional 2-way set-associative cache and the accesses on
way 1 are saved. If way 0 misses, subsequent accesses on way 1 are required in the
next cycle as shown in Figure 3.7(b). In this case, no memory accesses are saved
compared to conventional 2-way set-associative cache. Further more, one additional
access cycle is required no matter way 1 hits or misses. Overall, sequential way
set-associative cache reduces the number of memory access at the expense of the

increase in average memory access time.

A
> M
U
X
» Datal I
Address Address
Cycle 1
* Data0
Cycle 2 Address
]
(a) Way 0 hits (b) Way 0 misses

Figure 3.7: 2-way sequential way-access set-associative cache
17

The average memory access time can be expressed as shown in formula (3). Due to
the ever widen gap between the process clock rate and main memory access time, the
miss penalty continues to grow as a dominant factor in average memory access time.
Therefore, although sequential way-access set-associative cache increases the average
hit time, this overhead on AMAT should be minor compared to the large miss penalty

when cache misses.

AMAT = (#_of_access) x (hit_rate x hit_timecyce +

miss_rate x miss_penalty) x clk 3)

Besides reducing the number of memory access, sequential way-access
set-associative cache also provides @ mean-to-reduce the fanout on the hit-signal.
Since the accessed way is predetermined-on each -memory cycle, the select signal of
the multiplexer that used to select hit data block among all the ways can also be
determined in advance as shown ‘in Figure 3.7. Therefore the fanout on the hit-signal
to the data multiplexer in conventional set-associative cache is no longer required in
sequential way-access set-associative cache and large fanout on the hit-signal can be
eliminated. Since the hit-signal is the most dominant factor on the actions of a cache,
the largely reduced fanout on the hit-signal may allows more complex cache access
schemes and placement policies without increasing the overall fanout on the
hit-signal, and therefore the cache access cycle time, dramatically. Further more, the
cache access cycle time may even reduce if the increased fanout on the hit-signal is

less than the reduced fanout caused by the data multiplexer.

3.3 Placement and Replacement Policy

Summarizing the overheads on cache hit on each way in sequential way-access
set-associative cache, we can see that a cache hit on different ways of sequential
way-access set-associative cache has different amount of overhead as opposed to
conventional set-associative cache. A cache hit in the earlier accessed ways can
eliminate subsequent accesses on later ways. Further more, less additional overheads
in cycle counts are required. The optimum situation comes when the cache hits in the
earliest accessed way. In this case only the hit way is activated and no additional
access cycle requires as the same as conventional set-associative cache. On the other
hand, the later a cache hits, the less subsequent way accesses can be saved while more
additional access cycles are required. The,worst situation comes when the cache hits
in the last accessed way or caché misses:|In.these’'cases no memory access is saved
but causes n-1 additional access ‘cycles where n equals to the associativity of the
cache. Therefore, the earlier accessed ways-have-less access overhead than later
accessed ways.

According to the above conclusion, a possible way to increase the performance of
sequential way-access set-associative cache is to increase the hit rate on the earliest
accessed way. By using smarter placement and replacement policies, we can allow
more frequently accessed blocks to be placed in earliest accessed ways while
infrequently accessed data are placed in slower accessed ways. Several approaches
have been proposed to increase the cache hit rate on frequently accessed blocks [15,
16, 17, 18]. Although complex placement and replacement policies cause additional
fanout on the hit-signal, the eliminated fanout on the hit-signal caused by data

multiplexer in conventional set-associative cache can compromise this overhead.

19

The basic principle that is applied on the placement and replacement policies of
sequential way-access set-associative cache is temporal locality. Temporal locality
basically means that if a memory location is recently referenced, there is a high
probability that the same location will be accessed again soon. Therefore the goal is to
reduce the access overhead on recently accessed blocks in order to increase the
performance. This can be done by allowing recently accessed blocks to be placed in

the earliest accessed way.

(1) Priority Replacement Policy

The priority replacement policy used in sequential way-access set-associative cache
concerns of the decision of which cache line to be evicted and the placement of the
introduced cache line when a cache miss occurs..During a cache miss, conventional
set-associative cache applies conventional least-recently-used (LRU) replacement
policy to determine which block withinthe-selected set is least recently accessed and
therefore the cache line containing-that.block-should be evicted and replaced by the
newly introduced cache line containing the refilled block. In priority replacement
policy used in sequential way-access set-associative cache, the LRU detection unit is
preserved to select the evicted block within the selected set on cache miss. However,
in order to reduce the re-access overhead on the refilled block, priority replacement
policy requires to place the refilled blocks in the earliest accessed way within the
selected set. Figure 3.8 shows an example of priority replacement policy on a 2-way
sequential way-access set-associative cache, assuming the LRU block of the selected
set is in the earliest accessed way (Way 0). Since the way of the evicted block (A) is
exactly the same as the way the newly introduced block (C) should be placed, the
space created by dropping the cache line containing the evicted block in the earliest

accessed way is refilled by the cache line containing the refilled block. The result is
20

exactly the same as conventional LRU policy used in conventional set-associative

cache and no additional overheads are required.

-

Way 0 Way 1 Way 0 Way 1

» =

Figure 3.8: Priority replacement policy (LRU : Way 0)

On the other hand, if the LRU block Of'the sélectéq set is in the later accessed way,

o create a space in the earliest accessed way

additional memory accesses are. fequined.
for the newly introduced cache:"l'inerc"(')'ntai-n-i':rig Ff;e refilled block. Figure 3.9 shows
another example of priority replacerﬁent ﬁiblicy on 2-way sequential way-access
set-associative cache. This time we assume the LRU block of the selected set is in the
later accessed way (Way 1). In this case the eviction of the cache line containing the
LRU block (B) creates a space in Way 1 while the newly introduced cache line
containing the refilled block (C) suffers from no available space in the earliest way for
the cache line to be placed. To solve this problem, priority replacement policy
requires that the cache line containing the block that is originally in the earliest
accessed way of the selected set (A) to be moved to the way where the eviction occurs
in order to create a space for the newly introduced cache line in the earliest accessed
way. Although moving cache line between ways causes additional memory accesses

compared to conventional LRU replacement policy, especially for d-cache since a

21

cache line usually contains more than one block. The reduced memory accesses on
re-accessing the refilled blocks can compromise the increased accessed. Further more,

the access cycles on re-accessing the refilled block can also be reduced.

Way 0 Way 1

P

\
Additional movement required!!

Figure 3.9: Prior_i-tj:/‘ r'e'plaqgment, policy (LRU : Way 1)

P

(2) Promotion Placement Polié&, oy LR

To further increase the performa.ric'e"of sequeht'i.él way-access set-associative cache,
a possible solution is to reduce the access overhead on recently accessed block during
cache hits. In promotion placement policy used in sequential way-access
set-associative cache, during a cache hit, the hit block is required to be promoted to
the earliest accessed way in order to reduce the re-access overhead on the hit block.
When the cache hits in the earliest accessed way, no additional action is required
since the hit block is already in the earliest accessed way. On the other hand, when the
cache hits in a way other than the earliest accessed way, swap is required to promote
the cache line containing the hit block to the earliest accessed way while the cache

line containing the block that is originally in the earliest accessed way of the selected

22

set is placed to the hit way. This is shown in figure 3.10, assuming the cache hits in

the later accessed Way 1 of sequential way-access set-associative cache.

Way 0 Way 1 Way 0 Way 1

Figure 3.10: Promotion placement policy (hits in Way 1)

Besides reducing the re-access overhead on recently accessed block, promotion
placement policy also provides a meah' to b'revent frequently accessed blocks from

becoming stuck in the later accessed Wayis:.Cdnsidér the following access sequence

shown in figure 3.11, assuming 'blocK-A;,f'b'I"ock-B, and block-C all map to the same
set. According to the access ;erq_L_le_'rige rv'\-/e-';-car_l:.see that block-A is a frequently
accessed block while block-B is not. The first access on block-A puts block-A to the
earliest accessed way according to the priority replacement policy and therefore
allowing the following accesses on block-A to have minimum access overhead. If
however, a glitch access on the infrequently accessed block-B occurs. According to
the priority replacement policy, block-B will be placed to the earliest accessed way
while frequently accessed block-A will be demoted to the later accessed way. Without
promotion placement policy, frequently accessed block-A will be stuck in later
accessed way therefore will increase the access overhead on following accesses on
block-A. Promotion placement policy allows accidentally demoted block-A to be

swapped back to the earliest accessed way and therefore can prevent the access

overhead on subsequent accesses on block-A from increasing.

23

No
Promotion

With
Promotion

Access Sequence A A B A A A
Way 0 Way 1 Way 0 Way 1
I I Stuck!!
Way 0 Way 1 Way 0 Way 1 Way 0 Way 1

»

I

»

Figure 3.11: Promotion on frequently accessed block

24

Chapter 4 Experimental Evaluation

4.1 Experimental Environment

Figure 4.1 shows the basic simulation framework used for experimental evaluation.
The memory activity trace files are derived by running benchmarks on an ARM7
compatible processor developed by our laboratory called ACARMY. The parameters
of ACARMY7 are listed in Table 4.1. The memory activity information of the
benchmarks running ACARMY is extracted and recorded in the memory activity trace
files. Both the activities of I-cache and D-cache are extracted by separating the
requests for instruction and data. The memory activity trace files are then served as

the processor core for the cache during the simulation.

Memory Activity Trace File

Power measurement

-y
.
[}
L}
L}
L]
[}
L]
[}
[}
L}
L}
L}
[}
.
[}
L}
L}
L}
[}
.
[}
L}
L}
L]
[}
1
[]
L}

:..
[}
.
[}
L}
L}
L}
[}
.
[}
L}
L}
L]
[}
L]
[}
L}
L}
L}
[}
.
[}
L}
L}
L}
a

Cache controller

Data () Data 1

Main Memory

Figure 4.1: Simulation framework

25

ISA ARM v4 ISA

Issue Width 32 bits

Pipeline 3 stages

Architecture von Neumann architecture

Table 4.1: Parameters of ACARM7

The base line cache architecture is a 2-way set-associative cache of size from 2KB
to 128KB. The issue size for each cache access is 4 bytes. The cache block size is 16
bytes. For comparison purposes, four cache configurations are developed: they are
conventional set-associative cache (2 Way Conv), sequential way-access
set-associative cache without any optimization in placement (Seq 2 Way), sequential
way-access set-associative cache with priority replacement policy (Seq+Pri), and
sequential way-access set-associative cache with both priority replacement policy and
promotion placement policy (Seg+Pri+Pmt). All cache models are developed using
hardware description language “(Verilog)--and are -synthesized using Artisan UMC
0.18um technology. The memory cells ‘are’ generated using Artisan UMC 0.18um
memory compiler. The minimum and maximum sizes of memory cell the memory
compiler can generate are 1KB and 32KB. Concerning the access time of a 32KB
memory cell increases too much compared to memory cells of other size (see first
column on table 3.1), each way on the 128KB cache is made up of four 16KB
memory cells instead of two 32KB memory cells and only the selected cell on each
way is activated on each cache access. The power measurement includes both the
cache controller and the memory arrays used by the cache, including tag arrays and
data arrays. The power is measured using power compiler with clock rate fixed at

200MHz on worst case.

26

The main memory is basically a behavior model which is used as a backup storage
for the cache. The issue size of the main memory is 16 bytes. A write transfer takes 18
cycles and a read transfer takes 16 cycles to complete.

The EDA environment used in the simulation are summarized in table 4.1.

Technology UMC 0.18um
Simulator NC Verilog
Synthesis Design compiler

Power analysis | Power compiler
Memory block | Artisan UMC 0.18um memory compiler

Table 4.2: EDA environment

Six benchmarks are simulated for each cache configuration. The first one is a quick
sort program of 65536 elements, The second and the third are JPEG encoder and
decoder respectively. The encoder converts-a-64>*64 bitmap file to 64*64 jpeg file and
the decoder converts the 64*64 jpeg file.backt0. 64*64 bitmap file. The fourth one is
the Whetstone benchmark. The last two are FFT and Matrix from the Dspstone
benchmark suite. The FFT contains 1024 data and the dimension of the matrix is

50X50.

4.2 Experimental Result

4.2.1 Memory activity
Figure 4.2 shows the memory activities of JPEG encoder on D-caches of different
cache configurations. Both the activities on tag array and data array are presented.

The corresponding miss rates for each cache size are also presented. Since for each

27

cache size, both the capacity and associativity on each cache configuration are the
same, the miss rates for each cache configuration on the same cache size are the same.

From the figure, it is clearly that sequential way access (Seq 2 Way) does reduce
the number of memory access. However, the reduction rate is not quit stable against
miss rate. The number of access actually increases as cache size increases from 4K to
32K while the miss rates are reduced. The reason is because the placement on
sequential way access alone depends only on the conventional LRU replacement
policy. A frequently accessed block may be placed in the later accessed way if the
replaced block is in the later accessed way. Since there is no mechanism to move
blocks between ways, the frequently accessed block may become stuck in the later

accessed way and compromise the benefit of sequential way access.

#of access # of Access on Tag Array # of Access # of Access on Data Array
900000 1200000
800000
7 1000000
700000 7 7 7 7 7
maEn
600000 ; g ? ? ? W00
‘AnEm
7) A7 7 7 i
500000 Ak— 7 7 4] 7 7
7 % 7 ?:i 600000 “ 7 7 ? % 4
AFE 7 7 / Ak b I RE Vil U v 7
oo 10 = 11 1 | 7
A0 = i A= 77
000 A0 202 | | o 20 =1k
ik 2::|;:::|¢::: ME ME WE AFE N
200000 AN A A A : AE e NE AE A
5::=|¢ &::lﬁ»::lﬁ::: 1000 A PEMENEAEA
Looooo My v i i g::;lg:::lzz::lgz:
K e KE N i 8 HEZ 8
AME NS S NS 7 AE ME ME ME A
x & 8& 16k 3% 64k 128k S % % 8 16k 3% 64k 128k Size
B 7 Way Conv
2k 1k 8k 16k 32k 64k 128k B5eq 2 Way
missrate(®) | 7006 | 1834 | 0669 | 028 | 0007 | 0007 0 B Seq+ri
B Seq+Pri+Prt

Figure 4.2: Memory activities on D-cache running JPEG encoder

Adding priority replacement policy to sequential way access allows newly
introduced blocks to be placed in the earliest accessed way therefore reduces the

re-access overhead on newly introduced blocks. However, priority replacement policy

28

only applies during cache miss. A frequently accessed block which is originally in the
earliest accessed way may be accidentally demoted to the later accessed way when a
new block is introduced to the cache and become stuck there. Therefore the access
reduction rate on Seq+Pri against miss rate is smoother comparing to Seq 2 Way but
still not quit stable. Further more, moving blocks between ways cause additional
memory accesses and might compromise the reduced accesses benefited from priority
replacement policy.

By allowing frequently accessed blocks in the cache to be placed to the earliest
accessed way during cache hit, Seq+Pri+Pmt effectively reduces the number of
memory access compared to conventional set-associative cache as miss rate reduces.
For tag array, sequential way access with both priority replacement policy and
promotion placement policy has the lowest number of access against all other cache
configurations for all cache sizes. For the data array; since a cache line contains four
blocks, a cache line swap requires 8. accesses-to read out the two cache lines to be
swapped and 8 accesses to write the cache lines to the required destination, resulting
16 accesses for each swap on data array comparing to only 4 accesses on tag array.
Therefore when the cache size is small, the high probability of swaps due to thrashing
on Seq+Pri and Seg+Pri+Pmt increases their number of access on data array more
dramatically than on tag array. However, as cache size increases, the ease on capacity
miss allows the benefits of swaps on Seq+Pri and Seq+Pri+Pmt to show, resulting
more serious reduction in the number of access for both tag array and data array,
especially for Seq+Pri+Pmt.

Figure 4.3 shows the memory activities of the same JPEG encoder on I-caches of
different cache configurations. The results are similar to the D-cache. The figures also
shows that up to 50% of accesses can be saved on 2-way sequential way-access

set-associative cache compared to conventional 2-way set-associative cache. The
29

effects on priority replacement policy and promotion placement policy are more
evidence in the figure. Without the help of smarter placement/replacement policies,
Seq 2 Way achieves about 50% of access reduction when the cache size increase to
64KB, even though the miss rate is already 0% when cache size reaches 8KB.
Seq+Pri achieves about 50% reduction much earlier than Seq 2 Way at the cache size
of 8KB, the same size when the miss rate achieves 0%. For Seg+Pri+Pmt, almost
50% of access reduction is achieved at the cache size of 2KB, despite the fact that the

miss rate is not yet 0%.

of access # of Access on Tag Array #ofAccess 3 of Access on Data Array
4500000 4500000
4000000 H7 4000000 T4

3500000 3500000
3000000

2500000

: -...

ARSNRRARRRRARRRRRRRRRRRRRRNRRARRRNRNRNNNY

2000000

e

1500000

...,v,..vv.,.,.,v..
SO

1000000

R R AR RLR

—

13
i
&

%
:
]
.
#
5
[
i
i
#
#
:

SO

500000

.,v
e

NN NN NN RN

PR AI AR AR A

NN NN NN NN
ARSI NSSENS A R R AR AR R R R SRRRRRRNNNSSS
(2 TN TeTeTeT4 |

ORI NN RXRX,
R S

o0

fex2
5%%
2%

TeTeT

128k Size

miss 1ate(%! 0.145 0.01 0 0 0 0 0

Figure 4.3: Memory activities on D-cache running JPEG encoder

The memory activities of each benchmark on 32-KB D-caches of different cache
configurations are shown in table 4.3 and table 4.4 where table 4.3 shows the
activities on tag arrays and table 4.4 shows the activities on data arrays. Sequential
way access in average reduces the number of access on both tag arrays and data arrays
effectively. Priority replacement policy allows newly introduced block to be placed in

the earliest accessed way during cache miss and further reduces the number of access.

30

Combining with promotion placement policy, which places recently accessed blocks

in the earliest accessed during cache hit, Seq+Pri+Pmt achieves the highest reduction

among all cache configurations. Up to 43% of accesses are reduced on tag arrays and

22% on data arrays. For the data arrays, the large cache line increases the overhead on

swaps consequently compromises the benefits of priority replacement policy and

promotion placement policy.

of access on tag array

Table 4.3: Memory activities of benbﬁhlaf-ké ont

|

Average
Type Sorting | Jpeg_enc | Jpeg_dec Whet FFT Matrix | Reduction(%)
2 Way Conv 10877110 726582 | 2544710 542078 382328 | 1050558 o
Seq 2 Way 7339463 721974 | 2077295 278209 295676 853405 23.61
Seq+Pri 8620797 367145 | 2065885 278285 203443 852207 33.89
Seq+Pri+Pmt 6041373 368539 | 2023675 271321 201806 559923 43.01

ag arrays of 32-KB D-caches

of access on data array Average
Type Sorting | Jpeg_enc | Jpeg_dec Whet FFT Matrix | Reduction(%)
2 Way Conv 10112040 656508 | 2973387 429463 303624 | 900961 =
Seq 2 Way 7604913 652035 | 2611631 278285 249111 730744 18.28
Seq+Pri 8703385 367358 | 3797953 278589 203422 | 730580 19.55
Seq+Pri+Pmt 7505161 381091 | 3644583 271937 226558 | 642979 22.64

Table 4.4: Memory activities of benchmarks on data arrays of 32-KB D-caches

4.2.2 Power

Table 4.5 shows the power consumptions of JPEG encoder on D-caches of different

cache configurations. The power reduction rate of each cache configuration

correspond to the conventional set-associative cache of the same cache size are shown

in figure 4.4. The curve of power reduction rate against the cache size is similar to the

31

fraction of reduced access. It is clearly that the reduced number of access due to

sequential way access effectively reduces cache power consumption.

Power (mW) 2k 4k 8k 16k 32k 64k 128k
2_way_Conv 105549 11.1911 11.3681| 11,753 127075 14.1401] 134773
Seq 2 Way 8.6416) 85862 87200 92643 110202 99955 9.5769
Seq+Pri 10.2043 9.606) 967A8| 100554 84002 9.1785| 85338
Seq+Pri+Pmt 11.3855] 102995 94004| 9.4849] 77.9818] 85338 &.1694

Table 4.5: Power consumptions on D-cache running JPEG encoder

Reduction rate(%) Power ReductiOﬂ Rate

45
44

15 f_______.4
s /A d—
o8 t/’/“_‘\k“‘_i / / ——Seq 2 Way

15 i 4/\ / —B— Seq+Pri
10 /.—— hd Sec+Pri+Pmt

5

5
10 ok Kk Rk 16k 3%k 64k 128k Size

Figure 4.4: Power reduction rate on D-caches running JPEG encoder

Table 4.6 and figure 4.4 also shows the corresponding power consumption and
power reduction rate of JPEG encoder on I-caches of different cache configurations.
Again, similar results are shown. From the figure it can be seen that under the same
number of reduced accesses, Seq+Pri+Pmt performs better compared to other cache
configurations. It is because the LRU detection unit in Seq+Pri+Pmt is eliminated and

therefore further reduces its hardware complexity. The detail will be stated in section

32

4.2.4. For Seq 2 Way, even though virtually no memory accesses are saved for cache
size from 8K to 32K according to figure 4.3, large power reduction is still achieved.
The almost perfect hit rate implies that almost every cache access on Seq 2 Way hits
but hits in the later accessed way. Therefore the average cache access time on Seq 2

Way almost doubles and therefore flattens the energy consumed in each second.

Power (mW) 2k 1k 8k 16k 32k 64k 128k
2_way_Convw 079345 SBEV0Z[5954420 61.572] 673354 VLORE1| 70.0092
Seq 2 Way 32080 326005 339331 35.0833] 38.634) 403685 37.7253
Seq+FPri 33.2601| 336019 324495 334206 364221 409177 38.3142
Seq+Pri+Pmt 300071 299522 298823 308303 33.6149) 377199] 34.597

Table 4.6: Power consumptions on I-cache running JPEG encoder

Reduction

Rate(%) Power Reduction Rate
(al]

50 A

40

——Seq 2 Way
30 = SeqtFri

Sec+Pri+Pmt

20

10

2k 4k Bk 16k 32k 6dk 128k Size

Figure 4.5: Power reduction rate on I-caches running JPEG encoder

Table 4.7 shows the power consumptions of each benchmark on 32-KB D-caches
of different cache configurations. For Seq+Pri and Seq+Pri+Pmt, the hardware

overhead due to smarter placement/replacement policies cause additional power

33

consumption and compromise the reduced access power. Despite of that,
Seq+Pri+Pmt still manage to achieve the highest power consumption among all cache
configurations. Up to 25% of power consumption is reduced by Seq+Pri+Pmt

compared to conventional set-associative cache.

32KB D-Cache (16-Byte Block)
Power (mW) Average
Type Sorting | Jpeg_enc | Jpeg_dec Whet FFT Matrix | Reduction(%)
2 Way Conv 14.6078 12.7075 11.7158 125716 17.3065 | 19.4531 =
Seq 2 Way 119118 11.0202 9.8163 8.4067 13.0210 | 14.2550 22.05
Seq+Pri 12.1698 8.4002 13.6918 8.9637 12.2124 | 14.7980 19.25
Seq+Pri+Pmt 10.5755 7.9818 12.9599 8.2723 121724 | 13.0424 2512

Technology : UMC 0.18um

Table 4.7: Power consumptions of benchmarks on 32-KB D-caches

4.2.3 Cycle Count

To evaluate the effects of different main memory:latencies on the cycle counts of
different cache configurations, two. types of main memory with different access
latencies are applied. The first one is the same main memory used in pervious
evaluations and is referred to as mem_long in the thesis. The mem_long requires 18
cycles for a write transfer and 16 cycles for a read transfer. The second main memory
has shorter access latency and is referred to as mem_short. A write transfer to
mem_short takes 8 cycles and a read transfer takes 6 cycles. The cycle counts with
respect to mem_short and mem_long on D-caches of each cache configuration
running JPEG encoder are shown in table 4.8 and table 4.9. The percentage of
increased cycle count of each cache configuration correspond to conventional
set-associative cache of the same size are shown in figure 4.6 (mem_short) and figure

4.7 (mem_long).

34

cycle count 2k 4k 8k 16k 32k 6dk 128k
2_way_Conv 40474 Aed650| 399602 3T78312| 363642] 363642] 363264
Seq 2 Way 940689 659542 5O006E| 618980 T222098| S02734| 502329
Seq+Pri 892861 655121 623992| 636077 367415] 363669 468032
Seq+Pri+Pmt 968675 B6951T| 549477 518362 IOV 363669 363561

Table 4.8: Cycle count on D-cache running JPEG encoder (mem_short)

cycle count 2k 1k 8k 16k 32k 64k 128k
2_way_Conv 1047274 551590 429672 290482] 363912] 363912] 363264
Seq 2 Way 1266949 754172 623018 BI0210] 722568 503004 502329
Seq+Pri 1199661 742061 654062 647287 367685 363939 468032
Seq+Pri+Pmt 1275475 756757 579547 520502 375247 363939 363561

Table 4.9: Cycle count on D-cache running JPEG encoder (mem_long)

Percentage (%)

Cycle Count Increased

100

A

/

/

\

A
i
é_,._/

\
\
\

o

—

7

/

/

\Z

iy
1 -—

2k

4k

8k

16k

32k

Bk

v

128k Size

Figure 4.6: Cycle count increased on D-cache running JPEG encoder (mem_short)

Percentage(%) Cycle Count Increased
100 A

Q0

. /N

. /A

. X
50 F'// \ \
40 et \ —

S \ /
10 ./ \ /

O 1 1 1 1 |

oo
2k 4k Bk 16k 32 ok 128k Size

Figure 4.7 : Cycle count increased.en D-eache-running JPEG encoder (mem_long)

The cycle count on Seq 2 Way varies dramatically with respective to cache size.
The cycle count on Seq 2 Way even doubles at the cache size of 32KB despite the fact
that the miss rate is almost zero. Comparing to the cycle count on Seq+Pri of the
same cache size, which is almost identical to conventional set-associative cache, it is
clearly that the most of the frequently accessed blocks in Seq 2 Way were placed in
the later accessed way the first time they were introduced to the cache and become
stuck there therefore causing such huge increase in cycle count. However, the cycle
count on Seqg+Pri is still not stable enough with respective to miss rate due to lack of
mechanism to promote recently accessed block to earlier accessed ways during cache
hit. Seq+Pri+Pmt further increases the hit rate on the earliest accessed way by
allowing the recently accessed blocks to be swapped to the earliest accessed way and

further reduces and stabilizes the cycle count.

36

Comparing figure 4.6 with figure 4.7, the curve of the percentage of increased
cycle count on mem_short actually shift down compared to mem_long on smaller
cache sizes. The reason can be explained by considering the formula of cache access

cycle count expressed as follows:

Cycle_count = (#_of_access) x (hit_rate x hit_timecyce +

miss_rate x miss_penalty) 4)

The overall cache access cycle count is composed of the total cycle count on cache
hits and the total cycle count on cache misses. The main memory access latency
affects the cache miss penalty therefore plays an important role in overall cache
access cycle count. The longer main, memory-access latency increases the effect of the
miss penalty on the overall cache access cycle count and therefore reduces the effect
of the increased hit cycle count due to.sequential way access on the overall cache
access cycle count, especially when the miss rate-is high. As the gap between main
memory access time and processor clock rate continues to grow, the effect of the
increased hit cycle time due to sequential way access on the overall cache access
cycle count should continue to reduce in the future.

Table 4.10 and table 4.11 shows the cycle counts of each benchmark on 32-KB
D-caches of different cache configurations with respect to mem_short and mem_long.
Sequential way access increases the average cache access cycle count dramatically
while priority replacement policy and promotion placement policy effectively
alleviates the increased cycle count by increasing the hit rate on the earliest accessed
way. The average cycle count on Seg+Pri+Pmt increases only about 6.39%

comparing to conventional set-associative cache. By comparing table 4.10 with table

37

4.11, it also shows that the overhead on the increase cycle count reduces as the cache

miss penalty becomes more dominant.

32KB D-Cache (16-byte block, mem_short)
Cycle Count Average
Type Sorting | Jpeg_enc | Jpeg_dec Whet FFT Matrix | Increment(%)
2 Way Conv 6743001 363642 | 3082337 271533 198011 527029 =
Seq 2 Way 8577607 722289 | 4421579 278665 302000 | 855049 48.63
Seq+Pri 9692453 367415 | 4040671 278665 208743 | 853763 22.94
Seq+Pri+Pmt | 7383729 374977 | 4006235 271857 217344 | 602263 7.34

Table 4.10: Cycle counts of benchmarks on 32-KB D-caches (mem_short)

32KB D-Cache (16-byte block, mem_long)
Cycle Count
Average
Type Sorting | Jpeg_enc | Jpeg_dec Whet FFT Matrix | Increment(%)
2 Way Conv 8029871 363912 | 5947467 271913 203361 528569 =
Seq 2 Way 9902527 722668 | 6566889 279045 307350 | 856639 41.35
Seq+Pri 10974323 367685 | 6185801 279045 214093 | 855303 18.67
Seq+Pri+Pmt | 8665599 375247 | 6151365 272237 222694 | 603803 6.39

Table 4.11: Cycle counts of benchmarks on 32-KB D-caches (mem_long)

4.2.4 Cycle Time

The cycle time of each cache configurations for different cache sizes are shown in
table 4.12. The cycle times are derived by synthesizing the RTL models of each cache
configurations for different cache sizes using Artisan UMC 0.18um technology. Both
tag array and data array are included in the model. Although sequential way access
and smarter placement/replacement policies cause additional hardware overhead on
the cache architecture, the cycle times of the proposed cache model do not increase
dramatically compared to conventional set-associative cache of the same cache size.

In fact, the cycle times of the proposed cache model actually reduce slightly.

38

Although proposed model increases the hardware complexity and therefore cause
additional loading on the hit-signal, the increased loading is well compromised by the
eliminated fanout on the hit signal used to select the hit data block in conventional
set-associative cache discussed earlier. For (Seq+Pri+Pmt), since the latest accessed
block is always placed to the earliest accessed way and since there is only two way,
the need for LRU detection is no longer required because the blocks in the later
accessed way are always the LRU blocks. By eliminating the LRU detection unit, the
fanout on the hit-signal in (Seq+Pri+Pmt) is further reduced and consequently the
cycle time of (Seqg+Pri+Pmit) is also further reduced. The cycle time of (Seq+Pri+Pmt)
is reduced by up to 4% in average compared to the conventional set-associative cache

of the same cache size.

cache size 2k 4k 8k 16k 32k 64k 128k _1
2 Way Conv 4.38 4.35 4.34 4.33 4.36 4.37 448
Seq 2 Way 441 4.33 4.28 428 4.28 437 459
Seq+Pri 4.34 4.33 4.31 4.34 4.33 434 4.68
Seq+Pri+Pmt 4.18 4,18 4.14 4.15 4.17 4.18 4.37

Technology : UMC 0.18um

Table 4.12: Cycle time

4.2.5 Memory Access Time

The overall memory access time of each cache configuration can be derived by
multiplying the overall cache access cycle count by the cache cycle time. The overall
memory access time is the actual time the cache spent during simulation. Table 4.13
shows the overall memory access time of each benchmark on 32-KB D-caches of
different cache configurations. Since the cycle time does not increase dramatically
due to the reduced fanout on the hit-signal, the average percentages of increased

memory access time on Seq 2 Way and Seg+Pri manage to be closed to their

39

corresponding percentages of increased cycle count. For Seq+Pri+Pmt, the smaller
cycle time due to the elimination of the LRU detection unit further reduces its

percentage of increased memory access time to only 1.96%.

32KB D-Cache (16-byte block, Long Latency)
Memory Access Time (ns)
Average
Type Sorting | Jpeg_enc | Jpeg_dec Whet FFT Matrix | Increment(%)
2Way Conv | 34769341 | 1575739 | 256752632 | 1177383 880553 | 2288704 =
Seq 2 Way 42976967 | 3092591 | 28106285 | 1194313 | 1315458 | 3666415 40.01
Seq+Pri 46970102 | 1573692 | 26475228 | 1194313 916318 | 3660697 17.20
Seq+Pri+Pmt | 35962236 (1557275 | 25528165 | 1129784 924180 | 2505782 1.96

Table 4.13: Memory access time of benchmarks on 32-KB D-caches

4.2.6 Power-Delay Product

The power-delay product implies the overall energy consumption during the
simulation. Table 4.14 shows the power-delay product of each benchmark on 32-KB
D-caches of different cache configurations. The-result shows that sequential way
access together with priority replacement and promotion placement policies reduces
the cache power consumption while preventing the overall memory access time from
increasing dramatically, consequently has better energy efficiency compared to
conventional set-associative cache. Up to 23.8% of reduction in power-delay product

is achieved by Seq+Pri+Pmt compare to conventional set-associative cache.

32KB D-Cache (16-byte block, Long Latency)

Power-Delay Product
Average
Type Sorting Jpeg_enc | Jpeg_dec Whet FFT Matrix Reduction(%)
2 Way Conv 507903586 | 20023703 | 301711516 | 14738013 | 15239293 | 44522383 S
Seq 2 Way 511933038 | 34080972 | 275899725 | 10040228 | 17128579 | 52264745 -10.06
Seq+Pri 571616753 13219326 | 362493531 | 10705460 | 11190442 | 54170992 5.59
Seq+Pri+Pmt [380318625 12429858 | 330842462 9345908 | 11249490 | 32681417 23.79

Table 4.14: Power-delay product of benchmarks on 32-KB D-caches
40

Chapter 5 Conclusions

The thesis examines the concept of using sequential way access to reduce cache
power consumption by reducing the number of ways being activated on each cache
access. By accessing each way sequentially on each cache access and eliminating
subsequent way accesses when a cache hit is detected, substantial energy can be saved
at the expense of increased overall cycle count. In order to increase performance,
smarter placement and replacement policies are applied to increase the hit rate on the
earliest accessed way by placing the recently accessed blocks in the earliest accessed
way. The increased hit rate on the earliest accessed way further reduces the number of
ways being activated and the additional access cycles on each cache access,
consequently further reduces both the overall cache power and the average cache
access cycle count. Sequential way access also. provides means to reduce the fanout
on the hit-signal therefore prevents the cache cycle time from increasing due to more
complex logic. By applying sequential.-way-access together with priority replacement
policy and promotion placement policy, experimental result shows that a 32KB 2-way
sequential way-access set-associative cache reduces the power-delay product by an
average of 23.8% compared to the conventional 2-way set-associative cache of the

same size.

41

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

P. Gelsiniger. Microprocessors for the New Millennium — Challenges, Opportunities
and New Frontiers. In proceeding of the Int’l Solid-State Circuits Conference, Feb.
2001.

S. Santhanam, “Strongarm sall0 —a 160mhz 32b 0.5w cmos arm processor-,” In
proceeding of the Hot Chips 8: A Symposium on High-Performance Chips, Aug. 1996.

N. P. Jouppi, P. Boyle, J. Dion, M. J. Doherty, A. Eustace, R. W. Haddad, R. Mayo, S.
Menon, L. M. Monier, D. Stark, S. Turrini, J. L. Yang, W. R. Hamburgen, J. S. Fitch,
and R. Kao, “A 300-mhz 115-w 32-b bipolar ecl microprocessor,” In proceeding of the
IEEE Journal of Solid-State Circuits, volume 28, pp. 1152-1166, Nov. 1993.

J. H. Edmondson and et al. Internal organization of the Alpha 21164, a 300-MHz 64-bit
guad-issue CMOS RISC microprocessor. Digital technical Journal, 7(1), 1995.

A. Hasegawa et al, “SH3: High Code Density, Low Power,” In proceeding of the IEEE
Micro, pp. 11-19, Dec. 1995.

B. Calder, D. Grunwaldm, and J. Emer, “Predictive Sequential Associative Cache,” In
proceeding of the Int’l Synpasium on_High. Performance Computer Architecture, pp.
224-253, Feb. 1996.

K. Inoue, T. Ishihara, and Kiz=Murakami,“Way-predicting set-associative cache for high
performance and low energy. consumption,” In jproceeding of the 1999 International
Symposium on Low Power Design; pp. 273-275,°Aug. 1999.

M. Powell, A. Agarwal, T. Vijaykumar, B Falsafi, K. Roy, “Reducing set-associative
cache energy via way-prediction and selective direct-mapping,” In proceeding of the
32th International Symposium on Microarchitecture, Austin, TX, USA, pp. 54-65, Dec.
2001,

T. Johnson and W.W. Whu, “Run-time Adaptive Cache Hierarchy Management via
Reference Analysis,” In proceeding of the OSCA-24, Jun. 1997.

M. Huang, J. Renau, S.M. Yoo, and J. Torrellas, “L1 Data Cache Decomposition for
Energy Efficiency,” In proceeding of the Low Power Electronics and Design,
International Symposium, pp. 10-15, 6-7 Aug. 2001.

C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure for
wire-delay dominated on-chip cache,” In proceeding of the Ninth international
Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS X), pp. 211-222, Oct. 2002

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar, “Distance Associativity for
High-Performance Energy-Efficient Non-Uniform Cache Architectures” In proceeding

42

of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, pp.
55-66, 2003.

[13] G. Reinman and B. Calder, “Using a serial cache for energy efficient instruction
fetching,” In proceeding of the Journal of System Architecture, volume 50, issue 11, pp.
675-685, Nov. 2004.

[14] S.Y. Cheng and J.D, Huang, “Low-Power Instruction Cache Architecture Using
Pre-Tag Checking,” IEEE int’l Symp. In proceeding of the VLSI Design, Automation,
and Test, pp. 83-86, Apr. 2007.

[15] G. Tyson, M. Farrens, J. Matthews, and A.R. Pleszkun “A Modified Approach to Data
Cache Management,” In proceeding of the 28th Annual International Symposium on
Microarchitecture, pp. 93-103, Dec. 1995.

[16] J.A. Rivers and E.S. Davidson “Reducing Conflicts on Direct-Mapped Caches with a
Temporality-Based Design,” In proceedings of the 1996 International Conference on
Parallel Processing, pp. 151-162, Aug. 1996.

[17] V. Mulutinovic, B. Markovic, M, Tomasevic, and M. Tremblay, “The Split
Temporal.Spatial Cache: Initial Performance Analysis,” In proceedings of the SClzzL-5,
Santa Clara, California, USA, Mar. 1996.

[18] J.Sahuquillo and A. Pont,-“The Filter:"Cache: “A Run-Time Cache Management
Approach,” In proceeding of the 25th-EUROMICRO conference, pp. 424-431, Sep.
1999.

43

