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ABSTRACT

From the observation of evolution of processor development in recent years, we find
that Reduced Instruction Set Computer (RISC) processors have already become main design
fashion. The simplicity and regularity of iRISC#is suitable for pipeline design to boost
performance. However, its hardware utilization: is ‘low= because of it execute only one
operation in single instruction issued. Multi-issue (VLIW) processors, takes advantage of the
Instruction Level Parallelism (ILP)"to:promote-hardware-utilization. But the register file (RF)
area of VLIW grows exaggeratedly with the increase‘of the functional unit number. It pays a
great hardware overhead. In this thesis, we propose a datapath with composite functional units
(FUs). It cascades several functional units in costumed order to perform continuous multiple
primitive operations in single cycle for raising hardware utilization. The read and write port
number of the register files of composite FUs only slightly increase by 1 or remain unchanged.
It solves the problem of large RF area pressure. In addition, the composite FUs can perform
several operations after fetching operands and then write back. The reduction of total register
accesses leads to low-power benefit. Besides, the pipeline design is integrated to boost
performance up and the Interleaved Multithreaded (IMT) architecture is coordinated to hide
instruction latency derived from pipeline design totally. In the mean time, we propose a
recursive composite FUs generator which automatically generator a best composite FU by
analyzing Data Flow Graph (DFG) input by user. From the analysis of several classic DSP
kernels, the hardware utilization of MSA-ordered (cascade a multiplier, a shifter, then an
adder) composite FU is 1.35 times higher than 1.00 of RISC. Use the TSMC 0.13um process
to do synthesis analysis. Under same performance, the register file area of composite FU is
10% more than RISC and 50% less than VLIW. The power reduction of composite FU is
smaller compared with RISC and VLIW ranging from 16.6% to 31.6%.
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1 Introduction

As the desire to the performance for multimedia application growing up day by
day, lots of processor design principle showed up for different purposes. We will
illustrate the history of processor progress first in section 1-1, and discuss the reasons
for the evolution.

Let us focus on the advantages and disadvantages of the datapaths including
functional unit architectures. Some decisions and changes are made according to the
hardware utilization and the area pressure of register files, or even some power issue.

We propose composite FU to overcome the weakness of RISC and VLIW. And
some contributions are described in section 1-2.

Section 1-3 describes the thesis organization.



1.1 History of Processor Progress
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Figure 1-1 Uniprocessor Performance

[1] Figure 1-1 shows the uniprecessor-performance measured by SPECint.

€ Complex Instruction Set Computer (CISC)

From 1978 to 1986, the CISC-style processors dominate the processor market.
The essence of CISC is to allocate as many hardware as the functions need. Therefore,
the CISC processors can perform some specific functions at high speed.

But CISC processors have some well-known drawbacks.

Instructions of CISC processors have very different execution cycles. Single
instruction may consume cycles from several to thousands corresponding to its
functionality and complexity. The complexity of instruction variation and hardware
selection lead to the inefficiency of the compiler. Besides, If pipeline technique is
coordinated to boost the performance of CISC processors, it would be hard to pipeline,

and the improvement of performance is limited.



In addition, all CISC-style processors suffer a serious problem. Some hardware
is idle at most time. DEC-PDP 10 is a famous CISC processor, and some surveys [2]
of this processor tell us that 70 instructions account for 99% of operation and 50
instructions account for 95% of operation. Lots of instructions and hardware are
rarely used, and the idle hardware implies the waste of power consumption.

€ Simple scalar, Reduced Instruction Set Computer (RISC)

In 1980s, the RISC concept showed up. The essence of RISC is to handle single
function within single instruction. Figure 1-2 is an example of RISC, simple scalar.
Designers only deploy some primitive hardware to maintain its functionality. All the
instructions of RISC have same instruction length, so it is easy to pipeline. Moreover,
the performance can be easily enhanced along with the advance of technology. Using
some instruction encoding techniques can raise the performance, too. Because of the

regularity and simplicity of RISE, it.has been widely spread out.

T

Scalar

Figure 1-2 Scalar

Here are some disadvantages of RISC processors. The RISC processors have a
low hardware utilization problem. They operate one function in single instruction,
their hardware utilization is 1. When the number of primitive functional units
increases, the low utilization characteristic remains unchanged. What is more, the
RISC needs to fetch operands from register or memory first. After perform the single
operation, the RISC needs to store the data into register of memory. The accesses per

operation of the RISC is very high. It implies the power inefficiency.
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€ Multi-issue (VLIW)

Multi-issue is opposite to single-issue. It means that multiple instructions issued
at the same time. The most popular type called Very Long Instruction Word (VLIW)
stands for the multi-issue processors since it has been proposed in 1980s. Figure 1-3

shows a 3-way VLIW and a 4-way VLIW.

000

3-way VLIW

000

4-way VLIW

Figure1-3 VLIW

The VLIW processors exploit-theinstruction level parallelism (ILP). The
functional units operate concurrently.. It can.reach high performance by taking
advantage of ILP.

The greatest problem of VLIW is the register file pressure. Because the VLIW
perform multiple functions in the mean time, each functional unit needs
corresponding read or write ports to the register file. The port number strongly affects
the area of register file. According to [3], in full custom design, for N FUs, area and
delay are increases as N ° and N *2. Besides, the same frequency of register or
memory accesses with RISC processor makes the power inefficiency problem
remained.

Finally, the performance can’t be raised infinitely due to the ILP has its limit.

Some other processor architectures are taken into consideration.



€ Multi-core

After 2000, the performance of VLIW is no longer sufficient for some specific
application.

Multi-core processors use several homogeneous or heterogeneous processors to
do things at the same time. Hence the higher performance can be achieved. In this
thesis, we only concern about the single core processor. The multi-core issue is
beyond the scope.

€ Multi-threaded

[4] In unending quest for computers with higher performance, computer system
architects seek to reduce or hide latency, the number of cycles an operation takes from
start to finish. A long latency may extend for 10 to 100cycles, forcing the traditional
processor to sit idle until the result comes in. Less time is wasted if the latency is
reduced or even hidden behind the ongoing execution: of another operation.

A popular means of reducing laténey-is-the on-chip cache memory, which can
shorten the round trip to data sterage from tens of cycles to just one or two.
Multithreaded architectures, however, take the tack of hiding latency by supporting
multiple concurrent streams of execution, or threads, which are independent of one
another. The threads are interleaved on a single processor. When a long-latency
operation occurs in one of the threads, another begins execution. In this way, useful
work is performed while the time-consuming operation is completed.

Figure 1-4 shows the multithreaded architecture. It includes several parts
including computing, selection network, hardware and software context
(threads)...etc. The computing part is composed of some functional units,
memory/registers, and some interconnection network. Threads are mapped onto
hardware context, which each include general-purpose registers, status registers, and a

program counter. One context represents a running thread, while the others represent

5



threads that are eligible to run or are waiting on an operation to complete. Because of
hardware limits, some threads are not currently mapped. The functional units handle
the operations. The memory/registers store some intermediated value to accelerate the
whole works. The interconnection network and the context selection hardware

maintain the accuracy of each interleaved thread.

Thread
|
—
—

Thread

Software

Hardware

Hardware Context

Functional units II
Interconnection
network

Figure 1-4 Multithreaded architecture

Multi-threaded architectures take advantage of thread level parallelism. Three
categories of multi-threaded architectures are coarse-grained multithreading,
fine-grained multi-threading, and simultaneous multithreading [5].

® Coarse-grained (block) multithreading (BMT)

The simplest type of multi-threading is where one thread runs until it
is blocked by an event that normally would create a long latency stall. Such

a stall might be a cache-miss that has to access off-chip memory, which

6



might take hundreds of CPU cycles for the data to return. Instead of waiting
for the stall to resolve, a threaded processor would switch execution to
another thread that was ready to run. Only when the data for the previous
thread had arrived, would the previous thread be placed back on the list of
ready-to-run threads.

Fine-grained (interleaved) multithreading (IMT)

A higher performance type of multithreading is where the processor
switches threads every CPU cycle. The purpose is to remove all data
dependency stalls from the execution pipeline. Since one thread is relatively
independent from other threads, there's less chance of one instruction in one
pipe stage needing an output from an older instruction in the pipeline.

Simultaneous multithreading (SMT)

The most advanced' type of-multi-threading applies to superscalar
processors. A normal superscalar processorissues multiple instructions from
a single thread every CPU eycle. In"Simultaneous Multi-threading (SMT),
the superscalar processor can issue instructions from multiple threads every
CPU cycle. Recognizing that any single thread has a limited amount of
instruction level parallelism, this type of multithreading is trying to exploit
parallelism available across multiple threads to decrease the waste associated

with unused issue slots.

SMT is the most complex because of the functionality among threads must be

maintained. The most regular is IMT. By the way, the IMT can totally hide instruction

latency if enough threads are supported. The hardware cost of IMT, since there are

more threads being executed concurrently in the pipeline, shared resources such as

caches and TLBs need to larger to avoid thrashing between the different threads. In

this thesis, our hide instruction latency technique will focus on IMT.
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1.2 Proposed Composite FUs and Contributions

In order to solve the problems mentioned above, we proposed the Composite

FUs with the purposes listed below.

€ Application-specific composite FUs

Composite FU is a cascade datapath. It cascade several primitive FUs to form
a composite datapath. Analyze the characteristic of specific application, and find out

what operations can be combined into single instruction.

€ High hardware utilization and high OPs/access

Compared with the RISC processors, the composite FUs perform several
functions in single instruction. It means, that composite FUs do more things than RISC
in a period of time. Hence, the hatdware uitilization improves.

Besides, the RISC needs a lot of -accesses from register or memory. The
composite FUs fetch proper operands and-perform several operations, then store back
to the register or memory. So the total number of accesses is reduced. Register access
is a power-consuming action. The composite FUs have high OPs/access that lead to

power efficiency potential.

€ Low register file pressure (limited R/W ports)

Port number | Scalar | Compostie FUs| VLIW
3FUs 2R/TW 3R/TW SR/3W
4FUs 2R/IW 4R/1W TR/4AW

Table 1-1 Port number of different datapaths

The port number of composite FUs increases one or remains unchanged as the
FU number increase. Not like the VLIW processors, every FU needs two or three

ports. So the grow-up trend of port number is larger in the VLIW than in the



composite FUs. Fewer ports of the composite FUs ease off the register file area

pressure. The example of port number is shown in Table 1-1.

€ Suitable for IMT DSP (zero instruction latency)

When we want to reach higher performance, we will introduce our pipeline
design to boost performance. Once the pipeline technique has been used, the
instruction latency issue must be taken into consideration. If we ignore the pipeline
latency, the data accuracy may have errors. If we just wait until the last work ready,
then the performance can’t be raised ideally.

There are some techniques to reduce or hide instruction latency, either from
software or hardware view. Software method including loop unrolling, software
pipelining, etc. and hardware method, including forwarding, multithreaded
architectures, etc. are all possiblesolutions!

In this thesis, we choose ‘the IMT architecture to be the way of hiding
instruction latency because of it'ean totally-hide instruction latency. And the hardware
cost of the composite FUs coordinated with TMT is not much. IMT needs a thread

register file for each thread, the register file cost of the composite FUs is acceptable.

1.3 Thesis Organization

The rest of this thesis is organized as follow.

Chapter 2 introduces the background of our work. First, we talk about what is
the composite FUs. Second, describe the meaning stand for data flow graph (DFG)
and its components. Third, show a covering and match method called ID-based search
graphs. Fourth, show the scheduling procedures using list scheduling based method.
Fifth, introduce a RF model to estimate the area of register files. Last, illustrate how

the interleaved multithreaded (IMT) architecture work.
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Chapter 3 describes the comparison of the advantage and disadvantage among
scalar, VLIW and Composite FUs from the area and power experiment. For high
performance, we have a pipeline designer to speed up the processor with the
composite FUs. And we use the IMT architecture to hide instruction latency
completely.

Chapter 4 states the difference between classic and our ASIP synthesis flow.
Then we propose a flow to recommend a proper composite FU for ASIP designer
under certain constraints.

Finally, chapter 5 concludes this thesis and points out the direction for the

future researches.
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2 Background

First at all, we will give-a simple illustration-of the composite FUs and talk
about how it works.

The composite FUs take the advantage of application characteristic. We must
develop a software tool chain to analyze the applications and to find out the
possibility of operation combination. We will introduce the format that we concern,
DFG. Then use covering and matching technique to recognize new operations after
merging. Next, we want to estimate the area of the register files. So we use a list
scheduling based method to find a sub-optimal register requirement. Then the
estimation is done through a RF model method related to the technology process.

We want to further speed up the performance using pipeline design. It introduces
extra instruction latency problem. As mentioned before, we use IMT to hide solve the

problem. So we will show how IMT works at the last of this chapter.
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2.1 Composite FUs

We propose the composite FU which cascades all the primitive FUs in a
customized order by analyzing the DFG (data-flow graph) of the target applications.

A composite FU is a cascade datapath. Figure 2-1 illustrates a MAS composite
FU that cascades a multiplier with an adder and then a shifter. On each instruction
issue, the maximum number of operations is three, i.e. multiplying operand 1 by
operand 2 and then adding the result to operand 3 and finally shifting the sum by a
specific value, while the minimum number is one, i.e. either one multiplication or one

addition or one shift.

Operand 1
Operand 2

COperand 3 » A

Figure 2-1. Composite FU: MAS

€ Primitive Operation Set

For simplicity, we define a primitive operation set with three kinds of primitive
operations including adder, multiplier, and shifter. Figure 2-2 shows the configuration

of (a) adder, (b) multiplier, and (c) shifter.

Srcl  Src2 Srcl  Src2 Srcl
Add/Sub %j @ @« Shamt
Dest Dest Dest
(a) (b) ()

Figure 2-2 Configuration of (a) the adder; (b) the multiplier; (c) the shifter
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The adder and multiplier both have two source operands and one destination.
On the other hand, the shifter only has one source operands and one destination. There
is a Add/Sub control signal to tell the adder to perform addition or subtraction. The
shifter has a Shamt control signal to decide right shift or left shift and shift amount.

The applications which we analyze in the rest part of this thesis are all based on

this primitive operation set.

€ Port constraint

Port number restricts the possible arrangement of the composite FUs.

Figure 2-3 (a) is a full read/write ports version of composite FU MA. It has
three read ports and one write port. Figure 2-3 (b) is a reduced version, and it has two
read ports and one write port. Figure 2-3 (a),can be reduced to Figure 2-3 (b) through
a load/store pair operation. For.'simplicity, we don’t consider about the load/store

effect and assume all the compaosite FUs can get full read/write ports if they need.

1 2 1 2

3 input ports 2 input ports
(a) (b)

Figure 2-3 Composite FU: MA with (a) full R/W ports (b) reduced R/W ports

There are some techniques used in Sandblaster processors [6] to reduce the
number of ports if the hardware doesn’t need it at the same time, but it has extra huge

overhead to guarantee the accuracy.
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2.2 Data-Flow Graph

In mathematics and computer science, graph theory is the study of graphs;
mathematical structures used to model pair-wise relations between objects from a
certain collection. A "graph" in this context refers to a collection of vertices or 'nodes'
and a collection of 'edges' that connect pairs of nodes. A graph may be undirected,
meaning that there is no distinction between the two nodes associated with each edge,
or its edges may be directed from one node to another.

[7] The data-flow graph captures the data-driven property of DSP algorithm
where any node can fire (perform its computation) whenever all the input data are
available. It means that a node with multiple input edges can only fire after all its
precedent nodes have fired. In data*flow graph (DFG) representations, the nodes
represent computations (or functions or :subtasks) and the directed edges represent
data paths (communications between nodes).

€ Definition

Node N: computations

Edge E: data dependencies

GraphG={N,E}

The precedence constraints specify the order in which the nodes in the DFG can
be executed. Different representations of the same algorithm may lead to different
DFG.

Figure 2-4 is a DFG example of 8 points 1D discrete cosine transform in Lee’s

algorithm [8].
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Figure 2-4 DCT (Lee’s algorithm)

€ DFG Description
For convenience, we ma,ke a DFG} désériptj'o_n. The complete DFG includes

input/output part and the purz_e'._ operation pa_rt.- In:,; our analysis, we suppose the

—

load/store decoupled. iy o __:-r:
® |nput/Output Part

I# (# stands for the number)

O# Srcl (Srcl is the source of output node)

® Operation Part

1. Addition/Subtraction

Syntax: A# Srcl, Src2, addsub

Description:

Get Srcl and Src2 data from corresponding node and perform
addition or subtraction. The addsub field stands for what the operation

the adder does. “+” is for addition, and “-” is for subtraction.
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2. Multiplication

Syntax:

M# Srcl, Src2

Description:

3. Shift

Syntax:

Get Srcl and Src2 data and perform multiplication.

S# Srcl, shamt

Description:

Get Srcl data into register Srcl and shift by shamt-bit. The Shamt

fields stand for shift amount and ranges from -8 to 7. The shamt is a

4-bit field supporting up to 8-bit left and 7-bit right shift.

Example

Figure 2-5 illustrates an example of DFG description of first order biquad filter.

10
I1
12
I3
14
IS
16
I7
I8
19
110
I11

A0 MOMI,+
Al M2,M3,+
A2 Md,MS5 +
A3 10,A0,-
A4TLAL-
A512,A2,-
A6 M6,M7,+
A7 M8,A6,+

MO 13,17
M1 14,18
M2 14,17
M3 15,18
M4 15,17
MS 16,18
M6 A3,19
M7 A4,110
M8 AS,111

00 A7

Figure 2-5 DFG description of biquad filter
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2.3 Covering

In the mathematical discipline of graph theory a covering for a graph is a set of
nodes (or edges) so that the elements of the set are close (adjacent) to all edges (or
nodes) of the graph. We are especially interested in finding small sets with this
property. The problem of finding the smallest node covering is called the node cover

problem and is NP-complete.

Supernode

Figure 2-6 Covering and supernode

Figure 2-6 shows a supernode merges several nodes together. It inherits the
functionality and the dependencies of the replaced nodes.
A perfect matching is a matching which covers all nodes of the graph. We

want to find a perfect matching of the application using the composite FUs.

€ Unate and binate covering problems [9]

The classical solving approach for two-level logic minimization in the VLSI
literature goes back to Quine’s and McCluskey’s works. It reformulates the problem
as a special case of the Unate Covering Problem [10] and applies algorithms

conceived for the latter, or even for the more general Binate Covering Problem.
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Binate (or unate) covering problems is a well known intractable problem. It has
several important applications in logic synthesis, such as two-level logic minimization,
two-level Boolean relation minimization, three-level NAND implementation, state
minimization, exact encoding, and DAG covering [11].

The next paragraph briefly defines the binate covering problem and the
notations of typical presentation.

Let f (yi, ..., yn) be a Boolean function from {0, 1}" into {0, 1}. Let Cost be a

function that associates a positive cost with the assignment of variable yx to 0 or 1.
The cost of a n-tuple (vi, ..., vy) of {0, 1}" is defined as ZLI Cost (yk = vi).

Definition (Binate covering problem)
The binate covering problem (also called minimum cost assignment problem)

consists of finding a minimal cost'n-tuple'that-values f to 1.

® Node covering

[12] When deliveries, collections, or visitssmust be made to (or from) a number
of specific (and, often, widely separated) points, the routing problem that must be
solved becomes a node-covering one. The demand (or supply) points can then be
represented as the nodes on the network model of the urban transportation grid and
the question of the order in which to visit these nodes so as to achieve some objective
is then addressed.

Our goal is similar to two-level expression, and it is a binate covering problem.
[13] The difference is that our operations are not simple logic gates, but three
primitive operations, including adder, multiplier, and shifter. There are some studies
of the binate covering. We use a covering method called ID-based search graph
proposed in IBM’s research [14] and make some modification to facilitate our

analysis.
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€ |ID-based search graph

A crucial step in the design of Application-Specific Instruction-set Processors
(ASIPs) [15] is the instruction-set generation. Methods for automating this process,
surveyed in, extract patterns from applications, usually in the form of data-flow
graphs, and insert them into a pattern library.

The ID-based search graph introduce a novel organization for pattern libraries
that enables a search algorithm with only O(d), where d is the size of the pattern
sought up to the maximum pattern size in the library. Furthermore, the library
organization reveals opportunities to substitute one pattern by another. This may be
exploited for more efficient instruction selection and code generation. The method is

presented for tree-shaped patterns but can be extended to directed acyclic graphs

(DAGsS).
X0 X1
\'.
y /
4 ™
| amo |
__/x2 X1 =
) OXFFFFFFFF x0 x
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X0 X1
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./ x2 x0
Py e ]
L OXFFFEFEEE A
(al—R | %1 = | mov
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Figure 2-7 ID-Graph of a pattern
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® Organizing libraries as identity graphs

In order to create match libraries for a specific application, we decompose the
pattern which is used to compare with the application into several sub-levels. Figure
2-7 illustrates the procedures of ID-based search graph to organize libraries. The basic
3-levels pattern is AND-SHR-SUB. It covers an addition, a shift, and a abstraction.
The sub-functions of level 2, level 1, and level 0 can be derived from by-passing some

functions.

® Searching an ordered library

In order to find all matches, match all the nodes from the highest level to lowest
level because of the higher level function or sub-functions can perform more

operations in single instruction and execution.

2.4 Scheduling

To estimate the area of register files,'we must analyze the register requirement
first to find the scale of register numbers. Scheduling and resource allocation can help
us to understand the register requirement. In this section, we talk about the basic idea
and steps of scheduling first.

[7] Scheduling is to assign the nodes on the DFG to be processed by which
functional unit in which time step. Our scheduler schedules the target DFG. Figure 2-8
shows the program flow of the scheduler. Here, we use periodic scheduling for
simplicity, where only the intra-iteration data dependency is considered and the edges
with delay elements (i.e. dependency across iterations) are removed from DFG first.
Then we will make a lifetime analysis of every node. The DFG is scheduled with the

ASAP (as soon as possible) and ALAP (as last as possible) scheduling algorithm to
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obtain the range to schedule each node. Then, we apply some list scheduling based
methods to the steps. At last, the scheduled DFG is output and the register

requirement is reported.

Remove intra-iteration
dependencies

v

ASAP scheduling

v

ALAP scheduling

DFG

+ Node scheduling range

Inequalities generation

v

Decide scheduled order

v

Scheduled DFG

Scheduling
constraints

Figure 2-8 Program-flow-of the'scheduler

L 4 ASAP

ASAP (as soon as possible) is one of the earliest and simplest scheduling
algorithms. ASAP scheduling assumes that the hardware resource (functional units) is
unlimited. Nodes are first topologically sorted, that it, if a node n; is constrained to
follow the node n; with a precedence constraint, then n; will topologically follow n;.
From the sorted list, nodes are taken one at a time and placed in the earliest available
time step, depending on its precedence constraint. Figure 2-9 shows the algorithm of
ASAP scheduling. The ASAP scheduling is used to determine the earliest scheduling

bound of each node.
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InpUT: SDFG G=(N,E)
OuTPUT: ASAP SCHEDULE
TSg=1; //SET INITIAL TIME STEP
WHILE (UNSCHEDULED NODES EXIST) {
SELECT A NODE N, WHOSE PREDECESSORS HAVE ALREADY BEEN SCHEDULED;

SCHEDULE NODE N, TO TIME STEP TS; = MAX {TS,+(C,)} FOR ALL N, = N,;

Figure 2-9 The ASAP scheduling algorithm

L 4 ALAP

ALAP (as late as possible) scheduling is similar to the ASAP scheduling; except
for the way nodes are placed in the schedule:; As the name indicates, ALAP scheduling
in Figure 2-10 builds the schedule bottom up and the nodes are topological sorted in
reversed order. Therefore, the algorithm must have the information of the iteration
period to build the schedule from the bottom up and the iteration period must be long

enough to allow all the nodes to be scheduled, otherwise the scheduling will fail.

INPUT: SDFG G=(N,E), ITERATION PERIOD:T
OuTPuT: ALAP SCHEDULE
TSo=T; //SET TIME STEP
WHILE (UNSCHEDULED NODES EXIST) {
SELECT A NODE N, WHOSE SUCCESSORS HAVE ALREADY BEEN SCHEDULED;

SCHEDULE NODE N, TO TIME STEP TS; = MAX {TS,-(C,)} FOR ALL N, = N;;

Figure 2-10 The ALAP scheduling algorithm
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L 4 ILP-based scheduling

After the ASAP and ALAP scheduling, we describe and solve the scheduling
problem by inequalities and priorities. Figure 2-11 gives examples of ASAP, ALAP,
and the scheduling range from ASAP and ALAP. When constructing inequalities for
constraints, each position (i.c. node i at the time step j) in the range are associated
with a Boolean variable Xjj which indicates whether a node i is scheduled into the

time step j. The following four constraints must be satisfied.

time Xo X1 X2 Xz Xa X5 Xg

o
S
=

0
3 0O, /

N
o
S

(&x
@1

i
(o VIRV,

4 Ao !
2 v
5 Qg 0O,

@ (b) ()

Figure 2-11 Scheduling example (a) ASAP (b) ALAP (c) scheduling range

1. Resource constraints

This constraint states that no schedule will have a time step that contains more
operations than the available functional units due to the limited hardware resources.
Because we assume that the I/O unit and adder are all of one, the inequalities for this

constraint of the example in Fig. 2-11 (c) should be:
Xoot Xio <15 Xoa+ X1 <1, Xea+ X2< 1 (for input)
Xort X311 Xoo+ X32<1; Xo3+X33<1 (for adder)

Xs3t Xe3<1; Xsg+Xea4<1;, Xss+Xe5s<1 (for output)
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2. Allocation constraints

This constraint states each node can only be scheduled within the scheduling
range bounded by some range obtained from the ASAP and ALAP scheduling and can
only appear once in the schedule. The inequalities for this constraint of the example in
Fig. 2-11 (c) should be:

Xo.0t Xo.1t X2 = 1

Xpot Xt X2 =1

Xo.1+ Xoot Xos3t Xog = 1

X3t Xzt X353 =1

Xgot Xgst Xgs =1

X5t X537 Xs4t Xs5 = 1

X631 XeaT Xes =1

3. Dependency constraints

The data dependency in the original DEGshould be strictly followed when
scheduling. The dependency constraint ensures that DFG remains causal and correct
timing sequence. The inequalities for this constraint of the example in Fig. 2-11 (¢)
should be:

X0.0 T2 X013 X02-2X01 -3 Xp2-4X%3-5X%4=-1

Xpo+ 2 X1 +3X12-2X01 -3 X024 X%3-5 %41

X002 X013 X02-2X31 -3 X32-4 %331

X0+ 2 X1 +3X12-2X31-3X32-4 %33=<-1

2% T3 X2 T4 X3+ 5X04-3Xs52-4X53-5X54-6Xs5<-1

2X31+3X32+4X33-3X42-4%X43-5X%44=-1

3Xan T4 X431+ 5X44-4X63-5X64-6Xes5=-1

24



4. Port conflict constraints

If the functional units are consisted of single-write instead of N-write memory
or registers to reduce the hardware complexity, it may introduce port conflicts when
multiple functional units simultaneously write their results into the same memory or
registers. We can schedule the operations with an identical destination memory or
registers into different time slots by incorporating the following port constraints to
prevent conflicts. The inequalities for this constraint of the example in Fig. 2-11 (¢)

should be:
Xoot X1o<1; X+ X1 <1, Xeo+ X2<1; (foradder)
Xoot X2 <15 Xo3+Xa3<1; Xout X4s<1; (foroutput)
According to the assumption above, the composite FUs discussed in this thesis

have full read/write ports. The port conflict constraints are mapped to the different

situations.

2.5 Complexity of Synthesized 'Register File

We want to compare the RF area of the composite FUs with the RF area of the
VLIW. We need a roughly estimation method to see the scale and the pressure of the
RF area. Here is a survey of the relations among RF area and the FU number and port
number in [16], and it proposes a simple RF model for 0.18 um process.

Conventionally, the microprocessors have a more efficient and direct data
exchange mechanism among the parallel FUs through the register file (RF) than the
multi-processors, where a monolithic and centralized RF provides storages for and
interconnects to each FU in a general and homogeneous manner. However, the

complexity of the centralized RF grows with the number of access ports increasing.
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In centralized RF, every read port and write port can directly access any
registers in the RF. Prior art has evaluate the complexity of centralized RF in
full-custom designs.

The RF consists of register cells similar to SRAM. Generally, the register cell is
organized as 6-transistor structure, and the access port of RF requires a word-line and
a bit-line which is shown in Figure 2-12. Therefore, the area of single SRAM cell
grows in two dimensions and can be described as P*. For a full-custom centralized RF
with n-registers and P-ports, the area and delay are approximated to nxP* and n'?xp

respectively [3].

.._":L

i

word lines

Yy

bit lines

Figure 2-12 A register cell in full custom design

The number of registers and ports required can be estimated from the number of
FUs. Assume that each FU requires two ports for two source operands and one port to
write the result back to RF, and every FU requires at least one register to store the
manipulated data. Consequently, for N FUs, the number of registers and ports is
approximated to N and 3N respectively. As a result, the area and delay are increases

as N > and N *2,
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In this thesis we focus on the cell-based RF organization which consists of
flip-flops and switch networks. For a centralized RF with N registers, x read ports, y
write ports, and word length W, the complexity of read access network is an N to x
crossbar router and every read port has one N to 1 multiplexer. Similarly, the
complexity of write access network will be y to N crossbar router with y to 1
multiplexer for each register elements. Figure 2-13 shows the access network of a

centralized RF.

write 0 o—¢

write 1 o

write y-10o

! I I « s . #— logz y
v v
o M L Fo-1
!
[ 1
logon —S___ 7« o »

\—> read 0

L » read1

»read x-1

Figure 2-13 Access network of centralized register file

The output of each register has to drive x X N-to-1 multiplexers which results in
a very high output loading capacitance. The centralized RF is efficient when
executing program with high data-level parallelism only. But it is difficult to
guarantee the data-parallelism level of applications, so it is unnecessary to provide the
bandwidth for non-common cases with the cost of RF access time and RF area.

We roughly evaluate the area and speed of centralized RF based on the
architecture shown in Figure 2-13. The cost function of area complexity for

centralized RF is analyzed as follows:
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fA CRF (Xa Y, N, W) = Awrite_network + Aread_network + Aregisters + Acontrol

IR

[N x Ay—to—l_mux +x X AN—to—l_mux + N x AD—ﬂipﬂop] x W

1R

[N X (y—=1) X Agtort mux T XX (N -1) X Agto-1 mux
+ N X Ap._fiiplop] X W

This Function assumes all multiplexers are composed of 2-to-1 multiplexers
and the control overhead is neglected. This analytical formula is also based on the
number of 2-to-1 multiplexers on data path. The experimental results show the
analysis is close to synthesis result. Table 2-1 compares the analytical analysis with
synthesis results using TSMC 0.18um cell library in different centralized RF
configurations. In this thesis, the discussion of timing estimation is out of scope.

The area of analytical results is based on the cell library. The constraint of
synthesis is optimized for area to.avoid the variance due to the timing optimization
technique. The area is over estimated in 16-entry, . 1R1W configuration because of the
2-to-1 multiplexer model is actually ilarger-than, 4-to-1 multiplexer cell that synthesis
tool uses. From the analysis, we can sum up.that the area of cell-based CRF is direct
proportion to both number of registers and number of ports and the synthesis results
prove the point. The natural of high routing complexity of RF will cause high

variance in physical implementation, and the variance growing with the number of

registers and ports increasing.

CRF Parameters Analytical Results Synthesis Results

x vy n w | flip-flops read port write ports Area Timing Area Timing
1 1 16 32 512 480 0 19.168 4 17.516 1.78ns
2 2 16 32 512 960 512 28.096 4 28,188 2.69ns
4 4 16 32 512 1,920 1,536 45,952 4 45,936 2.74ns
8 § 16 32 512 3,840 3,584 81.664 4 81.849 2.74ns
2 2 32 32 1,024 1,984 1,024 56.768 5 60,360 3.35ns
4 2 32 32 1,024 3,968 1,024 74.624 5 79,624 3.37ns
2 4 32 32 1,024 1,984 3.072 75.200 5 84,480 3.37ns

Table 2-1 Comparison of analytical results and synthesis results
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2.6 Interleaved Multithreaded (IMT) Architecture

When we use pipeline design to boost the performance of the composite FUs, it
will introduce instruction latency. This section shows how the IMT architecture hides
the instruction latency totally.

Figure 2-14 illustrates an example of the interleaved threads and dependencies
in the pipeline. If an IMT architecture processor has 5 stages and the pipeline latency
is 5 cycles, it needs 5 interleaved threads to hide instruction latency totally. These 5
threads are independent tasks.

The operation is to issue the first instruction of thread 1 at cycle 1 into the
pipeline, then issue the first instruction of thread 2 at cycle 2, and so on. After first
iteration from thread 1 to thread:5 is/done, issu¢:the second instruction of thread 1. In

this way, the following iterations are executed.

Pipeline Latency (5 Cycle)

F L]

Thread 1 |
I | Mo Overlap !

.
g

Figure 2-14 Interleaved threads and dependencies in the pipeline

The first instruction and second instruction of thread 1 may have dependency.
In the original pipeline design, if their execution time is overlapped, there would be
some kind of data hazard. So it must stall the second instruction until the first

instruction complete, but this handling method hinders the speedup of performance.
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As Figure 2-14, interleaved threads method solves the problem. The execution
time of first and second instructions has no overlapped. It hides the instruction latency

without any performance loss.
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3 The Composite FUs

We want to quantify thehardware utilization of the composite FUs. Once the
hardware utilization is upgraded,” we analyze the area pressure of register file for
different datapaths under different performance constraint.

In section 3-1, we introduce the composite FUs generator to analyze the
operations per cycle of all kinds of composite FUs running different applications.
After then, the register requirement and the estimated area of register files is
calculated by the method in section 2-5 with small modification. Afterward, use
pipeline design to boost performance. The pipeline design flow is described in section
3-2. Because of the pipeline design introduces instruction latency, the IMT is used for
pipelined composite FUs. We will talk about the hardware cost of IMT.

As aresult of operands operated for more than one operation after being fetched,
the total register accesses are reduced. We also estimate the power consumption to see

where the power is saving.
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3.1 The Composite FUs Generator

FU resource
Y

v
Matching library
0,

( 2.Covering )-— @oo
] *)
( 3.Scheduling ) ©

Nao ATl arrangeme
is done?
Yes

1. Best composite FU
2. Register requirement

Figure 31The L;Sr%ﬁé FQs-generator

We introduce the composite FUs géherator in Figure 3-1 for application
analysis. When the composite FUs generator receives a FU resource constraint and an
application in DFG description, three recursive steps have been taken iteratively.

First, select an arrangement from possible candidate formed by FU resource
constraint. Second, create an ID-based search graph and match libraries of the
arrangement and cover the DFG using the function set of the arrangement. Finally, the
register requirement is calculated for further area estimation.

Repeat these steps until all the case of arrangements are done, we can get
operations per cycle (OPC) and register requirement for each composite FU. The
composite FU with best OPC implies the most proper datapath and the hardware

utilization is the highest for the application.
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3.1.1 Arrangement Space

For given FU resources, there are many arrangements to form a composite FU.
Number of functional units: N
Number of adders: Na
Number of multiplier: Ny

Number of shifter: Ng

N!

The total arrangements: S =————
Na!*Nm!*Ns!

In this thesis, we concern about two cases of function units set. One is 3 FUs
composed of 1 adder, 1 multiplier, and 1 shifter. The other is 4 FUs composed of 2
adders, 1 multiplier, and 1 shifter. For the former case, NA=1, NM =1, NS =1, so
the total arrangements S is 6 as Flgure 5-2 shéyx;s'. For the latter case, NA=2, NM =1,

|

NS = 1, so the total arrangements S.is 12 : s FLgure '3-3» shows.

31111t

Figure 3-2 The arrangement space of 1 A 1M 1S

Figure 3-3 The arrangement space of 2 A1M 1S
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3.1.2 ID-based Search Graph Covering

According to section 2-3, we map the ID-based search graph from Boolean
expression to the analysis of the composite FUs. We use exhaustively tree-structured

search principle to simplify selected composite FU.

il 2
Shan]r/ o 3 . il i3
il i2 ° |
! T

i2=1
e
shamt shamt

il shamt

i2=1

Level 3 Level 2 Level |

Figure 3-4 The ID-based search graph of MAS

Figure 3-4 illustrates composite FU: MAS and its sub-level functions. First, the
MAS-ordered composite FU is categorized into 3 levels of operations. That is, level-3
operation, MAS, performs one multiplication, one addition plus one shift serially.
Level-2 operations, including MA, AS, and MS, perform either one multiplication and
one addition, or one addition and one shifter, or one multiplication and one shifter
serially. Level-1 operations, including M, A, and S, perform either one multiplication,
one addition or one shift serially. We can use adding zero, multiplying by one and

shifting by zero to bypass the adder, the multiplier and the shifter respectively.
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Then, the ID-based covering is performed to cover the nodes of the input DFG
by available operations, i.e. level-3, level-2 or level-1 operations. Note that, all
covered nodes are assumed to consume one clock cycle. The covering process first
searches the whole DFG for any pattern that is matched to the level-3 operation and
then for any remaining uncovered node patterns that are matched to the level-2

operation and so on.

€ Multiple Fan-out Handling and Optimization

® Multiple fan-out problem
Figure 3-5 (a) shows a DFG of a butterfly application, we use Figure 3-5 (b),
composite FU: AMAS to cover this DFG. If the A0O-M0-A2 is merged together when
the match is proceeding in level 3 match for AMA, one of the A3 node can’t get the
data from MO node because of the composite FU AMAS don’t have a write port after
multiplication to store the right value into the register file. Hence, the application

cannot be fulfilled. Some actions must be taken to prevent the hazard from happened.
0 @A@ Composite FU

Application: butterfly

(a) (b)

Figure 3-5 (a) a DFG of butterfly (b) the composite FU: AMAS

® Break

The simplest method to avoid the data hazard is to break at the multiple fan-out
nodes. Figure 3-6 illustrates the procedures. The level 2 AM function matches A0-MO
and A1-M1 to form new nodes C1 and C3. The level 1 A function matches A2 and A4

to form new nodes C2 and C4. It takes 4 nodes to perform the butterfly.
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4 nodes

Figure 3-6 Break at multiple fan-out node

® Node duplication

For optimization, we use the node duplication technique to minimize the
number of matches. Figure 3-7 (a) shows the spirit of node duplication. Breaking at
MO to let A3 get correct source value needs a instruction for A3 only. But we can
repeat the operation AO-Mo in the samie instruction with A3 because the characteristic
of the composite FU allows these work done in the same instruction.

Figure 3-7 (b) illustrates:the procedures. The level 3 AMA function matches
A0-MO0-A2 and A0-MO0-A3 to fofrmnew nodes Cland C2. The level 2 AM function
matches A1-MI1 to form new node C3. It only takes 3 nodes, equals 3 instruction for
execution, to perform the butterfly. The node duplication technique reduces the nodes

of the covering result form 4 nodes to 3 nodes.

3 nodes

3 nodes

(a) (b)

Figure 3-7 Node duplication at multiple fan-out nodes

(a) covering (b) duplicate AO and MO
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3.1.3 Scheduling

Since we want to estimate the area of register files, the scheduling principles
with optimizing for register requirement are chosen. But finding out the minimum
register requirement is a NP-complete problem. So we use two simple scheduling to
get the sub-optimal solution. Some concepts are from [17], forced-directed

list-scheduling [ 18], loop-list scheduling [19], and cone-base list-scheduling [20].

€ Lifetime Analysis

Based on section 2-4, the lifetime analysis about ASAP scheduling, ALAP
scheduling, and range estimation is done first. Then we construct resource, allocation,
dependency, and port conflict constraints. With these inequalities, we can put some

priorities to solve the linear programming problem.and make the scheduled order.

€ Cutsets

Cut the DFG into branches, called cutsets which have no dependencies of each
other. Figure 3-8 cuts the DFG into threeiindependent cutsets. Give the independent
cutsets different priorities and finish the cutset one by one can minimize the live

registers at the same time space.

Deadline = 10

Cutset 1
( = A
[2.l rf]“h 200~ T200] 0] *f:*.l 0]

Cutset 2

Figure 3-8 Cutset of DFG

For example in Figure 3-8, assume that only one node can be executed in one

cycle because of limited hardware resource, and the hard deadline of the whole
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application is 10. The range of lifetime analysis of each node is listed in the square
bracket near the node. The value before comma is the earliest time step of ASAP
scheduling, and the other value after comma is the latest time step of ALAP
scheduling. Node 1 in cutset 1, node 3 in cutset 2, and node 7 in cutset 3 have the
same lifetime. It means that their live ranges are completely the same. Without cutset
priorities, the scheduling result of cycle 1 is node 1, cycle 2 is node 3, and cycle 3 is
node 7, and so on. The register requirement is 3 which happened to store intermediate
value of node 1, 3, and 7. On the contrary, set cutset priorities 1 to nodes of cutset 1, 2
to nodes of cutset 2, and 3 to nodes of cutset 3. The scheduling result of cycle 1 is
node 1, cycle 2 is node 2, cycle 3 is node 3, and so on. The register requirement is

only 1, either store 1, 3, or 7. The register requirement is reduced.

€ Priorities

Our resource is only one-composite.FU, if refines the resource constraint. We
give different priorities for the independent-cutsets first, then execution priorities. We
use two methods to get the scheduled order and take the smaller register requirement
as result. Additionally, if all the priority is the same, we will do the node with smaller
serial number from the DFG description.

Scheduling 1

Based on the first come first serve principle, the execution priority setting start
according to the ASAP result. Search the time space of ASAP and mark its order if its
ancestor nodes are all in ready list.

Scheduling 2

If the timing constraint is critical, the deadline of each node is highly notified.

The execution priority setting start according to the ALAP result, search the time

space of ALAP and mark its order if its ancestor nodes are all in ready list.
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€ Example

Step 1. Function Decomposition Step 3. Scheduling
Level 2 Cycle 0
Level-3 Cycle 1 @
;> oo (es)
Level 1 Cycle 4 @

Step 2. ID-baseo!\Covering

Figure 3-9 Recursive steps of automatic composite FUs generation
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Figure 3-9 shows recursive steps of automatic composite FUs generation. The

three steps are listed as follow.

® Step 1. Function decomposition

The MAS-ordered composite FU is decomposed into 3 levels because it has
three functional units. Level-3 operation is MAS. The number of level-2 operations is
3 including MA, AS, and MS. The number of level-1 operation is 3 including M, A,

and S. These 7 operations compose of match libraries.

® Step 2 ID-based covering

Covering procedures start from the matching of level-3 operation. It finds a
MAS match and marks it in CO. Then the matching of level-2 operations starts, and it
finds 4 matches and mark it in C1+C4. Finally;.the matching of rest of nodes using

level-1 operations and make up €5~C10.

® Step 3 Scheduling

After ASAP and ALAP, the lifetime analysis is done and the scheduling result is
C6 in cycle 1, C1 in cycle 2, C8 in cycle 3, C5 in cycle 4, C7 in cycle 5, C10 in cycle

6, and so on. And the register requirement is calculated as well.
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3.2 Pipeline Design Flow and Hardware Cost of IMT

After the composite FU generation, the pipeline design is performed to decide
the required pipeline stages according to the target performance. For example, if the
OPC of some specific composite FU is 1.5 regarding a specific application and the
target performance is 600MOPS (million operations per second), the required
operation frequency is 400MHz.

We use the Synopsys DesignCompiler synthesis tool incorporated with the
design flow shown in [] to analyze the various pipeline stage sand the associated area
cost. This flow also applies for scalar, VLIW as well as the composite FUs for area

comparison in the experiment introduced later,

Combinational ~ Target clock = d (ns) 1. # registers
circuit Desired pipeline stages = p (stages) 2 . RF ports requirement
¥ ¥

i '

Pre-synthesis
set max delay d*p

Attach required pipeline
registers at circuit output

Register file cost estimation

Register retime
optimize_registers -period d

Re-synthesis
set clock d

., r

\

Total cost = FU cost + Pipeline register cost + Context overhead

Figure 3-10 The flow of pipeline design
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On the other hand, for analyzing the area cost of datapath and the pipeline
registers, we use the pipeline design flow in Figure 3-10. First, if the target clock
cycle is d (ns) and the desired number of pipeline stages is p, we pre-synthesize the
purely combinational circuit, i.e. MSA, with the input-to-output delay of d*p (ns).
Then, (p-1)-stage pipeline registers are attached to the output of the synthesized netlist
which is imported into DesignCompiler to perform register retiming with the target
clock cycle d (ns) as clock constraint. Finally, the resultant netlist is re-synthesized
again and the area cost is recorded.

The main innovations of the pipelining design flow are two-folded. The first is
to avoid a over-designed netlist. The conventional method that does not take the target
clock rate and the desired number of pipeline stages into consideration may use a tight
timing constraint to pre-synthesize the purely combinational circuit and thus results in
a over-designed netlist of excessively large area. The-other innovation of the proposed
pipeline design flow can avoid the situation-that.insufficient pipeline stages will result
in so tight clock timing constraint that the resultant netlist is of excessively large area.
In our experience, under some cases, the synthesized netlist with more pipeline stages

will has smaller area than that with less pipeline stages.

€ Hardware Cost of IMT

Because we use interleaved multithreading technique to hide pipeline latency,
one more set of context, i.e. register file, is required for one more pipeline stage.
Because the port number of the composite is slightly larger than scalar processors and
greatly smaller than VLIW processors, the IMT architecture is suitable for the
composite FUs. Comparatively, the heavy area pressure hinders the VLIW from using

IMT architecture.
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4  Application Specific

Programmable Processor Synthesis

In classic ASIP synthesis flow, programmers usually design the instruction set
architecture (ISA) and micro-architecture first. Then the software programmers and
hardware designers develop the software tool chain and hardware architecture
according to ISA and micro-architecture separately. This flow starts from high level
synthesis and forms a top-down design.

We propose an Application Specific Programmable Processor Flow in section
4-2 to explore the design space of the composite FUs. Then we describes a composite

FU selection flow to help users to find out the most proper composite FU.
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4.1 High Level ASIP Synthesis Flow

[21] shows typical procedures of high level synthesis. Some instruction set
matching and selection techniques are described in [22][23] [24]. [25] introduces the
critical path and data path optimization for ASIP design.

High-level synthesis takes some kind of behavioral description of the algorithm,
available hardware resources, and a set of constraints and goals, to generate the
hardware architecture in register-transfer level (RTL). The set of constraints and goals
define the desired performance and characteristics of the final architecture. The most
common constraints are area and performance constraints.

Area constrained problems means that given a set of resources (or functional
units), try to implement the application using:those resources such that it has the
highest performance. This is kngwn as resource-constrained scheduling.

The performance constrained problem is® known as time-constrained
scheduling, where the designer iS:given a desired sample rate or iteration period and
the goal is to minimize the total area of the final architecture.

There are other goals during the synthesis problem depending on the user
requirement such as minimizing the number of memory modules, reducing the power
consumption, minimizing the number of busses, incorporating reliability and

testability into the design, etc.
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Language description of algorithms

L

Internal graphical representation
(SDFG)

Algorithmic Optimization

Scheduling
Goals and /v \
constraints

Resource o
Allocation <« »  Binding

[ Module binding and control circuit generation (RTL) } ( Funcltill())rr;a:l/umts

-

RTL description of the final architecture

Figure 4-1 High-level synthesis of DSP datapath

Figure 4-1 illustrates the design flow of the high-level DSP synthesis system.
The behavioral description which may be represented in C/C++ is first converted to a
graph-based representation, and such as data-flow graph[]. In the DFG representations,
the nodes represent computations (or functions or subtasks) and the directed edges
represent data paths and each edge has a nonnegative number of delays associated
with it. The following tasks in high-level synthesis of DSP datapath include high-level
optimization, scheduling, resource allocation, module binding, and control generation.
The final architecture produced by high-level synthesis is typically at the
synthesizable RTL. Many high-level synthesis systems have been designed and a
great deal of progress has been made in finding good techniques for optimizing and
exploring design tradeoffs. In addition, the trend towards more automation at higher

level of design process is expected to continue.
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€ Scheduling

Scheduling and resource allocation are two important tasks in hardware or
software synthesis of DSP system. They are both interrelated and dependent on each
other and are among the most difficult problems of high-level synthesis.

Scheduling involves assigning every node of the DFG to time steps. Time steps
are the fundamental sequencing units in synchronous systems and correspond to clock
cycles.

In general, there are two types of scheduling: one is time-constrained
scheduling and the other is resource-constrained scheduling.

Time-constrained scheduling is to minimize the cost of hardware bound by
some specific allowed operation time. For.example, in many digital signal processing
(DSP) systems, the sampling rate’of the inputdata stream dictates the maximum time
allowed for carrying out a DSP-algorithm on the present data sample before the next
sample arrives.

On the other hand, the resource-constrained scheduling problem is encountered
in many applications where we are limited by the silicon area. The constraint is
usually given in terms of either a number of functional units or the total allocated area.
When total area is given as a constraint, the scheduling algorithm determines the type
of functional units used in the design. The goal of such an algorithm is to produce a

design with the best possible performance but still meeting the given area constraint.

€ Resource allocation & binding

Resource allocation is the process of determining how many and what types of
hardware required to implement the desired behavior at lowest cost. The hardware
resources consist primarily of functional units, memory modules, multiplexers, and

communication datapaths.
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Binding involves the mapping of the variables and operations in the scheduled
DFG into the functional, storage, and interconnection units, while ensuring that the
design behavior operates correctly on the selected set of components. For the every
operation in the DFG, we need a functional unit that is capable of executing the
operation. For every variable that is used across several time steps in the scheduled
DFG, we need a storage unit to hold the data values during the variable’s lifetime.

Finally, for every data transfer in the DFG, we need a set of interconnection
units for the transfer. Besides the design constraints imposed on the original behavior
and represented in the DFG, additional constraints on the binding process are imposed
by the type of hardware units selected. For example, a functional unit can execute
only one operation in any given time step. Similarly, the number of multiple accesses
to a storage unit during a control step 1s limited by.the number of parallel ports on the
unit.

Figure 4-2 illustrates thesmapping-of-DEG into register transfer components.
Figure 4-2 (a) show a scheduled DFG to be mapped and we assume that two adders
and four registers are selected. Operation “+,” and “+,” cannot be mapped into the
same adder because they must be performed in the same time step 1. On the other
hand, operation “+,” can share an adder with operation “+3”, because they are carried
out during different control steps. Thus, operation “+;” and “+5” are both mapped into
adderl. Variables a and e must be stored separately because their values are need
concurrently in time step 2. Register 1 and 2, where variables a and e reside, must be
connected to the input ports of ADD1; otherwise, operation “+;” will not be able to
execute in adderl. Similarly, operation “+,” and “+,” are mapped to adder2. Note that
there are several different ways of performing the binding. For example, we can map

“+,” and “+3” to adderl and “+;” and “+4” to adder?2.

47



Time step 1 —|—1 —|—2

e f
Time step 2 —|—3 —|—4
g h

a b, e g c f,h d
reg] reg?| reg3 regé

+1, +3 +2, +4
adder adder.

Figure 4-2 (a) Sche ) mapped operation
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4.2 Proposed Application Specific Programmable Processor

Synthesis Flow

Not like traditional ASIP synthesis flow, we don’t make the ISA first. The
composite FUs take advantages of the application characteristics. Figure 4-3
illustrates a bottom-up design flow described as follow. First, find out the proper
datapath under constraints and applications. Second, summary the sub-functions and
make a corresponding instruction set. Last, some other details of hardware are
implemented. In this thesis, we have already implement ed the lower parts including
Composite FUs Generation and Pipeline Design. The System Specification is the
target goal and the DFG is the giv‘e‘nuaﬁpli‘ca'ﬁbn.r The unsolved problem of Budgeting

is waiting for advanced exploration. | || i &

System Spec.
1. MPOS
2. Silicon area

User interface e —o—

(constraints)
1. Area for FU and register files
2. Port

3. Performance

Area Performance
constraint constraint

Pipelined data path

Composite FUs

. Pipeline Design
(Generation P &l

1. Cycle count
2. # of register

3. Register ports

4. # of operation per
register/memory access

1. Register file area

. e -
Composite FUs 2. Pipeline stages

From area constraint to From performance
performance evaluation constraint to area goal

Figure 4-3 Proposed Application Specific Programmable Processor synthesis flow
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€ System Specification

The system may have some constraints. The most usual constraints are
performance and area constraints. These two constraints define the analysis space of
our composite FUs generator and pipeline design. Besides, the flow may plus some
other constraints for other purposes if needs.

Performance constrains: in MOPS

Area constrains: in um?
€ Budgeting

Supervisors get system specification through some kind of user interface. Then
they decide how to distribute the area for FU and RF. This is another domain of

design space exploration.

€ Composite FUs Generator

Get DFG description and- the constraints-from Budgeting as inputs. Then, use
the composite FUs generator mentioned. at chapter 3, we can analyze the DFG and
report the corresponding OPC and register requirement. Then, list all results of

analysis and send them into Pipeline Designer.
€ Pipeline Designer

Get the analysis from the Composite FUs Generator and the constraints from
Budgeting as inputs. Then, use the pipeline design flow described in section 3-2 and
simulate the synthesis results with different pipeline stages. Finally, report the results

including the pipeline stages and area in different MOPS to the supervisors to see if

the iteration meets the specifications or not.
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4.3 Composite FU Selection Flow

When we get a specific application, we would like to know what kind of
composite FU is the best for this application for different purpose. In this section, we
propose an iteration method called composite FU selection flow to find out the most
suitable composite FU.

As the maximum OPC is limited by the characterization of the application itself,
we develop a design methodology to find the minimal number of FUs to achieve the
required performance. At the same time, the design methodology tries to minimize
the number of pipeline stage to reduce thread overhead, i.e. context.

First, we perform FU characterization. Using TSMC 0.13um cell library and
Synopsys DesignCompiler, the circuit delay of the 16-bit adder, 16-bit multiplier, and
the 16-bit shifter is around 1.40ns, 3.00ns, and 0.70ns respectively. The design
methodology begins with a baseline-EU 'set; i.e. one adder, one multiplier, and one
shifter. The baseline FU set and the target applications (described by DFG) are used
as inputs to the composite FUs generator described in Section II.B.

The minimal number of pipeline stage (p3) can be thus calculated as Analysis
block in Figure 4-4. Then, one more specific functional unit is added, i.e. adding
one more adder or multiplier or shifter. Again, after the analysis, if the resultant
number of pipeline stage (pn) is less than (px.1), we can continue adding one more FU
to evaluate the resultant number of pipeline stage. On the other hand, if (pn) is equal

to or larger than (pn.;), the procedure ends.
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Figure 4-4 Composite FU selection flow
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5 Simulation Result

We show the improvement of the-hardware utilization first. Then the area and

power comparisons are listed in section 5-1 and 5-2.

5.1 Hardware Utilization Improvement and Area

Comparison

After the software chain and application analysis flow set up, we start to find
out the hardware utilization improving level of the composite FUs. In section 5.1.1,
we make a benchmark suite of general media embedded applications. Then the target
datapaths are described in section 5.1.2. The OPC is calculated and the single stage
area is estimated. We use Synopsys DesignCompiler synthesis tool to synthesize the
area of FU and RF separately. Section 5.1.3 shows the total area of different datapaths

in different MOPS after pipeline design coordinating with IMT architecture.
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5.1.1 Benchmark Suite

We choose nine kernels to make up a benchmark suite. 1~5 and 9 are including
in the DSPstone [26] and BDTI [27] benchmark. 6 [28] and 7 [29] are used in the
H.264 standard. 8 is used in the MP3 standard [30].

1. 16 taps finite impulse response

2. 16 taps complex finite impulse response

3. 16 taps linear-phase finite impulse response

4. 1% order biquad filter

5. (8*8)*(8*1) matrix multiplication

6. 8 points integer transform

7. 8 points discrete cosine transform

8. 12 points inverse madified discrete cosine transform
9. 8 points fast fourier:transform

Table 5-1 outlines the operations profiling of these nine benchmarks. What we
concern are operations of addition/subtraction, multiplication, and shift. Assume the
input/output (load/store) operations are decoupled in the analysis. It means the
primitive operations can get data from I/O whenever they want without any

performance loss.

#add #mpy #sht #input #output] #op
FIR  16-tap FIR 15 16 0 32 1 31
CFIR  16-tap complex FIR 62 64 0 64 2 126
LPFIR  16-tap linear-phase FIR 15 8 0 24 1 23
Biquad Ist-order IIR 8 9 0 12 1 17
Matrix  (8*8)*(8*1) matrix multiplication 56 64 0 72 8 120
IT 8-point integer transform (H.264) 32 0 10 8 8 42
DCT  8-point discrete cosine transform 29 12 9 15 8 50
IMDCT 12-point inverse modified DCT 21 11 9 11 12 41
FFT  16-point fast fourier transform 23 10 0 11 14 33
Total 261 194 28 483

Table 5-1 Operations profiling of the benchmark suite
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5.1.2 Target Datapaths

We choose 5 kinds of datapths and list them below.

® 3 FUsincluding 1A 1M 1S

1. Scalar
2. 3-way VLIW

3. Composite FUs with 3 FUs: 6 arrangements
® 4 FUs including 2A 1M 1S

4. 4-way VLIW
5. Composite FUs with 4FUs: 12 arrangements
Adding one more adder for:scalar with 3=.FUs is meaningless because of it

would be leaved unused.

i i i 3-way VLIW e
v ; ; ; i 3-FU 4-FU
Scalar 4-way VLIW Composite Composite

Figure 5-1 5 kinds of datapaths of the scalar, VLIW, and the composite FUs

Table 5-2 outlines the OPC for each datapaths corresponding to different
applications. The OPC calculation is based on the assumption that all operations
consume one clock cycle. Alternatively, for the scalar processor, the adder, or the
multiplier, or the shifter takes one clock cycle to compute one result. Similarly, for

the VLIW and the composite FUs, all the FUs can be activated simultaneously in one
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cycle. The OPC of the VLIW and the composite FUs is normalized to that of the
scalar processor first and then the geometric mean is calculated among all input
benchmarks. The OPC of scalar is 1.00, and OPC of the other datapaths are
normalized to the scalar. The last column, called average OPC is the geometric mean
of the former nine columns. The OPC of 3-way and 4-way VLIW are 1.65 and 2.12.
The composite FU with best hardware utilization 1.35 and 1.62 for 3 FUs and 4FUs
are MSA and AMSA. Although the average OPC of composite FUs lose to the OPC
of the VLIW, the simulation result shows that there are composite FUs with OPC near
to the OPC of VLIW, even better.

Figure 5-1 shows the configurations of 5 datapaths. The composite FUs MSA

and AMSA with best OPC are chosen for further synthesis and comparison.

# operation/cycle FIR CFIR  LPFIR" Biquad: Mafrix IT DCT IMDCT  FFT AVG
Scalar 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
VLIW 1.82 1.91 1.53 1.70 1.79 131 1.61 1.86 1.43 1.65

AMS | 1.00 100 153 121 100 100 16l 152 127 | 122
ASM | 100 100 153 121 100 100 152 128 127 | 1.18
MAS | 194 134 144 142 136 100 128 124 106 | 1.32
MSA | 1.94 134 144 142 136 131 114 128 106 | 135
SAM [ 1.00  1.00 153 121 .00 131 132 124 127 | 120
SMA | 194 134 144 142 136 131 .09 121 1.06 | 1.33
VLIW 182 191 230 170 179 247 263 228 236 | 212
AAMS| 129 131 192 170 115 117 179 152 143 | 145
AASM| 129 131 192 170 115 117 167 128 143 | 142
AMAS| 135 134 28 170 136 117 179 152 143 | 156
AMSA| 135 134 28 170 136 162 167 164 143 | 162
ASAM| 129 131 192 170 115 162 156 132 143 | 146
4FU | composite FUs |ASMA[ 135 134 288 170 136 162 156 132 143 | 157

MAAS| 194 197 144 189 167 117 139 132 118 | 152
MASA| 1.94 197 144 189 167 162 132 137 118 | 157
MSAA| 194 197 144 189 167 162 119 132 118 | 155
SAAM| 129 131 192 170 115 162 139 121 143 | 143
SAMA| 135 134 288 170 136 162 139 121 143 | 153
SMAA| 194 197 144 189 167 162 114 117 118 | 152

3FU
Composite FUs

Table 5-2 Operations per cycle

Table 5-3 shows the further comparisons among the Scalar/VLIW/Composite
FUs. The 2nd to the 8th columns shows the various the OPC of each architecture
regarding the various benchmarks. For the composite FUs, two kinds of OPC are

displayed. One is of the MSA-ordered/ AMSA-ordered composite FUs and the other
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is, for each benchmark, the best OPC of all possible composite FUs. For example, the
AMS-ordered composite FU results in the best OPC regarding the LPFIR benchmark.
Although the MSA-ordered/AMSA-ordered composite FUs is of single-issue
processor, their OPCs in all benchmarks are greater than one (of an average of
1.35/1.62) and thus it effectively increases datapath utilization. Besides, the best
OPC of the composite FUs (either 3-FU or 4-FU) is comparable to that of the VLIW
and even greater than that of the VLIW. The composite FUs have an average

performance loss of about 20% in comparison with the VLIW.

. Composite
Benchmark Scalar \3/-IYVI?/)\/I Composite FU é-lf\ﬁ)\// FU

MSA Best AMSA Best
FIR 1.0 1.82 1.94 1.94 1.82 1.35 1.94
CFIR 1.0 191 1.34 1.34 1.91 1.34 1.97
LPFIR 1.0 1.53 1.44 1.53 2.30 2.88 2.88
Biquad 1.0 1.70 1.42 1.42 1.70 1.70 1.89
Matrix 1.0 1.79 1236 1.36 1.79 1.36 1.67
IT 1.0 1.31 1.31 1.31 247 1.62 1.62
DCT 1.0 1:61 1.14 1.61 2.63 1.67 1.79
IMDCT 1.0 1.86 1.28 1.52 2.28 1.64 1.64
FFT 1.0 1.43 1:06 1227 2.36 1.43 1.43

Average 1.0 1,65 1.35 - 2.12 1.62 -

Table 5-3 OPCrcomparison

5.1.3 Register File Model Modification

The RF area model in section 2-5 is used in TSMC 0.18um cell library. The
area of the 4-to-1 MUX is about three times larger than area of the 2-to-1 MUX.
Using 2-to-1 MUX to estimate all the N-to-1 MUX is acceptable while the area is
almost the same and the errors are the slightly difference of timing and control
network area.

Table 5-4 (a) shows the area of basic MUX cells in TSMC 0.13um cell library.
The area of 4-to-1 MUX is no longer three times the area of 2-to-1 MUX, it is about
2.5 times. The RF model must be modified. Otherwise, the estimation area could be

over-estimated.
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MUX | MX4 | MX3 | MX2 Area
2 1 217.267
3 1 353.059
4 1 516.010
5 1 1 733.277
6 1 1 869.069
7 2 1,032.019
8 2 1 1,249.286
9 2 1 1,385.078
Function  Cell Height Width  Area 16-bit 11 2 2 1,738.138
DFF DFFXL 3.69 736 27.1584 434534 23 1,901.088
13 4 2,064.038
MX2 MX2XL 3.69 368 13.5792 217.267 al . 1| 2281306
MX3 MX3XL 3.69 598  22.0662 353.059 sl o4 | 2,417,098
MX4 MX4XL  3.69 874 322506 516.01 16 | s 2,580,048

Table 5-4 (a) Area of basic MUX cells in TSMC 0.13um cell library (unit: um2)

(b)Area of modified MUX model (unit: um2)

We use 2-to-1 MUX, 3-to-1 MUX, and 4-to-1 MUX to form the N-to-1 MUX
and to find the minimum area as Table 5-4 (b) .shows. Table 5-5 illustrates that the
difference between analytical model and :synthesis result. The upper part of the
annotation is the results of modified RF model, and the lower part of the annotation is
the results of the original RF model. It shows that our modified method have lower
errors from -6% ~ 20%. Except that the difference with few ports is under-estimated

because of the MUX area is relatively small.

RF parameter Analytical Results Synthesis Results | Difference
X y N* W flip-flop read port write port  area Area (%)

1 1 16 16 6953 2580 0 9533 11459 -16.81
Estimate 2 1 16 16 6953 5160 0 12113 13684 -11.48
d by 4- 2 2 16 16 6953 5160 3476 15589 15321 1.75
to-1, 3- 4 2 16 16 6953 10320 3476 20749 19082 8.74
to-1, and 2 4 16 16 6953 5160 8256 20369 19427 4.85
2-to-1 4 4 16 16 6953 10320 8256 25529 23731 7.58
mux 2 1 32 16 13905 10755 0 24660 26302 -6.24
4 2 32 16 13905 21509 6953 42367 35869 18.12

(* 16 registers is composed of 5 4-to-1 mux, 32 registers is composed of 10 4-to-1mux and 1 2-tol mux)
1 1 16 16 6953 3259 0 10212 11459 -10.89
2 1 16 16 6953 6518 0 13471 13684 -1.56
Estimate 2 2 16 16 6953 6518 3476 16947 15321 10.61
d by 2- 4 2 16 16 6953 13036 3476 23465 19082 22.97
t0-1 mux 2 4 16 16 6953 6518 10429 23899 19427 23.02
4 4 16 16 6953 13036 10429 30417 23731 28.18
2 1 32 16 13905 13471 0 27376 26302 4.08
4 2 32 16 13905.1 26941 6953 47799 35869 33.26

Table 5-5 Modified RF model in TSMC 0.13um cell library
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5.1.4 Area Comparison

€ Estimation Results

From the register requirement conducted from the composite FUs generator,
using the modified RF model and get the results in Table 5-6. The “# port” column
shows the read/write port number. The “MAX” column stands for the maximal of
register requirement of architectures. The “Est. Area” column means the estimation
according to register number form MAX. We can see that the area of 3-way VLIW is
the largest one in the 3-FU fields, so as to the area of 4-way VLIW is the largest one
in the 4-FU fields.

For more general purpose and simulation simplicity, we round the MAX into 16
for convenience. This is reasonable because the variation of register requirement is
highly different according to applications and scheduling methods. We can see that
the area pressure of VLIW is relatively high-to-scalar-and the composite FUs. The area

of composite FU is slightly larger thanscalar.

FIR  CFIR LPFIR Biquad Matrix IT DCT IMDCT FFT #port | MAX | Est. Area | final| Area
Scalar 2 4 3 6 8 11 10 9 7 2R/IW 11 8256 16 | 12113
VLIW 2 8 8 4 4 9 10 8 7 SR/3W 10 15616 | 16 | 25502
AMS 2 4 3 4 8 16 12 7 10 16 14693
r wes| 13 a3 4 a6 d s b 6 | o
Composite FUs MSA 1 3 3 3 4 14 10 8 12 3R/IW 14 12927 16 | 14693
SAM 2 4 3 4 8 14 11 7 10 14 12927
SMA 1 3 3 3 4 14 10 7 12 14 12927
VLIW 2 3 4 4 4 10 10 7 10 TR/4AW 10 20342 | 16 | 33269
AAMS| 3 3 5 6 8 14 10 8 8 14 15209
AASM| 3 3 5 6 8 14 10 8 8 14 15209
AMAS| 3 3 1 3 6 14 10 8 8 14 15209
AMSA| 3 8 1 8 6 12 10 7 8 12 12819
ASAM| 3 3 5 6 8 12 10 8 8 12 12819
4FU . ASMA 3 3 1 3 6 12 10 8 8 12 12819
Composite FUs Maas| 3 ) 4 3 4 14 10 9 1 4R/TW 1 15209 16 | 17273
MASA 3 2 4 3 4 12 10 9 11 12 12819
MSAA| 3 2 4 3 4 10 10 9 11 11 11732
SAAM| 3 3 5 6 8 10 10 7 8 10 10537
SAMA| 3 3 1 3 6 10 10 7 8 10 10537
SMAA 3 2 4 3 4 10 10 7 11 11 11732

Table 5-6 Register requirement and estimated RF area
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€ Synthesis Results

® Un-pipelined

Figure 5-2 explains the area cost of the various architectures under the
performance requirement of 100MOPS, 150MOPS, 200MOPS, and 300MOPS
respectively.  We use Synopsys DesignCompiler with the TSMC 0.13um cell-library
to synthesize the various architectures. All synthesized architectures are
un-pipelined.

The composite FUs (MSA or AMSA) save about 10% ~ 25% of area compared
to the VLIW regarding 100/150/200 MOPS due to less number of ports of centralized
register file. However, when the performance requirement is above 300 MOPS, the

composite FUs have to be pipelined 'to achieve. the comparable performance to the

VLIW.

50000

45000 /

40000 —e— Scalar
« —8—3-VLIW
9 35000 r
< —/— MSA

30000 | ——4-VLIW

—%— AMSA
25000 r
20000
0 100 200 300 400

Figure 5-2 Area analysis of single stage

The total area is composed of the area of FUs and the area of RF. The area of
RF changes slightly with the frequency increasing, but the area of FUs grows
exaggeratedly when the frequency increases and the combinational delay constraint
decrease. Actually, the cost of the RF area of the composite is quite equal to the cost

of the scalar.
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Figure 5-3 Area a line stages (3 FUs)
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Figure 5-4 Area analysis with 1 to 4 pipeline stages (4 FUs)
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® Pipelined

After pipeline design introduced in section 3-2, we use N threads IMT to hide N
stages instruction latency totally. For each thread, there must be a thread register file
supported to keep the functionality of IMT architecture.

Figure 5-3 shows the area analysis of the datapaths with 3 FUs and 1 to 4
pipeline stages. These lines stand for total area composed of the area of the FUs, the
pipeline register, and the thread register files. Figure 5-4 shows the area analysis of
the datapaths with 4 FUs and 1 to 4 pipeline stages.

We can see that if VLIW using IMT, the cost is exaggeratedly large than
composite FU and scalar. On the other hand, the composite FUs cost a slightly more
area than the scalar by around 10%.

Because the peak performance of'the eomposite FUs is lower than the VLIW
under same FU resource. VLIW cooperate with IMT can reach specific MOPS goal
with less pipeline stages and thread-number:“However, to our knowledge, there are
several ways to reduce the multithread-related cost such as the register file
architecture using master latch sharing described later.

We will recommend the designers if they want to use VLIW architecture, they
should use some other techniques to hide instruction latency under limited area
constraint. Nevertheless, these techniques need overhead of hardware complexity and

the re-compile of the software efforts.
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5.2 Power Estimation

In this section, we quantify the reduction of register accesses. Then we conduct

an experiment to see the degree of power saving.

5.2.1 Register Accesses Per Operation

The total accesses of the composite FUs are reduced because of several

operations performed in single instruction. It apparently cuts the read and write

acCCeSSes.
. . FIR CFIR LPFIR | Biquad | Matrix 1T DCT IMDCT FFT JAVG
# register access/operation(actual)
t NJt NJ]taNJ#tpsN]t NJt NJt NJt NJt N N
Scalar 3.00 1.00]3.00 1.00]3.00 1.00]3.00 1.00]3.00 1.00]2.76 1.00]2.82 1.00]2.78 1.00]3.00 1.00] 1.00
VLIW 3.00 1.00]3.00 1.00]3.00 1.00]3.00 1.00]3.00 1.00]2.76 1.00]2.82 1.00]2.78 1.00]3.00 1.00] 1.00

AMS [3.00 1.00{3.00 1.00{2.30 0.77]2.65 0.88]3.00 1.00)2.76 1.00]2.06 0.73]2.10 0.75}2.58 0.86] 0.88
ASM [3.00 1.00{3.00 1.00{2.30 0.77]2.65 0.88]3.00 1.00)2.76 1.00]2.14 0.76]2.34 0.84|2.58 0.86] 0.90
MAS [2.03 0.682.49 0.83]2.39 0.80]2.41 0.80[2.47 0.82)2.76 1.00]2.28 0.81]2.39 0.86}2.77 0.92] 0.83
MSA ]2.03 0.68]2.49 0.83]2.39 0.80]2.41 0.80]2.47 0.82]2.29 0.83|2.46 0.87]|2.23 0.80]2.77 0.92] 0.82
SAM ]3.00 1.003.00 1.00|2.30 0.77]2.65 0.88]3.00 1.00(2.29 0.83)2.34 0.83]|2.39 0.86]2.58 0.86] 0.89
SMA ]2.03 0.68]2.49 0.83]2.39 0.80]2.41 0.80]2.47 0.82]2.29 0.83]2.54 0.90]2.17 0.78]2.77 0.92] 0.82
VLIW 3.00 1.003.00 1.003.00 1.00{3.00 1.00]3.00 1.00]2.76 1.00§2.82 1.00]2.78 1.00]3.00 1.00] 1.00
AAMS [2.55 0.85]2.52 0.842.04 0.682.18 0.73]2.73 0.91]2.41 0.87|1.90 0.68}2.05 0.74]|2.24 0.75] 0.78
AASM |2.55 0.85]2.52 0.84|2.04 0.68]2.18 0.73]2.73 0.91|2.41 0.87)1.98 0.70]2.28 0.82]2.24 0.75] 0.79
AMAS [2.48 0.83]2.49 0.831.70 0.57|2.18 0.73]2.47 0.82]2.41 0.87|1.90 0.68}2.05 0.74]2.24 0.75] 0.75
AMSA |2.48 0.83]2.49 0.83]|1.70 0.57]2.18 0.73]|2.47 0.82|1.95 0.71]1.96 0.70]1.98 0.71]2.24 0.75]0.73
ASAM [2.55 0.85]2.52 0.842.04 0.682.18 0.73]2.73 0.91]1.95 0.71]2.04 0.72}2.23 0.80]2.24 0.75] 0.77
4FU Composite FUs ASMA ]2.48 0.83]2.49 0.83|1.70 0.57|2.18 0.73]2.47 0.82]1.95 0.71)2.04 0.72]2.23 0.80(2.24 0.75] 0.75

MAAS [2.00 0.67]2.02 0.672.39 0.80]2.06 0.69]2.20 0.73]2.41 0.87|2.17 0.77}2.23 0.80]2.47 0.82] 0.76
MASA ]2.03 0.68]2.02 0.67]2.39 0.80]2.06 0.69]2.20 0.73]1.95 0.71]2.24 0.79]2.21 0.80]2.47 0.82] 0.74
MSAA [2.03 0.68]2.02 0.672.39 0.80|2.06 0.69]2.20 0.73]1.95 0.71]2.39 0.85}2.16 0.78]2.47 0.82] 0.74
SAAM [2.55 0.85]2.52 0.84)2.04 0.68]2.18 0.73|2.73 0.91]1.95 0.71]2.19 0.78|2.37 0.85}2.24 0.75] 0.78
SAMA [2.48 0.8312.49 0.83]1.70 0.57]2.18 0.73|2.47 0.82]1.95 0.71]2.19 0.782.37 0.85}2.24 0.75] 0.76
SMAA [2.03 0.68(2.02 0.67]2.39 0.80]2.06 0.69]2.20 0.73]1.95 0.71]2.46 0.87|2.26 0.81}2.47 0.82] 0.75

Composite FUs

Table 5-7 Register accesses per operation

Table 5-7 outlines the register accesses per operation. First, count all accesses
for each case. The accesses of adder of scalar and VLIW are 2R/1W. The accesses of
multiplier of scalar and VLIW are 2R/1W. The accesses of shifter of scalar and VLIW
are 1R/1W. The accesses of composite FUs with 3 FUs (1AIM1S) are 3R/1W. The
accesses of composite FUs with 4 FUs (2A1M1S) are 4R/1W. Furthermore, when the

composite FUs use sub-functions to execute the applications, the corresponding
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accesses are taken into consideration. Then, all the data is normalized to scalar 1.00.
The last column is the geometric mean.

Table 5-8 shows the respective register access per operation of the various FU
configurations regarding the used benchmarks. On average, the 3-FU and the 4-FU
composite FUs reduce about 18% and 27% of register accesses per operation

compared to the scalar and the VLIW.

3-way Composite 4-way Composite

Benchmark Scalar VLIW FU (MSA) VLIW FU (AMSA)
FIR 1.00 1.00 0.68 1.00 0.83
CFIR 1.00 1.00 0.83 1.00 0.83
LPFIR 1.00 1.00 0.80 1.00 0.57
Biquad 1.00 1.00 0.80 1.00 0.73
Matrix 1.00 1.00 0.82 1.00 0.82
IT 1.00 1.00 0.83 1.00 0.71
DCT 1.00 1.00 0.87 1.00 0.70
IMDCT 1.00 1.00 0.80 1.00 0.71
FFT 1.00 1,00 0.92 1.00 0.75
Average 1.00 1.00 0.82 1.00 0.73

Table 5-8 Outlineof register-accesses per operation

5.2.2 Target Simulated Architecture

Figure 5-5 is an overview when the FU and RF are mapped into a real
architecture. Assume that there are instruction memory, data memory, and load/store

unit which can help the application really work.

IM
i - ! I
|
| . ' it KD
: (Arithmetic) ! L/S Unit (=
| |
O LT | o
I |
I |
I
I RF ]
| :
I |

Figure 5-5 Simulated architecture
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The shadow area surrounded by the dotted line includes FU and RF. These two
parts are what we concern. In our experiment, we replace these two part using the FU
and RF pairs of scalar, VLIW, and composite FU (MSA) to keep track of the power
consumption. Remember that the L/S is independent of the FU because of the

assumption made before for software analysis.

5.2.3 Ping-Pong Register File

Based on the analysis assumption and results before, the load/store handling is
decoupled. Now we want to estimate power carefully, so we should reconsider of the
load/store effect again because of the power estimation should be closed to real
situation.

There is two methods to handle the load/stere operation.

(1) Increase additional RF port.to let the FUs get the right data transparently in the
execution sequence.
(2) Increase load/store cycles.

The latter is simple, but it needs extra cycles because of the I/O pattern of
register files must be considered.

Without changing the scenario, we use ping-pong register to keep simplicity
without opening new ports (2) and performance loss (1).

Assume the load bandwidth is full capable of getting enough data. For example,
when executing a MAC needs to load a coefficient and a data input, the load
bandwidth is twice the arithmetic bandwidth. However, there is some control
hardware overhead if the register file is capable of two values written at the same time

using the same MUX.
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We mirror a 16-bit RF with 16 registers and use the ping-pong mode execution.
As Figure 5-6 shows, write ports of ping-pong RFs are interleaved access from
load/store unit or FU. The ports of FU and RF for different datapaths are listed below.

FU (Input / Output)

Scalar:2/1
VLIW:5/3
MSA:3/1
RF (Read / Write)
Scalar:2/1
VLIW:5/3
MSA:3/1
L/S Unit
| Input & coeff |
i LA Program 1, Program 2
Ping-pong[— Wiy — — — WA i— B MO 10, 116 : MQ 10, 116
RF | | M1 |1,‘11T"I M1 1, 117
| Ping Pong | AD MO, M1I AD MO, M1
) R R2 R R? ) M212, 118 , M212,118
1-512 SN 512 A1 a0 M2! A% AG, M2
sample ¥ Y v sample " I
Mux |
R1y y R2
FU
w1 1-1024

sample

Figure 5-6 Data flow of FU and RF

Besides, power is strongly related to activity pattern. The power consumption is
almost from the transition of the logic network. Figure 5-7 shows the access pattern
derived from Figure 5-6. We can see that the hardware can get right data in
corresponding cycles. The ping-pong execution covers the problems derived from

load/store cooperation. These two threads make up the total application execution.
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Figure 5-7 Access pattern of FU and RF

5.2.4 Simulation Results

This experiment measures‘ the power.consumption of the scalar, the 3-way
VLIW, and the MSA-ordered composite FU. We take Synopsys PrimePower as
simulation tool. It simulated the power consumption of gate-level files.

The application is executed in streaming process. And the Remez 16-tap FIR
with 1,024 Gaussian-distributed random input patterns is used as the test real

application. Table 5-9 illustrates the total cycles for test application of each datapaths.

Number of cycle Scalar MSA | 3-VLIW
random input 1024 1024 1024
remez filter 16 16 16
FIR (once) 31 16 17
total 317441 16384] 17408

Table 5-9 Execution cycles
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First of all, let us see the factors which may affect the power P. Three main
factors are the operation frequency f, capacitance C, and the voltages V. Their
relations to power is Poc f.C-V?*. The voltage V is constant in TSMC 0.13 cell
library. The f is related to the cycle time. The capacitance C is related to the area.
Table 5-10 is derived from the OPC analyzed before and the performance goal. It is
used as the synthesis timing constraint. And Table 5-11 shows the synthesis area based
on the cycle time in Table 5-10. Because the critical path has limited synthesis timing

constraint, the area of MSA-ordered composite FU explodes in 400MOPS.

Cycle time (unit:ns) | Scalar MSA |3-VLIW
100MOPS 10.00 19.38 18.23
200MOPS 5.00 9.69 9.12
400MOPS 2.50 4.84 4.56

Table 5-10 Cycle time

Scalar MSA 3-VLIW
Area (unit: um2) FU . RF FU : RF FU : RF
Ping Pong™. Sum Ping / Pong Sum Ping Pong Sum
100MOPS 12724 16047 16047 32094| 12296| 18892.%18892 37784| 12289] 31733 31733 63466
200MOPS 13012| 16047 16047 32094 12875] 18892 18892 37784 12289| 31733 31733 63466
400MOPS 30204 16047 16047 32094] 21920| 18892 18892 37784| 13092] 31733 31733 63466

Table 5-11 Synthesis area

Table 5-12 shows the power consumption of every part we concern. The power
of MSA is smaller in most case because of the longer cycle time, lower frequency.
The power of FU part of composite FU grows exaggeratedly in 400MOPS because of

the area explosion.

Scalar MSA 3-VLIW
Power (unit: mW) FU : EH Total | FU - RF Total | FU = RE Total
Ping Pong Sum Ping Pong Sum Ping Pong Sum
100MOPS 0.4541 0.608 0.604 1.212] 1.666] 0.264 | 0.566 0.560 1.126 ]| 1.390 | 0.234| 0.701 0.703 1.404 | 1.638
200MOPS 0.994] 1.208 1.202 2.410] 3.404] 0.579 | 1.120 1.107 2.227] 2.806 | 0.460| 1.405 1.403 2.808 ] 3.268
400MOPS 5.670 ] 2.406 2.397 4.803 |10.473] 2.699 | 2.237 2.228 4.465] 7.164 ] 1.203] 2.812 2.807 5.619] 6.822

Table 5-12 Power consumption
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Compared with the scalar and the VLIW, the composite FU saves 16.5% ~
31.6% of power consumption under the 100 ~ 200 MOPS performance requirement as
Table 5-13 shows. The power saving comes from the less number of RF’s port
required by the composite FUs and less register access per operation of the composite

FUs. Figure 5-8 shows the bar charts of power and energy comparison.

Power improve (Normalized to scalar) (%)
MSA 3-VLIW
FU RF | Total | FU RF | Total
-418| -7.1| -16.6] -48.4] 1538 -1.7
-41.71 -76]| -176] -53.7| 165| -4.0
5241 -7.0] -31.6] -788] 17.0] -34.9

Table 5-13 Power improvement

Power
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0 ‘ ‘ 0.0
100 200 400 100 200 400
MOPS MOPS
(a) (b)

Figure 5-8 Comparison of (a) power (b) energy
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6 Summary & Future Works

In this thesis, we propose-the composité functional units which cascades all the
primitive FUs in a customized orderby analyzing the DFG (data-flow graph) of the
target applications to improve datapath: utilization. The composite FU with 3
primitive functional units achieves an OPC of 1.35 on average and has comparable
OPC:s to that of the VLIW in several benchmarks.

Besides, the composite FU reduces 10% to 25% of area compared with the
VLIW and saves 16.5% to 31.6% of power consumption compared with both the
scalar and the VLIW under the performance target ranging from 100 to 300 MOPS.

Although the composite FUs may result in long critical path, pipelining
technique can be applied to raise the clock rate feasibly. A flexible pipelining design
flow is also proposed to assist in FU pipelining. Additionally, the interleaved
multithreading can be applied to hide pipeline latency totally if enough number of

threads is supported.
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The area comparison in section 5-1 shows that the hardware cost of the thread
increase is small for composite FU, so the IMT architecture is good for the composite
FUs. Relatively, the hardware cost of VLIW cooperated with IMT is too high. Some
other methods to hide instruction latency must be taken.

In chapter 4, we proposed an Application Programmable Processor Synthesis
Flow to design a processor based on composite FUs. The composite FU selection flow

helps user to find a proper composite FU for a specific application.

€ Future Work

® Thread Register File Reduction

Although multithreading, in our experience, will incur large context overhead.
Because of the IMT architecture needs a thread register file for each thread, the area
and overhead of hardware increase with :thread .number. There are other approaches
such as the register file architecture using master latch sharing described in [] to
lessen the side effect. In the future, we will continue studying on how to reduce the

multithreading-incurred overhead.

B Share master latching

[31] introduces a method of reducing area and power consumption of a
synthesizable register tile by using a single master latch shared by a number of slaves.
Simulation results show that, depending on the size of the register tile, reduction of
power consumption of more than 50% is achievable.

Data stores are an important power critical part of resource sharing
architectures [7] or processing units, like application specific instruction set
processors (ASIPs). They are preferably implemented as a synthesizable register file
described as part of the design on register transfer level, because of a high effort

required for timing verification of RAM.
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Word Level Register

D-Flip-flop
D, D Q D Q Q
Master Slave
nEN 0 EN

D——D Q D Qr—Q ( r
Dz — QZ
Tj EN (Cj EN ] M, S .
CK : : '
D,— M, S — Qs

CK
(a) (b)

Figure 6-1 (a) D Flip-filop (b) Word Level Register

Figure 6-1 (a) is a typical D flop-flop. It is composed of master latch and slave
latch. Several D flip-flops make up,a'word level register in Figure 6-1 (b). The real
data is stored in the slave latch.

This method also aims at‘teductionof capacitance connected to the data bus.

This is achieved by splitting. up the master-slave flip-flops into the master
latches and the slave latches. If clock gating is applied, slave latches of registers in the
register tile can share one master latch. Thus the number of master latches connected
to the data bus is decreased. Additionally savings in area can he expected.

Figure 6-2 (a) shows conventional register file with flip-flops and Figure 6-2 (b)

shows modified register file with shared master latches.
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Figure 6-2 (a) Conveéntional register file with flip-filops

(b) Modified register file.with shared:master latches.

® Fused FU and VLIW Cooperation

We demonstrate that the composite FU effectively increases datapath utilization
in this thesis. However, the long critical path will incur other overheads, i.e. pipeline
latency or register file complexity. Another research direction will focus on the fused
FU such as MAC (multiply and add). We can cascade two or three primitive
operations to be a fused FU that is frequently used and then design a VLIW processor
with several fused FUs as primitive FUs. Compared to the conventional VLIW
processors with the same computing resources, multi-issue fused FUs still demand
less number of register file ports. We expect that the multi-issue fused FUs will
explore more operation parallelism and thus achieve higher OPC. At the same time, it

can avoid long critical path.
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® Merge Shifter Into Multiplier

Because the shift operations are small relatively to the total operations, the
shifter is usually idle. Shift operations often occur between different application and
data transformation for alignment. Maybe we can merge the shifter into the multiplier
by by-passing the corresponding bits form the product of multiplier with little

hardware effort. By the way, the software analysis may need modification.
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