
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

具複雜運算單元之低功率多執行緒資料路徑

的研究與設計

Study on Improving Utilization for Low-Power
Multithreaded Datapath with Composite

Functional Units

研究生： 卓毅

指導教授： 劉志尉 博士

中 華 民 國 九 十 六 年 十 月

具複雜運算單元之低功率多執行緒資料路徑的研究與設計

Study on Improving Utilization for Low-Power Multithreaded Datapath
with Composite Functional Units

研 究 生：卓毅 Student: Yi Cho

指導教授：劉志尉 博士 Advisor: Dr. Chih-Wei Liu

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master of Science

in

Electronics Engineering

October 2007

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 十 月

I

具複雜運算單元之低功率多執行緒資料路徑

的研究與設計

研究生：卓 毅 指導教授：劉志尉 博士

國立交通大學
電子工程學系 電子研究所

摘要

 在觀察近年來處理器的發展演變中我們發現，簡化指令集處理器(RISC)已
成為一大設計主流。其簡單和規律的指令集設計很容易進一步的將指令執行管線

化(pipeline)提高處理器效能。然而，因為分派一個指令，只能執行一個動作導致

其硬體使用率不高。多指令分發(multi-issue)處理器，即超長指令(VLIW)處理器，

利用指令層級平行度(ILP)提高硬體使用率，但它的暫存器檔案面積，隨著運算

單元增加而劇烈成長，因而付出沉重的硬體代價。在本論文中，我們提出一個具

複雜運算單元(composite FU)的資料路徑，以客製化順序串接多個運算單元的方

式，在同一指令中處理連續多個基本運算(primitive operations)，達到硬體使用率

的提升。此複雜運算單元不僅可以減輕如 VLIW 的暫存器面積會因功能單元(FU)
增加而大幅成長的問題，還因為複雜運算單元可以在抓取運算子後，作多個運算

才存回，總暫存器存取次數得到節省，進而得到低功率的好處。此外我們也利用

整合管線化設計流程來提升整體效能 (操作頻率)，以及搭配交錯多執行緒

(interleaved multithreaded)架構來完全地隱藏管線化後所衍生的指令延遲。我們同

時提出一個自動化複雜運算單元產生器，藉由分析使用者所輸入的應用程式資料

流程圖(data-flow graph)，自動產生出一個最佳化的複雜運算單元。經由對多個典

型 DSP 應用分析，複雜運算單元 MSA(串接一個乘法器 M 以及一個移位器 S 和

加法器A)的硬體使用率(operation per cycle)和簡化指令集處理器的 1.00比較提升

為 1.35。使用台積電 0.13um 製程作合成分析，在同樣的運算效能下，複雜運算

單元較簡化指令集合的面積約多 10%，但較超長指令減少約 50%。複雜運算單

元之功率消耗，較簡化指令集合及超長指令節省 16.6%到 31.6%。

III

Study on Improving Utilization for Low-Power

Multithreaded Datapath with Composite

Functional Units

Student: Yi Cho Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

From the observation of evolution of processor development in recent years, we find
that Reduced Instruction Set Computer (RISC) processors have already become main design
fashion. The simplicity and regularity of RISC is suitable for pipeline design to boost
performance. However, its hardware utilization is low because of it execute only one
operation in single instruction issued. Multi-issue (VLIW) processors, takes advantage of the
Instruction Level Parallelism (ILP) to promote hardware utilization. But the register file (RF)
area of VLIW grows exaggeratedly with the increase of the functional unit number. It pays a
great hardware overhead. In this thesis, we propose a datapath with composite functional units
(FUs). It cascades several functional units in costumed order to perform continuous multiple
primitive operations in single cycle for raising hardware utilization. The read and write port
number of the register files of composite FUs only slightly increase by 1 or remain unchanged.
It solves the problem of large RF area pressure. In addition, the composite FUs can perform
several operations after fetching operands and then write back. The reduction of total register
accesses leads to low-power benefit. Besides, the pipeline design is integrated to boost
performance up and the Interleaved Multithreaded (IMT) architecture is coordinated to hide
instruction latency derived from pipeline design totally. In the mean time, we propose a
recursive composite FUs generator which automatically generator a best composite FU by
analyzing Data Flow Graph (DFG) input by user. From the analysis of several classic DSP
kernels, the hardware utilization of MSA-ordered (cascade a multiplier, a shifter, then an
adder) composite FU is 1.35 times higher than 1.00 of RISC. Use the TSMC 0.13um process
to do synthesis analysis. Under same performance, the register file area of composite FU is
10% more than RISC and 50% less than VLIW. The power reduction of composite FU is
smaller compared with RISC and VLIW ranging from 16.6% to 31.6%.

V

誌 謝

研究生兩年多的時光轉眼即逝，感謝許多人幫助並鼓勵我完成碩士學業。

首先感謝劉志尉老師。老師的豐富學養及學者風範，不但在專業知識及研究

態度上給予提點，也在生活和與人相處的應答給予意見和支持，感謝老師兩年來

的指導和關照。

感謝口試委員：周景揚教授，蔡淳仁教授及許騰尹教授。謝謝你們在百忙之

中，撥冗參與論文口試，並給予寶貴的意見，讓此篇論文更加完備充實。

感謝林泰吉學長不厭其煩地對我的研究工作前瞻指引，並培養研究態度及應

有的能力。以及歐士豪學長給我諸多實現細節上的解惑，還有鄧翔升同學和林彥

呈、呂進德兩位學弟對我的研究提出意見和討論，感謝諸位的協助。

感謝其餘所有實驗室成員們。
感謝張彥中、林佑昆、郭羽庭、陳信凱、林禮圳學長以及廖彥欽學姊，在我

研究生生涯中的提攜。以及顏于凱、洪正堉、李岳泰、張巍瀚幾位學弟們在研究

工作上的幫助。
感謝一起打拼、面對挑戰的同學們：卓志宏、劉士賢、陳慶至、王炳勛。

最後，感謝我的家人。爺爺、爸、媽、妹，感謝你們一路上的支持、體諒及

鼓勵。

謹將此篇論文獻給所有曾支持我、協助我的人，衷心的感謝並祝福你們。

卓毅
謹誌於 新竹

2007 秋

VII

Contents

ABSTRACT (CHINESE)... I

ABSTRACT (ENGLISH)... I

ACKNOWLEDGEMENT ..V

CONTENTS ..VII

LIST OF TABLES ... IX

LIST OF FIGURES... XI

1 INTRODUCTION ...1

1.1 HISTORY OF PROCESSOR PROGRESS..2
1.2 PROPOSED COMPOSITE FUS AND CONTRIBUTIONS ...8
1.3 THESIS ORGANIZATION ...9

2 BACKGROUND.. 11

2.1 COMPOSITE FUS ...12
2.2 DATA-FLOW GRAPH..14
2.3 COVERING ..17
2.4 SCHEDULING...20
2.5 COMPLEXITY OF SYNTHESIZED REGISTER FILE ..25
2.6 INTERLEAVED MULTITHREADED (IMT) ARCHITECTURE ...29

3 THE COMPOSITE FUS...31

3.1 THE COMPOSITE FUS GENERATOR..32
3.2 PIPELINE DESIGN FLOW AND HARDWARE COST OF IMT...41

4 APPLICATION SPECIFIC PROGRAMMABLE PROCESSOR SYNTHESIS43

4.1 HIGH LEVEL ASIP SYNTHESIS FLOW..44
4.2 PROPOSED APPLICATION SPECIFIC PROGRAMMABLE PROCESSOR SYNTHESIS FLOW49
4.3 COMPOSITE FU SELECTION FLOW ..51

5 SIMULATION RESULT...53

5.1 HARDWARE UTILIZATION IMPROVEMENT AND AREA COMPARISON ..53
5.2 POWER ESTIMATION ...63

6 SUMMARY & FUTURE WORKS ..70

REFERENCE ...75

IX

List of Tables

TABLE 1-1 PORT NUMBER OF DIFFERENT DATAPATHS...8
TABLE 2-1 COMPARISON OF ANALYTICAL RESULTS AND SYNTHESIS RESULTS ..28
TABLE 5-1 OPERATIONS PROFILING OF THE BENCHMARK SUITE...54
TABLE 5-2 OPERATIONS PER CYCLE...56
TABLE 5-3 OPC COMPARISON ...57
TABLE 5-4 (A) AREA OF BASIC MUX CELLS IN TSMC 0.13UM CELL LIBRARY (UNIT: UM2)58

(B)AREA OF MODIFIED MUX MODEL (UNIT: UM2)..58
TABLE 5-5 MODIFIED RF MODEL IN TSMC 0.13UM CELL LIBRARY ...58
TABLE 5-6 REGISTER REQUIREMENT AND ESTIMATED RF AREA...59
TABLE 5-7 REGISTER ACCESSES PER OPERATION ...63
TABLE 5-8 OUTLINE OF REGISTER ACCESSES PER OPERATION ..64
TABLE 5-9 EXECUTION CYCLES...67
TABLE 5-10 CYCLE TIME ...68
TABLE 5-11 SYNTHESIS AREA..68
TABLE 5-12 POWER CONSUMPTION ...68
TABLE 5-13 POWER IMPROVEMENT...69

XI

List of Figures

FIGURE 1-1 UNIPROCESSOR PERFORMANCE..2
FIGURE 1-2 SCALAR ..3
FIGURE 1-3 VLIW...4
FIGURE 1-4 MULTITHREADED ARCHITECTURE...6
FIGURE 2-1 COMPOSITE FU: MAS ..12
FIGURE 2-2 CONFIGURATION OF (A) THE ADDER; (B) THE MULTIPLIER; (C) THE SHIFTER..........................12
FIGURE 2-3 COMPOSITE FU: MA WITH (A) FULL R/W PORTS (B) REDUCED R/W PORTS13
FIGURE 2-4 DCT (LEE’S ALGORITHM)...15
FIGURE 2-5 DFG DESCRIPTION OF BIQUAD FILTER ..16
FIGURE 2-6 COVERING AND SUPERNODE ...17
FIGURE 2-7 ID-GRAPH OF A PATTERN ..19
FIGURE 2-8 PROGRAM FLOW OF THE SCHEDULER..21
FIGURE 2-9 THE ASAP SCHEDULING ALGORITHM ...22
FIGURE 2-10 THE ALAP SCHEDULING ALGORITHM...22
FIGURE 2-11 SCHEDULING EXAMPLE (A) ASAP (B) ALAP (C) SCHEDULING RANGE................................23
FIGURE 2-12 A REGISTER CELL IN FULL CUSTOM DESIGN...26
FIGURE 2-13 ACCESS NETWORK OF CENTRALIZED REGISTER FILE ...27
FIGURE 2-14 INTERLEAVED THREADS AND DEPENDENCIES IN THE PIPELINE ..29
FIGURE 3-1 THE COMPOSITE FUS GENERATOR ..32
FIGURE 3-2 THE ARRANGEMENT SPACE OF 1 A 1M 1S ...33
FIGURE 3-3 THE ARRANGEMENT SPACE OF 2 A 1M 1S ...33
FIGURE 3-4 THE ID-BASED SEARCH GRAPH OF MAS...34
FIGURE 3-5 (A) A DFG OF BUTTERFLY (B) THE COMPOSITE FU: AMAS...35
FIGURE 3-6 BREAK AT MULTIPLE FAN-OUT NODE...36
FIGURE 3-7 NODE DUPLICATION AT MULTIPLE FAN-OUT NODES ...36

(A) COVERING (B) DUPLICATE A0 AND M0 ...36
FIGURE 3-8 CUTSET OF DFG...37
FIGURE 3-9 RECURSIVE STEPS OF AUTOMATIC COMPOSITE FUS GENERATION ...39
FIGURE 3-10 THE FLOW OF PIPELINE DESIGN...41
FIGURE 4-1 HIGH-LEVEL SYNTHESIS OF DSP DATAPATH ..45
FIGURE 4-2 (A) SCHEDULED DFG; (B) MAPPED OPERATION ..48
FIGURE 4-3 PROPOSED APPLICATION SPECIFIC PROGRAMMABLE PROCESSOR SYNTHESIS FLOW.............49
FIGURE 4-4 COMPOSITE FU SELECTION FLOW...52
FIGURE 5-1 5 KINDS OF DATAPATHS OF THE SCALAR, VLIW, AND THE COMPOSITE FUS...........................55

XII

FIGURE 5-2 AREA ANALYSIS OF SINGLE STAGE ..60
FIGURE 5-3 AREA ANALYSIS WITH 1 TO 4 PIPELINE STAGES (3 FUS)...61
FIGURE 5-4 AREA ANALYSIS WITH 1 TO 4 PIPELINE STAGES (4 FUS)...61
FIGURE 5-5 SIMULATED ARCHITECTURE..64
FIGURE 5-6 DATA FLOW OF FU AND RF...66
FIGURE 5-7 ACCESS PATTERN OF FU AND RF ..67
FIGURE 5-8 COMPARISON OF (A) POWER (B) ENERGY ..69
FIGURE 6-1 (A) D FLIP-FILOP (B) WORD LEVEL REGISTER ..72
FIGURE 6-2 (A) CONVENTIONAL REGISTER FILE WITH FLIP-FILOPS ..73

(B) MODIFIED REGISTER FILE WITH SHARED MASTER LATCHES. ...73

1

1 Introduction

As the desire to the performance for multimedia application growing up day by

day, lots of processor design principle showed up for different purposes. We will

illustrate the history of processor progress first in section 1-1, and discuss the reasons

for the evolution.

Let us focus on the advantages and disadvantages of the datapaths including

functional unit architectures. Some decisions and changes are made according to the

hardware utilization and the area pressure of register files, or even some power issue.

We propose composite FU to overcome the weakness of RISC and VLIW. And

some contributions are described in section 1-2.

Section 1-3 describes the thesis organization.

2

1.1 History of Processor Progress

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, 2006

3X

Figure 1-1 Uniprocessor Performance

[1] Figure 1-1 shows the uniprocessor performance measured by SPECint.

 Complex Instruction Set Computer (CISC)

From 1978 to 1986, the CISC-style processors dominate the processor market.

The essence of CISC is to allocate as many hardware as the functions need. Therefore,

the CISC processors can perform some specific functions at high speed.

But CISC processors have some well-known drawbacks.

Instructions of CISC processors have very different execution cycles. Single

instruction may consume cycles from several to thousands corresponding to its

functionality and complexity. The complexity of instruction variation and hardware

selection lead to the inefficiency of the compiler. Besides, If pipeline technique is

coordinated to boost the performance of CISC processors, it would be hard to pipeline,

and the improvement of performance is limited.

3

In addition, all CISC-style processors suffer a serious problem. Some hardware

is idle at most time. DEC-PDP 10 is a famous CISC processor, and some surveys [2]

of this processor tell us that 70 instructions account for 99% of operation and 50

instructions account for 95% of operation. Lots of instructions and hardware are

rarely used, and the idle hardware implies the waste of power consumption.

 Simple scalar, Reduced Instruction Set Computer (RISC)

In 1980s, the RISC concept showed up. The essence of RISC is to handle single

function within single instruction. Figure 1-2 is an example of RISC, simple scalar.

Designers only deploy some primitive hardware to maintain its functionality. All the

instructions of RISC have same instruction length, so it is easy to pipeline. Moreover,

the performance can be easily enhanced along with the advance of technology. Using

some instruction encoding techniques can raise the performance, too. Because of the

regularity and simplicity of RISC, it has been widely spread out.

Figure 1-2 Scalar

Here are some disadvantages of RISC processors. The RISC processors have a

low hardware utilization problem. They operate one function in single instruction,

their hardware utilization is 1. When the number of primitive functional units

increases, the low utilization characteristic remains unchanged. What is more, the

RISC needs to fetch operands from register or memory first. After perform the single

operation, the RISC needs to store the data into register of memory. The accesses per

operation of the RISC is very high. It implies the power inefficiency.

4

 Multi-issue (VLIW)

Multi-issue is opposite to single-issue. It means that multiple instructions issued

at the same time. The most popular type called Very Long Instruction Word (VLIW)

stands for the multi-issue processors since it has been proposed in 1980s. Figure 1-3

shows a 3-way VLIW and a 4-way VLIW.

Figure 1-3 VLIW

The VLIW processors exploit the instruction level parallelism (ILP). The

functional units operate concurrently. It can reach high performance by taking

advantage of ILP.

The greatest problem of VLIW is the register file pressure. Because the VLIW

perform multiple functions in the mean time, each functional unit needs

corresponding read or write ports to the register file. The port number strongly affects

the area of register file. According to [3], in full custom design, for N FUs, area and

delay are increases as N 3 and N 3/2. Besides, the same frequency of register or

memory accesses with RISC processor makes the power inefficiency problem

remained.

Finally, the performance can’t be raised infinitely due to the ILP has its limit.

Some other processor architectures are taken into consideration.

5

 Multi-core

After 2000, the performance of VLIW is no longer sufficient for some specific

application.

Multi-core processors use several homogeneous or heterogeneous processors to

do things at the same time. Hence the higher performance can be achieved. In this

thesis, we only concern about the single core processor. The multi-core issue is

beyond the scope.

 Multi-threaded

[4] In unending quest for computers with higher performance, computer system

architects seek to reduce or hide latency, the number of cycles an operation takes from

start to finish. A long latency may extend for 10 to 100cycles, forcing the traditional

processor to sit idle until the result comes in. Less time is wasted if the latency is

reduced or even hidden behind the ongoing execution of another operation.

A popular means of reducing latency is the on-chip cache memory, which can

shorten the round trip to data storage from tens of cycles to just one or two.

Multithreaded architectures, however, take the tack of hiding latency by supporting

multiple concurrent streams of execution, or threads, which are independent of one

another. The threads are interleaved on a single processor. When a long-latency

operation occurs in one of the threads, another begins execution. In this way, useful

work is performed while the time-consuming operation is completed.

Figure 1-4 shows the multithreaded architecture. It includes several parts

including computing, selection network, hardware and software context

(threads)…etc. The computing part is composed of some functional units,

memory/registers, and some interconnection network. Threads are mapped onto

hardware context, which each include general-purpose registers, status registers, and a

program counter. One context represents a running thread, while the others represent

6

threads that are eligible to run or are waiting on an operation to complete. Because of

hardware limits, some threads are not currently mapped. The functional units handle

the operations. The memory/registers store some intermediated value to accelerate the

whole works. The interconnection network and the context selection hardware

maintain the accuracy of each interleaved thread.

Figure 1-4 Multithreaded architecture

Multi-threaded architectures take advantage of thread level parallelism. Three

categories of multi-threaded architectures are coarse-grained multithreading,

fine-grained multi-threading, and simultaneous multithreading [5].

 Coarse-grained (block) multithreading (BMT)

The simplest type of multi-threading is where one thread runs until it

is blocked by an event that normally would create a long latency stall. Such

a stall might be a cache-miss that has to access off-chip memory, which

7

might take hundreds of CPU cycles for the data to return. Instead of waiting

for the stall to resolve, a threaded processor would switch execution to

another thread that was ready to run. Only when the data for the previous

thread had arrived, would the previous thread be placed back on the list of

ready-to-run threads.

 Fine-grained (interleaved) multithreading (IMT)

A higher performance type of multithreading is where the processor

switches threads every CPU cycle. The purpose is to remove all data

dependency stalls from the execution pipeline. Since one thread is relatively

independent from other threads, there's less chance of one instruction in one

pipe stage needing an output from an older instruction in the pipeline.

 Simultaneous multithreading (SMT)

The most advanced type of multi-threading applies to superscalar

processors. A normal superscalar processor issues multiple instructions from

a single thread every CPU cycle. In Simultaneous Multi-threading (SMT),

the superscalar processor can issue instructions from multiple threads every

CPU cycle. Recognizing that any single thread has a limited amount of

instruction level parallelism, this type of multithreading is trying to exploit

parallelism available across multiple threads to decrease the waste associated

with unused issue slots.

SMT is the most complex because of the functionality among threads must be

maintained. The most regular is IMT. By the way, the IMT can totally hide instruction

latency if enough threads are supported. The hardware cost of IMT, since there are

more threads being executed concurrently in the pipeline, shared resources such as

caches and TLBs need to larger to avoid thrashing between the different threads. In

this thesis, our hide instruction latency technique will focus on IMT.

8

1.2 Proposed Composite FUs and Contributions

In order to solve the problems mentioned above, we proposed the Composite

FUs with the purposes listed below.

 Application-specific composite FUs

Composite FU is a cascade datapath. It cascade several primitive FUs to form

a composite datapath. Analyze the characteristic of specific application, and find out

what operations can be combined into single instruction.

 High hardware utilization and high OPs/access

Compared with the RISC processors, the composite FUs perform several

functions in single instruction. It means that composite FUs do more things than RISC

in a period of time. Hence, the hardware utilization improves.

Besides, the RISC needs a lot of accesses from register or memory. The

composite FUs fetch proper operands and perform several operations, then store back

to the register or memory. So the total number of accesses is reduced. Register access

is a power-consuming action. The composite FUs have high OPs/access that lead to

power efficiency potential.

 Low register file pressure (limited R/W ports)

Port number Scalar Compostie FUs VLIW
3FUs 2R/1W 3R/1W 5R/3W
4FUs 2R/1W 4R/1W 7R/4W

Table 1-1 Port number of different datapaths

The port number of composite FUs increases one or remains unchanged as the

FU number increase. Not like the VLIW processors, every FU needs two or three

ports. So the grow-up trend of port number is larger in the VLIW than in the

9

composite FUs. Fewer ports of the composite FUs ease off the register file area

pressure. The example of port number is shown in Table 1-1.

 Suitable for IMT DSP (zero instruction latency)

When we want to reach higher performance, we will introduce our pipeline

design to boost performance. Once the pipeline technique has been used, the

instruction latency issue must be taken into consideration. If we ignore the pipeline

latency, the data accuracy may have errors. If we just wait until the last work ready,

then the performance can’t be raised ideally.

There are some techniques to reduce or hide instruction latency, either from

software or hardware view. Software method including loop unrolling, software

pipelining, etc. and hardware method including forwarding, multithreaded

architectures, etc. are all possible solutions.

In this thesis, we choose the IMT architecture to be the way of hiding

instruction latency because of it can totally hide instruction latency. And the hardware

cost of the composite FUs coordinated with IMT is not much. IMT needs a thread

register file for each thread, the register file cost of the composite FUs is acceptable.

1.3 Thesis Organization

The rest of this thesis is organized as follow.

Chapter 2 introduces the background of our work. First, we talk about what is

the composite FUs. Second, describe the meaning stand for data flow graph (DFG)

and its components. Third, show a covering and match method called ID-based search

graphs. Fourth, show the scheduling procedures using list scheduling based method.

Fifth, introduce a RF model to estimate the area of register files. Last, illustrate how

the interleaved multithreaded (IMT) architecture work.

10

Chapter 3 describes the comparison of the advantage and disadvantage among

scalar, VLIW and Composite FUs from the area and power experiment. For high

performance, we have a pipeline designer to speed up the processor with the

composite FUs. And we use the IMT architecture to hide instruction latency

completely.

Chapter 4 states the difference between classic and our ASIP synthesis flow.

Then we propose a flow to recommend a proper composite FU for ASIP designer

under certain constraints.

Finally, chapter 5 concludes this thesis and points out the direction for the

future researches.

11

2 Background

First at all, we will give a simple illustration of the composite FUs and talk

about how it works.

The composite FUs take the advantage of application characteristic. We must

develop a software tool chain to analyze the applications and to find out the

possibility of operation combination. We will introduce the format that we concern,

DFG. Then use covering and matching technique to recognize new operations after

merging. Next, we want to estimate the area of the register files. So we use a list

scheduling based method to find a sub-optimal register requirement. Then the

estimation is done through a RF model method related to the technology process.

We want to further speed up the performance using pipeline design. It introduces

extra instruction latency problem. As mentioned before, we use IMT to hide solve the

problem. So we will show how IMT works at the last of this chapter.

12

2.1 Composite FUs

We propose the composite FU which cascades all the primitive FUs in a

customized order by analyzing the DFG (data-flow graph) of the target applications.

A composite FU is a cascade datapath. Figure 2-1 illustrates a MAS composite

FU that cascades a multiplier with an adder and then a shifter. On each instruction

issue, the maximum number of operations is three, i.e. multiplying operand 1 by

operand 2 and then adding the result to operand 3 and finally shifting the sum by a

specific value, while the minimum number is one, i.e. either one multiplication or one

addition or one shift.

Figure 2-1 Composite FU: MAS

 Primitive Operation Set

For simplicity, we define a primitive operation set with three kinds of primitive

operations including adder, multiplier, and shifter. Figure 2-2 shows the configuration

of (a) adder, (b) multiplier, and (c) shifter.

A M S

Dest Dest Dest

Src1 Src2

Add/Sub

Src1 Src2 Src1

Shamt

(a) (b) (c)

Figure 2-2 Configuration of (a) the adder; (b) the multiplier; (c) the shifter

13

The adder and multiplier both have two source operands and one destination.

On the other hand, the shifter only has one source operands and one destination. There

is a Add/Sub control signal to tell the adder to perform addition or subtraction. The

shifter has a Shamt control signal to decide right shift or left shift and shift amount.

The applications which we analyze in the rest part of this thesis are all based on

this primitive operation set.

 Port constraint

Port number restricts the possible arrangement of the composite FUs.

Figure 2-3 (a) is a full read/write ports version of composite FU MA. It has

three read ports and one write port. Figure 2-3 (b) is a reduced version, and it has two

read ports and one write port. Figure 2-3 (a) can be reduced to Figure 2-3 (b) through

a load/store pair operation. For simplicity, we don’t consider about the load/store

effect and assume all the composite FUs can get full read/write ports if they need.

M

A

M

A

1 2

3

1 2

3 input ports 2 input ports
(a) (b)

Figure 2-3 Composite FU: MA with (a) full R/W ports (b) reduced R/W ports

There are some techniques used in Sandblaster processors [6] to reduce the

number of ports if the hardware doesn’t need it at the same time, but it has extra huge

overhead to guarantee the accuracy.

14

2.2 Data-Flow Graph

In mathematics and computer science, graph theory is the study of graphs;

mathematical structures used to model pair-wise relations between objects from a

certain collection. A "graph" in this context refers to a collection of vertices or 'nodes'

and a collection of 'edges' that connect pairs of nodes. A graph may be undirected,

meaning that there is no distinction between the two nodes associated with each edge,

or its edges may be directed from one node to another.

[7] The data-flow graph captures the data-driven property of DSP algorithm

where any node can fire (perform its computation) whenever all the input data are

available. It means that a node with multiple input edges can only fire after all its

precedent nodes have fired. In data-flow graph (DFG) representations, the nodes

represent computations (or functions or subtasks) and the directed edges represent

data paths (communications between nodes).

 Definition

Node N: computations

Edge E: data dependencies

Graph G = { N, E }

The precedence constraints specify the order in which the nodes in the DFG can

be executed. Different representations of the same algorithm may lead to different

DFG.

Figure 2-4 is a DFG example of 8 points 1D discrete cosine transform in Lee’s

algorithm [8].

15

A0

A1

A2

A3

A4

A5

A6

A7

M0

M1

M2

M3

A9

A12

A10

A11

A8

A13

A14

A15

-1

-1

-1

M4

M5

M6

M7

A18

A19

A16

A17-1

-1

A20

A21-1

A22

A23-1

M8

M9

M10

M11

A24

A25

A26

A28

A27

X0

X4

X2

X6

X1

X5

X3

X7

S1

S2

S3

S4

S5

S6

S7

S8-1

-1

-1

-1

-1S0

Figure 2-4 DCT (Lee’s algorithm)

 DFG Description

For convenience, we make a DFG description. The complete DFG includes

input/output part and the pure operation part. In our analysis, we suppose the

load/store decoupled.

 Input/Output Part

I# (# stands for the number)

O# Src1 (Src1 is the source of output node)

 Operation Part

1. Addition/Subtraction

Syntax: A# Src1, Src2, addsub

Description:

Get Src1 and Src2 data from corresponding node and perform

addition or subtraction. The addsub field stands for what the operation

the adder does. “+” is for addition, and “-” is for subtraction.

16

2. Multiplication

Syntax: M# Src1, Src2

Description:

Get Src1 and Src2 data and perform multiplication.

3. Shift

Syntax: S# Src1, shamt

Description:

Get Src1 data into register Src1 and shift by shamt-bit. The Shamt

fields stand for shift amount and ranges from -8 to 7. The shamt is a

4-bit field supporting up to 8-bit left and 7-bit right shift.

 Example

Figure 2-5 illustrates an example of DFG description of first order biquad filter.

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11

A0 M0,M1,+
A1 M2,M3,+
A2 M4,M5,+
A3 I0,A0,-
A4 I1,A1,-
A5 I2,A2,-
A6 M6,M7,+
A7 M8,A6,+

M0 I3,I7
M1 I4,I8
M2 I4,I7
M3 I5,I8
M4 I5,I7
M5 I6,I8
M6 A3,I9
M7 A4,I10
M8 A5,I11

O0 A7

I0
x0

I1
x1

I2
X2

I3
w0

I4
W1

I5
w2

I6
w3

I7
a1

I8
a2

I9
b0

I10
b1

I11
b2

M0

M1

M2

M3

M4

M5

A0

A1

A2

A3

A4

A5

M6

M7

M8

A6

A7 O0
Y0

Figure 2-5 DFG description of biquad filter

17

2.3 Covering

In the mathematical discipline of graph theory a covering for a graph is a set of

nodes (or edges) so that the elements of the set are close (adjacent) to all edges (or

nodes) of the graph. We are especially interested in finding small sets with this

property. The problem of finding the smallest node covering is called the node cover

problem and is NP-complete.

Figure 2-6 Covering and supernode

Figure 2-6 shows a supernode merges several nodes together. It inherits the

functionality and the dependencies of the replaced nodes.

A perfect matching is a matching which covers all nodes of the graph. We

want to find a perfect matching of the application using the composite FUs.

 Unate and binate covering problems [9]

The classical solving approach for two-level logic minimization in the VLSI

literature goes back to Quine’s and McCluskey’s works. It reformulates the problem

as a special case of the Unate Covering Problem [10] and applies algorithms

conceived for the latter, or even for the more general Binate Covering Problem.

18

Binate (or unate) covering problems is a well known intractable problem. It has

several important applications in logic synthesis, such as two-level logic minimization,

two-level Boolean relation minimization, three-level NAND implementation, state

minimization, exact encoding, and DAG covering [11].

The next paragraph briefly defines the binate covering problem and the

notations of typical presentation.

Let f (y1, …, yn) be a Boolean function from {0, 1}n into {0, 1}. Let Cost be a

function that associates a positive cost with the assignment of variable yk to 0 or 1.

The cost of a n-tuple (v1, …, vn) of {0, 1}n is defined as ∑ =

n

k 1
Cost (yk = vk).

Definition (Binate covering problem)

The binate covering problem (also called minimum cost assignment problem)

consists of finding a minimal cost n-tuple that values f to 1.

 Node covering

[12] When deliveries, collections, or visits must be made to (or from) a number

of specific (and, often, widely separated) points, the routing problem that must be

solved becomes a node-covering one. The demand (or supply) points can then be

represented as the nodes on the network model of the urban transportation grid and

the question of the order in which to visit these nodes so as to achieve some objective

is then addressed.

Our goal is similar to two-level expression, and it is a binate covering problem.

[13] The difference is that our operations are not simple logic gates, but three

primitive operations, including adder, multiplier, and shifter. There are some studies

of the binate covering. We use a covering method called ID-based search graph

proposed in IBM’s research [14] and make some modification to facilitate our

analysis.

19

 ID-based search graph

A crucial step in the design of Application-Specific Instruction-set Processors

(ASIPs) [15] is the instruction-set generation. Methods for automating this process,

surveyed in, extract patterns from applications, usually in the form of data-flow

graphs, and insert them into a pattern library.

The ID-based search graph introduce a novel organization for pattern libraries

that enables a search algorithm with only O(d), where d is the size of the pattern

sought up to the maximum pattern size in the library. Furthermore, the library

organization reveals opportunities to substitute one pattern by another. This may be

exploited for more efficient instruction selection and code generation. The method is

presented for tree-shaped patterns but can be extended to directed acyclic graphs

(DAGs).

Figure 2-7 ID-Graph of a pattern

20

 Organizing libraries as identity graphs

In order to create match libraries for a specific application, we decompose the

pattern which is used to compare with the application into several sub-levels. Figure

2-7 illustrates the procedures of ID-based search graph to organize libraries. The basic

3-levels pattern is AND-SHR-SUB. It covers an addition, a shift, and a abstraction.

The sub-functions of level 2, level 1, and level 0 can be derived from by-passing some

functions.

 Searching an ordered library

In order to find all matches, match all the nodes from the highest level to lowest

level because of the higher level function or sub-functions can perform more

operations in single instruction and execution.

2.4 Scheduling

To estimate the area of register files, we must analyze the register requirement

first to find the scale of register numbers. Scheduling and resource allocation can help

us to understand the register requirement. In this section, we talk about the basic idea

and steps of scheduling first.

[7] Scheduling is to assign the nodes on the DFG to be processed by which

functional unit in which time step. Our scheduler schedules the target DFG. Figure 2-8

shows the program flow of the scheduler. Here, we use periodic scheduling for

simplicity, where only the intra-iteration data dependency is considered and the edges

with delay elements (i.e. dependency across iterations) are removed from DFG first.

Then we will make a lifetime analysis of every node. The DFG is scheduled with the

ASAP (as soon as possible) and ALAP (as last as possible) scheduling algorithm to

21

obtain the range to schedule each node. Then, we apply some list scheduling based

methods to the steps. At last, the scheduled DFG is output and the register

requirement is reported.

Remove intra-iteration
dependencies

ASAP scheduling

ALAP scheduling

Inequalities generation

Decide scheduled order

DFG

Scheduling
constraints

Scheduled DFG

Node scheduling range

Figure 2-8 Program flow of the scheduler

 ASAP

ASAP (as soon as possible) is one of the earliest and simplest scheduling

algorithms. ASAP scheduling assumes that the hardware resource (functional units) is

unlimited. Nodes are first topologically sorted, that it, if a node nj is constrained to

follow the node ni with a precedence constraint, then nj will topologically follow ni.

From the sorted list, nodes are taken one at a time and placed in the earliest available

time step, depending on its precedence constraint. Figure 2-9 shows the algorithm of

ASAP scheduling. The ASAP scheduling is used to determine the earliest scheduling

bound of each node.

22

INPUT: SDFG G=(N,E)

OUTPUT: ASAP SCHEDULE

TS0=1; //SET INITIAL TIME STEP

WHILE (UNSCHEDULED NODES EXIST) {

 SELECT A NODE NJ WHOSE PREDECESSORS HAVE ALREADY BEEN SCHEDULED;

 SCHEDULE NODE NJ TO TIME STEP TSJ = MAX {TSI+(CI)} FOR ALL NI NJ;

}

Figure 2-9 The ASAP scheduling algorithm

 ALAP

ALAP (as late as possible) scheduling is similar to the ASAP scheduling; except

for the way nodes are placed in the schedule. As the name indicates, ALAP scheduling

in Figure 2-10 builds the schedule bottom up and the nodes are topological sorted in

reversed order. Therefore, the algorithm must have the information of the iteration

period to build the schedule from the bottom up and the iteration period must be long

enough to allow all the nodes to be scheduled, otherwise the scheduling will fail.

INPUT: SDFG G=(N,E), ITERATION PERIOD:T

OUTPUT: ALAP SCHEDULE

TS0=T; //SET TIME STEP

WHILE (UNSCHEDULED NODES EXIST) {

 SELECT A NODE NJ WHOSE SUCCESSORS HAVE ALREADY BEEN SCHEDULED;

 SCHEDULE NODE NJ TO TIME STEP TSJ = MAX {TSI-(CI)} FOR ALL NI NJ;

}

Figure 2-10 The ALAP scheduling algorithm

23

 ILP-based scheduling

After the ASAP and ALAP scheduling, we describe and solve the scheduling

problem by inequalities and priorities. Figure 2-11 gives examples of ASAP, ALAP,

and the scheduling range from ASAP and ALAP. When constructing inequalities for

constraints, each position (i.e. node i at the time step j) in the range are associated

with a Boolean variable xi.j which indicates whether a node i is scheduled into the

time step j. The following four constraints must be satisfied.

I0 I1

O0

A1

O1

A0

M0 I0 I1

O0

A1

O1

A0 M0

I0 I1

A0

A1

M0

O0

O1

(a) (b) (c)

0

time

1

2

3

4

5

x0 x1 x2 x3 x4 x5 x6

Figure 2-11 Scheduling example (a) ASAP (b) ALAP (c) scheduling range

1. Resource constraints

This constraint states that no schedule will have a time step that contains more

operations than the available functional units due to the limited hardware resources.

Because we assume that the I/O unit and adder are all of one, the inequalities for this

constraint of the example in Fig. 2-11 (c) should be:

x0.0+ x1.0 ≤ 1; x0.1+ x1.1 ≤ 1; x0.2+ x1.2 ≤ 1 (for input)

x2.1+ x3.1 ≤ 1; x2.2+ x3.2 ≤ 1; x2.3+ x3.3 ≤ 1 (for adder)

x5.3+ x6.3 ≤ 1; x5.4+ x6.4 ≤ 1; x5.5+ x6.5 ≤ 1 (for output)

24

2. Allocation constraints

This constraint states each node can only be scheduled within the scheduling

range bounded by some range obtained from the ASAP and ALAP scheduling and can

only appear once in the schedule. The inequalities for this constraint of the example in

Fig. 2-11 (c) should be:

x0.0+ x0.1+ x0.2 = 1

x1.0+ x1.1+ x1.2 = 1

x2.1+ x2.2+ x2.3+ x2.4 = 1

x3.1+ x3.2+ x3.3 = 1

x4.2+ x4.3+ x4.4 = 1

x5.2+ x5.3+ x5.4+ x5.5 = 1

x6.3+ x6.4+ x6.5 = 1

3. Dependency constraints

The data dependency in the original DFG should be strictly followed when

scheduling. The dependency constraint ensures that DFG remains causal and correct

timing sequence. The inequalities for this constraint of the example in Fig. 2-11 (c)

should be:

x0.0 + 2 x0.1 + 3 x0.2 - 2 x2.1 - 3 x2.2 - 4 x2.3 - 5 x2.4 ≤ -1

x1.0 + 2 x1.1 + 3 x1.2 - 2 x2.1 - 3 x2.2 - 4 x2.3 - 5 x2.4 ≤ -1

x0.0 + 2 x0.1 + 3 x0.2 - 2 x3.1 - 3 x3.2 - 4 x3.3 ≤ -1

x1.0 + 2 x1.1 + 3 x1.2 - 2 x3.1 - 3 x3.2 - 4 x3.3 ≤ -1

2 x2.1 + 3 x2.2 + 4 x2.3 + 5 x2.4 - 3 x5.2 - 4 x5.3 - 5 x5.4 - 6 x5.5 ≤ -1

2 x3.1 + 3 x3.2 + 4 x3.3 - 3 x4.2 - 4 x4.3 - 5 x4.4 ≤ -1

3 x4.2 + 4 x4.3 + 5 x4.4 - 4 x6.3 - 5 x6.4 - 6 x6.5 ≤ -1

25

4. Port conflict constraints

If the functional units are consisted of single-write instead of N-write memory

or registers to reduce the hardware complexity, it may introduce port conflicts when

multiple functional units simultaneously write their results into the same memory or

registers. We can schedule the operations with an identical destination memory or

registers into different time slots by incorporating the following port constraints to

prevent conflicts. The inequalities for this constraint of the example in Fig. 2-11 (c)

should be:

x0.0+ x1.0 ≤ 1; x0.1+ x1.1 ≤ 1; x0.2+ x1.2 ≤ 1; (for adder)

x2.2+ x4.2 ≤ 1; x2.3+ x4.3 ≤ 1; x2.4+ x4.4 ≤ 1; (for output)

According to the assumption above, the composite FUs discussed in this thesis

have full read/write ports. The port conflict constraints are mapped to the different

situations.

2.5 Complexity of Synthesized Register File

We want to compare the RF area of the composite FUs with the RF area of the

VLIW. We need a roughly estimation method to see the scale and the pressure of the

RF area. Here is a survey of the relations among RF area and the FU number and port

number in [16], and it proposes a simple RF model for 0.18 um process.

Conventionally, the microprocessors have a more efficient and direct data

exchange mechanism among the parallel FUs through the register file (RF) than the

multi-processors, where a monolithic and centralized RF provides storages for and

interconnects to each FU in a general and homogeneous manner. However, the

complexity of the centralized RF grows with the number of access ports increasing.

26

In centralized RF, every read port and write port can directly access any

registers in the RF. Prior art has evaluate the complexity of centralized RF in

full-custom designs.

The RF consists of register cells similar to SRAM. Generally, the register cell is

organized as 6-transistor structure, and the access port of RF requires a word-line and

a bit-line which is shown in Figure 2-12. Therefore, the area of single SRAM cell

grows in two dimensions and can be described as P2. For a full-custom centralized RF

with n-registers and P-ports, the area and delay are approximated to n×P2 and n1/2×P

respectively [3].

Figure 2-12 A register cell in full custom design

The number of registers and ports required can be estimated from the number of

FUs. Assume that each FU requires two ports for two source operands and one port to

write the result back to RF, and every FU requires at least one register to store the

manipulated data. Consequently, for N FUs, the number of registers and ports is

approximated to N and 3N respectively. As a result, the area and delay are increases

as N 3 and N 3/2.

27

In this thesis we focus on the cell-based RF organization which consists of

flip-flops and switch networks. For a centralized RF with N registers, x read ports, y

write ports, and word length W, the complexity of read access network is an N to x

crossbar router and every read port has one N to 1 multiplexer. Similarly, the

complexity of write access network will be y to N crossbar router with y to 1

multiplexer for each register elements. Figure 2-13 shows the access network of a

centralized RF.

Figure 2-13 Access network of centralized register file

The output of each register has to drive x × N-to-1 multiplexers which results in

a very high output loading capacitance. The centralized RF is efficient when

executing program with high data-level parallelism only. But it is difficult to

guarantee the data-parallelism level of applications, so it is unnecessary to provide the

bandwidth for non-common cases with the cost of RF access time and RF area.

We roughly evaluate the area and speed of centralized RF based on the

architecture shown in Figure 2-13. The cost function of area complexity for

centralized RF is analyzed as follows:

28

fA CRF (x, y, N, W) = Awrite_network + Aread_network + Aregisters + Acontrol

≅ [N × Ay-to-1_mux + x × AN-to-1_mux + N × AD-flipflop] × W

≅ [N × (y – 1) × A2-to-1_mux + x × (N - 1) × A2-to-1_mux

+ N × AD-flipflop] × W

This Function assumes all multiplexers are composed of 2-to-1 multiplexers

and the control overhead is neglected. This analytical formula is also based on the

number of 2-to-1 multiplexers on data path. The experimental results show the

analysis is close to synthesis result. Table 2-1 compares the analytical analysis with

synthesis results using TSMC 0.18um cell library in different centralized RF

configurations. In this thesis, the discussion of timing estimation is out of scope.

The area of analytical results is based on the cell library. The constraint of

synthesis is optimized for area to avoid the variance due to the timing optimization

technique. The area is over estimated in 16-entry, 1R1W configuration because of the

2-to-1 multiplexer model is actually larger than 4-to-1 multiplexer cell that synthesis

tool uses. From the analysis, we can sum up that the area of cell-based CRF is direct

proportion to both number of registers and number of ports and the synthesis results

prove the point. The natural of high routing complexity of RF will cause high

variance in physical implementation, and the variance growing with the number of

registers and ports increasing.

Table 2-1 Comparison of analytical results and synthesis results

29

2.6 Interleaved Multithreaded (IMT) Architecture

When we use pipeline design to boost the performance of the composite FUs, it

will introduce instruction latency. This section shows how the IMT architecture hides

the instruction latency totally.

Figure 2-14 illustrates an example of the interleaved threads and dependencies

in the pipeline. If an IMT architecture processor has 5 stages and the pipeline latency

is 5 cycles, it needs 5 interleaved threads to hide instruction latency totally. These 5

threads are independent tasks.

The operation is to issue the first instruction of thread 1 at cycle 1 into the

pipeline, then issue the first instruction of thread 2 at cycle 2, and so on. After first

iteration from thread 1 to thread 5 is done, issue the second instruction of thread 1. In

this way, the following iterations are executed.

Figure 2-14 Interleaved threads and dependencies in the pipeline

The first instruction and second instruction of thread 1 may have dependency.

In the original pipeline design, if their execution time is overlapped, there would be

some kind of data hazard. So it must stall the second instruction until the first

instruction complete, but this handling method hinders the speedup of performance.

30

As Figure 2-14, interleaved threads method solves the problem. The execution

time of first and second instructions has no overlapped. It hides the instruction latency

without any performance loss.

31

3 The Composite FUs

We want to quantify the hardware utilization of the composite FUs. Once the

hardware utilization is upgraded, we analyze the area pressure of register file for

different datapaths under different performance constraint.

In section 3-1, we introduce the composite FUs generator to analyze the

operations per cycle of all kinds of composite FUs running different applications.

After then, the register requirement and the estimated area of register files is

calculated by the method in section 2-5 with small modification. Afterward, use

pipeline design to boost performance. The pipeline design flow is described in section

3-2. Because of the pipeline design introduces instruction latency, the IMT is used for

pipelined composite FUs. We will talk about the hardware cost of IMT.

As a result of operands operated for more than one operation after being fetched,

the total register accesses are reduced. We also estimate the power consumption to see

where the power is saving.

32

3.1 The Composite FUs Generator

Figure 3-1 The composite FUs generator

We introduce the composite FUs generator in Figure 3-1 for application

analysis. When the composite FUs generator receives a FU resource constraint and an

application in DFG description, three recursive steps have been taken iteratively.

First, select an arrangement from possible candidate formed by FU resource

constraint. Second, create an ID-based search graph and match libraries of the

arrangement and cover the DFG using the function set of the arrangement. Finally, the

register requirement is calculated for further area estimation.

Repeat these steps until all the case of arrangements are done, we can get

operations per cycle (OPC) and register requirement for each composite FU. The

composite FU with best OPC implies the most proper datapath and the hardware

utilization is the highest for the application.

33

3.1.1 Arrangement Space

For given FU resources, there are many arrangements to form a composite FU.

Number of functional units: N

Number of adders: NA

Number of multiplier: NM

Number of shifter: NS

The total arrangements:
!!*!*

!
SMA NNN

NS =

In this thesis, we concern about two cases of function units set. One is 3 FUs

composed of 1 adder, 1 multiplier, and 1 shifter. The other is 4 FUs composed of 2

adders, 1 multiplier, and 1 shifter. For the former case, NA = 1, NM = 1, NS = 1, so

the total arrangements S is 6 as Figure 3-2 shows. For the latter case, NA = 2, NM = 1,

NS = 1, so the total arrangements S is 12 as Figure 3-3 shows.

Figure 3-2 The arrangement space of 1 A 1M 1S

Figure 3-3 The arrangement space of 2 A 1M 1S

34

3.1.2 ID-based Search Graph Covering

According to section 2-3, we map the ID-based search graph from Boolean

expression to the analysis of the composite FUs. We use exhaustively tree-structured

search principle to simplify selected composite FU.

Figure 3-4 The ID-based search graph of MAS

Figure 3-4 illustrates composite FU: MAS and its sub-level functions. First, the

MAS-ordered composite FU is categorized into 3 levels of operations. That is, level-3

operation, MAS, performs one multiplication, one addition plus one shift serially.

Level-2 operations, including MA, AS, and MS, perform either one multiplication and

one addition, or one addition and one shifter, or one multiplication and one shifter

serially. Level-1 operations, including M, A, and S, perform either one multiplication,

one addition or one shift serially. We can use adding zero, multiplying by one and

shifting by zero to bypass the adder, the multiplier and the shifter respectively.

35

Then, the ID-based covering is performed to cover the nodes of the input DFG

by available operations, i.e. level-3, level-2 or level-1 operations. Note that, all

covered nodes are assumed to consume one clock cycle. The covering process first

searches the whole DFG for any pattern that is matched to the level-3 operation and

then for any remaining uncovered node patterns that are matched to the level-2

operation and so on.

 Multiple Fan-out Handling and Optimization

 Multiple fan-out problem

Figure 3-5 (a) shows a DFG of a butterfly application, we use Figure 3-5 (b),

composite FU: AMAS to cover this DFG. If the A0-M0-A2 is merged together when

the match is proceeding in level 3 match for AMA, one of the A3 node can’t get the

data from M0 node because of the composite FU AMAS don’t have a write port after

multiplication to store the right value into the register file. Hence, the application

cannot be fulfilled. Some actions must be taken to prevent the hazard from happened.

Figure 3-5 (a) a DFG of butterfly (b) the composite FU: AMAS

 Break

The simplest method to avoid the data hazard is to break at the multiple fan-out

nodes. Figure 3-6 illustrates the procedures. The level 2 AM function matches A0-M0

and A1-M1 to form new nodes C1 and C3. The level 1 A function matches A2 and A4

to form new nodes C2 and C4. It takes 4 nodes to perform the butterfly.

36

Figure 3-6 Break at multiple fan-out node

 Node duplication

For optimization, we use the node duplication technique to minimize the

number of matches. Figure 3-7 (a) shows the spirit of node duplication. Breaking at

M0 to let A3 get correct source value needs a instruction for A3 only. But we can

repeat the operation A0-Mo in the same instruction with A3 because the characteristic

of the composite FU allows these work done in the same instruction.

Figure 3-7 (b) illustrates the procedures. The level 3 AMA function matches

A0-M0-A2 and A0-M0-A3 to form new nodes C1 and C2. The level 2 AM function

matches A1-M1 to form new node C3. It only takes 3 nodes, equals 3 instruction for

execution, to perform the butterfly. The node duplication technique reduces the nodes

of the covering result form 4 nodes to 3 nodes.

Figure 3-7 Node duplication at multiple fan-out nodes

(a) covering (b) duplicate A0 and M0

37

3.1.3 Scheduling

Since we want to estimate the area of register files, the scheduling principles

with optimizing for register requirement are chosen. But finding out the minimum

register requirement is a NP-complete problem. So we use two simple scheduling to

get the sub-optimal solution. Some concepts are from [17], forced-directed

list-scheduling [18], loop-list scheduling [19], and cone-base list-scheduling [20].

 Lifetime Analysis

Based on section 2-4, the lifetime analysis about ASAP scheduling, ALAP

scheduling, and range estimation is done first. Then we construct resource, allocation,

dependency, and port conflict constraints. With these inequalities, we can put some

priorities to solve the linear programming problem and make the scheduled order.

 Cutsets

Cut the DFG into branches, called cutsets which have no dependencies of each

other. Figure 3-8 cuts the DFG into three independent cutsets. Give the independent

cutsets different priorities and finish the cutset one by one can minimize the live

registers at the same time space.

Figure 3-8 Cutset of DFG

For example in Figure 3-8, assume that only one node can be executed in one

cycle because of limited hardware resource, and the hard deadline of the whole

38

application is 10. The range of lifetime analysis of each node is listed in the square

bracket near the node. The value before comma is the earliest time step of ASAP

scheduling, and the other value after comma is the latest time step of ALAP

scheduling. Node 1 in cutset 1, node 3 in cutset 2, and node 7 in cutset 3 have the

same lifetime. It means that their live ranges are completely the same. Without cutset

priorities, the scheduling result of cycle 1 is node 1, cycle 2 is node 3, and cycle 3 is

node 7, and so on. The register requirement is 3 which happened to store intermediate

value of node 1, 3, and 7. On the contrary, set cutset priorities 1 to nodes of cutset 1, 2

to nodes of cutset 2, and 3 to nodes of cutset 3. The scheduling result of cycle 1 is

node 1, cycle 2 is node 2, cycle 3 is node 3, and so on. The register requirement is

only 1, either store 1, 3, or 7. The register requirement is reduced.

 Priorities

Our resource is only one composite FU, if refines the resource constraint. We

give different priorities for the independent cutsets first, then execution priorities. We

use two methods to get the scheduled order and take the smaller register requirement

as result. Additionally, if all the priority is the same, we will do the node with smaller

serial number from the DFG description.

Scheduling 1

Based on the first come first serve principle, the execution priority setting start

according to the ASAP result. Search the time space of ASAP and mark its order if its

ancestor nodes are all in ready list.

Scheduling 2

If the timing constraint is critical, the deadline of each node is highly notified.

The execution priority setting start according to the ALAP result, search the time

space of ALAP and mark its order if its ancestor nodes are all in ready list.

39

 Example

Step 2. ID-based Covering

A

M A

S

M

S

M A S

A

M

S

A

M

S

Level-3

Level-2

Level-1

M

M

M

M

M

M

A

A

A

S

A

A

M

M

M

A A

C6Cycle 0

Step 3. Scheduling

M

M

M

M

M

M

A

A

A

S

A

A

M

M

M

A AC1

C2

C3

C4

M

M

M

M

M

M

A

A

A

S

A

A

M

M

M

A A

C5

C6

C7

C8

C9

C10

M

M

M

M

M

M

A

A

A

S

A

A

M

M

M

A A

C0

Step 1. Function Decomposition

C1Cycle 1

C8Cycle 2

C5Cycle 3

C7Cycle 4

C10Cycle 5

Figure 3-9 Recursive steps of automatic composite FUs generation

40

Figure 3-9 shows recursive steps of automatic composite FUs generation. The

three steps are listed as follow.

 Step 1. Function decomposition

The MAS-ordered composite FU is decomposed into 3 levels because it has

three functional units. Level-3 operation is MAS. The number of level-2 operations is

3 including MA, AS, and MS. The number of level-1 operation is 3 including M, A,

and S. These 7 operations compose of match libraries.

 Step 2 ID-based covering

Covering procedures start from the matching of level-3 operation. It finds a

MAS match and marks it in C0. Then the matching of level-2 operations starts, and it

finds 4 matches and mark it in C1~C4. Finally, the matching of rest of nodes using

level-1 operations and make up C5~C10.

 Step 3 Scheduling

After ASAP and ALAP, the lifetime analysis is done and the scheduling result is

C6 in cycle 1, C1 in cycle 2, C8 in cycle 3, C5 in cycle 4, C7 in cycle 5, C10 in cycle

6, and so on. And the register requirement is calculated as well.

41

3.2 Pipeline Design Flow and Hardware Cost of IMT

After the composite FU generation, the pipeline design is performed to decide

the required pipeline stages according to the target performance. For example, if the

OPC of some specific composite FU is 1.5 regarding a specific application and the

target performance is 600MOPS (million operations per second), the required

operation frequency is 400MHz.

We use the Synopsys DesignCompiler synthesis tool incorporated with the

design flow shown in [] to analyze the various pipeline stage sand the associated area

cost. This flow also applies for scalar, VLIW as well as the composite FUs for area

comparison in the experiment introduced later.

Figure 3-10 The flow of pipeline design

42

On the other hand, for analyzing the area cost of datapath and the pipeline

registers, we use the pipeline design flow in Figure 3-10. First, if the target clock

cycle is d (ns) and the desired number of pipeline stages is p, we pre-synthesize the

purely combinational circuit, i.e. MSA, with the input-to-output delay of d*p (ns).

Then, (p-1)-stage pipeline registers are attached to the output of the synthesized netlist

which is imported into DesignCompiler to perform register retiming with the target

clock cycle d (ns) as clock constraint. Finally, the resultant netlist is re-synthesized

again and the area cost is recorded.

The main innovations of the pipelining design flow are two-folded. The first is

to avoid a over-designed netlist. The conventional method that does not take the target

clock rate and the desired number of pipeline stages into consideration may use a tight

timing constraint to pre-synthesize the purely combinational circuit and thus results in

a over-designed netlist of excessively large area. The other innovation of the proposed

pipeline design flow can avoid the situation that insufficient pipeline stages will result

in so tight clock timing constraint that the resultant netlist is of excessively large area.

In our experience, under some cases, the synthesized netlist with more pipeline stages

will has smaller area than that with less pipeline stages.

 Hardware Cost of IMT

Because we use interleaved multithreading technique to hide pipeline latency,

one more set of context, i.e. register file, is required for one more pipeline stage.

Because the port number of the composite is slightly larger than scalar processors and

greatly smaller than VLIW processors, the IMT architecture is suitable for the

composite FUs. Comparatively, the heavy area pressure hinders the VLIW from using

IMT architecture.

43

4 Application Specific

Programmable Processor Synthesis

In classic ASIP synthesis flow, programmers usually design the instruction set

architecture (ISA) and micro-architecture first. Then the software programmers and

hardware designers develop the software tool chain and hardware architecture

according to ISA and micro-architecture separately. This flow starts from high level

synthesis and forms a top-down design.

We propose an Application Specific Programmable Processor Flow in section

4-2 to explore the design space of the composite FUs. Then we describes a composite

FU selection flow to help users to find out the most proper composite FU.

44

4.1 High Level ASIP Synthesis Flow

[21] shows typical procedures of high level synthesis. Some instruction set

matching and selection techniques are described in [22][23] [24]. [25] introduces the

critical path and data path optimization for ASIP design.

High-level synthesis takes some kind of behavioral description of the algorithm,

available hardware resources, and a set of constraints and goals, to generate the

hardware architecture in register-transfer level (RTL). The set of constraints and goals

define the desired performance and characteristics of the final architecture. The most

common constraints are area and performance constraints.

Area constrained problems means that given a set of resources (or functional

units), try to implement the application using those resources such that it has the

highest performance. This is known as resource-constrained scheduling.

The performance constrained problem is known as time-constrained

scheduling, where the designer is given a desired sample rate or iteration period and

the goal is to minimize the total area of the final architecture.

There are other goals during the synthesis problem depending on the user

requirement such as minimizing the number of memory modules, reducing the power

consumption, minimizing the number of busses, incorporating reliability and

testability into the design, etc.

45

Language description of algorithms

Internal graphical representation
(SDFG)

Algorithmic Optimization

Module binding and control circuit generation (RTL)

RTL description of the final architecture

Resouce

Goals and
constraints

Functional units
library

Scheduling

Resource
Allocation Binding

Figure 4-1 High-level synthesis of DSP datapath

Figure 4-1 illustrates the design flow of the high-level DSP synthesis system.

The behavioral description which may be represented in C/C++ is first converted to a

graph-based representation, and such as data-flow graph[]. In the DFG representations,

the nodes represent computations (or functions or subtasks) and the directed edges

represent data paths and each edge has a nonnegative number of delays associated

with it. The following tasks in high-level synthesis of DSP datapath include high-level

optimization, scheduling, resource allocation, module binding, and control generation.

The final architecture produced by high-level synthesis is typically at the

synthesizable RTL. Many high-level synthesis systems have been designed and a

great deal of progress has been made in finding good techniques for optimizing and

exploring design tradeoffs. In addition, the trend towards more automation at higher

level of design process is expected to continue.

46

 Scheduling

Scheduling and resource allocation are two important tasks in hardware or

software synthesis of DSP system. They are both interrelated and dependent on each

other and are among the most difficult problems of high-level synthesis.

Scheduling involves assigning every node of the DFG to time steps. Time steps

are the fundamental sequencing units in synchronous systems and correspond to clock

cycles.

In general, there are two types of scheduling: one is time-constrained

scheduling and the other is resource-constrained scheduling.

Time-constrained scheduling is to minimize the cost of hardware bound by

some specific allowed operation time. For example, in many digital signal processing

(DSP) systems, the sampling rate of the input data stream dictates the maximum time

allowed for carrying out a DSP algorithm on the present data sample before the next

sample arrives.

On the other hand, the resource-constrained scheduling problem is encountered

in many applications where we are limited by the silicon area. The constraint is

usually given in terms of either a number of functional units or the total allocated area.

When total area is given as a constraint, the scheduling algorithm determines the type

of functional units used in the design. The goal of such an algorithm is to produce a

design with the best possible performance but still meeting the given area constraint.

 Resource allocation & binding

Resource allocation is the process of determining how many and what types of

hardware required to implement the desired behavior at lowest cost. The hardware

resources consist primarily of functional units, memory modules, multiplexers, and

communication datapaths.

47

Binding involves the mapping of the variables and operations in the scheduled

DFG into the functional, storage, and interconnection units, while ensuring that the

design behavior operates correctly on the selected set of components. For the every

operation in the DFG, we need a functional unit that is capable of executing the

operation. For every variable that is used across several time steps in the scheduled

DFG, we need a storage unit to hold the data values during the variable’s lifetime.

Finally, for every data transfer in the DFG, we need a set of interconnection

units for the transfer. Besides the design constraints imposed on the original behavior

and represented in the DFG, additional constraints on the binding process are imposed

by the type of hardware units selected. For example, a functional unit can execute

only one operation in any given time step. Similarly, the number of multiple accesses

to a storage unit during a control step is limited by the number of parallel ports on the

unit.

Figure 4-2 illustrates the mapping of DFG into register transfer components.

Figure 4-2 (a) show a scheduled DFG to be mapped and we assume that two adders

and four registers are selected. Operation “+1” and “+2” cannot be mapped into the

same adder because they must be performed in the same time step 1. On the other

hand, operation “+1” can share an adder with operation “+3”, because they are carried

out during different control steps. Thus, operation “+1” and “+3” are both mapped into

adder1. Variables a and e must be stored separately because their values are need

concurrently in time step 2. Register 1 and 2, where variables a and e reside, must be

connected to the input ports of ADD1; otherwise, operation “+3” will not be able to

execute in adder1. Similarly, operation “+2” and “+4” are mapped to adder2. Note that

there are several different ways of performing the binding. For example, we can map

“+2” and “+3” to adder1 and “+1” and “+4” to adder2.

48

a b c d

e

1 2

3 4

f

g h

Time step 1

Time step 2

(a)

a b, e, g

+1, +3

reg1 reg2

adder1

dc, f, h

+2, +4

reg4reg3

adder2

(b)

Figure 4-2 (a) Scheduled DFG; (b) mapped operation

49

4.2 Proposed Application Specific Programmable Processor

Synthesis Flow

Not like traditional ASIP synthesis flow, we don’t make the ISA first. The

composite FUs take advantages of the application characteristics. Figure 4-3

illustrates a bottom-up design flow described as follow. First, find out the proper

datapath under constraints and applications. Second, summary the sub-functions and

make a corresponding instruction set. Last, some other details of hardware are

implemented. In this thesis, we have already implement ed the lower parts including

Composite FUs Generation and Pipeline Design. The System Specification is the

target goal and the DFG is the given application. The unsolved problem of Budgeting

is waiting for advanced exploration.

Figure 4-3 Proposed Application Specific Programmable Processor synthesis flow

50

 System Specification

The system may have some constraints. The most usual constraints are

performance and area constraints. These two constraints define the analysis space of

our composite FUs generator and pipeline design. Besides, the flow may plus some

other constraints for other purposes if needs.

Performance constrains: in MOPS

Area constrains: in um2

 Budgeting

Supervisors get system specification through some kind of user interface. Then

they decide how to distribute the area for FU and RF. This is another domain of

design space exploration.

 Composite FUs Generator

Get DFG description and the constraints from Budgeting as inputs. Then, use

the composite FUs generator mentioned at chapter 3, we can analyze the DFG and

report the corresponding OPC and register requirement. Then, list all results of

analysis and send them into Pipeline Designer.

 Pipeline Designer

Get the analysis from the Composite FUs Generator and the constraints from

Budgeting as inputs. Then, use the pipeline design flow described in section 3-2 and

simulate the synthesis results with different pipeline stages. Finally, report the results

including the pipeline stages and area in different MOPS to the supervisors to see if

the iteration meets the specifications or not.

51

4.3 Composite FU Selection Flow

When we get a specific application, we would like to know what kind of

composite FU is the best for this application for different purpose. In this section, we

propose an iteration method called composite FU selection flow to find out the most

suitable composite FU.

As the maximum OPC is limited by the characterization of the application itself,

we develop a design methodology to find the minimal number of FUs to achieve the

required performance. At the same time, the design methodology tries to minimize

the number of pipeline stage to reduce thread overhead, i.e. context.

First, we perform FU characterization. Using TSMC 0.13um cell library and

Synopsys DesignCompiler, the circuit delay of the 16-bit adder, 16-bit multiplier, and

the 16-bit shifter is around 1.40ns, 3.00ns, and 0.70ns respectively. The design

methodology begins with a baseline FU set, i.e. one adder, one multiplier, and one

shifter. The baseline FU set and the target applications (described by DFG) are used

as inputs to the composite FUs generator described in Section II.B.

The minimal number of pipeline stage (p3) can be thus calculated as Analysis

block in Figure 4-4. Then, one more specific functional unit is added, i.e. adding

one more adder or multiplier or shifter. Again, after the analysis, if the resultant

number of pipeline stage (pN) is less than (pN-1), we can continue adding one more FU

to evaluate the resultant number of pipeline stage. On the other hand, if (pN) is equal

to or larger than (pN-1), the procedure ends.

52

Figure 4-4 Composite FU selection flow

53

5 Simulation Result

We show the improvement of the hardware utilization first. Then the area and

power comparisons are listed in section 5-1 and 5-2.

5.1 Hardware Utilization Improvement and Area

Comparison

After the software chain and application analysis flow set up, we start to find

out the hardware utilization improving level of the composite FUs. In section 5.1.1,

we make a benchmark suite of general media embedded applications. Then the target

datapaths are described in section 5.1.2. The OPC is calculated and the single stage

area is estimated. We use Synopsys DesignCompiler synthesis tool to synthesize the

area of FU and RF separately. Section 5.1.3 shows the total area of different datapaths

in different MOPS after pipeline design coordinating with IMT architecture.

54

5.1.1 Benchmark Suite

We choose nine kernels to make up a benchmark suite. 1~5 and 9 are including

in the DSPstone [26] and BDTI [27] benchmark. 6 [28] and 7 [29] are used in the

H.264 standard. 8 is used in the MP3 standard [30].

1. 16 taps finite impulse response

2. 16 taps complex finite impulse response

3. 16 taps linear-phase finite impulse response

4. 1st order biquad filter

5. (8*8)*(8*1) matrix multiplication

6. 8 points integer transform

7. 8 points discrete cosine transform

8. 12 points inverse modified discrete cosine transform

9. 8 points fast fourier transform

Table 5-1 outlines the operations profiling of these nine benchmarks. What we

concern are operations of addition/subtraction, multiplication, and shift. Assume the

input/output (load/store) operations are decoupled in the analysis. It means the

primitive operations can get data from I/O whenever they want without any

performance loss.

add # mpy # sht # input # output # op
FIR 16-tap FIR 15 16 0 32 1 31

CFIR 16-tap complex FIR 62 64 0 64 2 126
LPFIR 16-tap linear-phase FIR 15 8 0 24 1 23
Biquad 1st-order IIR 8 9 0 12 1 17
Matrix (8*8)*(8*1) matrix multiplication 56 64 0 72 8 120

IT 8-point integer transform (H.264) 32 0 10 8 8 42
DCT 8-point discrete cosine transform 29 12 9 15 8 50

IMDCT 12-point inverse modified DCT 21 11 9 11 12 41
FFT 16-point fast fourier transform 23 10 0 11 14 33

261 194 28 483Total

Table 5-1 Operations profiling of the benchmark suite

55

5.1.2 Target Datapaths

We choose 5 kinds of datapths and list them below.

 3 FUs including 1A 1M 1S

1. Scalar

2. 3-way VLIW

3. Composite FUs with 3 FUs: 6 arrangements

 4 FUs including 2A 1M 1S

4. 4-way VLIW

5. Composite FUs with 4FUs: 12 arrangements

Adding one more adder for scalar with 3 FUs is meaningless because of it

would be leaved unused.

Figure 5-1 5 kinds of datapaths of the scalar, VLIW, and the composite FUs

Table 5-2 outlines the OPC for each datapaths corresponding to different

applications. The OPC calculation is based on the assumption that all operations

consume one clock cycle. Alternatively, for the scalar processor, the adder, or the

multiplier, or the shifter takes one clock cycle to compute one result. Similarly, for

the VLIW and the composite FUs, all the FUs can be activated simultaneously in one

56

cycle. The OPC of the VLIW and the composite FUs is normalized to that of the

scalar processor first and then the geometric mean is calculated among all input

benchmarks. The OPC of scalar is 1.00, and OPC of the other datapaths are

normalized to the scalar. The last column, called average OPC is the geometric mean

of the former nine columns. The OPC of 3-way and 4-way VLIW are 1.65 and 2.12.

The composite FU with best hardware utilization 1.35 and 1.62 for 3 FUs and 4FUs

are MSA and AMSA. Although the average OPC of composite FUs lose to the OPC

of the VLIW, the simulation result shows that there are composite FUs with OPC near

to the OPC of VLIW, even better.

Figure 5-1 shows the configurations of 5 datapaths. The composite FUs MSA

and AMSA with best OPC are chosen for further synthesis and comparison.

FIR CFIR LPFIR Biquad Matrix IT DCT IMDCT FFT AVG

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.82 1.91 1.53 1.70 1.79 1.31 1.61 1.86 1.43 1.65

AMS 1.00 1.00 1.53 1.21 1.00 1.00 1.61 1.52 1.27 1.22
ASM 1.00 1.00 1.53 1.21 1.00 1.00 1.52 1.28 1.27 1.18
MAS 1.94 1.34 1.44 1.42 1.36 1.00 1.28 1.24 1.06 1.32
MSA 1.94 1.34 1.44 1.42 1.36 1.31 1.14 1.28 1.06 1.35
SAM 1.00 1.00 1.53 1.21 1.00 1.31 1.32 1.24 1.27 1.20
SMA 1.94 1.34 1.44 1.42 1.36 1.31 1.09 1.21 1.06 1.33

1.82 1.91 2.30 1.70 1.79 2.47 2.63 2.28 2.36 2.12
AAMS 1.29 1.31 1.92 1.70 1.15 1.17 1.79 1.52 1.43 1.45
AASM 1.29 1.31 1.92 1.70 1.15 1.17 1.67 1.28 1.43 1.42
AMAS 1.35 1.34 2.88 1.70 1.36 1.17 1.79 1.52 1.43 1.56
AMSA 1.35 1.34 2.88 1.70 1.36 1.62 1.67 1.64 1.43 1.62
ASAM 1.29 1.31 1.92 1.70 1.15 1.62 1.56 1.32 1.43 1.46
ASMA 1.35 1.34 2.88 1.70 1.36 1.62 1.56 1.32 1.43 1.57
MAAS 1.94 1.97 1.44 1.89 1.67 1.17 1.39 1.32 1.18 1.52
MASA 1.94 1.97 1.44 1.89 1.67 1.62 1.32 1.37 1.18 1.57
MSAA 1.94 1.97 1.44 1.89 1.67 1.62 1.19 1.32 1.18 1.55
SAAM 1.29 1.31 1.92 1.70 1.15 1.62 1.39 1.21 1.43 1.43
SAMA 1.35 1.34 2.88 1.70 1.36 1.62 1.39 1.21 1.43 1.53
SMAA 1.94 1.97 1.44 1.89 1.67 1.62 1.14 1.17 1.18 1.52

3 FU

4 FU

Scalar
VLIW

Composite FUs

VLIW

Composite FUs

operation/cycle

Table 5-2 Operations per cycle

Table 5-3 shows the further comparisons among the Scalar/VLIW/Composite

FUs. The 2nd to the 8th columns shows the various the OPC of each architecture

regarding the various benchmarks. For the composite FUs, two kinds of OPC are

displayed. One is of the MSA-ordered/AMSA-ordered composite FUs and the other

57

is, for each benchmark, the best OPC of all possible composite FUs. For example, the

AMS-ordered composite FU results in the best OPC regarding the LPFIR benchmark.

Although the MSA-ordered/AMSA-ordered composite FUs is of single-issue

processor, their OPCs in all benchmarks are greater than one (of an average of

1.35/1.62) and thus it effectively increases datapath utilization. Besides, the best

OPC of the composite FUs (either 3-FU or 4-FU) is comparable to that of the VLIW

and even greater than that of the VLIW. The composite FUs have an average

performance loss of about 20% in comparison with the VLIW.

Composite FU Composite
FU Benchmark Scalar 3-way

VLIW MSA Best

4-way
VLIW AMSA Best

FIR 1.0 1.82 1.94 1.94 1.82 1.35 1.94
CFIR 1.0 1.91 1.34 1.34 1.91 1.34 1.97

LPFIR 1.0 1.53 1.44 1.53 2.30 2.88 2.88
Biquad 1.0 1.70 1.42 1.42 1.70 1.70 1.89
Matrix 1.0 1.79 1.36 1.36 1.79 1.36 1.67

IT 1.0 1.31 1.31 1.31 2.47 1.62 1.62
DCT 1.0 1.61 1.14 1.61 2.63 1.67 1.79

IMDCT 1.0 1.86 1.28 1.52 2.28 1.64 1.64
FFT 1.0 1.43 1.06 1.27 2.36 1.43 1.43

Average 1.0 1.65 1.35 - 2.12 1.62 -

Table 5-3 OPC comparison

5.1.3 Register File Model Modification

The RF area model in section 2-5 is used in TSMC 0.18um cell library. The

area of the 4-to-1 MUX is about three times larger than area of the 2-to-1 MUX.

Using 2-to-1 MUX to estimate all the N-to-1 MUX is acceptable while the area is

almost the same and the errors are the slightly difference of timing and control

network area.

Table 5-4 (a) shows the area of basic MUX cells in TSMC 0.13um cell library.

The area of 4-to-1 MUX is no longer three times the area of 2-to-1 MUX, it is about

2.5 times. The RF model must be modified. Otherwise, the estimation area could be

over-estimated.

58

Function Cell Height Width Area 16-bit
DFF DFFXL 3.69 7.36 27.1584 434.534
MX2 MX2XL 3.69 3.68 13.5792 217.267
MX3 MX3XL 3.69 5.98 22.0662 353.059
MX4 MX4XL 3.69 8.74 32.2506 516.01

TSMC 0.13um Cell Library

MUX MX4 MX3 MX2 Area
2 1 217.267
3 1 353.059
4 1 516.010
5 1 1 733.277
6 1 1 869.069
7 2 1,032.019
8 2 1 1,249.286
9 2 1 1,385.078
10 3 1,548.029
11 2 2 1,738.138
12 3 1 1,901.088
13 4 2,064.038
14 4 1 2,281.306
15 4 1 2,417.098
16 5 2,580.048

Table 5-4 (a) Area of basic MUX cells in TSMC 0.13um cell library (unit: um2)

(b)Area of modified MUX model (unit: um2)

We use 2-to-1 MUX, 3-to-1 MUX, and 4-to-1 MUX to form the N-to-1 MUX

and to find the minimum area as Table 5-4 (b) shows. Table 5-5 illustrates that the

difference between analytical model and synthesis result. The upper part of the

annotation is the results of modified RF model, and the lower part of the annotation is

the results of the original RF model. It shows that our modified method have lower

errors from -6% ~ 20%. Except that the difference with few ports is under-estimated

because of the MUX area is relatively small.

Synthesis Results Difference
x y N* W flip-flop read port write port area Area (%)

1 1 16 16 6953 2580 0 9533 11459 -16.81

2 1 16 16 6953 5160 0 12113 13684 -11.48

2 2 16 16 6953 5160 3476 15589 15321 1.75

4 2 16 16 6953 10320 3476 20749 19082 8.74

2 4 16 16 6953 5160 8256 20369 19427 4.85

4 4 16 16 6953 10320 8256 25529 23731 7.58

2 1 32 16 13905 10755 0 24660 26302 -6.24

4 2 32 16 13905 21509 6953 42367 35869 18.12

(* 16 registers is composed of 5 4-to-1 mux, 32 registers is composed of 10 4-to-1mux and 1 2-to1 mux)

1 1 16 16 6953 3259 0 10212 11459 -10.89

2 1 16 16 6953 6518 0 13471 13684 -1.56

2 2 16 16 6953 6518 3476 16947 15321 10.61

4 2 16 16 6953 13036 3476 23465 19082 22.97

2 4 16 16 6953 6518 10429 23899 19427 23.02

4 4 16 16 6953 13036 10429 30417 23731 28.18

2 1 32 16 13905 13471 0 27376 26302 4.08

4 2 32 16 13905.1 26941 6953 47799 35869 33.26

Estimate
d by 2-
to-1 mux

RF parameter Analytical Results

Estimate
d by 4-
to-1, 3-
to-1, and
2-to-1
mux

Table 5-5 Modified RF model in TSMC 0.13um cell library

59

5.1.4 Area Comparison

 Estimation Results

From the register requirement conducted from the composite FUs generator,

using the modified RF model and get the results in Table 5-6. The “# port” column

shows the read/write port number. The “MAX” column stands for the maximal of

register requirement of architectures. The “Est. Area” column means the estimation

according to register number form MAX. We can see that the area of 3-way VLIW is

the largest one in the 3-FU fields, so as to the area of 4-way VLIW is the largest one

in the 4-FU fields.

For more general purpose and simulation simplicity, we round the MAX into 16

for convenience. This is reasonable because the variation of register requirement is

highly different according to applications and scheduling methods. We can see that

the area pressure of VLIW is relatively high to scalar and the composite FUs. The area

of composite FU is slightly larger than scalar.

FIR CFIR LPFIR Biquad Matrix IT DCT IMDCT FFT # port MAX Est. Area final Area
2 4 3 6 8 11 10 9 7 2R/1W 11 8256 16 12113
2 3 3 4 4 9 10 8 7 5R/3W 10 15616 16 25502

AMS 2 4 3 4 8 16 12 7 10 16 14693
ASM 2 4 3 4 8 16 11 7 10 16 14693
MAS 1 3 3 3 4 16 10 8 12 16 14693
MSA 1 3 3 3 4 14 10 8 12 14 12927
SAM 2 4 3 4 8 14 11 7 10 14 12927
SMA 1 3 3 3 4 14 10 7 12 14 12927

2 3 4 4 4 10 10 7 10 7R/4W 10 20342 16 33269
AAMS 3 3 5 6 8 14 10 8 8 14 15209
AASM 3 3 5 6 8 14 10 8 8 14 15209
AMAS 3 3 1 3 6 14 10 8 8 14 15209
AMSA 3 3 1 3 6 12 10 7 8 12 12819
ASAM 3 3 5 6 8 12 10 8 8 12 12819
ASMA 3 3 1 3 6 12 10 8 8 12 12819
MAAS 3 2 4 3 4 14 10 9 11 14 15209
MASA 3 2 4 3 4 12 10 9 11 12 12819
MSAA 3 2 4 3 4 10 10 9 11 11 11732
SAAM 3 3 5 6 8 10 10 7 8 10 10537
SAMA 3 3 1 3 6 10 10 7 8 10 10537
SMAA 3 2 4 3 4 10 10 7 11 11 11732

3R/1W

4R/1W

3 FU

4 FU

Scalar
VLIW

VLIW

Composite FUs

Composite FUs

16

16

14693

17273

Table 5-6 Register requirement and estimated RF area

60

 Synthesis Results

 Un-pipelined

Figure 5-2 explains the area cost of the various architectures under the

performance requirement of 100MOPS, 150MOPS, 200MOPS, and 300MOPS

respectively. We use Synopsys DesignCompiler with the TSMC 0.13um cell-library

to synthesize the various architectures. All synthesized architectures are

un-pipelined.

The composite FUs (MSA or AMSA) save about 10% ~ 25% of area compared

to the VLIW regarding 100/150/200 MOPS due to less number of ports of centralized

register file. However, when the performance requirement is above 300 MOPS, the

composite FUs have to be pipelined to achieve the comparable performance to the

VLIW.

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400
MOPS

A
re

a

Scalar
3-VLIW
MSA
4-VLIW
AMSA

Figure 5-2 Area analysis of single stage

The total area is composed of the area of FUs and the area of RF. The area of

RF changes slightly with the frequency increasing, but the area of FUs grows

exaggeratedly when the frequency increases and the combinational delay constraint

decrease. Actually, the cost of the RF area of the composite is quite equal to the cost

of the scalar.

61

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

0 200 400 600 800 1000 1200

MOPS

A
re

a

stage1(Scalar)

stage2(Scalar)

stage3(Scalar)

stage4(Scalar)

stage1(3-VLIW)

stage2(3-VLIW)

stage3(3-VLIW)

stage4(3-VLIW)

stage1(MSA)

stage2(MSA)

stage3(MSA)

stage4(MSA)

Figure 5-3 Area analysis with 1 to 4 pipeline stages (3 FUs)

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

0 200 400 600 800 1000 1200

MOPS

A
re

a

stage1(4-VLIW)

stage2(4-VLIW)

stage3(4-VLIW)

stage4(4-VLIW)

stage1(AMSA)

stage2(AMSA)

stage3(AMSA)

stage4(AMSA)

Figure 5-4 Area analysis with 1 to 4 pipeline stages (4 FUs)

62

 Pipelined

After pipeline design introduced in section 3-2, we use N threads IMT to hide N

stages instruction latency totally. For each thread, there must be a thread register file

supported to keep the functionality of IMT architecture.

Figure 5-3 shows the area analysis of the datapaths with 3 FUs and 1 to 4

pipeline stages. These lines stand for total area composed of the area of the FUs, the

pipeline register, and the thread register files. Figure 5-4 shows the area analysis of

the datapaths with 4 FUs and 1 to 4 pipeline stages.

We can see that if VLIW using IMT, the cost is exaggeratedly large than

composite FU and scalar. On the other hand, the composite FUs cost a slightly more

area than the scalar by around 10%.

Because the peak performance of the composite FUs is lower than the VLIW

under same FU resource. VLIW cooperate with IMT can reach specific MOPS goal

with less pipeline stages and thread number. However, to our knowledge, there are

several ways to reduce the multithread-related cost such as the register file

architecture using master latch sharing described later.

We will recommend the designers if they want to use VLIW architecture, they

should use some other techniques to hide instruction latency under limited area

constraint. Nevertheless, these techniques need overhead of hardware complexity and

the re-compile of the software efforts.

63

5.2 Power Estimation

In this section, we quantify the reduction of register accesses. Then we conduct

an experiment to see the degree of power saving.

5.2.1 Register Accesses Per Operation

The total accesses of the composite FUs are reduced because of several

operations performed in single instruction. It apparently cuts the read and write

accesses.

AVG
t N t N t N t N t N t N t N t N t N N

3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.76 1.00 2.82 1.00 2.78 1.00 3.00 1.00 1.00
3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.76 1.00 2.82 1.00 2.78 1.00 3.00 1.00 1.00

AMS 3.00 1.00 3.00 1.00 2.30 0.77 2.65 0.88 3.00 1.00 2.76 1.00 2.06 0.73 2.10 0.75 2.58 0.86 0.88
ASM 3.00 1.00 3.00 1.00 2.30 0.77 2.65 0.88 3.00 1.00 2.76 1.00 2.14 0.76 2.34 0.84 2.58 0.86 0.90
MAS 2.03 0.68 2.49 0.83 2.39 0.80 2.41 0.80 2.47 0.82 2.76 1.00 2.28 0.81 2.39 0.86 2.77 0.92 0.83
MSA 2.03 0.68 2.49 0.83 2.39 0.80 2.41 0.80 2.47 0.82 2.29 0.83 2.46 0.87 2.23 0.80 2.77 0.92 0.82
SAM 3.00 1.00 3.00 1.00 2.30 0.77 2.65 0.88 3.00 1.00 2.29 0.83 2.34 0.83 2.39 0.86 2.58 0.86 0.89
SMA 2.03 0.68 2.49 0.83 2.39 0.80 2.41 0.80 2.47 0.82 2.29 0.83 2.54 0.90 2.17 0.78 2.77 0.92 0.82

3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 2.76 1.00 2.82 1.00 2.78 1.00 3.00 1.00 1.00
AAMS 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 2.41 0.87 1.90 0.68 2.05 0.74 2.24 0.75 0.78
AASM 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 2.41 0.87 1.98 0.70 2.28 0.82 2.24 0.75 0.79
AMAS 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 2.41 0.87 1.90 0.68 2.05 0.74 2.24 0.75 0.75
AMSA 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 1.95 0.71 1.96 0.70 1.98 0.71 2.24 0.75 0.73
ASAM 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 1.95 0.71 2.04 0.72 2.23 0.80 2.24 0.75 0.77
ASMA 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 1.95 0.71 2.04 0.72 2.23 0.80 2.24 0.75 0.75
MAAS 2.00 0.67 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 2.41 0.87 2.17 0.77 2.23 0.80 2.47 0.82 0.76
MASA 2.03 0.68 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 1.95 0.71 2.24 0.79 2.21 0.80 2.47 0.82 0.74
MSAA 2.03 0.68 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 1.95 0.71 2.39 0.85 2.16 0.78 2.47 0.82 0.74
SAAM 2.55 0.85 2.52 0.84 2.04 0.68 2.18 0.73 2.73 0.91 1.95 0.71 2.19 0.78 2.37 0.85 2.24 0.75 0.78
SAMA 2.48 0.83 2.49 0.83 1.70 0.57 2.18 0.73 2.47 0.82 1.95 0.71 2.19 0.78 2.37 0.85 2.24 0.75 0.76
SMAA 2.03 0.68 2.02 0.67 2.39 0.80 2.06 0.69 2.20 0.73 1.95 0.71 2.46 0.87 2.26 0.81 2.47 0.82 0.75

Biquad

3 FU

Matrix

4 FU

VLIW

Composite FUs

IT DCT

VLIW
Scalar

Composite FUs

register access/operation(actual)
FIR CFIR LPFIR IMDCT FFT

Table 5-7 Register accesses per operation

Table 5-7 outlines the register accesses per operation. First, count all accesses

for each case. The accesses of adder of scalar and VLIW are 2R/1W. The accesses of

multiplier of scalar and VLIW are 2R/1W. The accesses of shifter of scalar and VLIW

are 1R/1W. The accesses of composite FUs with 3 FUs (1A1M1S) are 3R/1W. The

accesses of composite FUs with 4 FUs (2A1M1S) are 4R/1W. Furthermore, when the

composite FUs use sub-functions to execute the applications, the corresponding

64

accesses are taken into consideration. Then, all the data is normalized to scalar 1.00.

The last column is the geometric mean.

Table 5-8 shows the respective register access per operation of the various FU

configurations regarding the used benchmarks. On average, the 3-FU and the 4-FU

composite FUs reduce about 18% and 27% of register accesses per operation

compared to the scalar and the VLIW.

Benchmark Scalar 3-way
VLIW

Composite
FU (MSA)

4-way
VLIW

Composite
FU (AMSA)

FIR 1.00 1.00 0.68 1.00 0.83
CFIR 1.00 1.00 0.83 1.00 0.83

LPFIR 1.00 1.00 0.80 1.00 0.57
Biquad 1.00 1.00 0.80 1.00 0.73
Matrix 1.00 1.00 0.82 1.00 0.82

IT 1.00 1.00 0.83 1.00 0.71
DCT 1.00 1.00 0.87 1.00 0.70

IMDCT 1.00 1.00 0.80 1.00 0.71
FFT 1.00 1.00 0.92 1.00 0.75

Average 1.00 1.00 0.82 1.00 0.73

Table 5-8 Outline of register accesses per operation

5.2.2 Target Simulated Architecture

Figure 5-5 is an overview when the FU and RF are mapped into a real

architecture. Assume that there are instruction memory, data memory, and load/store

unit which can help the application really work.

Figure 5-5 Simulated architecture

65

The shadow area surrounded by the dotted line includes FU and RF. These two

parts are what we concern. In our experiment, we replace these two part using the FU

and RF pairs of scalar, VLIW, and composite FU (MSA) to keep track of the power

consumption. Remember that the L/S is independent of the FU because of the

assumption made before for software analysis.

5.2.3 Ping-Pong Register File

Based on the analysis assumption and results before, the load/store handling is

decoupled. Now we want to estimate power carefully, so we should reconsider of the

load/store effect again because of the power estimation should be closed to real

situation.

There is two methods to handle the load/store operation.

(1) Increase additional RF port to let the FUs get the right data transparently in the

execution sequence.

(2) Increase load/store cycles.

The latter is simple, but it needs extra cycles because of the I/O pattern of

register files must be considered.

Without changing the scenario, we use ping-pong register to keep simplicity

without opening new ports (2) and performance loss (1).

Assume the load bandwidth is full capable of getting enough data. For example,

when executing a MAC needs to load a coefficient and a data input, the load

bandwidth is twice the arithmetic bandwidth. However, there is some control

hardware overhead if the register file is capable of two values written at the same time

using the same MUX.

66

We mirror a 16-bit RF with 16 registers and use the ping-pong mode execution.

As Figure 5-6 shows, write ports of ping-pong RFs are interleaved access from

load/store unit or FU. The ports of FU and RF for different datapaths are listed below.

FU (Input / Output)

Scalar: 2 / 1

VLIW: 5 / 3

MSA: 3 / 1

RF (Read / Write)

Scalar: 2 / 1

VLIW: 5 / 3

MSA: 3 / 1

Figure 5-6 Data flow of FU and RF

Besides, power is strongly related to activity pattern. The power consumption is

almost from the transition of the logic network. Figure 5-7 shows the access pattern

derived from Figure 5-6. We can see that the hardware can get right data in

corresponding cycles. The ping-pong execution covers the problems derived from

load/store cooperation. These two threads make up the total application execution.

67

Figure 5-7 Access pattern of FU and RF

5.2.4 Simulation Results

This experiment measures the power consumption of the scalar, the 3-way

VLIW, and the MSA-ordered composite FU. We take Synopsys PrimePower as

simulation tool. It simulated the power consumption of gate-level files.

The application is executed in streaming process. And the Remez 16-tap FIR

with 1,024 Gaussian-distributed random input patterns is used as the test real

application. Table 5-9 illustrates the total cycles for test application of each datapaths.

Number of cycle Scalar MSA 3-VLIW
random input 1024 1024 1024
remez filter 16 16 16
FIR(once) 31 16 17

total 31744 16384 17408

Table 5-9 Execution cycles

68

First of all, let us see the factors which may affect the power P. Three main

factors are the operation frequency f, capacitance C, and the voltages V. Their

relations to power is 2VCfP ⋅⋅∝ . The voltage V is constant in TSMC 0.13 cell

library. The f is related to the cycle time. The capacitance C is related to the area.

Table 5-10 is derived from the OPC analyzed before and the performance goal. It is

used as the synthesis timing constraint. And Table 5-11 shows the synthesis area based

on the cycle time in Table 5-10. Because the critical path has limited synthesis timing

constraint, the area of MSA-ordered composite FU explodes in 400MOPS.

Cycle time (unit:ns) Scalar MSA 3-VLIW
100MOPS 10.00 19.38 18.23
200MOPS 5.00 9.69 9.12
400MOPS 2.50 4.84 4.56

Table 5-10 Cycle time

Ping Pong Sum Ping Pong Sum Ping Pong Sum
100MOPS 12724 16047 16047 32094 12296 18892 18892 37784 12289 31733 31733 63466
200MOPS 13012 16047 16047 32094 12875 18892 18892 37784 12289 31733 31733 63466
400MOPS 30204 16047 16047 32094 21920 18892 18892 37784 13092 31733 31733 63466

Area (unit: um2)
FU

RF
FU

RF
3-VLIW

FU
RF

Scalar MSA

Table 5-11 Synthesis area

Table 5-12 shows the power consumption of every part we concern. The power

of MSA is smaller in most case because of the longer cycle time, lower frequency.

The power of FU part of composite FU grows exaggeratedly in 400MOPS because of

the area explosion.

Ping Pong Sum Ping Pong Sum Ping Pong Sum
100MOPS 0.454 0.608 0.604 1.212 1.666 0.264 0.566 0.560 1.126 1.390 0.234 0.701 0.703 1.404 1.638
200MOPS 0.994 1.208 1.202 2.410 3.404 0.579 1.120 1.107 2.227 2.806 0.460 1.405 1.403 2.808 3.268
400MOPS 5.670 2.406 2.397 4.803 10.473 2.699 2.237 2.228 4.465 7.164 1.203 2.812 2.807 5.619 6.822

FU
Power (unit: mW)

FU
RF

FUTotal

Scalar MSA
RF

TotalTotal

3-VLIW
RF

Table 5-12 Power consumption

69

Compared with the scalar and the VLIW, the composite FU saves 16.5% ~

31.6% of power consumption under the 100 ~ 200 MOPS performance requirement as

Table 5-13 shows. The power saving comes from the less number of RF’s port

required by the composite FUs and less register access per operation of the composite

FUs. Figure 5-8 shows the bar charts of power and energy comparison.

FU RF Total FU RF Total
-41.8 -7.1 -16.6 -48.4 15.8 -1.7
-41.7 -7.6 -17.6 -53.7 16.5 -4.0
-52.4 -7.0 -31.6 -78.8 17.0 -34.9

MSA 3-VLIW
Power improve (Normalized to scalar) (%)

Table 5-13 Power improvement

Power

0

2

4

6

8

10

12

100 200 400

MOPS

m
W

Scalar
MSA
3-way VLIW

Energy

0.0

200.0

400.0

600.0

800.0

1000.0

100 200 400
MOPS

nJ

Scalar
MSA
3-way VLIW

 (a) (b)

Figure 5-8 Comparison of (a) power (b) energy

70

6 Summary & Future Works

In this thesis, we propose the composite functional units which cascades all the

primitive FUs in a customized order by analyzing the DFG (data-flow graph) of the

target applications to improve datapath utilization. The composite FU with 3

primitive functional units achieves an OPC of 1.35 on average and has comparable

OPCs to that of the VLIW in several benchmarks.

Besides, the composite FU reduces 10% to 25% of area compared with the

VLIW and saves 16.5% to 31.6% of power consumption compared with both the

scalar and the VLIW under the performance target ranging from 100 to 300 MOPS.

Although the composite FUs may result in long critical path, pipelining

technique can be applied to raise the clock rate feasibly. A flexible pipelining design

flow is also proposed to assist in FU pipelining. Additionally, the interleaved

multithreading can be applied to hide pipeline latency totally if enough number of

threads is supported.

71

The area comparison in section 5-1 shows that the hardware cost of the thread

increase is small for composite FU, so the IMT architecture is good for the composite

FUs. Relatively, the hardware cost of VLIW cooperated with IMT is too high. Some

other methods to hide instruction latency must be taken.

In chapter 4, we proposed an Application Programmable Processor Synthesis

Flow to design a processor based on composite FUs. The composite FU selection flow

helps user to find a proper composite FU for a specific application.

 Future Work

 Thread Register File Reduction

Although multithreading, in our experience, will incur large context overhead.

Because of the IMT architecture needs a thread register file for each thread, the area

and overhead of hardware increase with thread number. There are other approaches

such as the register file architecture using master latch sharing described in [] to

lessen the side effect. In the future, we will continue studying on how to reduce the

multithreading-incurred overhead.

 Share master latching

[31] introduces a method of reducing area and power consumption of a

synthesizable register tile by using a single master latch shared by a number of slaves.

Simulation results show that, depending on the size of the register tile, reduction of

power consumption of more than 50% is achievable.

Data stores are an important power critical part of resource sharing

architectures [7] or processing units, like application specific instruction set

processors (ASIPs). They are preferably implemented as a synthesizable register file

described as part of the design on register transfer level, because of a high effort

required for timing verification of RAM.

72

Master

D Q

EN

CK

D-Flip-flop

Slave

D Q

EN

D Q

M2

CK

Word Level Register

S2

D Q

EN

D1 Q1D Q

EN

Mn Sn

.

.

D2

Dn

Q2

Q3

.

.

.

.

.

.

.

.

 (a) (b)

Figure 6-1 (a) D Flip-filop (b) Word Level Register

Figure 6-1 (a) is a typical D flop-flop. It is composed of master latch and slave

latch. Several D flip-flops make up a word level register in Figure 6-1 (b). The real

data is stored in the slave latch.

This method also aims at reduction of capacitance connected to the data bus.

This is achieved by splitting up the master-slave flip-flops into the master

latches and the slave latches. If clock gating is applied, slave latches of registers in the

register tile can share one master latch. Thus the number of master latches connected

to the data bus is decreased. Additionally savings in area can he expected.

Figure 6-2 (a) shows conventional register file with flip-flops and Figure 6-2 (b)

shows modified register file with shared master latches.

73

Figure 6-2 (a) Conventional register file with flip-filops

(b) Modified register file with shared master latches.

 Fused FU and VLIW Cooperation

We demonstrate that the composite FU effectively increases datapath utilization

in this thesis. However, the long critical path will incur other overheads, i.e. pipeline

latency or register file complexity. Another research direction will focus on the fused

FU such as MAC (multiply and add). We can cascade two or three primitive

operations to be a fused FU that is frequently used and then design a VLIW processor

with several fused FUs as primitive FUs. Compared to the conventional VLIW

processors with the same computing resources, multi-issue fused FUs still demand

less number of register file ports. We expect that the multi-issue fused FUs will

explore more operation parallelism and thus achieve higher OPC. At the same time, it

can avoid long critical path.

74

 Merge Shifter Into Multiplier

Because the shift operations are small relatively to the total operations, the

shifter is usually idle. Shift operations often occur between different application and

data transformation for alignment. Maybe we can merge the shifter into the multiplier

by by-passing the corresponding bits form the product of multiplier with little

hardware effort. By the way, the software analysis may need modification.

75

Reference

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture – A Quantitative
Approach, 4th edition, Morgan Kaufmann, 2006

[2] DECsystem-10/DECSYSTEM-20 Processor Reference Manual, DEC, 1982
[3] S. Rixner, et al., "Register organization for media processing, " in Proc. HPCA-6,

pp.375-386, 2000
[4] G. T. Bryd and M. A. Holliday, "Multithreaded processor architectures," IEEE

SPECTRUM, August 1995
[5] T Ungerer, B ROBIC, and J SILC, "A survey of processors with explicit

multithreading," ACM Computing Surveys, Vol. 35, No. 1, pp. 29-63, March
2003

[6] J Glossner, "Sandblaster Low Power DSP," IEEE Custom Integrated Circuits
Conference, 2004

[7] K. K. Parhi, VLSI Digital Signal Processing Systems – Design and
Implementation, John Wiley & Sons, 1999

[8] A. V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 2nd edition, Prentice Hall,1999

[9] X. Y. Li, M. F. Stallmann, and F Brglez, "Effective bounding techniques for
solving unate and binate covering problem," ACM IEEE Design Automation
Conference, 2005

[10] R. Cordone, F. Ferrandi, D. Sciuto, and R. W. Calvo, "An efficient heuristic
approach to solve the unate covering problem," Proc. Design Automation and
Test in Europe, pp. 364-371, 2000

[11] O. Coudert, "On solving binate covering problems," In The Proceedings of the
Design Automation Conference, pages 197-- 202, June 1996

[12] R. C. Larson and A. R. Odoni, Orban Operation Resarch, 2nd edition, Dynamic
Ideas, 2007

[13] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, "Instruction selection using
binate covering for code size optimization," In Proceedings of International
Conference on ComputerAided Design, 1995

[14] Gero Dittmann, "Organizing libraries of DFG patterns," Proceeding of the
DATE, 2004

[15] Gero Dittmann. "Organizing pattern libraries for ASIP design, " IBM Research
Report RZ3488, April 2003

76

[16] T. J. Lin, P. C. Hsiao, C. W. Liu, and C. W. Jen, "Area-efficient register
organization for fully-synthesizable VLIW DSP cores," International Journal of
Electrical Engineering, May 2006 (EI)

[17] P. Chretienne, E.G. Coffman, Jr., J.K. Lenstra, and Z.Liu, Scheduling Theory
and its Application, Wiley, June 1995.

[18] P. G. Paulin and J.P. Knight, "Force-directed scheduling for the behavioral
synthesis of ASIC’s," IEEE TRANSACTIONS ON CAD, Vol 8, No. 6, June 1999.

[19] Y. N. Chang, C. Y. Wang, and K. K. Parhi, "Loop-list scheduling for
heterogeneous functional units," In 6th Great. Lakes Symposium on VLSI, pages
2–7, March 1996

[20] S. Govindarajan and R. Vemuri, "Cone-based clustering heuristic for
list-scheduling algorithms," In Proc. of European Design & Test Conference
(ED&TC), pages 456–462, March 1997

[21] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis –
Introduction to Chip and System Design, Kluwer Academic Publishers, 1992

[22] C. Liem, T. May, and P. Paulin, "Instruction-set matching and selection for DSP
and ASIP code generation," IEEE European Design and Test Conference,
EDAC ,1994

[23] J. Shu, T. C. Wilson, and D. K. Banerji, "Instruction-set matching and GA-based
selection for embedded-processor code generation," 9th International
Conference on VLSI Design, January 1996

[24] J. V. Praet, G. Goossens, D. Lanneer, and H. D. Man, "Instruction set definition
and instruction selection for ASIPs," Proc. 7th IEEE/ACM Int. Symp. On
High-Level Synthesis, Niagara-on-the-Lake, May 1994

[25] G. Dittmann and A. Herkersdorf, "Multilayer intermediate representation for
ASIP design and critical-path optimization," Technical Report RZ 3484, IBM
Research, February 2003

[26] DSPStone - A DSP oriented Benchmarking Methodology, In ICSPAT, Aachen
University of Technology, 1994

[27] BDTI, http://www.bdti.com
[28] S. Gordon, "Simplified use of 8x8 transform," Joint Video Team (JVT) of

ISO/IEC MPEG and ITU-T VCEG, doc. JVT-I022, San Diego, USA, September
2003.

[29] Independent JPEG Group, http://www.ijg.org
[30] MAD: MPEG Audio Decoder, http://www.underbit.com/products/mad/
[31] M. Wroblewski, M. Mueller, A. Wortmann, S. Simon, W. Pieper, and J. A.

Nossek, “A power efficient register file architecture using master latch sharing,”
in Proc. ISCAS, May 2003

77

作者簡歷

卓毅，1983 年 4 月 21 日出生於台北市。2005 年取得國立交通大學電子工程

學系學士學位，並繼續在國立交通大學電子工程研究所攻讀碩士。2007 年在劉

志尉教授指導下，取得碩士學位。本篇論文「具複雜運算單元之低功率多執行緒

資料路徑的研究與設計」為其碩士論文。

