
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩碩碩碩 士士士士 論論論論 文文文文

環繞 MPEG 編解碼器

之增速及其在 TI DSP 平台上的實現

MPEG Surround Codec Acceleration and

Implementation on TI DSP Platform

研 究 生：韓志岡

指導教授：杭學鳴 博士

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 六六六六 年年年年 六六六六 月月月月

環繞環繞環繞環繞 MPEG 編解碼器編解碼器編解碼器編解碼器

之增速及其在之增速及其在之增速及其在之增速及其在 TI DSP 平台上的實現平台上的實現平台上的實現平台上的實現

MPEG Surround Codec Acceleration and
 Implementation on TI DSP Platform

研究生: 韓志岡 Student: Chih-Kang Han
指導教授: 杭學鳴 Advisor: Dr. Hsueh-Ming Hang

國 立 交 通 大國 立 交 通 大國 立 交 通 大國 立 交 通 大 學學學學

電電電電 子子子子 工工工工 程程程程 學學學學 系系系系 電電電電 子子子子 研研研研 究究究究 所所所所 碩碩碩碩 士士士士 班班班班

碩 士 論碩 士 論碩 士 論碩 士 論 文文文文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

June 2007

HsinChu, Taiwan, Republic of China

中華民國九十六年六月

 i

環繞 MPEG編解碼器

之增速及其在 TI DSP平台上的實現

研究生: 韓志岡 指導教授: 杭學鳴 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要摘要摘要摘要

 隨著音響系統的發展，多聲道系統(Multi-channel audio system)已經廣泛的應用

在消費性電子產品上，如 DVD 和數位音訊的廣播服務。環繞 MPEG(MPEG Surround)是由

ISO/IEC MPEG 所制定的一套標準，它能夠在非常低的位元率下壓縮多聲道的音訊訊號。

在本篇論文中，對於環繞 MPEG 編碼器的模組，我們提供了較快速的演算法，並且符合

DSP 系統的加速。

 我們首先分析環繞 MPEG 編碼器在 DSP 平台上的執行計算複雜度，發現濾波堆在整

個系統中耗費最多的計算量，因此我們利用離散正/離弦轉換和快速傅立葉轉換來實現

濾波堆的運算並且減少運算量。在低音聲道(LFE channel)中，我們也避免了不必要的

計算。此外針對 DSP 的架構，我們使用了一些加速的方法像是定點數運算、使用 L2 快

取記憶體、TI DSP 的特殊指令群、迴圈的分解與巨集指令。經由以上的加速方法，在

TI DSP 系統上可對環繞 MPEG 編碼器加速約 500 倍。

 另外我們也結合了環繞 MPEG 編碼器和 MPEG-4 HEAAC 編碼器，將之實現在 DSP 平台

上，並利用 downsampled SQMF(synthesis Quadrature Mirror Filter)簡化架構。相較

於原本的架構，使用簡化的架構可將整體速度提升至約 1.8 倍。

 ii

MPEG Surround Codec Acceleration and

Implementation on TI DSP Platform

Student: Chih-Kang Han Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering

Institute of Electronics

National Chiao Tung University

Abstract

 With the fast development of the audio systems, multi-channel audio systems are

commonly used for consumer electronic products such as DVD audio and digital audio

broadcasting services. The MPEG Surround is an efficient audio coding standard defined by

the ISO/IEC MPEG (Moving Pictures Experts Groups) committee. It is able to compress the

multi-channel audio signals at a very low bit-rate. In this thesis, we propose several methods

to speed up the MPEG Surround implemented on a DSP platform.

 We analyze the complexity of the MPEG Surround encoder and find that among all

modules the filterbanks require the most operational cycles on DSP. Hence, we adopt and

modify several fast algorithms based on type-IV DCT/DST and FFT for implementing the

filterbanks. We also eliminate the unnecessary computation in the LFE (low frequency effect)

channel. For the DSP implementation, we use a few DSP code acceleration techniques to

speed up such as fixed-point arithmetic, L2 cache, intrinsic function, loop unrolling and DSP

macro function. The experimental results show that the modified MPEG Surround encoder is

about 500 times faster than the original version.

 Furthermore, we implement the combination of the accelerated MPEG Surround encoder

and the HEAAC encoder together, and simplify the structure by using the downsampled

 iii

SQMF bank. Comparing to the original structure, the simplified encoder is about 1.8 times

faster.

 iv

誌謝誌謝誌謝誌謝

 這篇論文能夠順利完成，首先要感謝我的指導教授杭學鳴老師，在這兩年的研究生

涯中，杭老師總是以積極的態度鼓勵我們，不僅在研究上有所指導，也關心我們的日常

生活，老師認真踏實的研究態度，更讓我獲益匪淺。

 感謝通訊電子與訊號處理實驗室(commlab)，提供了充足的軟硬體資源及良好環

境，讓我在研究中不虞匱乏。同時也感謝實驗室的學長、同學、及學弟們，繼大、育彰、

鴻志、建志學長時常為我解答課業上的疑問，使我在研究的過程能保持順利。還有在實

驗室一同打拼的凱庭、育成、浩廷、耀仚、介遠、柏昇、政達、耀鈞、錫祺等同學們，

在這兩年的期間陪伴著我，並不斷的互相討論及勉勵。也要謝謝其他幫助我支持我的好

朋友們。

 最後，要感謝我的父母，還有我的哥哥，有了你們的栽培及支持，我才能心無旁騖

的完成學業。

 謝謝所有陪我走過這一段歲月的師長、家人及朋友們!

誌於 2007.6 風城交大

 志岡

 v

Contents

摘要摘要摘要摘要 ...i

Abstract ...ii

誌謝誌謝誌謝誌謝 ...iv

Contents...v

List of Tables ..viii

List of Figures ..ix

Chapter 1 Introduction..1

1.1 Introduction and Motivation...1

1.2 Overview of the thesis ..2

Chapter 2 Spatial Hearing...3

2.1 Spatial Hearing with One Sound Source ..3

2.1.1 Interaural Time Difference and Interaural Level Difference.............................4

2.1.2 Interaural Coherence (IC)..6

2.2 Spatial Hearing with Two Sound Sources ..7

2.3 Multi-channel Environment..8

2.3.1 Generating Sound for 5.1 Systems ..9

2.4 Conclusions ..9

Chapter 3 MPEG Surround ..10

3.1 Related Techniques...10

3.1.1 Intensity Stereo Coding [3]..10

3.1.2 Parametric Stereo Coding [5] [6]... 11

3.1.3 Binaural Cue Coding [7] [8].. 11

3.2 MPEG Surround ...13

3.2.1 MPEG Surround Standardization Process...13

3.2.2 MPEG Surround Reference Model 0 Scheme...14

3.2.3 Time to Frequency Transform...16

 vi

3.2.4 Analysis Quadrature Mirror Filter (AQMF) Bank..19

3.2.5 Hybrid Filterbank for improved frequency resolution21

3.2.6 Subband Partition ..22

3.2.7 Spatial Audio Parameters ..23

3.3 Combination of MPEG Surround and HE-AAC..26

Chapter 4 DSP Implementation Environment ..27

4.1 DSP Baseboard (SMT395) ...27

4.2 DSP chip ...28

4.2.1 Central Processing Unit (CPU) ...30

4.2.2 Memory and Peripherals..31

4.3 TI DSP Code Development Environment ..32

4.3.1 Code Composer Studio (CCS)...32

4.3.2 Code Development Flow...33

4.4 DSP Code Acceleration Methods ...34

4.4.1 Compiler Option Setting..34

4.4.2 Fixed-point Coding..35

4.4.3 Loop Unrolling ..36

4.4.4 Intrinsics and Packet Data Processing...36

4.4.5 Register and Memory Arrangement ..37

4.4.6 Using Marcos...38

4.4.7 Linear Assembly..38

Chapter 5 Acceleration of MPEG Surround Encoder on DSP Platform39

5.1 Software Environment..39

5.1.1 MPEG Surround RM0 Reference Software ..39

5.1.2 Command Line Switches...39

5.2 MPEG Surround Encoder Complexity Analysis ..41

5.3 Memory System..43

5.4 Floating-point to Fixed-point Conversion ..45

 vii

5.4.1 Word-length Determination ...45

5.4.2 Simulation Results on DSP..46

5.5 Fast QMF Bank Algorithms ...48

5.5.1 Problem Definition ..48

5.5.2 Analysis Quadrature Mirror (AQMF) Bank ..48

5.5.3 N/2-point FFT Algorithm for DCT-IV and DST-IV..53

5.5.4 Using DSP Library ..54

5.5.5 QMF Bank Acceleration Results ...55

5.6 Fast Hybrid Filterbank Algorithms...56

5.6.1 Fast Analysis Hybrid Filterbank..57

5.6.2 Analysis Hybrid Filterbank Implementation Results59

5.7 LFE Channel Acceleration..59

5.8 Implementation of MPEG Surround-HEAAC Encoder ...62

5.8.1 HEAAC Encoder ...62

5.8.2 Complexity Analysis ...63

5.8.3 Simplified MPEG Surround-HEAAC Structure..64

5.9 Experiments and Acceleration Results ...65

5.9.1 MPEG Surround Encoder (without HEAAC) ...66

5.9.2 MPEG Surround-HEAAC Encoder...67

Chapter 6 Conclusions and Future Work..69

6.1 Conclusions ..69

6.2 Future Work ..70

References..71

Appendix A N/2-point FFT Algorithm for DCT-IV and DST-IV...74

A.1 Relationship to O2DFT ..74

A.2 Fast Algorithm for Symmetric O2DFT ..75

自傳自傳自傳自傳 ..77

 viii

List of Tables
Table 3.1: Overview of low frequency split ... 21

Table 4.1: Options that control optimization [22]... 34

Table 4.2: Processing time on the C64x DSP for different data types ... 35

Table 4.3: Comparison between Rolling and Unrolling ... 36

Table 5.1: Tree structure of the MPEG Surround reference software encoder [10] 40

Table 5.2: Bitrates of different argument setting .. 41

Table 5.3: Cycles on different simulators .. 42

Table 5.4: The effect of using L2 cache memory... 44

Table 5.5: Performance of fixed-point codes ... 46

Table 5.6: SNR due to fixed-point conversion... 46

Table 5.7: Comparison of C-complied FFT and DSPLIB FFT.. 55

Table 5.8: The acceleration result of AQMF bank.. 56

Table 5.9: The Acceleration result of the SQMF bank ... 56

Table 5.10: The acceleration result of analysis hybrid filterbank ... 59

Table 5.11: Acceleration result of LFE channel .. 61

Table 5.12: Profiling of the MPEG Surround-HEAAC encoder ... 63

Table 5.13: Reduction ratio of using downsampled SQMF bank.. 65

Table 5.14: The final acceleration result of the MPEG Surround encoder... 66

Table 5.15: Profile of the proposed MPEG Surround encoder on C6416 simulator...................................... 67

Table 5.16: Acceleration result of the MPEG Surround-HEAAC encoder... 67

Table 5.17: Profiling of the proposed MPEG Surround-HEAAC encoder on C6416 simulator................... 68

 ix

List of Figures
Figure 2.1: HRTFs for left and right ears.. 4

Figure 2.2: Generating the location of auditory event with specific ITD and ILD [1] 6

Figure 2.3: Width of auditory event [2]. .. 7

Figure 2.4: ICTD and ICLD between a pair of coherent source signals [1] ... 7

Figure 2.5: ICC with width of the auditory event [1] ... 8

Figure 2.6: Standard 5.1 surround audio system.. 9

Figure 3.1: Generic Scheme for binaural cue coding (BCC) ... 11

Figure 3.2: BCC parameters estimation .. 12

Figure 3.3: BCC synthesis... 13

Figure 3.4: MPEG Surround Encoder Overview [15] .. 15

Figure 3.5: MPEG Surround Decoder Overview [15] .. 15

Figure 3.6: Hybrid QMF analysis filter bank providing 71 output bands. The input is fed into a 64-band

analysis QMF bank (dashed box). The three lower QMF subbands are further split to increase low

frequency resolution (see shadowed box)... 17

Figure 3.7: Hybrid QMF synthesis filter bank using 71 input bands. The low frequency coefficients are

simply added (see shadowed box) prior to the synthesis with the QMF. .. 18

Figure 3.8: QMF analysis windowing [17]. Index 0 to 31 represent 32 windows. .. 19

Figure 3.9: Coefficients of the QMF bank window... 20

Figure 3.10: Magnitude responses for the first 4 band of the QMF analysis filter bank. (The magnitude

for k=0 is highlighted) .. 21

Figure 3.11: Magnitude response of the 8-band sub-filter bank. (subband q=0 is highlighted) 22

Figure 3.12: (a) 5.1-to-2 MPEG Surround encoder (b) 5.1-to-1 MPEG Surround encoder.......................... 26

Figure 3.13: Interconnection of MPEG Surround and HEAAC encoder... 26

Figure 4.1: The block diagram of the Sundance DSP Baseboard system [18].. 28

Figure 4.2: Block diagram of TMS320C6x DSP [23].. 29

 x

Figure 4.3: C64x DSP chip architecture [23]... 30

Figure 4.4: Code development flow [20] .. 33

Figure 4.5: Intrinsic functions of the TI C6000 series DSP (partial list) [20] ... 37

Figure 5.1: Profiling of the MPEG Surround encoder on the C64xx simulator... 42

Figure 5.2: Profiling of the MPEG Surround encoder on the C6416 simulator... 43

Figure 5.3: Data word-lengths of the fixed-point encoder ... 45

Figure 5.4: Profiling of the MPEG Surround encoder on the C6416 simulator (cache enabled) 47

Figure 5.5: Signal flow graph of fast analysis QMF (real part), where the dotted lines denote subtract

operations. .. 51

Figure 5.6: Signal flow graph of fast analysis QMF (imagery part), where the dotted lines denote subtract

operations. .. 52

Figure 5.7: Block diagram of the fast DCT-IV and DST-IV [28]... 54

Figure 5.8: TI Complex FFT library API [30] .. 55

Figure 5.9: Signal flow graph of the fast analysis hybrid filterbank... 58

Figure 5.10: The spectrum of the front-left channel signal.. 60

Figure 5.11: The spectrum of the LFE channel signal.. 60

Figure 5.12: Simplified analysis filterbanks for the LFE channel... 61

Figure 5.13: Interconnection of the MPEG Surround-HEAAC encoder.. 62

Figure 5.14: The structure of the simplified MPEG Surround-HEAAC encoder.. 64

 1

Chapter 1

Introduction

1.1 Introduction and Motivation

 Due to the recent advances of digital audio coding technology, the audio related devices

play an important role in our daily life such as hand set and MP3 player. Today, the vast

majority of audio playback equipment use traditional two-channel presentations (stereo).

Stereo has been a mainstream consumer format for more than 40 years, and so it is not

surprising that there is a search for new technologies that further enhance the listener

experience. The move towards more reproduction channels (“multi-channel audio” or

“surround sound”) is quite visible in the market place. This trend is driven by the movie

sounds and multi-channel DVDs. However, the complexity and bitrate of the traditional audio

coding schemes scale with the number of audio channels. Therefore, it requires a high-quality,

low-bitrate audio coding mechanism that can serve both those using conventional stereo

equipment and those using next-generation multi-channel equipment.

 MPEG stands for ISO “Moving Pictures Experts Groups.” It is a group working under

the directives of the International Standard Organization (ISO) and the International

Electro-technical Commission (IEC). This group work concentrates on defining the standards

for coding moving pictures, audio and related data. MPEG audio technology has proposed

many low bitrate audio coding such as MPEG-1 layer III (MP3), MPEG-4 Advanced Audio

Coding (AAC) and MPEG-4 High-Efficiency AAC (HEAAC). The most recent effort within

MPEG is to define a state of the art new standard, the “MPEG Surround”, which provides an

extremely efficient method for coding multi-channel sound via the transmission of a

 2

compressed stereo (or even mono) audio program plus a low-rate side-information channel. In

this way, the backward compatibility is retained to pervasive stereo playback systems while

the side information permits the next-generation players to present a high-quality

multi-channel surround experience.

 In this thesis, we implement the MPEG Surround encoder on TI DSP platform. However,

the complexity of MPEG Surround is very high due to the new technologies employed. So we

adopt several algorithms to reduce its complexity significantly.

1.2 Overview of the thesis

 This thesis focuses on developing fast methods for improving the encoding speed of the

MPEG Surround codec on the DSP platform. It is organized as follows. In Chapter2, we

introduce the spatial hearing phenomena perceived by human. Chapter 3 discusses the

algorithm of the MPEG Surround encoder. In Chapter 4, we describe the DSP development

environment and the acceleration methods for the TI C6416T DSP system. Chapter 5

discusses our proposed algorithms to accelerate the MPEG Surround encoder on the DSP

platform. Finally, we give a conclusions and future work in Chapter 6.

 3

Chapter 2

Spatial Hearing

 The sense of hearing creates an auditory image of an external environment. Spatial

hearing is the process by which the auditory image is perceived at a particular place. The

physical source is called the “sound event”, and the perceived sound is the “auditory event” or

“auditory object”. Since our ability to distinguish and segregate the source is mainly based on

the localization of sound source in space, this chapter deals with sound source localization on

a horizontal, which provides the base for the Spatial Audio Coding. We will introduce the

parameters that are relevant to sound perception and discuss how these phenomena related to

the commonly used audio playback systems. The details of spatial hearing can be found in [1].

2.1 Spatial Hearing with One Sound Source

 In order to understand how the auditory system distinguishes the direction of a source,

the properties of the signals at the ear entrances have to be considered. Generally, the ear

input signals can be viewed as being filtered versions of the source signal. The head-related

transfer function (HRTF) describes the path of a given sound source to the ear entrances.

Figure 2.1 schematically shows a human head and a distant sound source x(n) at angleθ. The

entrance signals of the left and right ears are xL(n) and xR(n) respectively and they are denoted

by two filtered signals through the HRTFs with hL(n) and hR(n), respectively. The distances

from the source to the left and the right ears are dL and dR.

 4

θ

)(nxL)(nxR

)(nhR

Ld
Rd

RL dd −

)(nhL

)(nx

Figure 2.1: HRTFs for left and right ears

2.1.1 Interaural Time Difference and Interaural Level Difference

 As a result of different path lengths to the ear entrances, dL-dR, there is a difference in the

arrival time between both ear entrances, and denoted as interaural time difference (ITD). In

addition, the wave fronts from the source impinge upon the left ear directly while the sound

received by the right ear is diffracted around the head. This diffraction causes an intensity

difference between the left and right ear entrance signals, denoted as interaural level

difference (ILD).

 In 1907, Lord Rayleigh proposed the duplex theory, which provides an explanation for

the ability to localize sounds in the horizontal plane based on the notion of the ITD and ILD

(when considering only the frontal directions, -90°≦θ≦90°).

Interaural Time Difference (ITD)

ITD is related to the phase of the HRTF ratio and is generally thought to be one of the most

important localization cues. It is used to localize low frequency sounds (below 1.5 kHz). In

such a frequency range, the wavelength of the sound source is greater than the time delay

between the ears. Therefore, there is a phase difference between the sound waves to provide

 5

acoustic localization cues. In contrast, at a high frequency, because the wavelength of the

sound source is shorter than the distance between the ears, a localization error may occur. The

ITD can be estimated by the normalized cross-correlation function as follows.

,
)()(

),(
maxarg)(

21 











−⋅−
=

dnpdnp

ndp
n

RL

LR

d
τ }0,max{};0,max{ 21 dddd =−=

Where),(ndpLR is a short-time estimate of the mean of)()(21 dnxdnx RL −− .

Interaural Level Difference (ILD)

ILD, derived from the amplitude of the HRTF ratio.









=∆

)(

)(
log10)(10 np

np
nL

R

L .

It is a complicated function of frequency because for any given source positions the peaks and

valleys in the HRTF may appear at different frequencies in two ears. Moreover, the ILD is

small at low frequencies, regardless of the source position, because the dimensions of the

head and pinna are small when compared to the wavelengths of sound at frequencies below

about 1.5 kHz. For these reasons, the ILD at individual frequency bands are more likely to be

useful localization cues than the overall ILD.

 When considering only the frontal direction, a specific ITD-ILD pair can be associated

with the perceptual source direction. Figure 2.2 shows an experimental setup for generating

left and right ear entrance signals, xL(n) and xR(n), with a single source signal x(n). Different

ITD-ILD pairs determine the different locations of the auditory events which appear in the

frontal sections of the upper head. The ITD is determined by the delays tL-tR and ILD is equal

to 20log10(aL/aR) dB. When left and right signals have the same level and no delay (i.e. ILD=0,

ITD=0), an auditory event occurs in a location central to the listener (Region 1). By

increasing the intensity of the right side, the auditory event moves from Region 1 to Region 2.

When only the left signal is active, the auditory event appears at the left ear as shown in

Region 3. The ITD can be used to control the perceptual position of the auditory event in a

similar way.

 6

Figure 2.2: Generating the location of auditory event with specific ITD and ILD [1]

2.1.2 Interaural Coherence (IC)

 In a reverberant environment, additional effects such as reflection, diffraction and

resonance may cause the signals between left and right ears to be incoherent. In order to

measure the degree of similarity between the left and right ear entrance signals, another

spatial parameter, interaural coherence (IC), is considered. This coherence is derived from the

maximum absolute value of the normalized cross-correlation function:

)()(

)()(

max
22 dnxnx

dnxnx

IC
LR

n
LR

d +

+
=

∑
∞

−∞= ,

where d corresponds to a small delay.

 Figure 2.3 shows that the width (or spatial diffuseness) of the perceived auditory spatial

image mostly depends on the IC cues. When the ear entrance signals are identical (IC=1), a

compact auditory event is perceived, as illustrated in Region 1. On the other hand, the width

of the auditory event increases as the IC decreases (Region 2 and 3). Finally, when the ear

entrance signals are independent (IC=0), two distinct auditory events are perceived at the

sides (Region 4).

 7

Figure 2.3: Width of auditory event [2].

2.2 Spatial Hearing with Two Sound Sources

 The most commonly used consumer playback system for spatial audio systems is the

stereo loudspeaker setup. Thus, it is interesting to investigate the spatial hearing with two

sound sources. The previous section shows the perceptual effects of ITD, ILD, and IC cues.

Similar to these interaural cues, there are three properties of the signals between two

loudspeakers

� Inter-channel time difference (ICTD)

� Inter-channel level difference (ICLD)

� Inter-channel coherence (ICC)

 In the following paragraphs a few phenomena related to ICTD, ICLD and ICC are

reviewed for two sources located in front of a listener.

.

Figure 2.4: ICTD and ICLD between a pair of coherent source signals [1]

 8

 Figure 2.4 illustrates different locations of the perceived auditory events controlled by

the ICLD-ICTD pair. When the signals emitted from two loudspeakers are identical (ICTD=0

and ICLD=0), an auditory event appears in the center between the two sources as indicated as

Region 1. By increasing the intensity of the right channel, the auditory event moves from

Region 1 to Region 2. In the extreme case that only the signal on the left is active, the

auditory event appears at the left source position (Region 3). As with the IC, the ICC between

two loudspeakers is also related to the width of the auditory event, as shown in Figure 2.5.

When the ICC between the two loudspeakers decreases, the width of the auditory event

increases.

Figure 2.5: ICC with width of the auditory event [1]

2.3 Multi-channel Environment

 Multi-channel audio is the name for a variety of techniques used to expand and enrich

the sound of audio playback by recording additional sound channels that can be reproduced

through additional speakers. Such systems are known as the “home theater systems” for

movies. Figure 2.6 illustrates the standard loudspeaker setup for a 5.1 five-to-one (5.1)

surround audio system. In the front, three loudspeakers are located at angles -30°, 0°, and

+30°. The two surround loudspeakers at the rear, offset by ±110°, are intended to provide the

important lateral signal components related to spatial impression. Additionally, one

low-frequency effects (LFE) channel is used to carry extremely low sub-bass cinematic

effects.

 9

Figure 2.6: Standard 5.1 surround audio system

2.3.1 Generating Sound for 5.1 Systems

 Sound source location can often be reproduced successfully using multi-channel

recordings. Techniques applied for recording or mixing a two-channel stereo can be applied to

a specific channel pair of the five main loudspeakers of a 5.1 setup. For example, to obtain an

auditory event from a specific direction, the loudspeaker pair enclosing the desired direction

is selected and the corresponding signals are recorded or generated in a way similar to that of

the stereo case (resulting in auditory events between the two selected loudspeakers).

2.4 Conclusions

 The main point emphasized here is that the perceptual direction of a sound source is

determined by ITD, ILD, ICTD, and ICLD. The other parameters, IC and ICC, are used to

measure the width (spatial diffuseness) of perceived auditory spatial image. These parameters

also play an important role for capturing and generating sound in spatial audio systems, such

as stereo or multi-channel audio playback.

 10

Chapter 3

MPEG Surround

 In this chapter, we will briefly review several stereo and multi-channel algorithms which

are related to the MPEG surround coding, including Intensity Stereo Coding (ISC),

Parametric Stereo coding (PS), and Binaural Cue Coding (BCC). Then we will introduce the

basic concepts and major modules of the MPEG Surround coder. It is used for compressing a

multi-channel audio signal at very low bitrate. It provides an extremely efficient method for

coding multi-channel sounds. Finally, an inter-connection of MPEG Surround and MPEG-4

HEAAC structure will be described.

3.1 Related Techniques

3.1.1 Intensity Stereo Coding [3]

 Intensity stereo coding (ISC) is a joint-channel coding technique that is a part of the

ISO/IEC MPEG family of standards [4]. By removing perceptually irrelevant information

between audio channel pairs, it reduces the bit-rate needed for encoding stereo or

multi-channel signals. It is more efficient than coding of each channel separately. ISC exploits

the fact that the human hearing system is sensitive to low frequency signals at both amplitude

and phase; it also sensitive to amplitude of high frequency signals, but low sensitive to phase.

Thus, at high frequencies, the original left and right subband signals are replaced by a sum

signal and a direction angle (azimuth) which controls the intensity stereo position of the

auditory event created at the decoder.

 11

3.1.2 Parametric Stereo Coding [5] [6]

 Since ISC is prone to aliasing artifacts and typically is only applied for higher frequency

bands, Parametric Stereo (PS) technology is proposed to overcome these limitations. PS is

standardized in MPEG-4 and is the next major step to enhance the efficiency of audio

compression for low bit-rate stereo signals. It is in conjunction with the context of the

MPEG-4 HE-AAC (aacPlus) codec, known as HE-AAC v2, or Enhanced aacPlus.

 PS employs a dedicated (complex-valued, over-sampled) filter bank to avoid artifacts

due to aliasing resulting from the spectral modification in generating the output channels. In

additions, it synthesizes not only the intensities but also the phase differences and coherence

between the output channels. Due to these improvements, the PS tool can operate on the full

audio bandwidth. In such a system, the stereo signal (a pair of signal) is reconstructed from

the transmitted mono signal with the help of the stereo parameters.

3.1.3 Binaural Cue Coding [7] [8]

 The Binaural Cue Coding (BCC) approach can be viewed as a generalization of the

parametric stereo idea, delivering multi-channel output (with an arbitrary number of channels)

from a single audio channel plus some side-information. Figure 3.1 shows the generalized

block diagram of BCC encoder and decoder.

1x

2x

Nx

1x̂

2x̂

Nx̂

s

Figure 3.1: Generic Scheme for binaural cue coding (BCC)

 12

 In the encoder, multi-channel input channels are combined into a single sum signal by

using a downmix process. At the same time, the multi-channel sound image is extracted and

parameterized as BCC side-information. The decoder is able to reproduce multi-channel

output signals by these data. Because BCC requires only a few bit-rates (2 kb/s) to encode the

side-information, the total bit-rate is only slightly higher than what is required to represent a

mono audio signal. Another advantage of this scheme is its backwards compatibility with

non-multi-channel audio systems. For the receivers that do not support multi-channel sound

audio, it simply ignores the side-information and decodes the sum signal.

3.1.3.1 Estimation of BCC parameters

 As shown in Figure 3.2(a), the BCC parameters including the inter-channel level

difference (ICLD), the inter-channel time difference (ICTD), and the inter-channel coherence

(ICC) are estimated in the subband domain. The estimation process is applied independently

to each subband.

)(1 nx

)(2 nx

)(nxN

)(1 kX

)(2 kX

)(kXN

(a) (b)

Figure 3.2: BCC parameters estimation

 Figure 3.2(b) shows an example of 5-channel environment. The ICTD and ICLD

between a reference channel (e.g. Left channel) and the other channels are estimated. One

single ICC is estimated between the channel pair with the largest power, to describe the

overall coherence among all audio channels.

 13

3.1.3.2 Synthesis of BCC parameters

 BCC synthesis scheme is shown in Figure 3.3. First, the downmixed sum signal is

converted into the frequency domain via a filter bank. For each output channel, individual

time delays and scale factors are imposed on the spectral coefficients to re-synthesis ICTD

and ICLD respectively. Followed by a coherence synthesis process, ICC is synthesized.

Finally, all output channels are converted back into the time domain signals.

t1(k)

FB

IFB

IFB

IFB

hN(k)

h2(k)

h1(k)

tN(k)

t2(k)

a1(k)

a2(k)

aN(k)

)(ns)(kS

)(ˆ
1 kX

)(ˆ
2 kX

)(ˆ kXN

)(ˆ1 nx

)(ˆ2 nx

)(ˆ nxN

Figure 3.3: BCC synthesis

3.2 MPEG Surround

 MPEG Surround can be viewed as an enhancement of the techniques we previously

mention, such as a multi-channel extension of Parametric Coding or a generalized version of

BCC. In the following sections, we will describe the standardization process of MPEG

Surround and its structure.

3.2.1 MPEG Surround Standardization Process

 Motivated by the demonstrated potential of what was then called the Spatial Audio

Coding approach, ISO/MPEG started a new work item on the parametric coding of

multi-channel audio signals by issuing a CfP (Call for proposal) on Spatial Audio Coding in

 14

March 2004 [9]. Four responses were received and evaluated with a number of performance

measures including subjective quality of the decoded multi-channel audio signal, the

subjective quality of the downmix signals, the spatial cue side information bitrate and the

other parameters, such as additional functionality and computational complexity.

 As a result of these extensive evaluations, MPEG committee decided that the technology

that would be the starting point in the standardization process, called Reference Model 0

(RM0), would be a combination of the submissions from two proponents: Fraunhofer

IIS/Agere Systems and Coding Technologies/Philips. These systems not only outperformed

the other submissions but also showed complementary performance in terms of per-item

quality, bitrate and complexity. Consequently, the merged RM0 (now called MPEG Surround)

is designed to combine the best features of both individual systems and was found to fully

meet the performance expectation. RM0 provides sound quality substantially the surpassing

existing matrixed surround solutions, even for the transmission of a mono downmix signal or

for the spatial cue bitrates as low as 6kbit/s. It serves as the basis for the further technical

development within the MPEG-4 audio. An extended description of the technology can be

found in [10] and [11].

3.2.2 MPEG Surround Reference Model 0 Scheme

 Rather than performing a discrete coding of the individual audio input channels, Spatial

Audio Coding is a technique to efficiently code a multi-channel audio signal as stereo (or

even monaural) signal plus a small amount side information for multi-channel spatial image

parameters. Figures 3.4 and 3.5 show the block diagram of the MPEG Surround RM0 encoder

and decoder, respectively. The input signals are processed by the analysis filter banks to

decompose the input signals into separate frequency bands. The frequency selectivity of these

filter banks is tailored specifically towards mimicking the frequency resolution of the human

auditory system. Then the MPEG Surround encoder captures the spatial image of a

multi-channel audio signal and condenses it into a compact set of parameters. These

 15

parameters typically include level/intensity differences and measures correlation/coherence

between the audio channels. In parallel, a stereo (or monaural) downmix signal of the sound

material is created. The downmix signal is transformed back to the time-domain signal by

using the synthesis filter banks. And it is transmitted to the decoder together with the spatial

information. On the decoder side the transmitted downmix signal is expanded into high

quality multi-channel outputs based on the known spatial parameters.

1s

2s

1x

2x

Nx

Figure 3.4: MPEG Surround Encoder Overview [15]

1̂x

2x̂

Nx̂

1̂s

2ŝ

Figure 3.5: MPEG Surround Decoder Overview [15]

 Moreover, to achieve a higher compression rate, a MPEG Surround Coding can be

combined with a conventional state-of-the-art coder (Audio Encoder and Audio Decoder in

Figures 3.4 and 3.5). The downmix signal is encoded with a core coder such as the MPEG-1

 16

Layer III (mp3), MPEG-2/4 AAC or MPEG-4 High Efficiency AAC, or it could even be PCM.

In this way, MPEG Surround coder acts as a pre-process to the audio encoder, and as a

post-process to the core decoder. Thus, the MPEG Surround Coding is able to provide

complete backward compatibility with the non-multi-channel audio systems using the

downmix signal: A receiver device without a MPEG Surround decoder will simply decode

and present downmix signal.

3.2.3 Time to Frequency Transform

 In the human auditory system, the processing of binaural cues is performed on a

non-uniform frequency scale. Since the spatial parameters are estimated (at the encoder side)

and applied (at the decoder side) as a function of time and frequency, both the encoder and

decoder require a transform or filter bank that resemble this non-uniform scale. Furthermore,

the transform or filter bank should be over-sampled, since time- and frequency-dependent

signal modifications will be made to the signals which would lead to audible aliasing

distortion in a critically-sampled system.

 It employs a two-stage filter bank to satisfy the above requirments. Figure 3.6 and Figure

3.7 shows the structure of the hybrid QMF analysis and synthesis filter banks, respectively.

The first-stage filter bank is a complex-modulated Quadrature Mirror Filter (QMF) bank to

obtain a uniform, over-sampled, frequency representation of the audio signal. The signals of

the lowest QMF subbands are subsequently fed through a second complex-modulated filter

bank to provide a higher resolution of low frequencies.

 17

)(0 ωH M

)(0
1 ωG

)(0
7 ωG

),0(nX

)(0
0 ωG

),1(nX

),2(nX

)(1 ωH M
),6(nX

),7(nX

),8(nX

)(2 ωH M

),10(nX

),9(nX

)(3 ωH M

)(63 ωH M),70(nX

)(1
0 ωG

)(1
1 ωG

)(2
0 ωG

)(2
1 ωG

)(3
0 ωG

)(63
0 ωG

)(0
6 ωG

)(0
5 ωG

)(0
4 ωG

)(0
3 ωG

)(0
2 ωG

),3(nX

),4(nX

),5(nX

X

Figure 3.6: Hybrid QMF analysis filter bank providing 71 output bands. The input is fed into

a 64-band analysis QMF bank (dashed box). The three lower QMF subbands are further split

to increase low frequency resolution (see shadowed box).

 18

M

),0(nX

M

M

M

M

)(0 ωF

)(1 ωF

)(2 ωF

)(3 ωF

)(63 ωF

X

+

+

+

),1(nX

),2(nX

),3(nX

),4(nX

),5(nX

),6(nX

),7(nX

),8(nX

),9(nX

),10(nX

),70(nX

Figure 3.7: Hybrid QMF synthesis filter bank using 71 input bands. The low frequency

coefficients are simply added (see shadowed box) prior to the synthesis with the QMF.

 19

3.2.4 Analysis Quadrature Mirror Filter (AQMF) Bank

The first filter bank is compatible with the filter bank used in the SBR algorithms [17].

The subband signals are generated by this filter bank are obtained by convolving the input

signal with a set of analysis filter impulse response][nhk given by:
















 −






 +=
2

1

2

1
exp][][nk

M

j
npnhk

π
,

where p[n] represents the low-pass prototype filter impulse with 640 filter length, M

represents the number of frequency bands (M=64) and k, the subband index (k=0,…,M-1).

The filtered outputs are subsequently down sampled by a factor M resulting in the

down-sampled QMF outputs])[(][MnhxnX kk ∗= .

The equation above is purely analytical. In practice, the computational complexity can be

reduced by using the poly-phase decomposition method as described in the following steps, in

which an array x consisting of 640 time domain input samples are assumed. Higher indices in

the array correspond to older samples. Figure 3.8 shows the QMF analysis window.

core coder samples

0 1024 2048

0

core coder signal

640 samples

2624576

31

(frame size 2048)

30
29

2
1

Figure 3.8: QMF analysis windowing [17]. Index 0 to 31 represent 32 windows.

The QMF process is as follows.

1. Shift the samples in the array x by 64 positions. The oldest 64 samples are discarded and

the 64 new samples are stored in positions 0 to 63.

2. Multiplying the samples of array x by window c to array Z (][][][ncnxnZ ×= , for n=0 to

 20

639). The 640 window coefficients c are showed in Figure 3.9.

3. Sum the samples according to the formula, ∑
=

+=
4

0

]128[][
j

jnZnu , n=0 to 127, to create the

128-element array u.

4. Calculate 64 new subband samples by the matrix operation X=Mu, where





<≤
<≤








 −+=
.1280

,640
,

128

)12)(5.0(
exp),(

n

knki
nkM

π

X (k,j) corresponds to the j th subband sample of the kth QMF subband.

In the equation, exp() denotes the complex exponential function and i is the imaginary unit.

0 100 200 300 400 500 600
-0.5

0

0.5

1

Index

M
ag

n
itu

d
e

640 Window coefficients

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

Index

P
o

w
er

(Window coefficients)2

Figure 3.9: Coefficients of the QMF bank window

Every loop produces 64 complex-valued subband samples, representing the output from

one subband. For every frame, the filter bank produces 32 subband samples for every subband,

corresponding to a time domain signal of length 2048 samples.

The magnitude responses of the first 4 frequency bands (k=0… 3) of the QMF analysis

bank are illustrated by Figure 3.10.

 21

Figure 3.10: Magnitude responses for the first 4 band of the QMF analysis filter bank.

 (The magnitude for k=0 is highlighted)

3.2.5 Hybrid Filterbank for improved frequency resolution

 At a sampling rate of 44.1 kHz, the 64-bands analysis filter bank results in an effective

bandwidth of approximately 344 Hz, which is considerably wider than the required spectral

resolution at low frequencies. In order to further improve the frequency resolution, the lower

QMF subbands are further split with an additional filter bank based on oddly-modulated Qth

band filter banks. Depending on the QMF subband, two types of filter have been defined.

Table 3.1: Overview of low frequency split

QMF subband p Number of bands Qp Filter

0 8 Type A

1 2

2 2

Type B

)),6(
2

cos(][:

)),6)(
2

1
(

2
exp(][:

−=

−+=

nq
Q

ngGTypeB

nq
Q

jngGTypeA

p
pp

q

p
pp

q

π

π

 22

where pg represents the 12-order prototype filters in QMF subband p, pQ the total number

of sub-subbands in subband p, q the sub-subband index in QMF channel p and n the time

index.

 According to Table 3.1, the first three QMF bands perform sub-subband filtering with

Q0=8, Q1=2, and Q2=2. The remaining QMF subbands that are not filtered are delay

compensated. This delay amounts to 6 QMF subband samples (i.e. 6
0)(−= zzGk for k=

[3…63]). Besides, in order to further reduce the complexity of this configuration, some of the

filter bank outputs have been summed and resulting total 71 output bands. As an example, the

magnitude response of the 8-band sub-filter bank is given in Figure 3.11.

Figure 3.11: Magnitude response of the 8-band sub-filter bank. (subband q=0 is highlighted)

3.2.6 Subband Partition

 To reduce the complexity and the bitrate of spatial parameters, 71 subband signals are

grouped into fewer parameter bands. Since the spatial parameters vary over time and

frequency, the psychoacoustic data indicate that a Bark or Equivalent Rectangular Bandwidth

(ERB) like frequency scale is appropriate for spatial parameters in the following equation:

)100437.0(7.24)(+= ffERB ,

where f is the center-frequency in Hz. Hence, the subband coefficients are non-uniformly

 23

divided into 20 individual parameter bands according to such a perceptual frequency scale. In

each parameter band one set of spatial parameters will be separately estimated and transmitted

to the decoder.

3.2.7 Spatial Audio Parameters

 The Spatial Audio Coding systems employs two conceptual modules with which it is

possible to describe any arbitrary mapping from M to N channels and back, with N<M. The

structure of the system divides the input channels into pairs of channels that are coded with

modules which take two input channels, and produces one output channel (a Reverse

One-To-Two module, R-OTT). However, there are also modules that take three input channels

and produce two output channels are available (a Reverse Two-To-Three module, R-TTT).

3.2.7.1 R-OTT module

 The purpose of the R-OTT module is to create a mono downmix from a stereo input and

extract the relevant spatial parameters. For each frequency band, two parameters are

computed (assuming input signals x1 and x2).

� Channel Level Differences (CLD) – They represent the power ratio of corresponding

time/frequency tiles of the input signals, given by:

.10log10
*,

2
,

2

*,
1

,
1

















=
∑∑

∑∑

n m

mnmn
n m

mnmn

xx

xx

CLD

� Inter-channel coherence/cross-correlation (ICC) – They represent the similarity measure

of the corresponding time/frequency tiles of the input signals, given by:

.Re
*,

2
,

2
*,

1
,

1

*,
2

,
1

















=
∑∑∑∑

∑∑

n m

mnmn

n m

mnmn

n m

mnmn

xxxx

xx

ICC

 24

3.2.7.2 R-TTT module

 The R-TTT module performs a downmix from three (l, c, r) to two (l0, r0) downmix

channels, combined with the generation of the associated spatial parameters. It is appropriate

for modeling the symmetrically downmixed center from a stereo downmix pair. The TTT

module has two modes of operation.

TTT Energy Mode

 The first method comprises an energy-based parameterization, using channel level

difference (CLD) parameters.

.10log10

.10log10

*,
2

,
2

*,
1

,
1

2

*,
2

,
2

*,
1

,
1

*,
1

,
1

1

















=















 +
=

∑∑

∑∑

∑∑

∑∑∑∑

n m

mnmn
n m

mnmn

n m

mnmn
n m

mnmn

n m

mnmn

rr

ll
CLD

cc

rrll
CLD

This method aims at providing the desired output energy ratios of the signals l, r, and c

represented by the energy ratios CLD1 and CLD2.

TTT Prediction Mode

 A second mode of operation for the R-TTT module is based on transmission of up-mix

matrix directly. It makes use of the following parameters.

� Channel Prediction Coefficients (CPC) – The general purpose of the TTT module at the

decoder side is to generate three signals from the transmitted stereo downmix signal pair.

If the up-mix process from the stereo pair (l0, r0) to the signal triplet (l ’, r ’, c’) is written

in matrix notation, the up-mix matrix MCPC is given by:









=

















0

0

'

'

'

r

l
M

c

r

l

CPC

 25

















−−
+−
−+

=

21

21

21

11

21

12

2

1

cc

cc

cc

M CPC

Here, c1 and c2 represent the transmitted CPC parameters. The CPC parameters aim at an

optimum reconstruction of the spatial parameters of the signals l’, r’, and c’ (compared to

the spatial parameters of the corresponding signals at the encoder side). In other words,

given the up-mix matrix MCPC, the parameters c1 and c2 can be optimized according to

several optimization criteria. However, the recovered signal will in general consist of

only partially correlated signals. Therefore, there will be a prediction loss.

� Inter-channel coherence/cross-correlation (ICC) – Unlike the R-OTT module, the ICC

parameter here describes the prediction loss cause by the CPC parameters. It is the power

ratio between the R-TTT module input and reconstructed signals:

'*''*''*'

ccrrll

ccrrll
ICC

⋅+⋅+⋅

⋅+⋅+⋅
=

Here, <.>denotes the expected value operator, and * denotes complex conjugation.

3.2.7.3 Hierarchical Configuration

 To encode 5.1 surround sounds into two-channel stereo in particularly attractive in view

of its backward compatibility with the existing stereo consumer devices. Figure 3.12(a) shows

a block diagram of a 5.1-to-2 encoder for such a typical system consisting of three R-OTT and

an R-TTT module. The signals L, Ls, C, LFE, R and Rs denote the left front, left back, center,

LFE, right front and right back channels, respectively. Another example is illustrated in Figure

3.12(b), which shows how the R-OTT modules can be connected in a tree structure, forming a

5.1-to-1 encoder.

 26

(a) (b)

Figure 3.12: (a) 5.1-to-2 MPEG Surround encoder (b) 5.1-to-1 MPEG Surround encoder

3.3 Combination of MPEG Surround and HE-AAC

 As mention previously, the MPEG Surround coder can be connected to a state-of-the-art

coder. Since the MPEG Surround coder interfaces to the downmix channels by means of a

QMF-domain representation, identical to that standardized in the SBR tool of MPEG-4

HEAAC. In the case that the spatial coder is combined with HEAAC, this QMF

representation is directly available as an intermediate signal in the HEAAC coder. Figure 3.13

shows the block diagram of MPEG Surround-HEAAC encoder. The output signals of the

hybrid synthesis filterbank are directly fed to the SBR tool.

QMF

Analysis

Hybrid

Analysis
Downmix

Spatial

Parameter

Estimation

Hybrid

Synthesis

SBR

Encoder

SBR data

Spatial parameter

AAC

Encoder

AAC data

HEAAC

Encoder

QMF

Synthesis

(QMF domain data)

Figure 3.13: Interconnection of MPEG Surround and HEAAC encoder

 27

Chapter 4

DSP Implementation Environment

 We select the TI DSP platform to implement the MPEG Surround encoder. The DSP

baseboard (SMT395) is made by Sundance which houses Texas Instruments’ TMS320C6416T

DSP chip and Xilinx Virtex-II Pro FPGA. Because our implementation is mainly in software,

the discussions in this chapter focus on the DSP system environment, DSP chip and its

features. Then, the software development tool, Code Composer Studio (CCS), is introduced.

At the end, some important acceleration techniques and features which can reduce stalls or

hazards on DSP system are also included.

4.1 DSP Baseboard (SMT395)

 The block diagram of the Sundance DSP baseboard system (SMT395) is shown in Figure

4.1 [18]. SMT395 utilizes the signal processing technology to provide extreme processing

flexibility and high performance. Some important features of SMT395 are listed as follows.

� 1GHz TMS320C6416T fixed point DSP processor with L1, L2 cache and SDRAM.

� 8000MIPS peak performance.

� Xilinx Virtex-II Pro FPGA. XC2V920-6 in FF896 package.

� Two Sundance High Speed Bus (100MHz, 200MHz) ports which is 32 bits wide.

� Eight 2Gbit/sec Rocket Serial Links(RSL) for interModule.

� 8 MB flash ROM for configuration and booting.

� Six common ports up to 20 MB per second for inter DSP communication.

� JTAG diagnostics port.

 28

DSP
C6416T

512pins, 1.4V

FPGA
Controller

Virtex-II Pro
1.5V core
3.3V I/O

2
x

C
o

m
m

-p
o

rt
s

C
lo

ck
, t

im
e

r,
 in

te
rr

u
p

t
4

x
C

o
m

m
-p

o
rt

s

G
lo

b
a

l B
us

J1 Top primary TIM
Connector

Comm-port 0 & 3

J3 Global Expansion
Connector

J2 Bottom primary TIM
Connector

Comm-port 1, 2, 4 & 5

McBSP/Utopia/GPIO
(all non-TIM I/O pins)

4 LEDs
4 I/O pins

2x Sundance RSL
Connector (Xilinx

Rocket-IO)
28-way Samtec QxE

JTAG Header

2x Sundance High
Speed Bus (SHB)

60-way Samtec QSH

256Mbytes SDRAM
(4×32M×16 133MHz)

EMIFA

8Mbyte Flash

Oscillators

4 LCDs

104 I/O pins
133 MHz EMIFA

8 differential serial links

120 I/O pins, 32-bit Data

Figure 4.1: The block diagram of the Sundance DSP Baseboard system [18]

4.2 DSP chip

 The TMS320C6416T DSP is using the VelociTI.2 architecture [19]. The VelociTI.2 is a

high performance, advanced very long instruction word (VLIW) architecture, making it an

excellent choice for multi-channel, multi-functional, and performance-driven applications.

VLIW architecture can achieve high performance through increased instruction-level

parallelism, and perform multiple instructions during a single cycle. Because parallelism takes

the DSP well beyond the performance capabilities of traditional superscalar systems, it is the

key to high performance.

 The TMS320C6416T DSP chip is the highest-performance fixed-point DSP generation in

the TMS320C64x series. According to [19], TMS320C64x series is also a member of the

TMS320C6000 (C6x) family. The block diagram of the C6000 family is shown in Figure 4.2.

The detailed features of the C6x family devices include:

 29

� Advanced VLIW DSP core

� Eight independent functional units, including two multipliers and six arithmetic

units (ALU).

� 64 32-bit general-purpose registers

� Instruction packing to reduce code size, program fetches, and power consumption.

� Conditional execution of all instructions.

� Non-aligned Load and Store architecture

� Byte-addressable (8/16/32/64-bit data), providing efficient memory support for a

variety applications.

� 8 bit overflow protection

Program cache/program memory
32-bit address
256-bit data

Program fetch
Instruction dispatch
Instruction decode

Register A

.L1 .S1 .M1 .D1

Register B

.D2 .M2 .S2 .L2

Data path A Data path B

Interrupts
Emulation

Test

Control
logic

Control
registers

Additional
peripherals:

Timers,
serial ports,

etc.

Data cache/data memory
32-bit address

8-, 16-, 32-bit data (64-bit data, C64x only)

Power
down

DMA, EMIF

C62x/C64x/C67x CPU

C62x/C64x/C67x device

Figure 4.2: Block diagram of TMS320C6x DSP [23]

 Peripherals such as enhanced direct memory access (EDMA) controller, power-down

logic, and two external memory interfaces (EMIFs) usually come with the CPU, while

peripherals such as serial ports and host ports are on only certain devices. In the following

 30

sections, three major parts of C64x DSP chip are introduced respectively. They are central

processing unit (CPU), memory, and peripherals.

4.2.1 Central Processing Unit (CPU)

 Besides eight independent functional units and sixty-four general purpose registers, the

C64x CPU consists of the program fetch unit, instruction dispatch unit, instruction decode

unit, two data path, interrupt logic, several control registers and two register files. The DSP

chip architecture is illustrated in Figure 4.3.

 The instruction dispatch and decode units could decode and arrange the eight instructions

to eight function units respectively. The eight function units in the C64x architecture could be

further divided into two data paths, A and B. Each path consist four functional units, including

one for multiplication operations (.M), another one for logical and arithmetic operations (.L),

another one for branch, bit manipulation, and arithmetic operations (.S), and another one for

loading/storing, address calculation and arithmetic operation (.D).

C64x CPU

Dual 64 bits load/store paths

Figure 4.3: C64x DSP chip architecture [23]

 31

 Two cross-paths (1x and 2x) allow functional units from one data path to access and

32-bit operand to the register file on the other side. There can be a maximum of two

cross-path source reads per cycle. There are 32 general purpose registers in each data path,

and some of them are reserved for specific addressing or used for conditional instructions.

Each functional unit has its own 32-bit bus for writing into a general purpose register file.

4.2.2 Memory and Peripherals

 The C64x uses two-level cache-based memory architecture [21] and has a powerful set

of peripherals. Level 1 cache is split into level 1 program (L1P) cache and level 1 data (L1D)

cache. The size of each L1 cache is 16kB. The level 2 memory/cache (L2) consists of a 1MB

memory space and can be optionally split into cache (up to 256 KB) and L2 SRAM

(addressable on-chip memory). Besides, it also has one external memory which is a 256 MB

SDRAM operated at 133 MHz.

 C64x DSP chips also contain some peripherals for supporting with off-chip memory

options, co-processors, host processors, and serial devices. The peripherals are enhanced

direct memory access (EDMA) controller, Host-Port interface (HPI), three 32-bit general

purpose timers, IEEE-1149.1 JTAG interface and etc.

 The EDMA controller transfers data between regions in the memory map without the

intervention by CPU. It could move the data from internal memory to external memory or

from internal peripherals to external devices.

 The HPI used for communication between the host PC and the target DSP. It is a

16/32-bit wide parallel port through which a host processor could directly access the CPU’s

memory space. The host can direct access to memory-mapped peripherals and has ease of

access.

 The C64x has three 32-bit general-purpose timers that are used to time events, count

events, generate pulses, interrupt the CPU and send synchronization events to the DMA

controller. The timer could be clocked by an internal or an external source.

 32

4.3 TI DSP Code Development Environment

 In this section, we will give a briefly introduction about the coding development

environment in this project. The Code Composer Studio (CCS) and the coding development

flow are illustrated.

4.3.1 Code Composer Studio (CCS)

 The Code Composer Studio (CCS) is a software integrated development environment

(IDE) for building and debugging programs. We briefly describe some of its features related

to our implementation below. The details can be found in [20].

� Real time analysis

� Compile codes and generate Common Object File Format (COFF) output file.

� Provide debug options such as step over, step in, step out, run free, and so on.

� Watches any memory sections when the DSP halts.

� Chip support libraries (CSL) to simplify device configuration.

� Provide debug options such as step over, step in, step out, run free, and so on.

� Support optimized DSP functions such as FFT, filtering, convolution.

� Count the instruction cycles between successive profile-points.

� Arrange code/data to different memory space by linker command file

� Probes a PC file stream into or from the target memory location

 We mainly use the CCS tool for debugging, refining, optimizing, and implementing our

C codes on DSP. The profiling function helps us to evaluate if our changes to the codes are

better or not.

 33

4.3.2 Code Development Flow

 The DSP code development can be divided into three steps.

� Step1: Develop the C code without any regard to the particular structure of the

C64x. Then, use the debugger to profile the code to identify any inefficient sections

in the code. If the performance is not satisfactory, go to step2.

� Step2: Use DSP intrinsic, shell options, and coding techniques for code generation

to improve the C codes. Refine the C code procedures such as compiler options,

intrinsics, statement, data type modifiers, and code transformations. If the code

efficiency is still not sufficient, proceed to step3.

� Step3: Extract the most time-critical areas and rewrite the code in linear assembly.

Then, use assembly optimizer to optimize the code.

In general, we do not go to setp3 because the linear assembly is too detail and it takes

much more time than in step2. Figure 4.4 shows the steps of the software development

flow [20].

Write C Code

Compiler

Profiler

Efficient?

Complete

Yes

No

Refine C Code

Compiler

Profiler

Efficient?

Complete

Yes

Phase 1
Develop C Code

No

More C
Optimization?

Yes

Assembler

Profiler

Efficient?

Yes
Complete

No

Phase 2
Refine C Code

Phase 3
Write linear assembly

Assembly Code

Figure 4.4: Code development flow [20]

 34

4.4 DSP Code Acceleration Methods

 In this section, we will describe several methods that can accelerate our code and reduce

the execution time on the C64x DSP. Some of these methods are supported by the features of

C64x DSP system.

4.4.1 Compiler Option Setting

 The CCS compiler translates the source program in more efficient assembly code, and it

supports several options to optimize the code. The C/C++ complier is able to perform various

optimizations to reduce code size and improve execution performance. The easiest way to

invoke optimization is to use the cl6x shell program, specifying the -on option on the cl6x

command line, where n denotes the level of optimization (0, 1, 2, 3) which controls the type

and degree of optimization:

Table 4.1: Options that control optimization [22]

Optimization Level Description

-o0

(Register)

� Performs control-flow-graph simplification

� Allocates variables to registers

� Performs loop rotation

� Eliminates unused code

� Simplifies expressions and statements

� Expands calls to functions declared inline

-o1

(Local)

Performs all -o0 optimization, and:

� Performs local copy/constant propagation

� Removes unused assignments

� Eliminates local common expressions

-o2

(Function)

Performs all -01 optimizations, and:

� Performs software pipelining

� Performs loop optimizations

� Eliminates global common sub-expressions

� Eliminates global unused assignments

� Converts array references in loops to incremented pointer form

 35

� Performs loop unrolling

-o3

(File)

Performs all -o2 optimizations, and:

� Removes all functions that are never called

� Simplifies functions with return values that are never used

� Inline calls to small functions

� Reorders function declarations so that the attributes of called functions are

known when the caller is optimized

� Propagates arguments into function bodies when all calls pass the same value in

the same argument position

� Identifies file-level variable characteristics

4.4.2 Fixed-point Coding

 The C64x DSP is a fixed-point processor, so it can perform fixed-point operations only.

Although C64x DSP can simulate floating-point processing, it takes a lot of extra clock cycle

to perform the same operation. Table 4.2 is the test results of C64x DSP processing time of

instructions “add” and “mul” for different datatypes. The “char”, “short”, “int”, and “long”

are fixed-point data types, and the “float” and “double” are floating-point data types. We can

see clearly that the floating-point operations need more than 10 times execution cycles

comparing to the fixed-point operations. In order to accelerate our program on the C64x DSP,

it is necessary to convert the datatypes from floating-point to fixed-point. However, this

modification may cause the data losing some accuracy.

Table 4.2: Processing time on the C64x DSP for different data types

Assembly

Instruction

char

8-bit

short

16-bit

int

32-bit

long

40-bit

float

32-bit

double

64-bit

add 1 1 1 2 77 146

mul 2 2 6 8 54 69

 36

4.4.3 Loop Unrolling

 Loop unrolling expands the loops so that all iterations of the loop appear in the code.

It often increases the number of instructions available to execute in parallel. If the codes have

conditional instructions, sometimes the compiler does not sure that the branch will be happen

or not. It takes more clock cycles to wait for the decision of branch operation. Thus, we can

unroll the loop to avoid some of the overhead for branching. Example 4.1 is the loop unrolling

and Table 4.3 shows the cycles and code size.

(a)
/*Before unrolling*/

int i,a=0,b=0;
for (i=0;i<8;i++)
{
a+=i;
b+=i;
}

(b)
/*After unrolling*/

int i=0,a=0,b=0;
a+=i; b+=i; i++;
a+=i; b+=i; i++;
a+=i; b+=i; i++;
a+=i; b+=i; i++;
a+=i; b+=i; i++;
a+=i; b+=i; i++;
a+=i; b+=i; i++;
a+=i; b+=i; i++;

Example 4.1 Loop unrolling.

Table 4.3: Comparison between Rolling and Unrolling

(a)Before Unrolling (b)After Unrolling

Execution Cycles 436 206

Code Size 116 479

4.4.4 Intrinsics and Packet Data Processing

 The TI C6000 compiler provides many special functions that map C codes directly to

inlined C64x instructions, to increase C code efficiently. These special functions are called

intrinsics. Figure 4.5 shows some examples of the intrinsic functions for the C6000 DSP. The

entire list of intrinsics for the C6000 DSP can be found in [20].

 37

Figure 4.5: Intrinsic functions of the TI C6000 series DSP (partial list) [20]

Use a single load or store instruction to access multiple data that consecutively located in

memory in order to maximize data throughput. It is so called the single instruction multiple

data (SIMD) method. For example, if we can place four 8-bit data or two 16-bit data in a

32-bit space, we may do four or two operations in one clock cycle. If we use the SIMD

method, then we can improve the code efficiency substantially. Some intrinsic functions

enhance the efficiency in a similar way.

4.4.5 Register and Memory Arrangement

When the accessed data are located in the external memory, it may need more clock

cycles to transfer data to CPU. We can use registers to store data in order to reduce transfer

time in operation. In DSP code, the variables, pointer, malloc functions, C codes and so on

will locate data in memory. We can arrange the link.cmd file which is the memory allocation

file. We arrange different type of data in different memory space because of acceleration

consideration. It also provides the “CODE_SECTION” and”DATA_SECTION” key words

which can allocate parts of C code or data in the internal memory in order to speed.

 38

4.4.6 Using Marcos

Because the software-pipelined loop can not contain function calls, it takes more clock

cycles to complete the function call. Hence, we can change the functions to the “define”

macros under some conditions. In addition, replacing the function with the macro can cut

down the code for initial function definition and reduce the number of branches. However,

macros are expanded each time they are called if the function has a number of instructions, so

it is not efficient in memory usage.

4.4.7 Linear Assembly

When we are not satisfied with the efficiency of assembly codes which are generated by

the TI CCS compiler, we can replace some codes by the assembly codes and then optimize the

assembly directly. But this process generally is too detail and very time consumption in

practice. Hence, we will do this process at the last step if we have very strict constrains in the

processing performance and we have no other algorithms choice.

 39

Chapter 5

Acceleration of MPEG Surround

Encoder on DSP Platform

 In this chapter, we present several acceleration methods for the MPEG Surround encoder.

We will first introduce the MPEG Surround reference software. By analyzing the complexity

of the reference encoder, we determine which parts are required to speed up. Then, we

propose several methods to reduce the computing time. After proposing the algorithms, we

also implement a MPEG Surround-HEAAC encoder on the DSP platform. Finally, we will

show the acceleration results.

5.1 Software Environment

5.1.1 MPEG Surround RM0 Reference Software

 The MPEG Surround group of the MPEG standard committee provides a piece of

reference software [25]. It is written in the C programming language for the codec specified

by ISO/IEC 23003-1. It was originally developed by Agere Systems, Coding Technologies,

Fraunhofer IIS, and Philips. We will introduce the MPEG Surround reference encoder in the

next section.

5.1.2 Command Line Switches

 In the reference software, there are two command line arguments that control the encoder

configuration. The first argument is Tree-Config, which defines the tree structure

configuration according to Table 5.1. The 5151 and 5152 configurations make use of five

 40

R-OTT modules to produce a mono downmixed output. The encoder with the 525

configuration consists of three R-OTT modules and an R-TTT module, and produces a stereo

output.

Table 5.1: Tree structure of the MPEG Surround reference software encoder [10]

5151 Tree Structure

5152 Tree Structure

525 Tree Structure

 41

 The reference encoder provides two different time resolutions to extract the spatial

parameters. In a spatial frame, there are 32 time slots. The other argument, ParamSlot, defines

the time slot to which each parameter set applies. The value of ParamSlot could be set to 16

or 32. In other words, there could be one or two sets of parameter extracted in a spatial frame.

Table 5.2 shows the average spatial parameter bit-rate of different argument settings.

Table 5.2: Bitrates of different argument setting

Tree Strcture

5151 5152 525

ParamSlot =16 20.6 Kbps 20.7 Kbps 16.4 Kbps

ParamSlot =32 9.8 Kbps 9.8 Kbps 7.9 Kbps

5.2 MPEG Surround Encoder Complexity Analysis

 We profile the MPEG Surround encoder to find which part takes the most computation

time. There are two methods in taking the profiles. One is using the C64xx simulator and the

other is using the C6416 simulator. The optimization level is set to -o3 (file level). The

profiling results using two methods are shown in Figures 5.1 and 5.2, respectively. The test

audio sequence is “choir.wav”, which is a 5.1 channel sequence with a sampling rate at 44.1k

Hz. The Tree-Config setting is 5151 and the ParamSlot is set to 32.

 The C64xx simulator simulates the execution cycles of the C64xx core processor with a

flat memory system. That is, it does not simulate the cycles needed to access the peripherals

and cache system. In contrast, the C6416 simulator supports L1D, L1P, L2 cache, EDMA,

Timer, SDRAM and Generic sync RAM Memory models. Thus, the profiling result of the

C6416 simulator is closer to the actual cycles on the DSP hardware.

 42

Table 5.3: Cycles on different simulators

 C64xx Simulator C6416 Simulator

Total cycles 6,652,171,801 100% 109,392,624,928 100%

Initialization 546,109,415 8.2% 10,892,715,255 10.0%

QMF Analysis 4,044,561,270 60.8% 59,290,420,712 54.2%

Hybrid Analysis 1,105,261,974 16.6% 20,850,080,358 19.1%

Ottbox 65,800,045 1.0% 516,609,513 0.5%

Hybrid Synthesis 323,692 0.004% 4,749,476 0.004%

QMF Synthesis 871,205,627 13.1% 17,506,903,336 16.0%

others 18,909,778 0.3% 331,146,278 0.3%

MPEG Surround encoder profile using C64xxMPEG Surround encoder profile using C64xxMPEG Surround encoder profile using C64xxMPEG Surround encoder profile using C64xx

Hybrid Synthesis

others

Ottbox

QMF Analysis

Initialization

QMF Synthesis

Hybrid Analysis

Figure 5.1: Profiling of the MPEG Surround encoder on the C64xx simulator

 43

MPEG Surround encoder profile using C6416MPEG Surround encoder profile using C6416MPEG Surround encoder profile using C6416MPEG Surround encoder profile using C6416

Hybrid Analysis

QMF Synthesis

Initialization

QMF Analysis

Ottbox

others

Hybrid Synthesis

Figure 5.2: Profiling of the MPEG Surround encoder on the C6416 simulator

5.3 Memory System

 From the profiling result, the total cycles of the C6416 simulator are approximately

sixteen times of that of the C64xx simulator, because the C64xx simulator ignores the

memory access of the instructions and data. In other words, about 94% of the total cycles are

wasted for memory stalls. It means that the system spends a lot time on transferring data. If

we can use the memory system more efficiently, the stall cycles can be decreased.

 We can collect the cache information as it is generated by the C6416 simulator, and the

result is shown on Table 5.4. The core cycles are only 6% of the total cycles, and the data

cache hit rate is less than 1%. In the memory hierarchy of our DSP platform, the L1D cache is

 44

too small so that the data cache miss frequently occurs. When data cache miss occurs, it

requires additional stall cycles to access data in the external memory. However, as mention in

section 4.2.2, the architecture of TI C6000 family provides two-level of cache memory. After

enabling the L2 cache, it brings in a great improvement as shown on Table 5.4. The data cache

hit rate increases to 99%, so the stall cycles decrease significantly. The percentage of the core

cycles also arises to 94%. In this project, the two-level cache configuration gives the most

benefit.

Table 5.4: The effect of using L2 cache memory

C6416 Simulator Original L2 Cache

Event Cycles Percentage Cycles Percentage

Total Cycles 109,392,624,928 N/A 7,046,624,226 N/A

Core cycles(excl. stalls) 6,650,964,730 6.06 6,650,933,220 94.1

NOP cycles 1,466,138,665 22.04 1,466,131,719 22.04

Stall Cycles 102,761,643,954 93.94 415,647,210 5.9

Cross Path Stalls 20,708,884 0.02 20,708,819 0.29

L1P Stall Cycles 66,534,794 0.06 107,803,638 1.53

L1D Stall Cycles 102,675,148,392 93.86 286,779,377 4.07

Instruction cache hits 1,784,119,231 98.31 1,774,843,175 97.8

Instruction cache misses 30,710,512 1.69 39,996,118 2.2

Data cache references 1,365,575,405 N/A 1,365,580,304 N/A

Data cache reads 675,741,828 49.48 675,744,284 49.48

Data cache writes 689,833,562 50.52 689,836,072 50.52

Data cache hits 6,448,798 0.47 1,359,374,412 99.55

Data cache read hits 6,238,724 0.92 671,482,721 99.37

Data cache write hits 210,074 0.03 687,891,691 99.72

Data cache misses 1,359,126,607 99.53 6,205,892 0.45

Data cache read misses 669,503,116 99.08 4,261,532 0.63

Data cache write misses 689,623,491 99.97 1,944,360 0.28

 45

5.4 Floating-point to Fixed-point Conversion

The MPEG Surround reference software is written in C code with floating-point

datatypes. However, it is inefficient to implement a floating-point program on a fixed-point

DSP such as C64x. Hence, in order to reduce the execution clock cycles, it is necessary to

convert the floating-point code to the fixed-point codes.

5.4.1 Word-length Determination

During the conversion, we collect the dynamic range information in the execution

functions. Based on the collected information, we choose an appropriate word-length to each

variable. The word-lengths must be carefully designed to avoid overflow. Figure 5.3 shows

the converted fixed-point data word-lengths between the modules in the MPEG Surround

encoder.

Figure 5.3: Data word-lengths of the fixed-point encoder

The input and output waveforms are stored in 16-bit PCM files. After passing through

the analysis QMF filters, the input data are transformed to the sub-band domain with a 16-bit

representation. The low frequency QMF coefficients are fed into a second-stage filterbank.

The output coefficients of the analysis hybrid filterbank are stored in a 32-bit datatype to

maintain their accuracy. Then, the R-Ottboxes perform downmix process and the word-length

of the downmixed signal (in the sub-band domain) is 32 bits.

 46

5.4.2 Simulation Results on DSP

 Table 5.5 shows the acceleration result of the fixed-point codes. The result is based on

the C6416 simulator with L2 cache enabled. We notice that the execution cycles are

significantly reduced.

Table 5.5: Performance of fixed-point codes

 Floating-point (Ori.) Fixed-point Reduction ratio (%)

Total cycles 7,046,624,226 47,155,001 99.33

Initialization 553,634,278 256,399 99.95

QMF Analysis 4,315,174,856 20,966,993 99.51

Hybrid Analysis 1,137,277,617 14,947,777 98.69

Ottbox 66,845,629 1,352,341 97.98

Hybrid Synthesis 525,237 294,197 43.99

QMF Synthesis 947,689,855 6,136,115 99.35

others 25,476,754 3,201,179 87.43

 The fixed-point conversion procedure introduces distortion due to quantization error, so

we compare the converted codes with the original floating-point ones and measure the data

precision loss in signal-to-noise ratio (SNR).

Table 5.6: SNR due to fixed-point conversion

 SNR

Analysis Filterbank 65.25dB

Synthesis Filterbank 65.04dB

Overall 50.99dB

 47

 Now again, we profile the fixed-point version of the MPEG Surround reference encoder.

The result is shown in Figure 5.4. We notice the QMF bank and Hybrid analysis filterbank are

the major parts of the MPEG Surround encoder. We propose several complexity reduction

techniques in the following sections. Our goal is to reduce the codec complexity while not to

degrade its output audio quality.

MPEG Surround encoder profile using C6416MPEG Surround encoder profile using C6416MPEG Surround encoder profile using C6416MPEG Surround encoder profile using C6416

(cache enable)(cache enable)(cache enable)(cache enable)

Hybrid Synthesis

others

Ottbox

QMF Analysis

Initialization

QMF Synthesis

Hybrid Analysis

Figure 5.4: Profiling of the MPEG Surround encoder on the C6416 simulator (cache enabled)

 48

5.5 Fast QMF Bank Algorithms

 The QMF analysis and synthesis procedures spend the most part of the DSP processing

time (about 73%) in the MPEG Surround encoder, so we want to speed up this part to improve

total system performance.

5.5.1 Problem Definition

 As we mention previously in section 3.2.4, the matrix operation in the analysis QMF is

defined as:

∑
=

<≤






 −+=

127

0

640,
128

)12)(5.0(
exp)()(

n

k
nki

nukX
π

 (5.1)

 On the other hand, the matrix operation in the synthesis QMF is:

1280,
128

)2552)(5.0(
exp)(

64

1
)(

63

0

<≤






 −+= ∑

=

n
nki

kXnv
k

π
 (5.2)

 From the equations above, it requires 8192 multiplications and 8064 additions in

performing a 64-channel analysis QMF, and 8192 multiplications and 8128 additions in

performing a 64-channel synthesis QMF. The computational complexity is huge, so we need

fast algorithms for QMF to reduce the complexity.

5.5.2 Analysis Quadrature Mirror (AQMF) Bank

 First, we review the type-IV Discrete Cosine Transform (DCT) and Discrete Sine

Transform (DST):

 49

DCT-IV: Nk
N

nk
nxkX

N

n

<≤






 ++=∑

−

=

0,
2

)12)(5.0(
cos)()(

1

0

π
 (5.3)

DST-IV: Nk
N

nk
nxkX

N

n

<≤






 ++=∑

−

=

0,
2

)12)(5.0(
sin)()(

1

0

π
 (5.4)

 Second, we separate (5.1) into real part and imagery part, shown as (5.5).

)()()(kiXkXkX ir += (5.5)

where

640,
128

)12)(5.0(
cos)()(

127

0

<≤






 −+=∑

=

k
nk

nukX
n

r

π
 (5.6)

640,
128

)12)(5.0(
sin)()(

127

0

<≤






 −+=∑

=

k
nk

nukX
n

i

π
 (5.7)

 Consider the real part only

∑∑
== 






 −++







 −++







 ++







 −+=

127

65

64

2 128

)12)(5.0(
cos)(

128

)12)(5.0(
cos)(

128

)1)(5.0(
cos)1(

128

)1)(5.0(
cos)0()(

nn

r

nk
nu

nk
nu

k
u

k
ukX

ππ

ππ

 (5.8)

 In (5.8), there exist symmetrical relationships between the cosine terms:

,
128

)1)(5.0(
cos

128

)1)(5.0(
cos







 +=







 −+ kk ππ

 (5.9)

and

∑∑
== 






 −+−−=







 −+ 64

2

127

65 128

)12)(5.0(
cos)129(

128

)12)(5.0(
cos)(

nn

nk
nu

nk
nu

ππ
 (5.10)

By applying (5.9) and (5.10) to (5.8), yield:

 50

() ()

() ()∑

∑

=

=







 ++−−++







 ++=







 −+−−+







 ++=

63

1

64

2

128

)12)(5.0(
cos)128()1(

128

)1)(5.0(
cos)1()0(

128

)12)(5.0(
cos)129()(

128

)1)(5.0(
cos)1()0()(

n

n
r

nk
nunu

k
uu

nk
nunu

k
uukX

ππ

ππ

 (5.11)

Compare (5.11) with (5.3), by denoting

641),128()1()(

),1()0()0(

<≤−−+=
+=

nnununu

uuu

r

r (5.12)

(5.11) can be modified as:

640,
128

)12)(5.0(
cos)()(

63

0

<≤






 ++=∑

=
k

nk
nukX

n
rr

π
 (5.13)

Thus, the real part of the QMF coefficient can be computed by applying a 64-point DCT-IV to

)(nur .

Similarly, by denoting

641),128()1()(

),1()0()0(

<≤−++=
+−=

nnununu

uuu

i

i (5.14)

The imagery part of the QMF coefficient can be computed by applying DST-IV:

640,
128

)12)(5.0(
sin)()(

63

0

<≤






 ++=∑

=
k

nk
nukX

n
ii

π
 (5.15)

In summary, the analysis QMF procedure can be decomposed into a 64-point DCT-IV of

)(nur and a 64-point DST-IV of)(nui with a few additional permutations. The signal flow

graphs of the decomposition are shown in Figures 5.5 and 5.6, respectively.

 51

64-point

DCT-IV

ur(0)

ur(1)

ur(2)

ur(3)

ur(4)

ur(59)

ur(60)

ur(61)

ur(62)

ur(63)

ur(5)

u(0)

u(1)

u(2)

u(3)

u(4)

u(5)

u(6)

u(123)

u(124)

u(125)

u(126)

u(127)

u(60)

u(61)

u(62)

u(63)

u(64)

u(65)

u(66)

u(67)

u(68)

u(69)

.

.

.

.

.

.

.

.

.

.

.

.

Xr(0)

Xr(1)

Xr(2)

Xr(3)

Xr(4)

Xr(59)

Xr(60)

Xr(61)

Xr(62)

Xr(63)

.

.

.

.

Figure 5.5: Signal flow graph of fast analysis QMF (real part), where the dotted lines denote

subtract operations.

 52

64-point

DST-IV

ui(0)

ui(1)

ui(2)

ui(3)

ui(4)

ui(59)

ui(60)

ui(61)

ui(62)

ui(63)

ui(5)

u(0)

u(1)

u(2)

u(3)

u(4)

u(5)

u(6)

u(123)

u(124)

u(125)

u(126)

u(127)

u(60)

u(61)

u(62)

u(63)

u(64)

u(65)

u(66)

u(67)

u(68)

u(69)

.

.

.

.

.

.

.

.

.

.

.

.

Xi(0)

Xi(1)

Xi(2)

Xi(3)

Xi(4)

Xi(59)

Xi(60)

Xi(61)

Xi(62)

Xi(63)

.

.

.

.

Figure 5.6: Signal flow graph of fast analysis QMF (imagery part), where the dotted lines

denote subtract operations.

 53

5.5.3 N/2-point FFT Algorithm for DCT-IV and DST-IV

 There are many algorithms published for calculating the DCT-IV and DST-IV to reduce

the total number of multiplications or of all arithmetic operations required [26][27]. However,

these proposals may not implement well on a very restricted regular structure such as DSP. In

[28], R. Gluth proposes a realization for these transforms based on a standard FFT. Since the

optimized FFT programs for TI c6x DSP are available, we adopt the efficient FFT algorithm

to improve the performance of DCV-IV and DST-IV.

 We will describe the forward operation steps of DCT-IV and DST-IV here, and the

derivation of this algorithm can be found in Appendix A. The computational steps for DCT-IV

are as follows.

1. Compute)(212 rNrr jxxu −−+=

2. Multiply the pre-twiddle:
)

8

1
(

'
+−

=
r

N
j

rr euu
π

3. Perform N/2-point complex FFT: }{ ''
rk uFFTU =

4. Multiply the post-twiddle:
)

8

1
(

'
+−

=
k

N
j

kk eUU
π

5. Finally, the coefficients of the DCT-IV output are derived from kU as:

 }Re{
2

1
2 k
IV
k UC = ; }Im{

2

1
21 k

IV
kN UC =−−

Similarly, the sequence ru for calculation of the DST-IV is

)(212 rNrr jxxu −−−= ,

and the output of DST-IV are assigned to the kU using the rules

 }Im{
2

1
2 k
IV
k US = ; }Re{

2

1
21 k

IV
kN US =−−

We summarize the FFT-based DCT-IV and DST-IV algorithms by the flow diagram shown in

Figure 5.7.

 54

)
8

1
(+− r

N
j

e
π

)
8

1
(+− k

N
j

e
π

rx ru

kU IV
k

IV
k SC ,

Figure 5.7: Block diagram of the fast DCT-IV and DST-IV [28]

5.5.4 Using DSP Library

 The TI C64x Digital Signal Processor Library (DSPLIB) is an optimized DSP Function

Library for C programmers using TMS320C64x devices [30]. It includes many C-callable,

assembly-optimized, general-purpose signal-processing routines. By using these routines, the

execution speeds are considerably faster than the equivalent codes written in C language.

 There are several FFT/IFFT functions available in the DSPLIB. They can be used to

replace the C-coded FFT functions in the fast DCT/DST algorithm. The steps of installing the

DSPLIB under the Code Composer Studio (CCS) are described as follows.

� Link the DSP Library to the application

 Ex: \CCStudio_v3.1\c6400\dsplib\lib\dsp64x.lib

� Include the appropriate header file

Ex: dsp_fft16x16r.h

� Follow the DSP Library API to use the kernel

 55

Figure 5.8: TI Complex FFT library API [30]

 We compare the 32-point complex FFT in the DSPLIB with the C-complied FFT

function. Table 5.7 shows the results. The speed of DSPLIB FFT is about 3.8 times faster than

that of the C-complied FFT.

Table 5.7: Comparison of C-complied FFT and DSPLIB FFT

 Clock Cycle Code Size (bytes)

C-complied FFT 740 1804

DSPLIB FFT 196 856

5.5.5 QMF Bank Acceleration Results

 We have modified and accelerated the AQMF bank in the fixed-point version of the

MPEG Surround encoder. In addition, the synthesis QMF (SQMF) bank can be accelerated in

a similar way. Tables 5.8 and 5.9 show the final results. We notice that the reduction ratios of

execution cycles are 78% and 73% in the AQMF bank and the SQMF bank, respectively.

 56

Table 5.8: The acceleration result of AQMF bank

Test Sequence
Original AQMF

bank (cycles)

Accelerated AQMF

bank (cycles)
Reduction ratio (%)

Choir 20,966,993 4,343,490 79.28

ts30 20,952,076 4,421,292 78.90

approaching_tunnel 20,972,479 4,442,427 78.82

carneval 21,002,679 4,472,220 78.71

fountain_music 20,989,067 4,438,179 78.85

Table 5.9: The Acceleration result of the SQMF bank

Test Sequence
Original SQMF

bank (cycles)

Accelerated SQMF

bank (cycles)
Reduction ratio (%)

Choir 6,136,115 1,665,333 72.86

ts30 6,134,446 1,628,339 73.46

approaching_tunnel 6,134,567 1,628,460 73.45

carneval 6,131,875 1,625,768 73.49

fountain_music 6,130,129 1,624,012 73.51

5.6 Fast Hybrid Filterbank Algorithms

 The lowest three QMF subbands are fed through a second complex-modulated filterbank

to further enhance the low frequency resolution. The sub-filterbank has a filter length of L =12,

and the analysis filter for QMF sub-band p is given by:

][][][ngnsnS p
q

pp
q ∗= (5.16)

where









−=









−+=

)6(
2

cos][][

)6)(
2

1
(

2
exp][][

2,1
2,12,1

0
00

nq
Q

ngng

nq
Q

jngng

q

q

π

π

 57

where gp[m] is the prototype filter, Qp, the number of frequency bands, and

1,...,1,0 −= pQq ,the frequency index of the resulting sub-subband signals][nSp
q .

 The sub-filter is time consuming and complex because the sub-filterbank outputs do not

down-sampled. However, it can be also implemented by using the DFT algorithms.

5.6.1 Fast Analysis Hybrid Filterbank

 The sub-filterbank splits the 0th QMF band coefficients into 8 sub-subbands and it splits

the 1st and 2nd QMF band coefficients into 2 sub-subbands, respectively. We derive the fast

algorithm for band 0 only because the others are considerably simple. For simplicity, the

QMF band index p is omitted, and (5.16) yields:







 −+−=∑

=

)6)(
2

1
(

8

2
exp][][][

12

0

mqjmgmnsnS
m

q

π
 (5.17)

Change the index expression

218 mmm += ,
7,...,0

1,0

2

1

=
=

m

m
 (5.18)

With (5.17), this yields

∑
= 






 −+=

7

0
2

2

2
)6)(

2

1
(

8

2
exp][][

m
mq mqjnanS

π
 (5.19)

where

∑
=

−−+−=
1

0
2121

1

1

2
]8[]8[)1(][

m

m
m mmnsmmgna (5.20)

Equation (5.20) can be viewed as a polyphase decomposition of][ng

By expending the exponential term in (5.19):

∑
=

−







 −=

7

0
2

)6(
8

2

2

2
)6(

8

2
exp)][(][

m

mj

mq mqjenanS
ππ

 (5.21)

 58

Compare (5.21) with the 8-point complex FFT, the above equations show that the hybrid

analysis filterbank can be calculated by the following steps:

1. Perform the polyphase filtering to compute
2ma by equation (5.20).

2. Circularly shift the indices of
2ma by 6: 8)%6(

'

22 += mm aa

3. Multiply the twiddle factor: 8'
2

22

πm
j

mm eab =

4. Perform the 8-point complex FFT: }{
2mq bFFTS =

The flow diagram of the analysis hybrid filterbank is shown in Figure 5.9. Again, the clock

cycles of FFT can be further reduced by using the DSPLIB.

)(8
0 zG

)(8
1 zG

)(8
2 zG

)(8
3 zG

)(8
4 zG

)(8
5 zG

)(8
6 zG

)(8
7 zG

1−z

1−z

1−z

1−z

1−z

1−z

1−z

0
8W

1
8W

2
8W

3
8W

4
8W

5
8W

6
8W

7
8W

][ns][0 nS

][1 nS

][2 nS

][3 nS

][4 nS

][5 nS

][6 nS

][7 nS

Figure 5.9: Signal flow graph of the fast analysis hybrid filterbank

 59

5.6.2 Analysis Hybrid Filterbank Implementation Results

 Table 5.10 shows the implementation results of the Analysis Hybrid filterbank. By using

fast algorithms, the reduction ratio of the execution cycles is about 77% in the analysis hybrid

filterbank.

Table 5.10: The acceleration result of analysis hybrid filterbank

Test Sequence
Original Analysis

Hybrid FB (cycles)

Accelerated Analysis

Hybrid FB (cycles)
Reduction ratio (%)

Choir 14,947,777 3,404,386 77.22

ts30 14,940,437 3,405,809 77.20

approaching_tunnel 14,946,461 3,402,930 77.23

carneval 14,940,967 3,397,464 77.26

fountain_music 14,948,398 3,405,428 77.22

5.7 LFE Channel Acceleration

 In a standard 5.1-channel audio playback system, the ‘.1’ channel means a band-limited

Low Frequency Effects (LFE) channel. In contrast to the main channels, the LFE channel

delivers bass-only information and has no direct effect on the perceived directionality of the

reproduced soundtrack. Figures 5.10 and 5.11 show the spectrums of the front-left channel

and the LFE channel, respectively. We notice that the signal of the front-left channel almost

covers the full bandwidth while that of the LFE channel only has a frequency range below

500 Hz. Hence, in order to accelerate the encoder, we simplify the calculations associated

with the LFE channel.

 60

Figure 5.10: The spectrum of the front-left channel signal

Figure 5.11: The spectrum of the LFE channel signal

 We analyze the output signal of the analysis QMF bank, and find that the 0th QMF

subband contains most of energy in the LFE channel. So we adopt a simplified QMF bank for

the LFE channel, in which only the output signals in the lowest band will be computed. The

outputs in the 0th band are calculated by simply applying a FIR filter with the QMF

coefficients. As for the other subbands (1st to 63rd bands), the output signals are directly

assigned to zero.

 In the analysis hybrid filterbank, the frequency resolution of the lowest three QMF bands

is increased. For the LFE channel, only the 0th band contains information, so the sub-filters of

 61

the 1st and 2nd bands can be removed. Figure 5.12 shows the structure of the simplified

analysis filterbanks for the LFE channel. Compared to the main channels, it only calculates

the output coefficients corresponding to the QMF band 0.

)(0 ωH M

)(0
1 ωG

)(0
7 ωG

),0(nX

)(0
0 ωG

),1(nX

),2(nX

)(0
6 ωG

)(0
5 ωG

)(0
4 ωG

)(0
3 ωG

)(0
2 ωG

),3(nX

),4(nX

),5(nX

X

Figure 5.12: Simplified analysis filterbanks for the LFE channel

 Table 5.11 shows the acceleration results for the LFE channel. The execution cycles in

the filterbanks of the LFE channel are about 38% reduced.

Table 5.11: Acceleration result of LFE channel

Test Sequence
Original LFE

(cycles)

Accelerated LFE

(cycles)
Reduction ratio (%)

Choir 1,291,313 804,800 37.68

ts30 1,290,539 817,511 36.65

approaching_tunnel 1,292,189 799,473 38.13

carneval 1,296,264 799,474 38.32

fountain_music 1,295,359 799,475 38.28

 62

5.8 Implementation of MPEG Surround-HEAAC Encoder

 In the previous work, Huang has implemented the HEAAC encoder on the C64x DSP

platform. The source code of the HEAAC is originally provided by 3GPP [31]. He adopted

several acceleration methods to speed up the calculations on the DSP [32]. We like to extend

Huang’s work by including the MPEG Surround encoder together with the HEAAC encoder.

The combined MPEG Surround-HEAAC encoder is able to compress a 5.1-channel audio at

low bitrates.

 Figure 5.13 shows the structure of the interconnection of the MPEG Surround encoder

and the HEAAC encoder. The AQMF bank, downsampling filter, AAC, and SBR tools are the

modules related to HEAAC encoder (in the dotted box), and the others are related to MPEG

Surround encoder. In the MPEG Surround encoder, the downmixed signal is transformed back

to the time domain and fed in the HEAAC encoder. We will give a brief introduction for the

HEAAC encoder.

Figure 5.13: Interconnection of the MPEG Surround-HEAAC encoder

5.8.1 HEAAC Encoder

 MPEG-4 HEAAC is a combination of Spectral Band Replication (SBR) tool and

MPEG-2 AAC LC profile. The SBR system is used as a duel-rate system. The AAC encoder

processes only the low frequency part of audio signals. It uses a downsampling filter to obtain

 63

the low frequency part of audio signals. The SBR encoder operates at the original sampling

rate. It is devised based on the fact that there are usually high correlations between the lower

and higher frequency parts of audio signals, so those correlations are coded as side-

information and carried in the bitstream. The extraction of SBR side-information is processed

in the 64-channel QMF domain, which is same as for the MPEG Surround. The details of

MPEG-2 AAC and SBR can be found in [16] and [17], respectively.

5.8.2 Complexity Analysis

 First, we connect the accelerated MPEG Surround encoder with the HEAAC encoder and

profile the main modules for the MPEG Surround-HEAAC encoder on the C6416 simulator

with L2 cache enabled. The result is shown on Table 5.12. The execution cycles of the MPEG

Surround have about 12% of the overall system.

Table 5.12: Profiling of the MPEG Surround-HEAAC encoder

 Cycles Percentage

Total 91,943,427 100%

QMF Analysis 4,012,967 4.36%

Hybrid Analysis 3,173,968 3.45%

Ottbox 1,357,891 1.48%

Hybrid Synthesis 302,233 0.33%

MPEG

Surround

Encoder

(Accelerated)
QMF Synthesis 1,604,333 1.74%

Down-sampling Filter 20,513,525 22.31%

QMF Analysis 19,915,569 21.66%

SBR 19,741,829 21.47%

HEAAC

Encoder

AAC 17,745,833 19.30%

 others 3,575,279 3.89%

 64

5.8.3 Simplified MPEG Surround-HEAAC Structure

 We simplify the structure of the original MPEG Surround-HEAAC encoder. The

structure is shown in Figure 5.14. As we know that the SBR is applied in the QMF domain, so

it is unnecessary to transform the downmixed signal back to the time domain. Instead, we

remove the SQMF and AQMF procedures before the SBR module. Furthermore, we combine

the SQMF bank and downsampling filter to a downsampled SQMF bank, so the

computational complexity can be further reduced. We will describe the downsampled SQMF

bank below.

Figure 5.14: The structure of the simplified MPEG Surround-HEAAC encoder

 The downsampled synthesis filtering is achieved using a 32-channel QMF bank. The

output from the filterbank is real-valued time domain samples. The process comprises the

following steps, where an array v consisting of 640 samples is assumed.

1. Shift the samples in the array v by 64 positions. The oldest 64 samples are discarded.

2. The 32 new complex-valued subband samples are multiplied by the matrix N





<≤
<≤








 −+=
.640

,320
,

64

)1272)(5.0(
exp

64

1
),(

n

knki
nkN

π

In the equation, exp() denotes the complex exponential function and i is the imaginary

unit. The real part of the output from this operation is stored in the positions 0 to 63 of

array v.

3. Extract samples from v according to

 65





<≤
<≤

++⋅=++⋅
+⋅=+⋅

50

320
,

]96128[]3264[

]128[]64[

n

k

knvkng

knvkng
,

to create the 320-element array g.

4. Multiply the samples of array g by every other coefficient of the window c to produce

array w. (]2[][][ncngnw ×= , for n=0 to 319). The window coefficients of c are the same

as for the analysis filterbank.

5. Calculate 32 new output samples by summing up the samples from array w according to

the formula, ∑
=

+⋅=
9

0

]32[][
n

knwkeAudioSamplnextOutput , k=0 to 31.

 We also notice the matrix operation in the step 2 is very similar to that in the AQMF

bank. Hence, we adopt the same decomposition methods based on DCT-IV and DST-IV. The

result is shown on Table 5.13.

Table 5.13: Reduction ratio of using downsampled SQMF bank

Original

(cycles)

Downsampled SQMF

(cycles)
Reduction ratio (%)

SQMF 1,604,333

Downsampling 20,513,525

AQMF(HEAAC) 19,915,569

518,828 98.77

5.9 Experiments and Acceleration Results

 Several experiments verifying the above acceleration methods are presented in the

following. The proposed MPEG Surround encoder and MPEG Surround-HEAAC encoder are

implemented on the 32-bit fixed-point C6416T DSP processor.

 66

5.9.1 MPEG Surround Encoder (without HEAAC)

 After accelerating the codes and modifying the algorithms, we have significantly reduced

the computation load of the MPEG Surround encoder on DSP. We simulate with the C6416

DSP simulator to profile the cycles before and after acceleration of the MPEG Surround

encoder. The optimization level is set to -o3 (file level) and the L2 cache is enabled. Table

5.14 shows the final results. We can see that after the fixed-point conversion, the overall speed

is about 150 times faster. And after algorithms modification, the final result achieves 511

times faster than the original one. Table 5.15 shows the profile of the proposed MPEG

Surround encoder. Compare to the original encoder, the execution cycles of the analysis QMF

bank are reduced from 54% to 28% of the total execution time.

Table 5.14: The final acceleration result of the MPEG Surround encoder

 Total Execution Cycles

Original 7,046,624,226 N/A

Fixed-point 47,155,001 149.4x Choir

Final 13,781,607 511.3x

Original 7,046,531,873 N/A

Fixed-point 46,865,520 150.4x ts30

Final 13,635,426 516.8x

Original 7,046,783,840 N/A

Fixed-point 47,153,413 149.4x
approaching

_tunnel
Final 13,720,465 513.6x

Original 7,049,507,045 N/A

Fixed-point 47,169,205 149.5x carneval

Final 13,733,887 513.3x

Original 7,049,503,069 N/A

Fixed-point 47,167,059 149.5x
fountain

_music
Final 13,732,140 513.4x

 67

Table 5.15: Profile of the proposed MPEG Surround encoder on C6416 simulator

 Original (float) Fixed-point Final

Function Cycles Percent Cycles Percent Cycles Percent

Total cycles 7,046,624,226 100% 47,155,001 100% 13,781,607 100%

Initialization 553,634,278 7.86% 256,399 0.54% 283,557 2.06%

QMF Analysis 4,315,174,856 61.24% 20,966,993 44.46% 3,900,636 28.30%

Hybrid Analysis 1,137,277,617 16.14% 14,947,777 31.70% 3,170,837 23.01%

Ottbox 66,845,629 0.95% 1,352,341 2.87% 1,342,935 9.74%

Hybrid Synthesis 525,237 0.01% 294,197 0.62% 299,537 2.17%

QMF Synthesis 947,689,855 13.45% 6,136,115 13.01% 1,604,106 11.64%

others 25,476,754 0.36% 3,201,179 6.79% 3,179,999 23.07%

5.9.2 MPEG Surround-HEAAC Encoder

 We also implement the combination of the accelerated MPEG Surround encoder and the

HEAAC encoder on the TI DSP platform, and propose a simplified structure to speed up.

Table 5.16 shows the comparison between the original and the simplified structures. We can

notice that the speed of the simplified encoder is about 1.83 times faster than the original one.

Table 5.17 shows the profile of the simplified MPEG Surround-HEAAC encoder. The MPEG

Surround part occupies about 18 percent in the final system.

Table 5.16: Acceleration result of the MPEG Surround-HEAAC encoder

 Total Execution Cycles

Original 91,943,427 N/A
Choir

Simplified 50,313,874 1.83x

Original 90,976,562 N/A
ts30

Final 50,213,164 1.81x

Original 92,840,027 N/A approaching
_tunnel

Simplified 51,832,299 1.79x

Original 91,117,098 N/A
carneval

Simplified 49,994,663 1.82x

 68

Original 90,798,366 N/A fountain
_music

Simplified 49,043,238 1.85x

Table 5.17: Profiling of the proposed MPEG Surround-HEAAC encoder on C6416 simulator

 Original SAC-HEAAC Simplified SAC-HEAAC

Function Cycles Percent Cycles Percent

Total cycles 91,943,427 100% 50,313,874 100%

QMF Analysis 4,012,967 4.36% 4,052,749 8.05%

Hybrid Analysis 3,173,968 3.45% 3,009,096 5.98%

Ottbox 1,357,891 1.48% 1,338,743 2.66%

Hybrid Synthesis 302,233 0.33% 236,327 0.46%

QMF Synthesis 1,604,333 1.74%

Down-sampling Filter 20,513,525 22.31%

QMF Analysis 19,915,569 21.66%

Down-sampled QMF

518,828
1.03%

SBR 19,741,829 21.47% 20,000,178 39.75%

AAC 17,745,833 19.30% 17,971,943 35.71%

others 3,575,279 3.89% 3,186,010 6.33%

 69

Chapter 6

Conclusions and Future Work

6.1 Conclusions

 The main goal to this thesis is to implement and accelerate the MPEG Surround encoder

on the TI C6416T DSP processor. We have efficiently reduced the complexities of the MPEG

Surround encoder. First, we overcame the memory bottleneck by setting up properly the L2

cache on the DSP platform. We also converted the floating-point codes to the fixed-point,

which match the DSP hardware architecture.

 We adopt several acceleration methods to speed up the reference encoder. These methods

are fast QMF bank algorithms, fast hybrid filterbank algorithms, and LFE channel

acceleration. In QMF bank, we decomposed the matrix operation in the QMF procedure into

DCT-IV/DST-IV with a small amount of additional permutations. And the computation of

N-point DCT-IV and DST-IV can be further reduced by using the N/2-point complex FFT. For

the hybrid filterbank, we proposed a fast algorithm based on FFT algorithm. In addition, we

used the optimized FFT functions in DSPLIB, which is faster than the C-coded FFT. For the

LFE channel, we observed that the 0th QMF subband contains most of energy. Hence, we only

calculated the output signal in the 0th QMF band to reduce the computations. By employing

these techniques, the proposed MPEG Surround encoder is 513 times faster than the original

version.

 Furthermore, we connected the MPEG Surround encoder together with the HEAAC

encoder, and simplified the structure by using the downsampled SQMF bank. The speed of

the simplified encoder is about 1.82 times faster than the previously optimized structure.

 70

6.2 Future Work

 Our thesis mainly focuses on the speed of the overall system. However, the MPEG

Surround reference encoder released by ISO/IEC do not optimize for the audio quality. For

example, it uses very simple algorithms to perform the downmix procedure and extract the

spatial parameters. Besides, we notice that some tools in the MPEG Surround standard, such

as residual coding, guided envelope shaping (GES), and 3D stereo, are not implemented in the

reference encoder. Therefore, proposing new algorithms for enhancing the audio quality of the

MPEG Surround codec can be a useful and challenging task.

 Also, the TI DSP board contains an FPGA. We can integrate the FPGA implementation

together with DSP to accelerate the overall system. But the data transfer between DSP and

FPGA is quite complex, and we are unable to use it yet.

 71

References

[1] J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Localization, revised

edition, Cambridge, 1997.

[2] R. I. Chernyak and N. A. Dubrovsky, “Pattern of the noise images and the binaural

summation of loudness for the different interaural correlation of noise”, Proceedings of

the 6th International Congress on Acoustic, Tokyo, pp.A53-A56, 1968.

[3] J. Herre and et al., “Intensity stereo coding”, 96th Audio Engineering Society (AES)

Convention, Amsterdam, 1994.

[4] M. Bosi and et al., “ISO/IEC MPEG-2 advanced audio coding”, Journal of the AES,

vol.45, no. 10, pp. 789-814, Oct. 1997.

[5] J. Breebaart and et al., “Parametric coding of stereo audio”, EURASIP Journal on

Applied Signal Proc., pp. 1305-1322, Sep. 2005.

[6] H. Purnhagen, “Low complexity parametric stereo coding in MPEG-4”, Proc. of the 7th

International Conference on Audio Effects (DAFx’04), Italy, Oct. 2004.

[7] F. Baumgarte and C. Faller, “Binaural cue coding - part I: psychoacoustic fundamentals

and design principles, IEEE Transactions on Speech and Audio Proc., vol. 11, no. 6, pp.

509-519, Nov. 2003.

[8] C. Faller and F. Baumgarte, “Binaural cue coding – part II: schemes and application”,

IEEE Transactions on Speech and Audio Proc., vol. 11, no. 6, pp. 520-531, Nov. 2003.

[9] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N6455, “Call for proposals on spatial

audio coding”, Munich, March 2004.

[10] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N8324, “Text of ISO/IEC FDIS

23003-1, MPEG Surround”, Klagenfurt, 2006.

[11] J. Breebaart and et al., “High-quality parametric spatial audio coding at low bit rates”,

116th Audio Engineering Society (AES) Convention, Germany, May 2004.

 72

[12] J. Herre and et al., “The reference model architecture for MPEG spatial audio coding”,

118th Audio Engineering Society (AES) Convention, Spain, May 2005.

[13] J. Breebaart and et al., “MPEG spatial audio coding / MPEG Surround: overview and

current status”, 119th Audio Engineering Society (AES) Convention, New York USA, Oct.

2005.

[14] L. Villemoes and et al., “MPEG Surround: the forthcoming ISO standard for spatial

audio coding”, AES 28th International Conference, Sweden, 2006.

[15] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N7390, “Tutorial on MPEG Surround

audio coding”, Poland, July 2005.

[16] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N7126, “Text of ISO/IEC

13818-7:2005 (MPEG-2 AAC 4th Edition)”, April 2005.

[17] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N7027, “Draft ISO/IEC

14496-3:2001/Amd.2:2004 (Audio 3rd Edition)”, Jan. 2005.

[18] Sundance DSP System, “SMT 395 user manual”, May 2001.

[19] Texas Instruments, “TMS320C6414T, TMS320C6415T, TMS320C6416T fixed-point

digital signal processors”, Literature number SPRU226H, Nov. 2003.

[20] Texas Instruments, “TMS320C6000 programmer’s guide”, Literature number SPRU198F,

Feb. 2001.

[21] Texas Instruments, “TMS320C64x DSP two-level internal memory reference guide”,

Literature number SPRU610B, Aug. 2004.

[22] Texas Instruments, “TMS320C6000 optimizing compiler v6.0 beta user’s guide”,

Literature number SPRU187N, July 2005.

[23] Texas Instruments, “TMS320C6000 CPU and instruction set reference gudie”, Literature

number SPRU189F, Jan. 2000.

[24] Texas Instruments, “TMS320C64x technical overview”, Literature number SPRU395B,

Jan. 2001.

[25] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N8636, “ISO/IEC

23003-1:2006/PDAM2, MPEG Surround reference software”, Oct. 2006.

 73

[26] W. H. Chen, C. H. Smith, S. C. Fralick, “A fast computational algorithm for the discrete

cosine transform”, IEEE Trans. Commun., vol. 25, no. 9, pp. 1004-1008, Sep. 1977.

[27] B. G. Lee, “A new algorithm to compute the discrete cosine transform”, IEEE

Transaction on Acoustic, Speech, and Signal Proc., vol. 32, no. 6, pp. 1243-1245, Dec.

1984.

[28] R. Gluth, “Regular FFT-related transform kernels for DCT/DST-based polyphase filter

banks”, IEEE ICASSP, 1991.

[29] G. Bonnerot and M. Bellanger, “Odd-time odd-frequency discrete Fourier transform for

symmetric real-valued series”, IEEE Proceedings, vol. 64, pp. 392-393, March 1976.

[30] Texas Instruments, “TMS320C64x DSP library programmer’s reference”, Literature

number SPRU565B, Oct. 2003.

[31] Third Generation Partnership Project (3GPP). Available: http://www.3gpp.org/ .

[32] Y. -C. Huang, “MPEG-4 High Efficient AAC codec acceleration and implementation on

TI DSP”, M.S. thesis, Department of Electrical and Computer Engineering, National

Chiao Tung University, HsinChu, Taiwan, ROC, 2006.

 74

Appendix A

N/2-point FFT Algorithm for

DCT-IV and DST-IV

 We will describe the N/2-point FFT in detail in this appendix. We will show the

mathematical derivation of the algorithm. The details can be found in [28].

The N-point DCT-IV and DST-IV are defined as

∑
−

=







 ++=
1

0
][)12)(12(

4
cos:

N

r
r

IV
k

IV
N rk

N
xCDCT

π
 (A.1)

∑
−

=







 ++=
1

0
][)12)(12(

4
sin:

N

r
r

IV
k

IV
N rk

N
xSDST

π
 (A.2)

A.1 Relationship to O2DFT

 In order to find their relationship to Fourier Transform, we introduce the odd-time

odd-frequency discrete Fourier transform (O2DFT) of length K, and which is defined as

∑
−

=







 ++−==
1

0
][

2)12)(12(
2

exp}{
K

r
rkkK rk

K
juUuDFTO

π
 (A.3)

Using the 2N-point zero-padded vector 'x given by





−≤≤
−≤≤

=
120

10'

NrNfor

Nrforx
x r

r (A.4)

The DCT-IV and the DST-IV of x are real and imaginary part of the]2[
2

NDFTO of 'x

according to

{ }}{Re '
]2[

2 xDFTOC kN
IV
k = , (A.5)

{ }}{Im '
]2[

2 xDFTOS kN
IV
k = , }1,...,0{ −∈ Nk (A.6)

 75

Rewriting the zero-padded vector 'x as the sum of the odd extension, w, and the even

extension, v, of x according to

)(2
1' vwx +=

with

rNrrNr

rrrr

xwxvNrN

xwxvNr

−−−− −==−≤≤
==−≤≤

1212 ;:12

;:10

(A.7)

By applying the symmetry properties of the O2DFT, equations (A.5) and (A.6) are simplified

(A.8)

}}{Im{

}{

]2[
2

2
1

2
1

]2[
2

2
1

2
1

vDFTOVjS

wDFTOWC

kNk
IV
k

kNk
IV
k

=−=
==

(A.9)

This provides the solution for an efficient realization of equation DCT-IV and DST-IV,

because there is a fast algorithm for the calculation of the O2DFT of real symmetric sequences

of even length. We will introduce this method below [29].

A.2 Fast Algorithm for Symmetric O2DFT

The equation for a fast O2DFT of length K exploiting these symmetries is:

44444 344444 21
FFTpoK

K

r

rk
K

jr
K

j

r

k
K

j

K

r

rk
K

j

rKr

kKkk

eeue

ejuu

jUUP

int4/

14/

0

4/

2
)

8

1
(

2
'

)
8

1
(

2

14/

0

)
2

1
2)(

2

1
2(

2

22/2

22/2

}{2

)(2

−

−

=

−+−+−

−

=

++−

+

+

∑

∑









=

−=

+=

πππ

π

(A.10)

where

1,...,1,0,

)(

4

22/2
'

−=
−= +

K

rKrr

kr

juuu
 (A.11)

(A.10) is in the form of a modified complex FFT.

 76

W, the transform of real odd vectors is retained from P according to

}Im{};Re{ 22/2 kkKkk PWPW == + (A.12)

and the separation to get V corresponding to an even input is given by

}Re{};Im{ 22/2 kkKkk PjVPjV −== + (A.13)

P contains all information to retrieve all coefficients using the symmetry properties.

 In summery, the N-point DCT-IV and DST-IV can be computed by applying 2N-point

O2DFT to real symmetric sequences, and it can be obtained by using a standard N/2-point

complex DFT.

 77

自傳自傳自傳自傳

韓志岡，西元 1983 年 5 月 13 日出生於台北市。2005 年畢業於國立交通大學電信工程學

系。同年進入交通大學電機資訊學院電子工程研究所電路與系統組碩士班，於 2007 年

取得碩士學位，論文題目為「環繞 MPEG 編解碼器之增速及其在 TI DSP 平台上的實現」。

研究範圍興趣包括：數位信號處理、多媒體通訊、音訊壓縮。

	1_封面.pdf
	2_摘要目次.pdf
	3_內容.pdf

