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採用循序路存取之 

低功率集合關聯快取記憶體架構 

 

研究生：丁之暉 指導教授：黃俊達  博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

摘     要 

近代快取記憶體架構藉由使用集合關聯快取記憶體來減少快取記憶體的失誤

率同時並保有快速的存取速度。然而集合關聯快取記憶體卻造成可觀的功率消

耗。其原因在於每次快取記憶體存取皆會觸發所有的路，然而實際上只有命中的

路是有意義的。為了減少快取記憶體的功率消耗，一個可行的方法就是減少每次

快取記憶體存取時被觸發的記憶體陣列數目。 

在本篇論文中，我們檢驗藉由循序路存取的方式來減少每次快取記憶體存取時

被觸發的路數目。循序路存取在每次快取記憶體存取時依序搜尋每一路，從第一

路到最後一路，當某ㄧ路命中時，則搜尋的動作結束。當快取記憶體命中在一個

較早搜尋的路時，較晚搜尋的路的存取就可以被排除。藉由較精明的區塊放置及

取代策略，我們可以增加最早被搜尋的路的命中率因而進ㄧ步減少每次快取記憶

體存取時被觸發的路的數目。由於每個週期中被存取的路是預先確定的，因此在

傳統集合關聯快取記憶體中命中信號用於選擇命中區塊的多工器所造成的負荷可

以被排除。這些減少的命中信號負荷可降低快取記憶體的存取週期因此能夠抵消

增加的存取周期數。實驗顯示，相對於傳統的32KB二路集合關聯快取記體，同樣

大小之採用循序路存取二路集合關聯記憶體平均能減少23.8%的功率-延遲乘積。 
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Sequential Way-Access Set-Associative Cache 
Architecture for Low Power 

Student: Chih-Hui Ting Advisor: Dr. Juinn-Dar Huang 

 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

 

Abstract 

Modern cache architectures utilize set-associative notion to increase the hit rate while 

maintaining fast access time. However, set-associative cache results in tremendous 

waste in power since all the ways are probed on each cache access but actually only the 

matching way is required. In order to reduce cache power consumption, a possible 

solution is to reduce the number of activated memory arrays on each cache access. 

In this thesis, we examine the concept of sequential way access to reduce the number 

of ways being activated on each cache access. Sequential way access probes each way 

sequentially, from the first way to the last way on each cache access. The access 

sequence terminates when a cache hit is detected. A cache hit in an earlier accessed way 

can eliminate subsequent accesses on later ways. By using certain smarter placement 

and replacement policies, the hit rate on the earliest accessed way can be increased 

therefore the number ways being activated on each cache access can be further reduced. 

Since the accessed way on each cycle is predetermined, the fanout on the hit-signal to 

the multiplexer which selects the matching data block in conventional set-associative 

cache can be eliminated. The reduced loading on the hit-signal reduces cache cycle time 

and therefore can compromise the increased cache access cycle count. Experimental 

result shows that a 32KB 2-way sequential way-access set-associative cache reduces the 

power-delay product by an average of 23.8% compared to the conventional 

set-associative cache of the same size and associativity. 
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Chapter 1 Introduction 

1.1. Motivation 

Continuous advances in VLSI technology have led to more powerful and 

sophisticated microprocessor designs. The significant improvements in performance 

are due to both better circuit design and fabrication technology. On the other hand, 

state-of-the-art designs also cause power consumption of microprocessor to increase 

dramatically in recent years. The power density of current chips is already higher than 

a hot plate. If this trend holds, the power density of chips will close to a nuclear 

reactor before the year 2010 [1]. 

High-performance cache dissipates significant power due to charging and 

discharging of highly capacitive bit lines and sense amplifiers. Several published 

reports have also shown that cache consumes substantial fraction of overall chip 

power. The on-chip caches of StrongARM SA110 dissipate about 43% of the total 

chip power [2]. In the 300 MHz bipolar CPU reported by Jouppi et al [3], 50% of 

power is dissipated by caches. 

To increase cache efficiency, modern microprocessors employ set-associative 

cache, which increases the performance by reducing thrashings among cache blocks 

that map to the same cache set and therefore reduces conflict miss. To achieve fast 

access, set-associative cache probes both tag and data arrays in parallel, and then 

selects the data block form the matching way according to tag comparison result. The 

advantage of parallel access is that no additional memory access is required after the 

matching way is found. But on the other hand, parallel access causes tremendous 

waste in power since all the ways are probed on each cache access but actually only 

the matching way is required. 
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One possible solution for this problem is to access tag array and data array serially, 

which is used by Alpha21164’s L2 cache [4]. The concept was first introduced by 

Hasegawa et al [5] and was referred to as phase cache by [6]. In phase cache, tag 

arrays are probed first to determine the matching way. Once the matching way is 

determined, only the data array of the matching way is then accessed. This reduces the 

number of data arrays being accessed and thus reduces cache power, especially when 

the associativity is high. But on the other hand, as opposed to parallel tag-data access 

in conventional set-associative cache, serial tag-data access has to wait until the 

matching way is known before access on data array can take place and therefore is not 

quit suitable for time critical L1 cache. While serial tag-data access suffers from long 

latency, the concept of using serial access to reduce the number of arrays being 

probed does provide means to reduce cache power consumption. 

 

1.2. Proposed Architecture 

In order to achieve cache low power consumption while maintaining fast access 

clock rate, we propose a cache architecture call sequential way-access set-associative 

cache. Sequential way-access set-associative cache accesses each way (both tag and 

data array) sequentially, and eliminates subsequent accesses when a cache hit is 

found. Unlike Way Predicting Cache [6][7], which requires a prediction mechanism 

to determine which way should be probed first, Sequential way-access set-associative 

cache ranks a priority of each way and always probes the way of the highest priority 

first. Since tag and data array are probed in parallel for each way access, the access 

latency for each way is about the same as conventional set-associative cache. If the 

first way hits, subsequent accesses on other ways are saved with the access latency 

almost identical to conventional set-associative cache. On the other hand, additional 
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access cycles and memory accesses are required if the first way misses. By using 

more efficient placement and replacement techniques, we are able to increase the hit 

rate on the earliest accessed way by placing recently accessed blocks in the earliest 

accessed way. This further reduces the number of redundant memory accesses and 

eases additional access latency. Experimental result shows that the proposed 

architecture has a lower power-delay product compared to the conventional 

set-associative cache of the same size and associativity, especially when the miss 

penalty is high. A 32KB 2-way sequential way-access set-associative cache reduces 

the power-delay product by an average of 23.8% compared to the conventional 

set-associative cache of the same size and associativity 

. 

1.3. Thesis Organization 

The remainder of the thesis is organized as follows: Chapter 2 discusses several 

related works; Chapter 3 gives a detailed description on the proposed model; Chapter 

4 describes the experiment setup and simulation result; and Chapter 5 concludes the 

thesis. 
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Chapter 2 Related Works 

2.1 Way-Predicting Set-Associative Cache 

Several approaches have been proposed to reduce cache power consumption by 

reducing the number of access on memory arrays [5, 6, 7, 8, 13, 14]. One such 

approach is Way-Prediction Set-associative cache [7]. Way-Predicting 

Set-Associative Cache speculatively chooses one way to probe prior to the actual 

cache access base on certain prediction mechanism. If the prediction is correct, the 

cache access completes in a single cycle as shown in Figure 3.1(a). Since only the 

predicted way is activated, cache power consumption is reduced compared to 

conventional set-associative cache. On the other hand, if the predicted way misses, as 

shown in Figure 3.1(b), additional access cycle is required to probe the remaining 

ways in order to search for the matching way which increases the cache access cycle 

count. To make things worse, since all the remaining ways are activated, no memory 

access is saved compared to conventional set-associative cache.  

 

 

Figure 2.1: Way-Predicting Set-Associative Cache 
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A correct prediction reduces cache energy consumption while maintaining high 

access speed (in terms of access cycle count). On the other hand, an incorrect 

prediction not only fails to reduce cache energy but increases cache access cycle 

count. Consequently prediction accuracy plays an important role on cache 

energy-delay product. The average energy consumption (Ecache) and the average cache 

hit cycle count (Tcache) for each cache access on the way-predicting 4-way 

set-associative cache can be expressed as follows: 

Ecache  ＝  (ETag ＋ EData) ＋ (1 － PHR) × (3 ETag ＋ 3 EData)       (1) 

Tcache  ＝  1 ＋ (1 － PHR) × 1                                 (2) 

 ETag, EData  and data array, 

cessed using the same address that 

determines the activated set. In the case of a 16KB 4-way set-associative cache, the 

pred  

for t  

actua ac  a s tak

Although Way-Predicting Set-Associative cache seems attractive in reducing cache 

power, there are several drawbacks. Its way-prediction policy requires a large 

way-prediction table to store the MRU information for each set. Looking up such a 

large table also causes substantial power consumption. Furthermore, since actual 

： Energy consumed for accessing a tag-array

respectively. 

 PHR： Prediction hit rate. 

 To increase accuracy of way prediction, Way-Predicting Set-Associative cache 

employs a way-prediction policy based on an MRU (Most Recently Used) algorithm. 

This policy requires a flag to store the MRU information for each set. All flags are 

stored in an MRU way-prediction table which is ac

iction flag is 2 bits and therefore additional 4KB of memory storage is required

he MRU way-prediction table. The predicted way number is read out before the

l c he cces es place in order to get the prediction.  
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ca

 the approximate data 

ad

robe activates only the 

pr

. However, if the prediction is 

incorrect, the matching way (if any) is known and is subsequently accessed. This 

scheme has the same access speed as Way-Predicting Set-Associative cache but might 

che access can not take place until the predicted way is read out from the 

way-prediction table and since way-prediction table lookup requires the actual data 

address as its index, the prediction procedure cannot be hidden and therefore cause 

additional cache access time even if the prediction is correct. 

To reduce prediction time, using different information other than the actual data 

address as index for the way-prediction table allows prediction process to start before 

the data address is calculated and can therefore hide the prediction time to early stage. 

Two possible sources for index are: the load PC address and

dress formed by XORing the load’s source register with the load offset [8]. The 

load PC is available much earlier than the approximate data address but the 

approximate data address is more accurate since a single load instruction may 

reference data with widely varying access patterns [9]. 

  To obtain a better balance between energy consumption and overall speed for 

way-predicting cache, two different access schemes are proposed by Huang, et al [10] 

based on the concept of phased cache. 

  In the first scheme, called Fall Back Phased, the first p

edicted way in the same way as Way-Predicting Set-Associative cache. If the first 

probe misses, the second probe acts as a phased cache which probes all the remaining 

tag arrays but not the data arrays. If a match is detected, the corresponding data array 

is then accessed. Otherwise cache miss encounters and no data arrays are then 

accessed. This scheme favors energy saving at the expense of speed. 

  On the other hand, the second scheme, called predictive phased, activates all tag 

arrays and data arrays of the predicted way in the first probe. In this case, additional 

tag arrays are activated even if the prediction is correct
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not be as energy-efficient as Way-Predicting Set-Associative cache, since more tag 

arrays are activated on prediction hit but less data arrays are activated on prediction 

miss. This scheme favors when the prediction accuracy is low. 

2.2 Non-Uniform Cache Architecture (NUCA) 

ance gap. This 

e is determined by 

the longest access time among all sub-arrays. However, such uniform access fails to 

exploit the difference in latencies among sub-arrays. 

t work proposed 

ad

 

Continuous advances in VLSI technology increase the processor clock rate 

dramatically in recent years. On the other hand, improvements in memory speed have 

not kept pace with processor speed and result in ever widen perform

increases the number of cycle the processor has to wait for the memory accesses 

dramatically and results in serious overall performance degradation. It is well known 

that the smaller caches run faster. Therefore the L1 cache is usually made small in 

order to keep up with the processor speed. However, low level cache must remain 

large enough to maintain low global miss rate therefore results in relative slower 

access speed. Traditional cache architectures assume that each level in the cache 

hierarchy has a single, uniform access time. Since large low level caches are usually 

made by combining many smaller SRAM sub-arrays, its access tim

To increase average access speed on large low level cache, a recen

aptive, non-uniform cache architecture (NUCA) [11]. NUCA exploits the variation 

in access time by partitioning the large low level cache into several, smaller 

sub-arrays. Each sub-array has different access time and can be probed independently. 

Since large low level caches are usually made up of many SRAM sub-arrays which 

are spread out throughout the chip and are connected through long wires, this partition 

can be done easily. The basic architecture of NUCA is shown in Figure2.2. NUCA 
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allows fast access to close sub-arrays while maintaining slow access to far sub-arrays. 

For each cache set, each way is placed among different sub-arrays of different access 

latency. On cache access, NUCA searches the ways sequentially, accessing both tag 

and data array, from the fastest way to the slowest way. The search completes when a 

hit is detected, and subsequent accesses on slower sub-arrays are saved. 

 

Figure 2.2: NUCA 

 

To increase cache efficiency, NUCA pioneer the concept of data placement by 

allowing frequently accessed data to be placed in faster ways while infrequently 

accessed data are placed in slower ways. This is done by allowing the hit block to be 

swapped to the faster ways within a set. A newly introduced block is initially placed 

in the slowest way. If a block is accessed frequently, this block will “bub

…
9 32

…

…
…

 

bles” toward 

the fastest way. On the other hand, an infrequently accessed data will remain in the 

slower way. 

To ensure equal performance for every set in the cache, every sub-array must 

contain equal number of ways for each set in the cache. This implies that the NUCA 

can only place a small number of ways for each set in the fastest sub-array. To 

increase efficiency on the fastest sub-array, Chishti, et al proposed NuRAPID 
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(Non-uniform access with Replacement And Placement usIng Distance associative) 

[12] cache which employs the concept of distance-associative to completely decouple 

tag placement with data placement. This is done by adding a forward pointer for each 

tag to indicate the location of its corresponding data block. Distance-associative 

allows the tag placement to maintain set-associative for accessibility but allows data 

blocks to be placed in any sub-array without restriction. Therefore, unlike the original 

NUCA, all the frequently accessed blocks can migrate to the fastest sub-array whether 

they are in the same set or not. This can increase the hit rate on the fastest sub-array 

and therefore can reduce average access latency. Distance-associative also enables 

serial tag-data access, which is commonly used in low level caches to reduce cache 

po

 placement using distance-associative. However, distance-associative 

re

wer since data array is much larger, therefore slower than tag array in low level 

cache. 

Although intended for reducing access latency on low-level caches, by increasing 

the hit rate on earlier accessed sub-arrays using smarter placement policies, 

substantial energy can also be saved by NUCA since subsequent accesses on slower 

sub-arrays may be saved. NuRAPID further increases the performance by allowing 

efficient data

quires a forward pointer for each tag entry and therefore large additional memory 

storage is required for tag array which increases tag array access time. 
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Chapter 3 Proposed Low-Power Cache Architecture 

The basic architecture of conventional 2-way set-associative cache is shown in 

figure 3.1. Each way consists of one tag array and one data array. For each tag array, a 

comparator is required to compare the accessed tag from the tag array with the request 

tag. A read

3.1 Drawbacks of Conventional Set-Associative Cache 

 access first probes all tag arrays and data arrays. The accessed tags are 

then compared with the request tag to determine if there is a match. If a match is 

detected, the corresponding data block of the matching way is then selected by the 

multiplexer to the output. The write access follows similar access procedure as the 

read access except that data arrays can not be written until a match is detected. 

 

 

Figure 3.1: Conventional 2-Way Set-Associative Cache 

 

Two problems on set-associative cache are observed. These problems are stated 

below. 
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(1) Redundant Memory Access 

During a cache access, both ways are accessed, but actually only the matching way 

is needed. The energy spent accessing the other ways is therefore wasted. Figure 3.2 

shows the example on read access which hits in Way 0. It can be seen that the 

accesses on the tag array and data array of the un-matched way, which is Way 1, have 

no effect on the result and therefore the energy spent accessing these arrays are 

wasted. The write access has similar result except that since data array can not be 

written until a match is detected, only the access on the tag array of the un-matched 

way is wasted. 

 

 

Figure 3.2: Read access on conventional set-associative cache 
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(2) Hit-Signal Fanout 

The second problem concerns about the fanout on the hit-signal. The hit-signal 

generally refers to the outputs of the tag comparators in the cache to indicate if a way 

hits. In set-associative cache, a multiplexer is required to select the hit data among all 

the ways to the output. Since the size of data blocks are usually large (32-bit or 64-bit 

for recent processors), the loading of this multiplexer is usually quit large. To achieve 

one cycle hit time, conventional set-associative cache accesses tag arrays and data 

arrays in parallel. The hit-signal determined by comparator is then used as the select 

signal of the multiplexer that used to select hit data block among all the ways. 

Therefore the multiplexer causes a large fanout on the hit-signal as shown in figure 

3.3. Although tag arrays are usually smaller than data arrays and therefore have faster 

access time, the total access time on tag array plus its subsequent comparator, which 

determines the hit-signal, is usually longer than the access time on data array and 

therefore contributes to the critical path of set-associative cache. 

 

 

Figure 3.3: Large fanout on the hit-signal 
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To understand the effect of the fanout of the hit-signal on the critical path of 

set-associative cache, the access times on several sub-structures of a 2-way 

set-associative cache are derived. The sub-structures that are examined are shown in 

figure 3.4, figure 3.5, and figure 3.6. In Figure 3.4, the access time of the two basic 

structures of a conventional direct-mapped cache, which are the data array (data) and 

the tag array plus comparator (tag+comp), are examined. In Figure 3.5, the access 

time of the way-matching part (tag+comp+or) and the data accessing part 

(data+mux) of the conventional 2-way set-associative cache are examined. Finally, 

the basic structure of conventional 2-way set-associative cache, which is formed by 

connecting the hit-signal derived from (tag+comp+or) to the select signal of the 

multiplexer in (data+mux) of figure 3.5, is examined as shown in figure 3.6. 

 

 

Figure 3.4: Decomposition of conventional direct-mapped cache 
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Figure 3.5: Decomposition of conventional set-associative cache 

 

 

Figure 3.6: Basic architecture of conventional 2-way set-associative cache 
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Table 3.1 shows the access time of sub-structures of 2-way set-associative cache. 

The memory cells are generated using Artisan UMC 0.18um memory compiler and 

the access times are determined using Synopsys 0.18um design compiler. The size of 

each data block is 32 bytes and each cache line contains 4 blocks. The minimum and 

maximum sizes of memory cell the memory compiler can generate are 1KB and 

32KB. (data+mux), (tag+comp+or), and (2_way) require 2 individual memory cells 

for each way therefore the minimum size available for these three structures are 2KB. 

 

 

Table 3.1 Access time of sub-structures of 2-way set-associative cache 

 

  By comparing the access time of (data) and (tag+comp), it can be seen that the tag 

access part has longer access time than the data access part and therefore contributes 

to the critical path of direct-mapped cache. The situation remains the same on 

set-associative cache by comparing the access time of (data+mux) and 

(tag+comp+or), even though a multiplexer is added to the data access part. These 

results reveal that the critical path of conventional set-associative cache is the tag 

access part plus the multiplexer that selects the hit data block using the hit-signal 

derived from the tag access part as select signal. 

  The delay of the multiplexer in (data+mux) can be derived by subtracting the 

access tim hile 

 the same multiplexer in (2-way), which is the access time difference 

e of (data+mux) by the access time of (data), which is about 0.2ns. W

the delay of
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be

3.2 Sequential Way Access 

  Phase cache reduces the number of access by accessing tag arrays first to 

determine the matching way and then accesses only the data array of the matched way 

if there is a hit. However, since serial tag-data access has the wait until the matching 

way is known before the access on data array can begin, cache access latency on each 

cache access is therefore increased. 

  To reduce redundant memory accesses while maintaining fast cache access clock

rate, w s each 

ay sequentially, accessing both the tag array and the data array of the searched way, 

 cache access clock rate of sequential 

tween (2-way) and (tag+comp) increase to about 0.55ns. The large fanout on the 

hit-signal due to the multiplexer weaken its driving ability, results in increases the 

access time on the multiplexer and therefore increases the overall cache access cycle 

time 

 

 

e propose sequential way-access set-associative cache which searche

w

from the first way to the last way. The access sequence terminates when a match is 

detected and subsequent accesses on the remained ways are then saved. Unlike the 

phase cache, which reduces the number of redundant memory accesses by reducing 

the number of data arrays accessed, sequential way set-associative cache reduces the 

number of redundant memory accesses by reducing the number of redundant way 

accesses. Since both tag and data array are probed in parallel for each way access, the 

access latency for each way is about the same as conventional set-associative cache. 

By letting each way access to take one cycle, the

way-access set-associative cache can be compatible with the conventional 

set-associative cache. 
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  Figure 3.7 shows an example of 2-way sequential way-access set-associative cache. 

During the first cycle of cache access, only the tag array and the data array of way 0 

are probed. If way 0 hits, as shown in Figure 3.7(a), the cache access is completed in 

one cycle as the same as conventional 2-way set-associative cache and the accesses on 

ay 1 are saved. If way 0 misses, subsequent accesses on way 1 are required in the 

next cycle as shown in Figure 3.7(b). In this case, no memory accesses are saved 

com ared to conventional 2-way set-associative cache. Further more, one additional 

w

p

access cycle is required no matter way 1 hits or misses. Overall, sequential way 

set-associative cache reduces the number of memory access at the expense of the 

increase in average memory access time. 

 

 

Figure 3.7: 2-way sequential way-access set-associative cache 
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  The average memory access time can be expressed as shown in formula (3). Due to 

the ever widen gap between the process clock rate and main memory access time, the 

miss penalty continues to grow as a dominant factor in average memory access time. 

Therefore, although sequential way-access set-associative cache increases the average 

hit time, this overhead on AMAT should be minor compared to the large miss penalty 

when cache misses.  

AMAT ＝ (#_of_access) × (hit_rate × hit_timecycle ＋  

miss_rate × miss_penalty) × clk          (3) 

  Besides reducing the number of memory access, sequential way-access 

set-associative cache also provides a mean to reduce the fanout on the hit-signal. 

Since the accessed way is predetermined on each memory cycle, the select signal of 

the multiplexer that used to select hit data block among all the ways can also be 

determined in advance as shown in Figure 3.7. Therefore the fanout on the hit-signal 

to the data multiplexer in conventional set-associative cache is no longer required in 

sequential way-access set-associative cache and large fanout on the hit-signal can be 

eliminated. Since the hit-signal is the most dominant factor on the actions of a cache, 

the largely reduced fanout on the hit-signal may allows more complex cache access 

schemes and placement policies without increasing the overall fanout on the 

hit-signal, and therefore the cache access cycle time, dramatically. Further more, the 

cache access cycle time may even reduce if the increased fanout on the hit-signal is 

less than the reduced fanout caused by the data multiplexer. 
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3.3 Placement and Replacement Policy 

  Summarizing the overheads on cache hit on each way in sequential way-access 

set-associative cache, we can see that a cache hit on different ways of sequential 

way-access set-associative cache has different amount of overhead as opposed to 

conventional set-associative cache. A cache hit in the earlier accessed ways can 

eliminate subsequent accesses on later ways. Further more, less additional overheads 

in cycle counts are required. The optimum situation comes when the cache hits in the 

earliest accessed way. In this case only the hit way is activated and no additional 

access cycle requires as the same as convention cache. On the othe  

se additional 

fanout on the hit-signal, the eliminated fanout on the hit-signal caused by data 

ultiplexer in conventional set-associative cache can compromise this overhead. 

al set-associative r

hand, the later a cache hits, the less subsequent way accesses can be saved while more 

additional access cycles are required. The worst situation comes when the cache hits 

in the last accessed way or cache misses. In these cases no memory access is saved 

but causes n-1 additional access cycles where n equals to the associativity of the 

cache. Therefore, the earlier accessed ways have less access overhead than later 

accessed ways. 

  According to the above conclusion, a possible way to increase the performance of 

sequential way-access set-associative cache is to increase the hit rate on the earliest 

accessed way. By using smarter placement and replacement policies, we can allow 

more frequently accessed blocks to be placed in earliest accessed ways while 

infrequently accessed data are placed in slower accessed ways. Several approaches 

have been proposed to increase the cache hit rate on frequently accessed blocks [15, 

16, 17, 18]. Although complex placement and replacement policies cau

m
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  The basic principle that is applied on the placement and replacement policies of 

ock should be evicted and replaced by the 

space created by dropping the cache line containing the evicted block in the earliest 

accessed way is refilled by the cache line containing the refilled block. The result is 

sequential way-access set-associative cache is temporal locality. Temporal locality 

basically means that if a memory location is recently referenced, there is a high 

probability that the same location will be accessed again soon. Therefore the goal is to 

reduce the access overhead on recently accessed blocks in order to increase the 

performance. This can be done by allowing recently accessed blocks to be placed in 

the earliest accessed way. 

 

(1) Priority Replacement Policy 

The priority replacement policy used in sequential way-access set-associative cache 

concerns of the decision of which cache line to be evicted and the placement of the 

introduced cache line when a cache miss occurs. During a cache miss, conventional 

set-associative cache applies conventional least-recently-used (LRU) replacement 

policy to determine which block within the selected set is least recently accessed and 

therefore the cache line containing that bl

newly introduced cache line containing the refilled block. In priority replacement 

policy used in sequential way-access set-associative cache, the LRU detection unit is 

preserved to select the evicted block within the selected set on cache miss. However, 

in order to reduce the re-access overhead on the refilled block, priority replacement 

policy requires to place the refilled blocks in the earliest accessed way within the 

selected set. Figure 3.8 shows an example of priority replacement policy on a 2-way 

sequential way-access set-associative cache, assuming the LRU block of the selected 

set is in the earliest accessed way (Way 0). Since the way of the evicted block (A) is 

exactly the same as the way the newly introduced block (C) should be placed, the 
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exactly the same as conventional LRU policy used in conventional set-associative 

cache and no additional overheads are required. 

 

Way 0 Way 1 Way 0 Way 1

A

C

B B

A

C

 

Figure 3.8: Priority replacement policy (LRU : Way 0) 

 

On the other hand, if the LRU block of the selected set is in the later accessed way, 

additional memory accesses are required to create a space in the earliest accessed way 

for the newly introduced cache line containing the refilled block. Figure 3.9 shows 

another example of priority replacement policy on 2-way sequential way-access 

set-associative cache. This time we assume the LRU block of the selected set is in the 

later accessed way (Way 1). In this case the eviction of the cache line containing the 

LRU block (B) creates a space in Way 1 while the newly introduced cache line 

containing the refilled block (C) suffers from no available space in the earliest way for 

the cache line to be placed. To solve this problem, priority replacement policy 

requires that the cache line containing the block that is originally in the earliest 

accessed way of the selected set (A) to be moved to the way where the eviction occurs 

in order to create a space for the newly introduced cache line in the earliest accessed 

way. Although moving cache line between ways causes additional memory accesses 

compared to conventional LRU replacement policy, especially for d-cache since a 
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cache line usually contains more than one block. The reduced memory accesses on 

re-accessing the refilled blocks can compromise the increased accessed. Further more, 

e access cycles on re-accessing the refilled block can also be reduced.  

 

th

Way 0 Way 1 Way 0 Way 1

A B

C

C A

B

Additional movement required!!
 

Figure 3.9: Priority replacement policy (LRU : Way 1) 

 

(2) Promotion Placement Policy 

To further increase the performance of sequential way-access set-associative cache, 

a possible solution is to reduce the access overhead on recently accessed block during 

cache hits. In promotion placement policy used in sequential way-access 

set-associative cache, during a cache hit, the hit block is required to be promoted to 

the earliest accessed way in order to reduce the re-access overhead on the hit block. 

When the cache hits in the earliest accessed way, no additional action is required 

since the hit block is already in the earliest accessed way. On the other hand, when the 

cache hits in a way other than the earliest accessed way, swap is required to promote 

the cache line containing the hit block to the earliest accessed way while the cache 

line containing the block that is originally in the earliest accessed way of the selected 
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set is placed to the hit way. This is shown in figure 3.10, assuming the cache hits in 

the later accessed Way 1 of sequential way-access set-associative cache. 

 

 

Figure 3.10: Promotion placement policy (hits in Way 1) 

 

Besides reducing the re-access overhead on recently accessed block, promotion 

placement policy also provides a mean to prevent frequently accessed blocks from

becoming stuck in the later accessed ways  

ing block-A, block-B, and block-C all map to the same 

ence we can see that block-A is a frequently 

access

overhead on subsequent accesses on block-A from increasing. 

 

. Consider the following access sequence

shown in figure 3.11, assum

set. According to the access sequ

ed block while block-B is not. The first access on block-A puts block-A to the 

earliest accessed way according to the priority replacement policy and therefore 

allowing the following accesses on block-A to have minimum access overhead. If 

however, a glitch access on the infrequently accessed block-B occurs. According to 

the priority replacement policy, block-B will be placed to the earliest accessed way 

while frequently accessed block-A will be demoted to the later accessed way. Without 

promotion placement policy, frequently accessed block-A will be stuck in later 

accessed way therefore will increase the access overhead on following accesses on 

block-A. Promotion placement policy allows accidentally demoted block-A to be 

swapped back to the earliest accessed way and therefore can prevent the access 
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Figure 3.11: Promotion on frequently accessed block 
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Chapter 4 Experimental Evaluation 

4.1 Experimental Environment 

  Figure 4.1 shows the basic simulation framework used for experimental evaluation. 

The memory activity trace files are derived by running benchmarks on an ARM7 

compatible processor developed by our laboratory called ACARM7. The parameters 

of ACARM7 are listed in Table 4.1. The memory activity information of the 

benchmarks running ACARM7 is extracted and recorded in the memory activity trace 

files. Both the activities of I-cache and D-cache are extracted by separating the 

requests for instruction and data. The memory activity trace files are then served as

the processor co

 

 

re for the cache during the simulation. 

 

Figure 4.1: Simulation framework 
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Table 4.1: Parameters of ACARM7 

 

  The base line cache architecture is a 2-way set-associative cache of size from 2KB 

to 128KB. The issue size for each cache access is 4 bytes. The cache block size is 16 

bytes. For comparison purposes, four cache configurations are developed: they are 

conventional set-associative cache (2 Way Conv), sequential way-access 

set-associative cache without any optimization in placement (Seq 2 Way), sequential 

 set-associative cache with priority replacement policy (Seq+Pri), and 

sequential way-access set-associative cache with both priority replacement policy and 

promotion placement policy (Seq+Pri+Pmt). All cache models are developed using 

hardware description language (Verilog) and are synthesized using Artisan UMC 

0.18um technology. The memory cells are generated using Artisan UMC 0.18um 

memory compiler. The minimum and maximum sizes of memory cell the memory 

compiler can generate are 1KB and 32KB. Concerning the access time of a 32KB 

memory cell increases too much compared to memory cells of other size (see first 

column on table 3.1), each way on the 128KB cache is made up of four 16KB 

memory cells instead of two 32KB memory cells and only the selected cell on each 

way is activated on each cache access. The power measurement includes both the 

cache controller and the memory arrays used by the cache, including tag arrays and 

data arrays. The power is measured using power compiler with clock rate fixed at 

200MHz on worst case. 

way-access
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  The main memory is basically a behavior model which is used as a backup storage 

for the cache. The issue size of the main memory is 16 bytes. A write transfer takes 18 

cycles and a read transfer takes 16 cycles to complete. 

The EDA environment used in th  e simulation are summarized in table 4.1. 

 

 

Table 4.2: EDA environment 

 

  Six benchmarks are simulated for each cache configuration. The first one is a quick 

sort program of 65536 elements. The second and the third are JPEG encoder and 

decoder respectively. The encoder converts a 64*64 bitmap file to 64*64 jpeg file and 

the decoder converts the 64*64 jpeg file back to 64*64 bitmap file. The fourth one is 

the Whetstone benchmark. The last two are FFT and Matrix from the Dspstone 

benchmark suite. The FFT contains 1024 data and the dimension of the matrix is 

50X50. 

 

4.2 Experimental Result 

4.2.1  Memory activity 

Figure 4.2 shows the memory activities of JPEG encoder on D-caches of different 

cache configurations. Both the activities on tag array and data array are presented. 

The corresponding miss rates for each cache size are also presented. Since for each 
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cache size, both the capacity and associativity on each cache configuration are the 

same, the miss rates for each cache configuration on the same cache size are the same. 

From the figure, it is clearly that sequential way access (Seq 2 Way) does reduce 

th against 

iss rate. The number of access actually increases as cache size increases from 4K to 

32K while the miss rates are reduced. The reason is because the placement on 

sequential way access alone depends only on the conventional LRU replacement 

policy. A frequently accessed block may be placed in the later accessed way if the 

replaced block is in the later accessed way. Since there is no mechanism to move 

blocks between ways, the f  become stuck in the later 

ccessed way and compromise the benefit of sequential way access.  

e number of memory access. However, the reduction rate is not quit stable 

m

requently accessed block may

a

 

 

Figure 4.2: Memory activities on D-cache running JPEG encoder 

re-access overhead on newly introduced blocks. However, priority replacement policy 

 

Adding priority replacement policy to sequential way access allows newly 

introduced blocks to be placed in the earliest accessed way therefore reduces the 
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only applies during cache miss. A frequently accessed block which is originally in the 

earliest accessed way may be accidentally demoted to the later accessed way when a 

ne

ent policy and 

romotion placement policy has the lowest number of access against all other cache 

configurations for all cache sizes. For the data array, since a cache line contains four 

blocks, a cache line swap requires 8 accesses to read out the two cache lines to be 

swapped and 8 accesses to write the cache lines to the required destination, resulting 

16 accesses for each swap on data array comparing to only 4 accesses on tag array. 

Therefore when the cache size is small, the high probability of swaps due to thrashing 

on Seq+Pri and Seq+Pri+Pmt increases their number of access on data array more 

dramatically than on tag array. However, as cache size increases, the ease on capacity 

miss allows the benefits of swaps on Seq+Pri and Seq+Pri+Pmt to show, resulting 

more serious reduction in the number of access for both tag array and data array,

especially fo

ory activities of the same JPEG encoder on I-caches of 

different cache configurations

w block is introduced to the cache and become stuck there. Therefore the access 

reduction rate on Seq+Pri against miss rate is smoother comparing to Seq 2 Way but 

still not quit stable. Further more, moving blocks between ways cause additional 

memory accesses and might compromise the reduced accesses benefited from priority 

replacement policy. 

By allowing frequently accessed blocks in the cache to be placed to the earliest 

accessed way during cache hit, Seq+Pri+Pmt effectively reduces the number of 

memory access compared to conventional set-associative cache as miss rate reduces. 

For tag array, sequential way access with both priority replacem

p

 

r Seq+Pri+Pmt. 

Figure 4.3 shows the mem

. The results are similar to the D-cache. The figures also 

shows that up to 50% of accesses can be saved on 2-way sequential way-access 

set-associative cache compared to conventional 2-way set-associative cache. The 
 29



effects on priority replacement policy and promotion placement policy are more 

evidence in the figure. Without the help of smarter placement/replacement policies, 

Seq 2 Way achieves about 50% of access reduction when the cache size increase to 

64KB, even though the miss rate is already 0% when cache size reaches 8KB. 

Seq+Pri achieves about 50% reduction much earlier than Seq 2 Way at the cache size 

of 8KB, the same size when the miss rate achieves 0%. For Seq+Pri+Pmt, almost 

50% of access reduction is achieved at the cache size of 2KB, despite the fact that the 

miss rate is not yet 0%. 

 

 

Figure 4.3: Memory activities on D-cache running JPEG encoder 

 

The memory activities of each benchmark on 32-KB D-caches of different cache 

configurations are shown in table 4.3 and table 4.4 where table 4.3 shows the 

activities on tag arrays and table 4.4 shows the activities on data arrays. Sequential 

way access in average reduces the number of access on both tag arrays and data arrays 

effectively. Priority replacement policy allows newly introduced block to be placed in 

the earliest accessed way during cache miss and further reduces the number of access. 
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Combining with promotion placement policy, which places recently accessed blocks 

in the earliest accessed during cache hit, Seq+Pri+Pmt achieves the highest reduction 

among all cache configurations. Up to 43% of accesses are reduced on tag arrays and 

22% on data arrays. For the data arrays, the large cache line increases the overhead on 

swaps consequently compromises the benefits of priority replacement policy and 

promotion placement policy. 

 

 

Table 4.3: Memory activities of benchmarks on tag arrays of 32-KB D-caches 

 

 

Table 4.4: Memory activities of benchmarks on data arrays of 32-KB D-caches 

 

4.2.2 Power 

Table 4.5 shows the power consumptions of JPEG encoder on D-caches of different 

cache configurations. The power reduction rate of each cache configuration 

correspond to the conventional set-associative cache of the same cache size are shown 

in figure 4.4. The curve of power reduction rate against the cache size is similar to the 
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fraction of reduced access. It is clearly that the reduced number of access due to 

sequential way access effectively reduces cache power consumption.  

 

 

Table 4.5: Power consumptions on D-cache running JPEG encoder 

 

 

Figure 4.4: Power reduction rate on D-caches running JPEG encoder 

 

Table 4.6 and figure 4.4 also shows the corresponding power consumption and 

 rate of JPEG encoder on I-caches of different cache configurations. 

Again, sim

power reduction

ilar results are shown. From the figure it can be seen that under the same 

number of reduced accesses, Seq+Pri+Pmt performs better compared to other cache 

configurations. It is because the LRU detection unit in Seq+Pri+Pmt is eliminated and 

therefore further reduces its hardware complexity. The detail will be stated in section 
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4.2.4. For Seq 2 Way, even though virtually no memory accesses are saved for cache 

size from 8K to 32K according to figure 4.3, large power reduction is still achieved. 

The almost perfect hit rate implies that almost every cache access on Seq 2 Way hits 

but hits in the later accessed way. Therefore the average cache access time on Seq 2 

Way almost doubles and therefore flattens the energy consumed in each second.  

 

 

Table 4.6: Power consumptions on I-cache running JPEG encoder 

 

 

Figure 4.5: Power reduction rate on I-caches running JPEG encoder 

 

Table 4.7 shows the power consumptions of each benchmark on 32-KB D-caches 

of different cache configurations. For Seq+Pri and Seq+Pri+Pmt, the hardware 

overhead due to smarter placement/replacement policies cause additional power 
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consumption and compromise the reduced access power. Despite of that, 

Seq+Pri+Pmt still manage to achieve the highest power consumption among all cache 

configurations. Up to 25% of power consumption is reduced by Seq+Pri+Pmt 

compared to conventional set-associative cache. 

 

 

Table 4.7: P  

4.2.3 Cycle Count 

  To evaluate the effects of different main memory latencies on the cycle counts of 

different cache configurations, two types of main memory with different access 

latencies are applied. The first one is the same main memory used in pervious 

evaluations and is referred to as mem_long in the thesis. The mem_long requires 18 

cycles for a write transfer and 16 cycles for a read transfer. The second main memory 

has shorter access latency and is referred to as mem_short. A write transfer to 

mem_short takes 8 cycles and a read transfer takes 6 cycles. The cycle counts with 

respect to mem_short and mem_long on D-caches of each cache configuration 

running tage of 

creased cycle count of each cache configuration correspond to conventional 

se

ower consumptions of benchmarks on 32-KB D-caches

 

JPEG encoder are shown in table 4.8 and table 4.9. The percen

in

t-associative cache of the same size are shown in figure 4.6 (mem_short) and figure 

4.7 (mem_long). 

 

 34



 

Table 4.8: Cycle count on D-cache running JPEG encoder (mem_short) 

 

 

Table 4.9: Cycle count on D-cache running JPEG encoder (mem_long) 

 

 

Figure 4.6: Cycle count increased on D-cache running JPEG encoder (mem_short) 
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Figure 4.7 : Cycle count increased on D-cache running JPEG encoder (mem_long) 

 

  The cycle count on Seq 2 Way varies dramatically with respective to cache size. 

The cycle count on Seq 2 Way even doubles at the cache size of 32KB despite the fact 

that the miss rate is almost zero. Comparing to the cycle count on Seq+Pri of the 

same cache size, which is almost identical to conventional set-associative cache, it is 

clearly that the most of the frequently accessed blocks in Seq 2 Way were placed in 

the later accessed way the first time they were introduced to the cache and become 

stuck there therefore causing such huge increase in cycle count. However, the cycle 

count on Seq+Pri is still not stable enough with respective to miss rate due to lack of 

mechanism to promote recently accessed block to earlier accessed ways during cache

hit. y 

allowing the recently accessed blocks to be swapped to the earliest accessed way and 

 

Seq+Pri+Pmt further increases the hit rate on the earliest accessed way b

further reduces and stabilizes the cycle count. 
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  Comparing figure 4.6 with figure 4.7, the curve of the percentage of increased 

cycle count on mem_short actually shift down compared to mem_long on smaller 

cache sizes. The reason can be explained by considering the formula of cache access 

cycle count expressed as follows: 

Cycle_count ＝ (#_of_access) × (hit_rate × hit_timecycle ＋  

miss_rate × miss_penalty)            (4) 

  The overall cache access cycle count is composed of the total cycle count on cache 

hits and the total cycle count on cache misses. The main memory access latency 

affects the cache miss penalty therefore plays an important role in overall cache 

a  

iss penalty on the overall cache access cycle count and therefore reduces the effect 

e. By comparing table 4.10 with table 

ccess cycle count. The longer main memory access latency increases the effect of the

m

of the increased hit cycle count due to sequential way access on the overall cache 

access cycle count, especially when the miss rate is high. As the gap between main 

memory access time and processor clock rate continues to grow, the effect of the 

increased hit cycle time due to sequential way access on the overall cache access 

cycle count should continue to reduce in the future. 

Table 4.10 and table 4.11 shows the cycle counts of each benchmark on 32-KB 

D-caches of different cache configurations with respect to mem_short and mem_long. 

Sequential way access increases the average cache access cycle count dramatically 

while priority replacement policy and promotion placement policy effectively 

alleviates the increased cycle count by increasing the hit rate on the earliest accessed 

way. The average cycle count on Seq+Pri+Pmt increases only about 6.39% 

comparing to conventional set-associative cach
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4.11, it also shows that the overhead on the increase cycle count reduces as the cache 

miss penalty becomes more dominant. 

 

 

Table 4.10: Cycle counts of benchmarks on 32-KB D-caches (mem_short) 

 

 

Table 4.11: Cycle counts of benchmarks on 32-KB D-caches (mem_long) 

 

4.2.4 Cycle Time 

  

In fact, the cycle times of the proposed cache model actually reduce slightly. 

The cycle time of each cache configurations for different cache sizes are shown in 

table 4.12. The cycle times are derived by synthesizing the RTL models of each cache 

configurations for different cache sizes using Artisan UMC 0.18um technology. Both 

tag array and data array are included in the model. Although sequential way access 

and smarter placement/replacement policies cause additional hardware overhead on 

the cache architecture, the cycle times of the proposed cache model do not increase 

dramatically compared to conventional set-associative cache of the same cache size. 
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Although proposed model increases the hardware complexity and therefore cause 

additional loading on the hit-signal, the increased loading is well compromised by the 

liminated fanout on the hit signal used to select the hit data block in conventional 

set-associative cache discussed earlier. For (Seq+Pri+Pmt), since the latest accessed 

block is always placed to the earliest accessed way and since there is only two way, 

the need for LRU detection is no longer required because the blocks in the later 

accessed way are always the LRU blocks. By eliminating the LRU detection unit, the 

fanout on the hit-signal in (Seq+Pri+Pmt) is further reduced and consequently the 

cycle tim t) 

 to the conventional set-associative cache 

of the same cache size. 

 

e

e of (Seq+Pri+Pmt) is also further reduced. The cycle time of (Seq+Pri+Pm

is reduced by up to 4% in average compared

 

Table 4.12: Cycle time 

 

4.2.5 Memory Access Time 

  The overall memory access time of each cache configuration can be derived by 

multiplying the overall cache access cycle count by the cache cycle time. The overall 

memory access time is the actual time the cache spent during simulation. Table 4.13 

shows the overall memory access time of each benchmark on 32-KB D-caches of 

different cache configurations. Since the cycle time does not increase dramatically 

due to the reduced fanout on the hit-signal, the average percentages of increased 

memory access time on Seq 2 Way and Seq+Pri manage to be closed to their 

 39



corresponding percentages of increased cycle count. For Seq+Pri+Pmt, the smaller 

cycle time due to the elimination of the LRU detection unit further reduces its 

percentage of increased memory access time to only 1.96%.  

 

 

Table 4.13: Memory access time of benchmarks on 32-KB D-caches 

 

4.2.6 Power-Delay Product 

The power-delay product implies the overall energy consumption during the 

simulation. Table 4.14 shows the power-delay product of each benchmark on 32-KB 

D-caches of different cache configurations. The result shows that sequential way 

access together with priority replacement and promotion placement policies reduces

the cache power consumption while prev emory access time from 

creasing dramatically, consequently has better energy efficiency compared to 

Up to 23.8% of reduction in power-delay product 

 

enting the overall m

in

conventional set-associative cache. 

is achieved by Seq+Pri+Pmt compare to conventional set-associative cache. 

 

 

Table 4.14: Power-delay product of benchmarks on 32-KB D-caches 
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Chapter 5 Conclusions 
  The thesis examines the concept of using sequential way access to reduce cache 

power consumption by reducing the number of ways being activated on each cache 

 By accessing each way sequentially on each cache access and eliminating 

subsequent way accesses when a cache hit is detected, substantial energy can be saved 

at the expense of increased overall cycle count. In order to increase performance, 

smarter placement and replacement policies are applied to increase the hit rate on the 

earliest accessed way by placing the recently accessed blocks in the earliest accessed 

way. The increased hit rate on the earliest accessed way further reduces the number of 

ays being activated and the additional access cycles on each cache access, 

 the overall cache power and the average cache 

access cy

access.

w

consequently further reduces both

cle count. Sequential way access also provides means to reduce the fanout 

on the hit-signal therefore prevents the cache cycle time from increasing due to more 

complex logic. By applying sequential way access together with priority replacement 

policy and promotion placement policy, experimental result shows that a 32KB 2-way 

sequential way-access set-associative cache reduces the power-delay product by an 

average of 23.8% compared to the conventional 2-way set-associative cache of the 

same size. 
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