

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

採用循序路存取之

低功率集合關聯快取記憶體架構

Sequential Way-Access Set-Associative Cache

Architecture for Low Power

研 究 生：丁之暉

指導教授：黃俊達 博士

中 華 民 國 九 十 六 年 九 月

採用循序路存取之

低功率集合關聯快取記憶體架構

Sequential Way-Access Set-Associative Cache

Architecture for Low Power

研 究 生：丁之暉 Student: Chih-Hui Ting
指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering & Institute of Electronics

September 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年九月

 i

採用循序路存取之

低功率集合關聯快取記憶體架構

研究生：丁之暉 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

近代快取記憶體架構藉由使用集合關聯快取記憶體來減少快取記憶體的失誤

率同時並保有快速的存取速度。然而集合關聯快取記憶體卻造成可觀的功率消

耗。其原因在於每次快取記憶體存取皆會觸發所有的路，然而實際上只有命中的

路是有意義的。為了減少快取記憶體的功率消耗，一個可行的方法就是減少每次

快取記憶體存取時被觸發的記憶體陣列數目。

在本篇論文中，我們檢驗藉由循序路存取的方式來減少每次快取記憶體存取時

被觸發的路數目。循序路存取在每次快取記憶體存取時依序搜尋每一路，從第一

路到最後一路，當某ㄧ路命中時，則搜尋的動作結束。當快取記憶體命中在一個

較早搜尋的路時，較晚搜尋的路的存取就可以被排除。藉由較精明的區塊放置及

取代策略，我們可以增加最早被搜尋的路的命中率因而進ㄧ步減少每次快取記憶

體存取時被觸發的路的數目。由於每個週期中被存取的路是預先確定的，因此在

傳統集合關聯快取記憶體中命中信號用於選擇命中區塊的多工器所造成的負荷可

以被排除。這些減少的命中信號負荷可降低快取記憶體的存取週期因此能夠抵消

增加的存取周期數。實驗顯示，相對於傳統的32KB二路集合關聯快取記體，同樣

大小之採用循序路存取二路集合關聯記憶體平均能減少23.8%的功率-延遲乘積。

 ii

Sequential Way-Access Set-Associative Cache
Architecture for Low Power

Student: Chih-Hui Ting Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Modern cache architectures utilize set-associative notion to increase the hit rate while

maintaining fast access time. However, set-associative cache results in tremendous

waste in power since all the ways are probed on each cache access but actually only the

matching way is required. In order to reduce cache power consumption, a possible

solution is to reduce the number of activated memory arrays on each cache access.

In this thesis, we examine the concept of sequential way access to reduce the number

of ways being activated on each cache access. Sequential way access probes each way

sequentially, from the first way to the last way on each cache access. The access

sequence terminates when a cache hit is detected. A cache hit in an earlier accessed way

can eliminate subsequent accesses on later ways. By using certain smarter placement

and replacement policies, the hit rate on the earliest accessed way can be increased

therefore the number ways being activated on each cache access can be further reduced.

Since the accessed way on each cycle is predetermined, the fanout on the hit-signal to

the multiplexer which selects the matching data block in conventional set-associative

cache can be eliminated. The reduced loading on the hit-signal reduces cache cycle time

and therefore can compromise the increased cache access cycle count. Experimental

result shows that a 32KB 2-way sequential way-access set-associative cache reduces the

power-delay product by an average of 23.8% compared to the conventional

set-associative cache of the same size and associativity.

 iii

誌 謝

首先,我要感謝我的指導教授-黃俊達博士,在碩士兩年當中給我的支持和鼓

勵,讓我能有良好的研究環境,在自由的學習風氣之下,培養出獨立研究的能力,又

能隨時給予寶貴的意見及指導,對老師的感激之情,並非以簡短的文句可以表達。

當然也要感謝養育我長大的父母對我的栽培,沒有他們,就沒有今日的我。接著

要感謝的是所有來參與口試的所有教授們,黃婷婷教授,和林永隆教授,百忙當中

抽空前來指導我,讓我受益匪淺,也讓我得到了寶貴的經驗,謝謝你們。

最後也要感謝所有實驗室的同仁們, 許哲霖、李南興、張詠翔學長以及學弟們,

跟大家一起修課、做實驗、和討論及分析研究成果更是我人生旅途中一段最值得

珍惜的回憶,希望未來在讀書或工作還有機會一起努力。

希望這篇論文能對人類社會有小小的貢獻,如此一來在辛苦也就值得了,再次

謝謝大家的幫忙。

 iv

Contents

Chinese Abstract...i

English Abstract ... ii

誌 謝 ... iii

List of Tables ...v

List of Figures...vi

Chapter 1 Introduction ...1

1.1. Motivation ...1

1.2. Proposed Architecture ...2

1.3. Thesis Organization...3

Chapter 2 Related Works ...4

2.1 Way-Predicting Set-Associative Cache...4

2.2 Non-Uniform Cache Architecture (NUCA) ..7

Chapter 3 Proposed Low-Power Cache Architecture ..10

3.1 Drawbacks of Conventional Set-Associative Cache10

3.2 Sequential Way Access ...16

3.3 Placement and Replacement Policy...19

Chapter 4 Experimental Evaluation ...25

4.1 Experimental Environment..25

4.2 Experimental Result ..27

4.2.1 Memory activity ..27

4.2.2 Power ...31

4.2.3 Cycle Count ...34

4.2.4 Cycle Time ..38

4.2.5 Memory Access Time..39

4.2.6 Power-Delay Product...40

Chapter 5 Conclusions ...41

References ...42

 v

List of Tables

Table 3.1 Access time of sub-structures of 2-way set-associative cache 15

Table 4.1: Parameters of ACARM7 ... 26

Table 4.2: EDA environment ... 27

Table 4.3: Memory activities of benchmarks on tag arrays of 32-KB D-caches 31

Table 4.4: Memory activities of benchmarks on data arrays of 32-KB D-caches.......... 31

Table 4.5: Power consumptions on D-cache running JPEG encoder 32

Table 4.6: Power consumptions on I-cache running JPEG encoder............................... 33

Table 4.7: Power consumptions of benchmarks on 32-KB D-caches 34

Table 4.8: Cycle count on D-cache running JPEG encoder (mem_short) 35

Table 4.9: Cycle count on D-cache running JPEG encoder (mem_long) 35

Table 4.10: Cycle counts of benchmarks on 32-KB D-caches (mem_short)................. 38

Table 4.11: Cycle counts of benchmarks on 32-KB D-caches (mem_long).................. 38

Table 4.12: Cycle time ... 39

Table 4.13: Memory access time of benchmarks on 32-KB D-caches 40

Table 4.14: Power-delay product of benchmarks on 32-KB D-caches 40

 vi

List of Figures

Figure 2.1: Way-Predicting Set-Associative Cache ... 4

Figure 2.2: NUCA .. 8

Figure 3.1: Conventional 2-Way Set-Associative Cache ... 10

Figure 3.2: Read access on conventional set-associative cache 11

Figure 3.3: Large fanout on the hit-signal .. 12

Figure 3.4: Decomposition of conventional direct-mapped cache................................. 13

Figure 3.5: Decomposition of conventional set-associative cache................................. 14

Figure 3.6: Basic architecture of conventional 2-way set-associative cache 14

Figure 3.7: 2-way sequential way-access set-associative cache..................................... 17

Figure 3.8: Priority replacement policy (LRU : Way 0)... 21

Figure 3.9: Priority replacement policy (LRU : Way 1)... 22

Figure 3.10: Promotion placement policy (hits in Way 1) ... 23

Figure 3.11: Promotion on frequently accessed block ... 24

Figure 4.1: Simulation framework ... 25

Figure 4.2: Memory activities on D-cache running JPEG encoder................................ 28

Figure 4.3: Memory activities on D-cache running JPEG encoder................................ 30

Figure 4.4: Power reduction rate on D-caches running JPEG encoder 32

Figure 4.5: Power reduction rate on I-caches running JPEG encoder............................ 33

Figure 4.6: Cycle count increased on D-cache running JPEG encoder (mem_short).... 35

Figure 4.7 : Cycle count increased on D-cache running JPEG encoder (mem_long).... 36

Chapter 1 Introduction

1.1. Motivation

Continuous advances in VLSI technology have led to more powerful and

sophisticated microprocessor designs. The significant improvements in performance

are due to both better circuit design and fabrication technology. On the other hand,

state-of-the-art designs also cause power consumption of microprocessor to increase

dramatically in recent years. The power density of current chips is already higher than

a hot plate. If this trend holds, the power density of chips will close to a nuclear

reactor before the year 2010 [1].

High-performance cache dissipates significant power due to charging and

discharging of highly capacitive bit lines and sense amplifiers. Several published

reports have also shown that cache consumes substantial fraction of overall chip

power. The on-chip caches of StrongARM SA110 dissipate about 43% of the total

chip power [2]. In the 300 MHz bipolar CPU reported by Jouppi et al [3], 50% of

power is dissipated by caches.

To increase cache efficiency, modern microprocessors employ set-associative

cache, which increases the performance by reducing thrashings among cache blocks

that map to the same cache set and therefore reduces conflict miss. To achieve fast

access, set-associative cache probes both tag and data arrays in parallel, and then

selects the data block form the matching way according to tag comparison result. The

advantage of parallel access is that no additional memory access is required after the

matching way is found. But on the other hand, parallel access causes tremendous

waste in power since all the ways are probed on each cache access but actually only

the matching way is required.

 1

One possible solution for this problem is to access tag array and data array serially,

which is used by Alpha21164’s L2 cache [4]. The concept was first introduced by

Hasegawa et al [5] and was referred to as phase cache by [6]. In phase cache, tag

arrays are probed first to determine the matching way. Once the matching way is

determined, only the data array of the matching way is then accessed. This reduces the

number of data arrays being accessed and thus reduces cache power, especially when

the associativity is high. But on the other hand, as opposed to parallel tag-data access

in conventional set-associative cache, serial tag-data access has to wait until the

matching way is known before access on data array can take place and therefore is not

quit suitable for time critical L1 cache. While serial tag-data access suffers from long

latency, the concept of using serial access to reduce the number of arrays being

probed does provide means to reduce cache power consumption.

1.2. Proposed Architecture

In order to achieve cache low power consumption while maintaining fast access

clock rate, we propose a cache architecture call sequential way-access set-associative

cache. Sequential way-access set-associative cache accesses each way (both tag and

data array) sequentially, and eliminates subsequent accesses when a cache hit is

found. Unlike Way Predicting Cache [6][7], which requires a prediction mechanism

to determine which way should be probed first, Sequential way-access set-associative

cache ranks a priority of each way and always probes the way of the highest priority

first. Since tag and data array are probed in parallel for each way access, the access

latency for each way is about the same as conventional set-associative cache. If the

first way hits, subsequent accesses on other ways are saved with the access latency

almost identical to conventional set-associative cache. On the other hand, additional

 2

access cycles and memory accesses are required if the first way misses. By using

more efficient placement and replacement techniques, we are able to increase the hit

rate on the earliest accessed way by placing recently accessed blocks in the earliest

accessed way. This further reduces the number of redundant memory accesses and

eases additional access latency. Experimental result shows that the proposed

architecture has a lower power-delay product compared to the conventional

set-associative cache of the same size and associativity, especially when the miss

penalty is high. A 32KB 2-way sequential way-access set-associative cache reduces

the power-delay product by an average of 23.8% compared to the conventional

set-associative cache of the same size and associativity

.

1.3. Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 discusses several

related works; Chapter 3 gives a detailed description on the proposed model; Chapter

4 describes the experiment setup and simulation result; and Chapter 5 concludes the

thesis.

 3

Chapter 2 Related Works

2.1 Way-Predicting Set-Associative Cache

Several approaches have been proposed to reduce cache power consumption by

reducing the number of access on memory arrays [5, 6, 7, 8, 13, 14]. One such

approach is Way-Prediction Set-associative cache [7]. Way-Predicting

Set-Associative Cache speculatively chooses one way to probe prior to the actual

cache access base on certain prediction mechanism. If the prediction is correct, the

cache access completes in a single cycle as shown in Figure 3.1(a). Since only the

predicted way is activated, cache power consumption is reduced compared to

conventional set-associative cache. On the other hand, if the predicted way misses, as

shown in Figure 3.1(b), additional access cycle is required to probe the remaining

ways in order to search for the matching way which increases the cache access cycle

count. To make things worse, since all the remaining ways are activated, no memory

access is saved compared to conventional set-associative cache.

Figure 2.1: Way-Predicting Set-Associative Cache
 4

A correct prediction reduces cache energy consumption while maintaining high

access speed (in terms of access cycle count). On the other hand, an incorrect

prediction not only fails to reduce cache energy but increases cache access cycle

count. Consequently prediction accuracy plays an important role on cache

energy-delay product. The average energy consumption (Ecache) and the average cache

hit cycle count (Tcache) for each cache access on the way-predicting 4-way

set-associative cache can be expressed as follows:

Ecache ＝ (ETag ＋ EData) ＋ (1 － PHR) × (3 ETag ＋ 3 EData) (1)

Tcache ＝ 1 ＋ (1 － PHR) × 1 (2)

 ETag, EData and data array,

cessed using the same address that

determines the activated set. In the case of a 16KB 4-way set-associative cache, the

pred

for t

actua ac a s tak

Although Way-Predicting Set-Associative cache seems attractive in reducing cache

power, there are several drawbacks. Its way-prediction policy requires a large

way-prediction table to store the MRU information for each set. Looking up such a

large table also causes substantial power consumption. Furthermore, since actual

： Energy consumed for accessing a tag-array

respectively.

 PHR： Prediction hit rate.

 To increase accuracy of way prediction, Way-Predicting Set-Associative cache

employs a way-prediction policy based on an MRU (Most Recently Used) algorithm.

This policy requires a flag to store the MRU information for each set. All flags are

stored in an MRU way-prediction table which is ac

iction flag is 2 bits and therefore additional 4KB of memory storage is required

he MRU way-prediction table. The predicted way number is read out before the

l c he cces es place in order to get the prediction.

 5

ca

 the approximate data

ad

robe activates only the

pr

. However, if the prediction is

incorrect, the matching way (if any) is known and is subsequently accessed. This

scheme has the same access speed as Way-Predicting Set-Associative cache but might

che access can not take place until the predicted way is read out from the

way-prediction table and since way-prediction table lookup requires the actual data

address as its index, the prediction procedure cannot be hidden and therefore cause

additional cache access time even if the prediction is correct.

To reduce prediction time, using different information other than the actual data

address as index for the way-prediction table allows prediction process to start before

the data address is calculated and can therefore hide the prediction time to early stage.

Two possible sources for index are: the load PC address and

dress formed by XORing the load’s source register with the load offset [8]. The

load PC is available much earlier than the approximate data address but the

approximate data address is more accurate since a single load instruction may

reference data with widely varying access patterns [9].

 To obtain a better balance between energy consumption and overall speed for

way-predicting cache, two different access schemes are proposed by Huang, et al [10]

based on the concept of phased cache.

 In the first scheme, called Fall Back Phased, the first p

edicted way in the same way as Way-Predicting Set-Associative cache. If the first

probe misses, the second probe acts as a phased cache which probes all the remaining

tag arrays but not the data arrays. If a match is detected, the corresponding data array

is then accessed. Otherwise cache miss encounters and no data arrays are then

accessed. This scheme favors energy saving at the expense of speed.

 On the other hand, the second scheme, called predictive phased, activates all tag

arrays and data arrays of the predicted way in the first probe. In this case, additional

tag arrays are activated even if the prediction is correct

 6

not be as energy-efficient as Way-Predicting Set-Associative cache, since more tag

arrays are activated on prediction hit but less data arrays are activated on prediction

miss. This scheme favors when the prediction accuracy is low.

2.2 Non-Uniform Cache Architecture (NUCA)

ance gap. This

e is determined by

the longest access time among all sub-arrays. However, such uniform access fails to

exploit the difference in latencies among sub-arrays.

t work proposed

ad

Continuous advances in VLSI technology increase the processor clock rate

dramatically in recent years. On the other hand, improvements in memory speed have

not kept pace with processor speed and result in ever widen perform

increases the number of cycle the processor has to wait for the memory accesses

dramatically and results in serious overall performance degradation. It is well known

that the smaller caches run faster. Therefore the L1 cache is usually made small in

order to keep up with the processor speed. However, low level cache must remain

large enough to maintain low global miss rate therefore results in relative slower

access speed. Traditional cache architectures assume that each level in the cache

hierarchy has a single, uniform access time. Since large low level caches are usually

made by combining many smaller SRAM sub-arrays, its access tim

To increase average access speed on large low level cache, a recen

aptive, non-uniform cache architecture (NUCA) [11]. NUCA exploits the variation

in access time by partitioning the large low level cache into several, smaller

sub-arrays. Each sub-array has different access time and can be probed independently.

Since large low level caches are usually made up of many SRAM sub-arrays which

are spread out throughout the chip and are connected through long wires, this partition

can be done easily. The basic architecture of NUCA is shown in Figure2.2. NUCA

 7

allows fast access to close sub-arrays while maintaining slow access to far sub-arrays.

For each cache set, each way is placed among different sub-arrays of different access

latency. On cache access, NUCA searches the ways sequentially, accessing both tag

and data array, from the fastest way to the slowest way. The search completes when a

hit is detected, and subsequent accesses on slower sub-arrays are saved.

Figure 2.2: NUCA

To increase cache efficiency, NUCA pioneer the concept of data placement by

allowing frequently accessed data to be placed in faster ways while infrequently

accessed data are placed in slower ways. This is done by allowing the hit block to be

swapped to the faster ways within a set. A newly introduced block is initially placed

in the slowest way. If a block is accessed frequently, this block will “bub

…
9 32

…

…
…

bles” toward

the fastest way. On the other hand, an infrequently accessed data will remain in the

slower way.

To ensure equal performance for every set in the cache, every sub-array must

contain equal number of ways for each set in the cache. This implies that the NUCA

can only place a small number of ways for each set in the fastest sub-array. To

increase efficiency on the fastest sub-array, Chishti, et al proposed NuRAPID

 8

(Non-uniform access with Replacement And Placement usIng Distance associative)

[12] cache which employs the concept of distance-associative to completely decouple

tag placement with data placement. This is done by adding a forward pointer for each

tag to indicate the location of its corresponding data block. Distance-associative

allows the tag placement to maintain set-associative for accessibility but allows data

blocks to be placed in any sub-array without restriction. Therefore, unlike the original

NUCA, all the frequently accessed blocks can migrate to the fastest sub-array whether

they are in the same set or not. This can increase the hit rate on the fastest sub-array

and therefore can reduce average access latency. Distance-associative also enables

serial tag-data access, which is commonly used in low level caches to reduce cache

po

 placement using distance-associative. However, distance-associative

re

wer since data array is much larger, therefore slower than tag array in low level

cache.

Although intended for reducing access latency on low-level caches, by increasing

the hit rate on earlier accessed sub-arrays using smarter placement policies,

substantial energy can also be saved by NUCA since subsequent accesses on slower

sub-arrays may be saved. NuRAPID further increases the performance by allowing

efficient data

quires a forward pointer for each tag entry and therefore large additional memory

storage is required for tag array which increases tag array access time.

 9

Chapter 3 Proposed Low-Power Cache Architecture

The basic architecture of conventional 2-way set-associative cache is shown in

figure 3.1. Each way consists of one tag array and one data array. For each tag array, a

comparator is required to compare the accessed tag from the tag array with the request

tag. A read

3.1 Drawbacks of Conventional Set-Associative Cache

 access first probes all tag arrays and data arrays. The accessed tags are

then compared with the request tag to determine if there is a match. If a match is

detected, the corresponding data block of the matching way is then selected by the

multiplexer to the output. The write access follows similar access procedure as the

read access except that data arrays can not be written until a match is detected.

Figure 3.1: Conventional 2-Way Set-Associative Cache

Two problems on set-associative cache are observed. These problems are stated

below.

 10

(1) Redundant Memory Access

During a cache access, both ways are accessed, but actually only the matching way

is needed. The energy spent accessing the other ways is therefore wasted. Figure 3.2

shows the example on read access which hits in Way 0. It can be seen that the

accesses on the tag array and data array of the un-matched way, which is Way 1, have

no effect on the result and therefore the energy spent accessing these arrays are

wasted. The write access has similar result except that since data array can not be

written until a match is detected, only the access on the tag array of the un-matched

way is wasted.

Figure 3.2: Read access on conventional set-associative cache

 11

(2) Hit-Signal Fanout

The second problem concerns about the fanout on the hit-signal. The hit-signal

generally refers to the outputs of the tag comparators in the cache to indicate if a way

hits. In set-associative cache, a multiplexer is required to select the hit data among all

the ways to the output. Since the size of data blocks are usually large (32-bit or 64-bit

for recent processors), the loading of this multiplexer is usually quit large. To achieve

one cycle hit time, conventional set-associative cache accesses tag arrays and data

arrays in parallel. The hit-signal determined by comparator is then used as the select

signal of the multiplexer that used to select hit data block among all the ways.

Therefore the multiplexer causes a large fanout on the hit-signal as shown in figure

3.3. Although tag arrays are usually smaller than data arrays and therefore have faster

access time, the total access time on tag array plus its subsequent comparator, which

determines the hit-signal, is usually longer than the access time on data array and

therefore contributes to the critical path of set-associative cache.

Figure 3.3: Large fanout on the hit-signal
 12

To understand the effect of the fanout of the hit-signal on the critical path of

set-associative cache, the access times on several sub-structures of a 2-way

set-associative cache are derived. The sub-structures that are examined are shown in

figure 3.4, figure 3.5, and figure 3.6. In Figure 3.4, the access time of the two basic

structures of a conventional direct-mapped cache, which are the data array (data) and

the tag array plus comparator (tag+comp), are examined. In Figure 3.5, the access

time of the way-matching part (tag+comp+or) and the data accessing part

(data+mux) of the conventional 2-way set-associative cache are examined. Finally,

the basic structure of conventional 2-way set-associative cache, which is formed by

connecting the hit-signal derived from (tag+comp+or) to the select signal of the

multiplexer in (data+mux) of figure 3.5, is examined as shown in figure 3.6.

Figure 3.4: Decomposition of conventional direct-mapped cache

 13

Figure 3.5: Decomposition of conventional set-associative cache

Figure 3.6: Basic architecture of conventional 2-way set-associative cache

 14

Table 3.1 shows the access time of sub-structures of 2-way set-associative cache.

The memory cells are generated using Artisan UMC 0.18um memory compiler and

the access times are determined using Synopsys 0.18um design compiler. The size of

each data block is 32 bytes and each cache line contains 4 blocks. The minimum and

maximum sizes of memory cell the memory compiler can generate are 1KB and

32KB. (data+mux), (tag+comp+or), and (2_way) require 2 individual memory cells

for each way therefore the minimum size available for these three structures are 2KB.

Table 3.1 Access time of sub-structures of 2-way set-associative cache

 By comparing the access time of (data) and (tag+comp), it can be seen that the tag

access part has longer access time than the data access part and therefore contributes

to the critical path of direct-mapped cache. The situation remains the same on

set-associative cache by comparing the access time of (data+mux) and

(tag+comp+or), even though a multiplexer is added to the data access part. These

results reveal that the critical path of conventional set-associative cache is the tag

access part plus the multiplexer that selects the hit data block using the hit-signal

derived from the tag access part as select signal.

 The delay of the multiplexer in (data+mux) can be derived by subtracting the

access tim hile

 the same multiplexer in (2-way), which is the access time difference

e of (data+mux) by the access time of (data), which is about 0.2ns. W

the delay of

 15

be

3.2 Sequential Way Access

 Phase cache reduces the number of access by accessing tag arrays first to

determine the matching way and then accesses only the data array of the matched way

if there is a hit. However, since serial tag-data access has the wait until the matching

way is known before the access on data array can begin, cache access latency on each

cache access is therefore increased.

 To reduce redundant memory accesses while maintaining fast cache access clock

rate, w s each

ay sequentially, accessing both the tag array and the data array of the searched way,

 cache access clock rate of sequential

tween (2-way) and (tag+comp) increase to about 0.55ns. The large fanout on the

hit-signal due to the multiplexer weaken its driving ability, results in increases the

access time on the multiplexer and therefore increases the overall cache access cycle

time

e propose sequential way-access set-associative cache which searche

w

from the first way to the last way. The access sequence terminates when a match is

detected and subsequent accesses on the remained ways are then saved. Unlike the

phase cache, which reduces the number of redundant memory accesses by reducing

the number of data arrays accessed, sequential way set-associative cache reduces the

number of redundant memory accesses by reducing the number of redundant way

accesses. Since both tag and data array are probed in parallel for each way access, the

access latency for each way is about the same as conventional set-associative cache.

By letting each way access to take one cycle, the

way-access set-associative cache can be compatible with the conventional

set-associative cache.

 16

 Figure 3.7 shows an example of 2-way sequential way-access set-associative cache.

During the first cycle of cache access, only the tag array and the data array of way 0

are probed. If way 0 hits, as shown in Figure 3.7(a), the cache access is completed in

one cycle as the same as conventional 2-way set-associative cache and the accesses on

ay 1 are saved. If way 0 misses, subsequent accesses on way 1 are required in the

next cycle as shown in Figure 3.7(b). In this case, no memory accesses are saved

com ared to conventional 2-way set-associative cache. Further more, one additional

w

p

access cycle is required no matter way 1 hits or misses. Overall, sequential way

set-associative cache reduces the number of memory access at the expense of the

increase in average memory access time.

Figure 3.7: 2-way sequential way-access set-associative cache
 17

 The average memory access time can be expressed as shown in formula (3). Due to

the ever widen gap between the process clock rate and main memory access time, the

miss penalty continues to grow as a dominant factor in average memory access time.

Therefore, although sequential way-access set-associative cache increases the average

hit time, this overhead on AMAT should be minor compared to the large miss penalty

when cache misses.

AMAT ＝ (#_of_access) × (hit_rate × hit_timecycle ＋

miss_rate × miss_penalty) × clk (3)

 Besides reducing the number of memory access, sequential way-access

set-associative cache also provides a mean to reduce the fanout on the hit-signal.

Since the accessed way is predetermined on each memory cycle, the select signal of

the multiplexer that used to select hit data block among all the ways can also be

determined in advance as shown in Figure 3.7. Therefore the fanout on the hit-signal

to the data multiplexer in conventional set-associative cache is no longer required in

sequential way-access set-associative cache and large fanout on the hit-signal can be

eliminated. Since the hit-signal is the most dominant factor on the actions of a cache,

the largely reduced fanout on the hit-signal may allows more complex cache access

schemes and placement policies without increasing the overall fanout on the

hit-signal, and therefore the cache access cycle time, dramatically. Further more, the

cache access cycle time may even reduce if the increased fanout on the hit-signal is

less than the reduced fanout caused by the data multiplexer.

 18

3.3 Placement and Replacement Policy

 Summarizing the overheads on cache hit on each way in sequential way-access

set-associative cache, we can see that a cache hit on different ways of sequential

way-access set-associative cache has different amount of overhead as opposed to

conventional set-associative cache. A cache hit in the earlier accessed ways can

eliminate subsequent accesses on later ways. Further more, less additional overheads

in cycle counts are required. The optimum situation comes when the cache hits in the

earliest accessed way. In this case only the hit way is activated and no additional

access cycle requires as the same as convention cache. On the othe

se additional

fanout on the hit-signal, the eliminated fanout on the hit-signal caused by data

ultiplexer in conventional set-associative cache can compromise this overhead.

al set-associative r

hand, the later a cache hits, the less subsequent way accesses can be saved while more

additional access cycles are required. The worst situation comes when the cache hits

in the last accessed way or cache misses. In these cases no memory access is saved

but causes n-1 additional access cycles where n equals to the associativity of the

cache. Therefore, the earlier accessed ways have less access overhead than later

accessed ways.

 According to the above conclusion, a possible way to increase the performance of

sequential way-access set-associative cache is to increase the hit rate on the earliest

accessed way. By using smarter placement and replacement policies, we can allow

more frequently accessed blocks to be placed in earliest accessed ways while

infrequently accessed data are placed in slower accessed ways. Several approaches

have been proposed to increase the cache hit rate on frequently accessed blocks [15,

16, 17, 18]. Although complex placement and replacement policies cau

m

 19

 The basic principle that is applied on the placement and replacement policies of

ock should be evicted and replaced by the

space created by dropping the cache line containing the evicted block in the earliest

accessed way is refilled by the cache line containing the refilled block. The result is

sequential way-access set-associative cache is temporal locality. Temporal locality

basically means that if a memory location is recently referenced, there is a high

probability that the same location will be accessed again soon. Therefore the goal is to

reduce the access overhead on recently accessed blocks in order to increase the

performance. This can be done by allowing recently accessed blocks to be placed in

the earliest accessed way.

(1) Priority Replacement Policy

The priority replacement policy used in sequential way-access set-associative cache

concerns of the decision of which cache line to be evicted and the placement of the

introduced cache line when a cache miss occurs. During a cache miss, conventional

set-associative cache applies conventional least-recently-used (LRU) replacement

policy to determine which block within the selected set is least recently accessed and

therefore the cache line containing that bl

newly introduced cache line containing the refilled block. In priority replacement

policy used in sequential way-access set-associative cache, the LRU detection unit is

preserved to select the evicted block within the selected set on cache miss. However,

in order to reduce the re-access overhead on the refilled block, priority replacement

policy requires to place the refilled blocks in the earliest accessed way within the

selected set. Figure 3.8 shows an example of priority replacement policy on a 2-way

sequential way-access set-associative cache, assuming the LRU block of the selected

set is in the earliest accessed way (Way 0). Since the way of the evicted block (A) is

exactly the same as the way the newly introduced block (C) should be placed, the

 20

exactly the same as conventional LRU policy used in conventional set-associative

cache and no additional overheads are required.

Way 0 Way 1 Way 0 Way 1

A

C

B B

A

C

Figure 3.8: Priority replacement policy (LRU : Way 0)

On the other hand, if the LRU block of the selected set is in the later accessed way,

additional memory accesses are required to create a space in the earliest accessed way

for the newly introduced cache line containing the refilled block. Figure 3.9 shows

another example of priority replacement policy on 2-way sequential way-access

set-associative cache. This time we assume the LRU block of the selected set is in the

later accessed way (Way 1). In this case the eviction of the cache line containing the

LRU block (B) creates a space in Way 1 while the newly introduced cache line

containing the refilled block (C) suffers from no available space in the earliest way for

the cache line to be placed. To solve this problem, priority replacement policy

requires that the cache line containing the block that is originally in the earliest

accessed way of the selected set (A) to be moved to the way where the eviction occurs

in order to create a space for the newly introduced cache line in the earliest accessed

way. Although moving cache line between ways causes additional memory accesses

compared to conventional LRU replacement policy, especially for d-cache since a

 21

cache line usually contains more than one block. The reduced memory accesses on

re-accessing the refilled blocks can compromise the increased accessed. Further more,

e access cycles on re-accessing the refilled block can also be reduced.

th

Way 0 Way 1 Way 0 Way 1

A B

C

C A

B

Additional movement required!!

Figure 3.9: Priority replacement policy (LRU : Way 1)

(2) Promotion Placement Policy

To further increase the performance of sequential way-access set-associative cache,

a possible solution is to reduce the access overhead on recently accessed block during

cache hits. In promotion placement policy used in sequential way-access

set-associative cache, during a cache hit, the hit block is required to be promoted to

the earliest accessed way in order to reduce the re-access overhead on the hit block.

When the cache hits in the earliest accessed way, no additional action is required

since the hit block is already in the earliest accessed way. On the other hand, when the

cache hits in a way other than the earliest accessed way, swap is required to promote

the cache line containing the hit block to the earliest accessed way while the cache

line containing the block that is originally in the earliest accessed way of the selected

 22

set is placed to the hit way. This is shown in figure 3.10, assuming the cache hits in

the later accessed Way 1 of sequential way-access set-associative cache.

Figure 3.10: Promotion placement policy (hits in Way 1)

Besides reducing the re-access overhead on recently accessed block, promotion

placement policy also provides a mean to prevent frequently accessed blocks from

becoming stuck in the later accessed ways

ing block-A, block-B, and block-C all map to the same

ence we can see that block-A is a frequently

access

overhead on subsequent accesses on block-A from increasing.

. Consider the following access sequence

shown in figure 3.11, assum

set. According to the access sequ

ed block while block-B is not. The first access on block-A puts block-A to the

earliest accessed way according to the priority replacement policy and therefore

allowing the following accesses on block-A to have minimum access overhead. If

however, a glitch access on the infrequently accessed block-B occurs. According to

the priority replacement policy, block-B will be placed to the earliest accessed way

while frequently accessed block-A will be demoted to the later accessed way. Without

promotion placement policy, frequently accessed block-A will be stuck in later

accessed way therefore will increase the access overhead on following accesses on

block-A. Promotion placement policy allows accidentally demoted block-A to be

swapped back to the earliest accessed way and therefore can prevent the access

 23

Figure 3.11: Promotion on frequently accessed block

 24

Chapter 4 Experimental Evaluation

4.1 Experimental Environment

 Figure 4.1 shows the basic simulation framework used for experimental evaluation.

The memory activity trace files are derived by running benchmarks on an ARM7

compatible processor developed by our laboratory called ACARM7. The parameters

of ACARM7 are listed in Table 4.1. The memory activity information of the

benchmarks running ACARM7 is extracted and recorded in the memory activity trace

files. Both the activities of I-cache and D-cache are extracted by separating the

requests for instruction and data. The memory activity trace files are then served as

the processor co

re for the cache during the simulation.

Figure 4.1: Simulation framework

 25

Table 4.1: Parameters of ACARM7

 The base line cache architecture is a 2-way set-associative cache of size from 2KB

to 128KB. The issue size for each cache access is 4 bytes. The cache block size is 16

bytes. For comparison purposes, four cache configurations are developed: they are

conventional set-associative cache (2 Way Conv), sequential way-access

set-associative cache without any optimization in placement (Seq 2 Way), sequential

 set-associative cache with priority replacement policy (Seq+Pri), and

sequential way-access set-associative cache with both priority replacement policy and

promotion placement policy (Seq+Pri+Pmt). All cache models are developed using

hardware description language (Verilog) and are synthesized using Artisan UMC

0.18um technology. The memory cells are generated using Artisan UMC 0.18um

memory compiler. The minimum and maximum sizes of memory cell the memory

compiler can generate are 1KB and 32KB. Concerning the access time of a 32KB

memory cell increases too much compared to memory cells of other size (see first

column on table 3.1), each way on the 128KB cache is made up of four 16KB

memory cells instead of two 32KB memory cells and only the selected cell on each

way is activated on each cache access. The power measurement includes both the

cache controller and the memory arrays used by the cache, including tag arrays and

data arrays. The power is measured using power compiler with clock rate fixed at

200MHz on worst case.

way-access

 26

 The main memory is basically a behavior model which is used as a backup storage

for the cache. The issue size of the main memory is 16 bytes. A write transfer takes 18

cycles and a read transfer takes 16 cycles to complete.

The EDA environment used in th e simulation are summarized in table 4.1.

Table 4.2: EDA environment

 Six benchmarks are simulated for each cache configuration. The first one is a quick

sort program of 65536 elements. The second and the third are JPEG encoder and

decoder respectively. The encoder converts a 64*64 bitmap file to 64*64 jpeg file and

the decoder converts the 64*64 jpeg file back to 64*64 bitmap file. The fourth one is

the Whetstone benchmark. The last two are FFT and Matrix from the Dspstone

benchmark suite. The FFT contains 1024 data and the dimension of the matrix is

50X50.

4.2 Experimental Result

4.2.1 Memory activity

Figure 4.2 shows the memory activities of JPEG encoder on D-caches of different

cache configurations. Both the activities on tag array and data array are presented.

The corresponding miss rates for each cache size are also presented. Since for each

 27

cache size, both the capacity and associativity on each cache configuration are the

same, the miss rates for each cache configuration on the same cache size are the same.

From the figure, it is clearly that sequential way access (Seq 2 Way) does reduce

th against

iss rate. The number of access actually increases as cache size increases from 4K to

32K while the miss rates are reduced. The reason is because the placement on

sequential way access alone depends only on the conventional LRU replacement

policy. A frequently accessed block may be placed in the later accessed way if the

replaced block is in the later accessed way. Since there is no mechanism to move

blocks between ways, the f become stuck in the later

ccessed way and compromise the benefit of sequential way access.

e number of memory access. However, the reduction rate is not quit stable

m

requently accessed block may

a

Figure 4.2: Memory activities on D-cache running JPEG encoder

re-access overhead on newly introduced blocks. However, priority replacement policy

Adding priority replacement policy to sequential way access allows newly

introduced blocks to be placed in the earliest accessed way therefore reduces the

 28

only applies during cache miss. A frequently accessed block which is originally in the

earliest accessed way may be accidentally demoted to the later accessed way when a

ne

ent policy and

romotion placement policy has the lowest number of access against all other cache

configurations for all cache sizes. For the data array, since a cache line contains four

blocks, a cache line swap requires 8 accesses to read out the two cache lines to be

swapped and 8 accesses to write the cache lines to the required destination, resulting

16 accesses for each swap on data array comparing to only 4 accesses on tag array.

Therefore when the cache size is small, the high probability of swaps due to thrashing

on Seq+Pri and Seq+Pri+Pmt increases their number of access on data array more

dramatically than on tag array. However, as cache size increases, the ease on capacity

miss allows the benefits of swaps on Seq+Pri and Seq+Pri+Pmt to show, resulting

more serious reduction in the number of access for both tag array and data array,

especially fo

ory activities of the same JPEG encoder on I-caches of

different cache configurations

w block is introduced to the cache and become stuck there. Therefore the access

reduction rate on Seq+Pri against miss rate is smoother comparing to Seq 2 Way but

still not quit stable. Further more, moving blocks between ways cause additional

memory accesses and might compromise the reduced accesses benefited from priority

replacement policy.

By allowing frequently accessed blocks in the cache to be placed to the earliest

accessed way during cache hit, Seq+Pri+Pmt effectively reduces the number of

memory access compared to conventional set-associative cache as miss rate reduces.

For tag array, sequential way access with both priority replacem

p

r Seq+Pri+Pmt.

Figure 4.3 shows the mem

. The results are similar to the D-cache. The figures also

shows that up to 50% of accesses can be saved on 2-way sequential way-access

set-associative cache compared to conventional 2-way set-associative cache. The
 29

effects on priority replacement policy and promotion placement policy are more

evidence in the figure. Without the help of smarter placement/replacement policies,

Seq 2 Way achieves about 50% of access reduction when the cache size increase to

64KB, even though the miss rate is already 0% when cache size reaches 8KB.

Seq+Pri achieves about 50% reduction much earlier than Seq 2 Way at the cache size

of 8KB, the same size when the miss rate achieves 0%. For Seq+Pri+Pmt, almost

50% of access reduction is achieved at the cache size of 2KB, despite the fact that the

miss rate is not yet 0%.

Figure 4.3: Memory activities on D-cache running JPEG encoder

The memory activities of each benchmark on 32-KB D-caches of different cache

configurations are shown in table 4.3 and table 4.4 where table 4.3 shows the

activities on tag arrays and table 4.4 shows the activities on data arrays. Sequential

way access in average reduces the number of access on both tag arrays and data arrays

effectively. Priority replacement policy allows newly introduced block to be placed in

the earliest accessed way during cache miss and further reduces the number of access.

 30

Combining with promotion placement policy, which places recently accessed blocks

in the earliest accessed during cache hit, Seq+Pri+Pmt achieves the highest reduction

among all cache configurations. Up to 43% of accesses are reduced on tag arrays and

22% on data arrays. For the data arrays, the large cache line increases the overhead on

swaps consequently compromises the benefits of priority replacement policy and

promotion placement policy.

Table 4.3: Memory activities of benchmarks on tag arrays of 32-KB D-caches

Table 4.4: Memory activities of benchmarks on data arrays of 32-KB D-caches

4.2.2 Power

Table 4.5 shows the power consumptions of JPEG encoder on D-caches of different

cache configurations. The power reduction rate of each cache configuration

correspond to the conventional set-associative cache of the same cache size are shown

in figure 4.4. The curve of power reduction rate against the cache size is similar to the

 31

fraction of reduced access. It is clearly that the reduced number of access due to

sequential way access effectively reduces cache power consumption.

Table 4.5: Power consumptions on D-cache running JPEG encoder

Figure 4.4: Power reduction rate on D-caches running JPEG encoder

Table 4.6 and figure 4.4 also shows the corresponding power consumption and

 rate of JPEG encoder on I-caches of different cache configurations.

Again, sim

power reduction

ilar results are shown. From the figure it can be seen that under the same

number of reduced accesses, Seq+Pri+Pmt performs better compared to other cache

configurations. It is because the LRU detection unit in Seq+Pri+Pmt is eliminated and

therefore further reduces its hardware complexity. The detail will be stated in section

 32

4.2.4. For Seq 2 Way, even though virtually no memory accesses are saved for cache

size from 8K to 32K according to figure 4.3, large power reduction is still achieved.

The almost perfect hit rate implies that almost every cache access on Seq 2 Way hits

but hits in the later accessed way. Therefore the average cache access time on Seq 2

Way almost doubles and therefore flattens the energy consumed in each second.

Table 4.6: Power consumptions on I-cache running JPEG encoder

Figure 4.5: Power reduction rate on I-caches running JPEG encoder

Table 4.7 shows the power consumptions of each benchmark on 32-KB D-caches

of different cache configurations. For Seq+Pri and Seq+Pri+Pmt, the hardware

overhead due to smarter placement/replacement policies cause additional power

 33

consumption and compromise the reduced access power. Despite of that,

Seq+Pri+Pmt still manage to achieve the highest power consumption among all cache

configurations. Up to 25% of power consumption is reduced by Seq+Pri+Pmt

compared to conventional set-associative cache.

Table 4.7: P

4.2.3 Cycle Count

 To evaluate the effects of different main memory latencies on the cycle counts of

different cache configurations, two types of main memory with different access

latencies are applied. The first one is the same main memory used in pervious

evaluations and is referred to as mem_long in the thesis. The mem_long requires 18

cycles for a write transfer and 16 cycles for a read transfer. The second main memory

has shorter access latency and is referred to as mem_short. A write transfer to

mem_short takes 8 cycles and a read transfer takes 6 cycles. The cycle counts with

respect to mem_short and mem_long on D-caches of each cache configuration

running tage of

creased cycle count of each cache configuration correspond to conventional

se

ower consumptions of benchmarks on 32-KB D-caches

JPEG encoder are shown in table 4.8 and table 4.9. The percen

in

t-associative cache of the same size are shown in figure 4.6 (mem_short) and figure

4.7 (mem_long).

 34

Table 4.8: Cycle count on D-cache running JPEG encoder (mem_short)

Table 4.9: Cycle count on D-cache running JPEG encoder (mem_long)

Figure 4.6: Cycle count increased on D-cache running JPEG encoder (mem_short)

 35

Figure 4.7 : Cycle count increased on D-cache running JPEG encoder (mem_long)

 The cycle count on Seq 2 Way varies dramatically with respective to cache size.

The cycle count on Seq 2 Way even doubles at the cache size of 32KB despite the fact

that the miss rate is almost zero. Comparing to the cycle count on Seq+Pri of the

same cache size, which is almost identical to conventional set-associative cache, it is

clearly that the most of the frequently accessed blocks in Seq 2 Way were placed in

the later accessed way the first time they were introduced to the cache and become

stuck there therefore causing such huge increase in cycle count. However, the cycle

count on Seq+Pri is still not stable enough with respective to miss rate due to lack of

mechanism to promote recently accessed block to earlier accessed ways during cache

hit. y

allowing the recently accessed blocks to be swapped to the earliest accessed way and

Seq+Pri+Pmt further increases the hit rate on the earliest accessed way b

further reduces and stabilizes the cycle count.

 36

 Comparing figure 4.6 with figure 4.7, the curve of the percentage of increased

cycle count on mem_short actually shift down compared to mem_long on smaller

cache sizes. The reason can be explained by considering the formula of cache access

cycle count expressed as follows:

Cycle_count ＝ (#_of_access) × (hit_rate × hit_timecycle ＋

miss_rate × miss_penalty) (4)

 The overall cache access cycle count is composed of the total cycle count on cache

hits and the total cycle count on cache misses. The main memory access latency

affects the cache miss penalty therefore plays an important role in overall cache

a

iss penalty on the overall cache access cycle count and therefore reduces the effect

e. By comparing table 4.10 with table

ccess cycle count. The longer main memory access latency increases the effect of the

m

of the increased hit cycle count due to sequential way access on the overall cache

access cycle count, especially when the miss rate is high. As the gap between main

memory access time and processor clock rate continues to grow, the effect of the

increased hit cycle time due to sequential way access on the overall cache access

cycle count should continue to reduce in the future.

Table 4.10 and table 4.11 shows the cycle counts of each benchmark on 32-KB

D-caches of different cache configurations with respect to mem_short and mem_long.

Sequential way access increases the average cache access cycle count dramatically

while priority replacement policy and promotion placement policy effectively

alleviates the increased cycle count by increasing the hit rate on the earliest accessed

way. The average cycle count on Seq+Pri+Pmt increases only about 6.39%

comparing to conventional set-associative cach

 37

4.11, it also shows that the overhead on the increase cycle count reduces as the cache

miss penalty becomes more dominant.

Table 4.10: Cycle counts of benchmarks on 32-KB D-caches (mem_short)

Table 4.11: Cycle counts of benchmarks on 32-KB D-caches (mem_long)

4.2.4 Cycle Time

In fact, the cycle times of the proposed cache model actually reduce slightly.

The cycle time of each cache configurations for different cache sizes are shown in

table 4.12. The cycle times are derived by synthesizing the RTL models of each cache

configurations for different cache sizes using Artisan UMC 0.18um technology. Both

tag array and data array are included in the model. Although sequential way access

and smarter placement/replacement policies cause additional hardware overhead on

the cache architecture, the cycle times of the proposed cache model do not increase

dramatically compared to conventional set-associative cache of the same cache size.

 38

Although proposed model increases the hardware complexity and therefore cause

additional loading on the hit-signal, the increased loading is well compromised by the

liminated fanout on the hit signal used to select the hit data block in conventional

set-associative cache discussed earlier. For (Seq+Pri+Pmt), since the latest accessed

block is always placed to the earliest accessed way and since there is only two way,

the need for LRU detection is no longer required because the blocks in the later

accessed way are always the LRU blocks. By eliminating the LRU detection unit, the

fanout on the hit-signal in (Seq+Pri+Pmt) is further reduced and consequently the

cycle tim t)

 to the conventional set-associative cache

of the same cache size.

e

e of (Seq+Pri+Pmt) is also further reduced. The cycle time of (Seq+Pri+Pm

is reduced by up to 4% in average compared

Table 4.12: Cycle time

4.2.5 Memory Access Time

 The overall memory access time of each cache configuration can be derived by

multiplying the overall cache access cycle count by the cache cycle time. The overall

memory access time is the actual time the cache spent during simulation. Table 4.13

shows the overall memory access time of each benchmark on 32-KB D-caches of

different cache configurations. Since the cycle time does not increase dramatically

due to the reduced fanout on the hit-signal, the average percentages of increased

memory access time on Seq 2 Way and Seq+Pri manage to be closed to their

 39

corresponding percentages of increased cycle count. For Seq+Pri+Pmt, the smaller

cycle time due to the elimination of the LRU detection unit further reduces its

percentage of increased memory access time to only 1.96%.

Table 4.13: Memory access time of benchmarks on 32-KB D-caches

4.2.6 Power-Delay Product

The power-delay product implies the overall energy consumption during the

simulation. Table 4.14 shows the power-delay product of each benchmark on 32-KB

D-caches of different cache configurations. The result shows that sequential way

access together with priority replacement and promotion placement policies reduces

the cache power consumption while prev emory access time from

creasing dramatically, consequently has better energy efficiency compared to

Up to 23.8% of reduction in power-delay product

enting the overall m

in

conventional set-associative cache.

is achieved by Seq+Pri+Pmt compare to conventional set-associative cache.

Table 4.14: Power-delay product of benchmarks on 32-KB D-caches

 40

Chapter 5 Conclusions
 The thesis examines the concept of using sequential way access to reduce cache

power consumption by reducing the number of ways being activated on each cache

 By accessing each way sequentially on each cache access and eliminating

subsequent way accesses when a cache hit is detected, substantial energy can be saved

at the expense of increased overall cycle count. In order to increase performance,

smarter placement and replacement policies are applied to increase the hit rate on the

earliest accessed way by placing the recently accessed blocks in the earliest accessed

way. The increased hit rate on the earliest accessed way further reduces the number of

ays being activated and the additional access cycles on each cache access,

 the overall cache power and the average cache

access cy

access.

w

consequently further reduces both

cle count. Sequential way access also provides means to reduce the fanout

on the hit-signal therefore prevents the cache cycle time from increasing due to more

complex logic. By applying sequential way access together with priority replacement

policy and promotion placement policy, experimental result shows that a 32KB 2-way

sequential way-access set-associative cache reduces the power-delay product by an

average of 23.8% compared to the conventional 2-way set-associative cache of the

same size.

 41

References

[1] P. Gelsiniger. Microprocessors for the New Millennium – Challenges, Opportunities

2001.

[2] S. Santhanam, “Strongarm sa110 –a 160mhz 32b 0.5w cmos arm processor-,” In
proceeding of the Hot Chips 8: A Symposium on High-Performance Chips, Aug. 1996.

Menon, L. M. Monier, D. Stark, S. Turrini, J. L. Yang, W. R. Hamburgen, J. S. Fitch,
and R. Kao, “A 300-mhz 115-w 32-b bipolar ecl microprocessor,” In proceeding of the

[4] J. H. Edmondson and et al. Internal organization of the Alpha 21164, a 300-MHz 64-bit
quad-issue CMOS RISC microprocessor. Digital technical Journal, 7(1), 1995.

[5] A. Hasegawa et al, “SH3: High Code Density, Low Power,” In proceeding of the IEEE
Micro, pp. 11-19, Dec. 1995.

[6] B. Calder, D. Grunwaldm, and J. Emer, “Predictive Sequential Associative Cache,” In
proceeding of the Int’l Synposium on High Performance Computer Architecture, pp.

[7] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative cache for high
performance and low energy consumption,” In proceeding of the 1999 International

[8] M. Powell, A. Agarwal, T. Vijaykumar, B Falsafi, K. Roy, “Reducing set-associative
cache energy via way-prediction and selective direct-mapping,” In proceeding of the
32th International Symposium on Microarchitecture, Austin, TX, USA, pp. 54-65, Dec.
2001,

[9] T. Joh

and New Frontiers. In proceeding of the Int’l Solid-State Circuits Conference, Feb.

[3] N. P. Jouppi, P. Boyle, J. Dion, M. J. Doherty, A. Eustace, R. W. Haddad, R. Mayo, S.

IEEE Journal of Solid-State Circuits, volume 28, pp. 1152-1166, Nov. 1993.

224-253, Feb. 1996.

Symposium on Low Power Design, pp. 273-275, Aug. 1999.

nson and W.W. Whu, “Run-time Adaptive Cache Hierarchy Management via
Reference Analysis,” In proceeding of the OSCA-24, Jun. 1997.

[10] M. Huang, J. Renau, S.M. Yoo, and J. Torrellas, “L1 Data Cache Decomposition for
Energy Efficiency,” In proceeding of the Low Power Electronics and Design,
International Symposium, pp. 10-15, 6-7 Aug. 2001.

[11] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure for
wire-delay dominated on-chip cache,” In proceeding of the Ninth international
Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS X), pp. 211-222, Oct. 2002

[12] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar, “Distance Associativity for
High-Performance Energy-Efficient Non-Uniform Cache Architectures” In proceeding

 42

of the 36th Annual IEE
55-66, 2003.

E/ACM International Symposium on Microarchitecture, pp.

5, Nov. 2004.

,

[15]

ence on

[17] vic, M, Tomasevic, and M. Tremblay, “The Split

[18] J.Sahuquillo and A. Pont, “The Filter Cache: A Run-Time Cache Management

[13] G. Reinman and B. Calder, “Using a serial cache for energy efficient instruction
fetching,” In proceeding of the Journal of System Architecture, volume 50, issue 11, pp.
675-68

[14] S.Y. Cheng and J.D, Huang, “Low-Power Instruction Cache Architecture Using
Pre-Tag Checking,” IEEE int’l Symp. In proceeding of the VLSI Design, Automation
and Test, pp. 83-86, Apr. 2007.

G. Tyson, M. Farrens, J. Matthews, and A.R. Pleszkun “A Modified Approach to Data
Cache Management,” In proceeding of the 28th Annual International Symposium on
Microarchitecture, pp. 93-103, Dec. 1995.

[16] J.A. Rivers and E.S. Davidson “Reducing Conflicts on Direct-Mapped Caches with a
Temporality-Based Design,” In proceedings of the 1996 International Confer
Parallel Processing, pp. 151-162, Aug. 1996.

V. Mulutinovic, B. Marko
Temporal.Spatial Cache: Initial Performance Analysis,” In proceedings of the SCIzzL-5,
Santa Clara, California, USA, Mar. 1996.

Approach,” In proceeding of the 25th EUROMICRO conference, pp. 424-431, Sep.
1999.

 43

