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H.264 編碼器及其可調適延伸版 

解碼器之加速和 TI DSP 系統平台之實現 

研究生: 鄭凱庭 指導教授: 杭學鳴 博士 

    

國立交通大學 

 

電子工程學系 電子研究所碩士班    

    

摘要摘要摘要摘要    

隨著數位訊號處理的進步，及時的視訊傳輸已成為生活必需的ㄧ部份。本篇論文主

要是利用數位訊號處理器去實現基本的 H.264/AVC 解碼器以及 H.264/AVC 可調適延伸

版的解碼器，此數位訊號處理器環境為 Sundance 的 SMT395 型號，其上核心為德州儀

器公司 TMS320C6416T，是個擁有強大的數學運算功能處理器。 

 在程式執行方面，針對 H.264/AVC 編碼器，是以公開軟體 x264 為基礎來移植於數

位處理器平台，另外 Mode decision 為主要加速的部份，我們使用一些判斷式減少一些

不需要的 Mode 的計算量，這樣可以節省 13%的編碼時間，在 DSP 實現方面，我們使用

TI DSP 編譯器所提供的各種最佳化的相關工具來加速，並支援 2 層 Cache 的模式，這

樣可以達到 19 倍左右的加速，另外針對 DSP 的架構使用了一些程式技巧，包括定點式

資料型態、記憶體規劃、TI DSP 所支援的特殊指令群等等，可以減少 50%的運算量，

以 QCIF 的圖形，在某些畫面下，最後可以達到每秒編碼 40 張左右的速度。 

 針對延伸式 H.264/AVC 解碼器部份，主要是使用參考軟體 JSVM 5.0 做修改，延伸

式 H.264/AVC 主要分為 Temporal、Spatial、SNR 等 3 種不同型態的可調適，在 DSP 實

現方面，我們先針對 3 種不同可調適環境做分析，在三種型態合併的情況下，針對最耗

費計算量部份做加速，主要為 FGS 和 Inter-layer Prediction 這 2 部分，在 FGS 部分，做

程式的修正，避免不必要的計算，在 Inter-layer Prediction部分主要是減少 Intra和Residual

的計算量，配合 DSP 所提供的ㄧ些最佳化方法，在合併的情況下，可以減少 49%的計

算量。 
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Abstract 

With the advancement of the digital signal processing, real-time video transmission 

becomes an essential element in our daily life. In this thesis, we implement the H.264/AVC 

encoder and the scalable extension of H.264/AVC (H.264/AVC SVC) decoder by using a 

digital signal processor (DSP). The digital signal processing environment is Sundance module 

SMT395. The core of the DSP is the Texas Instrument’s TMS320C6416T which is a 

powerful signal processor with strong arithmetic operation capability. 

For the H.264/AVC encoder, the open source code x264 is used as the basis to build a 

DSP-executable program. The mode decision module is the key element being accelerated. 

We develop an early termination method to reduce the calculation of the dispensable modes. 

This saves up to 13% of the encoding time. For the DSP implementation, we start with the 

optimization tools provided by the TI DSP complier. We also make use of the two-level cache 

module on the DSP platform. This can speed-up the system by about 19 times. Furthermore, 

we use several DSP codes acceleration techniques including fixed-point data types, TI DSP 

intrinsic functions and others. Through the code modifications, we can reduce the 

computation by 50%. Finally, the overall system can encode up to 40 QCIF frames per second 

on test video sequences.  
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For the H.264/AVC SVC decoder, we start with the MPEG reference software JSVM 5.0. 

The H.264/AVC SVC includes three types of scalability, namely, Temporal, Spatial and SNR 

scalability. For the DSP implementation, we accelerate the parts which take the most 

computing time in the combined scalability. These two parts are the FGS and the inter-layer 

prediction modules. For FGS, we refine the codes to reduce the computation redundancy. For 

the inter-layer prediction, we reduce the up-sampling operations for the intra texture and the 

residuals. In addition, we also use the acceleration techniques supported by the TI DSP. The 

final H.264/AVC SVC decoder can reduce the computation by 49% in the combined 

scalability. 
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Chapter 1  

Introduction 

 

 

1.1 Introduction and Motivation 

With the growing popularity of mobile communication, video transmission over wireless 

channel will become an essential element in our daily life. Many international video 

compression standards such as H.261, H.263, MPEG-2 and MPEG-4 have already been 

widely used in different situations. In this thesis, we concentrate on the standard H.264/AVC 

and the newest standard scalable extension of H.264/AVC (H.264/AVC SVC). Our focus is to 

implement the H.264/AVC encoder and H.264/AVC SVC decoder on the digital signal 

processors (DSPs). 

 H.264/AVC is a recent standard defined by the ITU-T Video Coding Experts Group and 

the ISO/IEC Moving Picture Experts Group. It provides better compression of video images 

together with a range of features supporting high-quality, low-bitrates streaming video. The 

basic functional elements (prediction, transform, quantization, entropy encoding) are similar 

to those in the previous standards but the important fine-tune in H.264 occur in the details of 

each functional element.   

 Scalable video coding is currently being developed as an extension of H.264/AVC. The 

Joint Video Team of the ISO/IEC MPEG and the ITU-T VCEG is now standardizing this new 

standard. It is intended to encode the signal once, but allow decoding from the partial streams 

at the specific rate and resolution required by a certain application. Its basic design idea is to 

extend the hybrid video coding approach of H.264/AVC to efficiently incorporate the spatial, 

SNR and temporal scalability.  

 The environment of our DSP implementation involves a host PC, DSP board and DSP 
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chips on the board. The DSP chips are Texas Instruments (TI)’s TMS320C6416T. The 

TMS320C6416T is a fixed-point DSP with 1 ns (1 GHz clock) instruction cycle time. It 

adopts the advanced VelociTI Very Long Instruction Word (VLIW) architecture that enables 

sustained throughput of up to eight instructions in parallel and thus it allows the processor 

running faster. In addition, we accelerate the H.264/AVC encoder and H.264/AVC SVC 

decoder by some DSP coding techniques and several efficient algorithms. 

This thesis is organized as follows. Chapter 2 is an overview of the H.264/AVC video 

standard. Chapter 3 introduces the H.264/AVC SVC. Chapter 4 gives a brief description of the 

TI DSP chip and its development environment. In chapter 5, we describe the algorithm and 

code acceleration methods of the H.264/AVC encoder and show the experimental results on 

DSP. Chapter 6 describes the acceleration of the H.264/AVC SVC decoder for DSP and 

presents experimental results. Finally, chapter 7 contains the conclusion. 
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Chapter 2  

H.264 Video Coding 

 

 

H.264/MPEG-4 AVC (Advanced Video Coding) is a video coding standard of the ITU-T 

Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The first draft 

design for H.264/AVC coding standard was adopted in October of 1999. VCEG and the 

MPEG formed a Joint Video Team (JVT) and drafted new video coding standard as 

H.264/AVC [1] in March of 2003. 

H.264 is a standard developed based on H.26L and it promises to significantly 

outperform MPEG4 and H.263, providing better compression of video images together with a 

range of features supporting high-quality, low bit-rate streaming video. It uses the 

state-of-the-art coding tools and provides enhanced coding efficiency for a wide range of 

applications, including video telephony, digital video authoring, digital camera, and many 

others. In this chapter, the H.264/AVC standard will be described. 

2.1 Overview of H.264 Encoder 

The H.264/AVC standards include a Video Coding Layer (VCL), designed to efficiently 

represent video contents, and a Network Abstraction Layer (NAL), designed to format the 

VCL representation and it provides header information in a manner appropriate to be 

conveyed by a variety of transport layers or storage media.  

A Block diagram of the basic H.264/AVC encoder is shown in Figure 2-1. The 

H.264/AVC encoder is consistent with a decoder scheme. Its main elements are 

motion-estimation, motion-compensation, transform and quantization, deblocking filter and 

entropy coding (CABAC or CAVLC). Motion-compensated is used to remove temporal 

redundancy. The purpose of transform (Integer-DCT) and quantization is to remove spatial 
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redundancy. The entropy coding removes syntax redundancy. In the block diagram, the video 

frames are captured into intra or inter prediction parts. If the frame type is intra, the inter 

prediction is disabled. Multiple references and variable block size motion estimations are used 

for the inter prediction. The best mode among these prediction modes is chosen in the mode 

selection block. The input frame is then subtracted from the prediction and forms the residual 

block. The residual blocks are transformed by using a 4x4 integer DCT transformer for 

luminance and a 2x2 transform for the chrominance DC coefficient, scan and quantization 

procedures are then applied to the coefficients. The entropy coder receives these quantized 

coefficients and generates codeword. The reconstruction loop includes the dequantization, 

inverse transform and deblocking filter. Finally, the reconstruction frame is written to the 

frame buffer for motion estimation.  

 

 

Figure 2-1 H.264/AVC encoder structure [2] 

 

There are three profiles defined in the H.264/AVC standard: baseline, main and extended 

profile. The baseline profile is for real-time communication, the main profile is for digital 

storage application, and the extended profile is for network streaming application. In the 

baseline profile, it supports the intra coding and the inter coding with entropy coding using 
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CAVLC. In the main profile, B-frame coding is used and entropy coding using CABAC. 

While the extended profile has all the features of the baseline profile while B-frame coding, 

SI-frame, and SP-frame coding are included. 

2.2 Slice and Slice Groups 

Slices are a sequence of macroblocks which are processed in the order of a raster scan. A 

picture is split into one or several slices as shown in Figure 2-2. A picture, therefore, is a 

collection of one or more slices in the H.264/AVC. Slices are self-contained in the sense that 

given the active sequence and picture parameter sets, their syntax elements can be parsed 

from the bit-stream. Furthermore, the values of the samples in the area of the picture that the 

slices represents can be correctly decoded without the use of data from other slices provided 

that the utilized reference pictures are identical at encoder and decoder. Each slice can be 

coded using different coding types as follows. 

 

� I slice: A slice in which all macroblocks of the slice are coded using intra 

prediction. 

� P slice: In addition to the coding types of I slice, some macroblocks of the P slice 

can also be coded using inter prediction with at most one motion-compensated 

prediction signal per prediction block. 

� B slice: In addition to the coding types available in a P slice, some macroblocks of 

the B slice can also be coded using inter prediction with two motion-compensated 

prediction signals per prediction block. 

� SP slice: A so-called switching P slice that is coded such that efficient switching 

between different pre-coded pictures becomes possible. 

� SI slice: A so-called switching I slice that allows an exact match of a macroblock in 

a SP slice for random access and error recovery purposes. 
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Figure 2-2 Subdivision of a picture into slices [2] 

2.3 Inter Prediction 

High quality video sequences usually have high frame rates. Therefore, two successive frames 

in a video sequence are very likely to be similar. The goal of inter prediction is to utilize this 

temporal correlation to reduce data need to be encoded. Inter prediction creates a prediction 

model from one or more previously encoded video frames. The model is formed by shifting 

samples in the reference frame(s). H.264/AVC supports motion compensation block sizes 

ranging from 16x16 to 4x4 luminance samples with many options between the two sizes. The 

luminance component of each macroblock (16x16 samples) may be split up in 4 ways as 

shown in Figure 2-3: 16x16, 16x8, 8x16, or 8x8. If the 8x8 mode is chosen, each of the four 

8x8 macroblock partitions within the macroblock may be split in a 4 ways as shown in Figure 

2-4: 8x8, 8x4, 4x8, or 4x4.   

 

 

Figure 2-3 Macroblock partitions: 16x16, 16x8, 8x16 and 8x8 
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Figure 2-4 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4 

 

Each partition in an inter-coded macroblock is predicted from an area of the same size in 

a reference picture. The distance between the two areas (the motion vector) has 1/4-pixel 

resolution (for the luma component). In case the motion vector points to an integer-sample 

position, the prediction signal consists of the corresponding samples of the reference pictures. 

Otherwise, the corresponding sample is obtained using interpolation to generate non-integer 

positions. The prediction values at half-sample positions are obtained by applying a 

one-dimensional 6-tap FIR (Finite Impulse Response) filter horizontally and vertically. For 

example in Figure 2-5., half-pixel sample b is calculated from the 6 horizontal integer samples 

E, F, G, H, I and J: 

(( 5 20 20 5 ) 16) 5b E F G H I J= − + + − + + >>  

Similarly, h is interpolated by filtering A, C, G, M, R and T. When all of the samples 

horizontally and vertically adjacent to integer samples are calculated, the remaining half-pixel 

positions are calculated by interpolating between six horizontal or vertical half-pixel samples 

from the first set of operations. For example, the sample at half sample positions labels as j 

are obtained by 

(( 5 20 20 5 ) 512) 10j cc dd h m ee ff= − + + − + + >>  

Once all the half-pixel samples are available, the quarter-pixel positions are produced by 

linear interpolation. Quarter-pixel positions with two horizontally or vertically adjacent half- 

or integer-pixel samples are linearly interpolated between these adjacent samples. For 

example:  

( 1) 1a G b= + + >>  

The prediction values for chroma component are always obtained by bilinear 

interpolation. Since the sampling grid of chroma has lower resolution than the sampling grid 
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of the luma, the displacements used for chroma have one-eighth sample position accuracy.  

  

 

Figure 2-5 Filter for fractional-sample accurate motion compensation [2] 

 

2.3.1 Motion Vector Prediction 

Encoding a motion vector for each partition can take a significant number of bits, especially if 

small partition sizes are chosen. Motion vector for neighboring partitions are often highly 

correlated and so each motion is predicted from vectors of nearby. A predicted vector MVp 

(Motion Vector Prediction) is formed based on previously calculated. The motion vectors 

MVD (Motion Vector Difference), the difference between the current vector and the predicted 

vector, is coded and transmitted. The method of forming the prediction MVp depends on the 

motion compensation partition size on the availability of nearby vectors.  

Let E be the current macroblock, macroblock partition or sub-partition; let A be the 

partition or sub-partition immediately to the left of E; let B be the partition or sub-partition 

immediately above E; let C be the partition or sub-partition above and to the right of E. If 

there is more than one partition immediately to the left E, the topmost of these is chosen as A. 

If there is more than one partition immediately above E, the leftmost of these is chosen as B.  

Figure 2-6 illustrates the choice of neighboring partitions when all the partitions have the 
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same size (16x16 in this case). The MVp of current macroblock E is calculated from the 

motion vector of macroblock A, B and C. In the decoder, the predicted vector MVp is formed 

in the same way and added to the decoded vector difference MVD.  

 

 

Figure 2-6 Choice of neighboring partitions [3] 

 

2.4 Intra Prediction 

In H.264/AVC standard, each 16x16 is a basic unit to be encoded. For intra prediction, 

utilizing high correlation of neighboring samples in spatial domain, the prediction block is 

conducted based on previously coded and reconstructed blocks which are to the left /or above 

the block before deblocking filter. For the luma samples, each prediction block may be 

formed for each 4x4 block (denoted as I4MB), or for an entire MB (denoted as I16MB). 

When utilizing I4MB prediction, each 4x4 block is predicted from spatially neighboring 

samples and will choose one of nine prediction modes as the best one. In addition to DC 

prediction mode, eight directional prediction modes are supported shown in Figure 2-7. Those 

modes are suitable to predict directional structures in a picture such as edges at various angles. 

When utilizing I16MB prediction, which is well suited for smooth image areas, the whole 

luma component of an MB performs a uniform prediction. There are four prediction modes 

which are shown in Figure 2-8. The chroma samples of an MB are predicted using a similar 

prediction technique as for the luma component in I16MB prediction. 
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Figure 2-7 Intra 4x4 prediction mode [3] 

 

 

Figure 2-8 Intra 16x16 prediction mode [3] 

2.5 Mode Decision 

In H.264/AVC, the high complexity mode of the standard, the macroblock mode decision is 

done by minimizing the Lagrangian function [1]: 

( , , | , ) ( , , | ) ( , , | )MODE MODEJ s c MODE QP SSD s c MODE QP R s c MODE QPλ λ= + ×

 Where J denotes the cost function and depends on s (the original signal macroblock), c 

(the reconstructed signal macroblock) and MODE (select from a set of modes). J is found 

given QP (the macroblock quantization parameter) and λMODE (the Lagrange multiplier for 

mode decision). SSD is the sum of the squared differences between the original macroblock 

and its reconstruction with QP and it also depends on the original and reconstructed 

macroblock, as well as the mode decision (MODE). The Lagrange multiplier, λMODE, depends 

on the slice type (B or {SP, Intra, P}) and the quantization parameter per macroblock (QP).          

For Intra or P slices in particular: 

( 12) /30.85 2 QP

MODEλ
−

= ×  
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Finally, the rate ( , , | )R s c MODE QP  depends on the original and reconstructed 

macroblock with quantization parameter QP, as well as chosen MODE, and reflects the 

number of bits produced for header(s) (including MODE indictors), motion vector(s) and 

coefficients. 

In H.264, MODE is chosen from a set of potential prediction modes as follows: 

For Intra slices: 

            MODE ∈  {I4MB, I16MB} 

For P slices: {single reference forward or backward prediction} 

           MODE ∈  {I4MB, I16MB, SKIP, P_16x16, P_16x8, P_8x16, P_8x8} 

For B slices: {bi-directionally predicted slices} 

           MODE ∈  {I4MB, I16MB, DIRECT, P_16x16, P_16x8, P_8x16, P_8x8} 

The DIRECT mode is particular to the B slices, while the SKIP mode implies that no 

motion or residual information will be encoded. 

In the above mode sets, when the best mode is intra mode (I4MB, I16MB), the mode is 

chosen through evaluation of the Lagrangian function with mode choices from the mode 

described in section 2.4  

When the best mode is inter mode, the best inter mode is chosen from 7 different block 

(P_16x8, P_8x16, P_16x8, P_8x8, P_8x4, P_4x8, and P_4x4) shown in Figure 2-3 and Figure 

2-4. Figure 2-9 shows the flow chart of H.264/AVC mode decision algorithm. 

In order to evaluate the least RD cost for a single mode, we need to calculate the rate and 

distortion for all modes. For example when we choose the best mode for a 16x16 macroblock 

belonging to a P or B slices (luma component only), we need 144 cost evaluations for the best 

I4MB mode (9 modes time 16 partitions of 4x4 blocks), 4 more evaluations for the I16MB 

case, 16 more for the best P_8x8 inter mode (4 modes times 4 partitions of 8x8 blocks) and 4 

more for selecting the minimal cost among the rest of the modes results in 168 evaluations. 

Coupled with similar cost evaluations for each of the chroma components, the complexity 

analysis clearly shows that the mode decision process is computationally intensive. There are 

a lot of methods to reduce the complexity from mode decision in the H.264/AVC encoder. 

And x264 uses some algorithm to reduce the complexity of the mode decision module. In 

Chapter 5, we will introduce the method and algorithm which is used in x264 algorithm. 
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Figure 2-9 H.264 mode decision algorithm 
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2.6 Loop Filter 

One particular characteristic of block-based coding is the accidental production of visible 

block structures. Block edges are typically reconstructed with less accuracy than interior 

pixels and “blocking” is generally considered to be one of the most visible artifacts with 

present compression methods. H.264/AVC defines an adaptive in-loop deblocking filter, 

where the strength of filtering is controlled by the values of several syntax elements. The 

deblocking filter is applied after the inverse transform. The filter has two benefits: (1) block 

edges are smoothed, improving the appearance of decoded images and (2) the filtered 

macroblock is used for motion-compensated prediction of further frames in the encoder, 

resulting in a smaller residual after prediction. The basic of filter is that if a relatively large 

absolute difference between samples near a block edge is occurred, we can use a QP threshold 

to measure. So it is quite likely a blocking artifact and should be reduced. However, if the 

magnitude of that difference is so large that it cannot be explained by the coarseness of the 

quantization used in the encoding, the edge is more likely to reflect the actual behavior of the 

source picture and should not be smoothed over. The deblocking filter is an adaptive filter that 

adjusts in strength depending upon compression mode of a macroblock, the quantization 

parameter, motion vector, frame or field coding decision and the pixel values. When the 

quantization step size is decreased, the effect of the filter is reduced, and when the 

quantization step size is very small, the filter is shut off. The filter can also be shut off 

explicitly or adjusted in overall strength by an encoder at the slice level. More details about 

deblocking filter are described in [3]. 

2.7 Transform and Quantization 

The difference between the actual and predicted data is called residual error data. Discrete 

Cosine Transform (DCT) is a popular block-based transform for image and video 

compression. Similar to previous video coding standards, H.264/AVC utilizes transform 

coding of the prediction residual. H.264/AVC uses three transforms depending on the type of 

residual data that is to be coded: a transform for the 4x4 array of the luma DC coefficients in 
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intra macroblocks, a transform for the 2x2 array of the chroma DC coefficients and a 

transform for all other 4x4 blocks in the residual data. In H.264/AVC, the transform is applied 

to 4x4 blocks, and instead of 4x4 DCT, a separable integer transform with similar properties 

as a 4x4 DCT is used. The 4x4 DCT integer transform is approximation of original floating 

point DCT transform. Since the inverse transform is defined by exact integer transform, 

inverse transform mismatches is avoided. The 4x4 integer transform is designed to be so 

simple that it can be implemented using just a few additions, subtractions, and bit shifts. The 

transform matrix is given as: 

 

The basic transform coding process is very similar to that of previous standards 

including a forward transform, zig-zag scanning shown in Figure 2-10, scaling, and rounding 

as the quantization process followed by entropy coding. The flow is shown in Figure 2-11. 

 

 

Figure 2-10 Zig-Zag Scan 
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Figure 2-11 Flow of transform and quantization [4] 

 

The main functionality of quantization is to scale down the transformed coefficients and 

to reduce the coding information, Because of human visual system is lee sensitive to high 

frequency image component. Some video and image compression standards may use higher 

scaling-value for high frequency data. H.264/AVC uses a scalar quantizer. The basic forward 

quantizer operation is as follows: 

( / )ij ijZ round Y Qstep=  

Where Yij is a coefficient of the transformed described above, Qstep is a quantizer step 

size and Zij is a quantized coefficient. A total of 52 values of Qstep are supported by the 

standard and these are indexed by a quantization Parameter, QP. The values of Qstep 

corresponding to each QP are shown in Table 2-1. Note that Qstep doubles in size for every 

increment in QP. The wide range of quantizer setup sizes makes it possible for an encoder to 

accurately and flexibly control the trade-off between bit rate and quality.  
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Table 2-1 Quantization step size in H.264 [3] 

QP 0 1 2 3 4 5 6 7 8 9 10 11 12   

Qstep 0.63 0.69 0.81 0.88 1 1.13 1.25 1.38 1.63 1.75 2 2.25 2.5   

QP   18   24   30   36   42   48   51 

QStep   5   10   20   40   80   160   224 

 

2.8 Entropy Coding 

The entropy encoder is responsible of converting the syntax elements to bit stream and then 

the entropy decoder can recover syntax elements from bit stream. H.264/AVC standard 

defines two entropy coding methods: Context Adaptive Variable Length Coding (CAVLC) 

and Context Based Adaptive Arithmetic Coding (CABAC). For the baseline profile, only 

CAVLC is employed. For the main profile, both CAVLC and CABAC must be supported.  
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Chapter 3  

Scalable Extension of H.264 

 

 

Motion pictures are to be transmitted over variable bandwidth channels, both in wireless and 

cable networks. They have to be stored on media of different capacity and displayed on a 

variety of devices, ranging from small mobile terminals to high-resolution video projection 

systems. Scalable video coding schemes are intended to encode the signal once at highest 

resolution, but enable decoding from partial streams at the specific rate and resolution 

required by a certain application. This scheme provides a simple and flexible solution for 

transmission over heterogeneous networks, additionally providing adaptability for bandwidth 

variations and error concealment. An example of applications is shown in Figure 3-1. 

The scalable extension of H.264/AVC has been chosen to be the starting point of MPEG 

Scalable Video Coding (SVC) standardization project in October 2004. In January 2005, 

MPEG and the Video Coding Experts Group (VCEG) of the ITU-T agreed to jointly finalize 

the SVC project as an amendment of their H.264/AVC standard. The working draft provides a 

specification of the bit-stream syntax and the decoding process. The reference encoding 

process is described in the Joint Scalable Video Model (JSVM). Both can be downloaded 

from the web site [5]. The new standard is based on the architecture of H.264 [2] and provides 

types of scalability i.e. temporal, spatial and SNR. More details about the scalable extension 

of H.264/AVC can be found in [6] [7]. 
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Figure 3-1 Example of Scalable Video Coding 

 

3.1 The Architecture of Scalable Extension of H.264 

The overall structure of scalable extension of H.264 encoder is shown in Figure 3-2. It 

encodes the video into multiple spatial, temporal and SNR layers for combined scalability. 

The spatial scalability can be realized by a layered approach. When we compress a frame, we 

separate different coding layer for different frame resolution. The base layer contains a lowest 

spatial resolution version of each coded frame. The enhancement layers have higher 

resolution and can be predicted from the base layer pictures and previously encoded 

enhancement layer pictures. The information of enhancement layer can be predicted from the 

base layer includes the motion vector, intra texture and the residual. The constrained 

inter-layer prediction is used for reduced decoder complexity. In the same spatial resolution, 

the temporal scalability means the change of frame rate. The temporal scalability is to extend 

the hybrid video coding approach of H.264/AVC towards motion compensated temporal 

filtering (MCTF) by using a lifting framework. By using the highly efficient motion model of 

H.264/AVC in conjunction with a block-adaptive switching between the Haar and the 5/3 

transform, both the prediction and the update step are similar to motion compensation 
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techniques with hierarchical-B frame of H.264/AVC. We can use the MCTF to achieve the 

scalability of frame rate. In addition, the SNR scalability can be achieved by residual 

quantization with very little changes to H.264/AVC. This method is similar as the FGS 

bit-plane coding of MPEG-4 to achieve the scalability of quality. The SNR scalability 

includes two aspects: Fine Granularity Scalability (FGS) and Coarse Granularity Scalability 

(CGS). 

 

 

Figure 3-2 Basic structure for the scalable extension of H.264/AVC [8] 
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3.2 Temporal Scalability 

Temporal scalability is often used in practice, as reduction of the video frame rate. It is a 

common approach in cases where insufficient transmission capacity is available. MCTF is a 

main feature for spatiotemporal wavelet filtering techniques. 

3.2.1 MCTF  

The Motion Compensated Temporal Filtering (MCTF) is based on the lifting scheme. The 

lifting scheme has two main advantages: It provides a way to compute the wavelet transform 

in an efficient way and it insure perfect reconstruction of the input in the absence of 

quantization of the wavelet coefficients. The generic lifting scheme consists of three steps: 

poly-phase operation, prediction, and update. Figure 3-3 shows a two-channel filter bank with 

“P” representing the prediction step and “U” representing the update step. 
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Figure 3-3 Lifting representation of an analysis-synthesis filter bank [8] 

 

At the analysis side (a), the odd samples s[2k+1] of a given signal s are predicted by a 

linear combination of the even samples s[2k] using a prediction operator P(s[2k]) and a high 

pass signal h[k] is formed by the prediction residuals. A corresponding low-pass signal l[k] is 

obtained by adding a linear combination of the prediction residuals h[k] to the even samples 

s[2k] of the input signal s using the update operator U(h[k]): 
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[ ] [2 1] P( [2 ]) P( [2 ]) [2( )]i

i

h k s k s k with s k p s k i= + − = +∑  

[ ] [2 ] U( [ ]) U( [ ]) [ ]i

i

l k s k h k with h k u h k i= + = +∑  

Where the prediction operator “P” and the update operator “U” for the temporal 

decomposition using the lifting representation can be used by the Haar wavelet or 5/3 

transform. For the Haar wavelet are given by 

HaarP ( [x, 2 ]) [x,2k]s k s=  

Haar

1
U ( [x,k])= [x,k]

2
h h  

For the 5/3 transform, the prediction and the update operators are given by 

5/3

1
P ( [x,2k])= ( [x, 2 ] [x, 2 2])

2
s s k s k+ +  

5/3

1
U ( [x,k])= ( [x,k]  +  [x,k-1])

4
h h h  

Where s[x,k] be a video signal with the spatial coordinate x=(x,y)
T
 and the temporal 

coordinate k in scalable video coding.  

The extension to motion-compensated temporal filtering is realized by modifying the 

prediction and the update operators as follows 

Haar P0 P0P ( [x,2 ]) [x+m ,2k-2r ]s k s=   Haar U0 U0

1
U ( [x,k])= [x+m ,k+r ]

2
h h  

5/3 P0 P0 P1 P1

1
P ( [x,2k])= ( [x+m ,2 -2r ] [x+m ,2 2 2r ])

2
s s k s k+ + +  

5/3 U0 U0 U1 U1

1
U ( [x,k])= ( [x+m  , k+r ]  +  [x+m  , k-1-r ])

4
h h h  

The reference indices r allows a general frame-adaptive motion-compensated filtering. The m 

means the motion vectors. 
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3.2.2 Scalability Dimensions 

The temporal coding structure of MCTF is changed relative to hybrid video coding in that not 

only high-pass pictures H
k
 are resulting from the prediction step but also low-pass pictures L

k
 

are resulting from the update step. Figure 3-4 is an example for the temporal decomposition of 

a group 8 pictures (GOP =8) using 3 decomposition stages. This structure provides a 

non-dyadic decomposition in the contrast layer. If only the level 3 pictures are obtained after 

the third decomposition stage is transmitted, the picture sequence that can be reconstructed at 

the decoder side has the 1/4 of the temporal resolution of the input sequence. By additionally 

transmitting the higher level (level 2) pictures, the decoder can reconstruct an approximation 

of the picture sequence that has 1/2 of the temporal resolution of the input sequence. And 

finally, if the highest level (level 1) pictures are transmitted, a reconstructed version of the 

original input sequence with the full temporal resolution is obtained.  

 

 

Figure 3-4 Illustration of temporal scalability [9] 
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The temporal coding structure of MCTF is an open-loop structure. With MCTF, the 

encoder can provide better prediction. However, it may cause mismatch error between 

encoder and decoder in the presence of quantization error and the update step increase the 

complexity and memory requirement. In order to justify the complexity of the update step, 

temporal scalability uses a closed-loop structure which is known as “hierarchical-B”. The 

hierarchical architecture of temporal scalability is described in Figure 3-5. This is an example 

of the prediction structure for a group of eight pictures. The first picture of a video sequence 

is intra-coded as the instantaneous decoder refresh (IDR) picture that is a kind of the key 

picture. The key picture of the sequence is independent from any other pictures of the video 

sequence, and it generally represents the minimal temporal resolution that can be decoded. It 

is either intra-coded or inter-coded. When the key picture is decoded, the picture B
1
 is 

predicted by using the surrounding key pictures A as references. It depends only on the key 

pictures, and represents the next higher temporal resolution together the key pictures, the 

pictures B
2
 of the next temporal level are predicted by using only the picture of the lower 

temporal resolution as references, etc. It is obviously that this hierarchical prediction structure 

inherently provides temporal scalability. The main idea is similar as the B frames of the 

H.264/AVC. 

 

 

Figure 3-5 Hierarchical-B prediction structure 
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3.3 Spatial Scalability 

In the spatial scalability, we use an over-sampled pyramid structure to represent multiple 

resolutions (ex. QCIF, CIF, and 4CIF) and code the various spatial resolutions independently 

of each other. The information of a higher spatial layer is affected by the information of the 

lower spatial layers. We can code the higher spatial layer efficiently by predicting from the 

lower spatial layers. For that, the following techniques turned out to provide gains and are 

described below: 

1. Prediction of a macroblock using the up-sampled lower resolution signal 

2. Prediction of motion vectors using the up-sampled lower resolution motion vectors 

3. Prediction of the residual signal using the up-sampled residual signal of the lower 

resolution layer 

In inter-layer prediction, motion prediction is used to remove the redundancy of motion 

information, including macroblock partition, reference picture index, and motion vector 

among layers. The macroblock partitioning is obtained by up-sampling the partitioning of the 

corresponding 8x8 block of the lower resolution layer. For the obtained macroblock partitions, 

the corresponding sub-macroblock partition of the base layer block is used as shown in Figure 

3-6. The motion vector is scaled by a factor of 2. For the motion information, we introduce 

two additional modes. While for the first of these modes (Base_layer_mode) no additional 

motion information are coded, for the second one (Qpel_refinement_mode), a quarter-sample 

motion refinement (-1, 0, or +1 for each motion vector component) is transmitted for each 

motion vector.  

Intra texture prediction uses the reconstructed image of the reference layer to predict an 

enhancement layer. For intra texture prediction, we use the “Intra_BL” mode. The “Intra_BL” 

mode is only allowed for macroblock, for which the corresponding 8x8 block of the base 

layer is located inside an intra-coded macroblock. This is described in Figure 3-7. In this 

mode, the prediction signal is directly obtained by de-blocking and up-sampling the 8x8 luma 

block inside the corresponding lower layer picture.  

In H.264/AVC SVC, the residual prediction is performed in spatial domain. In the 

inter-layer, consecutive spatial layers may have similar motion information. Thus, the 
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residuals of consecutive layers may have some correlations. The residual information is coded 

in the lower resolution layer using a bi-linear filter with constant border extension.  
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Figure 3-6 Up-sampling of motion data [8] 

 

 

Figure 3-7 Up-sampling of intra texture [8] 

 

3.4 SNR Scalability 

In the SNR scalability, H.264/AVC-compatiable transform coding is used. For the residual 

macroblocks, the coding as in H.264/AVC including transformation and quantization is 
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employed. For each macroblock, the coded block pattern (CBP), and the conditioned on CBP 

the corresponding residual blocks are transmitted together with the macroblocks modes, intra 

prediction modes, reference picture indices and motion vectors using the B or P slice syntax 

of H.264/AVC. For that, the quantization error between the SNR base layer and the original 

sub-band pictures is re-quantized exactly using the same methods as for the base layer but 

with a finer quantization step size. In the SNR scalability, we can divide into two aspects: 

Coarse Granularity Scalability (CGS) and Fine Granularity Scalability (FGS). 

3.4.1 CGS 

The mechanism of CGS is similar as spatial scalability. The CGS also can be realized by a 

layered coding. Each CGS layer has its own motion information and temporal prediction. On 

top of the SNR base layer, the enhancement layer is coded. For that, the quantization error 

between the SNR base layer and the original pictures is transformed and quantized exactly 

using the same method as for the base layer but with a finer quantization step size. The 

enhancement layer with the base layer can be used the same method again. Figure 3-8 

illustrates the idea. 
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Figure 3-8 CGS SNR scalable coding scheme [10] 
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3.4.2 FGS 

In order to support fine granularity scalability (FGS), we have introduced an algorithm 

so-called progressive refinement slices. The algorithm encodes coefficients in order such that 

“more significant” coefficients are coded first. By arranging the bit stream in this way, we can 

truncate the bit stream at any arbitrary point and retain the “more significant” coefficients first, 

so that the quality of SNR base layer can be improved in a fine granular way. The progressive 

refinement in FGS uses cyclic block coding. The coefficients are scanned in zig-zag scan as 

shown in Figure 2-10 and the current scan position in a given coding pass will from differ 

from one block to another. When a coding pass in one block is finished, we need to change 

the next block to perform a coding pass. In general, the progressive refinement encodes the 

DC coefficient first in the same cycle for every block. In next cycle encodes the other 

coefficients. This is shown in Figure 3-9. This progressive refinement slices using cyclical 

block coding can improve the quality of every block averagely and is in order to support fine 

granular quality scalability. 
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Figure 3-9 Scheme of Cyclical Block Coding 
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In FGS layer, a block is coded using two passes: significant pass and refinement pass. 

The significant pass encodes the coefficient that became significant in the enhancement layer. 

The refinement pass encodes the coefficient for which a nonzero value has already been 

coded in the previous coding pass. At each cycle, for the significant pass, the coefficients are 

scanned in zig-zag order for every block, and all zero values are coded up to and including the 

first nonzero value. Then, the next block is processed. Each coding cycle in a block includes 

an End-of-Block (EOB) symbol, a Run index, and a non-zero quantization index. In 

refinement pass, refinement values are coded when all significant values have been coded for 

all block. Figure 3-10 is an example of a slice consists of four blocks having eight coefficients 

each. 

  

Block 0 0 0 0 A 0 B 0 1 0 1 C D E 0 0 0 

Block 1 F 0 1 0 1 0 0 0 0 0 0 0 0 G 0 0 

Block 2 1 1 1 1 0 0 0 H I 0 0 J 0 0 K 0 

Block 3 0 L 0 M 0 1 1 0 0 0 0 0 0 0 0 0 

Figure 3-10 Example of significant and refinement pass [11] 

 

Initially, in the significant pass, we encode the first nonzero value for each block. So the 

coefficient for each cycle can be discussed in the follows: 

Cycle 0 = 0 :{ 0 0 0 0 0 1 }, 1 :{ 0 1 } 2 :{ 1 } 3 :{ 0 0 0 1}  

Cycle 1 = 0 :{ 0 1 } 1 :{ 0 1 } 2 :{ 1 } 3 :{ 1 }    Cycle 2 = 1 :{ EOB } 2 :{ 1 } 3 :{ EOB } 

Cycle 3 = 2 :{ 1 }      Cycle 4 = 2 :{ EOB } 

The symbol of EOB indicates the last significant coefficient flag. 

In the refinement pass, each cycle only can encode one refinement value for each block. So 

the finally coefficient can be presented in the follows: 

Cycle 0 = 0 :{0 0 0 0 0 1} 1 :{0 1} 2 :{1} 3 :{0 0 0 1}  Cycle 1 = 0 :{0 1} 1 :{0 1} 2 :{1} 3 :{1} 

Cycle 2 = 0 :{EOB} 1 :{EOB} 2 :{1} 3 :{EOB}   Cycle 3 = 2 :{1}  Cycle 4 = 2 :{EOB} 

Cycle 5 = 0 :{A} 1 :{F} 2 :{H} 3 :{L}  Cycle 6 = 0 :{B} 1 :{G} 2 :{I} 3 :{M} 

Cycle 7 = 0 :{C} 2 :{J}   Cycle 8 = 0 :{D} 2 :{K}    Cycle 9 = 0 :{E} 
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3.5 Combined Scalability 

Figure 3-11 is an example of the combination of spatial, temporal and quality scalability. In 

the same resolution layer, we can use the MCTF to achieve the temporal scalability. In 

different resolution layer, we can use the inter-layer prediction to code different resolution 

picture. In addition, in every layer, we can adjust the quantization for quality scalability. This 

can provide a wide range of temporal, SNR, and spatial scalability. 

 

 

Figure 3-11 Combined scalability 
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Chapter 4  

DSP Implementation 

Environment 

 

 

As discussed previously, our project involves the implementation on digital signal processors 

(DSPs). In this chapter, we briefly describe the DSP platform environment. In our DSP board, 

we use the Sundance module (SMT395). Its main chips are the TMS320C6416T DSP made 

by Texas Instrument and the Xilinx Virtex II Pro FPGA. We will introduce the DSP chip and 

the DSP board. In addition, we will also introduce the software development tool, the Code 

Composer Studio (CCS), and the code development environment for TI DSP. 

 

4.1 The DSP Board 

The DSP board use in our implementation is the Sundance module (SMT395) shown in 

Figure 4-1. SMT395 is used the 1GHz 64-bit TMS320C6416T DSP, which is manufactured 

using the latest 90nm wafer technology and it offers high fixed-point processing power. The 

SMT395 is supported by the TI Code Composer Studio and 3L_Diamond_RTOS to enable 

full MultiDSP systems with minimum efforts by the programmers. It provides a flexible 

platform for the next generations of telecom systems, image processing applications, medical 

equipment and industrial solutions. We list some specifications of SMT395 modules as 

follows [12]. 

 

� 1GHz TMS320C6416T Fixed Point DSP  

� 8000MIPS peak performance 
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� Xilinx Virtex II Pro FPGA. XC2VP30-6 in FF896 package. 

� 256Mbytes of SDRAM @ 133MHz 

� Two Sundance High-speed Bus (50MHz, 100Mhz or 200MHz) ports 32 bits wide 

� Eight 2.5Gbit/sec Rocket Serial Links (RSL) for Inter Module communications 

� 8Mbytes FLASH ROM for configuration/booting 

� JTAG Diagnostics Port 

 

 

Figure 4-1 SMT395 module 

 

4.2 The TMS320C6416T DSP Chip 

The TMS320C6416T is the highest-performance fixed-point DSP generation in the 

TMS320C64x series of the TMS320C6000 DSP platform family. It is based on the 

second-generation high-performance, advanced VelociTI Very-Long-Instruction-Word (VLIW) 

architecture developed by Texas Instruments [13], making this DSP an excellent choice for 
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wireless infrastructure applications. The functional block and DSP core diagram of 

TMS320C64x series is shown in Figure 4-2. 

 

 

Figure 4-2 Block diagram of the TMS320C64x DSPs [13] 

 

The C6000 core CPU consists of 64 general-purpose 32-bits register and 8 function units. 

Features of C6000 devices include [14]: 

 

� Advanced VLIW CPU with eight functional units, including two multipliers and six 

arithmetic 



 33

� Executes up to eight instructions per cycle. 

� Allows designers to develop highly effective RISC-like code for fast 

development time. 

� Instructing packing: 

� Gives code size equivalence for eight instructions executed serially or in 

parallel. 

� Reduces code size, program fetches, and power consumption. 

� Conditional execution of all instructions: 

� Reduces costly branching. 

� Increases parallelism for higher sustained performance. 

� Efficient code execution on independent functional units: 

� Efficient C complier on DSP benchmark suite. 

� Assembly optimizer for fast development and improved parallelization. 

� 8/16/32-bit data support, providing efficient memory support for a variety of 

applications. 

� 32 x 32-bit integer multiply with 32- or 64-bit result. 

The C64x extensions add enhancements to the C6000 architecture which includes: 

� Register file enhancement. 

� Quad 8-bit and dual 16-bit extensions for data flow. 

� Additional functional unit hardware. 

� Increased orthogonally instruction set. 

4.2.1 Central Processing Unit of C64x 

The C64x DSP core contains 64 32-bit general purpose register, program fetch unit, 

instruction decode unit, two data path which each with four function units, control register, 

control logic, advanced instruction packing, test unit , emulation logic and interrupt logic. The 

program fetch, instruction fetch, and instruction decode units can arrange eight 32-bit 

instructions to the eight function units every CPU clock cycle. The processing of instructions 

occurs in each of the two data paths (A and B) shown in Figure 4-2, each of which contains 
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four functional units and one register file. The four functional units can divide into four 

operations. The first unit is for multiplier operations (.M). The second unit is for arithmetic 

and logic operations (.L). The next one is for branch, byte shifts, arithmetic operations (.S). 

The last unit is for linear and circular address calculation to load and store with external 

memory operations (.D). The details of functional units are described in Table 4-1.  

Each register file consists of 32 32-bit registers for each four functional unit reads and 

writes directly within its own data path. That is, the functional units .L1, .S1, .M1, .D1 can 

only write to register file A. The same condition occurs in register file B. However, two 

cross-paths (1X and 2X) allow functional units from one data path to access a 32-operand 

from the opposite side register file. The cross path 1X allow data path A to read their source 

from register file B. The cross path 2X allow data path B to read their source from register file 

A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock cycles. This 

allows the same register to be used as a data-cross-path operand by multiply functional units 

in the same execute packet. The detail features about the C64x CPU are introduced in [13].  

 

 

Table 4-1 Functional units and operations performed [15] 

Function Unit Operations 

.L unit(.L1, .L2) 

 

32/40-bit arithmetic and compare operations 

32-bit logical operations 

Leftmost 1 or 0 counting for 32 bits 

Normalization count for 32 and 40 bits 

Byte shifts 

Data packing/unpacking 

5-bit constant generation 

Dual 16-bit and Quad 8-bit arithmetic operations 

Dual 16-bit and Quad 8-bit min/max operations 
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Table 4-2 Functional units and operations performed [15] 

Function Unit Operations 

.S unit (.S1, .S2) 

 

32-bit arithmetic operations 

32/40-bit shifts and 32-bit bit-field operations 

32-bit logical operations 

Branches 

Constant generation 

Register transfers to/from control register file (.S2 only) 

Byte shifts 

Data packing/unpacking 

Dual 16-bit and Quad 8-bit compare operations 

Dual 16-bit and Quad 8-bit saturated arithmetic operations 

.M unit (.M1, .M2) 

 

16 x 16 multiply operations 

16 x 32 multiply operations 

Dual 16 x 16 and Quad 8 x 8 multiply operations 

Dual 16 x 16 multiply with add/subtract operations 

Quad 8 x 8 multiply with add operations 

Bit expansion 

Bit interleaving/de-interleaving 

Variable shift operations 

Rotation 

Galois Field Multiply 

.D unit (.D1, .D2) 

 

32-bit add, subtract, linear and circular address calculation 

Loads and stores with 5-bit constant offset 

Loads and stores with 15-bit constant offset(.D2 only) 

Loads and stores doubles words with 5-bit constant 

Loads and store non-aligned words and double words 

5-bit constant generation 

32-bit logical operations 
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4.2.2 Memory Architecture and Peripherals 

The C64x DSP is a two level cache-based architecture. The level 1 cache can be separated 

into program and data space. The level 1 program cache (L1P) is a 16 K-bytes direct mapped 

cache and the level 1 data cache (L1D) is a 16 K-bytes 2-way set-associative mapped cache. 

The level 2 (L2) consists 1024 K-bytes memory space for cache (up to 256K-bytes) and 

unified mapped memory. 

The EMIF provides the interfaces for the DSP core and external memory, such as 

synchronous-burst SRAM (SBSRAM), synchronous DRAM (SRAM), SDRAM, FIFO and 

asynchronous memories (SRAM and EPROM). The EMIF also provides 64-bit-wide (EMIFA) 

and 16-bit-wide (EMIFB) memory read capability. 

The C64x contains some peripherals such as enhanced direct-memory-access (EDMA), 

host-port interface (HPI), PCI, three multi-channel buffered serial ports (McBSPs), three 

32-bit general-purpose timers and sixteen general-purpose I/O pins. The EDMA controller 

handles all data transfers between the level 2 (L2) cache/memory and the device peripheral. 

The C64x has 64 independent channels. The HPI is a 32-/16-bit wide parallel port through 

which a host processor can directly access the CPUs memory space. The PCI port supports 

connection of the DSP to a PCI host via the integrated PCI master/slave bus interface.  

4.3 TI DSP Code Development Environment  

TI supports a useful GUI development to DSP users for developing and debugging their 

project: the code composer studio (CCS). In this section, we will give a briefly introduction 

about this development environment. The tutorial [16] introduces the key features of CCS. A 

DSP users needs to familiar with the coding development tool for building project on DSP 

platform efficiently. 

4.3.1 Code Composer Studio 

Code Composer Studio (CCS) is a key element of the DSP software and development tools 

from Texas Instruments. It extends the basic code generation tools with a set of debugging and 



 37

real-time analysis capabilities which supports all phases of the development cycle shown in 

Figure 4-3. 

 

 

Figure 4-3 Development cycle [16] 

 

The CCS has the following components which work together as shown in Figure 4-4:  

� TMS320C6000 code generation tools 

� Code Composer Studio Integrated Development Environment (IDE) 

� DSP/BIOS plug-ins and API 

� RTDX plug-in, host interface, and API 

 

 

Figure 4-4 Code composer studio development [16] 
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The code generation tools provide the foundation for the development environment 

provided by the Code Composer Studio such as C complier, assembler, assembly optimizer, 

linker, archiver, run-time-support libraries, cross-reference lister and absolute lister. The code 

composer studio integrated development environment (IDE) is for editing, building, and 

debugging DSP target programs. The code composer studio plug-ins provided with 

DSP/BIOS support such real-time analysis. It can be used by programmers to visually probe, 

trace, and monitor a DSP application with minimal impact on real-time performance. The 

DSP/BIOS API provides the real-time analysis capabilities such as: program tracing, 

performance monitoring and file streaming. In addition, TI DSP provides on-chip emulation 

supports that enables code composer studio to control program execution and monitor 

real-time program activity. The RTDX capability is exposed through host and DSP APIs, 

allowing for bi-directional real-time communications between the host and DSP. 

4.3.2  Simulation Tools 

In the code development, we use the DSP board SMT395 to run the project. But the simulator 

can profile for analyzing coding efficiency. In CCS, the C64x CPU Cycle Accurate Simulator 

can simulate the cycle of the C64xx processor accurately. This is faster than the real system 

because it does not simulate the peripherals and the cache system. Instead we use the C6416 

Device Cycle Accurate Simulator to simulate the C64x XDS510 emulator. It simulates the 

C64x processor and supports L1D, L1P, L2 Cache, EDMA, QDMA, Interrupt Selector, 

McBSP(3), Timer(3), TCP, VCP,EMIF. It also supports the interface with SDRAM and 

Generic sync RAM Memory models. The C6416 Device Cycle Accurate Simulator is closer 

to the real system. We use C64xx XDS510 emulator to verify the project. The 

TMS320C6416T hardware is connected via the XDS510 emulator, which sets the I/O ports on 

the DSP platform. Usually, the cycle provided by the simulator is less the real system. 
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4.4 Code Development Flow  

The recommended code development flow involves utilizing the C6000 code generation tools 

to aid in optimization rather than coding by hand in assembly. The advantages allow the 

compiler to do all the laborious work of instruction selection, parallelizing, pipelining, and 

register allocation. These features simplify the maintenance of the code, as everything resides 

in a C framework that is simple to maintain, support, and upgrade. 

The recommended code development flow for the C6000 involves the phases described 

in Figure 4-5. It includes phases 1-3. These phases instruct us when to go to the tuning stage 

of phase 3. What is learned is the importance of giving the compiler enough information to 

fully maximize its potential. An added advantage is that the compiler provides direct feedback, 

there are some very simple steps we can take on pass complete and better information to the 

compiler allowing us a quicker start in maximizing compiler performance. The following 

items describe the goal for each phase [17]: 

 

� Phase 1: Developing C code without any knowledge of the C6000. Use the 

simulator profiling tools to identify any inefficient area in C code. Improving the 

performance of the C code, proceed to phase2. 

� Phase 2: Use techniques that belongs the DSP to improve the C code. Use the 

simulator profiling tools to check the performance. It the code is not as efficient as 

we would like it to be, go to phase3. 

� Phase 3: Extract the time-critical areas from the C code and rewrite the code in 

linear assembly. We can use the assembly optimizer to optimize this code. 

 

TI provides high performance C program optimization tools, and they do not suggest the 

programmer to code by hand in assembly. Coding the program in phase 1 is easier than phase 

3 and can cost less time. 
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Figure 4-5 Code development [17] 
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4.4.1 Compiler Optimization Options 

The CCS compiler can accept C/C++ source code and produce C6x assembly language source 

code. The Figure 4-6 shows the working flow of the compiler. It is able to perform various 

levels of optimization. This complier can be used to optimize code size or executing time. In 

this project, we only concern the executing time. The complier specifies the –On option in the 

command line which can control the optimization level. The n denotes the level of 

optimization (0, 1, 2, and 3) and their options are given below [18]: 

 

� -o0 

- Performs control-flow-graph simplification 

- Allocates variables to registers 

- Perform loop rotation 

- Eliminates unused code 

- Simplifies expressions and statements 

- Expands calls to functions declared inline 

� -o1 

Performs all –o0 optimizations, plus: 

- Performs local copy/constant propagation 

- Remove unused assignments 

- Eliminates local common expression 

� -o2 

Performs all –o1 optimizations, plus: 

- Performs software pipelining 

- Performs loop optimizations 

- Eliminates global common sub-expressions 

- Eliminates global unused assignments 

- Converts array references in loops to incremented pointer form 

- Performs loop unrolling 

-  
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� -o3 

    Performs all –o2 optimizations, plus: 

- Removes all functions that are never called 

- Simplifies functions with return values that are never used 

- Inline calls to small functions 

- Reorders function declarations; the called functions attributes are known when 

the caller is optimized 

- Propagates arguments into functions bodies when all calls pass the same value 

in the same argument position 

- Identifies file-level variable characteristics 

 

 

Figure 4-6 C/C++ compiler [18] 
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Chapter 5  

H.264 Encoder Implementation and 

Optimization on DSP Platform 

 

In the early chapters, we introduce the H.264/AVC and the environment of the DSP 

implementation. In this chapter, we discuss the implementation of H.264 video encoder on the 

DSP C6416T board. In our implementation, we only support the H.264 baseline profile. First 

we describe the source code x264 which is a free library for encoding H.264/AVC streams. 

Then we expand some existing acceleration methods on the mode decision to speed up the 

x264. We also describe the procedure of our implementation work and how we optimize the 

x264 video encoder for the DSP implementation. Finally, we compare the performance 

between the modified codes with the original ones and give some experimental results of the 

whole system. 

5.1 Introduction to x264 

Like the previous video standards, H.264/AVC specifies only a decoder, therefore allowing 

for improvement in compression rate, quality and speed in designing the encoder. The x264 is 

an open source encoder of H.264 and has been used in many popular applications such as 

ffdshow [19] and ffmpeg [20]. All the documents and software could be downloaded from 

[21]. The x264 shows better quality than several commercial H.264/AVC encoders. Table 5-1 

shows that when we encode the same pictures, x264 is about 18 times faster than the reference 

software JM9.8 [22]. Figure 5-1 is the rate-distortion comparison between JM9.8 and x264. 

At the same PSNR, x264 produces less than 6% more bitrates of JM. Its rate-distortion 

performance is close to that of JM9.8. So we choose the open source code x264 instead of JM 

as the starting point for implementation on DSP. 
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Table 5-1 Performance of JM9.8 vs. x264 

Test Sequence QP JM9.8(fps) x264(fps) 

28 1.4 16.8 
Stefan 

36 1.45 20.1 

28 1.8 38.6 
Akiyo 

36 1.92 44.2 

Simulation Condition Frame:300 Intra period:100 IPPPP 

Environment CPU: 2.2G    RAM: 256kB 
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Figure 5-1 Rate-distortion of JM9.8 and x264 

5.2 Proposed Acceleration Method 

In the early chapter, H.264 has shown significant rate distortion improvements as compared to 

the other standards for video compression. It can be coded with 7 different block sizes for 

motion-compensation in the inter mode, and various spatial directional prediction modes in 

the intra mode. To achieve a higher coding efficiency, H.264 calculates rate distortion cost 

(RD cost) of all possible modes and chooses the best one having the minimum RD cost. This 
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increases the complexity and takes a lot of computing time. In order to reduce the high 

computational complexity, the x264 uses a few techniques to increase the speed in mode 

decision. In the next section we describe these speed-up techniques in x264. Then we propose 

a few other methods and show the simulation results which can efficiently reduce the 

computational cost by 13% with similar visual quality and bits rate of original x264. 

5.2.1 Mode decision in x264 

In JVT, for P frames, we need to select the best mode from a set of allowable modes: {SKIP, 

P_16x16, P_16x8, P_8x16, P_8x8, P_8x4, P_4x8, P_4x4, I4MB, I16MB}. Examining all 

possible combinations of modes can be a big burden on the encoder. The x264 uses a new 

algorithm to reduce the complexity on mode decision. The new algorithm includes the 

following steps: 

 

A. Reduce the number of potential modes. 

B. Restrict the set of past previously reference pictures. 

 

A. Reduced the number of potential modes  

The x264 eliminates ME for some block types in the inter mode. The inter modes include the 

SKIP mode and many different block types (P_16x16, P_16x8, P_8x16, P_8x8, P_8x4, P_4x8, 

P_4x4). In x264, calculating RD cost is jointly done with mode decision. For the inter modes, 

the SKIP mode refers to the 16x16 mode, where no motion and residual information is 

encoded. So no motion search is required and it has the lowest complexity. In x264, the SKIP 

has the highest priority. As for the decision on block types, the x264 algorithm checks whether 

the error surface versus block size is monotonic, that is, whether the current macroblock has 

the same tendency of using smaller block size (sub-macroblock partition) or larger block size. 

The error surface is built by initially 3 modes (block sizes): P_16x16, P_8x8 and P_4x4. 

When RD cost of P_8x8 mode is less than RD cost of P_16x16 mode, this means that the 

current macroblock may have the same tendency of using small block size. Then we check the 
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P_4x4 mode. Otherwise, if RD cost of P_16x16 mode is less than RD cost of P_8x8 mode, it 

means the P_16x16 mode probably has the least RD cost. Then we skip the other inter modes. 

The next decision of whether to test other modes P_16x8, P_8x16, or finer sub-macroblock 

partition is based on the comparison between RD cost of P_8x8 mode and RD cost of P_4x4 

mode. If RD cost of P_8x8 mode is less than RD cost of P_4x4 mode, it means the best mode 

is P_8x8 mode. Then only the P_16x8, P_8x16 modes are further tested. Otherwise, if P_4x4 

is the best mode, then the P_16x8, P_8x16, P_4x8, P_8x4 modes are further tested. Therefore, 

if P_4x4 is the best mode among P_16x16, P_8x8, P_4x4, all the inter modes need to be 

tested. This procedure is restated as follows. 

 

� Step1: Check the SKIP mode. If the condition is satisfied, select the SKIP mode as 

the best mode, then stop; otherwise go to Step2; 

� Step2: Check P_16x16 and P_8x8. If (RDcost16x16<RDcost8x8), go to Step7; 

otherwise, go to Step3; 

� Step3: Check P_4x4; if (RDcost4x4<RDcost8x8), go to Step4; otherwise, go to 

Step5; 

� Step4: Check P_16x8, P_8x16, P_4x8, P_8x4; go to Step6; 

� Step5: Check P_16x8, P_8x16; go to Step6; 

� Step6: Select the best inter mode. Then check the intra modes; go to Step7; 

� Step7: Choose the best mode among all the tested modes. 

 

In Step1, the SKIP mode condition is a special case. Because in the SKIP mode, where 

no motion and residual information is encoded. So the SKIP mode can save the encoding time 

and bit rates. This is why the SKIP mode dominates among all modes at low bit rates. A block 

is said using the SKIP mode in a P slice when the following set of four conditions is satisfied 

[23]:  

 

� The best motion compensation block size is P_16x16. 

� The reference frame is the previous frame. 

� The best motion vector is the predicated motion vector (regardless of this being the 
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zero motion vectors or a non-zero one). 

� The transform coefficients of the 16x16 block size are all quantized to zero. 

 

The x264 algorithm, we give the SKIP mode the highest priority. Although the first 

condition will not sufficient for the SKIP mode prediction, it is “good enough”. In x264, we 

actually intend to reduce the computational cost by predicting a percentage of macroblocks in 

the SKIP mode based on the spatial neighborhood information without any overhead 

computation. The SKIP mode conditions are reduced to the following set of two items: 

 

� The surrounding macroblock is using the SKIP mode. 

� The transform coefficients of the 16x16 block size are all quantized to zero. 

 

These two conditions suggest that if one of macroblocks on the top, left, top-left and 

top-right of the current MB in the current picture is using the SKIP mode, then this mode 

pattern can be a good indication that the current macroblock can be skipped. This is due to the 

fact that the likelihood of the current macroblock belonging to a stationary part of the picture 

is high, and thus it is a candidate for skipping. The proposed spatial predictor is shown in 

Figure 5-2 using the two conditions. Step1 can save a lot of computation. The flow chart of 

mode decision algorithm of x264 can be shown in Figure 5-3. 

 

 

Figure 5-2 Spatial prediction for skip mode decision 
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Figure 5-3 Mode decision algorithm of x264 
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B. Restrict the set of reference pictures in motion estimation 

In JVT, the best reference frame is decided for each macroblock type (P_16x16, P_16x8, 

P_8x16, and P_8x8). This takes lots of time and increases the complexity. For example, the 

standard H.264 has 5 reference frames for P slice to decide, when we evaluate the RD cost for 

P_16x16 mode. We need to calculate the RD cost five times for each reference frame to find 

the minimal RD cost to decide the best reference frame for P_16x16. The same thing occurs 

to the other block types. The computational complexity is proportional to the number of 

reference frames. In order to reduce computations, x264 decides the best reference frame only 

in P_16x16 mode. When we evaluate the other macroblock type, we only calculate the RD 

cost of the reference frame which P_16x16 decided the best. 

5.2.2 Fast Algorithms  

As discussed in the previous section, we know x264 can speed up the frame encoding and 

reduce the complexity of the mode decision of the reference software JM. However, there are 

other algorithms that we can speed up the mode decision algorithm in x264. The following 

techniques are included in our proposal. 

 

A. Set a threshold between the P_16x16 mode and the P_8x8 mode [24] 

B. Rearrange the inter mode checking order 

C. Inter mode cost decide whether do intra mode 

 

We will elaborate these techniques below and show the experimental results. 

A. Set a threshold between P_16x16 mode and P_8x8 mode  

Usually in a picture, large areas of background may be either still or under global motion, 

which can be predicted well by the motion vectors of the neighboring blocks. In these areas, 

the SKIP mode or the P_16x16 mode usually is the best mode since it has no or less MV 

overheads. Figure 5-3 shows that the x264 mode decision algorithm needs to evaluate the RD 
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cost of P_16x16 and P_8x8 if the macroblock is not predicated as a SKIP mode. Because 

optimal mode for the background areas is often the P_16x16 mode, the calculation of the RD 

cost of P_8x8 is redundant. Therefore, we check only the P_16x16 mode at this point. If the 

cost is smaller than the threshold, the mode decision process stops, the best mode is P_16x16 

(Figure 5-4). To maintain the coding, the threshold is conservatively set by the minimum of 

the costs of the 20 previous blocks of the same mode (P_16x16) plus a fixed value. That is, 

16 16 16 16
{ |1 20, 16 16}

min (cos )x i
i i i MB i with mode

TH t TH
×

∈ ≤ ≤ ×
= + ∆

 

In our simulations, 16 16xTH∆ =1200. In addition, this parameter can also be used to 

control the tradeoff between the complexity and quality. If 16 16xTH∆  is larger the P_16x16 

mode is used more often and the process faster. This scheme is called Algorithm A (Figure 

5-4). More details of it can be found in [24]. 

 

 

Figure 5-4 Block diagram of x264 and Algorithm A 
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B. Rearrange the inter mode checking order 

Another observation is that, if the cost of a larger block-size mode is higher than the cost of 

the current block-size mode, then the even larger block size modes may be excluded. 

Similarly, if the cost of a smaller block-size mode is higher than that of the current block-size 

mode, then the even smaller block-size may be excluded. We can use the idea to accelerate the 

other inter mode algorithm. Here are the two methods: 

 

1 Skip mode=> 16x16 => 8x8 => if 4x4<8x8 => 4x8, 8x4 (skip 8x16 and 16x8) 

In x264, at Step3 (Figure 5-3) if RD cost of P_4x4 mode is less than RD cost of P_8x8 

mode, we need to check the follows modes P_16x8, P_8x16, P_4x8 and P_8x4. But 

since P_4x4 is the best mode in P_16x16, P_8x8, P_4x4, it often means that the current 

macroblock has the tendency of using smaller block size. Checking the larger block-size 

is not necessary. Therefore, we suggest that in Step3, when RD cost of P_4x4 mode is 

less than RD cost of P_8x8, the P_4x8, P_8x4, P_16x8 and P_8x16 modes are excluded 

in checking (Figure 5-5). This scheme is called Algorithm B1. This algorithm is similar 

as the fast mode decision in [25]. 

 

RDcost4x4

< RDcost8x8

Check P_4x8 and P_8x4

Check P_16x8 and P_8x16

Intra mode encoding

Step2:

YesNo

Step6:

Step3:
RDcost4x4

< RDcost8x8

Step2:

Check P_16x8 

and P_8x16

Check P_4x8 

and P_8x4

Intra mode encoding

YesNo

Step6:

Step3:

 

Figure 5-5 Difference between x264 and Algorithm B1 
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2 Skip mode=> 16x16 => 8x8 => 16x8, 8x16 => if 16x8 or 8x16 < 8x8 => skip all the       

other modes 

In this method, the P_16x8 and P_8x16 modes have higher priority than P_4x4, P_8x4, 

and P_4x8. If either the cost of P_8x16 or P_16x8 is smaller than that of P_8x8, we 

assume the larger block-sizes produce smaller costs. So, the best mode is chosen from 

P_16x16, P_8x16 and P_16x8. Smaller block-size modes (all sub-MB modes of P_8x4, 

P_4x8, and P_4x4) are excluded. If the cost for both P_16x8 and P_8x16 are higher than 

that of P_8x8, it means the larger clock modes do not achieve lower costs and the 

sub_MB modes (P_8x4, P_4x8 and P_4x4) should be checked (Figure 5-6). This scheme 

is called Algorithm B2. 

 

Figure 5-6 Fast Algorithm B2 

C. Inter mode cost decide whether do intra mode 

In H.264, after choosing the best inter mode, the cost associated with the spatial prediction 

mode is calculated and compared with that of the best inter mode. The mode with the 

minimum cost is determined as the encoding mode. In this process, the spatial prediction 
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encoding steps are performed for the intra mode. Usually the spatial prediction mode requires 

more bits than the inter mode. Therefore, the spatial prediction mode is rarely chosen to be 

mode of a macroblock except the special cases if sense change. The x264 algorithm assumes 

that the inter mode have the higher priority than the intra modes for P or B images. So if the 

inter modes have a good performance, no intra modes are to be checked. In order to skip the 

unnecessary intra mode checking, we can set threshold called THintra_inter. The cost of the best 

inter mode is compared with THintra_inter. If the cost of the best inter mode is less than 

THintra_inter, then the inter mode is more efficient and the intra mode encoding is skipped 

(Figure 5-7). This is called Algorithm C. 

We can use a method to set the threshold Thintra_inter. 

int _ int int _ int
( |1 20, int )

(cos )ra er i ra er
i i MB ra

TH Mean t TH
=

≤ ≤
−∆  

Mean value of RD costs of 20 previous macroblock encoded in intra mode of the previous 

frames and current frame is calculates. The value of ΔTHintra_inter is used to control the 

tradeoff between complexity and quality. In Algorithm C, we choose the ΔTHintra_inter =300. 

 

 

Figure 5-7 Fast Algorithm C 
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5.2.3 Experimental Results 

The experiments are conducted using the parameters in Table 5-2. Table 5-3 is the result of 

x264 encoding the sequence Foreman, Mobile, Akiyo, Stefan with different QP from 28 to 40. 

 

Table 5-2 Experimental parameters 

Test sequence Foreman, Mobile, Akiyo, Stefan 

Frame number 300 

Image size CIF (352x288) 

Intra period 100 

Reference frame 1 

 

Table 5-3 Performance of x264 

Sequence Foreman  Sequence Mobile 

QP Time(s) PSNR(dB) bit-rates(Kbps)  QP Time(s) PSNR(dB) bit-rates(Kbps) 

28 16.16 37.4 573.51  28 17.85 34.13 2061.21 

32 14.00 34.89 289.13  32 16.88 31.07 1084.72 

36 12.24 32.56 159.57  36 15.19 28.24 507.04 

40 10.79 30.33 100.3  40 13.22 25.75 252.61 

 

Sequence Akiyo  Sequence Stefan 

QP Time(s) PSNR(dB) bit-rates(Kbps)  QP Time(s) PSNR(dB) bit-rates(Kbps) 

28 7.77 41.19 107.28  28 17.91 36.03 1551.02 

32 7.24 38.72 57.68  32 16.46 33.17 858.15 

36 6.79 36.37 32.73  36 14.86 30.49 481.96 

40 6.47 34.15 20.45  40 13.20 27.92 290.06 
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A. Results of the Modified Algorithm  

In the final algorithm, we induce the fast Algorithm A, B and C to speed up the x264 encoding 

process. For algorithm B we choose the version B2. Table 5-4 shows a comparison between 

our modified algorithm and x264. In this table, theΔPSNR(dB) and Δbit-rates (%) denote 

the differences of PSNR and bit rates and they are calculated according to the following 

equation: 

264
100(%)

264

Bit number of modified algorithm Bit number of x
bit rates

Bit number of x

−
∆ − = ×  

264PSNR PSNR of x PSNR of modified algorithm∆ = −  

And Time saving (%) denotes the amount of encoding time decrease in the total encoding 

process. The amount of time saving can be calculated according to the following equation: 

264
( (%)) 100(%)

264

Encoding Time of x Encoding Time of modified algorithm
Time saving Time

Encoding Time of x

−
= ×  

Referring to Table 5-4 it can be seen that if the fast algorithm in use, the total encoding 

time decreases by 13% on the average. Figure 5-8 are graphs comparing the rate-distortion 

performed between the modified algorithm and x264. It can be seen that the PSNR of the fast 

algorithm can achieve almost the same as x264. 

 

Table 5-4 Performance Comparison between x264 and the modified Algorithm 

Test sequence : foreman_cif.264 

QP △PSNR (dB) △bit-rates (%) Time saving (%) 

28 -0.06 1.37 15.89 

32 -0.07 1.51 14.47 

36 -0.06 1.65 12.69 

40 -0.04 1.16 10.74 

(a) Foreman 
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Test sequence : mobile_cif.264 

QP △PSNR (dB) △bit-rates (%) Time saving (%) 

28 -0.01 -0.37 12.67 

32 -0.03 -0.29 14.24 

36 -0.04 0.13 13.62 

40 -0.04 0.06 11.99 

(b) Mobile 

 

 

Test sequence : Akiyo_cif.264 

QP △PSNR (dB) △bit-rates (%) Time saving (%) 

28 -0.03 0.5 6.99 

32 -0.04 0.49 5.38 

36 -0.03 0.73 3.08 

40 -0.02 0.1 2.65 

(c) Akiyo 

 

 

Test sequence : Stefan_cif.264 

QP △PSNR (dB) △bit-rates (%) Time saving (%) 

28 -0.03 0.5 16.12 

32 -0.04 0.49 16.24 

36 -0.06 0.73 14.91 

40 -0.05 0.1 13.63 

(d) Stefan 
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Figure 5-8 Rate-distortion (PSNR vs. bit-rates) of the x264 and the modified Algorithm 

 



 59

5.3 Complexity Analysis on DSP  

Our goal is to implement x264 on the DSP board. In this section, we will describe the profile 

of x264 on different DSP simulator. Then we will show the influence of memory system. 

5.3.1 Complexity Analysis on Various Simulator 

In section 4.3.2 we know that different simulator tools show different clock cycle results. In 

this section, we profile the x264 encoder on different simulators to observe the ratio of each 

function. We use the C6416 simulator and the C64xx simulator. The profiling results using the 

two methods are shown in Figure 5-9 and Figure 5-10. The test sequence is 10 frames of 

foreman and the image size is 176x144 (QCIF) and QP is 28. The profiling results of each 

function in percentage are almost the same in C64xx and C6416. However, in Table 5-5 we 

can see that the total cycles of the C6416 simulator are approximately 44 times of that of 

C64xx. This is because the C64xx simulator only counts the cycles of the DSP core processor, 

but the C6416 simulator also count the memory access time. In the real system, we use the 

DSP C64xx XDS510 emulator with 1GHz clock. Its results are almost the same as that of the 

C6416 simulator. This means that we need 5 seconds to encode the 10 frames of “foreman” 

sequence. We first need to solve the problem of the memory access time. 

 

Table 5-5 Cycles on different simulators 

Simulator C6416 C64xx Ratio (%) 

Total cycles 5,396,046,677 122,147,133 44.1 
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Figure 5-9 Complexity profiling of the H.264 encoder on the C6416 simulator 
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Figure 5-10 Complexity profiling of the H.264 encoder on the C64xx simulator 
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5.3.2 Memory System 

In the previous section, we identify the major bottlenecks in running the x264 encoder on a 

DSP system. The actual cycles on the DSP platform are more than the CPU cycles. The 

C64xx CPU cycle accurate simulator ignores the time to access the instructions and data. But 

on the real DSP platform need to consider the memory access time. Table 5-6 shows the cycle 

distribution generated by the C6416 simulator. The core processing cycles are only 2.25% of 

the total cycles. The stall cycles are the most critical part in the total cycles. In the memory 

hierarchy of the DSP platform, the L1D is too small so that the data miss frequently occurs. In 

Table 5-6 , the data cache miss rate is 96%. If the data miss occurs, the CPU needs longer 

time to access data from the external memory. The numerous stall cycles means that the 

system wastes a lot of time in transferring data. If the cache becomes larger, the data miss 

frequency will decrease. 

In section 4.2.2, we know that the DSP platform has 16K-bytes L1D cache and 

16K-bytes L1P cache. The L2 is a 1024K-bytes SRAM. Because the L1 cache is too small, 

we can use the L2 SRAM as a second level cache. In the DSP platform, we can use the flag 

L2 mode to control the size of SRAM and cache in the L2 internal memory as shown in 

Figure 5-11. If we use the L2 cache, it brings in a great improvement as shown in Table 5-6. 

The data cache miss rate has reduced from 96% to 5.3% so that the stall cycles decreases a lot. 

The percentage of the core cycles arises to 43%. In Table 5-6, we set the L2 cache size to its 

maximum (256Kbytes located in the SRAM). The two-level cache produces the most benefit.  

Because of the benefit of two-level cache, the speed can increase 19 times than the 

original one. We can encode 10 frames of the sequence “foreman_qcif” within 0.3 second.  

Figure 5-12 shows the profile of using L2 cache on the C6416 simulator. In the next section, 

we use the profile of using the L2 cache as the starting program and accelerate its speed with 

the two-level cache using various techniques. 
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Figure 5-11 C6416 memory configuration [14] 

 

Table 5-6 Effect of using L2 cache memory 

C6416 simulator Original L2 cache 

Event  Count (cycles) Percentage (%)  Count (cycles)  Percentage (%) 

Total CyclesTotal CyclesTotal CyclesTotal Cycles    5,396,104,222 5,396,104,222 5,396,104,222 5,396,104,222             282,805,109 282,805,109 282,805,109 282,805,109             

Core cycles(excl. stalls) 121,411,824  2.25 121,411,880  42.93 

NOP cycles 26,737,686  21.89 26,737,704  21.89 

Stall Cycles 5,274,885,028  97.75 161,411,584  57.08 

L1P Stall Cycles 4,165,028  0.08 83,460,201  29.51 

L1D Stall Cycles 5,270,294,459  97.67 75,328,488  26.64 

Instruction cache hits 44,494,904  95.94 44,494,990  95.94 

Instruction cache misses 1,882,076  4.06 1,881,996  4.06 

Data cache hits 2,408,873  3.98 57,282,572  94.71 

Data cache read hits 2,377,679  5.75 40,988,195  99.05 

Data cache write hits 31,194  0.16 16,294,377  85.3 

Data cache missesData cache missesData cache missesData cache misses    58,075,133 58,075,133 58,075,133 58,075,133     96.0296.0296.0296.02    3,201,441 3,201,441 3,201,441 3,201,441     5.295.295.295.29    

Data cache read misses 39,004,261  94.25 393,752  0.95 

Data cache write misses 19,070,872  99.84 2,807,689  14.7 
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Figure 5-12 Profile with L2 cache using C6416 simulator 

5.4 DSP Code Acceleration Methods 

Improving the clock cycles of the x264 algorithm is the main task of our system 

implementation on DSP. In this section, we will describe several methods that can accelerate 

the execution time on the C64x DSP. Some of these methods are supported by the features of 

the C64x. 

5.4.1 Compiler Options 

As discussed in section 4.4, the CCS compiler can transforms C code into efficient assembly 

code. The compiler options have four optimization levels: register (-o0), local (-o1), function 

(-o2), file level (-o3). File level is the highest available optimization level. We choose the file 

level optimization when implementing the x264 on DSP. 
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5.4.2 Fixed-point Coding 

The C6000 compiler defines a size for each data type (Table 5-7): 

 

Table 5-7 Size of different data type 

Data Type Char Short Int Long Float Double 

Size (bits) 8 16 32 40 32 64 

 

The C64x DSP is a fixed-point processor, so it can only perform fixed-point operations. 

Although the C64x DSP can simulate floating-point processing, it takes a lot of extra clock 

cycles to do this job. The “char”, "short”, “int” and “long” are the fixed-point data types, and 

the “float” and “double” are the floating-point data types. We test C64x DSP processing time 

of the assembly instructions “add” and “mul” for different data types. Table 5-8 shows the 

results. We can clearly see that the floating-point data type need more computation time than 

the fixed-point data types. Hence, we can accelerate our DSP codes in computation time by 

converting the data types from floating-point to fixed-point. 

 

Table 5-8 Processing time on the C64x for different data types 

Assembly 

Instruction 

Char 

8-bit 

Short 

16-bit 

Int 

32-bit 

Long 

40-bit 

Float 

32-bit 

Double 

64-bit 

add 1 1 1 2 77 146 

mul 2 2 6 8 54 69 

 

5.4.3 Loop Unrolling 

Loop unrolling expands small loops so that all iterations of the loop appear. It can increase the 

number of instructions available in execution in parallel. It is also suitable for using software 

pipeline. When the codes have conditional instructions, the compiler may not be known in 
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advance that the branch will occur or not. It needs more waiting time for the decision of 

branch operation. If we do loop unrolling, some of the overhead for branching instruction are 

reduced. Use loop unrolling can decrease the clock cycles but it often increases the code size. 

So when we use loop unrolling, the code size may be a consideration. 

5.4.4 Linear Assembly 

Assembly code is generated by the CCS compiler or the assembly optimizer. Sometimes the 

generated assembly codes are not efficient due to stalls or hazards. Converting parts of the C 

codes into linear assembly codes is a good way to solve the problem. Rearranging the 

assembly codes can avoid the stalls and hazards by hand. But this process generally is too 

detail and very time consumption in practice. Hence, we do this process only on some 

important functions. In x264, we rewrite the C code to assembly code only on the function of 

dct and idct. When we use the linear assembly, we do not need to specify the parallel 

instructions, pipeline latency and register usage. These will be specified by the assembly 

optimizer. We only need to modify the codes. Table 5-9 is the comparison between original 

code and modified linear assembly code in dct and idct. And Table 5-10 is an example of the 

dct2x2 we write in linear assembly code. The details of linear assembly can be found in [17]. 

 

Table 5-9 Comparison between C code and linear assembly code 

 Original C code 

(cycles) 

Modified Linear 

Assembly Code (cycles) 

Reduction Ratio 

(%) 

dct2x2dc 16 14 12.5% 

dct4x4dc 87 49 44% 

idct4x4dc 80 53 34% 

sub4x4_dct 97 48 51% 
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Table 5-10 Example of linear assembly code 

Original C Code Modified Linear Assembly Code 

static void dct2x2dc( int16_t d[2][2] ) 

{ 

    int tmp[2][2]; 

 

    tmp[0][0] = d[0][0] + d[0][1]; 

    tmp[1][0] = d[0][0] - d[0][1]; 

    tmp[0][1] = d[1][0] + d[1][1]; 

    tmp[1][1] = d[1][0] - d[1][1]; 

 

    d[0][0] = tmp[0][0] + tmp[0][1]; 

    d[0][1] = tmp[1][0] + tmp[1][1]; 

    d[1][0] = tmp[0][0] - tmp[0][1]; 

    d[1][1] = tmp[1][0] - tmp[1][1]; 

} 

.global _dct2x2dc 

_dct2x2dc: .cproc d 

 .reg d00,d01,d10,d11, 

t00,t01,t10,t11 

 LDH *+d[0],d00 

 LDH *+d[1],d01 

 LDH *+d[2],d10 

 LDH *+d[3],d11 

 

 ADD d00,d01,t00 

 SUB     d00,d01,t10 

 ADD d10,d11,t01 

 SUB     d10,d11,t11 

 ADD t00,t01,d00 

 ADD t10,t11,d01 

 SUB    t00,t01,d10 

 SUB  t10,t11,d11 

 STH     d00,*+d[0] 

 STH     d01,*+d[1] 

 STH     d10,*+d[2] 

 STH     d11,*+d[3] 

 .endproc 

 

5.4.5 Other Acceleration Techniques 

Other techniques for code speed up are: reduce memory access, use bit shift for multiplication 

or division, declare variable or memory as constant, eliminate the unimportant function, etc. 
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5.5 Experimental Results 

After algorithm and code acceleration, we present the experimental results on the speed and 

the coding performance by encoding different kinds of video sequences. 

5.5.1 Simulation and Acceleration Results 

We first encode different video sequences using the released compilation mode with file level 

optimization on the C6416 simulator. In Table 5-11, we can clearly see that if we use the 

two-level cache, the reduction ratio is almost 94.6%. And after modification, the final 

implementation is almost speedup 50.05% on the C6416 simulator as shown in Table 5-12. 

Table 5-11 Comparison using the C6416 simulator with and without the L2 cache 

Sequence QP Original With L2 cache Reduction Ratio (%) 

24 5,857,141,388  299,997,333  94.88  

28 5,396,047,003  272,850,099  94.94  

32 4,791,033,572  235,541,515  95.08  
Foreman 

36 4,270,633,918  220,994,332  94.83  

24 2,477,711,618  143,512,051  94.21  

28 2,407,798,347  139,733,601  94.20  

32 2,349,115,427  136,120,778  94.21  
Akiyo 

36 2,337,257,965  136,816,145  94.15  

24 5,920,104,560  312,644,701  94.72  

28 5,728,222,344  301,657,203  94.73  

32 5,478,265,825  288,294,260  94.74  
Mobile 

36 4,919,007,494  259,681,978  94.72  

24 6,282,198,760  323,474,273  94.85  

28 5,891,887,789  300,134,320  94.91  

32 5,523,460,593  279,967,886  94.93  
Stefan 

36 5,064,125,114  259,003,037  94.89  



 68

Table 5-12 Comparison using C6416 simulator with original and accelerated code 

Sequence QP Original Accelerated Reduction Ratio (%) 

24 299,997,333  141,762,294  52.75  

28 272,850,099  131,384,560  51.85  

32 235,541,515  119,525,198  49.26  
Foreman 

36 220,994,332  110,162,459  50.15  

24 143,512,051  78,220,964  45.50  

28 139,733,601  76,657,427  45.14  

32 136,120,778  75,355,147  44.64  
Akiyo 

36 136,816,145  74,970,281  45.20  

24 312,644,701  152,720,909  51.15  

28 301,657,203  143,165,216  52.54  

32 288,294,260  134,215,780  53.44  
Mobile 

36 259,681,978  122,615,959  52.78  

24 323,474,273  155,155,172  52.03  

28 300,134,320  145,362,395  51.57  

32 279,967,886  135,718,672  51.52  
Stefan 

36 259,003,037  126,202,732  51.27  

 

5.5.2 Encoding Speed on DSP board 

On the DSP board, we can use an internal timer to count the executing clock cycles on the 

C6416T emulator. The 32-bit general-purpose timers in included in the DSP core processor. 

Its clock is closer to the real system than that of the C6416 simulator. So we compute the 

encoding time on the DSP board by using this internal timer instead of the C6416 simulator. 

More information about this timer is described in [26]. Table 5-13 to Table 5-16 show the 

results of encoding different sequences, whose frame number is 50 and picture size is 

176x144 (QCIF) show that in encoding the sequence “foreman”, the fps (frames per second) 
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is 40.4, the fps of “akiyo” is 76, the fps of “mobile” is 24.2 and the fps of “stefan” is 26. We 

can achieve namely real-time encoding, which is 30 fps. As discussed in the early sections, 

the PSNR performance of the accelerated version is almost identical to the original x264 

version.   

 

Table 5-13 Results of the “foreman” sequence on the C6416 emulator 

Sequence foreman_qcif 

QP 
Clock cycles             

50 frames 

Average clock cycles 

per frame 

Conversion 

(sec) 
fps 

16 1,331,768,824  26,635,376  0.0266  37.5  

20 1,269,304,288  25,386,086  0.0254  39.4  

24 1,236,622,048  24,732,441  0.0247  40.4  

28 1,200,254,168  24,005,083  0.0240  41.7  

32 1,198,344,096  23,966,882  0.0240  41.7  

36 1,194,814,936  23,896,299  0.0239  41.8  

 

Table 5-14 Results of the “akiyo” sequence on the C6416 emulator 

Sequence akiyo_qcif 

QP 
Clock cycles             

50 frames 

Average clock cycles 

per frame 

Conversion 

(sec) 
fps 

16 666,665,336  13,333,307  0.0133  75.0  

20 665,718,728  13,314,375  0.0133  75.1  

24 659,000,184  13,180,004  0.0132  75.9  

28 654,887,064  13,097,741  0.0131  76.3  

32 648,843,728  12,976,875  0.0130  77.1  

36 647,099,824  12,941,996  0.0129  77.3  
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Table 5-15 Results of the “mobile” sequence on the C6416 emulator 

Sequence mobile_qcif 

QP Clock cycles 
Average clock cycles 

per frame 

Conversion 

(sec) 
fps 

16 2,171,652,688  43,433,054  0.0434  23.0  

20 2,144,657,712  42,893,154  0.0429  23.3  

24 2,143,347,584  42,866,952  0.0429  23.3  

28 2,011,821,640  40,236,433  0.0402  24.9  

32 1,986,374,176  39,727,484  0.0397  25.2  

36 1,943,237,440  38,864,749  0.0389  25.7  

 

Table 5-16 Results of the “stefan” sequence on the C6416 emulator 

Sequence stefan_qcif 

QP 
Clock cycles             

50 frames 

Average clock cycles 

per frame 

Conversion 

(sec) 
fps 

16 1,944,197,344  38,883,947  0.0389  25.7  

20 1,920,824,192  38,416,484  0.0384  26.0  

24 1,924,583,792  38,491,676  0.0385  26.0  

28 1,915,755,304  38,315,106  0.0383  26.1  

32 1,918,608,224  38,372,164  0.0384  26.1  

36 1,907,222,528  38,144,451  0.0381  26.2  
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Chapter 6  

H.264/AVC SVC Decoder 

Implementation and Optimization on 

DSP Platform 

 

Chapter 3 gives an overview of scalable extension of H.264. We now discuss our 

implementation of the SVC decoder on DSP. We describe the system architecture and the 

procedure of our implementation work. Then we analyze the JSVM decoder which is the 

reference software of H.264/AVC SVC and identify the most complicated elements in the 

decoder. We also present a few techniques that accelerate code execution and the acceleration 

methods that take advantages of the features of C64x. Finally, we implement and show some 

experimental results on the speed and the coding performance of our system. 

6.1 System Architecture 

Figure 6-1 shows the overall scalable extension of H.264 decoder architecture. When the 

bit-stream enters the JSVM decoder, it can be split into the base-layer part and the 

enhancement-layer part. The base-layer of the JSVM decoder is almost the same as the H.264 

decoder. It includes entropy decoding, inverse quantization, inverse transform, motion 

compensation and deblocking filter. The enhancement layer is similar to the H.264 decoder 

but with a few modifications. The structure of decoder includes three types of scalability. In 

the spatial scalable coding, the motion-compensated prediction and intra coding tools are 

employed for both the base and enhancement layers. Each layer supports a different spatial 

resolution. In order to increase coding efficiency, additional inter-layer prediction mechanisms 

are incorporated. The inter-layer prediction includes techniques for motion, residual and intra 
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texture prediction. The information of inter-layer prediction needs to up-sample for the 

enhancement layer. For improving the coding efficiency, the enhancement layer can take the 

information from either the reference frame or the inter-layer prediction from the base layer. 

Signals are controlled by SW3, SW4 and SW5 which is shown in Figure 6-1. For SNR 

scalability, both CGS and FGS are supported. CGS uses the same inter-prediction mechanism 

as the spatial scalable coding, but without the up-sampling operation. The other case is FGS. 

FGS coding is based on so-called progressive refinement slices. The H.264/AVC CABAC is 

extended to support the FGS. In the temporal scalability coding, the procedure is already 

discussed in section 3.2.2 In the JSVM decoder, it uses the hierarchical-B prediction structure 

(shown in Figure 3-5) for the temporal scalable coding. A decoded picture buffer (DPB) 

method is to implement the temporal scalability.  

 

 
Figure 6-1 System architecture of the SVC video decoder 
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6.2 Procedure of the Implementation Work 

As discussed in section 6.1 we port the scalable extension of H.264 decoder on the DSP board. 

Because JSVM is the only reference software that is available for SVC, it is our starting point 

for porting. JSVM includes a H.264/AVC SVC encoder, a decoder and other some useful 

tools, and these different programs share some common functions. It is developed on Visual 

Studio platform. Hence, the first step is to extract the decoder from JSVM to make it a stand 

alone program. In our implementation, we extract the H.264/AVC SVC decoder from the 

reference software JSVM 5.0 [27]. 

After making the decoder an independent program, the next step is to part the code from 

the Visual Studio (on PC) to the Code Composer Studio (CCS, the integrated development 

environment for TI’s DSP). Because CCS does not support all Visual Studio C++ 

programming functionality, in this step there are some problems as described below. 

 

(1) CCS itself does not provide the Standard Temporal Library (STL), but JSVM uses 

STL a lot. Therefore, we found a STL called STLport [28] which can be ported to 

many platforms, and after a proper set-up of configuration, STLport can work 

correctly on CCS. 

(2) Exception handing is not supported by CCS. That is, the keywords “try”, “throw” 

and “catch” of C++ can not be used in CCS, but those keywords are found in JSVM. 

So all of these keywords must be removed and modified properly to ensure the 

correctness of the whole code. 

(3) CCS does not implement some useful headers in C++ such as iostream.h, io.h and 

so on. Therefore, we replace these codes by the equivalent and supported functions. 

 

 Other than the problem of lacking some functionality support in CCS, when we port the 

JSVM 5.0 decoder on the DSP, we need to check the decoding results on DSP against those 

on PC. So we need to solve some problems for sending function parameters or the memory 
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index pointer of the decoder on CCS. After the finishing the porting, we can ensure the result 

of decoding is correct.  

6.3 JSVM 5.0 Decoder Complexity Analysis 

We profile the JSVM 5.0 decoder to find which part takes the most computation time on DSP. 

In order to profile the decoder, we use the profile of the stand-alone C6416T DSP simulator. 

We concentrate on the most critical areas and try to accelerate these modules. In chapter 3, we 

know that the scalable extension of H.264 have three types of scalability. In this section, we 

profile each scalability separately. Finally, we profile the combined scalability, which contains 

the spatial, temporal and SNR scalability. The profiling results using different scalability are 

shown in Figure 6-2 (Temporal), Figure 6-3 (Spatial), Figure 6-4 (SNR) and Figure 6-5 

(Combined). The test video sequence is “city.264”, the simulation condition is shown in Table 

6-1. And the compiler optimization level configuration of C6416 simulator is the “File” level 

(-o3) and we already use the L2 cache, which has been described in section 5.3.2 Table 6-2 

shows the cycles of different scalability. We can see that the Spatial and SNR scalability need 

more cycles than temporal scalability. In following section, we will focus on these two types 

of scalability. 

 

Table 6-1 Simulation parameters 

Test sequence: city.264 IPPPPP  9 Frames 

 GOP size Frame size FGS layers QP 

Temporal 4 CIF 0 30 

Spatial 1 QCIF,CIF 0 30 

SNR (FGS) 1 QCIF 1 30, 24 

Combined 4 QCIF, CIF 1 30, 24 
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Table 6-2 Cycles on different scalability 

Scalability Total cycles 

Temporal 540,286,942 

Spatial 7,427,104,703 

SNR (FGS) 2,027,805,801 

Combined 30,067,421,887 
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Figure 6-2 Complexity profiling of the Temporal Scalability of JSVM 5.0 decoder 
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Figure 6-3 Complexity profiling of the Spatial Scalability of JSVM 5.0 decoder 
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Figure 6-4 Complexity profiling of the SNR Scalability of JSVM 5.0 decoder 
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Figure 6-5 Complexity profiling of the Combined Scalability of JSVM 5.0 decoder 

 

In Figure 6-2, the profile of the temporal scalability is almost as same as H.264 decoder. The 

major complex parts are motion compensation, loop filter, entropy coding (CABAC), 

transform and quantization. In Figure 6-3, the profile of spatial scalability, the most 

computation part is inter-layer prediction for residual and intra texture. Its computation 

percentage is almost 33%. In Figure 6-4, when we profile the SNR scalability the most 

complex part is FGS. Finally, in Figure 6-5, the major computation parts of combined 

scalability are inter-prediction which takes about 20% and FGS which takes 53%. In the 

following sections, we develop several techniques to reduce the complexity of the major 

computation parts. 

6.4 DSP Code Acceleration Methods 

In this section, we will describe several schemes that we can optimize our C/C++ codes and 

reduce the DSP execution time on the C6416T DSP platform. These techniques take the 

advantages of the features of C64x. 
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6.4.1 Packet Data Processing  

It is often desirable to use a single load or store instruction to access multiple data values 

consecutively located in memory. It is called the Single Instruction Multiple Data (SIMD) 

method. For example, when operating on a bit-stream, we can use word (32-bit) accesses to 

process read two 16-bit (short) or four 8-bit data (char) values at a time. This method can 

improve the code efficiency substantially. Figure 6-6 shows an example of using the SIMD 

method. Some intrinsic functions enhance the efficiency in a similar way. 

 

 

Figure 6-6 SIMD example of using the word instructions for adding short data 

 

6.4.2 Intrinsic 

The TI C6000 compiler provides many special functions that map directly to the inlined C64x 

instructions. It speeds up the C codes. These special functions are called intrinsics. If an 

instruction has equivalent intrinsic functions, we can replace it by intrinsic functions. The 

execution time will be decreased because of the use of intrinsics. Intrinsics are specified with 

a leading underscore (_) and are accessed by calling them as ordinary functions. These are 

guite a few intrinsic functions defined for the C6000 series DSP. More details about the TI 

DSP intrinsic functions are described in [17]. In the JSVM 5.0 decoder, we use the intrinsic 

function to deal with the calculation of pixels. Such as pixel add, subtract or copy. For 

example in Figure 6-7, we can use the intrinsic function “_add2” to replace the original 

function. The calculation is reduced by 50% since the “_add2” intrinsic can perform two 
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additions in one instruction. The performance of adopting intrinsic is shown in Table 6-3. 

for( x = 0; x < uiWidth; x+=2 )

{

_amem4(&pDes[x])=_add2(  _amem4_const(&pDes[x]),

_amem4_const(&pSrc[x]) ); 

}

for( x = 0; x < uiWidth; x++ )

{

pDes[x] += pSrc[x];

} data type: short (2 bytes)

add 2 short data using a single instruction
 

Figure 6-7 Use of intrinsic function in the SVC decoder 

 

Table 6-3 Performance using intrinsic 

Function Original cycles Revised cycles  Reduction Ratio (%) 

add 243,320,438 130,990,721 46.1% 

copy 488,524,940 159,347,857 67.3% 

subtract 58,412,795 14,885,097 74.5% 

up-sampleResidual 1,818,090,978 1,711,585,722 5.9% 

 

6.4.3 Memory Allocation Optimization  

In section 4.2.2, we know that the sizes of the internal program memory and the internal data 

memory are both 16 K-bytes for C6416T. The code segment should be put into the internal 

program memory. However, our codes may require a larger memory size than the internal 

memory. For instance, when dealing with a large image, it can not load the whole image into 

the internal data memory. For this reason, the data would be put into the external memory. If 

the accessed data are located in the external memory, it needs more clock cycles to transfer 

data to CPU. We can use registers to store data to reduce transfer time. In the DSP code, we 

can rearrange the link.cmd file, which is the memory allocation file. We put different type of 
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data in different memory sections for acceleration consideration. It also provides the 

“CODE_SECTION”, “DATA_SECTION” key words, which can allocate parts of C code or 

data in the internal memory. In order to improve the JSVM decoder execution cycles on DSP, 

we put some frequently used functions into the internal memory. This method can decrease 

the memory access time. 

6.4.4 DSP library  

The TI C64x DSP library is an optimized DSP function fir C programmers using C64x 

devices. It includes many C-callable, assembly optimized, and general-purpose 

signal-processing routines. By using these routines, we can achieve execution speed up 

considerably faster than the equivalent code written in the standard C language. We can use 

the DSP library (includes convolution, fft, iddt…etc) to replace the original functions in the 

decoder. 

6.5 Fast Algorithms for the SVC Decoder 

In this section, we describe the implementation of the inter-layer prediction and the FGS 

operation in the JSVM decoder on DSP. We also modify some methods wherever possible to 

reduce the computations.  

6.5.1 FGS  

FGS (Fine Granularity Scalability) is one tool used by the SNR scalability. The details of FGS 

have been described in section 3.4.2 Figure 6-8 shows the block diagram of FGS in the JSVM 

5.0 decoder. In the JSVM decoder, the FGS can be divided into three parts: luma, chorma DC 

and chroma AC. Each part includes the significant path and the refinement path. The 

refinement path is turned on only when the significant path is completed. When entering the 

decode luma significant coefficient box, it only deals with the 4x4 blocks. So decoding the 

luma refinement coefficient operation will begins to execute only when all the significant 

coefficients in every 4x4 block in a macroblock are completely checked. The same case 
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occurs in chroma DC and chroma AC. When all these significant and refinement path in a 

macroblock are completed, the enhancement coefficients are properly scaled and the update 

the macroblock coefficients. The flow chart of FGS is shown in Figure 6-8.  

 

Figure 6-8 Flow chart of FGS in the JSVM 5.0 decoder 
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Figure 6-5 tells us that the FGS takes a large percentage of computing time in the combined 

scalability case. First, we profile the FGS operation which is shown in Figure 6-9. The 

complex parts are decoding the luma significant coefficients, luma refinement coefficients, 

chroma AC significant coefficient, the chroma DC significant coefficient and scaling and 

updating the macroblock coefficients. In the following sections, we adopt some methods to 

speed the FGS operation. 
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Figure 6-9 Complexity profiling of FGS on C6416 simulator 

(A) Early termination for luma significant coefficient 

In Figure 6-9, decoding luma significant coefficient is the part that takes the most computing 

time. So, if we would reduce the cycles of FGS. The decoding luma significant coefficient 

needs modification. In the decoding luma significant coefficient passes, each loop checks a 

4x4 block for whether the block have significant coefficients. To speed up this process, we set 

an early termination point. If all of the significant coefficients in this block are done, in the 

next loop we skip checking this block again. This can save the time of checking block and 

setting up parameters. 
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(B) Check skipped blocks for null coefficient blocks 

In the significant and the refinement paths, some coefficients are not significant or refinement. 

These coefficients are zeros. If all coefficients in a block are all zero, this block is called a null. 

In the null block, scaling and transforming the coefficients is redundancy. So the block of 

scaling the enhancement layer coefficients can be skipped. We can detect whether the block is 

null or not. This method saves the redundant time in calculating the scaling operation. 

(C) Code refinement 

In the FGS block, some functions are shared with the other components in the JSVM 5.0 

decoder. For example, the function “initMB” is a tool which initials all parameters in a 

macroblock. But some parameters are not need in the FGS process. For example, motion 

vectors are needed only in motion estimation or motion composition but FGS does not use the 

parameters of motion vectors. So we can rewrite the function “initMB” that only applies to 

FGS.    

Table 6-4 shows the reduction ratio of each function in all FGS block and Table 6-5 

shows the results of accelerating the FGS block on the overall system which condition as 

same as Table 6-1. We notice that the reduction ratio of the operational cycles is about 61%. 

 

Table 6-4 Reduction Ratio of FGS block 

Function 
Original 

cycles 

Revised 

Cycles 

Reduction Ratio 

(%) 

Luma significant coefficients 923,838,292 315,713,695 65.8% 

Luma refinement coefficients 70,901,624 30,425,812 57% 

Chroma DC Significant coefficients 19,501,221 8,939,283 54% 

Chroma AC Significant coefficients 30,558,382 21,322,965 30.2% 

Scaling and Updating coefficient 130,753,983 35,332,570 72.9% 

Total 1,297,419,071 501,257,788 61.3% 
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Table 6-5 Performance of the modified FGS 

Test sequence: city_qcif.264 

Type Original Cycles Proposed Cycles Reduction Ratio (%) 

SNR 2,017,898,772 870,697,861 56.8% 

Combined 28,156,792,014 16,860,453,637 40.1% 

6.5.2 Inter-layer Prediction 

For spatial scalability, the most important component is inter-layer prediction. But from 

Figure 6-3, we find that the inter-layer prediction decoding takes a large amount of 

computations. This is because that in decoding the spatial enhancement layer, the motion 

vectors, residuals, and intra texture data of the base layer should be up-sampled for their use 

at enhancement layer. The up-sampling process is complex and takes a lot of computations. 

We design algorithms to reduce the inter-layer prediction computation. 

(A) Intra texture prediction 

Inter-layer prediction is computational intensive. However, not all of the up-sampling data are 

needed in the enhancement layer. For example, the inter-layer intra prediction up-samples the 

reconstructed intra signal of the base layer. In up-sampling the luma component, 

one-dimensional 6-tap filter FIR filters are applied horizontally and vertically. The chroma 

components are up-sampled using a simple bi-linear filter. In the JSVM decoder, when the 

inter-layer prediction is in use, all the reconstructed signals of the base layer are up-sampled. 

Figure 6-10 shows that the inter-layer prediction is performed before the macroblock 

decoding. But only a few blocks request for the intra prediction operation typically. In the 

JSVM 5.0 decoder, only the “Intra_BL” mode needs to use the information from the base 

layer. Table 6-6 shows that in the spatial scalability decoding, only 2% of block are using the 

“Intra_BL” mode. In this case, up-sampling all the intra texture data is unnecessary. Hence, 

we first decide whether the intra texture data should be up-sampled or not. The procedure is 

shown in Figure 6-11. If the current enhancement layer mode is the “Intra_BL” mode, than 
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the intra texture data would be up-sampled. Otherwise, it would not be up-sampled.  

Table 6-6 Distribution of mode in spatial scalability 

Base layer Enhancement layer 

Mode Number Percentage (%) Mode Number Percentage (%) 

Intra_4x4 80 0.54%  Intra_4x4 56 0.31%  

Intra_8x8 26 0.18%  Intra_8x8 25 0.14%  

Intra_16x16 1 0.01%  Intra_16x16 9 0.05%  

Intra_BL 0 0%  Intra_BL 419 2.29%  

Inter_8x8 2026 13.64%  Inter_8x8 8048 44.00%  

Inter_8x16 2041 13.74%  Inter_8x16 1708 9.34%  

Inter_16x8 906 6.10%  Inter_16x8 1104 6.04%  

Inter_16x16 3701 24.92%  Inter_16x16 5837 31.91%  

Skip 6069 40.87%  Skip 1084 5.93%  

Total 14850 100%  Total 18290 100%  

 

 

Figure 6-10 Block algorithm of the original inter-layer intra prediction 
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Figure 6-11 Block algorithm of the modified inter-layer intra prediction 

 

(B) Residual prediction 

The inter-layer residual prediction can be employed for all inter-coded macroblocks. The 

residual signal is up-sampled using a bi-linear filter and used as the prediction value for the 

residual signal of the enhancement layer. Thus, only the associated difference signal is coded 

in the enhancement layer. In the JSVM decoder, the inter-layer residual prediction requires a 

lot of memory transfers. On the DSP platform, the memory transfer is costly in time. So we 

modify the codes to reduce the number of memory transfer. For the inter-layer residual 

prediction coding, the residuals are split into Y, U and V residual signal. But in the JSVM 

decoder, the Y, U and V residual signals are up-sampled together. So we take the Y, U and V 

residual signals apart. We only up-samples the residual signals that are needed. The modified 

block diagram is shown in Figure 6-12.  
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Figure 6-12 Difference in the inter-layer residual prediction procedures 

  

Table 6-7 shows the reduction ratio of the inter-layer prediction. We rewrite the program 

in order to accelerate the inter-layer part. Table 6-8 shows that the operational cycles of 

different scalability are reduced. 

Table 6-7 Reduction ratio of Inter-layer prediction 

Function Original cycles Revised cycles Reduction ratio (%) 

Residual 889,289,854  757,070,091  14.87% 

Intra texture 532,432,371  35,668,577  93.30%  
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Table 6-8 Performance of the modified inter-layer prediction 

Test sequence : city_qcif.264 

Type Original cycles Proposed cycles Reduction Ratio (%) 

Spatial 5,966,597,605 5,198,506,424 12.8% 

Combined 16,860,453,637 15,472,723,853 8.2% 

 

6.6 Final Simulation and Acceleration Results 

After accelerating the codes and modifying the algorithms, we have efficiently reduced the 

computations of the JSVM 5.0 decoder on DSP. Table 6-9 shows the comparison of the 

processes with and without the L2 cache. We can clearly see that the reduction ratio achieves 

50%. The improvement is not as much as the reduction ratio in the x264 case in Table 5-11, 

because the code size and data size of the JSVM 5.0 decoder is larger than the x264. Using 

two-level cache can not reduce the data cache miss a lot. As shown in Table 6-10, the data 

cache miss rate decreases from 56.63% to 27.12%. The data cache miss still is large. Table 

6-11 shows the improvement of the optimized codes compared with the original version. The 

simulation condition is shown in Table 6-1. After optimizing the codes, the improvement 

achieves 20% in temporal scalability, 30% in spatial scalability, 55% in SNR scalability and 

49% in combined scalability. We can decrease the half execution time on overall system. 

Table 6-12 shows the real execution time on the C6416 emulator. The testing condition is the 

same as that in Table 6-1. The resulting system can decode approximately 15 frames per 

second in the baselayer and the temporal scalability, 1.32 frames in the spatial scalability, 2.84 

frames in the SNR scalability and 0.4 frames in the combined scalability finally.   
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Table 6-9 Comparison of using C6416 simulator with and without the L2 cache 

Sequence Without L2 cache With L2 Cache Reduction Ratio (%) 

City 64,576,729,391  30,067,421,887  53.44% 

Akiyo 53,685,160,996  24,403,283,420  54.54% 

Foreman 65,599,674,888  30,902,096,589  52.89% 

 

 

Table 6-10 Effect of using L2 cache memory 

C6416 simulator Without L2 cache With L2 cache 

Event  Count  Percentage  Count  Percentage 

Total Cycles 64,576,760,635    30,067,433,857    

Core cycles(excl. stalls) 755,799,273  7.82% 755,799,785  16.8% 

NOP cycles 2,354,743,973  46.5% 2,354,744,076  46.5% 

Stall Cycles 59,526,048,163  92.18% 25,016,840,078  83.2% 

Instruction cache hits 953,423,952  97.36% 953,507,967  97.37% 

Instruction cache misses 25,882,890  2.64% 25,799,022  2.63% 

Data cache references 915,440,375    915,440,489    

Data cache reads 621,323,760  67.87% 621,323,824  67.87% 

Data cache writes 294,116,624  32.13% 294,116,672  32.13% 

Data cache hits 397,007,357  43.37% 667,191,138  72.88% 

Data cache read hits 221,802,890  35.7% 446,661,075  71.89% 

Data cache write hits 175,204,467  59.57% 220,530,063  74.98% 

Data cache missesData cache missesData cache missesData cache misses    518,433,018 518,433,018 518,433,018 518,433,018     56.6356.6356.6356.63%%%%    248,249,351 248,249,351 248,249,351 248,249,351     27.1227.1227.1227.12%%%%    
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Table 6-11 Comparison using C6416 simulator on the original and the modified codes 

Sequence Type Original cycles Optimized Cycles Reduction Ration (%) 

Baselayer 521,049,251  415,868,509 20.19% 

Temporal 540,286,942  428,750,233 20.64% 

Spatial 7,427,104,703  5,198,506,424  30.01%  

SNR 2,027,805,801  857,551,343  57.71%  

City 

Combined 30,067,421,887  15,472,723,853  48.54%  

Baselayer 427,770,004  337728563 21.05%  

Temporal 442,938,814  348379134 21.35%  

Spatial 6,353,717,397  4,077,516,481  35.82%  

SNR 1,743,465,294  790,636,440  54.65%  

Akiyo 

Combined 24,403,283,420  12,474,314,013  48.88%  

Baselayer 491,066,392  383,309,737  21.94%  

Temporal 518,112,745  405,372,731 21.76%  

Spatial 7,327,335,062  5,069,933,810  30.81%  

SNR 1,968,622,159  853,436,646  56.65%  

Foreman 

Combined 30,902,096,589  15,781,271,800  48.93%  

 

 

 

 

 

 

 

 

 

 



 91

 

Table 6-12 Performance on the C6416 emulator 

Sequence  Type 
Execution Time  

9 frames (sec.) 

Conversion 

1 frames (sec) 
fps (frames/sec.) 

Baselayer 0.61 0.068 14.75  

Temporal 0.62 0.069 14.52  

Spatial 7.8 0.87 1.15  

SNR 3.8 0.42 2.37  

City 

Combined 25.7 2.86 0.35  

Baselayer 0.41 0.046 21.95  

Temporal 0.41 0.046 21.95  

Spatial 5.5 0.61 1.64  

SNR 2.5 0.28 3.60  

Akiyo 

Combined 17.3 1.92 0.52  

Baselayer 0.55 0.061 16.36  

Temporal 0.55 0.061 16.36  

Spatial 7.7 0.86 1.17  

SNR 3.5 0.39 2.57  

Foreman 

Combined 25.6 2.84 0.35  
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Chapter 7  

Conclusions and Future Work 
 

 

7.1 Conclusion 

The main goal of this work is to accelerate the H.264/AVC baseline profile encoder and the 

H.264/AVC SVC decoder implemented on the TI TMS320C6416T DSP processor. The 

H.264/AVC encoder implementation is developed based on the open source code x264 and 

the H.264/AVC SVC decoder, which is extracted from the MPEG reference software JSVM 

5.0. 

For H.264/AVC encoder, we first modify the mode decision module to accelerate the 

H.264/AVC encoder operations. We use the early termination to reduce the calculation of 

dispensable mode. This acceleration method can reduce the computational cost by 13% 

without visual quality and bits rate degradation. For the DSP implementation, one initial 

problem is the frequent occurring of data cache miss. We use the two-level cache to solve this 

problem. We also use various code speed-up techniques supported by the C64x to match its 

hardware architecture. The details are described in chapter 5. The total execution time is 

reduced by 50%. Finally, the overall system can on the average encode about 40 QCIF frames 

per second on the C6416 emulator. 

 Furthermore, we also have successfully implemented the decoder of H.264/AVC SVC on 

the DSP platform. The H.264/AVC SVC includes three types of scalabilities including 

temporal, spatial and SNR scalability. Based on the profiling data, the FGS module and 

inter-layer prediction module are two high computational complexity parts in the JSVM 

decoder of combined scalability. For the FGS module, we use the early termination to reduce 

the unnecessary checking of luma significant coefficients and updating the null block. We also 

refine the FGS codes to reduce the computation. For the inter-layer prediction, we reduce the 
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unnecessary up-sampling operations for the intra texture between the base and the 

enhancement layer. Another code acceleration method is the inter-layer prediction which has 

Y, U and V three components. We only up-sample the residual signals that are needed. We 

also adopt the coding acceleration techniques on C64x to accelerate the decoder on the DSP 

platform. The improvement can achieve 49% in combined scalability. More details are shown 

in chapter 6. 

7.2 Future Work 

The time to read or write file from host is a major problem in the DSP environment. If we can 

reduce the data transmission time between the host and the target, the system will run faster. 

Hence, the transmission time reduction techniques should be studied. 

 For the H.264/AVC encoder, we only support the baseline profile. The H.264/AVC main 

profile includes more complex element than baseline profile. If we need compress the video 

more efficiently, the main profile is necessary. Furthermore, we can integrate the FPGA 

hardware implementation together with DSP to accelerate the overall system.  

 The code of JSVM decoder is written in C++ language. But the DSP platform can not 

perform the codes in C++ efficiently. Thus, we should rewrite the entire JSVM decoder using 

C language. In addition, we only focus on the FGS and inter-layer prediction modules in this 

thesis. The JSVM decoder can be further accelerated by modifying the other modules.  
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