=
A
K
(=
Ju
gL

H.264 %5 B % dE v A 1§ 4 ¥ 4K

2/ B2 4vig e TIDSP 4 5LT S 2 9 R

Acceleration and Implementation of
H.264 Encoder and Scalable Extension of H.264

Decoder on TI DSP Platform

IR

hERE e L
PoE X R4 L B

H.264 %/ B2 H 7 @A 4 ¥R

2B E2 4ri@ o TIDSP k5T 52 F 3R

Acceleration and Implementation of
H.264 Encoder and Scalable Extension of H.264 Decoder

on TI DSP Platform
FyA @i Student: Kai-Ting Cheng
i ERE gy Advisor: Dr. Hsueh-Ming Hang
B 2 + F
ST I S - S _ S RN
FA b gm <
A Thesis

Submitted to Department of Electroni¢s Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electronics Engineering

June 2007

HsinChu, Taiwan, Republic of China

PERREAY LA ER D

H.264 %l B2 H 7 24 2 ¥ 4K
2/ R 2 4vig fo TIDSP k5T 52 9

GRS R g B

&

R B BRI EIPAE o R PO =5 5 2 iy —) o Ry =
L RLFIP B SRR A L U REER [HL264IAVC HEBIRT |7 H.264/AVC i il
SRV o Mg FORRECE USRI Sundance B SMT395 BB 1 A9~ 1 B8

B Il TMS320C6416T » il ffetfet | g piogpee e £ j’F“ BRI o

AR SEEHL264AVC AR S R 2 BT x264 ELELRE T PR R
b R E R T ’F‘[P39t Mode decision £% = I lﬁﬁ\ﬁﬁ el Effljgr;h1@’p~ e
T I%Eiﬁu Mode FUEFETE! > lﬂﬁzp AT 3%gm'r W] > 5 DSP @R S5 i
TI DSP i’F'ﬁégE??E%# [e (RO Sl 2048 2 gt Cache PO - 5

PR PIRE 19 5 TVl > ITESTE DSP OS] - s s et
E*ﬂ}_ﬂﬁ: N 'l‘%"?ﬂtﬁaﬂ TI DSP A3 $5¢ J’ﬁj HE? RS, fr 193D 50%f! jj\E'_‘l_ETE[)
I'I QCIF FU[}%\'% P TR o i [JJ?‘J/ Fﬁ? 40 355 gu@% o

SEEFIEI H264/AVC SIS » = BIRLI | %J%pwﬁg JSVM 5.0 st » 3l
= H.264/AVC = f15] £} Temporal ~ Spatial ~ SNR %7 3 71 IFil BIfEpvp %‘ﬁ » i+ DSP Ef
S S SRS 3 R T PR BT S IR BRI oSk
TS ETE ?? (73 g > = oI5 FGS A1 Inter-layer Predlctlon;ﬁ23fF 33 0 TR FGSIFF 73 o it
RV ST JERG T Sl IVER T T Inter-layer Predlctlonjﬁ 73 = kLY | Intra 71 Residual
[ORTEIED - il 75 DSP Ay —E el 5 (=70 5 5 VTR F TR D 49%VET

Acceleration and Implementation of
H.264 Encoder and Scalable Extension of
H.264 Decoder on TI DSP Platform

Student: Kai-Ting Cheng Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

With the advancement of -the. digital signal.precessing, real-time video transmission
becomes an essential element in‘our dailylife.In this thesis, we implement the H.264/AVC
encoder and the scalable extension of H.264/AVC (H.264/AVC SVC) decoder by using a
digital signal processor (DSP). The digital signal processing environment is Sundance module
SMT395. The core of the DSP is the Texas Instrument’s TMS320C6416T which is a
powerful signal processor with strong arithmetic operation capability.

For the H.264/AVC encoder, the open source code x264 is used as the basis to build a
DSP-executable program. The mode decision module is the key element being accelerated.
We develop an early termination method to reduce the calculation of the dispensable modes.
This saves up to 13% of the encoding time. For the DSP implementation, we start with the
optimization tools provided by the TI DSP complier. We also make use of the two-level cache
module on the DSP platform. This can speed-up the system by about 19 times. Furthermore,
we use several DSP codes acceleration techniques including fixed-point data types, TI DSP
intrinsic functions and others. Through the code modifications, we can reduce the
computation by 50%. Finally, the overall system can encode up to 40 QCIF frames per second

on test video sequences.

il

For the H.264/AVC SVC decoder, we start with the MPEG reference software JSVM 5.0.
The H.264/AVC SVC includes three types of scalability, namely, Temporal, Spatial and SNR
scalability. For the DSP implementation, we accelerate the parts which take the most
computing time in the combined scalability. These two parts are the FGS and the inter-layer
prediction modules. For FGS, we refine the codes to reduce the computation redundancy. For
the inter-layer prediction, we reduce the up-sampling operations for the intra texture and the
residuals. In addition, we also use the acceleration techniques supported by the TI DSP. The
final H.264/AVC SVC decoder can reduce the computation by 49% in the combined

scalability.

iii

Et

T 2 RS PR BRI PR MRS - T B
A fiﬂ iR ST S A SIS PR o B R
TN RRE . R R pISIREAIL > FUE RAIPVREE > TS iR (W R Y
= PR O - RS RITIATSEAVE S -

I RIRGRT 58 U RGBT & P S i %ﬂﬁi“l‘%ﬁ?
T FVIESHE | R I 7 T i &ﬁ;ﬁ?fm{ﬁjl}[pqﬂi FIPRAORES, - ﬂiy%?ﬁu L4
PR o BB ;ﬁ:‘ii&;@gf&ﬁ HTFJZ’# AR 25 TP 1 o

lﬂmi‘rudj PRS2 RIFVELR BBIRA SR AP E i 2 591 S
% Video fISSF RS E) S LI B 2 R AR R D o 1 PR
T Gy XA > R TR RS ORE o R AL J’mu%ﬁ’
PR~ I S ﬁ%?fi%ﬁ‘ FSP S S BR[OS [AR~)
m& P~ 15 RS A SPOE S SR PSR SRR L)y S A
- IR ‘\"ifk?HF FAGTS BRI o

AR T A S B = Jﬁ’gﬁ IS PRV ER L BERE

F,: = pJﬂsﬁI_ » IS ?F[HHF':J ZYpuE }fﬁ‘ﬁ@#’ﬁh VRS RS R [TJP}E o

bt o SRV IO 8 & IRIAI 2 RO e & R A
p@@]‘?ﬁ, RS e 1) o B P rEE v ﬁjfﬁl"ff‘}@“?ﬁ‘ﬁ’ﬁ EEFTJ ISR T PRH R Y
Y -

T‘irl”“@}ﬁjm BRI LIS o B 25 A 2R 2 VAT T T TR
B

S A

v

Contents

ADSTIACT ..ottt sttt ettt sttt 11
== TR iv
Chapter 1 INtroductionooiiiiiiiiiiiiie e e e e e e st e e e eebeeeesnneeeeeas 1
1.1 Introduction and MOtIVALIONceouieiiriirieiieienieeteee ettt 1
Chapter 2 H.264 Video CodinNg..............coovoiiiiiiiiiiiieiiiie ettt eieee et e e eveeeeenaaeeeeas 3
2.1 Overview 0f H.264 ENCOAETcc.eiiiiiiiiiiiiiiieniiesiceeeeeee e 3

2.2 Slice and STCE GIrOUPS......ccueeeiieriieeiieeieetiesteeteestee et eseeeeteesteesbeenseesaseessseenseessnesnseas 5

2.3 INter PIEdiCtION ..ottt ettt 6
2.3.1 Motion Vector PrediCtion.oc.eiiieiiiiiiieiieeeeieeee ettt 8

2.4 INra PrdICtION ..couviiiiiiiieiieie ettt et ettt as 9

2.5 MOAE DECISION. ...uueiiuiieiiefirie e s smns snsesme e a8 Eame e eeeeeteesiteenbeesiteeabeenbeeeabeesabeenbeesaeeenbeeees 10

PN OJ) 7010 0 0 21 L1, o St L R 13

2.7 Transform and QUaNtIZALION ...l i bt eeee e e e etae e e e eaee e e e 13

2.8 ENrOPY COAING ... itisiinn e ieeeeies it e teeesteeeseteeesaeeesaeesssaeessseesensneessseeesseesnns 16
Chapter 3 Scalable Extension of H.264coooiiiiiiiiiiieeee e 17
3.1 The Architecture of Scalable Extension of H.264ccccoeiiiiiiiiiienieeiieeeeee 18

3.2 Temporal Scalability.......ccccuieiiiiiiiiiieiiieie et et 20
B2 L MICTE ettt ettt st st be e 20

3.2.2 Scalability DImMENSIONSc.ceeieeiieriieeiiieeieeieesiee et eae et e sreeseneenneas 22

3.3 Spatial Scalability........cccoeriiieiiiiiiieiie e 24

3.4 SNR SCAlADIIILY ...euveeiieiieiieieeeee ettt et 25
BT CGS ettt ettt ettt e et ae e sneens 26

BUA2 FGS et ettt ettt et e et eent e aeeneeeneens 27

3.5 Combined SCalabilitycceciiiiiiiiiiiiieeiieeee ettt eree e 29
Chapter 4 DSP Implementation Environment....................cooccoiiiiiiniiiiniiiie e 30
4.1 The DSP BOArdooiuiiiieieeee ettt et 30

4.2 The TMS320C6416T DSP CRIDP...eeouieriiiiiiiieiienieeieritetee sttt 31

4.2.1 Central Processing Unit Of COAX.....cueevvviiiiiieeiiieeiieeeie et 33

4.2.2 Memory Architecture and Peripherals..........ccccoocviieviieeiiiieiieeeecee e 36

4.3 TI DSP Code Development ENVIronmentccceeeceveeerieeeiieeeiieeeiieeeiee e 36
4.3.1 Code CompoSer StUAIO......ccccuiieiiieeiiie ettt ee e ree e ree e sereeeeneeeeenes 36
4.3.2 SIMUlation TOOISc.eeiiiiiiiiee e 38

4.4 Code Development FIOWcc.ooiiiiiiiiieiiiecieetese ettt 39
4.4.1 Compiler Optimization OPLIONScc.eereeereieeieeriienieeriieeeeeiee e ereesseeeveenes 41
Chapter 5 H.264 Encoder Implementation and Optimization on DSP Platform 43
5.1 INtroduction t0 X264co.eeiueiiiiieieeieeie sttt e 43
5.2 Proposed Acceleration Method............c.oooviiiiiiiiiiiiieiicee e 44
5.2.1 Mode decision i X264ccoeerieriiriieniieieneesieeee sttt 45
5.2.2 Fast AIOTIERIMScuviieiiiieiiie ettt e e e eereeeenree s 49
5.2.3 Experimental RESUItS..........c.eeeviiiiiiiiieiiececeece e 54

5.3 Complexity Analysis on DSP et 59
5.3.1 Complexity Analysis.on Various Simulator..............ccocceevevierenieneenieneenene 59
5.3.2 MEMOTY SYSTOIMII st i asdoiisia e e ee e e siamh e e eeiteeeseeteeeeesnsaeeeesntaeeesnnsseeeeennseeeens 61

5.4 DSP Code Acceleration Methods ...t 63
5.4.1 COMPILEr OPLIONS ...eeeuvieeieeiiieiieeie ettt ete et see et saeesbeeseeesbeebeessseeseneenseas 63
5.4.2 FiXed-point CoOAINg.......ccveeiiieriiieiieiieeieeeie ettt ettt eaeees 64
5.4.3 LOOP UNTOIING ...ooviieiiiiiieeiieieeie ettt et 64
5.4.4 Linear ASSEMDIYcccuiiiiiiiiieiieeieecee ettt eanees 65
5.4.5 Other Acceleration TEChNIQUES........ccceevuieriieiiierieeiieie e 66

5.5 Experimental RESULLS........cc.ooiiiiiiiiiiiiieie e 67
5.5.1 Simulation and Acceleration Results...........cccceoviiiiiiniiiiiiniiiiieceeeen 67
5.5.2 Encoding Speed on DSP board...........cccuveeeiieeiiieeiieeieeeeeee e 68

Chapter 6 H.264/AVC SVC Decoder Implementation and Optimization on DSP Platform

.. 71
6.1 SYStemM ATCRILECIUTE. .. .ceiiiieiiie ettt ettt eee e e e e e e e e e e tee e e aaeeenaeeessseeennns 71
6.2 Procedure of the Implementation Work.............cceeviiieiiiieniiiciieeeeeeeee e 73
6.3 JSVM 5.0 Decoder Complexity ANaLYSIS......ccvuieerieerireiiieniieeiieniieeieeniee e eiee e 74

vi

6.4 DSP Code Acceleration MEthOdScoeeeeeeeeeeeeee e e e e eaeees 77

6.4.1 Packet Data PrOCESSING......cuvieiiiieeiiieciieeiee ettt svee e svee e e eeaeeeeavee s 78

0.4.2 TNTIINSIC ..ttt ettt et st et e st e e bt e st e e sae e et e e sbeeeanean 78

6.4.3 Memory Allocation OptiMIZatioN...........ceccvvieeiieeriieeeiiieeeieeeereeesreeeseveeeeaeees 79

0.4.4 DSP HIDIATY ..oveieieiieeeeeee ettt 80

6.5 Fast Algorithms for the SVC Decoder.........ccceoviiiiiiniiiiieiieciieeeeee e 80
0.5. 1 FGS .ottt ettt sttt 80

6.5.2 Inter-layer Predictioncoevieiiieiiiiiieeie et 84

6.6 Final Simulation and Acceleration Results............cccoocueeiiieniiiiiiiniieiieiecceee 88

(O] 1 F: 1 41 () USRS 92
7.1 CONCIUSION ...ttt et ettt sttt sae e 92

7.2 FULUIE WOTK ..ottt et 93
REFEIEIICES........oniiiiiiiii ettt st ettt ettt et e b es 94
f 1/ SRR . -<oNUUTUTTc.: T O OO OO 97

vii

List of Figures

Figure 2-1 H.264/AVC encoder Structure [2] ...c.cccceeccserccssssnsrcssssnssesssssssssssssssssssssssssssssssssess 4
Figure 2-2 Subdivision of a picture Into SLCes [2]...ccccvvrecsscrnricssssnnrecsssnrnccsssnssecsssssssecssssssecs 6
Figure 2-3 Macroblock partitions: 16x16, 16x8, 8x16 and 8xX8........ccccccereevvvnricrisnrrecccnnrees 6
Figure 2-4 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4cuueevreevercreenseccnecnne 7
Figure 2-5 Filter for fractional-sample accurate motion compensation [2]c.cceeueeeuveennen. 8
Figure 2-6 Choice of neighboring partitions [3]ccccceevvierisnicssnicssnnicssnnissssncsssnesssnsessannes 9
Figure 2-7 Intra 4x4 prediction mode [3] c...ccceeveeeevvnricssrncssnrcssnicssnnicsssnsssssnesssssssssssssssessnns 10
Figure 2-8 Intra 16x16 prediction mode [3]cccceevvereesvercssnrcssnnicssnnicsssnessssnessssesssssssssssessnns 10
Figure 2-9 H.264 mode decision algorithmcooeiinveiisveicssnnicssnnicssnncssssncssssesssnesnns 12
Figure 2-10 Zig-Z.ag SCAN.....cccovvurricssssrricssssnsecssssssresssass 14
Figure 2-11 Flow of transform and quantization [4]ccccceceeeeeicnrrccscsnnecsssnssecssssnseccssonnns 15
Figure 3-1 Example of Scalable Video Coding... i ..cccceeevueererssunnsenssencsnsssencsnecssencssnccsanens 18
Figure 3-2 Basic structure for the scalable extension of H.264/AVC [8]ccccveevcnerrccscnnns 19
Figure 3-3 Lifting representation of an-analysis-synthesis filter bank [8]...........ccceuueeun.eee 20
Figure 3-4 Illustration of temporal scalability [9] :......cccceovvurriiiivnriinsisnnicsisnnrccscsnnnnecscnnns 22
Figure 3-5 Hierarchical-B prediction StruCture.........cecceveicsceicssnencssnnicssnnessssessnsncssssesnns 23
Figure 3-6 Up-sampling of motion data [8]cccceevrrvrririrrcssricssnricssnnicssnncsssncssnsessssnesnns 25
Figure 3-7 Up-sampling of intra texture [8]ccccocceeevvrrissercsinrcssnicssnnicssnncssssnessnsescsnnesnns 25
Figure 3-8 CGS SNR scalable coding scheme [10]ccovveerveicrcricssnicssnncssssncsssnesssenecnns 26
Figure 3-9 Scheme of Cyclical BIOCK COAINGccccuerievrrircnrcssnricssnricssnnissssnesssnessssnessssesnns 27
Figure 3-10 Example of significant and refinement pass [11].....ccccceevueerercsucnsnccseecseecnnens 28
Figure 3-11 Combined SCalability.......ccccceevveriicsissnnricssssnnicssssnnnecsssssscsssssssessssssssssssssssssssssnsss 29
Figure 4-1 SMT395 MOAUIEuuueriiiiinriiciinnniicnissnniicssssnnicsssssssesss 31
Figure 4-2 Block diagram of the TMS320C64X DSPS [13] c.cccieevvvnrricsccnnicsssnnrecssssssnccscnnnes 32
Figure 4-3 Development CYCle [16] .ccccceiiercrnriicnisnerccssssnnncssssassesssssssnsssssssssssssssssssssssssssssssnass 37
Figure 4-4 Code composer studio development [16]cccccereceicerrccsccnnicsssnnrecssssnseccssonnns 37
Figure 4-5 Code development [17] ccccccceecrcrnreccssssnnricsssnsscssssssesssssssnesssssssssssssssssssssssssssssssass 40
Figure 4-6 C/CH+ compiler [18] ...cceiiivviiiiviinisniiisiinssnnissnicssnicssssicsssssssssnesssssssssssssssssssnss 42

viii

Figure 5-1 Rate-distortion of JM9.8 and X264cccccveeeervvnricsisnriccsssnssecssssnssessssssssssssnnes 44

Figure 5-2 Spatial prediction for skip mode decCiSION........cccceeeevvverrccsccnricssssnnrecssssnseccssnnns 47
Figure 5-3 Mode decision algorithm of X264cccoovvverieisivnricsiseniccsssnnsecsssnssesssssssessssnnes 48
Figure 5-4 Block diagram of x264 and Algorithm Acceeiieevvveniccscsnnicssssnnrecssssnsecsssnnnns 50
Figure 5-5 Difference between x264 and Algorithm Blccoovvuiiiiiivnricnissnnricsssnnneccscnnnes 51
Figure 5-6 Fast Algorithm B2coiiiiiiiiniviininniininniinsnicssnsicssssissssssssssnesssssssssssssssssssnss 52
Figure 5-7 Fast AlGOrithm C........cuiiiiviiiiiviinisninssnncnssnnesssicssssisssssssssssssssssssssssssssssssssssssnss 53

Figure 5-8 Rate-distortion (PSNR vs. bit-rates) of the x264 and the modified Algorithm

.. 58
Figure 5-9 Complexity profiling of the H.264 encoder on the C6416 simulator 60
Figure 5-10 Complexity profiling of the H.264 encoder on the C64xx simulator 60
Figure 5-11 C6416 memory configuration [14]......ccccccveieescvnrecssssnnnccscsnnsecsssassessssssssssssnnss 62
Figure 5-12 Profile with L2 cache using C6416 simulator...........cccccevccnnricsssnnrecsssnnseccscnnnes 63
Figure 6-1 System architecture of the SYC video decoderueeevueecneercseeecsnnecssnneesnnee 72
Figure 6-2 Complexity profiling of the Tempeoral Scalability of JSVM 5.0 decoder 75
Figure 6-3 Complexity profiling of the Spatial Scalability of JSVM 5.0 decoder............. 76
Figure 6-4 Complexity profiling of the SNR Scalability of JSVM 5.0 decoder................. 76
Figure 6-5 Complexity profiling of the Combined Scalability of JSVM 5.0 decoder....... 77
Figure 6-6 SIMD example of using the word instructions for adding short data............. 78
Figure 6-7 Use of intrinsic function in the SVC decodercceievvuricrverinssnrcscercscnncsnns 79
Figure 6-8 Flow chart of FGS in the JSVM 5.0 decoderccuveicrvricsvncsssnrcssnrcscnenesenns 81
Figure 6-9 Complexity profiling of FGS on C6416 simulatorcccevveeevuenseecseecsnnecnnens 82
Figure 6-10 Block algorithm of the original inter-layer intra prediction............cceeueeeueen.. 85
Figure 6-11 Block algorithm of the modified inter-layer intra predictioncc.ccceceeeunneee 86
Figure 6-12 Difference in the inter-layer residual prediction procedures........cccceceeeecunnnes 87

X

List of Tables

Table 2-1 Quantization step size in H.264 [3]......ueiieviveriiisisnniicsisnnnccscsnnicsssnssessssssssecssonnns 16
Table 4-1 Functional units and operations performed [15]ccccoceereercvnricssssnnrecscsnnrnccscnnnes 34
Table 4-2 Functional units and operations performed [15]ccccoccereercvnricssssnnrecscsnnreccscnnnes 35
Table 5-1 Performance of JIM9.8 vs. X2604..........ccccueriineiiseicssnecssnencssnencssnnesssecssssescsssnsssnes 44
Table 5-2 The experimental PAraAMEtersS......ccccecereerecssssnrecssssssnesssssssessssssssssssssssssssssssssssssnsss 54
Table 5-3 Performance of X2604...........ouuieeeiiineeniinenisneissnecssnnecsssencsssescsssnessssesssssssssssssssses 54
Table 5-4 Performance Comparison between x264 and the modified Algorithm 55
Table 5-5 Cycles on different SIMUIAtOLrScccovvvuerieiivnricnissnnrecsssnniccsssnsecsssnssesssssssecsssnnns 59
Table 5-6 Effect of using L2 cache MemMOTYueeiieiivvnicisisnniecsssnnicssssssecssssssesssssssssssssnnss 62
Table 5-7 Size of different data type.......ccceveeeevvericsseiisssnrcssnicssnnicsssrissssnessssnesssssssssssssssssssnss 64
Table 5-8 Processing time on the C64x:for different data types.....ccccceeevercescercrcercscnercsenns 64
Table 5-9 Comparison between C code and linear assembly code........c.cceeverervercrcnrenenns 65
Table 5-10 Example of linear aSsembly CoOde....ciccciueuernnniiininiissrinssnrinssnncsssnresssrecsssnesnns 66
Table 5-11 Comparison using the C6416 simulator with and without the L2 cache........ 67
Table 5-12 Comparison using C6416 simulator with original and accelerated code 68
Table 5-13 Results of the “foreman” sequence on the C6416 emulator...........ccccceeereuerenns 69
Table 5-14 Results of the “akiyo” sequence on the C6416 emulator...........ccceceeeveeesuercnneene 69
Table 5-15 Results of the “mobile” sequence on the C6416 emulatorccceeeuerercnnrenanes 70
Table 5-16 Results of the “stefan” sequence on the C6416 emulator..........c.ccceeeuerercuerenanes 70
Table 6-1 Simulation PArAMELETSccovveeervvercissrricssrrcssssncsssnessssiosssssssssssssssessssssssssssssssssssnss 74
Table 6-2 Cycles on different scalabilityccccceeevvvriivvirissricssricssnricssnnisssnncssssrecssssessssesnns 75
Table 6-3 Performance using intrinSiC....c.ccccceeesissnricssssnrecssssanresssssssessssssssssssssssssssssssssssssnass 79
Table 6-4 Reduction Ratio of FGS DIOCKcuuuiircuiiinuiiinniinniiinencnnencsneessnnecssnneccsanesanee 83
Table 6-5 Performance of the modified FGS.........iinnuirinsiiinsnrnisnercseeecseecsseeccssnnecanee 84
Table 6-6 Distribution of mode in spatial scalability.......cccccccveerivvuriicscsnricssssnnrccsssnnneecssnnes 85
Table 6-7 Reduction ratio of Inter-layer prediCtioncceeeecccveniccscsnnecsssanrecsssnnsescssnnes 87
Table 6-8 Performance of the modified inter-layer predictioncccceeececcnercccccnneeccscnnnes 88
Table 6-9 Comparison of using C6416 simulator with and without the L2 cache............ 89
Table 6-10 Effect of using L2 cache MemMOTYcciievivveriicsisnniicssssnniccssssnsicssssnssessssssssessssnnns 89

Table 6-11 Comparison using C6416 simulator on the original and the modified codes.90
Table 6-12 Performance on the C6416 emulatorcoeeeevvueeessnercssnnecssnencsnecssneecssseeecanee 91

X1

Chapter 1

Introduction

1.1 Introduction and Motivation

With the growing popularity of mobile communication, video transmission over wireless
channel will become an essential element in our daily life. Many international video
compression standards such as H.261, H.263, MPEG-2 and MPEG-4 have already been
widely used in different situations. Insthis thesis; we concentrate on the standard H.264/AVC
and the newest standard scalable éxtension of H.264/AVC (H.264/AVC SVC). Our focus is to
implement the H.264/AVC encoder and H.264/AVC SVC decoder on the digital signal
processors (DSPs).

H.264/AVC is a recent standard defined by the ITU-T Video Coding Experts Group and
the ISO/IEC Moving Picture Experts Group. It provides better compression of video images
together with a range of features supporting high-quality, low-bitrates streaming video. The
basic functional elements (prediction, transform, quantization, entropy encoding) are similar
to those in the previous standards but the important fine-tune in H.264 occur in the details of
each functional element.

Scalable video coding is currently being developed as an extension of H.264/AVC. The
Joint Video Team of the ISO/IEC MPEG and the ITU-T VCEG is now standardizing this new
standard. It is intended to encode the signal once, but allow decoding from the partial streams
at the specific rate and resolution required by a certain application. Its basic design idea is to
extend the hybrid video coding approach of H.264/AVC to efficiently incorporate the spatial,
SNR and temporal scalability.

The environment of our DSP implementation involves a host PC, DSP board and DSP

chips on the board. The DSP chips are Texas Instruments (TI)’s TMS320C6416T. The
TMS320C6416T is a fixed-point DSP with 1 ns (I GHz clock) instruction cycle time. It
adopts the advanced VelociTI Very Long Instruction Word (VLIW) architecture that enables
sustained throughput of up to eight instructions in parallel and thus it allows the processor
running faster. In addition, we accelerate the H.264/AVC encoder and H.264/AVC SVC
decoder by some DSP coding techniques and several efficient algorithms.

This thesis is organized as follows. Chapter 2 is an overview of the H.264/AVC video
standard. Chapter 3 introduces the H.264/AVC SVC. Chapter 4 gives a brief description of the
TI DSP chip and its development environment. In chapter 5, we describe the algorithm and
code acceleration methods of the H.264/AVC encoder and show the experimental results on
DSP. Chapter 6 describes the acceleration of the H.264/AVC SVC decoder for DSP and

presents experimental results. Finally, chapter 7 contains the conclusion.

Chapter 2
H.264 Video Coding

H.264/MPEG-4 AVC (Advanced Video Coding) is a video coding standard of the ITU-T
Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The first draft
design for H.264/AVC coding standard was adopted in October of 1999. VCEG and the
MPEG formed a Joint Video Team (JVT) and drafted new video coding standard as
H.264/AVC [1] in March of 2003.

H.264 is a standard developed based on'.H.26L and it promises to significantly
outperform MPEG4 and H.263, providing better compression of video images together with a
range of features supporting -high-quality, low bit-rate streaming video. It uses the
state-of-the-art coding tools and “provides enhanced coding efficiency for a wide range of
applications, including video telephony, digital video authoring, digital camera, and many

others. In this chapter, the H.264/AVC standard will be described.

2.1 Overview of H.264 Encoder

The H.264/AVC standards include a Video Coding Layer (VCL), designed to efficiently
represent video contents, and a Network Abstraction Layer (NAL), designed to format the
VCL representation and it provides header information in a manner appropriate to be
conveyed by a variety of transport layers or storage media.

A Block diagram of the basic H.264/AVC encoder is shown in Figure 2-1. The
H.264/AVC encoder is consistent with a decoder scheme. Its main elements are
motion-estimation, motion-compensation, transform and quantization, deblocking filter and
entropy coding (CABAC or CAVLC). Motion-compensated is used to remove temporal
redundancy. The purpose of transform (Integer-DCT) and quantization is to remove spatial

3

redundancy. The entropy coding removes syntax redundancy. In the block diagram, the video
frames are captured into intra or inter prediction parts. If the frame type is intra, the inter
prediction is disabled. Multiple references and variable block size motion estimations are used
for the inter prediction. The best mode among these prediction modes is chosen in the mode
selection block. The input frame is then subtracted from the prediction and forms the residual
block. The residual blocks are transformed by using a 4x4 integer DCT transformer for
luminance and a 2x2 transform for the chrominance DC coefficient, scan and quantization
procedures are then applied to the coefficients. The entropy coder receives these quantized
coefficients and generates codeword. The reconstruction loop includes the dequantization,
inverse transform and deblocking filter. Finally, the reconstruction frame is written to the

frame buffer for motion estimation.

[nput Coder
Video
v Control Control
Signal HE Y
R [21 * Data Y\
§i Fa Transform/ o “.
- N e .
\; _ Scal /Quant . - 'L{qm N
e e e Iransf . coeffsy,
] 1 i ! \
' H sealing r]
Split into : Decoder L---:---- '.'sLdllnI___a‘!Q Inv. :
Macroblocks ' ! ! Transform i
] | 1
16x16 pixels v ! A ' Entrony
Y - : | -nropy |y
o ! g i Coding
' 1 : r '
] !) 1
] ! ! Deblocking | |}
: : Intra -frame Filter E
' 1 Oe— L '
] H Prediction 1) !
i ‘ '/:" \ E Output
E \7\0._) Mmltm.— fis N\ : kfujg‘;;
! Intra/Inter Ll}mpll.ll)dll(]]] E Signal
S
H Motion
¥ Data
Motion

Estimation

Figure 2-1 H.264/AVC encoder structure [2]

There are three profiles defined in the H.264/AVC standard: baseline, main and extended
profile. The baseline profile is for real-time communication, the main profile is for digital
storage application, and the extended profile is for network streaming application. In the

baseline profile, it supports the intra coding and the inter coding with entropy coding using

CAVLC. In the main profile, B-frame coding is used and entropy coding using CABAC.
While the extended profile has all the features of the baseline profile while B-frame coding,

SI-frame, and SP-frame coding are included.

2.2 Slice and Slice Groups

Slices are a sequence of macroblocks which are processed in the order of a raster scan. A
picture is split into one or several slices as shown in Figure 2-2. A picture, therefore, is a
collection of one or more slices in the H.264/AVC. Slices are self-contained in the sense that
given the active sequence and picture parameter sets, their syntax elements can be parsed
from the bit-stream. Furthermore, the values of the samples in the area of the picture that the
slices represents can be correctly decoded without the use of data from other slices provided
that the utilized reference pictures are identical at encoder and decoder. Each slice can be

coded using different coding types as.follows:

® [Islice: A slice in which all macroblocks of the slice are coded using intra
prediction.

® Pslice: In addition to the coding types of I slice, some macroblocks of the P slice
can also be coded using inter prediction with at most one motion-compensated
prediction signal per prediction block.

® B slice: In addition to the coding types available in a P slice, some macroblocks of
the B slice can also be coded using inter prediction with two motion-compensated
prediction signals per prediction block.

® SPslice: A so-called switching P slice that is coded such that efficient switching
between different pre-coded pictures becomes possible.

® Slslice: A so-called switching I slice that allows an exact match of a macroblock in

a SP slice for random access and error recovery purposes.

Slice 1

Slice H2

Slice [#3

Figure 2-2 Subdivision of a picture into slices [2]

2.3 Inter Prediction

High quality video sequences usually have high frame rates. Therefore, two successive frames
in a video sequence are very likely t0 be similar. The goal of inter prediction is to utilize this
temporal correlation to reduce data need to be encoded. Inter prediction creates a prediction
model from one or more previously encoded video frames. The model is formed by shifting
samples in the reference frame(s). H.264/AVC supports motion compensation block sizes
ranging from 16x16 to 4x4 luminance samples with many options between the two sizes. The
luminance component of each macroblock (16x16 samples) may be split up in 4 ways as
shown in Figure 2-3: 16x16, 16x8, 8x16, or 8x8. If the 8x8 mode is chosen, each of the four
8x8 macroblock partitions within the macroblock may be split in a 4 ways as shown in Figure

2-4: 8x8, 8x4, 4x8, or 4x4.

16 8 8

16 0 0 1

Figure 2-3 Macroblock partitions: 16x16, 16x8, 8x16 and 8x8

Figure 2-4 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4

Each partition in an inter-coded macroblock is predicted from an area of the same size in
a reference picture. The distance between the two areas (the motion vector) has 1/4-pixel
resolution (for the luma component). In case the motion vector points to an integer-sample
position, the prediction signal consists of the corresponding samples of the reference pictures.
Otherwise, the corresponding sample is obtained using interpolation to generate non-integer
positions. The prediction values at half-sample positions are obtained by applying a
one-dimensional 6-tap FIR (FinitesImpulse_Response) filter horizontally and vertically. For
example in Figure 2-5., half-pixel sample b is calculated from the 6 horizontal integer samples
E,F,G H,IandJ:

b=(E-5F+20G+20H=51+J)+16)>>5

Similarly, h is interpolated by filtering A, C, G, M, R and T. When all of the samples
horizontally and vertically adjacent to integer samples are calculated, the remaining half-pixel
positions are calculated by interpolating between six horizontal or vertical half-pixel samples
from the first set of operations. For example, the sample at half sample positions labels as j
are obtained by

j=((cc—5dd +20h+20m—5ee+ ff)+512) >>10

Once all the half-pixel samples are available, the quarter-pixel positions are produced by
linear interpolation. Quarter-pixel positions with two horizontally or vertically adjacent half-
or integer-pixel samples are linearly interpolated between these adjacent samples. For
example:

a=(G+b+1)>>1
The prediction values for chroma component are always obtained by bilinear

interpolation. Since the sampling grid of chroma has lower resolution than the sampling grid

7

of the luma, the displacements used for chroma have one-eighth sample position accuracy.

[1e} m‘ €]

o] a

& [2] [E
E [=
EINERE
@ = &

|§::rao
e | e

O n [O

Figure 2-5 Filter for fractionalzsample accurate motion compensation [2]

2.3.1 Motion Vector Prediction

Encoding a motion vector for each partition can take a significant number of bits, especially if
small partition sizes are chosen. Motion vector for neighboring partitions are often highly
correlated and so each motion is predicted from vectors of nearby. A predicted vector MVp
(Motion Vector Prediction) is formed based on previously calculated. The motion vectors
MVD (Motion Vector Difference), the difference between the current vector and the predicted
vector, is coded and transmitted. The method of forming the prediction MVp depends on the
motion compensation partition size on the availability of nearby vectors.

Let E be the current macroblock, macroblock partition or sub-partition; let A be the
partition or sub-partition immediately to the left of E; let B be the partition or sub-partition
immediately above E; let C be the partition or sub-partition above and to the right of E. If
there is more than one partition immediately to the left E, the topmost of these is chosen as A.
If there is more than one partition immediately above E, the leftmost of these is chosen as B.

Figure 2-6 illustrates the choice of neighboring partitions when all the partitions have the

same size (16x16 in this case). The MVp of current macroblock E is calculated from the
motion vector of macroblock A, B and C. In the decoder, the predicted vector MVp is formed

in the same way and added to the decoded vector difference MVD.

Figure 2-6 Choice of neighboring partitions [3]

2.4 Intra Prediction

In H.264/AVC standard, each 16x16. 1s a basic'unit to be encoded. For intra prediction,
utilizing high correlation of neighboring samples in spatial domain, the prediction block is
conducted based on previously coded and reconstructed blocks which are to the left /or above
the block before deblocking filter. For the luma samples, each prediction block may be
formed for each 4x4 block (denoted as [4MB), or for an entire MB (denoted as 116MB).
When utilizing [4MB prediction, each 4x4 block is predicted from spatially neighboring
samples and will choose one of nine prediction modes as the best one. In addition to DC
prediction mode, eight directional prediction modes are supported shown in Figure 2-7. Those
modes are suitable to predict directional structures in a picture such as edges at various angles.
When utilizing I116MB prediction, which is well suited for smooth image areas, the whole
luma component of an MB performs a uniform prediction. There are four prediction modes
which are shown in Figure 2-8. The chroma samples of an MB are predicted using a similar

prediction technique as for the luma component in [16MB prediction.

MABCDETFGH
Iab[“d

8 Jgle £ gh
K|iJ k1

1 Limnop

Figure 2-7 Intra 4x4 prediction mode [3]

0 (vertical) 1 (horizontal) 2(DC) 3 (plane)
H | H | H | H |
S ———
v v : v Mean(H+V) v /
1 /

Figure 2-8 Intra 16x16 prediction mode [3]
2.5 Mode Decision

In H.264/AVC, the high complexity mode of the standard, the macroblock mode decision is
done by minimizing the Lagrangian function [1]:
J(s,¢, MODE | QP, Ao,z) = SSD(s,c, MODE | OP) + A,,op; X R(s,¢, MODE | OP)

Where J denotes the cost function and depends on s (the original signal macroblock), ¢
(the reconstructed signal macroblock) and MODE (select from a set of modes). J is found
given QP (the macroblock quantization parameter) and Ayopg (the Lagrange multiplier for
mode decision). SSD is the sum of the squared differences between the original macroblock
and its reconstruction with QP and it also depends on the original and reconstructed
macroblock, as well as the mode decision (MODE). The Lagrange multiplier, Ayopz, depends
on the slice type (B or {SP, Intra, P}) and the quantization parameter per macroblock (QP).

For Intra or P slices in particular:

Auiops = 0.85% 2077173

10

Finally, the rate R(s,c, MODE|QP) depends on the original and reconstructed
macroblock with quantization parameter QP, as well as chosen MODE, and reflects the
number of bits produced for header(s) (including MODE indictors), motion vector(s) and
coefficients.

In H.264, MODE is chosen from a set of potential prediction modes as follows:

For Intra slices:

MODE e {I4MB, I16MB}
For P slices: {single reference forward or backward prediction}

MODE € {I4MB, I16MB, SKIP, P _16x16,P 16x8, P_8x16, P _8x8}
For B slices: {bi-directionally predicted slices}

MODE € {I4MB, I16MB, DIRECT, P_16x16, P_16x8, P_8x16, P_8x8}

The DIRECT mode is particular to the B slices, while the SKIP mode implies that no
motion or residual information will be encoded.

In the above mode sets, when:the best mode is.intra mode (I4MB, 116MB), the mode is
chosen through evaluation of the Lagrangians function with mode choices from the mode
described in section 2.4

When the best mode is inter mode, the best inter mode is chosen from 7 different block
(P_16x8, P _8x16,P 16x8, P 8x8, P 8x4,P 4x8, and P_4x4) shown in Figure 2-3 and Figure
2-4. Figure 2-9 shows the flow chart of H.264/AVC mode decision algorithm.

In order to evaluate the least RD cost for a single mode, we need to calculate the rate and
distortion for all modes. For example when we choose the best mode for a 16x16 macroblock
belonging to a P or B slices (luma component only), we need 144 cost evaluations for the best
[4MB mode (9 modes time 16 partitions of 4x4 blocks), 4 more evaluations for the [16MB
case, 16 more for the best P_8x8 inter mode (4 modes times 4 partitions of 8x8 blocks) and 4
more for selecting the minimal cost among the rest of the modes results in 168 evaluations.
Coupled with similar cost evaluations for each of the chroma components, the complexity
analysis clearly shows that the mode decision process is computationally intensive. There are
a lot of methods to reduce the complexity from mode decision in the H.264/AVC encoder.
And x264 uses some algorithm to reduce the complexity of the mode decision module. In

Chapter 5, we will introduce the method and algorithm which is used in x264 algorithm.

11

(sawr)

A

Check P_16x16, P_16x8 and P_8x16

A

Decide which reference is best

A

Decide the best mode between
P_16x16,P 8x16 and P_16x8..(A)

A

Check P_8x4, P 4x8 and P_4x4

A

Decide which reference is best

N

Decide the best mode between
P 8x4,P 4x8 and P_8x8...(B)

A

Decide the best mode between (A) and (B)

A

Check Intra_4x4

A

Check Intra_16x16

A

P_SKIP mode detection

C exp)

Figure 2-9 H.264 mode decision algorithm

12

2.6 Loop Filter

One particular characteristic of block-based coding is the accidental production of visible
block structures. Block edges are typically reconstructed with less accuracy than interior
pixels and “blocking” is generally considered to be one of the most visible artifacts with
present compression methods. H.264/AVC defines an adaptive in-loop deblocking filter,
where the strength of filtering is controlled by the values of several syntax elements. The
deblocking filter is applied after the inverse transform. The filter has two benefits: (1) block
edges are smoothed, improving the appearance of decoded images and (2) the filtered
macroblock is used for motion-compensated prediction of further frames in the encoder,
resulting in a smaller residual after prediction. The basic of filter is that if a relatively large
absolute difference between samples near a block edge is occurred, we can use a QP threshold
to measure. So it is quite likely a blocking artifact and should be reduced. However, if the
magnitude of that difference is so,large that it .cannot be explained by the coarseness of the
quantization used in the encoding, the edge is more likely to reflect the actual behavior of the
source picture and should not be'smoothed ‘over.-The deblocking filter is an adaptive filter that
adjusts in strength depending upon compression . mode of a macroblock, the quantization
parameter, motion vector, frame or field coding decision and the pixel values. When the
quantization step size is decreased, the effect of the filter is reduced, and when the
quantization step size is very small, the filter is shut off. The filter can also be shut off
explicitly or adjusted in overall strength by an encoder at the slice level. More details about

deblocking filter are described in [3].

2.7 Transform and Quantization

The difference between the actual and predicted data is called residual error data. Discrete
Cosine Transform (DCT) is a popular block-based transform for image and video
compression. Similar to previous video coding standards, H.264/AVC utilizes transform
coding of the prediction residual. H.264/AVC uses three transforms depending on the type of

residual data that is to be coded: a transform for the 4x4 array of the luma DC coefficients in

13

intra macroblocks, a transform for the 2x2 array of the chroma DC coefficients and a
transform for all other 4x4 blocks in the residual data. In H.264/AVC, the transform is applied
to 4x4 blocks, and instead of 4x4 DCT, a separable integer transform with similar properties
as a 4x4 DCT is used. The 4x4 DCT integer transform is approximation of original floating
point DCT transform. Since the inverse transform is defined by exact integer transform,
inverse transform mismatches is avoided. The 4x4 integer transform is designed to be so
simple that it can be implemented using just a few additions, subtractions, and bit shifts. The

transform matrix is given as:

(1 1 1 1]
2z 1 a4 2
H= 1 -1 -1 1
R IR

The basic transform coding process is: very similar to that of previous standards
including a forward transform, zig-zag'secanning shown in Figure 2-10, scaling, and rounding

as the quantization process followed by entropy coding. The flow is shown in Figure 2-11.

<

Figure 2-10 Zig-Zag Scan

14

Code Transform
The re=idual ~ Transformed
data W= AXA! coefficient
1111
a-| 2142
1441
12241

(Juantization ..
. -— (Juantization
coefficient
\—' Enctopy coding } —— Bit-stream

Figure 2-11 Flow of transform and quantization [4]

The main functionality of quantization is toiscale down the transformed coefficients and
to reduce the coding information, Because-of human: visual system is lee sensitive to high
frequency image component. Some video andimage compression standards may use higher
scaling-value for high frequency data: H.264/AVC uses a scalar quantizer. The basic forward

quantizer operation is as follows:

Z,; =round (Y, / Ostep)

Where Yj; is a coefficient of the transformed described above, Qstep is a quantizer step
size and Z;; is a quantized coefficient. A total of 52 values of Qstep are supported by the
standard and these are indexed by a quantization Parameter, QP. The values of Qstep
corresponding to each QP are shown in Table 2-1. Note that Qstep doubles in size for every

increment in QP. The wide range of quantizer setup sizes makes it possible for an encoder to

accurately and flexibly control the trade-off between bit rate and quality.

15

Table 2-1 Quantization step size in H.264 [3]

QP 0 1 2 3 5 6 7 8 9 10 |11 12

Qstep | 0.63 | 0.69 | 0.81 | 0.88 1.13] 1.25 | 1.38 | 1.63 | 1.75 | 2 225125

QP 18 24 30 36 42 48 51
QStep 5 10 20 40 80 160 224

2.8 Entropy Coding

The entropy encoder is responsible of converting the syntax elements to bit stream and then

the entropy decoder can recover syntax elements from bit stream. H.264/AVC standard

defines two entropy coding methods: Context Adaptive Variable Length Coding (CAVLC)

and Context Based Adaptive Arithmetic Coding (CABAC). For the baseline profile, only

CAVLC is employed. For the main profile, both CAVLC and CABAC must be supported.

16

Chapter 3
Scalable Extension of H.264

Motion pictures are to be transmitted over variable bandwidth channels, both in wireless and
cable networks. They have to be stored on media of different capacity and displayed on a
variety of devices, ranging from small mobile terminals to high-resolution video projection
systems. Scalable video coding schemes are intended to encode the signal once at highest
resolution, but enable decoding from partial streams at the specific rate and resolution
required by a certain application. This,secheme provides a simple and flexible solution for
transmission over heterogeneous networks;additionally providing adaptability for bandwidth
variations and error concealment. An example-6f applications is shown in Figure 3-1.

The scalable extension of H:264/AV.C-has-been chosen to be the starting point of MPEG
Scalable Video Coding (SVC) standardization project in October 2004. In January 2005,
MPEG and the Video Coding Experts Group (VCEG) of the ITU-T agreed to jointly finalize
the SVC project as an amendment of their H.264/AVC standard. The working draft provides a
specification of the bit-stream syntax and the decoding process. The reference encoding
process is described in the Joint Scalable Video Model (JSVM). Both can be downloaded
from the web site [5]. The new standard is based on the architecture of H.264 [2] and provides
types of scalability i.e. temporal, spatial and SNR. More details about the scalable extension

of H.264/AVC can be found in [6] [7].

17

\
' '
) E
:\c
Point-to-Point
128 kbps Transmission
64 kbps
Wireless
32 kbp
Wireless E

256 kbps

1.5 Mbps | 4 ¥oes

0 Ethernet:

3 Mbps Bandwidth
; k

Figure 3-1 Example of Scalable Video Coding

3.1 The Architecture of Scalable Extension of H.264

The overall structure of scalable extension of H.264 encoder is shown in Figure 3-2. It
encodes the video into multiple spatial, temporal and SNR layers for combined scalability.
The spatial scalability can be realized by a layered approach. When we compress a frame, we
separate different coding layer for different frame resolution. The base layer contains a lowest
spatial resolution version of each coded frame. The enhancement layers have higher
resolution and can be predicted from the base layer pictures and previously encoded
enhancement layer pictures. The information of enhancement layer can be predicted from the
base layer includes the motion vector, intra texture and the residual. The constrained
inter-layer prediction is used for reduced decoder complexity. In the same spatial resolution,
the temporal scalability means the change of frame rate. The temporal scalability is to extend
the hybrid video coding approach of H.264/AVC towards motion compensated temporal
filtering (MCTF) by using a lifting framework. By using the highly efficient motion model of
H.264/AVC in conjunction with a block-adaptive switching between the Haar and the 5/3

transform, both the prediction and the update step are similar to motion compensation

18

techniques with hierarchical-B frame of H.264/AVC. We can use the MCTF to achieve the
scalability of frame rate. In addition, the SNR scalability can be achieved by residual
quantization with very little changes to H.264/AVC. This method is similar as the FGS
bit-plane coding of MPEG-4 to achieve the scalability of quality. The SNR scalability
includes two aspects: Fine Granularity Scalability (FGS) and Coarse Granularity Scalability
(CGS).

Video

Transform/
Temporal Intra prediction B
Decomposition | " for intra block Entropy coding |——
i (SNR Scalable)
Motion
L Motion Coding L Muptiplex
2D Spatial
interpolation
Core Encoder
2D Spatial
Decimation Decoded Frames
Motion.
Temporal Intra prediction Transform/
Decomposition L ILr o S Y Entropy coding ~ |——
(SNR Scalable)
Motion
Motion Coding
2D Spatial
interpolation
Core Encoder
Decoded Frames
Motion
Temporal Intra prediction Transform/
Decomposition | " for intra block Entropy coding ~ |——
i (SNR Scalable)
Motion
L Motion Coding
Core Encoder

Figure 3-2 Basic structure for the scalable extension of H.264/AVC [8]

19

3.2 Temporal Scalability

Temporal scalability is often used in practice, as reduction of the video frame rate. It is a
common approach in cases where insufficient transmission capacity is available. MCTF is a

main feature for spatiotemporal wavelet filtering techniques.

3.2.1 MCTF

The Motion Compensated Temporal Filtering (MCTF) is based on the lifting scheme. The
lifting scheme has two main advantages: It provides a way to compute the wavelet transform
in an efficient way and it insure perfect reconstruction of the input in the absence of
quantization of the wavelet coefficients. The generic lifting scheme consists of three steps:
poly-phase operation, prediction, and update. Figure 3-3 shows a two-channel filter bank with

“P” representing the prediction step and “U” representing the update step.

F E!

S2k 1 h 4 S2k 1

-y 2 P h ~pitel o
A A A ,
z! Y
S, P U U P QP—» S,

Py D o = N S
> y2 /] 2

Szk y Szk

(a) (b)

Lifting Scheme Inverse Lifting Scheme
(Analysis Filterbank) (Synthesis Filterbank)

Figure 3-3 Lifting representation of an analysis-synthesis filter bank [8]

At the analysis side (a), the odd samples s[2k+1] of a given signal s are predicted by a
linear combination of the even samples s[2k] using a prediction operator P(s[2k]) and a high
pass signal A[k] is formed by the prediction residuals. A corresponding low-pass signal /[£] is
obtained by adding a linear combination of the prediction residuals A[k] to the even samples

s[2k] of the input signal s using the update operator U(k[k]):

20

hlk]=s[2k +1]-P(s[2k]) with P(s[2k])=)" p,s[2(k+1)]

I[k] = s[2k]+ UCALK]) with UCAK]) =Y uhlk +i]

Where the prediction operator “P” and the update operator “U” for the temporal
decomposition using the lifting representation can be used by the Haar wavelet or 5/3

transform. For the Haar wavelet are given by

PHaar (S[Xa 2k]) = S[X,Zk]
1
UHaar (h[X:k]):E h[X,k]
For the 5/3 transform, the prediction and the update operators are given by

P, (S[x,2k])=% (s[x,2k]+s[x,2k +2])

U5/3(h[x,k])=%(h[x,k] ke

Where s[x,k] be a video signal with the spatial eoordinate x=(x,y)' and the temporal
coordinate & in scalable video coding:
The extension to motion-compensated temporal filtering is realized by modifying the

prediction and the update operators as follows

P (8[X,2k]) = s[x+m,;,,2k-21,,] Uy, (h[x,k])Z%h[ermU0 k1,]
P, (S[X,zk]):% (s[x+my,, 2k-21,, |+ s[x+m,,, 2k + 2 + 21,])

1
U, (h[x,k])=z(h[x+mU0 , k1,1 + Alx+tmy, , k-1-r;,])

The reference indices r allows a general frame-adaptive motion-compensated filtering. The m

means the motion vectors.

21

3.2.2 Scalability Dimensions

The temporal coding structure of MCTF is changed relative to hybrid video coding in that not
only high-pass pictures H* are resulting from the prediction step but also low-pass pictures L*
are resulting from the update step. Figure 3-4 is an example for the temporal decomposition of
a group 8 pictures (GOP =8) using 3 decomposition stages. This structure provides a
non-dyadic decomposition in the contrast layer. If only the level 3 pictures are obtained after
the third decomposition stage is transmitted, the picture sequence that can be reconstructed at
the decoder side has the 1/4 of the temporal resolution of the input sequence. By additionally
transmitting the higher level (level 2) pictures, the decoder can reconstruct an approximation
of the picture sequence that has 1/2 of the temporal resolution of the input sequence. And
finally, if the highest level (level 1) pictures are transmitted, a reconstructed version of the

original input sequence with the full temporal resolution is obtained.

GOP Boundary

T [9A9T

CIPAYT

Prediction|

€ [9A9]

Figure 3-4 Illustration of temporal scalability [9]

22

The temporal coding structure of MCTF is an open-loop structure. With MCTF, the
encoder can provide better prediction. However, it may cause mismatch error between
encoder and decoder in the presence of quantization error and the update step increase the
complexity and memory requirement. In order to justify the complexity of the update step,
temporal scalability uses a closed-loop structure which is known as “hierarchical-B”. The
hierarchical architecture of temporal scalability is described in Figure 3-5. This is an example
of the prediction structure for a group of eight pictures. The first picture of a video sequence
is intra-coded as the instantaneous decoder refresh (IDR) picture that is a kind of the key
picture. The key picture of the sequence is independent from any other pictures of the video
sequence, and it generally represents the minimal temporal resolution that can be decoded. It
is either intra-coded or inter-coded. When the key picture is decoded, the picture B' is
predicted by using the surrounding key pictures A as references. It depends only on the key
pictures, and represents the next higher temporal resolution together the key pictures, the
pictures B” of the next temporal levél are predicted by using only the picture of the lower
temporal resolution as references, etc. It is obviously that this hierarchical prediction structure
inherently provides temporal scalability.“The main idea is similar as the B frames of the

H.264/AVC.

GOP Boundary

Figure 3-5 Hierarchical-B prediction structure

23

3.3 Spatial Scalability

In the spatial scalability, we use an over-sampled pyramid structure to represent multiple
resolutions (ex. QCIF, CIF, and 4CIF) and code the various spatial resolutions independently
of each other. The information of a higher spatial layer is affected by the information of the
lower spatial layers. We can code the higher spatial layer efficiently by predicting from the
lower spatial layers. For that, the following techniques turned out to provide gains and are
described below:

1. Prediction of a macroblock using the up-sampled lower resolution signal

2. Prediction of motion vectors using the up-sampled lower resolution motion vectors

3. Prediction of the residual signal using the up-sampled residual signal of the lower

resolution layer

In inter-layer prediction, motion prediction is used to remove the redundancy of motion
information, including macroblock .partition, teference picture index, and motion vector
among layers. The macroblock partitioning is obtainéd by up-sampling the partitioning of the
corresponding 8x8 block of the lower resolution layer. For the obtained macroblock partitions,
the corresponding sub-macroblock pattition of the base layer block is used as shown in Figure
3-6. The motion vector is scaled by a factorof 2. For the motion information, we introduce
two additional modes. While for the first of these modes (Base layer mode) no additional
motion information are coded, for the second one (Qpel refinement mode), a quarter-sample
motion refinement (-1, 0, or +1 for each motion vector component) is transmitted for each
motion vector.

Intra texture prediction uses the reconstructed image of the reference layer to predict an
enhancement layer. For intra texture prediction, we use the “Intra BL” mode. The “Intra BL”
mode is only allowed for macroblock, for which the corresponding 8x8 block of the base
layer is located inside an intra-coded macroblock. This is described in Figure 3-7. In this
mode, the prediction signal is directly obtained by de-blocking and up-sampling the 8x8 luma
block inside the corresponding lower layer picture.

In H.264/AVC SVC, the residual prediction is performed in spatial domain. In the

inter-layer, consecutive spatial layers may have similar motion information. Thus, the

24

residuals of consecutive layers may have some correlations. The residual information is coded

in the lower resolution layer using a bi-linear filter with constant border extension.

8x8 [--8x4- Direct,

16x16,
16x8,
8x16

4 l

16x16 16x16

'S
*
S0

454

16x16

—
[@)
a0

8x|16

08

16x16 16x16

Figure 3-6 Up=sampling of motion data [8]

Intra

4

Intra-BL | Intra-BL

Intra-BL | Intra-BL

Figure 3-7 Up-sampling of intra texture [8]

3.4 SNR Scalability

In the SNR scalability, H.264/AVC-compatiable transform coding is used. For the residual

macroblocks, the coding as in H.264/AVC including transformation and quantization is

25

employed. For each macroblock, the coded block pattern (CBP), and the conditioned on CBP
the corresponding residual blocks are transmitted together with the macroblocks modes, intra
prediction modes, reference picture indices and motion vectors using the B or P slice syntax
of H.264/AVC. For that, the quantization error between the SNR base layer and the original
sub-band pictures is re-quantized exactly using the same methods as for the base layer but
with a finer quantization step size. In the SNR scalability, we can divide into two aspects:

Coarse Granularity Scalability (CGS) and Fine Granularity Scalability (FGS).

3.4.1 CGS

The mechanism of CGS is similar as spatial scalability. The CGS also can be realized by a
layered coding. Each CGS layer has its own motion information and temporal prediction. On
top of the SNR base layer, the enhancement layer is coded. For that, the quantization error
between the SNR base layer and the+original pictures is transformed and quantized exactly
using the same method as for the base layer but with a finer quantization step size. The
enhancement layer with the base layer can be used the same method again. Figure 3-8

illustrates the idea.

aY - Transform Entropy
* L/ “~| Scal./Quant. > Coding)Base
r Layer
Intra
Prediciton
Y \ -
M MDe Inv. Scaling,
Dyadic - AN~ Inv. Transform
GOP >» Decomposition .
OLa.GOP P - Transform 3 Entropy
MeT? ~|._Scal/Quant. Coding | Enhancemen
¢ Layer 1
Y
Me Inv. Scaling,
e Inv. Transform
Transform Entropy 3
A -)
“1 Scal./Quant. Coding Enhancemen
Layer N

Figure 3-8 CGS SNR scalable coding scheme [10]

26

3.42 FGS

In order to support fine granularity scalability (FGS), we have introduced an algorithm
so-called progressive refinement slices. The algorithm encodes coefficients in order such that
“more significant” coefficients are coded first. By arranging the bit stream in this way, we can
truncate the bit stream at any arbitrary point and retain the “more significant” coefficients first,
so that the quality of SNR base layer can be improved in a fine granular way. The progressive
refinement in FGS uses cyclic block coding. The coefficients are scanned in zig-zag scan as
shown in Figure 2-10 and the current scan position in a given coding pass will from differ
from one block to another. When a coding pass in one block is finished, we need to change
the next block to perform a coding pass. In general, the progressive refinement encodes the
DC coefficient first in the same cycle for every block. In next cycle encodes the other
coefficients. This is shown in Figure 3-9. This progressive refinement slices using cyclical
block coding can improve the quality of every bloek averagely and is in order to support fine

granular quality scalability.

\ \ -~ ~ <
\ Coding Cycle 2 \\\
\\
Coding Cycle 0 —_— - — -~ —_——
L \ LN A V] /\\ — -~ -
AL N AL AL b A
) (\ (‘ 7 N (\,’ \ '7\
Bit-plane 7 | | I 1
Bit-plane 6 I | | | I I: :‘ I
Bit-plane 5 | k> : : [| | : :: i [] : :
1
Bit-plane 4 Sacll I Ac| | | I | 1Al
; 21 2 | 2
Bit-plane 3 l I||loc | | ‘ l I: :‘ AC | |
Bit-plane 2 I C | 0 I | DC I |: : 1 I |
. AC |1
Bit-plane 1 I | I I 0 I 1 |: : I |
Bit-plane 0 | I I I 1 |
JU_| | ! (
—\ \S=rd==" — ===
/ Block 0 Block 1 Block 2 Block 3

End-of-Block (EOB) = 0 Zlgzag SCan

Raster Scan

A\ 4

Figure 3-9 Scheme of Cyclical Block Coding

27

In FGS layer, a block is coded using two passes: significant pass and refinement pass.
The significant pass encodes the coefficient that became significant in the enhancement layer.
The refinement pass encodes the coefficient for which a nonzero value has already been
coded in the previous coding pass. At each cycle, for the significant pass, the coefficients are
scanned in zig-zag order for every block, and all zero values are coded up to and including the
first nonzero value. Then, the next block is processed. Each coding cycle in a block includes
an End-of-Block (EOB) symbol, a Run index, and a non-zero quantization index. In
refinement pass, refinement values are coded when all significant values have been coded for
all block. Figure 3-10 is an example of a slice consists of four blocks having eight coefficients

each.

Blocko0 |0 1O O A (O /B |O (1 (O |1 |C |D |E |O |O |O
Block1 |F |0 {14 |0 (1 |0 |O (O |O (O |O |O |O |G |O |O
Block2 |4 11 |1 |1 (0%}{0 (O [H |I |O |O |J |O |O |[K |O
Block3 fO (L O M |O /1 (1 }O0O {40 |O |O |O |O |O |O |O

Figure 3-10 Example of significant'and refinement pass [11]

Initially, in the significant pass, we encode the first nonzero value for each block. So the
coefficient for each cycle can be discussed in the follows:
Cycle0=0:{000001}1:{01}2:{1}3:{000 1}
Cycle1=0:{01}1:{01}2:{1}3:{1} Cycle2=1:{EOB}2:{1}3:{EOB}
Cycle3=2:{1} Cycle4=2:{EOB}

The symbol of EOB indicates the last significant coefficient flag.

In the refinement pass, each cycle only can encode one refinement value for each block. So
the finally coefficient can be presented in the follows:
Cycle0=0:{000001}1:{01}2:{1}3:{0001} Cycle1=0:{01}1:{01}2:{1}3:{1}
Cycle 2 =0 :{EOB} 1 :{EOB} 2 :{1} 3 :{EOB} Cycle 3=2:{1} Cycle 4 =2 :{EOB}

Cycle 5=0:{A}1:{F} 2 {H} 3 :{L} Cycle 6 =0 :(B} 1 :{G}2 :{I} 3 :{M}

Cycle 7=0:{C}2:{J} Cycle 8=0:D}2 (K} Cycle 9 = 0 :{E}

28

3.5 Combined Scalability

Figure 3-11 is an example of the combination of spatial, temporal and quality scalability. In
the same resolution layer, we can use the MCTF to achieve the temporal scalability. In
different resolution layer, we can use the inter-layer prediction to code different resolution
picture. In addition, in every layer, we can adjust the quantization for quality scalability. This

can provide a wide range of temporal, SNR, and spatial scalability.

Spatail Base Layer

GOP Boundary
I :
| |
3 I 1 2 1 3 1 2 1 L3 I
SNREnh. Layer2 | L[] H H H H H H H
160Kbits's | |
| |
| I
I
3 I 1 2 1 3 1 2 1 3
Spatail Enh. Layer _ SNREnh. Layer | k | f f i # i i i k I
palal B, Ly 160kbits's P |
ZiE|S . |
CIF 30Hz 160-480Kbits/s I
CIF 15Hz 80-240Kbits/s _ | ‘ |
CIF 7.5Hz 40-120kbits/s - |
1 3 1 1
CIF 3.75Hz 20-60Kkbits/s SNR Base Layer % I H H H H
160kbits/s | |
\ \ \
| I\Qter-Layer Prediction \\ \\ I
I | | 1
il L il I
SNR Enh. Layer 2 ¥ B' | B? |/ Al
40Kkbits/s /’ /’ /’ /’ // |
\ 7 g / o
|
SNR Enh. Layer | B’ B! B’ Al
40kbits/s | I
|
QCIF 15Hz 40-120kbits/s | |
QCIF 7.5Hz 20-60Kkbits/s SNR Base Layer B! |
QCIF 3.75Hz 10-30Kkbits/s 40kbits/s | I
]

Temporal Enh. Layer 1

Temporal Enh. Layer 2

Temporal Enh. Layer 3

Temporal Base Layer

Figure 3-11 Combined scalability

29

Chapter 4
DSP Implementation

Environment

As discussed previously, our project involves the implementation on digital signal processors
(DSPs). In this chapter, we briefly describe the DSP platform environment. In our DSP board,
we use the Sundance module (SMT395). Its main chips are the TMS320C6416T DSP made
by Texas Instrument and the Xilinx Virtex II Pro FPGA. We will introduce the DSP chip and
the DSP board. In addition, we will also introduce-the software development tool, the Code

Composer Studio (CCS), and the'code development environment for TT DSP.

4.1 The DSP Board

The DSP board use in our implementation is the Sundance module (SMT395) shown in
Figure 4-1. SMT395 is used the 1GHz 64-bit TMS320C6416T DSP, which is manufactured
using the latest 90nm wafer technology and it offers high fixed-point processing power. The
SMT395 is supported by the TI Code Composer Studio and 3L Diamond RTOS to enable
full MultiDSP systems with minimum efforts by the programmers. It provides a flexible
platform for the next generations of telecom systems, image processing applications, medical
equipment and industrial solutions. We list some specifications of SMT395 modules as

follows [12].

® [GHz TMS320C6416T Fixed Point DSP
® 8000MIPS peak performance

30

Xilinx Virtex II Pro FPGA. XC2VP30-6 in FF896 package.

256Mbytes of SDRAM @ 133MHz

Two Sundance High-speed Bus (SOMHz, 100Mhz or 200MHz) ports 32 bits wide
Eight 2.5Gbit/sec Rocket Serial Links (RSL) for Inter Module communications
8Mbytes FLASH ROM for configuration/booting

JTAG Diagnostics Port

.....

—— TOP TIM CONNECTOR

__ FPGA

Interfaces for
Communication
resources

ﬁ_
N—

=

DSP
=

— BOTTOM TIM CONNECTOR

Figure 4-1 SMT395 module

4.2 The TMS320C6416T DSP Chip

The TMS320C6416T is the highest-performance fixed-point DSP generation in the
TMS320C64x series of the TMS320C6000 DSP platform family. It is based on the
second-generation high-performance, advanced VelociTI Very-Long-Instruction-Word (VLIW)

architecture developed by Texas Instruments [13], making this DSP an excellent choice for

31

wireless infrastructure applications. The functional block and DSP core diagram of

TMS320C64x series is shown in Figure 4-2.

CB4x Digital Signal Processar
| vort |-+
L1P Cache
. - Dirsct Mappas
a8 16K Bytas Total
SDRAM + = I EMIF & I..‘_|_
[sesram Jesqas | v
ZET SRAM CEedx DEP Caors
Inatructlon Fetch Control
__FIFCI- - Reglatars
Ingtruction Dispateh
- agvanced Instruction Packet
ROMIFLASH Ml Cantrol
inetruction Decods Logic
UQ Devices Data Path A Data Path B
L Tast
& Raglater Flls E Raglater Flls
B . [ES1-A1E 1 [B3-E1E ||| sgvanced
N MCEEP2 | [A15-40)| B815-80 ||| jncorcurt FHH=
] Emulation
————
-i I.L1 I.s1 I .M1I o I |.|:|2 I.uzl .szl .L2| Intarrupt
UTOPIA: I Control
Up fo 400 Mbpa Jroen | | Enhanced L2
DMA Memory
Mastar ATMC l = I'| controter 1024K c
= | | Ed-channel Bytes
McBiPa: I'__ 1 l ! ¥
Framing Chips: —i MCBSRT | I
H.100, MVIP, |
SCEAT1LE1 |
L - o n
ACST Davices, ¥ L1D Cache
§PI Devicas, 2-way Sat-associstiva
Codaca 11 meespo fes 18K Byies Total
L.
18| | orwopen
B [it~y bl
| cPIiof1s:at |
az || |
T e
| |
| or |
| | Boot Configuration
| poit | PLL Power-Diown
S —— o [x1, %8, ®12, Lagie
and x20)
Interrupt
Saelector

Figure 4-2 Block diagram of the TMS320C64x DSPs [13]

The C6000 core CPU consists of 64 general-purpose 32-bits register and 8 function units.
Features of C6000 devices include [14]:

® Advanced VLIW CPU with eight functional units, including two multipliers and six

arithmetic

32

B Executes up to eight instructions per cycle.
B Allows designers to develop highly effective RISC-like code for fast
development time.
® Instructing packing:
B Gives code size equivalence for eight instructions executed serially or in
parallel.
B Reduces code size, program fetches, and power consumption.
® (Conditional execution of all instructions:
B Reduces costly branching.
B Increases parallelism for higher sustained performance.
® Efficient code execution on independent functional units:
B Efficient C complier on DSP benchmark suite.
B Assembly optimizer for fast development and improved parallelization.
® §/16/32-bit data support; providing.efficient memory support for a variety of
applications.
® 32 x 32-bit integer multiply with32-or 64-bit result.
The C64x extensions add enhancements to the C6000 architecture which includes:
® Register file enhancement.
® (Quad 8-bit and dual 16-bit extensions for data flow.
® Additional functional unit hardware.
]

Increased orthogonally instruction set.

4.2.1 Central Processing Unit of C64x

The C64x DSP core contains 64 32-bit general purpose register, program fetch unit,
instruction decode unit, two data path which each with four function units, control register,
control logic, advanced instruction packing, test unit , emulation logic and interrupt logic. The
program fetch, instruction fetch, and instruction decode units can arrange eight 32-bit
instructions to the eight function units every CPU clock cycle. The processing of instructions

occurs in each of the two data paths (A and B) shown in Figure 4-2, each of which contains

33

four functional units and one register file. The four functional units can divide into four
operations. The first unit is for multiplier operations (.M). The second unit is for arithmetic
and logic operations (.L). The next one is for branch, byte shifts, arithmetic operations (.5).
The last unit is for linear and circular address calculation to load and store with external
memory operations (.D). The details of functional units are described in Table 4-1.

Each register file consists of 32 32-bit registers for each four functional unit reads and
writes directly within its own data path. That is, the functional units .L1, .S1, .M1, .D1 can
only write to register file A. The same condition occurs in register file B. However, two
cross-paths (1X and 2X) allow functional units from one data path to access a 32-operand
from the opposite side register file. The cross path 1X allow data path A to read their source
from register file B. The cross path 2X allow data path B to read their source from register file
A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock cycles. This
allows the same register to be used as a data-cross-path operand by multiply functional units

in the same execute packet. The detail features about the C64x CPU are introduced in [13].

Table 4-1 Functional.units and operations performed [15]

Function Unit Operations

Lunit(.L1, .L2) 32/40-bit arithmetic and compare operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit and Quad 8-bit arithmetic operations

Dual 16-bit and Quad 8-bit min/max operations

34

Table 4-2 Functional units and operations performed [15]

Function Unit

Operations

S unit (.S1, .S2)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit and Quad 8-bit compare operations

Dual 16-bit and Quad 8-bit saturated arithmetic operations

M unit (M1, .M2)

16 x 16 multiply operations
16x32 multiply operations

Dual 16 X"‘16 and Quad 8 x 8 multiply operations

1
J

~|-Dual 16:x 16 multiply with add/subtract operations

Quaﬂ 8 x 8 multiply with add operations
Bit expansion

Bit interleaving/de-interleaving
Variable shift operations

Rotation

Galois Field Multiply

D unit (D1, .D2)

32-bit add, subtract, linear and circular address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset(.D2 only)

Loads and stores doubles words with 5-bit constant

Loads and store non-aligned words and double words

5-bit constant generation

32-bit logical operations

35

4.2.2 Memory Architecture and Peripherals

The C64x DSP is a two level cache-based architecture. The level 1 cache can be separated
into program and data space. The level 1 program cache (L1P) is a 16 K-bytes direct mapped
cache and the level 1 data cache (L1D) is a 16 K-bytes 2-way set-associative mapped cache.
The level 2 (L2) consists 1024 K-bytes memory space for cache (up to 256K-bytes) and
unified mapped memory.

The EMIF provides the interfaces for the DSP core and external memory, such as
synchronous-burst SRAM (SBSRAM), synchronous DRAM (SRAM), SDRAM, FIFO and
asynchronous memories (SRAM and EPROM). The EMIF also provides 64-bit-wide (EMIFA)
and 16-bit-wide (EMIFB) memory read capability.

The C64x contains some peripherals such as enhanced direct-memory-access (EDMA),
host-port interface (HPI), PCI, three multi-channel buffered serial ports (McBSPs), three
32-bit general-purpose timers and‘sixteen, generalspurpose I/O pins. The EDMA controller
handles all data transfers between the level 2 (L.2). cache/memory and the device peripheral.
The C64x has 64 independent channels.“The HPI is a 32-/16-bit wide parallel port through
which a host processor can directly access the CPUs memory space. The PCI port supports

connection of the DSP to a PCI host via the integrated PCI master/slave bus interface.

4.3 TI DSP Code Development Environment

TI supports a useful GUI development to DSP users for developing and debugging their
project: the code composer studio (CCS). In this section, we will give a briefly introduction
about this development environment. The tutorial [16] introduces the key features of CCS. A
DSP users needs to familiar with the coding development tool for building project on DSP

platform efficiently.

4.3.1 Code Composer Studio

Code Composer Studio (CCS) is a key element of the DSP software and development tools

from Texas Instruments. It extends the basic code generation tools with a set of debugging and

36

real-time analysis capabilities which supports all phases of the development cycle shown in

Figure 4-3.

Design Code & build Debug Analyze

conceptual ; greale project, ’ syntax che_cklng, > real-tlme
lanning write source co_de, proh_e points, d_-&ll.ugglng,_

P configuration file logaing, etc. statistics, tracing

T | T

Figure 4-3 Development cycle [16]

The CCS has the following components which work together as shown in Figure 4-4:
B TMS320C6000 code generation tools
Code Composer Studio Integrated Development Environment (IDE)

DSP/BIOS plug-ins and W ,

Target

CoOoOCOO0O0O0C0

o
o
=]
o
=]
(=]
(=]
o

0000000

Code Composer editor

I i
source files | € h
DSP/BIOS API
i Code

[generation
cfg.cmd . tools
cfg s6x Code Composer project
craho Compiler,

assembler,
Inker._.

o
o
i+]
o
=]
o
=]
(=]

OLE
application pspmios sra party Fe—

using RTDX plug-ins plug-ins | executable DSP application program

Code Composer debugger - DSP/BIOS
DX
Host emulation support

Target hardware

Figure 4-4 Code composer studio development [16]

37

The code generation tools provide the foundation for the development environment
provided by the Code Composer Studio such as C complier, assembler, assembly optimizer,
linker, archiver, run-time-support libraries, cross-reference lister and absolute lister. The code
composer studio integrated development environment (IDE) is for editing, building, and
debugging DSP target programs. The code composer studio plug-ins provided with
DSP/BIOS support such real-time analysis. It can be used by programmers to visually probe,
trace, and monitor a DSP application with minimal impact on real-time performance. The
DSP/BIOS API provides the real-time analysis capabilities such as: program tracing,
performance monitoring and file streaming. In addition, TI DSP provides on-chip emulation
supports that enables code composer studio to control program execution and monitor
real-time program activity. The RTDX capability is exposed through host and DSP APIs,

allowing for bi-directional real-time communications between the host and DSP.

4.3.2 Simulation Tools

In the code development, we use the DSP board SMT395 to run the project. But the simulator
can profile for analyzing coding efficiency.. In-CCS; the C64x CPU Cycle Accurate Simulator
can simulate the cycle of the C64xx processor accurately. This is faster than the real system
because it does not simulate the peripherals and the cache system. Instead we use the C6416
Device Cycle Accurate Simulator to simulate the C64x XDS510 emulator. It simulates the
C64x processor and supports L1D, L1P, L2 Cache, EDMA, QDMA, Interrupt Selector,
McBSP(3), Timer(3), TCP, VCP,EMIF. It also supports the interface with SDRAM and
Generic sync RAM Memory models. The C6416 Device Cycle Accurate Simulator is closer
to the real system. We use C64xx XDS510 emulator to verify the project. The
TMS320C6416T hardware is connected via the XDS510 emulator, which sets the I/O ports on

the DSP platform. Usually, the cycle provided by the simulator is less the real system.

38

4.4 Code Development Flow

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than coding by hand in assembly. The advantages allow the
compiler to do all the laborious work of instruction selection, parallelizing, pipelining, and
register allocation. These features simplify the maintenance of the code, as everything resides
in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases described
in Figure 4-5. It includes phases 1-3. These phases instruct us when to go to the tuning stage
of phase 3. What is learned is the importance of giving the compiler enough information to
fully maximize its potential. An added advantage is that the compiler provides direct feedback,
there are some very simple steps we can take on pass complete and better information to the
compiler allowing us a quicker start in_maximizing compiler performance. The following

items describe the goal for each phase [17]:

® Phase 1: Developing“C code“without any knowledge of the C6000. Use the
simulator profiling tools+to.identify any.inefficient area in C code. Improving the
performance of the C code, proceed to phase?2.

® Phase 2: Use techniques that belongs the DSP to improve the C code. Use the
simulator profiling tools to check the performance. It the code is not as efficient as
we would like it to be, go to phase3.

® Phase 3: Extract the time-critical areas from the C code and rewrite the code in

linear assembly. We can use the assembly optimizer to optimize this code.
TI provides high performance C program optimization tools, and they do not suggest the

programmer to code by hand in assembly. Coding the program in phase 1 is easier than phase

3 and can cost less time.

39

Phase 1: Write C code
Development C Code

Complete

)

Yes—><

Complete

)

Compile
A
Profile
No
Phase 2: Refine C code
Refine C Code
A
Compile
Yes Y
Profile
More C
optimization?
Phase 3: e
Write Linear Write linear assembly
Assembly

A

Assembly optimize

A

No Profile

Yes

< Complete >

Figure 4-5 Code development [17]

40

4.4.1 Compiler Optimization Options

The CCS compiler can accept C/C++ source code and produce C6x assembly language source
code. The Figure 4-6 shows the working flow of the compiler. It is able to perform various
levels of optimization. This complier can be used to optimize code size or executing time. In
this project, we only concern the executing time. The complier specifies the —On option in the
command line which can control the optimization level. The n denotes the level of

optimization (0, 1, 2, and 3) and their options are given below [18]:

- Performs control-flow-graph simplification

- Allocates variables to registers

- Perform loop rotation

- Eliminates unused code

- Simplifies expressions and statements

- Expands calls to functions‘declared inline
® ol

Performs all —o0 optimizations, plus:

- Performs local copy/constant propagation

- Remove unused assignments

- Eliminates local common expression
® 02

Performs all —o1 optimizations, plus:

- Performs software pipelining

- Performs loop optimizations

- Eliminates global common sub-expressions

- Eliminates global unused assignments

- Converts array references in loops to incremented pointer form

- Performs loop unrolling

41

-03

Performs all —02 optimizations, plus:

Removes all functions that are never called

Simplifies functions with return values that are never used

Inline calls to small functions

Reorders function declarations; the called functions attributes are known when

the caller is optimized

Propagates arguments into functions bodies when all calls pass the same value

in the same argument position

Identifies file-level variable characteristics

v ClC++
. source
. files

TR

—— ="
| C/C++ compiler |

I I

[Parser |

I I

I I

I Optimizer I

o (optional) I

Assembly optimizer | I
r———— 4 - al

ssembl I Code

| YN I
| | Preprocessor [~ generator |
S I ______ __II
g ol

: Assembler
. SOurce .

i

Assembler

I

. COFF .
. object -

With the linker option (-z)

files

LI:

Linker

I

+Executable
. COFF file

Figure 4-6 C/C++ compiler [18]

42

Chapter 5
H.264 Encoder Implementation and
Optimization on DSP Platform

In the early chapters, we introduce the H.264/AVC and the environment of the DSP
implementation. In this chapter, we discuss the implementation of H.264 video encoder on the
DSP C6416T board. In our implementation, we only support the H.264 baseline profile. First
we describe the source code x264 which is a free library for encoding H.264/AVC streams.
Then we expand some existing acceleration methods on the mode decision to speed up the
x264. We also describe the procedute of our implementation work and how we optimize the
x264 video encoder for the DSP_implementation. Finally, we compare the performance
between the modified codes with the original ones and give some experimental results of the

whole system.

5.1 Introduction to x264

Like the previous video standards, H.264/AVC specifies only a decoder, therefore allowing
for improvement in compression rate, quality and speed in designing the encoder. The x264 is
an open source encoder of H.264 and has been used in many popular applications such as
ffdshow [19] and ffmpeg [20]. All the documents and software could be downloaded from
[21]. The x264 shows better quality than several commercial H.264/AVC encoders. Table 5-1
shows that when we encode the same pictures, x264 is about 18 times faster than the reference
software JM9.8 [22]. Figure 5-1 is the rate-distortion comparison between JM9.8 and x264.
At the same PSNR, x264 produces less than 6% more bitrates of JM. Its rate-distortion
performance is close to that of IM9.8. So we choose the open source code x264 instead of IM

as the starting point for implementation on DSP.

43

Table 5-1 Performance of JM9.8 vs. x264

Test Sequence QP JMO9.8(fps) x264(fps)
28 1.4 16.8
Stefan
36 1.45 20.1
28 1.8 38.6
Akiyo
36 1.92 44.2

Simulation Condition

Frame:300 Intra period:100 IPPPP

Environment

CPU: 2.2G RAM: 256kB

RD cure of CIF sequence, stefan

PSNR(dB)

bit-rate(kbps)

Figure 5-1 Rate-distortion of JM9.8 and x264

5.2 Proposed Acceleration Method

In the early chapter, H.264 has shown significant rate distortion improvements as compared to
the other standards for video compression. It can be coded with 7 different block sizes for
motion-compensation in the inter mode, and various spatial directional prediction modes in
the intra mode. To achieve a higher coding efficiency, H.264 calculates rate distortion cost

(RD cost) of all possible modes and chooses the best one having the minimum RD cost. This

44

increases the complexity and takes a lot of computing time. In order to reduce the high
computational complexity, the x264 uses a few techniques to increase the speed in mode
decision. In the next section we describe these speed-up techniques in x264. Then we propose
a few other methods and show the simulation results which can efficiently reduce the

computational cost by 13% with similar visual quality and bits rate of original x264.

5.2.1 Mode decision in x264

In JVT, for P frames, we need to select the best mode from a set of allowable modes: {SKIP,
P _16x16, P_16x8, P_8x16, P_8x8, P 8x4, P_4x8, P _4x4, [4MB, 116MB}. Examining all
possible combinations of modes can be a big burden on the encoder. The x264 uses a new
algorithm to reduce the complexity on mode decision. The new algorithm includes the

following steps:

A. Reduce the number of:potential-modes.

B. Restrict the set of past previously reference pictures.

A. Reduced the number of potential modes

The x264 eliminates ME for some block types in the inter mode. The inter modes include the
SKIP mode and many different block types (P_16x16, P_16x8, P 8x16, P 8x8, P 8x4, P_4x8,
P 4x4). In x264, calculating RD cost is jointly done with mode decision. For the inter modes,
the SKIP mode refers to the 16x16 mode, where no motion and residual information is
encoded. So no motion search is required and it has the lowest complexity. In x264, the SKIP
has the highest priority. As for the decision on block types, the x264 algorithm checks whether
the error surface versus block size is monotonic, that is, whether the current macroblock has
the same tendency of using smaller block size (sub-macroblock partition) or larger block size.
The error surface is built by initially 3 modes (block sizes): P_16x16, P_8x8 and P_4x4.
When RD cost of P_8x8 mode is less than RD cost of P_16x16 mode, this means that the

current macroblock may have the same tendency of using small block size. Then we check the

45

P_4x4 mode. Otherwise, if RD cost of P_16x16 mode is less than RD cost of P_8x8 mode, it
means the P_16x16 mode probably has the least RD cost. Then we skip the other inter modes.
The next decision of whether to test other modes P_16x8, P_8x16, or finer sub-macroblock
partition is based on the comparison between RD cost of P_8x8 mode and RD cost of P_4x4
mode. If RD cost of P_8x8 mode is less than RD cost of P_4x4 mode, it means the best mode
is P_8x8 mode. Then only the P_16x8, P_8x16 modes are further tested. Otherwise, if P_4x4
is the best mode, then the P_16x8, P_8x16, P_4x8, P_8x4 modes are further tested. Therefore,
if P_4x4 is the best mode among P_16x16, P_8x8, P 4x4, all the inter modes need to be

tested. This procedure is restated as follows.

® Stepl: Check the SKIP mode. If the condition is satisfied, select the SKIP mode as
the best mode, then stop; otherwise go to Step2;

® Step2: Check P_16x16 and P_8x8. If (RDcost16x16<RDcost8x8), go to Step7;
otherwise, go to Step3;

® Step3: Check P_4x4; if(RDcost4x4<RDcost8x8), go to Step4; otherwise, go to

Step3;

Step4: Check P_16x8, P"8x16, P_4x8, P 8x4; go to Step6;

Step5: Check P_16x8, P_8x16; go to Step6;

Step6: Select the best inter mode. Then check the intra modes; go to Step7;

Step7: Choose the best mode among all the tested modes.

In Stepl, the SKIP mode condition is a special case. Because in the SKIP mode, where
no motion and residual information is encoded. So the SKIP mode can save the encoding time
and bit rates. This is why the SKIP mode dominates among all modes at low bit rates. A block
is said using the SKIP mode in a P slice when the following set of four conditions is satistied

[23]:

® The best motion compensation block size is P_16x16.
® The reference frame is the previous frame.

® The best motion vector is the predicated motion vector (regardless of this being the

46

zero motion vectors or a non-zero one).

® The transform coefficients of the 16x16 block size are all quantized to zero.

The x264 algorithm, we give the SKIP mode the highest priority. Although the first
condition will not sufficient for the SKIP mode prediction, it is “good enough”. In x264, we
actually intend to reduce the computational cost by predicting a percentage of macroblocks in
the SKIP mode based on the spatial neighborhood information without any overhead

computation. The SKIP mode conditions are reduced to the following set of two items:

® The surrounding macroblock is using the SKIP mode.

® The transform coefficients of the 16x16 block size are all quantized to zero.

These two conditions suggest that if one of macroblocks on the top, left, top-left and
top-right of the current MB in the-current picturesis using the SKIP mode, then this mode
pattern can be a good indication that the current macroblock can be skipped. This is due to the
fact that the likelihood of the current macroblock belonging to a stationary part of the picture
is high, and thus it is a candidate for. skipping. The proposed spatial predictor is shown in
Figure 5-2 using the two conditions. Stepl can save a lot of computation. The flow chart of

mode decision algorithm of x264 can be shown in Figure 5-3.

T-L T T-R

Figure 5-2 Spatial prediction for skip mode decision

47

[s

Step1:

Yes Check the

SKIP mode

Step2: No

Check P_16x16 and P_8x8

RDcost16x16
<RDcost8x8

Check P_4x4

RDcost8x8
<RDcost4x4

Step4:

Check P_8x4 and P_4x8

A

Check P_16x8 and P_8x16

Step6:

A A

Decide the best inter mode

A

Check the intra mode

Step7:

A

Select best mode between inter and intra mode

A

END >

Figure 5-3 Mode decision algorithm of x264

48

B. Restrict the set of reference pictures in motion estimation

In JVT, the best reference frame is decided for each macroblock type (P_16x16, P_16x8,
P 8x16, and P_8x8). This takes lots of time and increases the complexity. For example, the
standard H.264 has 5 reference frames for P slice to decide, when we evaluate the RD cost for
P _16x16 mode. We need to calculate the RD cost five times for each reference frame to find
the minimal RD cost to decide the best reference frame for P_16x16. The same thing occurs
to the other block types. The computational complexity is proportional to the number of
reference frames. In order to reduce computations, x264 decides the best reference frame only
in P_16x16 mode. When we evaluate the other macroblock type, we only calculate the RD

cost of the reference frame which P_16x16 decided the best.

5.2.2 Fast Algorithms

As discussed in the previous section, we know x264 can speed up the frame encoding and
reduce the complexity of the mode decision of the reference software JM. However, there are
other algorithms that we can speed up the mode decision algorithm in x264. The following

techniques are included in our proposal.

A. Set a threshold between the P_16x16 mode and the P_8x8 mode [24]
B. Rearrange the inter mode checking order

C. Inter mode cost decide whether do intra mode

We will elaborate these techniques below and show the experimental results.

A. Set a threshold between P_16x16 mode and P_8x8 mode

Usually in a picture, large areas of background may be either still or under global motion,
which can be predicted well by the motion vectors of the neighboring blocks. In these areas,
the SKIP mode or the P_16x16 mode usually is the best mode since it has no or less MV

overheads. Figure 5-3 shows that the x264 mode decision algorithm needs to evaluate the RD

49

cost of P_16x16 and P_8x8 if the macroblock is not predicated as a SKIP mode. Because
optimal mode for the background areas is often the P_16x16 mode, the calculation of the RD
cost of P_8x8 is redundant. Therefore, we check only the P_16x16 mode at this point. If the
cost is smaller than the threshold, the mode decision process stops, the best mode is P_16x16
(Figure 5-4). To maintain the coding, the threshold is conservatively set by the minimum of

the costs of the 20 previous blocks of the same mode (P_16x16) plus a fixed value. That is,

TH . = min (cost,)+ATH

i€{i|l<i<20,MB i with mode 16x16}
In our simulations, ATH, ,,=1200. In addition, this parameter can also be used to
control the tradeoff between the complexity and quality. If ATH,, . is larger the P_16x16

mode is used more often and the process faster. This scheme is called Algorithm A (Figure

5-4). More details of it can be found in [24].

P_SKIP detection P_SKIP detection
Check P_16x16 and P_8x8 Check P_16x16

RDcost16x16
< Threshold

RDcost16x16
< RDcost8x8

Check P_8x8

No

Yes Yes

RDcost16x16

Check other inter mode < RDcost8x8

No

Check other inter mode

v 4

< Intra mode encoding > Intra mode encoding >

Figure 5-4 Block diagram of x264 and Algorithm A

50

B. Rearrange the inter mode checking order

Another observation is that, if the cost of a larger block-size mode is higher than the cost of
the current block-size mode, then the even larger block size modes may be excluded.
Similarly, if the cost of a smaller block-size mode is higher than that of the current block-size
mode, then the even smaller block-size may be excluded. We can use the idea to accelerate the

other inter mode algorithm. Here are the two methods:

1 Skip mode=> 16x16 => 8x8 => if 4x4<8x8 => 4x8, 8x4 (skip 8x16 and 16x8)
In x264, at Step3 (Figure 5-3) if RD cost of P_4x4 mode is less than RD cost of P_8x8
mode, we need to check the follows modes P _16x8, P_8x16, P_4x8 and P_8x4. But
since P_4x4 is the best mode in P_16x16, P_8x8, P_4x4, it often means that the current
macroblock has the tendency of using smaller block size. Checking the larger block-size
is not necessary. Therefore, we suggest that in, Step3, when RD cost of P_4x4 mode is
less than RD cost of P_8x8;.the P 4x8, P 8x4, P- 16x8 and P_8x16 modes are excluded
in checking (Figure 5-5). This scheme is called Algorithm B1. This algorithm is similar

as the fast mode decision in [25].

Step2: Step2:

Step3: Step3:

RDcost4x4 RDcost4x4

< RDcost8x8 < RDcost8x8
No Yes
No Yes J J
v
Check P_4x8 and P_8x4
Check P_16x8 Check P_4x8
and P_8x16 and P_8x4

Y A

Check P_16x8 and P_8x16

Step6: Step6:

A
< Intra mode encoding > < Intra mode encoding >

Figure 5-5 Difference between x264 and Algorithm B1

51

2 Skip mode=> 16x16 => 8x8 => 16x8, 8x16 => if 16x8 or 8x16 < 8x8 => skip all the
other modes
In this method, the P_16x8 and P_8x16 modes have higher priority than P_4x4, P_8x4,
and P_4x8. If either the cost of P_8x16 or P_16x8 is smaller than that of P_8x8, we
assume the larger block-sizes produce smaller costs. So, the best mode is chosen from
P 16x16, P_8x16 and P_16x8. Smaller block-size modes (all sub-MB modes of P_8x4,
P 4x8, and P_4x4) are excluded. If the cost for both P_16x8 and P_8x16 are higher than
that of P_8x8, it means the larger clock modes do not achieve lower costs and the
sub MB modes (P_8x4, P_4x8 and P_4x4) should be checked (Figure 5-6). This scheme
is called Algorithm B2.

Stepl:

i

Check P_8x8

v

Check P_16x8 and P_8x16

Compare the cost of P_8x16,
P_16x8 with that of P 8x8

Both are
larger than
P 8x8

Otherwise

Test the other inter Choose best mode from
modes (P_4x4, P_8x4 P 16x16,P 8x16
and P_4x8) and P_16x8

i i

< Intra mode encoding >

Figure 5-6 Fast Algorithm B2

C. Inter mode cost decide whether do intra mode

In H.264, after choosing the best inter mode, the cost associated with the spatial prediction
mode is calculated and compared with that of the best inter mode. The mode with the

minimum cost is determined as the encoding mode. In this process, the spatial prediction

52

encoding steps are performed for the intra mode. Usually the spatial prediction mode requires
more bits than the inter mode. Therefore, the spatial prediction mode is rarely chosen to be
mode of a macroblock except the special cases if sense change. The x264 algorithm assumes
that the inter mode have the higher priority than the intra modes for P or B images. So if the
inter modes have a good performance, no intra modes are to be checked. In order to skip the
unnecessary intra mode checking, we can set threshold called 7H;usa iner- The cost of the best
inter mode is compared with THuyq imer. If the cost of the best inter mode is less than
THinyra imer» then the inter mode is more efficient and the intra mode encoding is skipped
(Figure 5-7). This is called Algorithm C.

We can use a method to set the threshold 7%, inser-

TH. Mean (cost,)—ATH.

intra inter= . . . intra inter
- (i]1€i<20,MBintra) -

Mean value of RD costs of 20 previous macroblock encoded in intra mode of the previous
frames and current frame is calculates. The value of A THq iner is used to control the

tradeoff between complexity and-quality. In'Algorithm-C, we choose the A TH g inter =300.

Inter mode encoding test

The best inter mode
RDcost< THiqtra cost

Yes A4

Choose an intra mode

(=

Figure 5-7 Fast Algorithm C

53

5.2.3 Experimental Results

The experiments are conducted using the parameters in Table 5-2. Table 5-3 is the result of

x264 encoding the sequence Foreman, Mobile, Akiyo, Stefan with different QP from 28 to 40.

Table 5-2 Experimental parameters

Test sequence

Foreman, Mobile, Akiyo, Stefan

Frame number 300
Image size CIF (352x288)
Intra period 100

Reference frame

1

Table 5-3 Performance of x264

Sequence Foreman Sequence Mobile
QP Time(s) [PSNR(dB)bit-rates(Kbps) QP Time(s) |PSNR(dB)|bit-rates(Kbps)
28 16.16 37.4 573.51 28 17.85 34.13 2061.21
32 14.00 34.89 289.13 32 16.88 31.07 1084.72
36 12.24 32.56 159.57 36 15.19 28.24 507.04
40 10.79 30.33 100.3 40 13.22 25.75 252.61
Sequence Akiyo Sequence Stefan
QP Time(s) [PSNR(dB)|bit-rates(Kbps) QP Time(s) [PSNR(dB)|bit-rates(Kbps)
28 7.77 41.19 107.28 28 17.91 36.03 1551.02
32 7.24 38.72 57.68 32 16.46 33.17 858.15
36 6.79 36.37 32.73 36 14.86 30.49 481.96
40 6.47 34.15 20.45 40 13.20 27.92 290.06

54

A. Results of the Modified Algorithm

In the final algorithm, we induce the fast Algorithm A, B and C to speed up the x264 encoding
process. For algorithm B we choose the version B2. Table 5-4 shows a comparison between
our modified algorithm and x264. In this table, the APSNR(dB) and A bit-rates (%) denote
the differences of PSNR and bit rates and they are calculated according to the following
equation:

Bit number of modified algorithm — Bit number of x264
Bit number of x264

Abit —rates =

x100(%)

APSNR = PSNR of x264—PSNR of modified algorithm
And Time saving (%) denotes the amount of encoding time decrease in the total encoding

process. The amount of time saving can be calculated according to the following equation:

Encoding Time of . x264 — Encoding Time of modified algorithm
Encoding Time of x264

Time saving (Time(%)) = x100(%)

Referring to Table 5-4 it can be 'seen that.if the fast algorithm in use, the total encoding
time decreases by 13% on the average. Figure-5-8 are graphs comparing the rate-distortion
performed between the modified algorithm and x264. It can be seen that the PSNR of the fast

algorithm can achieve almost the same as x264.

Table 5-4 Performance Comparison between x264 and the modified Algorithm

Test sequence : foreman_cif.264

QP| APSNR (dB) /A\bit-rates (%) Time saving (%)
28 -0.06 1.37 15.89
32 -0.07 1.51 14.47
36 -0.06 1.65 12.69
40 -0.04 1.16 10.74

(a) Foreman

55

Test sequence : mobile_cif.264

QP| APSNR (dB) /\bit-rates (%) Time saving (%)
28 -0.01 -0.37 12.67
32 -0.03 -0.29 14.24
36 -0.04 0.13 13.62
40 -0.04 0.06 11.99
(b) Mobile
Test sequence : Akiyo_cif.264
QP| APSNR (dB) /\bit-rates (%) Time saving (%)
28 -0.03 0.5, 6.99
32 -0.04 0.49 5.38
36 0.03 0.73 3.08
40 -0.02 0.1 2.65
" (¢) Akiyo
Test sequence : Stefan_cif.264
QP| APSNR (dB) /\bit-rates (%) Time saving (%)
28 -0.03 0.5 16.12
32 -0.04 0.49 16.24
36 -0.06 0.73 14.91
40 -0.05 0.1 13.63

(d) Stefan

56

Foreman

X264

———= — the fast algorithm

600

rate(kbps)

bit-

(a) Foreman

Mobile

X264

——= — the fast algorithm

2000 2200

1400 1600 1800
bit-rate(kbps)

1200

1000

400

200

(b) Mobile

57

Akiyo

o
, , , , , , h
€ | | | | | |
c | | | | | |
..m/ | | | | | |
o\ | | | | | | o
js) | ” | ” | ” \\\\\ 3
@© | | | A
= | | |
% | | |
M [| | !
[0} | | | o
8 Q9 N oo
X = ” ” ” &
ﬁ		[—— Q
B R	[
	\ !	
	\!	
I I 0\ I I		
	I\	
\\\\\\\\\\\\\\ [N R N (o		
I R A	I o	
T ” ” ! ©		
U o		
I	S	
R S N L		
I I I I I I I o
o - o o @ N © 0 M2
< < <t ™ ™ (s9] ™ ™
(@PXINSd

bit-rate(kbps)

(c) Akiyo

Stefan

X264

___| ——= — the fast algorithm

1200 1400 1600

1000

rate(kbps)

400

200

bit-

(d) Stefan

Figure 5-8 Rate-distortion (PSNR vs. bit-rates) of the x264 and the modified Algorithm

58

5.3 Complexity Analysis on DSP

Our goal is to implement x264 on the DSP board. In this section, we will describe the profile

of x264 on different DSP simulator. Then we will show the influence of memory system.

5.3.1 Complexity Analysis on Various Simulator

In section 4.3.2 we know that different simulator tools show different clock cycle results. In
this section, we profile the x264 encoder on different simulators to observe the ratio of each
function. We use the C6416 simulator and the C64xx simulator. The profiling results using the
two methods are shown in Figure 5-9 and Figure 5-10. The test sequence is 10 frames of
foreman and the image size is 176x144 (QCIF) and QP is 28. The profiling results of each
function in percentage are almost the same in C64xx and C6416. However, in Table 5-5 we
can see that the total cycles of the C6416 simulator are approximately 44 times of that of
C64xx. This is because the C64xx simulator only.counts the cycles of the DSP core processor,
but the C6416 simulator also count the memory access time. In the real system, we use the
DSP C64xx XDS510 emulator with 1GHz clock. Its results are almost the same as that of the
C6416 simulator. This means that we need-5 seconds to encode the 10 frames of “foreman”

sequence. We first need to solve the problem of the memory access time.

Table 5-5 Cycles on different simulators

Simulator C6416 C64xx Ratio (%)

Total cycles 5,396,046,677 122,147,133 44.1

59

H.264 encoder(x264) profile using C6416 simulator

Intra Others

DCblOCking 14% 1% M.E.

filter

M.C.
23%

Figure 5-9 Complexity profiling ofithe.H.264 encoder on the C6416 simulator

H.264 encoder (x264) profile using C64xx simulator

Deblocking Intra Otzh;rs
0

filter 12% M.E.

23%

Figure 5-10 Complexity profiling of the H.264 encoder on the C64xx simulator

60

5.3.2 Memory System

In the previous section, we identify the major bottlenecks in running the x264 encoder on a
DSP system. The actual cycles on the DSP platform are more than the CPU cycles. The
Co64xx CPU cycle accurate simulator ignores the time to access the instructions and data. But
on the real DSP platform need to consider the memory access time. Table 5-6 shows the cycle
distribution generated by the C6416 simulator. The core processing cycles are only 2.25% of
the total cycles. The stall cycles are the most critical part in the total cycles. In the memory
hierarchy of the DSP platform, the L1D is too small so that the data miss frequently occurs. In
Table 5-6 , the data cache miss rate is 96%. If the data miss occurs, the CPU needs longer
time to access data from the external memory. The numerous stall cycles means that the
system wastes a lot of time in transferring data. If the cache becomes larger, the data miss
frequency will decrease.

In section 4.2.2, we know ,that the DSP platform has 16K-bytes L1D cache and
16K-bytes L1P cache. The L2 is a_1024K-bytes SRAM. Because the L1 cache is too small,
we can use the L2 SRAM as a second 'level cache. In'the DSP platform, we can use the flag
L2 mode to control the size of SRAM and cache*in the L2 internal memory as shown in
Figure 5-11. If we use the L2 cache, it brings in a great improvement as shown in Table 5-6.
The data cache miss rate has reduced from 96% to 5.3% so that the stall cycles decreases a lot.
The percentage of the core cycles arises to 43%. In Table 5-6, we set the L2 cache size to its
maximum (256Kbytes located in the SRAM). The two-level cache produces the most benefit.

Because of the benefit of two-level cache, the speed can increase 19 times than the
original one. We can encode 10 frames of the sequence “foreman_qcif” within 0.3 second.
Figure 5-12 shows the profile of using L2 cache on the C6416 simulator. In the next section,
we use the profile of using the L2 cache as the starting program and accelerate its speed with

the two-level cache using various techniques.

61

All SRAM

31/32 SRAM

4-Way

L2 Mode

1516 SRAM
718 SRAM

‘ 4-Way ‘
\ 4-Way C?;ac;nel

3/4 SRAM

4-Way Gache

L2 Memory

Block Base Address

768Kbvtes

0x00000000

64 Kbytes

0x000EODOD

32Kbytes

0x000F0000

nnnnnnnnnn

39Kbytes

0x00100000

Figure 5-11 C6416 memory configuration [14]

Table 5-6 Effect of using L2 cache memory

C6416 simulator Qriginal e, L2 cache
Event Count (cycles)”{Percentage (%)| Count (cycles) | Percentage (%)
Total Cycles 5,396,104,222. | 282,805,109
Core cycles(excl. stalls) 121,411,824 2.25 121,411,880 42.93
NOP cycles 26,737,686 21.89 26,737,704 21.89
Stall Cycles 5,274,885,028 97.75 161,411,584 57.08
L1P Stall Cycles 4,165,028 0.08 83,460,201 29.51
L1D Stall Cycles 5,270,294,459 91.67 75,328,488 20.64
Instruction cache hits 44,494,904 95.94 44,494,990 95.94
Instruction cache misses 1,882,076 4.06 1,881,996 4.06
Data cache hits 2,408,873 3.98 57,282,572 94.71
Data cache read hits 2,371,679 5.75 40,988,195 99.05
Data cache write hits 31,194 0.16 16,294,377 85.3
Data cache misses 58,075,133 96.02 3,201,441 5.29
Data cache read misses 39,004,261 94.25 393,752 0.95
Data cache write misses 19,070,872 99.84 2,807,689 14.7

62

H.264 encode(x264) profile using C6416 simulator

Others

Deblocking Intra 4%

filter 11%

2%
Tran

Qu
15

5%

M.C.
17%

Figure 5-12 Profile Wiﬂ‘l L2 Cacﬁé using C6416 simulator
5.4 DSP Code Acceleration Methods

Improving the clock cycles of the” %264 ‘algbrithm is the main task of our system
implementation on DSP. In this section, we will describe several methods that can accelerate
the execution time on the C64x DSP. Some of these methods are supported by the features of
the Co4x.

5.4.1 Compiler Options

As discussed in section 4.4, the CCS compiler can transforms C code into efficient assembly
code. The compiler options have four optimization levels: register (-00), local (-o1), function
(-02), file level (-03). File level is the highest available optimization level. We choose the file

level optimization when implementing the x264 on DSP.

63

5.4.2 Fixed-point Coding

The C6000 compiler defines a size for each data type (Table 5-7):

Table 5-7 Size of different data type

Data Type Char Short Int Long Float Double

Size (bits) 8 16 32 40 32 64

The C64x DSP is a fixed-point processor, so it can only perform fixed-point operations.
Although the C64x DSP can simulate floating-point processing, it takes a lot of extra clock
cycles to do this job. The “char”, "short”, “int” and “long” are the fixed-point data types, and
the “float” and “double” are the floating-point data types. We test C64x DSP processing time
of the assembly instructions “add” and “mul” for different data types. Table 5-8 shows the
results. We can clearly see that the floating-point.data type need more computation time than
the fixed-point data types. Hence, we can accelerate our DSP codes in computation time by

converting the data types from floating-point-te-fixed-point.

Table 5-8 Processing time on the C64x for different data types

Assembly Char Short Int Long Float Double

Instruction 8-bit 16-bit 32-bit 40-bit 32-bit 64-bit
add 1 1 1 2 77 146
mul 2 2 6 8 54 69

5.4.3 Loop Unrolling

Loop unrolling expands small loops so that all iterations of the loop appear. It can increase the
number of instructions available in execution in parallel. It is also suitable for using software

pipeline. When the codes have conditional instructions, the compiler may not be known in

64

advance that the branch will occur or not. It needs more waiting time for the decision of
branch operation. If we do loop unrolling, some of the overhead for branching instruction are
reduced. Use loop unrolling can decrease the clock cycles but it often increases the code size.

So when we use loop unrolling, the code size may be a consideration.

5.4.4 Linear Assembly

Assembly code is generated by the CCS compiler or the assembly optimizer. Sometimes the
generated assembly codes are not efficient due to stalls or hazards. Converting parts of the C
codes into linear assembly codes is a good way to solve the problem. Rearranging the
assembly codes can avoid the stalls and hazards by hand. But this process generally is too
detail and very time consumption in practice. Hence, we do this process only on some
important functions. In x264, we rewrite the C code to assembly code only on the function of
dct and idct. When we use the linear-assembly, we do not need to specify the parallel
instructions, pipeline latency and register usage. These will be specified by the assembly
optimizer. We only need to modify the codes. Table 5-9 is the comparison between original
code and modified linear assembly code in detand idct. And Table 5-10 is an example of the

dct2x2 we write in linear assembly code. The details of linear assembly can be found in [17].

Table 5-9 Comparison between C code and linear assembly code

Original C code Modified Linear Reduction Ratio
(cycles) Assembly Code (cycles) (%)
det2x2dc 16 14 12.5%
dctdx4dc 87 49 44%
idctd4x4dc 80 53 34%
sub4x4 dct 97 48 51%

65

Table 5-10 Example of linear assembly code

Original C Code Modified Linear Assembly Code

static void dct2x2dc(intl16 _td[2][2]) | .global dct2x2dc

{ _dct2x2dc: .cprocd

int tmp[2][2]; reg d00,d01,d10,d11,
t00,t01,t10,t11

tmp[0][0] = d[0][O] + d[O][1]; LDH *+d[0],d00
tmp[1][0] = d[0][0] - A[O][1]; LDH *+d[1],d01
tmp[0][1] = d[1][0] + d[1][1]; LDH *+d[2],d10
tmp[1][1] =d[1][0] - d[1][1]; LDH *+d[3],d11
d[0][0] = tmp[0][0] + tmp[O][1]; ADD d00,d01,t00
d[0][1] = tmp[1][0] + tmp[L][L]; SUB d00,d01,t10
d[1][0] = tmp[0][0] - tmp[O][1]; ADD d10,d11,t01
d[1][1] = tmp[1][0] = tmp[1][1]; SUB d10,d11,t11

} ADD t00,t01,d00

ADD t10,t11,d01
SUB 100,101,d10
SUB tl0,t11,d11
STH d00,*+d[0]
STH d01,*+d[1]
STH d10,*+d[2]
STH d11,*+d[3]

.endproc

5.4.5 Other Acceleration Techniques

Other techniques for code speed up are: reduce memory access, use bit shift for multiplication

or division, declare variable or memory as constant, eliminate the unimportant function, etc.

66

5.5 Experimental Results

After algorithm and code acceleration, we present the experimental results on the speed and

the coding performance by encoding different kinds of video sequences.

5.5.1 Simulation and Acceleration Results

We first encode different video sequences using the released compilation mode with file level
optimization on the C6416 simulator. In Table 5-11, we can clearly see that if we use the
two-level cache, the reduction ratio is almost 94.6%. And after modification, the final

implementation is almost speedup 50.05% on the C6416 simulator as shown in Table 5-12.

Table 5-11 Comparison using the C6416 simulator with and without the L2 cache

Sequence QP Original With L2 cache | Reduction Ratio (%)
24 5,857,1415388 299,997,333 94.88
28 5,396,047,003 242,850,099 94.94
Foreman
32 4,791,033,572 235,541,515 95.08
36 4,270,633,918 220,994,332 94.83
24 2,477,711,618 143,512,051 94.21
28 2,407,798,347 139,733,601 94.20
Akiyo
32 2,349,115,427 136,120,778 94.21
36 2,337,257,965 136,816,145 94.15
24 5,920,104,560 312,644,701 94.72
28 5,728,222,344 301,657,203 94.73
Mobile
32 5,478,265,825 288,294,260 94.74
36 4,919,007,494 259,681,978 94.72
24 6,282,198,760 323,474,273 94.85
28 5,891,887,789 300,134,320 94.91
Stefan
32 5,523,460,593 279,967,886 94.93
36 5,064,125,114 259,003,037 94.89

67

Table 5-12 Comparison using C6416 simulator with original and accelerated code

Sequence QP Original Accelerated Reduction Ratio (%)
24 299,997,333 141,762,294 52.75
28 272,850,099 131,384,560 51.85
Foreman
32 235,541,515 119,525,198 49.26
36 220,994,332 110,162,459 50.15
24 143,512,051 78,220,964 45.50
28 139,733,601 76,657,427 45.14
Akiyo
32 136,120,778 75,355,147 44.64
36 136,816,145 74,970,281 45.20
24 312,644,701 152,720,909 51.15
28 301,657,203 143,165,216 52.54
Mobile
32 2883294,260 134,215,780 53.44
36 259,681,978 122,615,959 52.78
24 323,474,273 155,155,172 52.03
28 300,134,320 145,362,395 51.57
Stefan
32 279,967,886 135,718,672 51.52
36 259,003,037 126,202,732 51.27

5.5.2 Encoding Speed on DSP board

On the DSP board, we can use an internal timer to count the executing clock cycles on the
C6416T emulator. The 32-bit general-purpose timers in included in the DSP core processor.
Its clock is closer to the real system than that of the C6416 simulator. So we compute the
encoding time on the DSP board by using this internal timer instead of the C6416 simulator.
More information about this timer is described in [26]. Table 5-13 to Table 5-16 show the
results of encoding different sequences, whose frame number is 50 and picture size is

176x144 (QCIF) show that in encoding the sequence “foreman”, the fps (frames per second)

68

is 40.4, the fps of “akiyo” is 76, the fps of “mobile” is 24.2 and the fps of “stefan” is 26. We
can achieve namely real-time encoding, which is 30 fps. As discussed in the early sections,

the PSNR performance of the accelerated version is almost identical to the original x264

version.

Table 5-13 Results of the “foreman” sequence on the C6416 emulator

Sequence foreman_qcif
Clock cycles Average clock cycles| Conversion
QP fps
50 frames per frame (sec)
16 1,331,768,824 20,635,376 0.0266 37.5
20 1,269,304,288 25,386,086 0.0254 39.4
24 1,236,622,048 24,732,441 0.0247 40.4
28 1,200,254,168 24,005,083 0.0240 41.7
32 1,198,344,096 23{966,382 0.0240 41.7
36 1,194,814,936 23,896,299 0.0239 41.8

Table 5-14 Results of the “akiyo” sequence on the C6416 emulator

Sequence akiyo_qcif
Clock cycles Average clock cycles| Conversion
QP fps
50 frames per frame (sec)
16 606,605,336 13,333,307 0.0133 75.0
20 005,718,728 13,314,375 0.0133 75.1
24 659,000,184 13,180,004 0.0132 75.9
28 654,887,064 13,097,741 0.0131 76.3
32 648,843,728 12,976,875 0.0130 7.1
36 647,099,824 12,941,996 0.0129 71.3

69

Table 5-15 Results of the “mobile” sequence on the C6416 emulator

Sequence mobile_qgcif
Average clock cycles| Conversion
QP Clock cycles fps
per frame (sec)
16 2,171,652,688 43,433,054 0.0434 23.0
20 2,144,657,712 42,893,154 0.0429 23.3
24 2,143,3477,584 42,866,952 0.0429 23.3
28 2,011,821,640 40,236,433 0.0402 24.9
32 1,986,374,176 39,727,484 0.0397 25.2
36 1,943,237,440 38,864,749 0.0389 25.7

Table 5-16 Results of the “stefan’’ sequence on the C6416 emulator

Sequence stefanqcif
Clock cycles: Averagé clock éycles Conversion
QP . | fps
50 frames per frame (sec)
16 1,944,197,344 38,883,947 0.0389 25.7
20 1,920,824,192 38,416,484 0.0384 26.0
24 1,924,583,792 38,491,676 0.0385 26.0
28 1,915,755,304 38,315,106 0.0383 26.1
32 1,918,608,224 38,372,164 0.0384 26.1
36 1,907,222,528 38,144,451 0.0381 20.2

70

Chapter 6
H.264/AVC SVC Decoder

Implementation and Optimization on

DSP Platform

Chapter 3 gives an overview of scalable extension of H.264. We now discuss our
implementation of the SVC decoder on DSP. We describe the system architecture and the
procedure of our implementation work:Then we analyze the JSVM decoder which is the
reference software of H.264/AVC:SVC and-identify the most complicated elements in the
decoder. We also present a few téchniques that accelerate code execution and the acceleration
methods that take advantages of'the features-of €64x; Finally, we implement and show some

experimental results on the speed and the coding performance of our system.

6.1 System Architecture

Figure 6-1 shows the overall scalable extension of H.264 decoder architecture. When the
bit-stream enters the JSVM decoder, it can be split into the base-layer part and the
enhancement-layer part. The base-layer of the JSVM decoder is almost the same as the H.264
decoder. It includes entropy decoding, inverse quantization, inverse transform, motion
compensation and deblocking filter. The enhancement layer is similar to the H.264 decoder
but with a few modifications. The structure of decoder includes three types of scalability. In
the spatial scalable coding, the motion-compensated prediction and intra coding tools are
employed for both the base and enhancement layers. Each layer supports a different spatial
resolution. In order to increase coding efficiency, additional inter-layer prediction mechanisms

are incorporated. The inter-layer prediction includes techniques for motion, residual and intra

71

texture prediction. The information of inter-layer prediction needs to up-sample for the
enhancement layer. For improving the coding efficiency, the enhancement layer can take the
information from either the reference frame or the inter-layer prediction from the base layer.
Signals are controlled by SW3, SW4 and SW5 which is shown in Figure 6-1. For SNR
scalability, both CGS and FGS are supported. CGS uses the same inter-prediction mechanism
as the spatial scalable coding, but without the up-sampling operation. The other case is FGS.
FGS coding is based on so-called progressive refinement slices. The H.264/AVC CABAC is
extended to support the FGS. In the temporal scalability coding, the procedure is already
discussed in section 3.2.2 In the JSVM decoder, it uses the hierarchical-B prediction structure
(shown in Figure 3-5) for the temporal scalable coding. A decoded picture buffer (DPB)

method is to implement the temporal scalability.

Bit-Stream

DEMUX

> |Entr9py| Inverse Quantization
Codin, & Inverse Transform

 |Deblocking| > 5 Enhancement

'I Filter | Output Video

-m Frame
Bu

ffer

Enhancement layer

Deblocking
Filter

77X

Figure 6-1 System architecture of the SVC video decoder

72

6.2 Procedure of the Implementation Work

As discussed in section 6.1 we port the scalable extension of H.264 decoder on the DSP board.
Because JSVM is the only reference software that is available for SVC, it is our starting point
for porting. JSVM includes a H.264/AVC SVC encoder, a decoder and other some useful
tools, and these different programs share some common functions. It is developed on Visual
Studio platform. Hence, the first step is to extract the decoder from JSVM to make it a stand
alone program. In our implementation, we extract the H.264/AVC SVC decoder from the
reference software JSVM 5.0 [27].

After making the decoder an independent program, the next step is to part the code from
the Visual Studio (on PC) to the Code Composer Studio (CCS, the integrated development
environment for TI’s DSP). Because CCS does not support all Visual Studio C++

programming functionality, in this step there are some problems as described below.

(1) CCS itself does not provide the Standard Temporal Library (STL), but JSVM uses
STL a lot. Therefore, we found-a-S’Flcalled STLport [28] which can be ported to
many platforms, and after a proper: set-up of configuration, STLport can work
correctly on CCS.

% €6

(2) Exception handing is not supported by CCS. That is, the keywords “try”, “throw”
and “catch” of C++ can not be used in CCS, but those keywords are found in JSVM.
So all of these keywords must be removed and modified properly to ensure the

correctness of the whole code.

(3) CCS does not implement some useful headers in C++ such as iostream.h, io.h and

so on. Therefore, we replace these codes by the equivalent and supported functions.

Other than the problem of lacking some functionality support in CCS, when we port the
JSVM 5.0 decoder on the DSP, we need to check the decoding results on DSP against those

on PC. So we need to solve some problems for sending function parameters or the memory

73

index pointer of the decoder on CCS. After the finishing the porting, we can ensure the result

of decoding is correct.

6.3 JSVM 5.0 Decoder Complexity Analysis

We profile the JSVM 5.0 decoder to find which part takes the most computation time on DSP.
In order to profile the decoder, we use the profile of the stand-alone C6416T DSP simulator.
We concentrate on the most critical areas and try to accelerate these modules. In chapter 3, we
know that the scalable extension of H.264 have three types of scalability. In this section, we
profile each scalability separately. Finally, we profile the combined scalability, which contains
the spatial, temporal and SNR scalability. The profiling results using different scalability are
shown in Figure 6-2 (Temporal), Figure 6-3 (Spatial), Figure 6-4 (SNR) and Figure 6-5
(Combined). The test video sequence is “city.264”, the simulation condition is shown in Table
6-1. And the compiler optimization level configuration of C6416 simulator is the “File” level
(-03) and we already use the L.2.cache, which has been described in section 5.3.2 Table 6-2
shows the cycles of different scalability. We-can see that the Spatial and SNR scalability need

more cycles than temporal scalability: In following section, we will focus on these two types

of scalability.
Table 6-1 Simulation parameters
Test sequence: city.264 IPPPPP 9 Frames

GOP size Frame size | FGS layers QP

Temporal 4 CIF 0 30

Spatial 1 QCIF,CIF 0 30
SNR (FGS) 1 QCIF 1 30,24
Combined 4 QCIF, CIF 1 30,24

74

Table 6-2 Cycles on different scalability

Scalability Total cycles

Temporal 540,286,942
Spatial 7,4277,104,703
SNR (FGS) 2,027,805,801
Combined 30,067,421,887

Temporal Scalability of JSVM 5.0 decoder profile
on C6416 simulator

Others
Memory 14% M.C.
Transfer 28%
11%

Intra
1%

CABAC

7% Tran. & Quan.

Loop Filter
25%

14%

Figure 6-2 Complexity profiling of the Temporal Scalability of JSVM 5.0 decoder

75

Spatial Scalibility of JSVM 5.0 decoder profile

on C6416 Simulator

Inter-Layer Olthers MC.

(Intra Textue) Tran. & Quan.
18% 1%

Loop Filter

Inter-.Layer Memory CABAC 14%
(Residual) Transfer T%
15%
6%

Figure 6-3 Complexity proﬁlmgq&ifhé Spatial Scalability of JSVM 5.0 decoder

=5 i

SNR Scalability of JSVM 5.0 decoder profile
on C6416 simulator
Loop Filter Others M.C. Tran. & Quan.
5% 5% CABAC
2%

Memory
Transfer

69%

Figure 6-4 Complexity profiling of the SNR Scalability of JSVM 5.0 decoder

76

Combined Scalibility of JSVM 5.0 decoder profile
on C6416 simulator

Inter-Layer CABAC Others M.C. Tran. & Quan.
1% 5%

Loop Filter
3%

(Intra Texture)

Transfer GS
3% 53%

Figure 6-5 Complexity profiling of the Combined Scalability of JSVM 5.0 decoder

In Figure 6-2, the profile of the tjé.rhporai"Ec}a}apizlitywi's_‘ almost as same as H.264 decoder. The

major complex parts are motioﬁ comgéﬁéatioﬁ, lqbp filter, entropy coding (CABAC),

transform and quantization. In:"Figﬁré' éiﬁ;';'the:_ iqproﬁle of spatial scalability, the most
computation part is inter-layer preﬁiét*ion for fééidual and intra texture. Its computation
percentage is almost 33%. In Figure 6-4, when we profile the SNR scalability the most
complex part is FGS. Finally, in Figure 6-5, the major computation parts of combined
scalability are inter-prediction which takes about 20% and FGS which takes 53%. In the
following sections, we develop several techniques to reduce the complexity of the major

computation parts.

6.4 DSP Code Acceleration Methods

In this section, we will describe several schemes that we can optimize our C/C++ codes and
reduce the DSP execution time on the C6416T DSP platform. These techniques take the

advantages of the features of C64x.

77

6.4.1 Packet Data Processing

It is often desirable to use a single load or store instruction to access multiple data values
consecutively located in memory. It is called the Single Instruction Multiple Data (SIMD)
method. For example, when operating on a bit-stream, we can use word (32-bit) accesses to
process read two 16-bit (short) or four 8-bit data (char) values at a time. This method can
improve the code efficiency substantially. Figure 6-6 shows an example of using the SIMD

method. Some intrinsic functions enhance the efficiency in a similar way.

A1l (short) A2 (short)
+
B1 (short) B2 (short)
A1+B1 (short) A2+B2 (short)

Figure 6-6 SIMD example of using the-word instructions for adding short data

6.4.2 Intrinsic

The TT C6000 compiler provides many special functions that map directly to the inlined C64x
instructions. It speeds up the C codes. These special functions are called intrinsics. If an
instruction has equivalent intrinsic functions, we can replace it by intrinsic functions. The
execution time will be decreased because of the use of intrinsics. Intrinsics are specified with
a leading underscore () and are accessed by calling them as ordinary functions. These are
guite a few intrinsic functions defined for the C6000 series DSP. More details about the TI
DSP intrinsic functions are described in [17]. In the JSVM 5.0 decoder, we use the intrinsic
function to deal with the calculation of pixels. Such as pixel add, subtract or copy. For

13

example in Figure 6-7, we can use the intrinsic function “ add2” to replace the original

(13

function. The calculation is reduced by 50% since the “ add2” intrinsic can perform two

78

additions in one instruction. The performance of adopting intrinsic is shown in Table 6-3.

for(x = 0; x <uiWidth; x++)

{
pDes[x] += pSrc[x];
} t t | data type: short (2 bytes) \
for(x = 0; x <uiWidth; x+=2)
{
_amem4(&pDes[x])= add2(amem4 const(&pDes[x]),
_amem4_const(&pSrc[x]));
} ‘ add 2 short data using a single instruction ‘
Figure 6-7 Use of intrinsic function in the SVC decoder
Table 6-3 Performance using intrinsic
Function Original:cycles Révised cycles Reduction Ratio (%)
add 243;320;438 1305990,721 46.1%
copy 488,524,940 159,347,857 67.3%
subtract 58,412,795 14,885,097 74.5%
up-sampleResidual 1,818,090,978 1,711,585,722 5.9%

6.4.3 Memory Allocation Optimization

In section 4.2.2, we know that the sizes of the internal program memory and the internal data
memory are both 16 K-bytes for C6416T. The code segment should be put into the internal
program memory. However, our codes may require a larger memory size than the internal
memory. For instance, when dealing with a large image, it can not load the whole image into
the internal data memory. For this reason, the data would be put into the external memory. If
the accessed data are located in the external memory, it needs more clock cycles to transfer
data to CPU. We can use registers to store data to reduce transfer time. In the DSP code, we

can rearrange the link.cmd file, which is the memory allocation file. We put different type of

79

data in different memory sections for acceleration consideration. It also provides the
“CODE_SECTION”, “DATA_SECTION” key words, which can allocate parts of C code or
data in the internal memory. In order to improve the JSVM decoder execution cycles on DSP,
we put some frequently used functions into the internal memory. This method can decrease

the memory access time.

6.4.4 DSP library

The TI C64x DSP library is an optimized DSP function fir C programmers using C64x
devices. It includes many C-callable, assembly optimized, and general-purpose
signal-processing routines. By using these routines, we can achieve execution speed up
considerably faster than the equivalent code written in the standard C language. We can use
the DSP library (includes convolution, fft, iddt...etc) to replace the original functions in the

decoder.

6.5 Fast Algorithmsfor the SVC Decoder

In this section, we describe the implementation of the inter-layer prediction and the FGS
operation in the JSVM decoder on DSP. We also modify some methods wherever possible to

reduce the computations.

6.5.1 FGS

FGS (Fine Granularity Scalability) is one tool used by the SNR scalability. The details of FGS
have been described in section 3.4.2 Figure 6-8 shows the block diagram of FGS in the JSVM
5.0 decoder. In the JSVM decoder, the FGS can be divided into three parts: luma, chorma DC
and chroma AC. Each part includes the significant path and the refinement path. The
refinement path is turned on only when the significant path is completed. When entering the
decode luma significant coefficient box, it only deals with the 4x4 blocks. So decoding the
luma refinement coefficient operation will begins to execute only when all the significant

coefficients in every 4x4 block in a macroblock are completely checked. The same case

80

occurs in chroma DC and chroma AC. When all these significant and refinement path in a
macroblock are completed, the enhancement coefficients are properly scaled and the update

the macroblock coefficients. The flow chart of FGS is shown in Figure 6-8.

EGS decoding

l

Initial parameter

A

Macroblcok
decoding

D
- F h 4x4 blk
Decode Luma /|: oreachax

coefficient (Significant)

A 4

Decode Luma coefficient
(Refinement)

Decode DC /|: For each 2x2 blk

coefficient (Significant)

YES

v

Decode DC
coefficient (Refinement)

v
4
Decode AC /|: For each 4x4 blk

coefficient (Significant)

l

Decode AC
coefficient (Refinement)

Luma Index < 16
or Chroma DC Index <4
r Chroma AC Index < 1

NO
v

Scale enhancement
layer coefficient

A

Update the
macroblock coefficient

l

END

Figure 6-8 Flow chart of FGS in the JSVM 5.0 decoder

81

Figure 6-5 tells us that the FGS takes a large percentage of computing time in the combined
scalability case. First, we profile the FGS operation which is shown in Figure 6-9. The
complex parts are decoding the luma significant coefficients, luma refinement coefficients,
chroma AC significant coefficient, the chroma DC significant coefficient and scaling and
updating the macroblock coefficients. In the following sections, we adopt some methods to

speed the FGS operation.

Chroma_DC S%alzaizd FGS profile
Coefficient Coerf)ficient Others
(Sign.) 9%

10%

Coefficient Luma
(Ref.) Coefficient
6% (Sign.)

71%

Figure 6-9 Complexity profiling of FGS on C6416 simulator

(A) Early termination for luma significant coefficient

In Figure 6-9, decoding luma significant coefficient is the part that takes the most computing
time. So, if we would reduce the cycles of FGS. The decoding luma significant coefficient
needs modification. In the decoding luma significant coefficient passes, each loop checks a
4x4 block for whether the block have significant coefficients. To speed up this process, we set
an early termination point. If all of the significant coefficients in this block are done, in the
next loop we skip checking this block again. This can save the time of checking block and

setting up parameters.

82

(B) Check skipped blocks for null coefficient blocks

In the significant and the refinement paths, some coefficients are not significant or refinement.
These coefficients are zeros. If all coefficients in a block are all zero, this block is called a null.
In the null block, scaling and transforming the coefficients is redundancy. So the block of
scaling the enhancement layer coefficients can be skipped. We can detect whether the block is

null or not. This method saves the redundant time in calculating the scaling operation.

(C) Code refinement

In the FGS block, some functions are shared with the other components in the JSVM 5.0
decoder. For example, the function “initMB” is a tool which initials all parameters in a
macroblock. But some parameters are not need in the FGS process. For example, motion
vectors are needed only in motion estithation or‘motion composition but FGS does not use the
parameters of motion vectors. Se"we can rewrite the function “initMB” that only applies to
FGS.

Table 6-4 shows the reduction ratio of'each function in all FGS block and Table 6-5
shows the results of accelerating the' FGS-block on the overall system which condition as

same as Table 6-1. We notice that the reduction ratio of the operational cycles is about 61%.

Table 6-4 Reduction Ratio of FGS block

Original Revised Reduction Ratio
Function
cycles Cycles (%)
Luma significant coefficients 023,838,292 | 315,713,695 65.8%
Luma refinement coefficients 70,901,624 30,425,812 57%
Chroma DC Significant coefficients | 19,501,221 8,939,283 54%
Chroma AC Significant coefficients | 30,558,382 21,322,965 30.2%
Scaling and Updating coefficient 130,753,983 35,332,570 72.9%
Total 1,297,419,071 | 501,257,788 61.3%

83

Table 6-5 Performance of the modified FGS

Test sequence: city qcif.264

Type Original Cycles Proposed Cycles | Reduction Ratio (%)
SNR 2,017,898,772 870,697,861 56.8%
Combined 28,156,792,014 16,860,453,637 40.1%

6.5.2 Inter-layer Prediction

For spatial scalability, the most important component is inter-layer prediction. But from
Figure 6-3, we find that the inter-layer prediction decoding takes a large amount of
computations. This is because that in decoding the spatial enhancement layer, the motion
vectors, residuals, and intra texture data of the base layer should be up-sampled for their use
at enhancement layer. The up-sampling process is complex and takes a lot of computations.

We design algorithms to reduce thesinter-layer prediction computation.

(A) Intra texture prediction

Inter-layer prediction is computational intensive. However, not all of the up-sampling data are
needed in the enhancement layer. For example, the inter-layer intra prediction up-samples the
reconstructed intra signal of the base layer. In up-sampling the luma component,
one-dimensional 6-tap filter FIR filters are applied horizontally and vertically. The chroma
components are up-sampled using a simple bi-linear filter. In the JSVM decoder, when the
inter-layer prediction is in use, all the reconstructed signals of the base layer are up-sampled.
Figure 6-10 shows that the inter-layer prediction is performed before the macroblock
decoding. But only a few blocks request for the intra prediction operation typically. In the
JSVM 5.0 decoder, only the “Intra BL” mode needs to use the information from the base
layer. Table 6-6 shows that in the spatial scalability decoding, only 2% of block are using the
“Intra_ BL” mode. In this case, up-sampling all the intra texture data is unnecessary. Hence,
we first decide whether the intra texture data should be up-sampled or not. The procedure is

shown in Figure 6-11. If the current enhancement layer mode is the “Intra BL” mode, than

84

the intra texture data would be up-sampled. Otherwise, it would not be up-sampled.

Table 6-6 Distribution of mode in spatial scalability

Base layer Enhancement layer
Mode Number | Percentage (%) | Mode Number |Percentage (%)

Intra_4x4 80 0.54% Intra_4x4 56 0.31%
Intra_8x8 26 0.18% Intra_8x8 25 0.14%
Intra_16x16 1 0.01% Intra 16x16 9 0.05%
Intra BL 0 0% Intra_BL 419 2.29%
Inter 8x8 2026 13.64% Inter 8x8 8048 44.00%
Inter 8x16 | 2041 13.74% Inter 8x16 | 1708 9.34%
Inter 16x8 906 6.10% Inter 16x8 | 1104 6.04%
Inter 16x16| 3701 24.92% Inter 16x16| 5837 31.91%
Skip 6069 40.87% Skip 1084 5.93%
Total 14850 100% Total 18290 100%

Enhancement layer

Get the information —
from base layer

Motion vector
Residual
Intra texture

Up-sampling

A

Macroblcok decoding

NO

A

Inter decoding

NO YES
IntraNxN Intra_Base
decoding decoding

Figure 6-10 Block algorithm of the original inter-layer intra prediction

85

Enhancement layer

Motion vectors
Residuals

Get the information
from base layer

A

Up-sampling

A

Macroblcok decoding

NO

A

Inter decoding

NO YES

l J Intra texture
IntraNxN Up-samplin,
decoding P pung
A
Intra_Base
decoding

Figure 6-11 Block algorithm of the-modified inter-layer intra prediction

(B) Residual prediction

The inter-layer residual prediction can be employed for all inter-coded macroblocks. The
residual signal is up-sampled using a bi-linear filter and used as the prediction value for the
residual signal of the enhancement layer. Thus, only the associated difference signal is coded
in the enhancement layer. In the JSVM decoder, the inter-layer residual prediction requires a
lot of memory transfers. On the DSP platform, the memory transfer is costly in time. So we
modify the codes to reduce the number of memory transfer. For the inter-layer residual
prediction coding, the residuals are split into Y, U and V residual signal. But in the JSVM
decoder, the Y, U and V residual signals are up-sampled together. So we take the Y, U and V
residual signals apart. We only up-samples the residual signals that are needed. The modified

block diagram is shown in Figure 6-12.

86

Original: Revised:

Inter-layer Inter-layer
residual prediction residual prediction
i ,
Buffer Y residual signal I'3uffer'Y].Buffer'U Buffer V
residual signal residual signal residual signal
, , l
Up-sampling Up-sampling Up-sampling Up-sampling
\ |
Y v
Buffer U residual signal END

Up-sampling

A

Buffer V residual signal

A

Up-sampling

i

END

Figure 6-12 Difference in the inter-layer residual prediction procedures

Table 6-7 shows the reduction ratio of the inter-layer prediction. We rewrite the program
in order to accelerate the inter-layer part. Table 6-8 shows that the operational cycles of

different scalability are reduced.

Table 6-7 Reduction ratio of Inter-layer prediction

Function Original cycles Revised cycles | Reduction ratio (%)
Residual 889,289,854 757,070,091 14.87%
Intra texture 532,432,371 35,668,577 93.30%

87

Table 6-8 Performance of the modified inter-layer prediction

Test sequence : city qcif.264

Type Original cycles Proposed cycles Reduction Ratio (%)
Spatial 5,966,597,605 5,198,506,424 12.8%
Combined 16,860,453,637 15,472,723,853 8.2%

6.6 Final Simulation and Acceleration Results

After accelerating the codes and modifying the algorithms, we have efficiently reduced the
computations of the JSVM 5.0 decoder on DSP. Table 6-9 shows the comparison of the
processes with and without the L2 cache. We can clearly see that the reduction ratio achieves
50%. The improvement is not as much as the reduction ratio in the x264 case in Table 5-11,
because the code size and data size of the JSVM 5.0 decoder is larger than the x264. Using
two-level cache can not reduce the data cache miss a lot. As shown in Table 6-10, the data
cache miss rate decreases from 56.63% to0°27.12%. The data cache miss still is large. Table
6-11 shows the improvement of the optimized codes compared with the original version. The
simulation condition is shown in Table 6-1. After optimizing the codes, the improvement
achieves 20% in temporal scalability, 30% in spatial scalability, 55% in SNR scalability and
49% in combined scalability. We can decrease the half execution time on overall system.
Table 6-12 shows the real execution time on the C6416 emulator. The testing condition is the
same as that in Table 6-1. The resulting system can decode approximately 15 frames per
second in the baselayer and the temporal scalability, 1.32 frames in the spatial scalability, 2.84

frames in the SNR scalability and 0.4 frames in the combined scalability finally.

88

Table 6-9 Comparison of using C6416 simulator with and without the L2 cache

Sequence Without L2 cache With L2 Cache Reduction Ratio (%)
City 64,576,729,391 30,067,421,887 53.44%
Akiyo 53,685,160,996 24,403,283,420 54.54%
Foreman 65,599,674,888 30,902,096,589 52.89%
Table 6-10 Effect of using L2 cache memory
C6416 simulator Without L2 cache With L2 cache
Event Count Percentage Count Percentage
Total Cycles 64,576:760,635 30,067,433,857
Core cycles(excl. stalls) 755,799,273 1.82% 755,799,785 16.8%
NOP cycles 2,354,743,973 46.5% 2,354,7144,076 46.5%
Stall Cycles 59;526,048,163 92:18% 25,016,840,078 83.2%
Instruction cache hits 953,423,952 97.36% 953,507,967 97.37%
Instruction cache misses 25,882,890 2.64% 25,799,022 2.63%
Data cache references 915,440,375 915,440,489
Data cache reads 621,323,760 67.87% 621,323,824 67.87%
Data cache writes 294,116,624 32.13% 294,116,672 32.13%
Data cache hits 397,007,357 43.37% 667,191,138 72.88%
Data cache read hits 221,802,890 35.7% 446,661,075 71.89%
Data cache write hits 175,204,467 59.57% 220,530,063 74.98%
Data cache misses 518,433,018 56.63% 248,249,351 27.12%

&9

Table 6-11 Comparison using C6416 simulator on the original and the modified codes

Sequence Type Original cycles Optimized Cycles |Reduction Ration (%)
Baselayer 521,049,251 415,868,509 20.19%
Temporal 540,286,942 428,750,233 20.64%
City Spatial 7,427,104,703 5,198,506,424 30.01%
SNR 2,027,805,801 857,551,343 57.711%
Combined 30,067,421,887 15,472,723,853 48.54%
Baselayer 427,770,004 337728563 21.05%
Temporal 447,938,814 348379134 21.35%
Akiyo Spatial 6,353,717,397 4,077,516,481 35.82%
SNR 1,743,465,294 790,636,440 54.65%
Combined 24,403,283,420 12,474,3 14,013 48.88%
Baselayer 491,066,392 383,309,737 21.94%
Temporal 518,112,745 ‘ 405,372,731 21.76%
Foreman Spatial 7,327,335,062 5,069,933,810 30.81%
SNR 1,968,622,159 853,436,046 56.65%
Combined 30,902,096,589 15,781,271,800 48.93%

Table 6-12 Performance on the C6416 emulator

Execution Time Conversion
Sequence Type fps (frames/sec.)
9 frames (sec.) 1 frames (sec)
Baselayer 0.61 0.068 14.75
Temporal 0.62 0.069 14.52
City Spatial 7.8 0.87 1.15
SNR 3.8 0.42 2.37
Combined 25.7 2.86 0.35
Baselayer 0.41 0.046 21.95
Temporal 0.41 0.046 21.95
Akiyo Spatial 5.‘5 0.61 1.64
SNR 2.5 0.28 3.60
Combined 1754 1.92 0.52
Baselayer 0.55 0.061 16.36
Temporal 0.55 0.061 16.36
Foreman | Spatial 7.7 0.86 1.17
SNR 3.5 0.39 2.57
Combined 25.6 2.84 0.35

91

Chapter 7

Conclusions and Future Work

7.1 Conclusion

The main goal of this work is to accelerate the H.264/AVC baseline profile encoder and the
H.264/AVC SVC decoder implemented on the TI TMS320C6416T DSP processor. The
H.264/AVC encoder implementation is developed based on the open source code x264 and
the H.264/AVC SVC decoder, which is_extracted from the MPEG reference software JSVM
5.0.

For H.264/AVC encoder, we first modify the mode decision module to accelerate the
H.264/AVC encoder operations. Weuse the early termination to reduce the calculation of
dispensable mode. This acceleration.method can ‘reduce the computational cost by 13%
without visual quality and bits rate degradation. For the DSP implementation, one initial
problem is the frequent occurring of data cache miss. We use the two-level cache to solve this
problem. We also use various code speed-up techniques supported by the C64x to match its
hardware architecture. The details are described in chapter 5. The total execution time is
reduced by 50%. Finally, the overall system can on the average encode about 40 QCIF frames
per second on the C6416 emulator.

Furthermore, we also have successfully implemented the decoder of H.264/AVC SVC on
the DSP platform. The H.264/AVC SVC includes three types of scalabilities including
temporal, spatial and SNR scalability. Based on the profiling data, the FGS module and
inter-layer prediction module are two high computational complexity parts in the JSVM
decoder of combined scalability. For the FGS module, we use the early termination to reduce
the unnecessary checking of luma significant coefficients and updating the null block. We also

refine the FGS codes to reduce the computation. For the inter-layer prediction, we reduce the

92

unnecessary up-sampling operations for the intra texture between the base and the
enhancement layer. Another code acceleration method is the inter-layer prediction which has
Y, U and V three components. We only up-sample the residual signals that are needed. We
also adopt the coding acceleration techniques on C64x to accelerate the decoder on the DSP
platform. The improvement can achieve 49% in combined scalability. More details are shown

in chapter 6.

7.2 Future Work

The time to read or write file from host is a major problem in the DSP environment. If we can
reduce the data transmission time between the host and the target, the system will run faster.
Hence, the transmission time reduction techniques should be studied.

For the H.264/AVC encoder, we only support the baseline profile. The H.264/AVC main
profile includes more complex element than baseline profile. If we need compress the video
more efficiently, the main profile is nécessary.. Fuithermore, we can integrate the FPGA
hardware implementation together with DSP to accelerate the overall system.

The code of JSVM decoder.is written.in.C-++ language. But the DSP platform can not
perform the codes in C++ efficiently. Thus; we should rewrite the entire JSVM decoder using
C language. In addition, we only focus on the FGS and inter-layer prediction modules in this

thesis. The JSVM decoder can be further accelerated by modifying the other modules.

93

References

Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, “Draft ITU-T
Recommendation and Final Draft international Standard of Joint Video Specification
(ITU-T Rec. H.264 |ISO/IEC 14496-10 AVC),” JVT-G050, March 2003.

T. Wiegand, G. J. Sullivan, G. Biontegaard, and A. Luthra, “Overview of the H.264/AVC
Video Coding Standard,” IEEE Transactions on Circuit and System for Video
Technology, VOL. 13, Issue 7, pp. 560-576, Jul. 2003.

H.264/MPEG-4 Part 10 tutorials, http://www.vcodex.com/h264.html.

J. W. Chen, C. Y. Kao, and Y.'L. Lin “Introduction to H.264 Advanced Video Coding,”
Department of Computer Science National Tsing'Hua University, Jan. 2006.

SVC home page: http://ftp3.itu.int/av=arch/jvt-site/.

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Extension of the
H.264/MPEG-4 AVC Video Coding Standard,” Oct. 2006.

J. Reichel, H. Schwarz, and M. Wien, “Joint Scalable Video model JSVM-5,” ISO/IEC
JTC1/SC29/WG11/JVT-R202, Bangkok, Thailand, Jan. 2006.

J. Reichel, M. Wien, and H. Schwarz, “Scalable Video Model 3.0,” ISO/IEC JTC 1/SC
29/WG 11 N6716, October 2004.

W. H. Peng, C.Y. Tsai, T. Chiang, and H. M. Hang, “Advances of MPEG Scalable Video
Coding Standard,” National Chiano-Tung University, International Workshop on
Intelligent Information Hiding and Multimedia Signal Processing, Melbourne, Australia,

14 -- 16, Sept 2005.

[10] H. Schwarz, D. Marpe, and T. Wiegand, “MCTF and Scalability Extension of

94

H.264/AVC,” in Proc. of PCS, San Francisco, CA, USA, Dec. 2004.
[11]J. Ridge. X. Wang, “Simplification and Unification of FGS,” ISO/IEC
JTC1/SC29/WGI11/JVT-S077, Apr. 2006.

[12] Sundance home page:http:// www.hitechglobal.com/SunDance/SMT395VP30.htm.

[13] Texas Instruments, “TMS320C6416T, TMS320C6415T, TMS320C6416T fixed-point
Digital Signal Processors,” Literature number SPRS226J, JULY. 2006.

[14] Texas Instruments, “TMS320C6000 Peripherals Reference Guide,” Literature number
SPRU190D, Feb. 2001.

[15] Texas Instruments, “TMS320C64x Technical Overview,” Literature number SPRU395B,
Jan. 2001.

[16] Texas Instruments, “TMS320C6000 Code Composer Studio Tutorial,” Literature number
SPRU301C, Feb. 2000.

[17] Texas Instruments, “TMS320C6000 Programmer’s Guide,” Literature number
SPRU198I, Mar. 2006.

[18] Texas Instruments, “TMS320C6000 Optimizing Compiler v 6.0 Beta,” Literature
number SPRU187N, July. 2005.

[19] ffdshow reference software,

http://www.afterdawn.com/software/video_software/codecs_and_filters/ffdshow.cfm.

[20] ffmpeg Multimedia System, http:/ffmpeg.sourceforge.net/index.php.

[21] x264 reference software, http://developers.videolan.org/x264.html.

[22] H.264 JVT reference software, http://iphome.hhi.de/suehring/tml/.

[23] C. Grecos, and M. Y. Yang, “Fast Inter Mode Prediction for P Slices in the H264 Video
Coding Standard,” IEEE Transactions on Broadcasting, Vol. 51, No. 2, pp. 256-263, June

2005.

95

[24] Z. Zhou, and M. T. Sun, “Fast Macroblock Inter Mode Decision and Motion Estimation
for H.264/MPEG-4 AVC,” International Conference on Image Processing, Vol. 2, pp.
789-792, 2004.

[25] P. Yin, HYC. Tourapis, AM. Tourapis, and J. Boyce, “Fast Mode Decision and Motion
Estimation for JVT/H.264,” Image Processing, 2003. Vol. 3, pp. 853-856, ICIP 2003.

[26] Texas Instruments, “TMS320C6000 DSP 32-Bit Timer,” Literature number SPRU582B,
Jan. 2005.

[27] ISVM 5.0 Reference Software:

http://ftp3.itu.int/av-arch/jvt-site/2006_01 Bangkok/JVT-R203.zip.

[28] STLport home page: http://www.stlport.org/.

96

Kmﬁs%@“4—ﬁi%%
CERPEdla gk
25

W’mi

i A Zﬁ,}‘%@éfﬁﬁi 5 G o

oua 8

97

%%&ﬁ B2 ApMA Y

HA BR3Py oMl
Ty B AB L B B R

