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研究生：卓  毅     指導教授：劉志尉 博士 
 
 
 

國立交通大學 
電子工程學系 電子研究所 

 

摘要 

     在觀察近年來處理器的發展演變中我們發現，簡化指令集處理器(RISC)已
成為一大設計主流。其簡單和規律的指令集設計很容易進一步的將指令執行管線

化(pipeline)提高處理器效能。然而，因為分派一個指令，只能執行一個動作導致

其硬體使用率不高。多指令分發(multi-issue)處理器，即超長指令(VLIW)處理器，

利用指令層級平行度(ILP)提高硬體使用率，但它的暫存器檔案面積，隨著運算

單元增加而劇烈成長，因而付出沉重的硬體代價。在本論文中，我們提出一個具

複雜運算單元(composite FU)的資料路徑，以客製化順序串接多個運算單元的方

式，在同一指令中處理連續多個基本運算(primitive operations)，達到硬體使用率

的提升。此複雜運算單元不僅可以減輕如 VLIW 的暫存器面積會因功能單元(FU)
增加而大幅成長的問題，還因為複雜運算單元可以在抓取運算子後，作多個運算

才存回，總暫存器存取次數得到節省，進而得到低功率的好處。此外我們也利用

整合管線化設計流程來提升整體效能 (操作頻率)，以及搭配交錯多執行緒

(interleaved multithreaded)架構來完全地隱藏管線化後所衍生的指令延遲。我們同

時提出一個自動化複雜運算單元產生器，藉由分析使用者所輸入的應用程式資料

流程圖(data-flow graph)，自動產生出一個最佳化的複雜運算單元。經由對多個典

型 DSP 應用分析，複雜運算單元 MSA(串接一個乘法器 M 以及一個移位器 S 和

加法器A)的硬體使用率(operation per cycle)和簡化指令集處理器的 1.00比較提升

為 1.35。使用台積電 0.13um 製程作合成分析，在同樣的運算效能下，複雜運算

單元較簡化指令集合的面積約多 10%，但較超長指令減少約 50%。複雜運算單

元之功率消耗，較簡化指令集合及超長指令節省 16.6%到 31.6%。 
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ABSTRACT 

From the observation of evolution of processor development in recent years, we find 
that Reduced Instruction Set Computer (RISC) processors have already become main design 
fashion. The simplicity and regularity of RISC is suitable for pipeline design to boost 
performance. However, its hardware utilization is low because of it execute only one 
operation in single instruction issued. Multi-issue (VLIW) processors, takes advantage of the 
Instruction Level Parallelism (ILP) to promote hardware utilization. But the register file (RF) 
area of VLIW grows exaggeratedly with the increase of the functional unit number. It pays a 
great hardware overhead. In this thesis, we propose a datapath with composite functional units 
(FUs). It cascades several functional units in costumed order to perform continuous multiple 
primitive operations in single cycle for raising hardware utilization. The read and write port 
number of the register files of composite FUs only slightly increase by 1 or remain unchanged. 
It solves the problem of large RF area pressure. In addition, the composite FUs can perform 
several operations after fetching operands and then write back. The reduction of total register 
accesses leads to low-power benefit. Besides, the pipeline design is integrated to boost 
performance up and the Interleaved Multithreaded (IMT) architecture is coordinated to hide 
instruction latency derived from pipeline design totally. In the mean time, we propose a 
recursive composite FUs generator which automatically generator a best composite FU by 
analyzing Data Flow Graph (DFG) input by user. From the analysis of several classic DSP 
kernels, the hardware utilization of MSA-ordered (cascade a multiplier, a shifter, then an 
adder) composite FU is 1.35 times higher than 1.00 of RISC. Use the TSMC 0.13um process 
to do synthesis analysis. Under same performance, the register file area of composite FU is 
10% more than RISC and 50% less than VLIW. The power reduction of composite FU is 
smaller compared with RISC and VLIW ranging from 16.6% to 31.6%.  
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1   Introduction  

As the desire to the performance for multimedia application growing up day by 

day, lots of processor design principle showed up for different purposes. We will 

illustrate the history of processor progress first in section 1-1, and discuss the reasons 

for the evolution.  

Let us focus on the advantages and disadvantages of the datapaths including 

functional unit architectures. Some decisions and changes are made according to the 

hardware utilization and the area pressure of register files, or even some power issue. 

We propose composite FU to overcome the weakness of RISC and VLIW. And 

some contributions are described in section 1-2. 

Section 1-3 describes the thesis organization. 
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1.1  History of Processor Progress 
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Figure 1-1 Uniprocessor Performance 

[1] Figure 1-1 shows the uniprocessor performance measured by SPECint. 

 Complex Instruction Set Computer (CISC) 

From 1978 to 1986, the CISC-style processors dominate the processor market. 

The essence of CISC is to allocate as many hardware as the functions need. Therefore, 

the CISC processors can perform some specific functions at high speed. 

But CISC processors have some well-known drawbacks. 

Instructions of CISC processors have very different execution cycles. Single 

instruction may consume cycles from several to thousands corresponding to its 

functionality and complexity. The complexity of instruction variation and hardware 

selection lead to the inefficiency of the compiler. Besides, If pipeline technique is 

coordinated to boost the performance of CISC processors, it would be hard to pipeline, 

and the improvement of performance is limited. 
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In addition, all CISC-style processors suffer a serious problem. Some hardware 

is idle at most time. DEC-PDP 10 is a famous CISC processor, and some surveys [2] 

of this processor tell us that 70 instructions account for 99% of operation and 50 

instructions account for 95% of operation. Lots of instructions and hardware are 

rarely used, and the idle hardware implies the waste of power consumption. 

 Simple scalar, Reduced Instruction Set Computer (RISC) 

In 1980s, the RISC concept showed up. The essence of RISC is to handle single 

function within single instruction. Figure 1-2 is an example of RISC, simple scalar. 

Designers only deploy some primitive hardware to maintain its functionality. All the 

instructions of RISC have same instruction length, so it is easy to pipeline. Moreover, 

the performance can be easily enhanced along with the advance of technology. Using 

some instruction encoding techniques can raise the performance, too. Because of the 

regularity and simplicity of RISC, it has been widely spread out. 

 

Figure 1-2 Scalar  

Here are some disadvantages of RISC processors. The RISC processors have a 

low hardware utilization problem. They operate one function in single instruction, 

their hardware utilization is 1. When the number of primitive functional units 

increases, the low utilization characteristic remains unchanged. What is more, the 

RISC needs to fetch operands from register or memory first. After perform the single 

operation, the RISC needs to store the data into register of memory. The accesses per 

operation of the RISC is very high. It implies the power inefficiency. 
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 Multi-issue (VLIW) 

Multi-issue is opposite to single-issue. It means that multiple instructions issued 

at the same time. The most popular type called Very Long Instruction Word (VLIW) 

stands for the multi-issue processors since it has been proposed in 1980s. Figure 1-3 

shows a 3-way VLIW and a 4-way VLIW. 

 

Figure 1-3 VLIW 

The VLIW processors exploit the instruction level parallelism (ILP). The 

functional units operate concurrently. It can reach high performance by taking 

advantage of ILP. 

The greatest problem of VLIW is the register file pressure. Because the VLIW 

perform multiple functions in the mean time, each functional unit needs 

corresponding read or write ports to the register file. The port number strongly affects 

the area of register file. According to [3], in full custom design, for N FUs, area and 

delay are increases as N 3 and N 3/2. Besides, the same frequency of register or 

memory accesses with RISC processor makes the power inefficiency problem 

remained. 

Finally, the performance can’t be raised infinitely due to the ILP has its limit. 

Some other processor architectures are taken into consideration. 
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 Multi-core 

After 2000, the performance of VLIW is no longer sufficient for some specific 

application.  

Multi-core processors use several homogeneous or heterogeneous processors to 

do things at the same time. Hence the higher performance can be achieved. In this 

thesis, we only concern about the single core processor. The multi-core issue is 

beyond the scope. 

 Multi-threaded 

[4] In unending quest for computers with higher performance, computer system 

architects seek to reduce or hide latency, the number of cycles an operation takes from 

start to finish. A long latency may extend for 10 to 100cycles, forcing the traditional 

processor to sit idle until the result comes in. Less time is wasted if the latency is 

reduced or even hidden behind the ongoing execution of another operation. 

A popular means of reducing latency is the on-chip cache memory, which can 

shorten the round trip to data storage from tens of cycles to just one or two. 

Multithreaded architectures, however, take the tack of hiding latency by supporting 

multiple concurrent streams of execution, or threads, which are independent of one 

another. The threads are interleaved on a single processor. When a long-latency 

operation occurs in one of the threads, another begins execution. In this way, useful 

work is performed while the time-consuming operation is completed. 

Figure 1-4 shows the multithreaded architecture. It includes several parts 

including computing, selection network, hardware and software context 

(threads)…etc. The computing part is composed of some functional units, 

memory/registers, and some interconnection network. Threads are mapped onto 

hardware context, which each include general-purpose registers, status registers, and a 

program counter. One context represents a running thread, while the others represent 
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threads that are eligible to run or are waiting on an operation to complete. Because of 

hardware limits, some threads are not currently mapped. The functional units handle 

the operations. The memory/registers store some intermediated value to accelerate the 

whole works. The interconnection network and the context selection hardware 

maintain the accuracy of each interleaved thread. 

 

Figure 1-4 Multithreaded architecture 

Multi-threaded architectures take advantage of thread level parallelism. Three 

categories of multi-threaded architectures are coarse-grained multithreading, 

fine-grained multi-threading, and simultaneous multithreading [5]. 

 Coarse-grained (block) multithreading (BMT) 

The simplest type of multi-threading is where one thread runs until it 

is blocked by an event that normally would create a long latency stall. Such 

a stall might be a cache-miss that has to access off-chip memory, which 
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might take hundreds of CPU cycles for the data to return. Instead of waiting 

for the stall to resolve, a threaded processor would switch execution to 

another thread that was ready to run. Only when the data for the previous 

thread had arrived, would the previous thread be placed back on the list of 

ready-to-run threads. 

 Fine-grained (interleaved) multithreading (IMT) 

A higher performance type of multithreading is where the processor 

switches threads every CPU cycle. The purpose is to remove all data 

dependency stalls from the execution pipeline. Since one thread is relatively 

independent from other threads, there's less chance of one instruction in one 

pipe stage needing an output from an older instruction in the pipeline. 

 Simultaneous multithreading (SMT) 

The most advanced type of multi-threading applies to superscalar 

processors. A normal superscalar processor issues multiple instructions from 

a single thread every CPU cycle. In Simultaneous Multi-threading (SMT), 

the superscalar processor can issue instructions from multiple threads every 

CPU cycle. Recognizing that any single thread has a limited amount of 

instruction level parallelism, this type of multithreading is trying to exploit 

parallelism available across multiple threads to decrease the waste associated 

with unused issue slots. 

SMT is the most complex because of the functionality among threads must be 

maintained. The most regular is IMT. By the way, the IMT can totally hide instruction 

latency if enough threads are supported. The hardware cost of IMT, since there are 

more threads being executed concurrently in the pipeline, shared resources such as 

caches and TLBs need to larger to avoid thrashing between the different threads. In 

this thesis, our hide instruction latency technique will focus on IMT. 
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1.2  Proposed Composite FUs and Contributions 

In order to solve the problems mentioned above, we proposed the Composite 

FUs with the purposes listed below. 

 Application-specific composite FUs 

Composite FU is a cascade datapath. It cascade several primitive FUs to form  

a composite datapath. Analyze the characteristic of specific application, and find out 

what operations can be combined into single instruction. 

 High hardware utilization and high OPs/access 

Compared with the RISC processors, the composite FUs perform several 

functions in single instruction. It means that composite FUs do more things than RISC 

in a period of time. Hence, the hardware utilization improves. 

Besides, the RISC needs a lot of accesses from register or memory. The 

composite FUs fetch proper operands and perform several operations, then store back 

to the register or memory. So the total number of accesses is reduced. Register access 

is a power-consuming action. The composite FUs have high OPs/access that lead to 

power efficiency potential. 

 Low register file pressure (limited R/W ports) 

Port number Scalar Compostie FUs VLIW
3FUs 2R/1W 3R/1W 5R/3W
4FUs 2R/1W 4R/1W 7R/4W  

Table 1-1 Port number of different datapaths 

The port number of composite FUs increases one or remains unchanged as the 

FU number increase. Not like the VLIW processors, every FU needs two or three 

ports. So the grow-up trend of port number is larger in the VLIW than in the 
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composite FUs. Fewer ports of the composite FUs ease off the register file area 

pressure. The example of port number is shown in Table 1-1. 

 Suitable for IMT DSP (zero instruction latency) 

When we want to reach higher performance, we will introduce our pipeline 

design to boost performance. Once the pipeline technique has been used, the 

instruction latency issue must be taken into consideration. If we ignore the pipeline 

latency, the data accuracy may have errors. If we just wait until the last work ready, 

then the performance can’t be raised ideally. 

There are some techniques to reduce or hide instruction latency, either from 

software or hardware view. Software method including loop unrolling, software 

pipelining, etc. and hardware method including forwarding, multithreaded 

architectures, etc. are all possible solutions. 

In this thesis, we choose the IMT architecture to be the way of hiding 

instruction latency because of it can totally hide instruction latency. And the hardware 

cost of the composite FUs coordinated with IMT is not much. IMT needs a thread 

register file for each thread, the register file cost of the composite FUs is acceptable. 

1.3  Thesis Organization 

The rest of this thesis is organized as follow. 

Chapter 2 introduces the background of our work. First, we talk about what is 

the composite FUs. Second, describe the meaning stand for data flow graph (DFG) 

and its components. Third, show a covering and match method called ID-based search 

graphs. Fourth, show the scheduling procedures using list scheduling based method. 

Fifth, introduce a RF model to estimate the area of register files. Last, illustrate how 

the interleaved multithreaded (IMT) architecture work. 
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Chapter 3 describes the comparison of the advantage and disadvantage among 

scalar, VLIW and Composite FUs from the area and power experiment. For high 

performance, we have a pipeline designer to speed up the processor with the 

composite FUs. And we use the IMT architecture to hide instruction latency 

completely. 

Chapter 4 states the difference between classic and our ASIP synthesis flow. 

Then we propose a flow to recommend a proper composite FU for ASIP designer 

under certain constraints. 

Finally, chapter 5 concludes this thesis and points out the direction for the 

future researches. 
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2   Background 

First at all, we will give a simple illustration of the composite FUs and talk 

about how it works. 

The composite FUs take the advantage of application characteristic. We must 

develop a software tool chain to analyze the applications and to find out the 

possibility of operation combination. We will introduce the format that we concern, 

DFG. Then use covering and matching technique to recognize new operations after 

merging. Next, we want to estimate the area of the register files. So we use a list 

scheduling based method to find a sub-optimal register requirement. Then the 

estimation is done through a RF model method related to the technology process. 

We want to further speed up the performance using pipeline design. It introduces 

extra instruction latency problem. As mentioned before, we use IMT to hide solve the 

problem. So we will show how IMT works at the last of this chapter. 
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2.1  Composite FUs 

We propose the composite FU which cascades all the primitive FUs in a 

customized order by analyzing the DFG (data-flow graph) of the target applications. 

A composite FU is a cascade datapath. Figure 2-1 illustrates a MAS composite 

FU that cascades a multiplier with an adder and then a shifter.  On each instruction 

issue, the maximum number of operations is three, i.e. multiplying operand 1 by 

operand 2 and then adding the result to operand 3 and finally shifting the sum by a 

specific value, while the minimum number is one, i.e. either one multiplication or one 

addition or one shift. 

 

Figure 2-1 Composite FU: MAS 

 Primitive Operation Set 

For simplicity, we define a primitive operation set with three kinds of primitive 

operations including adder, multiplier, and shifter. Figure 2-2 shows the configuration 

of (a) adder, (b) multiplier, and (c) shifter. 

A M S

Dest Dest Dest

Src1 Src2

Add/Sub

Src1 Src2 Src1

Shamt

(a) (b) (c)
 

Figure 2-2 Configuration of (a) the adder; (b) the multiplier; (c) the shifter 
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The adder and multiplier both have two source operands and one destination. 

On the other hand, the shifter only has one source operands and one destination. There 

is a Add/Sub control signal to tell the adder to perform addition or subtraction. The 

shifter has a Shamt control signal to decide right shift or left shift and shift amount. 

The applications which we analyze in the rest part of this thesis are all based on 

this primitive operation set. 

 Port constraint 

Port number restricts the possible arrangement of the composite FUs. 

Figure 2-3 (a) is a full read/write ports version of composite FU MA. It has 

three read ports and one write port. Figure 2-3 (b) is a reduced version, and it has two 

read ports and one write port. Figure 2-3 (a) can be reduced to Figure 2-3 (b) through 

a load/store pair operation. For simplicity, we don’t consider about the load/store 

effect and assume all the composite FUs can get full read/write ports if they need. 

M

A

M

A

1 2

3

1 2

3 input ports 2 input ports
(a) (b)  

Figure 2-3 Composite FU: MA with (a) full R/W ports (b) reduced R/W ports 

There are some techniques used in Sandblaster processors [6] to reduce the 

number of ports if the hardware doesn’t need it at the same time, but it has extra huge 

overhead to guarantee the accuracy. 
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2.2  Data-Flow Graph 

In mathematics and computer science, graph theory is the study of graphs; 

mathematical structures used to model pair-wise relations between objects from a 

certain collection. A "graph" in this context refers to a collection of vertices or 'nodes' 

and a collection of 'edges' that connect pairs of nodes. A graph may be undirected, 

meaning that there is no distinction between the two nodes associated with each edge, 

or its edges may be directed from one node to another. 

[7] The data-flow graph captures the data-driven property of DSP algorithm 

where any node can fire (perform its computation) whenever all the input data are 

available. It means that a node with multiple input edges can only fire after all its 

precedent nodes have fired. In data-flow graph (DFG) representations, the nodes 

represent computations (or functions or subtasks) and the directed edges represent 

data paths (communications between nodes). 

 Definition 

Node N: computations 

Edge E: data dependencies 

Graph G = { N, E } 

The precedence constraints specify the order in which the nodes in the DFG can 

be executed. Different representations of the same algorithm may lead to different 

DFG. 

Figure 2-4 is a DFG example of 8 points 1D discrete cosine transform in Lee’s 

algorithm [8]. 
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Figure 2-4 DCT (Lee’s algorithm) 

 DFG Description 

For convenience, we make a DFG description. The complete DFG includes 

input/output part and the pure operation part. In our analysis, we suppose the 

load/store decoupled.  

 Input/Output Part 

I#               (# stands for the number) 

O# Src1          (Src1 is the source of output node) 

 Operation Part 

1. Addition/Subtraction 

Syntax:  A# Src1, Src2, addsub 

Description: 

Get Src1 and Src2 data from corresponding node and perform 

addition or subtraction. The addsub field stands for what the operation 

the adder does. “+” is for addition, and “-” is for subtraction. 
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2. Multiplication 

Syntax:  M# Src1, Src2 

Description: 

Get Src1 and Src2 data and perform multiplication. 

3. Shift 

Syntax:  S# Src1, shamt 

Description: 

Get Src1 data into register Src1 and shift by shamt-bit. The Shamt 

fields stand for shift amount and ranges from -8 to 7. The shamt is a 

4-bit field supporting up to 8-bit left and 7-bit right shift.  

 Example 

Figure 2-5 illustrates an example of DFG description of first order biquad filter. 

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11

A0 M0,M1,+
A1 M2,M3,+
A2 M4,M5,+
A3 I0,A0,-
A4 I1,A1,-
A5 I2,A2,-
A6 M6,M7,+
A7 M8,A6,+

M0 I3,I7
M1 I4,I8
M2 I4,I7
M3 I5,I8
M4 I5,I7
M5 I6,I8
M6 A3,I9
M7 A4,I10
M8 A5,I11

O0 A7

I0
x0

I1
x1

I2
X2

I3
w0

I4
W1

I5
w2

I6
w3

I7
a1

I8
a2

I9
b0

I10
b1

I11
b2

M0

M1

M2

M3

M4

M5

A0

A1

A2

A3

A4

A5

M6

M7

M8

A6

A7 O0
Y0

 

Figure 2-5 DFG description of biquad filter 
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2.3  Covering 

In the mathematical discipline of graph theory a covering for a graph is a set of 

nodes (or edges) so that the elements of the set are close (adjacent) to all edges (or 

nodes) of the graph. We are especially interested in finding small sets with this 

property. The problem of finding the smallest node covering is called the node cover 

problem and is NP-complete. 

 

Figure 2-6 Covering and supernode 

Figure 2-6 shows a supernode merges several nodes together. It inherits the 

functionality and the dependencies of the replaced nodes. 

A perfect matching is a matching which covers all nodes of the graph. We 

want to find a perfect matching of the application using the composite FUs. 

 Unate and binate covering problems [9] 

The classical solving approach for two-level logic minimization in the VLSI 

literature goes back to Quine’s and McCluskey’s works. It reformulates the problem 

as a special case of the Unate Covering Problem [10] and applies algorithms 

conceived for the latter, or even for the more general Binate Covering Problem. 
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Binate (or unate) covering problems is a well known intractable problem. It has 

several important applications in logic synthesis, such as two-level logic minimization, 

two-level Boolean relation minimization, three-level NAND implementation, state 

minimization, exact encoding, and DAG covering [11]. 

The next paragraph briefly defines the binate covering problem and the 

notations of typical presentation. 

Let f (y1, …, yn) be a Boolean function from {0, 1}n into {0, 1}. Let Cost be a 

function that associates a positive cost with the assignment of variable yk to 0 or 1. 

The cost of a n-tuple (v1, …, vn) of {0, 1}n is defined as ∑ =

n

k 1
Cost (yk = vk). 

Definition (Binate covering problem) 

The binate covering problem (also called minimum cost assignment problem) 

consists of finding a minimal cost n-tuple that values f to 1. 

 Node covering 

[12] When deliveries, collections, or visits must be made to (or from) a number 

of specific (and, often, widely separated) points, the routing problem that must be 

solved becomes a node-covering one. The demand (or supply) points can then be 

represented as the nodes on the network model of the urban transportation grid and 

the question of the order in which to visit these nodes so as to achieve some objective 

is then addressed. 

Our goal is similar to two-level expression, and it is a binate covering problem. 

[13] The difference is that our operations are not simple logic gates, but three 

primitive operations, including adder, multiplier, and shifter. There are some studies 

of the binate covering. We use a covering method called ID-based search graph 

proposed in IBM’s research [14] and make some modification to facilitate our 

analysis. 
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 ID-based search graph 

A crucial step in the design of Application-Specific Instruction-set Processors 

(ASIPs) [15] is the instruction-set generation. Methods for automating this process, 

surveyed in, extract patterns from applications, usually in the form of data-flow 

graphs, and insert them into a pattern library. 

The ID-based search graph introduce a novel organization for pattern libraries 

that enables a search algorithm with only O(d), where d is the size of the pattern 

sought up to the maximum pattern size in the library. Furthermore, the library 

organization reveals opportunities to substitute one pattern by another. This may be 

exploited for more efficient instruction selection and code generation. The method is 

presented for tree-shaped patterns but can be extended to directed acyclic graphs 

(DAGs). 

 

Figure 2-7 ID-Graph of a pattern 
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 Organizing libraries as identity graphs 

In order to create match libraries for a specific application, we decompose the 

pattern which is used to compare with the application into several sub-levels. Figure 

2-7 illustrates the procedures of ID-based search graph to organize libraries. The basic 

3-levels pattern is AND-SHR-SUB. It covers an addition, a shift, and a abstraction. 

The sub-functions of level 2, level 1, and level 0 can be derived from by-passing some 

functions. 

 Searching an ordered library 

In order to find all matches, match all the nodes from the highest level to lowest 

level because of the higher level function or sub-functions can perform more 

operations in single instruction and execution. 

2.4  Scheduling 

To estimate the area of register files, we must analyze the register requirement 

first to find the scale of register numbers. Scheduling and resource allocation can help 

us to understand the register requirement. In this section, we talk about the basic idea 

and steps of scheduling first. 

[7] Scheduling is to assign the nodes on the DFG to be processed by which 

functional unit in which time step. Our scheduler schedules the target DFG. Figure 2-8 

shows the program flow of the scheduler. Here, we use periodic scheduling for 

simplicity, where only the intra-iteration data dependency is considered and the edges 

with delay elements (i.e. dependency across iterations) are removed from DFG first. 

Then we will make a lifetime analysis of every node. The DFG is scheduled with the 

ASAP (as soon as possible) and ALAP (as last as possible) scheduling algorithm to 
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obtain the range to schedule each node. Then, we apply some list scheduling based 

methods to the steps. At last, the scheduled DFG is output and the register 

requirement is reported. 

Remove intra-iteration 
dependencies

ASAP scheduling

ALAP scheduling

Inequalities generation

Decide scheduled order

DFG

Scheduling
constraints

Scheduled DFG

Node scheduling range

  

Figure 2-8 Program flow of the scheduler 

 ASAP 

ASAP (as soon as possible) is one of the earliest and simplest scheduling 

algorithms. ASAP scheduling assumes that the hardware resource (functional units) is 

unlimited. Nodes are first topologically sorted, that it, if a node nj is constrained to 

follow the node ni with a precedence constraint, then nj will topologically follow ni. 

From the sorted list, nodes are taken one at a time and placed in the earliest available 

time step, depending on its precedence constraint. Figure 2-9 shows the algorithm of 

ASAP scheduling. The ASAP scheduling is used to determine the earliest scheduling 

bound of each node. 
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INPUT: SDFG G=(N,E) 

OUTPUT: ASAP SCHEDULE 

TS0=1; //SET INITIAL TIME STEP 

WHILE (UNSCHEDULED NODES EXIST) { 

 SELECT A NODE NJ WHOSE PREDECESSORS HAVE ALREADY BEEN SCHEDULED; 

 SCHEDULE NODE NJ TO TIME STEP TSJ = MAX {TSI+(CI)} FOR ALL NI  NJ; 

} 

Figure 2-9 The ASAP scheduling algorithm 

 ALAP 

ALAP (as late as possible) scheduling is similar to the ASAP scheduling; except 

for the way nodes are placed in the schedule. As the name indicates, ALAP scheduling 

in Figure 2-10 builds the schedule bottom up and the nodes are topological sorted in 

reversed order. Therefore, the algorithm must have the information of the iteration 

period to build the schedule from the bottom up and the iteration period must be long 

enough to allow all the nodes to be scheduled, otherwise the scheduling will fail.  

INPUT: SDFG G=(N,E), ITERATION PERIOD:T 

OUTPUT: ALAP SCHEDULE 

TS0=T; //SET TIME STEP 

WHILE (UNSCHEDULED NODES EXIST) { 

 SELECT A NODE NJ WHOSE SUCCESSORS HAVE ALREADY BEEN SCHEDULED; 

 SCHEDULE NODE NJ TO TIME STEP TSJ = MAX {TSI-(CI)} FOR ALL NI  NJ; 

} 

Figure 2-10 The ALAP scheduling algorithm 
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 ILP-based scheduling 

After the ASAP and ALAP scheduling, we describe and solve the scheduling 

problem by inequalities and priorities. Figure 2-11 gives examples of ASAP, ALAP, 

and the scheduling range from ASAP and ALAP. When constructing inequalities for 

constraints, each position (i.e. node i at the time step j) in the range are associated 

with a Boolean variable xi.j which indicates whether a node i is scheduled into the 

time step j. The following four constraints must be satisfied. 

I0 I1

O0

A1

O1

A0

M0 I0 I1

O0

A1

O1

A0 M0

I0 I1

A0

A1

M0

O0

O1

(a) (b) (c)

0

time

1

2

3

4

5

x0 x1 x2 x3 x4 x5 x6

 

Figure 2-11 Scheduling example (a) ASAP (b) ALAP (c) scheduling range 

1. Resource constraints 

This constraint states that no schedule will have a time step that contains more 

operations than the available functional units due to the limited hardware resources. 

Because we assume that the I/O unit and adder are all of one, the inequalities for this 

constraint of the example in Fig. 2-11 (c) should be: 

x0.0+ x1.0 ≤ 1;  x0.1+ x1.1 ≤ 1;  x0.2+ x1.2 ≤ 1  (for input) 

x2.1+ x3.1 ≤ 1;  x2.2+ x3.2 ≤ 1;  x2.3+ x3.3 ≤ 1  (for adder) 

x5.3+ x6.3 ≤ 1;  x5.4+ x6.4 ≤ 1;  x5.5+ x6.5 ≤ 1  (for output) 
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2. Allocation constraints 

This constraint states each node can only be scheduled within the scheduling 

range bounded by some range obtained from the ASAP and ALAP scheduling and can 

only appear once in the schedule. The inequalities for this constraint of the example in 

Fig. 2-11 (c) should be: 

x0.0+ x0.1+ x0.2 = 1 

x1.0+ x1.1+ x1.2 = 1 

x2.1+ x2.2+ x2.3+ x2.4 = 1 

x3.1+ x3.2+ x3.3 = 1 

x4.2+ x4.3+ x4.4 = 1 

x5.2+ x5.3+ x5.4+ x5.5 = 1 

x6.3+ x6.4+ x6.5 = 1 

3. Dependency constraints 

The data dependency in the original DFG should be strictly followed when 

scheduling. The dependency constraint ensures that DFG remains causal and correct 

timing sequence. The inequalities for this constraint of the example in Fig. 2-11 (c) 

should be: 

x0.0 + 2 x0.1 + 3 x0.2 - 2 x2.1 - 3 x2.2 - 4 x2.3 - 5 x2.4 ≤ -1 

x1.0 + 2 x1.1 + 3 x1.2 - 2 x2.1 - 3 x2.2 - 4 x2.3 - 5 x2.4 ≤ -1 

x0.0 + 2 x0.1 + 3 x0.2 - 2 x3.1 - 3 x3.2 - 4 x3.3 ≤ -1 

x1.0 + 2 x1.1 + 3 x1.2 - 2 x3.1 - 3 x3.2 - 4 x3.3 ≤ -1 

2 x2.1 + 3 x2.2 + 4 x2.3 + 5 x2.4 - 3 x5.2 - 4 x5.3 - 5 x5.4 - 6 x5.5 ≤ -1 

2 x3.1 + 3 x3.2 + 4 x3.3 - 3 x4.2 - 4 x4.3 - 5 x4.4 ≤ -1 

3 x4.2 + 4 x4.3 + 5 x4.4 - 4 x6.3 - 5 x6.4 - 6 x6.5 ≤ -1 
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4. Port conflict constraints 

If the functional units are consisted of single-write instead of N-write memory 

or registers to reduce the hardware complexity, it may introduce port conflicts when 

multiple functional units simultaneously write their results into the same memory or 

registers. We can schedule the operations with an identical destination memory or 

registers into different time slots by incorporating the following port constraints to 

prevent conflicts. The inequalities for this constraint of the example in Fig. 2-11 (c) 

should be: 

x0.0+ x1.0 ≤ 1;  x0.1+ x1.1 ≤ 1;  x0.2+ x1.2 ≤ 1;  (for adder) 

x2.2+ x4.2 ≤ 1;  x2.3+ x4.3 ≤ 1;  x2.4+ x4.4 ≤ 1;  (for output) 

According to the assumption above, the composite FUs discussed in this thesis 

have full read/write ports. The port conflict constraints are mapped to the different 

situations. 

2.5  Complexity of Synthesized Register File 

We want to compare the RF area of the composite FUs with the RF area of the 

VLIW. We need a roughly estimation method to see the scale and the pressure of the 

RF area. Here is a survey of the relations among RF area and the FU number and port 

number in [16], and it proposes a simple RF model for 0.18 um process. 

Conventionally, the microprocessors have a more efficient and direct data 

exchange mechanism among the parallel FUs through the register file (RF) than the 

multi-processors, where a monolithic and centralized RF provides storages for and 

interconnects to each FU in a general and homogeneous manner. However, the 

complexity of the centralized RF grows with the number of access ports increasing. 
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In centralized RF, every read port and write port can directly access any 

registers in the RF. Prior art has evaluate the complexity of centralized RF in 

full-custom designs.  

The RF consists of register cells similar to SRAM. Generally, the register cell is 

organized as 6-transistor structure, and the access port of RF requires a word-line and 

a bit-line which is shown in Figure 2-12. Therefore, the area of single SRAM cell 

grows in two dimensions and can be described as P2. For a full-custom centralized RF 

with n-registers and P-ports, the area and delay are approximated to n×P2 and n1/2×P 

respectively [3].  

 

Figure 2-12 A register cell in full custom design 

The number of registers and ports required can be estimated from the number of 

FUs. Assume that each FU requires two ports for two source operands and one port to 

write the result back to RF, and every FU requires at least one register to store the 

manipulated data. Consequently, for N FUs, the number of registers and ports is 

approximated to N and 3N respectively. As a result, the area and delay are increases 

as N 3 and N 3/2. 
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In this thesis we focus on the cell-based RF organization which consists of 

flip-flops and switch networks. For a centralized RF with N registers, x read ports, y 

write ports, and word length W, the complexity of read access network is an N to x 

crossbar router and every read port has one N to 1 multiplexer. Similarly, the 

complexity of write access network will be y to N crossbar router with y to 1 

multiplexer for each register elements. Figure 2-13 shows the access network of a 

centralized RF. 

 

Figure 2-13 Access network of centralized register file 

The output of each register has to drive x × N-to-1 multiplexers which results in 

a very high output loading capacitance. The centralized RF is efficient when 

executing program with high data-level parallelism only. But it is difficult to 

guarantee the data-parallelism level of applications, so it is unnecessary to provide the 

bandwidth for non-common cases with the cost of RF access time and RF area. 

We roughly evaluate the area and speed of centralized RF based on the 

architecture shown in Figure 2-13. The cost function of area complexity for 

centralized RF is analyzed as follows: 
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fA CRF (x, y, N, W) = Awrite_network + Aread_network + Aregisters + Acontrol 

≅ [N × Ay-to-1_mux + x × AN-to-1_mux + N × AD-flipflop] × W 

≅ [N × (y – 1) × A2-to-1_mux + x × (N - 1) × A2-to-1_mux 

+ N × AD-flipflop] × W 

This Function assumes all multiplexers are composed of 2-to-1 multiplexers 

and the control overhead is neglected. This analytical formula is also based on the 

number of 2-to-1 multiplexers on data path. The experimental results show the 

analysis is close to synthesis result. Table 2-1 compares the analytical analysis with 

synthesis results using TSMC 0.18um cell library in different centralized RF 

configurations. In this thesis, the discussion of timing estimation is out of scope. 

The area of analytical results is based on the cell library. The constraint of 

synthesis is optimized for area to avoid the variance due to the timing optimization 

technique. The area is over estimated in 16-entry, 1R1W configuration because of the 

2-to-1 multiplexer model is actually larger than 4-to-1 multiplexer cell that synthesis 

tool uses. From the analysis, we can sum up that the area of cell-based CRF is direct 

proportion to both number of registers and number of ports and the synthesis results 

prove the point. The natural of high routing complexity of RF will cause high 

variance in physical implementation, and the variance growing with the number of 

registers and ports increasing. 

 

Table 2-1 Comparison of analytical results and synthesis results 
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2.6  Interleaved Multithreaded (IMT) Architecture 

When we use pipeline design to boost the performance of the composite FUs, it 

will introduce instruction latency. This section shows how the IMT architecture hides 

the instruction latency totally.  

Figure 2-14 illustrates an example of the interleaved threads and dependencies 

in the pipeline. If an IMT architecture processor has 5 stages and the pipeline latency 

is 5 cycles, it needs 5 interleaved threads to hide instruction latency totally. These 5 

threads are independent tasks.  

The operation is to issue the first instruction of thread 1 at cycle 1 into the 

pipeline, then issue the first instruction of thread 2 at cycle 2, and so on. After first 

iteration from thread 1 to thread 5 is done, issue the second instruction of thread 1. In 

this way, the following iterations are executed. 

 

Figure 2-14 Interleaved threads and dependencies in the pipeline 

The first instruction and second instruction of thread 1 may have dependency. 

In the original pipeline design, if their execution time is overlapped, there would be 

some kind of data hazard. So it must stall the second instruction until the first 

instruction complete, but this handling method hinders the speedup of performance.  
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As Figure 2-14, interleaved threads method solves the problem. The execution 

time of first and second instructions has no overlapped. It hides the instruction latency 

without any performance loss. 
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3   The Composite FUs 

We want to quantify the hardware utilization of the composite FUs. Once the 

hardware utilization is upgraded, we analyze the area pressure of register file for 

different datapaths under different performance constraint. 

In section 3-1, we introduce the composite FUs generator to analyze the 

operations per cycle of all kinds of composite FUs running different applications. 

After then, the register requirement and the estimated area of register files is 

calculated by the method in section 2-5 with small modification. Afterward, use 

pipeline design to boost performance. The pipeline design flow is described in section 

3-2. Because of the pipeline design introduces instruction latency, the IMT is used for 

pipelined composite FUs. We will talk about the hardware cost of IMT. 

As a result of operands operated for more than one operation after being fetched, 

the total register accesses are reduced. We also estimate the power consumption to see 

where the power is saving. 
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3.1  The Composite FUs Generator 

 

Figure 3-1 The composite FUs generator 

We introduce the composite FUs generator in Figure 3-1 for application 

analysis. When the composite FUs generator receives a FU resource constraint and an 

application in DFG description, three recursive steps have been taken iteratively.  

First, select an arrangement from possible candidate formed by FU resource 

constraint. Second, create an ID-based search graph and match libraries of the 

arrangement and cover the DFG using the function set of the arrangement. Finally, the 

register requirement is calculated for further area estimation. 

Repeat these steps until all the case of arrangements are done, we can get 

operations per cycle (OPC) and register requirement for each composite FU. The 

composite FU with best OPC implies the most proper datapath and the hardware 

utilization is the highest for the application. 
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3.1.1  Arrangement Space 

For given FU resources, there are many arrangements to form a composite FU. 

Number of functional units: N 

Number of adders: NA 

Number of multiplier: NM 

Number of shifter: NS 

The total arrangements: 
!!*!*

!
SMA NNN

NS =  

In this thesis, we concern about two cases of function units set. One is 3 FUs 

composed of 1 adder, 1 multiplier, and 1 shifter. The other is 4 FUs composed of 2 

adders, 1 multiplier, and 1 shifter. For the former case, NA = 1, NM = 1, NS = 1, so 

the total arrangements S is 6 as Figure 3-2 shows. For the latter case, NA = 2, NM = 1, 

NS = 1, so the total arrangements S is 12 as Figure 3-3 shows. 

 

Figure 3-2 The arrangement space of 1 A 1M 1S 

 

Figure 3-3 The arrangement space of 2 A 1M 1S 
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3.1.2  ID-based Search Graph Covering 

According to section 2-3, we map the ID-based search graph from Boolean 

expression to the analysis of the composite FUs. We use exhaustively tree-structured 

search principle to simplify selected composite FU.  

 

Figure 3-4 The ID-based search graph of MAS 

Figure 3-4 illustrates composite FU: MAS and its sub-level functions. First, the 

MAS-ordered composite FU is categorized into 3 levels of operations. That is, level-3 

operation, MAS, performs one multiplication, one addition plus one shift serially. 

Level-2 operations, including MA, AS, and MS, perform either one multiplication and 

one addition, or one addition and one shifter, or one multiplication and one shifter 

serially. Level-1 operations, including M, A, and S, perform either one multiplication, 

one addition or one shift serially. We can use adding zero, multiplying by one and 

shifting by zero to bypass the adder, the multiplier and the shifter respectively. 
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Then, the ID-based covering is performed to cover the nodes of the input DFG 

by available operations, i.e. level-3, level-2 or level-1 operations. Note that, all 

covered nodes are assumed to consume one clock cycle. The covering process first 

searches the whole DFG for any pattern that is matched to the level-3 operation and 

then for any remaining uncovered node patterns that are matched to the level-2 

operation and so on. 

 Multiple Fan-out Handling and Optimization 

 Multiple fan-out problem 

Figure 3-5 (a) shows a DFG of a butterfly application, we use Figure 3-5 (b), 

composite FU: AMAS to cover this DFG. If the A0-M0-A2 is merged together when 

the match is proceeding in level 3 match for AMA, one of the A3 node can’t get the 

data from M0 node because of the composite FU AMAS don’t have a write port after 

multiplication to store the right value into the register file. Hence, the application 

cannot be fulfilled. Some actions must be taken to prevent the hazard from happened. 

 

Figure 3-5 (a) a DFG of butterfly (b) the composite FU: AMAS 

 Break 

The simplest method to avoid the data hazard is to break at the multiple fan-out 

nodes. Figure 3-6 illustrates the procedures. The level 2 AM function matches A0-M0 

and A1-M1 to form new nodes C1 and C3. The level 1 A function matches A2 and A4 

to form new nodes C2 and C4. It takes 4 nodes to perform the butterfly. 
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Figure 3-6 Break at multiple fan-out node 

 Node duplication 

For optimization, we use the node duplication technique to minimize the 

number of matches. Figure 3-7 (a) shows the spirit of node duplication. Breaking at 

M0 to let A3 get correct source value needs a instruction for A3 only. But we can 

repeat the operation A0-Mo in the same instruction with A3 because the characteristic 

of the composite FU allows these work done in the same instruction. 

Figure 3-7 (b) illustrates the procedures. The level 3 AMA function matches 

A0-M0-A2 and A0-M0-A3 to form new nodes C1 and C2. The level 2 AM function 

matches A1-M1 to form new node C3. It only takes 3 nodes, equals 3 instruction for 

execution, to perform the butterfly. The node duplication technique reduces the nodes 

of the covering result form 4 nodes to 3 nodes. 

 

Figure 3-7 Node duplication at multiple fan-out nodes  

(a) covering (b) duplicate A0 and M0 
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3.1.3  Scheduling 

Since we want to estimate the area of register files, the scheduling principles 

with optimizing for register requirement are chosen. But finding out the minimum 

register requirement is a NP-complete problem. So we use two simple scheduling to 

get the sub-optimal solution. Some concepts are from [17], forced-directed 

list-scheduling [18], loop-list scheduling [19], and cone-base list-scheduling [20]. 

 Lifetime Analysis 

Based on section 2-4, the lifetime analysis about ASAP scheduling, ALAP 

scheduling, and range estimation is done first. Then we construct resource, allocation, 

dependency, and port conflict constraints. With these inequalities, we can put some 

priorities to solve the linear programming problem and make the scheduled order. 

 Cutsets 

Cut the DFG into branches, called cutsets which have no dependencies of each 

other. Figure 3-8 cuts the DFG into three independent cutsets. Give the independent 

cutsets different priorities and finish the cutset one by one can minimize the live 

registers at the same time space. 

 

Figure 3-8 Cutset of DFG 

For example in Figure 3-8, assume that only one node can be executed in one 

cycle because of limited hardware resource, and the hard deadline of the whole 
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application is 10. The range of lifetime analysis of each node is listed in the square 

bracket near the node. The value before comma is the earliest time step of ASAP 

scheduling, and the other value after comma is the latest time step of ALAP 

scheduling. Node 1 in cutset 1, node 3 in cutset 2, and node 7 in cutset 3 have the 

same lifetime. It means that their live ranges are completely the same. Without cutset 

priorities, the scheduling result of cycle 1 is node 1, cycle 2 is node 3, and cycle 3 is 

node 7, and so on. The register requirement is 3 which happened to store intermediate 

value of node 1, 3, and 7. On the contrary, set cutset priorities 1 to nodes of cutset 1, 2 

to nodes of cutset 2, and 3 to nodes of cutset 3. The scheduling result of cycle 1 is 

node 1, cycle 2 is node 2, cycle 3 is node 3, and so on. The register requirement is 

only 1, either store 1, 3, or 7. The register requirement is reduced. 

 Priorities 

Our resource is only one composite FU, if refines the resource constraint. We 

give different priorities for the independent cutsets first, then execution priorities. We 

use two methods to get the scheduled order and take the smaller register requirement 

as result. Additionally, if all the priority is the same, we will do the node with smaller 

serial number from the DFG description. 

Scheduling 1 

Based on the first come first serve principle, the execution priority setting start 

according to the ASAP result. Search the time space of ASAP and mark its order if its 

ancestor nodes are all in ready list. 

Scheduling 2 

If the timing constraint is critical, the deadline of each node is highly notified. 

The execution priority setting start according to the ALAP result, search the time 

space of ALAP and mark its order if its ancestor nodes are all in ready list. 
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Figure 3-9 Recursive steps of automatic composite FUs generation 
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Figure 3-9 shows recursive steps of automatic composite FUs generation. The 

three steps are listed as follow. 

 Step 1. Function decomposition 

The MAS-ordered composite FU is decomposed into 3 levels because it has 

three functional units. Level-3 operation is MAS. The number of level-2 operations is 

3 including MA, AS, and MS. The number of level-1 operation is 3 including M, A, 

and S. These 7 operations compose of match libraries. 

 Step 2 ID-based covering 

Covering procedures start from the matching of level-3 operation. It finds a 

MAS match and marks it in C0. Then the matching of level-2 operations starts, and it 

finds 4 matches and mark it in C1~C4. Finally, the matching of rest of nodes using 

level-1 operations and make up C5~C10. 

 Step 3 Scheduling 

After ASAP and ALAP, the lifetime analysis is done and the scheduling result is 

C6 in cycle 1, C1 in cycle 2, C8 in cycle 3, C5 in cycle 4, C7 in cycle 5, C10 in cycle 

6, and so on. And the register requirement is calculated as well. 
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3.2  Pipeline Design Flow and Hardware Cost of IMT 

After the composite FU generation, the pipeline design is performed to decide 

the required pipeline stages according to the target performance.  For example, if the 

OPC of some specific composite FU is 1.5 regarding a specific application and the 

target performance is 600MOPS (million operations per second), the required 

operation frequency is 400MHz. 

We use the Synopsys DesignCompiler synthesis tool incorporated with the 

design flow shown in [] to analyze the various pipeline stage sand the associated area 

cost. This flow also applies for scalar, VLIW as well as the composite FUs for area 

comparison in the experiment introduced later. 

 

Figure 3-10 The flow of pipeline design 
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On the other hand, for analyzing the area cost of datapath and the pipeline 

registers, we use the pipeline design flow in Figure 3-10. First, if the target clock 

cycle is d (ns) and the desired number of pipeline stages is p, we pre-synthesize the 

purely combinational circuit, i.e. MSA, with the input-to-output delay of d*p (ns). 

Then, (p-1)-stage pipeline registers are attached to the output of the synthesized netlist 

which is imported into DesignCompiler to perform register retiming with the target 

clock cycle d (ns) as clock constraint. Finally, the resultant netlist is re-synthesized 

again and the area cost is recorded.  

The main innovations of the pipelining design flow are two-folded. The first is 

to avoid a over-designed netlist. The conventional method that does not take the target 

clock rate and the desired number of pipeline stages into consideration may use a tight 

timing constraint to pre-synthesize the purely combinational circuit and thus results in 

a over-designed netlist of excessively large area. The other innovation of the proposed 

pipeline design flow can avoid the situation that insufficient pipeline stages will result 

in so tight clock timing constraint that the resultant netlist is of excessively large area. 

In our experience, under some cases, the synthesized netlist with more pipeline stages 

will has smaller area than that with less pipeline stages.  

 Hardware Cost of IMT 

Because we use interleaved multithreading technique to hide pipeline latency, 

one more set of context, i.e. register file, is required for one more pipeline stage. 

Because the port number of the composite is slightly larger than scalar processors and 

greatly smaller than VLIW processors, the IMT architecture is suitable for the 

composite FUs. Comparatively, the heavy area pressure hinders the VLIW from using 

IMT architecture.  
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4    Application Specific 

Programmable Processor Synthesis 

In classic ASIP synthesis flow, programmers usually design the instruction set 

architecture (ISA) and micro-architecture first. Then the software programmers and 

hardware designers develop the software tool chain and hardware architecture 

according to ISA and micro-architecture separately. This flow starts from high level 

synthesis and forms a top-down design. 

We propose an Application Specific Programmable Processor Flow in section 

4-2 to explore the design space of the composite FUs. Then we describes a composite 

FU selection flow to help users to find out the most proper composite FU. 
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4.1  High Level ASIP Synthesis Flow 

[21] shows typical procedures of high level synthesis. Some instruction set 

matching and selection techniques are described in [22][23] [24]. [25] introduces the 

critical path and data path optimization for ASIP design. 

High-level synthesis takes some kind of behavioral description of the algorithm, 

available hardware resources, and a set of constraints and goals, to generate the 

hardware architecture in register-transfer level (RTL). The set of constraints and goals 

define the desired performance and characteristics of the final architecture. The most 

common constraints are area and performance constraints. 

Area constrained problems means that given a set of resources (or functional 

units), try to implement the application using those resources such that it has the 

highest performance. This is known as resource-constrained scheduling.  

The performance constrained problem is known as time-constrained 

scheduling, where the designer is given a desired sample rate or iteration period and 

the goal is to minimize the total area of the final architecture.  

There are other goals during the synthesis problem depending on the user 

requirement such as minimizing the number of memory modules, reducing the power 

consumption, minimizing the number of busses, incorporating reliability and 

testability into the design, etc. 



45 

Language description of algorithms

Internal graphical representation
(SDFG)

Algorithmic Optimization

Module binding and control circuit generation (RTL)

RTL description of the final architecture

Resouce

Goals and 
constraints

Functional units 
library

Scheduling

Resource 
Allocation Binding

 

Figure 4-1 High-level synthesis of DSP datapath 

Figure 4-1 illustrates the design flow of the high-level DSP synthesis system. 

The behavioral description which may be represented in C/C++ is first converted to a 

graph-based representation, and such as data-flow graph[]. In the DFG representations, 

the nodes represent computations (or functions or subtasks) and the directed edges 

represent data paths and each edge has a nonnegative number of delays associated 

with it. The following tasks in high-level synthesis of DSP datapath include high-level 

optimization, scheduling, resource allocation, module binding, and control generation. 

The final architecture produced by high-level synthesis is typically at the 

synthesizable RTL. Many high-level synthesis systems have been designed and a 

great deal of progress has been made in finding good techniques for optimizing and 

exploring design tradeoffs. In addition, the trend towards more automation at higher 

level of design process is expected to continue. 
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 Scheduling 

Scheduling and resource allocation are two important tasks in hardware or 

software synthesis of DSP system. They are both interrelated and dependent on each 

other and are among the most difficult problems of high-level synthesis.  

Scheduling involves assigning every node of the DFG to time steps. Time steps 

are the fundamental sequencing units in synchronous systems and correspond to clock 

cycles.  

In general, there are two types of scheduling: one is time-constrained 

scheduling and the other is resource-constrained scheduling.  

Time-constrained scheduling is to minimize the cost of hardware bound by 

some specific allowed operation time. For example, in many digital signal processing 

(DSP) systems, the sampling rate of the input data stream dictates the maximum time 

allowed for carrying out a DSP algorithm on the present data sample before the next 

sample arrives.  

On the other hand, the resource-constrained scheduling problem is encountered 

in many applications where we are limited by the silicon area. The constraint is 

usually given in terms of either a number of functional units or the total allocated area. 

When total area is given as a constraint, the scheduling algorithm determines the type 

of functional units used in the design. The goal of such an algorithm is to produce a 

design with the best possible performance but still meeting the given area constraint. 

 Resource allocation & binding 

Resource allocation is the process of determining how many and what types of 

hardware required to implement the desired behavior at lowest cost. The hardware 

resources consist primarily of functional units, memory modules, multiplexers, and 

communication datapaths. 
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Binding involves the mapping of the variables and operations in the scheduled 

DFG into the functional, storage, and interconnection units, while ensuring that the 

design behavior operates correctly on the selected set of components. For the every 

operation in the DFG, we need a functional unit that is capable of executing the 

operation. For every variable that is used across several time steps in the scheduled 

DFG, we need a storage unit to hold the data values during the variable’s lifetime.  

Finally, for every data transfer in the DFG, we need a set of interconnection 

units for the transfer. Besides the design constraints imposed on the original behavior 

and represented in the DFG, additional constraints on the binding process are imposed 

by the type of hardware units selected. For example, a functional unit can execute 

only one operation in any given time step. Similarly, the number of multiple accesses 

to a storage unit during a control step is limited by the number of parallel ports on the 

unit. 

Figure 4-2 illustrates the mapping of DFG into register transfer components. 

Figure 4-2 (a) show a scheduled DFG to be mapped and we assume that two adders 

and four registers are selected. Operation “+1” and “+2” cannot be mapped into the 

same adder because they must be performed in the same time step 1. On the other 

hand, operation “+1” can share an adder with operation “+3”, because they are carried 

out during different control steps. Thus, operation “+1” and “+3” are both mapped into 

adder1. Variables a and e must be stored separately because their values are need 

concurrently in time step 2. Register 1 and 2, where variables a and e reside, must be 

connected to the input ports of ADD1; otherwise, operation “+3” will not be able to 

execute in adder1. Similarly, operation “+2” and “+4” are mapped to adder2. Note that 

there are several different ways of performing the binding. For example, we can map 

“+2” and “+3” to adder1 and “+1” and “+4” to adder2. 
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Figure 4-2 (a) Scheduled DFG; (b) mapped operation 
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4.2  Proposed Application Specific Programmable Processor 

Synthesis Flow 

Not like traditional ASIP synthesis flow, we don’t make the ISA first. The 

composite FUs take advantages of the application characteristics. Figure 4-3 

illustrates a bottom-up design flow described as follow. First, find out the proper 

datapath under constraints and applications. Second, summary the sub-functions and 

make a corresponding instruction set. Last, some other details of hardware are 

implemented. In this thesis, we have already implement ed the lower parts including 

Composite FUs Generation and Pipeline Design. The System Specification is the 

target goal and the DFG is the given application. The unsolved problem of Budgeting 

is waiting for advanced exploration. 

 

Figure 4-3 Proposed Application Specific Programmable Processor synthesis flow 
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 System Specification 

The system may have some constraints. The most usual constraints are 

performance and area constraints. These two constraints define the analysis space of 

our composite FUs generator and pipeline design. Besides, the flow may plus some 

other constraints for other purposes if needs. 

Performance constrains: in MOPS 

Area constrains: in um2 

 Budgeting 

Supervisors get system specification through some kind of user interface. Then 

they decide how to distribute the area for FU and RF. This is another domain of 

design space exploration. 

 Composite FUs Generator 

Get DFG description and the constraints from Budgeting as inputs. Then, use 

the composite FUs generator mentioned at chapter 3, we can analyze the DFG and 

report the corresponding OPC and register requirement. Then, list all results of 

analysis and send them into Pipeline Designer. 

 Pipeline Designer 

Get the analysis from the Composite FUs Generator and the constraints from 

Budgeting as inputs. Then, use the pipeline design flow described in section 3-2 and 

simulate the synthesis results with different pipeline stages. Finally, report the results 

including the pipeline stages and area in different MOPS to the supervisors to see if 

the iteration meets the specifications or not. 
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4.3  Composite FU Selection Flow 

When we get a specific application, we would like to know what kind of 

composite FU is the best for this application for different purpose. In this section, we 

propose an iteration method called composite FU selection flow to find out the most 

suitable composite FU. 

As the maximum OPC is limited by the characterization of the application itself, 

we develop a design methodology to find the minimal number of FUs to achieve the 

required performance.  At the same time, the design methodology tries to minimize 

the number of pipeline stage to reduce thread overhead, i.e. context.   

First, we perform FU characterization. Using TSMC 0.13um cell library and 

Synopsys DesignCompiler, the circuit delay of the 16-bit adder, 16-bit multiplier, and 

the 16-bit shifter is around 1.40ns, 3.00ns, and 0.70ns respectively.  The design 

methodology begins with a baseline FU set, i.e. one adder, one multiplier, and one 

shifter.  The baseline FU set and the target applications (described by DFG) are used 

as inputs to the composite FUs generator described in Section II.B.   

The minimal number of pipeline stage (p3) can be thus calculated as Analysis 

block in Figure 4-4.  Then, one more specific functional unit is added, i.e. adding 

one more adder or multiplier or shifter.  Again, after the analysis, if the resultant 

number of pipeline stage (pN) is less than (pN-1), we can continue adding one more FU 

to evaluate the resultant number of pipeline stage.  On the other hand, if (pN) is equal 

to or larger than (pN-1), the procedure ends. 
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Figure 4-4 Composite FU selection flow 
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5   Simulation Result 

We show the improvement of the hardware utilization first. Then the area and 

power comparisons are listed in section 5-1 and 5-2. 

5.1  Hardware Utilization Improvement and Area 

Comparison 

After the software chain and application analysis flow set up, we start to find 

out the hardware utilization improving level of the composite FUs. In section 5.1.1, 

we make a benchmark suite of general media embedded applications. Then the target 

datapaths are described in section 5.1.2. The OPC is calculated and the single stage 

area is estimated. We use Synopsys DesignCompiler synthesis tool to synthesize the 

area of FU and RF separately. Section 5.1.3 shows the total area of different datapaths 

in different MOPS after pipeline design coordinating with IMT architecture. 
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5.1.1  Benchmark Suite 

We choose nine kernels to make up a benchmark suite. 1~5 and 9 are including 

in the DSPstone [26] and BDTI [27] benchmark. 6 [28] and 7 [29] are used in the 

H.264 standard. 8 is used in the MP3 standard [30]. 

1. 16 taps finite impulse response 

2. 16 taps complex finite impulse response 

3. 16 taps linear-phase finite impulse response 

4. 1st order biquad filter 

5. (8*8)*(8*1) matrix multiplication 

6. 8 points integer transform 

7. 8 points discrete cosine transform 

8. 12 points inverse modified discrete cosine transform 

9. 8 points fast fourier transform 

Table 5-1 outlines the operations profiling of these nine benchmarks. What we 

concern are operations of addition/subtraction, multiplication, and shift. Assume the 

input/output (load/store) operations are decoupled in the analysis. It means the 

primitive operations can get data from I/O whenever they want without any 

performance loss. 

# add # mpy # sht # input # output # op
FIR 16-tap FIR 15 16 0 32 1 31

CFIR 16-tap complex FIR 62 64 0 64 2 126
LPFIR 16-tap linear-phase FIR 15 8 0 24 1 23
Biquad 1st-order IIR 8 9 0 12 1 17
Matrix (8*8)*(8*1) matrix multiplication 56 64 0 72 8 120

IT 8-point integer transform (H.264) 32 0 10 8 8 42
DCT 8-point discrete cosine transform 29 12 9 15 8 50

IMDCT 12-point inverse modified DCT 21 11 9 11 12 41
FFT 16-point fast fourier transform 23 10 0 11 14 33

261 194 28 483Total  

Table 5-1 Operations profiling of the benchmark suite 
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5.1.2  Target Datapaths 

We choose 5 kinds of datapths and list them below. 

 3 FUs including 1A 1M 1S 

1. Scalar 

2. 3-way VLIW 

3. Composite FUs with 3 FUs: 6 arrangements 

 4 FUs including 2A 1M 1S 

4. 4-way VLIW 

5. Composite FUs with 4FUs: 12 arrangements 

Adding one more adder for scalar with 3 FUs is meaningless because of it 

would be leaved unused.  

 

Figure 5-1 5 kinds of datapaths of the scalar, VLIW, and the composite FUs 

Table 5-2 outlines the OPC for each datapaths corresponding to different 

applications. The OPC calculation is based on the assumption that all operations 

consume one clock cycle. Alternatively, for the scalar processor, the adder, or the 

multiplier, or the shifter takes one clock cycle to compute one result.  Similarly, for 

the VLIW and the composite FUs, all the FUs can be activated simultaneously in one 
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cycle.  The OPC of the VLIW and the composite FUs is normalized to that of the 

scalar processor first and then the geometric mean is calculated among all input 

benchmarks. The OPC of scalar is 1.00, and OPC of the other datapaths are 

normalized to the scalar. The last column, called average OPC is the geometric mean 

of the former nine columns. The OPC of 3-way and 4-way VLIW are 1.65 and 2.12. 

The composite FU with best hardware utilization 1.35 and 1.62 for 3 FUs and 4FUs 

are MSA and AMSA. Although the average OPC of composite FUs lose to the OPC 

of the VLIW, the simulation result shows that there are composite FUs with OPC near 

to the OPC of VLIW, even better.  

Figure 5-1 shows the configurations of 5 datapaths. The composite FUs MSA 

and AMSA with best OPC are chosen for further synthesis and comparison. 

FIR CFIR LPFIR Biquad Matrix IT DCT IMDCT FFT AVG

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.82 1.91 1.53 1.70 1.79 1.31 1.61 1.86 1.43 1.65

AMS 1.00 1.00 1.53 1.21 1.00 1.00 1.61 1.52 1.27 1.22
ASM 1.00 1.00 1.53 1.21 1.00 1.00 1.52 1.28 1.27 1.18
MAS 1.94 1.34 1.44 1.42 1.36 1.00 1.28 1.24 1.06 1.32
MSA 1.94 1.34 1.44 1.42 1.36 1.31 1.14 1.28 1.06 1.35
SAM 1.00 1.00 1.53 1.21 1.00 1.31 1.32 1.24 1.27 1.20
SMA 1.94 1.34 1.44 1.42 1.36 1.31 1.09 1.21 1.06 1.33

1.82 1.91 2.30 1.70 1.79 2.47 2.63 2.28 2.36 2.12
AAMS 1.29 1.31 1.92 1.70 1.15 1.17 1.79 1.52 1.43 1.45
AASM 1.29 1.31 1.92 1.70 1.15 1.17 1.67 1.28 1.43 1.42
AMAS 1.35 1.34 2.88 1.70 1.36 1.17 1.79 1.52 1.43 1.56
AMSA 1.35 1.34 2.88 1.70 1.36 1.62 1.67 1.64 1.43 1.62
ASAM 1.29 1.31 1.92 1.70 1.15 1.62 1.56 1.32 1.43 1.46
ASMA 1.35 1.34 2.88 1.70 1.36 1.62 1.56 1.32 1.43 1.57
MAAS 1.94 1.97 1.44 1.89 1.67 1.17 1.39 1.32 1.18 1.52
MASA 1.94 1.97 1.44 1.89 1.67 1.62 1.32 1.37 1.18 1.57
MSAA 1.94 1.97 1.44 1.89 1.67 1.62 1.19 1.32 1.18 1.55
SAAM 1.29 1.31 1.92 1.70 1.15 1.62 1.39 1.21 1.43 1.43
SAMA 1.35 1.34 2.88 1.70 1.36 1.62 1.39 1.21 1.43 1.53
SMAA 1.94 1.97 1.44 1.89 1.67 1.62 1.14 1.17 1.18 1.52

3 FU

4 FU

Scalar
VLIW

Composite FUs

VLIW

Composite FUs

# operation/cycle

 

Table 5-2 Operations per cycle 

Table 5-3 shows the further comparisons among the Scalar/VLIW/Composite 

FUs. The 2nd to the 8th columns shows the various the OPC of each architecture 

regarding the various benchmarks. For the composite FUs, two kinds of OPC are 

displayed.  One is of the MSA-ordered/AMSA-ordered composite FUs and the other 
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is, for each benchmark, the best OPC of all possible composite FUs. For example, the 

AMS-ordered composite FU results in the best OPC regarding the LPFIR benchmark.  

Although the MSA-ordered/AMSA-ordered composite FUs is of single-issue 

processor, their OPCs in all benchmarks are greater than one (of an average of 

1.35/1.62) and thus it effectively increases datapath utilization.  Besides, the best 

OPC of the composite FUs (either 3-FU or 4-FU) is comparable to that of the VLIW 

and even greater than that of the VLIW.  The composite FUs have an average 

performance loss of about 20% in comparison with the VLIW. 

Composite FU Composite 
FU Benchmark Scalar 3-way 

VLIW MSA Best 

4-way 
VLIW AMSA Best 

FIR 1.0 1.82 1.94 1.94 1.82 1.35 1.94 
CFIR 1.0 1.91 1.34 1.34 1.91 1.34 1.97 

LPFIR 1.0 1.53 1.44 1.53 2.30 2.88 2.88 
Biquad 1.0 1.70 1.42 1.42 1.70 1.70 1.89 
Matrix 1.0 1.79 1.36 1.36 1.79 1.36 1.67 

IT 1.0 1.31 1.31 1.31 2.47 1.62 1.62 
DCT 1.0 1.61 1.14 1.61 2.63 1.67 1.79 

IMDCT 1.0 1.86 1.28 1.52 2.28 1.64 1.64 
FFT 1.0 1.43 1.06 1.27 2.36 1.43 1.43 

Average 1.0 1.65 1.35 - 2.12 1.62 - 

Table 5-3 OPC comparison 

5.1.3  Register File Model Modification 

The RF area model in section 2-5 is used in TSMC 0.18um cell library. The 

area of the 4-to-1 MUX is about three times larger than area of the 2-to-1 MUX.  

Using 2-to-1 MUX to estimate all the N-to-1 MUX is acceptable while the area is 

almost the same and the errors are the slightly difference of timing and control 

network area. 

Table 5-4 (a) shows the area of basic MUX cells in TSMC 0.13um cell library. 

The area of 4-to-1 MUX is no longer three times the area of 2-to-1 MUX, it is about 

2.5 times. The RF model must be modified. Otherwise, the estimation area could be 

over-estimated.  
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Function Cell Height Width Area 16-bit
DFF DFFXL 3.69 7.36 27.1584 434.534
MX2 MX2XL 3.69 3.68 13.5792 217.267
MX3 MX3XL 3.69 5.98 22.0662 353.059
MX4 MX4XL 3.69 8.74 32.2506 516.01

TSMC 0.13um Cell Library

  

MUX MX4 MX3 MX2 Area
2 1 217.267
3 1 353.059
4 1 516.010
5 1 1 733.277
6 1 1 869.069
7 2 1,032.019
8 2 1 1,249.286
9 2 1 1,385.078
10 3 1,548.029
11 2 2 1,738.138
12 3 1 1,901.088
13 4 2,064.038
14 4 1 2,281.306
15 4 1 2,417.098
16 5 2,580.048  

Table 5-4 (a) Area of basic MUX cells in TSMC 0.13um cell library (unit: um2) 

(b)Area of modified MUX model (unit: um2) 

We use 2-to-1 MUX, 3-to-1 MUX, and 4-to-1 MUX to form the N-to-1 MUX 

and to find the minimum area as Table 5-4 (b) shows. Table 5-5 illustrates that the 

difference between analytical model and synthesis result. The upper part of the 

annotation is the results of modified RF model, and the lower part of the annotation is 

the results of the original RF model. It shows that our modified method have lower 

errors from -6% ~ 20%. Except that the difference with few ports is under-estimated 

because of the MUX area is relatively small. 

Synthesis Results Difference
x y N* W flip-flop read port write port area Area (%)

1 1 16 16 6953 2580 0 9533 11459 -16.81

2 1 16 16 6953 5160 0 12113 13684 -11.48

2 2 16 16 6953 5160 3476 15589 15321 1.75

4 2 16 16 6953 10320 3476 20749 19082 8.74

2 4 16 16 6953 5160 8256 20369 19427 4.85

4 4 16 16 6953 10320 8256 25529 23731 7.58

2 1 32 16 13905 10755 0 24660 26302 -6.24

4 2 32 16 13905 21509 6953 42367 35869 18.12

(* 16 registers is composed of 5 4-to-1 mux, 32 registers is composed of 10 4-to-1mux and 1 2-to1 mux)

1 1 16 16 6953 3259 0 10212 11459 -10.89

2 1 16 16 6953 6518 0 13471 13684 -1.56

2 2 16 16 6953 6518 3476 16947 15321 10.61

4 2 16 16 6953 13036 3476 23465 19082 22.97

2 4 16 16 6953 6518 10429 23899 19427 23.02

4 4 16 16 6953 13036 10429 30417 23731 28.18

2 1 32 16 13905 13471 0 27376 26302 4.08

4 2 32 16 13905.1 26941 6953 47799 35869 33.26

Estimate
d by 2-
to-1 mux

RF parameter Analytical Results

Estimate
d by 4-
to-1, 3-
to-1, and
2-to-1
mux

 

Table 5-5 Modified RF model in TSMC 0.13um cell library 
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5.1.4  Area Comparison 

 Estimation Results 

From the register requirement conducted from the composite FUs generator, 

using the modified RF model and get the results in Table 5-6. The “# port” column 

shows the read/write port number. The “MAX” column stands for the maximal of 

register requirement of architectures. The “Est. Area” column means the estimation 

according to register number form MAX. We can see that the area of 3-way VLIW is 

the largest one in the 3-FU fields, so as to the area of 4-way VLIW is the largest one 

in the 4-FU fields. 

For more general purpose and simulation simplicity, we round the MAX into 16 

for convenience. This is reasonable because the variation of register requirement is 

highly different according to applications and scheduling methods. We can see that 

the area pressure of VLIW is relatively high to scalar and the composite FUs. The area 

of composite FU is slightly larger than scalar. 

FIR CFIR LPFIR Biquad Matrix IT DCT IMDCT FFT # port MAX Est. Area final Area
2 4 3 6 8 11 10 9 7 2R/1W 11 8256 16 12113
2 3 3 4 4 9 10 8 7 5R/3W 10 15616 16 25502

AMS 2 4 3 4 8 16 12 7 10 16 14693
ASM 2 4 3 4 8 16 11 7 10 16 14693
MAS 1 3 3 3 4 16 10 8 12 16 14693
MSA 1 3 3 3 4 14 10 8 12 14 12927
SAM 2 4 3 4 8 14 11 7 10 14 12927
SMA 1 3 3 3 4 14 10 7 12 14 12927

2 3 4 4 4 10 10 7 10 7R/4W 10 20342 16 33269
AAMS 3 3 5 6 8 14 10 8 8 14 15209
AASM 3 3 5 6 8 14 10 8 8 14 15209
AMAS 3 3 1 3 6 14 10 8 8 14 15209
AMSA 3 3 1 3 6 12 10 7 8 12 12819
ASAM 3 3 5 6 8 12 10 8 8 12 12819
ASMA 3 3 1 3 6 12 10 8 8 12 12819
MAAS 3 2 4 3 4 14 10 9 11 14 15209
MASA 3 2 4 3 4 12 10 9 11 12 12819
MSAA 3 2 4 3 4 10 10 9 11 11 11732
SAAM 3 3 5 6 8 10 10 7 8 10 10537
SAMA 3 3 1 3 6 10 10 7 8 10 10537
SMAA 3 2 4 3 4 10 10 7 11 11 11732

3R/1W

4R/1W

3 FU

4 FU

Scalar
VLIW

VLIW

Composite FUs

Composite FUs

16

16

14693

17273

 

Table 5-6 Register requirement and estimated RF area 
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 Synthesis Results 

 Un-pipelined 

Figure 5-2 explains the area cost of the various architectures under the 

performance requirement of 100MOPS, 150MOPS, 200MOPS, and 300MOPS 

respectively.  We use Synopsys DesignCompiler with the TSMC 0.13um cell-library 

to synthesize the various architectures.  All synthesized architectures are 

un-pipelined.   

The composite FUs (MSA or AMSA) save about 10% ~ 25% of area compared 

to the VLIW regarding 100/150/200 MOPS due to less number of ports of centralized 

register file.  However, when the performance requirement is above 300 MOPS, the 

composite FUs have to be pipelined to achieve the comparable performance to the 

VLIW.  
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Figure 5-2 Area analysis of single stage 

The total area is composed of the area of FUs and the area of RF. The area of 

RF changes slightly with the frequency increasing, but the area of FUs grows 

exaggeratedly when the frequency increases and the combinational delay constraint 

decrease. Actually, the cost of the RF area of the composite is quite equal to the cost 

of the scalar. 
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Figure 5-3 Area analysis with 1 to 4 pipeline stages (3 FUs) 
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Figure 5-4 Area analysis with 1 to 4 pipeline stages (4 FUs) 
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 Pipelined 

After pipeline design introduced in section 3-2, we use N threads IMT to hide N 

stages instruction latency totally. For each thread, there must be a thread register file 

supported to keep the functionality of IMT architecture. 

Figure 5-3 shows the area analysis of the datapaths with 3 FUs and 1 to 4 

pipeline stages. These lines stand for total area composed of the area of the FUs, the 

pipeline register, and the thread register files. Figure 5-4 shows the area analysis of 

the datapaths with 4 FUs and 1 to 4 pipeline stages.  

We can see that if VLIW using IMT, the cost is exaggeratedly large than 

composite FU and scalar. On the other hand, the composite FUs cost a slightly more 

area than the scalar by around 10%.  

Because the peak performance of the composite FUs is lower than the VLIW 

under same FU resource. VLIW cooperate with IMT can reach specific MOPS goal 

with less pipeline stages and thread number. However, to our knowledge, there are 

several ways to reduce the multithread-related cost such as the register file 

architecture using master latch sharing described later.  

We will recommend the designers if they want to use VLIW architecture, they 

should use some other techniques to hide instruction latency under limited area 

constraint. Nevertheless, these techniques need overhead of hardware complexity and 

the re-compile of the software efforts. 
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5.2  Power Estimation 

In this section, we quantify the reduction of register accesses. Then we conduct 

an experiment to see the degree of power saving. 

5.2.1  Register Accesses Per Operation 

The total accesses of the composite FUs are reduced because of several 

operations performed in single instruction. It apparently cuts the read and write 

accesses.  

AVG
t N t N t N t N t N t N t N t N t N N

3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.76 1.00 2.82 1.00 2.78 1.00 3.00 1.00 1.00
3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.76 1.00 2.82 1.00 2.78 1.00 3.00 1.00 1.00

AMS 3.00 1.00 3.00 1.00 2.30 0.77 2.65 0.88 3.00 1.00 2.76 1.00 2.06 0.73 2.10 0.75 2.58 0.86 0.88
ASM 3.00 1.00 3.00 1.00 2.30 0.77 2.65 0.88 3.00 1.00 2.76 1.00 2.14 0.76 2.34 0.84 2.58 0.86 0.90
MAS 2.03 0.68 2.49 0.83 2.39 0.80 2.41 0.80 2.47 0.82 2.76 1.00 2.28 0.81 2.39 0.86 2.77 0.92 0.83
MSA 2.03 0.68 2.49 0.83 2.39 0.80 2.41 0.80 2.47 0.82 2.29 0.83 2.46 0.87 2.23 0.80 2.77 0.92 0.82
SAM 3.00 1.00 3.00 1.00 2.30 0.77 2.65 0.88 3.00 1.00 2.29 0.83 2.34 0.83 2.39 0.86 2.58 0.86 0.89
SMA 2.03 0.68 2.49 0.83 2.39 0.80 2.41 0.80 2.47 0.82 2.29 0.83 2.54 0.90 2.17 0.78 2.77 0.92 0.82

3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.76 1.00 2.82 1.00 2.78 1.00 3.00 1.00 1.00
AAMS 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 2.41 0.87 1.90 0.68 2.05 0.74 2.24 0.75 0.78
AASM 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 2.41 0.87 1.98 0.70 2.28 0.82 2.24 0.75 0.79
AMAS 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 2.41 0.87 1.90 0.68 2.05 0.74 2.24 0.75 0.75
AMSA 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 1.95 0.71 1.96 0.70 1.98 0.71 2.24 0.75 0.73
ASAM 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 1.95 0.71 2.04 0.72 2.23 0.80 2.24 0.75 0.77
ASMA 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 1.95 0.71 2.04 0.72 2.23 0.80 2.24 0.75 0.75
MAAS 2.00 0.67 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 2.41 0.87 2.17 0.77 2.23 0.80 2.47 0.82 0.76
MASA 2.03 0.68 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 1.95 0.71 2.24 0.79 2.21 0.80 2.47 0.82 0.74
MSAA 2.03 0.68 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 1.95 0.71 2.39 0.85 2.16 0.78 2.47 0.82 0.74
SAAM 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 1.95 0.71 2.19 0.78 2.37 0.85 2.24 0.75 0.78
SAMA 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 1.95 0.71 2.19 0.78 2.37 0.85 2.24 0.75 0.76
SMAA 2.03 0.68 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 1.95 0.71 2.46 0.87 2.26 0.81 2.47 0.82 0.75

Biquad

3 FU

Matrix

4 FU

VLIW

Composite FUs

IT DCT

VLIW
Scalar

Composite FUs

# register access/operation(actual)
FIR CFIR LPFIR IMDCT FFT

 

Table 5-7 Register accesses per operation 

Table 5-7 outlines the register accesses per operation. First, count all accesses 

for each case. The accesses of adder of scalar and VLIW are 2R/1W. The accesses of 

multiplier of scalar and VLIW are 2R/1W. The accesses of shifter of scalar and VLIW 

are 1R/1W. The accesses of composite FUs with 3 FUs (1A1M1S) are 3R/1W. The 

accesses of composite FUs with 4 FUs (2A1M1S) are 4R/1W. Furthermore, when the 

composite FUs use sub-functions to execute the applications, the corresponding 
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accesses are taken into consideration. Then, all the data is normalized to scalar 1.00. 

The last column is the geometric mean. 

Table 5-8 shows the respective register access per operation of the various FU 

configurations regarding the used benchmarks. On average, the 3-FU and the 4-FU 

composite FUs reduce about 18% and 27% of register accesses per operation 

compared to the scalar and the VLIW. 

Benchmark Scalar 3-way 
VLIW 

Composite 
FU (MSA) 

4-way 
VLIW 

Composite 
FU (AMSA) 

FIR 1.00 1.00 0.68 1.00 0.83 
CFIR 1.00 1.00 0.83 1.00 0.83 

LPFIR 1.00 1.00 0.80 1.00 0.57 
Biquad 1.00 1.00 0.80 1.00 0.73 
Matrix 1.00 1.00 0.82 1.00 0.82 

IT 1.00 1.00 0.83 1.00 0.71 
DCT 1.00 1.00 0.87 1.00 0.70 

IMDCT 1.00 1.00 0.80 1.00 0.71 
FFT 1.00 1.00 0.92 1.00 0.75 

Average 1.00 1.00 0.82 1.00 0.73 

Table 5-8 Outline of register accesses per operation 

5.2.2  Target Simulated Architecture 

Figure 5-5 is an overview when the FU and RF are mapped into a real 

architecture. Assume that there are instruction memory, data memory, and load/store 

unit which can help the application really work. 

 

Figure 5-5 Simulated architecture 
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The shadow area surrounded by the dotted line includes FU and RF. These two 

parts are what we concern. In our experiment, we replace these two part using the FU 

and RF pairs of scalar, VLIW, and composite FU (MSA) to keep track of the power 

consumption. Remember that the L/S is independent of the FU because of the 

assumption made before for software analysis. 

5.2.3  Ping-Pong Register File 

Based on the analysis assumption and results before, the load/store handling is 

decoupled. Now we want to estimate power carefully, so we should reconsider of the 

load/store effect again because of the power estimation should be closed to real 

situation. 

There is two methods to handle the load/store operation.  

(1) Increase additional RF port to let the FUs get the right data transparently in the 

execution sequence.  

(2) Increase load/store cycles.  

The latter is simple, but it needs extra cycles because of the I/O pattern of 

register files must be considered. 

Without changing the scenario, we use ping-pong register to keep simplicity 

without opening new ports (2) and performance loss (1). 

Assume the load bandwidth is full capable of getting enough data. For example, 

when executing a MAC needs to load a coefficient and a data input, the load 

bandwidth is twice the arithmetic bandwidth. However, there is some control 

hardware overhead if the register file is capable of two values written at the same time 

using the same MUX. 
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We mirror a 16-bit RF with 16 registers and use the ping-pong mode execution. 

As Figure 5-6 shows, write ports of ping-pong RFs are interleaved access from 

load/store unit or FU. The ports of FU and RF for different datapaths are listed below. 

FU (Input / Output) 

Scalar: 2 / 1 

VLIW: 5 / 3 

MSA: 3 / 1 

RF (Read / Write) 

Scalar: 2 / 1 

VLIW: 5 / 3 

MSA: 3 / 1 

 

Figure 5-6 Data flow of FU and RF 

Besides, power is strongly related to activity pattern. The power consumption is 

almost from the transition of the logic network. Figure 5-7 shows the access pattern 

derived from Figure 5-6. We can see that the hardware can get right data in 

corresponding cycles. The ping-pong execution covers the problems derived from 

load/store cooperation. These two threads make up the total application execution. 
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Figure 5-7 Access pattern of FU and RF 

5.2.4  Simulation Results 

This experiment measures the power consumption of the scalar, the 3-way 

VLIW, and the MSA-ordered composite FU. We take Synopsys PrimePower as 

simulation tool. It simulated the power consumption of gate-level files. 

The application is executed in streaming process. And the Remez 16-tap FIR 

with 1,024 Gaussian-distributed random input patterns is used as the test real 

application. Table 5-9 illustrates the total cycles for test application of each datapaths. 

Number of cycle Scalar MSA 3-VLIW
random input 1024 1024 1024
remez filter 16 16 16
FIR(once) 31 16 17

total 31744 16384 17408  

Table 5-9 Execution cycles 
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First of all, let us see the factors which may affect the power P. Three main 

factors are the operation frequency f, capacitance C, and the voltages V. Their 

relations to power is 2VCfP ⋅⋅∝ . The voltage V is constant in TSMC 0.13 cell 

library. The f is related to the cycle time. The capacitance C is related to the area. 

Table 5-10 is derived from the OPC analyzed before and the performance goal. It is 

used as the synthesis timing constraint. And Table 5-11 shows the synthesis area based 

on the cycle time in Table 5-10. Because the critical path has limited synthesis timing 

constraint, the area of MSA-ordered composite FU explodes in 400MOPS. 

Cycle time (unit:ns) Scalar MSA 3-VLIW
100MOPS 10.00 19.38 18.23
200MOPS 5.00 9.69 9.12
400MOPS 2.50 4.84 4.56  

Table 5-10 Cycle time 

Ping Pong Sum Ping Pong Sum Ping Pong Sum
100MOPS 12724 16047 16047 32094 12296 18892 18892 37784 12289 31733 31733 63466
200MOPS 13012 16047 16047 32094 12875 18892 18892 37784 12289 31733 31733 63466
400MOPS 30204 16047 16047 32094 21920 18892 18892 37784 13092 31733 31733 63466

Area (unit: um2)
FU

RF
FU

RF
3-VLIW

FU
RF

Scalar MSA

 

Table 5-11 Synthesis area 

Table 5-12 shows the power consumption of every part we concern. The power 

of MSA is smaller in most case because of the longer cycle time, lower frequency. 

The power of FU part of composite FU grows exaggeratedly in 400MOPS because of 

the area explosion. 

Ping Pong Sum Ping Pong Sum Ping Pong Sum
100MOPS 0.454 0.608 0.604 1.212 1.666 0.264 0.566 0.560 1.126 1.390 0.234 0.701 0.703 1.404 1.638
200MOPS 0.994 1.208 1.202 2.410 3.404 0.579 1.120 1.107 2.227 2.806 0.460 1.405 1.403 2.808 3.268
400MOPS 5.670 2.406 2.397 4.803 10.473 2.699 2.237 2.228 4.465 7.164 1.203 2.812 2.807 5.619 6.822

FU
Power (unit: mW)

FU
RF

FUTotal

Scalar MSA
RF

TotalTotal

3-VLIW
RF

 

Table 5-12 Power consumption 
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Compared with the scalar and the VLIW, the composite FU saves 16.5% ~ 

31.6% of power consumption under the 100 ~ 200 MOPS performance requirement as 

Table 5-13 shows.  The power saving comes from the less number of RF’s port 

required by the composite FUs and less register access per operation of the composite 

FUs. Figure 5-8 shows the bar charts of power and energy comparison. 

FU RF Total FU RF Total
-41.8 -7.1 -16.6 -48.4 15.8 -1.7
-41.7 -7.6 -17.6 -53.7 16.5 -4.0
-52.4 -7.0 -31.6 -78.8 17.0 -34.9

MSA 3-VLIW
Power improve (Normalized to scalar) (%)

 

Table 5-13 Power improvement 
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Figure 5-8 Comparison of (a) power (b) energy 
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6   Summary & Future Works  

In this thesis, we propose the composite functional units which cascades all the 

primitive FUs in a customized order by analyzing the DFG (data-flow graph) of the 

target applications to improve datapath utilization.  The composite FU with 3 

primitive functional units achieves an OPC of 1.35 on average and has comparable 

OPCs to that of the VLIW in several benchmarks. 

Besides, the composite FU reduces 10% to 25% of area compared with the 

VLIW and saves 16.5% to 31.6% of power consumption compared with both the 

scalar and the VLIW under the performance target ranging from 100 to 300 MOPS. 

Although the composite FUs may result in long critical path, pipelining 

technique can be applied to raise the clock rate feasibly.  A flexible pipelining design 

flow is also proposed to assist in FU pipelining.  Additionally, the interleaved 

multithreading can be applied to hide pipeline latency totally if enough number of 

threads is supported. 
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The area comparison in section 5-1 shows that the hardware cost of the thread 

increase is small for composite FU, so the IMT architecture is good for the composite 

FUs. Relatively, the hardware cost of VLIW cooperated with IMT is too high. Some  

other methods to hide instruction latency must be taken. 

In chapter 4, we proposed an Application Programmable Processor Synthesis 

Flow to design a processor based on composite FUs. The composite FU selection flow 

helps user to find a proper composite FU for a specific application. 

 Future Work 

 Thread Register File Reduction 

Although multithreading, in our experience, will incur large context overhead. 

Because of the IMT architecture needs a thread register file for each thread, the area 

and overhead of hardware increase with thread number. There are other approaches 

such as the register file architecture using master latch sharing described in [] to 

lessen the side effect.  In the future, we will continue studying on how to reduce the 

multithreading-incurred overhead.  

 Share master latching 

[31] introduces a method of reducing area and power consumption of a 

synthesizable register tile by using a single master latch shared by a number of slaves. 

Simulation results show that, depending on the size of the register tile, reduction of 

power consumption of more than 50% is achievable.  

Data stores are an important power critical part of resource sharing 

architectures [7] or processing units, like application specific instruction set 

processors (ASIPs). They are preferably implemented as a synthesizable register file 

described as part of the design on register transfer level, because of a high effort 

required for timing verification of RAM. 
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Figure 6-1 (a) D Flip-filop (b) Word Level Register 

Figure 6-1 (a) is a typical D flop-flop. It is composed of master latch and slave 

latch. Several D flip-flops make up a word level register in Figure 6-1 (b). The real 

data is stored in the slave latch. 

This method also aims at reduction of capacitance connected to the data bus. 

This is achieved by splitting up the master-slave flip-flops into the master 

latches and the slave latches. If clock gating is applied, slave latches of registers in the 

register tile can share one master latch. Thus the number of master latches connected 

to the data bus is decreased. Additionally savings in area can he expected.  

Figure 6-2 (a) shows conventional register file with flip-flops and Figure 6-2 (b) 

shows modified register file with shared master latches. 
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Figure 6-2 (a) Conventional register file with flip-filops  

(b) Modified register file with shared master latches. 

 Fused FU and VLIW Cooperation 

We demonstrate that the composite FU effectively increases datapath utilization 

in this thesis.  However, the long critical path will incur other overheads, i.e. pipeline 

latency or register file complexity. Another research direction will focus on the fused 

FU such as MAC (multiply and add).  We can cascade two or three primitive 

operations to be a fused FU that is frequently used and then design a VLIW processor 

with several fused FUs as primitive FUs.  Compared to the conventional VLIW 

processors with the same computing resources, multi-issue fused FUs still demand 

less number of register file ports.  We expect that the multi-issue fused FUs will 

explore more operation parallelism and thus achieve higher OPC. At the same time, it 

can avoid long critical path. 
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 Merge Shifter Into Multiplier 

Because the shift operations are small relatively to the total operations, the 

shifter is usually idle. Shift operations often occur between different application and 

data transformation for alignment. Maybe we can merge the shifter into the multiplier 

by by-passing the corresponding bits form the product of multiplier with little 

hardware effort. By the way, the software analysis may need modification. 
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