MPEG-4 # 3820 f2 /% ¥ &+ PACDSP - 5 + 2
R IR

Software Implementation of MPEG-4 Object-Based Video

Decoder on PACDSP Platform

hERE D R FEHREL

MPEG-4 $ i 821 1275 % . PACDSP T } 2 ## 9 3%

Software

g

—

i EHRE

Implementation of MPEG-4 Object-Based Video

Decoder on PACDSP Platform

* %
SUEN
ey (=
%,
\L.

Student: Chieh Yuan Hsu
Advisor: Dr. David W. Lin

TFIRF R FFE TARL

i~

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

v

College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering
June 2007

Hsinchu, Taiwan, Republic of China

A

MPEG-4 4~ i 431 245 % & PACDSP T = !

2 P R

ST B A L

MPEG-4 % - RiLfE™ 275 SRMSUSLRSGEIRE « A K362 4 % & PACDSP
T 5 MPEG-4 4 AR 248 BXFE AT S - AgE 4y 4 i g AT B

- ARMO20T B Bl s o 5 7 o VARSI AR AP R 2 7 37 5 e G A
FoX B AR A A I B 2 F I RE D TR o A AT B
SR RN T -2 Tl

AP F EF e o AP * T MPEG-4 %% #8 > MoMuSys > § 1F5k %
Gt gt oo F A 0 AP AT MPEG-4 At i jRgs E 238 B AT AR XA
DR FraFa@m->iz o 31 P EE 212 & PACDSP 3R > A ddg
ez F 4k (IDCT) & 5 A #icgkid & (fixed point) » i ¥ 243 H st & frx
Bofs o Vi en 2 AR W43 ¢ & IEEE 1180-1190 R 2 e o pF > A
MR FEE A B EH R FIRRL i 4 o RF AT AR

Fro T S bR E B o 5T @R EFRERF o AP * 3 PACDSP

Sl AL R A A R e BT B2 ki o A S R HAp L 5 E
(SIMD) 4p 4 102 - Sdg & BT i7is RS gl B2tk o GH21 o
AP iR i (DCT) 2 kP F ARenB 5 o i g iE 1 215
AP ABLERT > 30— B T4 200MHz 12§ PACDSP & %@ 3 0 it 53
EI|E L) A6 EfEAS 0 R EF S LRI RGOE Loom RN A]G
30 Kbytes» » |- %> PACDSP ifg ;% B2z 1g 48 + -] 32 Kbytese . {5 #4 i & PSDK

To PR B ERRES

=

bAFheE Y o APFLGLT MPEG-4 3 11 2 PADSP T [2 feif -
BEAAELAT BEP R R F AR Rt 32 02 AR

2%

Software Implementation of MPEG-4 Object-Based
Video Decoder on PACDSP Platform

Student: Chieh-Yuan Hsu Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute:of Electronics
National:Chiao. Tung University

Abstract

MPEG-4 is a widely-applied multimedia.coding standard. This thesis presents an
implementation of the MPEG-4 object-based video decoder on the PACDSP platform,
which consists of a VLIW digital signal processor (DSP) and an ARM920T processor.
We complete many analyses to optimize the program flow and utilize the advantage of
VLIW processor to achieve real-time decoding. Finally, a dual-core demonstration is
completed and verified.

In our implementation, the MPEG-4 reference software, MoMusSys, is used as a
model to verily our implementation. First, we analyze the computational complexity
of the MPEG-4 object-based video decoder, and find efficient algorithms for the
implementation. In order to reduce the complexity and to realize on PACDSP, we
implement the fixed point inverse discrete cosine transform (IDCT), and then discuss

the efficiency and accuracy. At last, our implementation can pass the accuracy test of

IEEE 1180-1190 standard and the performance of our algorithm is also competitive to
other implementations. Then, we discuss the design of dual-core implementation to
improve the performance. In order to speed up the execution time, we distribute the
regular computations to both clusters to increase the efficiency of the processor.
Single-instruction-multiple-data (SIMD) instructions and general instruction level
parallelism also utilized to reduce the processor stalls. For algorithmic optimization,
we skip unnecessary computations according to the nature of discrete cosine
transform (DCT). After all the optimizations, in the worst case, our implementation of
decoder decodes 46 frame-per-second, which can achieve real-time decoding, 30
frame-per-second, for a real PACDSP chip running over 200 MHz. The code size is 30
Kbytes, which is smaller than the 32 Kbytes instruction cache on PACDSP. Finally,
we demonstrate a dual-core implementation on-the PAC System Developer’s Kit
(PSDK).

In this thesis, we first introduce the'MPEG-4 standard and give an overview of the
PACDSP platform. Then the static-.analysis," dual-core design, implementation
strategies, the optimization methods, and the results of our implementation are

discussed.

AR b R R A B R
BB SRR AR EL S F R
il A’\“]‘ﬁ' F\:B"??Eg‘ ﬁ;}j—?\: "??\m

Rl g
B A AW E T it g A
A o R_:,Egg_:kgﬂ;iaiﬁm'«l F\Bfi” 2_‘5‘3 ;k,gg;kg
oo¥ LTI o fpt o 1E FFE XEF R A R BB e 2 R e
R#at 7% 47 Commlab & B A 528500 42> F 5% TR B2 L aw §
FThe RFULE-FIP B E PR VEE -T2 EG9EFEL R B -
mREFREE FE SRR CEE g B WY Py R T o
MR R hRE P ST A E L hffets R =R e A A
P s e
B R A B aio B AARE AR hsia 4 i R
B A EAN RS B AR B A ke RS
Fene A > FrARLE kgL

F 1 iR

>
i

»
N P

Contents

I ntroduction

Overview of the MPEG-4 Video Standard

2.1 Structure of MPEG-4 VideoData

2.2 MPEG-4Video TextureCoding i
221 ShapeCoding
222 MotionCoder . . . b UL L
223 TextureCoder. =0 . L lialn i e o
2.2.4 Other Video CodingTools [7} . -~ .«

2.3 Profilesand Levels [5] .+, ST o L

Overview of PACDSP

3.1 Introduction

3.2 Program Sequence ControlUnit
3.2.1 BranchlInstructions L.
322 Loop
3.2.3 Customized FunctionUnits
3.24 ExceptionHandling,
3.25 InterruptHandling

3.3 VLIWDatapath
3.3.1 ArithmeticUnit(AU)
3.3.2 Load/StoreUnit (L/S)
3.3.3 Ping-Pong Register File

15
18
20

3.3.4 Data/Address/Accumulator Registers 30

3.3.5 Status and Control Registers 31
3.3.6 AddressingModes 32
3.37 DataExchange 34
3.3.8 ConstantRegisterFile 36
34 ScalarUnit 37
341 ScalarUnit 37
34.2 ControlRegisters 37
3.4.3 General Purpose Scalar Register File 38
3.5 Conditional Execution Control 38
3.6 ISAandPipelineStages. 40
3.7 DSPRunningModes 40
3.8 InstructionPacket 41
3.9 Development Tools and Implementation Approach 42
3.9.1 DevelopmentTools . . . maped. W o o oo 42
3.9.2 Implementationappreach . . .= . v .= 43
3.10 Overview of the PSDK 2.0 Platform= 45
3.11 Overview of PACDSP V3.0, . . v v e oo o 45
3.11.1 Architecture Overview 46
3.11.2 Program Control Sequence Unit (PSCU) 47
3113 VLIWDatapath. 48
3.11.4 PipelineStages 49
3.11.5 Instruction Set Comparison 49

Complexity Analysis of MPEG-4 Object-Based Video Decoder and Dual-

Corelmplementation Design 51
4.1 Profiles of the MPEG-4 Object-Based Video Decoder 52
4.2 Fixed-PointIDCT 55
4.2.1 Efficiencyof IDCT 56
422 Accuracy of IDCT 57

4.2.3 Profile on PC with Fixed-Point IDCT 58

4.3 Implementation of Decoder on Dual-Core PSDK 59
4.4 Optimization of Implementationon ARM 61
Optimization of Implementation on PACDSP 64
5.1 Implementation Strategieson PACDSP 65
5.1.1 Efficient Context-Based Arithmetic Coding 65
5.1.2 Efficient Variable Length Decoding (VLD) 69
5.1.3 Efficient AC/DC Reconstruction 74
5.14 Optimization of IDCT onPACDSP 79
5.2 Architectural Optimization 79
5.2.1 General Optimization Techniques 80
52.2 Advantagesof PACDSP 83
5.2.3 Experiment Result of Architectural Optimization 83
5.3 Algorithmic Optimization ..& v o . oo 84
5.3.1 Efficient InverseScan — =0 S Lo 84
5.3.2 EfficientlQandIDCT . 5. . .. % .. . 87
5.3.3 Experiment Result of Algorithmic Optimization. 88
54 Conclusion Ul 89
Overall Performance of the Implementation 93
6.1 Performance Analysis 93
6.2 Effect of Different Quantization Steps (QP) 98
Conclusion and Future Work 103
7.1 Conclusion 103

7.2 Future Work 104

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10

211
2.12
2.13

3.1
3.2

3.3
3.4
3.5
3.6

Segmentation of a frame into VOPs (from [7]). 4
Structure of coded video data (from [8]). 5
Typesof VOP. 5

Positions of luminance and chrominance samples in 4:2:0 data (from [9]). 7
Simplified structure of the video decoder (from [5]).. 8

Pixel templates used for (a) INTRA and (b) INTER context calculation of

BAB. The current pixel to be coded is'marked with “?” (from [5]). 10
Simplified padding process (fromy[5]). .« &, 11
Priority of boundary MBs surrounding an exterior MB(from [5]). 12
Motion vector prediction (from9)rrrm .00 . . . o o oL 13

Quantizers in H.263. (a) For.intra DC coefficient only. (b) For inter DC

and all AC coefficients. 17
Prediction of DC coefficients of blocks in an intra MB (from [7]). 17
Prediction of AC coefficients of blocks in an intra MB (from [7]). 19
Scans for 8 x 8 blocks (from [5]). 19
Architecture of the PACDSP (from [1]). 25
Illustration of multiplication instructions with different precisions (from

[AD. . 29
Different load/store instructions (from [1]). 30
Ping-pong register file in one cluster (from [1]). 31
Available registers in one cluster (from [1]). 32
Data exchange between two clusters (from [1]). 35

3.7 Data broadcast among clusters (from [1]). 35

3.8 The Constant Register File of one cluster (from [1]). 38
3.9 PACDSP instruction set architecture (from [1]). 41
3.10 Pipeline stages of the PACDSP (from [1]). 41
3.11 Transitions between DSP running modes (from [1]). 44
3.12 Simplified syntax of instruction packet (from [1]). 45
3.13 PAC System Developer’s Kit (PSDK)2.0. 46
3.14 Memory map of the dualcore demonstration 47
3.15 Architecture of PACDSP v3.0 (from[2]). 48
3.16 Pipeline stages of the PACDSP v3.0 (from [4]). 49
4.1 Block diagram of MPEG-4 object-based video decoder [5]. 52
4.2 First frame of each test sequence (a) stefan. (b) foreman. (c) akiyo. 53
4.3 The IDCT algorithm used in MoMuSys [10]. 58
4.4 The even-odd decompositiondDCT algorithm [12]. 59
4.5 An outline of P frame decoding procedure:.. 61
4.6 Thedual-core P-framedecoding. ..«o L. 62
5.1 Flow of software development.on PACDSP. =% 65
5.2 Pixel templates used for (a) INTRA and (b) INTER context calculation of

BAB (from [5]). 67
5.3 Intracontext calculation. 67
5.4 Fastintra context calculation. L. 68
5.5 Example assembly code for fast inter context calculation. 68
5.6 Calculation distribution of two clusterson PACDSP. 69
5.7 Example assembly code for getting reference BAB on PACDSP. 69
5.8 Example of one table mapping with magnitude-offset on PACDSP. 71
5.9 Example of bit-by-bit matchingon PACDSP. 71
5.10 Example of multiple-pass matchingon PACDSP. 72
5.11 Example of optimized multiple-pass matching on PACDSP. 73
5.12 Comparison of different VLD methods on PACDSP. 75

\

5.13
5.14

5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

5.26

5.27

DC/AC prediction in MPEG-4 video decoder.
(a) Total blocks in one MB. (b) Pixels store for DC/AC prediction of one

block.
Memory usage design of DC/AC prediction for two successive MBs. . . .
Program flow of DC/AC prediction in MoMuSys.
Example C code of vector addition.
Example of static rescheduling technique.
Example of loop unrolling technique.
Example of software pipelining technique.
Program flow of texture decoding in MPEG-4 object-based video decoder.
Scanordersfor 8 x 8 blocks [5].
DC spreading from decoded coefficient to output block.
Assembly code of DCspreading.
Program flow of texture decoding.inMPEG-4 object-based video decoder

after optimization.S . B L
Improvement in executiof time of architectural-and algorithmic optimiza-

tions for I-frames on PACDSP, i - . el L
Improvement in execution time of architectural and algorithmic optimiza-

tions for P-frameson PACDSP.,

Vi

76

78
80
82
82
83
85
86

92

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Listof BAB Types (from [5]) 9
Weighting Values Hy(i,7), Hi(i,7), and Hy(d,5) 15
Default Quantization Matrix (@) [5] L 18
Nonlinear Scaler for DC Coefficients (from[5]) 18
Profiles and Tools (from[5]) 22
Details of Control Register Files (from [1]) 39
Memory-Mapped Control Registers (from[1]) 40
Pipeline Stages and Their-Descriptions (from[1]) 42
Running Modes of the PACDSP (from [1]). .2 43
Instruction Types in Each Instruction'Slot (frem [1]) 44
Modification of Load/Store Instructions from PACDSP v2.0 to PACDSP

V3.0 . 50

Comparison Instructions Supported in PACDSP v2.0 and PACDSP v3.0 . 50

VOP Size of Each Test Sequence 53
Profile of Object-Based MPEG-4 Decoding of QCIF Sequence on VTune 54
Comparison of Computational Complexity for 8-point IDCT 56
Test of Compliance for Modified IEEE Std. 1180-1190 in MPEG-4. . . . 60
Execution Time Comparison of IDCT 60
Execution Time Analysis Between ARM and PACDSP 63
Analysis of Necessary Interpolation Using MoMuSys Encoder 63

Execution Time of Motion Compensation after Eliminating Unnecessary

Interpolationson ARM 63

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

Execution Time Comparison of Context Calculation for One BAB on

PACDSP 66
Execution Time of Getting One Reference BAB on PACDSP 69
Variable Length Codes for dct_dc_size_luminance [5] 70
Execution Time of Different VLD Methods on PACDSP 74
Memory Usage Comparison of DC/AC Prediction on PACDSP 77
Performance of MPEG-4 Object-Based Video Decoder on PACDSP . . . 78
Comparison of IDCT on Different Platforms 80
Improvement After Architectural Optimization on PACDSP 84
Number of Skipped Blocks in Twenty Intra Frames and Nineteen Inter

Frames (Checking VLD _flagOnly) 86
Number of Skipped Blocks in Twenty Frames and Nineteen Inter Frames

form Checking VLD _flag and ACPred_flag (IntraOnly) 88
Improvement After Algorithmic Optimization on PACDSP 90
Overall Improvement After:Optimization.on PACDSP 90

Code Size Profile of Object-Based MPEG-4 Video Decoder on PACDSP . 95
Data Size Profile of Object-Based MPEG-4 Video Decoder on PACDSP . 95

Data Size Analysis of “Result Store”>-onPACDSP 96
Frame Rate Estimation for Intra Decoding of Our Implementation 97
Frame Rate Estimation for Inter Decoding of Our Implementation 97
Frame Rate Estimation for Intra Decoding on Demo Platform 99
Frame Rate Estimation for Inter Decoding on Demo Platform 99

Number of Skipped Blocks in 20 Intra Frames with Different QP values . 101
Effects of Different QP to Execution Time of I-Frame Decoding on PACDSP
101

Number of Skipped Blocks in 19 Inter Frames with Different QP 102
Effects of Different QP to Execution Time of P-Frame Decoding on PACDSP
102

Vil

Chapter 1

| ntroduction

In modern day, compression of audio-visual information becomes more and more im-
portant, especially for applications on mobile devices. The higher the compression ratio,
the greater the cost saving. Due to the increased demand on computing power, digital
signal processors (DSPs) are popularly:used in-these mobile devices. We consider the
implementation of the MPEG-4 object-based video.decoder on the PACDSP platform.

The Moving Pictures Experts Group (MPEG) of the International Standardization Or-
ganization (ISO) produced the MPEG-4 stand-aid-for digital video and audio compression
[5]. The MPEG-4 standard has been adopted widely in many consumer products. Our im-
plementation of the video decoder is based on enhancing the functionality of the decoder
of [6] . However, certain tools (such as error resilience and scalable coding) are left to
potential future work.

PACDSP is a high performance, low cost VLIW (very long instruction word) DSP for
multimedia applications [1]. The instruction set architecture (ISA) of PACDSP supports
SIMD (single instruction multiple data) instructions, which are suitable for audio and
video applications. In addition, the low power design for PACDSP makes it possible to
use PACDSP on portable devices.

This thesis is organized as follows. Chapter 2 is the overview of MPEG-4 standards.
Chapter 3 introduces the architecture and specification of the PACDSP platform. Chap-
ter 4 analyze complexity of the MPEG-4 reference software, and we also present our

dual-core design and efficient implementation strategies of the MPEG-4 video decoder

on ARM. The optimization of the MPEG-4 video decoder on PACDSP is discussed in
chapter 5. Chapter 6 shows the performance of our implementation, which includes the
code size, data size and the decoding frame rate. Finally, we give some conclusions and

list the future work in chapter 7.

Chapter 2

Overview of the MPEG-4 Video
Standard

The contents of this chapter have been taken to a large extent from [5]-[9].

MPEG-4 video standard provides core technologies allowing efficient storage, trans-
mission and manipulation of video datajin multimedia applications. It provides technolo-
gies to view, access and manipulate objects, with great error robustness at a large range
of bit rates. Video activities in MPEG-4 aimed-atrproviding solutions in the form of tools
and algorithms enabling functionalities such as efficient compression, object scalability,

spatial and temporal scalability, error resilience, and fine granularity scalability.

2.1 Structure of MPEG-4 Video Data

The concepts of video objects (VOs) and their temporal instances, video object planes
(VOPs), are central to MPEG-4 video. The idea of VOPs is illustrated in Fig. 2.1. Each
VO is encoded separately and multiplexed to form a bitstream that users can access and
manipulate. The encoder sends, together with VOs, information about scene composition
to indicate where and when VOPs of a VO are to be displayed. Figure 2.2 shows the
organization of the coded MPEG-4 video data in a top-down hierarchical structure. The

meanings of the hierarchical layers are as follows.
e VideoSession (VS): A video session simply consists of an ordered collection of

3

VOPO

N
[

VOP 2 :

Figure 2.1: Segmentation of a frame into VOPs (from [7]).

Picture

video objects.

¢ VideoObject (VO): A video object isa complete scene or a portion of a scene with
a semantic. In the simplest case thissean.be a rectangular frame, or it can be an
arbitrarily shaped object corresponding to-<a physical object or background of the

scene.

e VideoObjectLayer (VOL): Each‘video object can be encoded in scalable (multi-
layer) or non-scalable (single layer) form, depending on the application, represented
by VOL. The VOL provides support for scalable coding. A video object can be

encoded using spatial or temporal scalability, going from coarse to fine resolution.

e GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional en-
tities. The GOV groups video object planes together. GOVs can provide points in
the bitstream where VOPs are encoded independently from one another, and can

thus provide random access points into the bitstream.

¢ VideoObjectPlane (VOP): A VOP is a time sample of a video object.

There are four types of VOP defined in MPEG-4, as illustrated in Fig. 2.3. These are

briefly explained below:

VS ... VSy

o] (]
VO,...VOy
VideoObject (VO) Vo, II

VOLy...VOLy

VideoSession (VS)

VideoObjectLayer (VOL) VOL1 VOLsy
f GOV, ...GOVy]|
GroupOfVOPs (GOV) GOV GOV, |] \
|
[. | \
VideoObjectPlane (VOP) VOPl VOP, ‘VOPH{ VOPR, VOP, ’j
VOPR,...VOF; VOPyy...VOPy VOP,...VOPy
A v ! \/
Layer 1 Layer 2

Figure 2.2: Structure of coded video data (from [8]).

. An intra-coded (I) VOP is coded using:information only from itself.

. A predictive-coded (P) VOR is a.VOP-that is coded using motion compensated

prediction from a past reference.VVOP.

. A bidirectionally predictive-coded (B) VOP is a VOP that is coded using motion

compensated prediction from a past and/or future reference VOP(s).

. Asprite (S) VOP is a VOP for a sprite object or a VOP that is coded using prediction

e

I-frame | P—frame | B—frame|P—frame I-frame

Figure 2.3: Types of VOP.

based on global motion compensation from a past reference VOP. We omit further
introduction of the S VOP.

The macroblock (MB) is a basic coding structure constructing VOP. An MB contains
a section of the luminance component of 16 x 16 (horizontal x vertical) pixels in size,
non-overlapping with each other, and the sub-sampled chrominance components in 4:2:0
format. The luminance and chrominance samples are positioned as shown in Fig. 2.4. In
this format, an MB is divided into 4 luminance blocks and 2 chrominance blocks, each

8 x 8 pixels in size.

2.2 MPEG-4Video Texture Coding

The contents of this section have been taken to a large extent from [5]-[9].

Fig. 2.5 is a structure of video decoder without any scalability feature. The decoder
is mainly composed of three parts: shape decoder, motion decoder and texture decoder.
The reconstructed VOP is obtained-by combining the decoded shape, texture and motion
information. The part of shape cading constitutes the major difference between frame-

based and object-based coding.

2.2.1 Shape Coding

The ability to represent arbitrary shapes is an important capability of the MPEG-4 video
standard. For each VO given as a sequence of VOPs of arbitrary shapes, the corresponding
alpha planes is also given (generated via segmentation or via chroma-key). There are
two kinds of alpha planes in MPEG-4, binary and gray scale. Binary alpha planes are
encoded by modified context-based binary arithmetic encoding (CAE) and gray scale
alpha planes are encoded by motion compensated discrete-cosine transform (DCT) similar
to texture coding. An alpha plane is bounded by an extended rectangular bounding box.
The bounded alpha plane is partitioned into blocks of 16 x 16 samples called alpha block

and the encoding/decoding process is done per alpha block.

[=]
—
2
%)

2 [X X X X

O O
3 [X X X X

X luminance

o chrominance

Figure 2.4: Positions of luminance and chrominance samples in 4:2:0 data (from [9]).

Binary Shape Coding

CAE and motion compensation are the basic tools for encoding binary alpha blocks

(BABs) which are the primary unit in binary shape.coding. Each BAB can be coded

in one of the following modes:

1.

The block is all transparent. Inthis.case-no.coding is necessary. Texture information

is not coded for such blocks either.

. The block is all opaque. Shape coding is not necessary in this case, but texture

information needs to be coded.

. The block is coded using IntraCAE without use of past information.

Motion vector difference (MVD) is zero but the block is not updated.
MVD is non-zero, but the block is not updated.

MVD is zero and the block is updated. InterCAE is used for coding the block
update.

MVD is non-zero, and the block is coded by InterCAE.

Table 2.1 shows the BAB types and VOP types they are used in.

Coded Bit Stream
(Shape) - Shape
Decoding Previous
Reconstructed
VOP
Coded Bit Stream
(Motion)
Motion . | Motion o ——
Decoding " | Compensation |
Dempltiplexer -
P ¢ vopP
C odcﬁr Bit Stream I Reconstruction
Texture) Variable
» Length » [nverse Scan
Decoding
L Inverse Inverse
DC & AC > er:rg:'on s IDCT
Prediction : !
Texture Decodin
N £ J

Figure 2.5: Simplified structure of the video decoder (from [5]).

CAE is used to code each binary pixel of the BAB. Prior to coding the first pixel, the
arithmetic encoder is initialized. Each binary pixel is then encoded in raster order. The

process for encoding a given pixel is as follows:

1. Compute a context number.

2. Index a probability table using the context number.

3. Use the indexed probability to drive an arithmetic encoder.

When the final pixel has been processed, the arithmetic code is terminated. Fig. 2.6
shows the templates for the context calculation for INTRA and INTER modes.
Gray Scale Shape Coding

The gray scale shape coding has a structure similar to that of binary shape with the dif-
ference that each pixel can take on a range of values (usually 0 to 255) representing the

degree of the transparency of that pixel. The pixel value 0 corresponds to a completely

8

Table 2.1: List of BAB Types (from [5])

BAB Types | Semantic Used in

0 MVDs==0 and No Update | P-, B-, and S(GMC)-VOPs
1 MVDs!=0 and No Update | P-, B-, and S(GMC)-VOPs
2 Transparent All VOP Types

3 Opaque All VOP Types

4 IntraCAE All VOP Types

5 MVDs==0 and InterCAE | P-, B-, and S(GMC)-VOPs
6 MVDs!=0 and InterCAE P-, B-, and S(GMC)-VOPs

Note: GMC = Global Motion Compensation.

transparent pixel and 255 to a completely opaque pixel. Intermediate values of the pixel

correspond to intermediate degrees of transparencies of that pixel.

2.2.2 Motion Coder

Motion coding applies to P-VOP and B-VOP; for the purpose of reducing temporal re-
dundancy. The motion coder consists of a:metion-estimator, motion compensator, previ-
ous/next VOPs store and motion vector (MV)-predictor and coder. Furthermore, in order
to perform the motion prediction for VOP of arbitrary shape, a special padding technique

is required for the reference VOP before motion estimation.

Padding Process

The padding process defines the values of luminance and chrominance samples outside
the VOP for prediction of arbitrarily shaped objects. Fig. 2.7 shows a simplified diagram
of this process.

A decoded MB d[y][x| is padded by referring to the corresponding decoded shape
block s[y][x]. An MB that lies on the VOP boundary is padded by replicating the boundary
samples of the VOP towards the exterior. This process is divided into horizontal repetitive

padding and vertical repetitive padding. The remaining MBs that are completely outside

ca|c2 |l Pixels of the
current BAB
Co r.Q‘_h
alignment
Co | C8 | C7 C8
Pixels of
- .
Co |C5 | C4 | C3|C2 C7T|1Ca) C5 bordered MC
ci|co| 2 ca :12)
{a) (b}

Figure 2.6: Pixel templates used for (a) INTRA and (b) INTER context calculation of
BAB. The current pixel to be coded is marked with “?” (from [5]).

the VOP are filled by extended padding.

e Horizontal repetitive padding: Each sample at the boundary of a VOP is replicated
horizontally to the left and/or right direction in.order to fill the transparent region
outside the VOP of a boundary block: 1f there.are-two boundary sample values for

filling, the two sample values are averaged.

e \ertical repetitive padding: The remaining unfilled transparent region from above
procedure are padded by similar process as the horizontal repetitive padding but in
the vertical direction. After horizontal and vertical repetitive padding, the boundary

MBs have been completely padded.

e Extended padding: Exterior MBs immediately next to boundary MBs are filled by
replicating the samples at the border of the boundary MBs. If an exterior MBs is
next to more than one boundary MBs, one of the MBs is chosen, according to the
priority shown in Fig. 2.8. The remaining exterior MBs (not located next to any
boundary MBs) are filled with 128.

Motion Estimation

The motion estimation (ME) techniques used in MPEG-4 can be seen as an extension of

standard MPEG-1/2 or H.263 block matching techniques with modified block (polygon)

10

Framestores
~—
A
Predictions
flvilx o]
s [ylix]
S'[yllx] \
aturation
Hortzon_tal . Vertical Extended
> RF’ZF;S::;E ' %z%%t:lt:;e > Padding
d b —|
M hor_pad{yJix] hv_pad[yJix]

Figure 2.7: Simplified padding process (from [5]).

matching to handle arbitrary-shaped VOPs which is block-based method.

For an arbitrary shape VOP, the bounding rectangle of the VOP is first extended to
the right-bottom side to multiples of MB size. The alpha value of the extended pixels is
set to zero. The SAD is used for error measure, and is computed only for the pixels with
nonzero alpha values.

The basic motion estimation may be performed on 16 x 16 luminance MBs. The
motion vector is specified to half-pixel accuracy. Because the motion vector may be non-
integer, sample interpolation is necessary. The interpolation is carried out only in half
sample mode, where the half sample values are calculated by bilinear interpolation.

In the MPEG-4 standard, besides motion vector for 16 x 16 MB, motion vector can

be sent for individual 8 x 8 blocks to reduce prediction errors more.

11

Boundary
macroblock 2

Boundary Exterior Boundary
macroblock 3 | macroblock | macroblock 1

Boundary
macroblock 0

Figure 2.8: Priority of boundary MBs surrounding an exterior MB(from [5]).

M otion Vector Encoder

The motion vector must be coded when using INTER-mode coding. Horizontal and ver-
tical motion vectors are coded differentialty by-using.a'spatial neighborhood of three mo-
tion vectors that have already been coded, as illustrated:in Fig. 2.9. These three motion
vectors are candidate predictors for differential"coding.. The differential coding of motion
vectors is performed with reference to the reconstructed shape. In the special cases at the

borders of the current VOP the following decision rules are applied:

1. If the MB of one and only one candidate predictor is outside the VOP, it is set to

ZEero.

2. If the MBs of two and only two candidate predictors are outside the VOP, they are

set to the third candidate predictor.
3. If the MBs of all three candidate predictors are outside the VOP, they are set to zero.

The motion vector coding is performed separately on the horizontal and vertical com-
ponents. For each component, the median value of the three candidates for the same
component is used as predictor, denoted P, and P,, respectively. After finding the pre-

dictors, the vector differences MV D, = MV, — P, and MV D, = MV, — P, are coded

12

MV : Current motion vector
MV2 MV3 MV1: Previous motion vector
MV?2: Above motion vector
MV1MV MV3: Above right motion vector
MV2 MV3 MV1MV1 MV2|(0,0)
(0,0) MV MV1MV MV1 MV
———————— : VOP border

Figure 2.9: Motion vector prediction (from [9]).

by variable length coding (VLC).

Motion Compensation

The motion compensator uses motion vectors to .compute:motion compensated prediction
block, pred|i][5], from the same reference VVOP-ln-addition to basic motion compensation
processing, three alternatives are supported, namely, ‘unrestricted motion compensation,
four MV motion compensation and overlapped motion compensation.

For unrestricted motion compensation, the motion vectors are allowed to point outside
the decoded area of a reference VOP. When a sample referenced by a motion vector is
outside the decoded VOP area, an edge sample is used. The pred[i][;j] is defined through

the following:

xref = min(max(zcurr + dz, vhmesr), xdim + vhmesr — 1),

yref = min(max(ycurr + dy, vomesr), ydim + vomesr — 1),

where vhmecsr = vop_horizontal_mc_spatial _ref, vomcsr = vop_vertical_mc_spatial _ref,
(ycurr, xcurr) is the coordinate of a sample in the current VOP, (yref, zref) is the coor-
dinate of a sample in the reference VOP, (dy, dx) is the motion vector, and (ydim, xdim)

is the dimension of the bounding rectangle of the reference VOP.

13

One/two/four vectors decision is indicated by the MCBPC codeword and field_prediction
flag for each MB. If one motion vector is transmitted for a certain MB, this is considered
four vectors with the same value as the MV. When two field motion vectors are transmit-
ted, each of the four block prediction motion vectors has the value equal to the average of
the field motion vectors (rounded such that all fractional pixel offsets become half pixel
offsets). If four vectors are used, each of the motion vectors is used for all pixels in one
of the four luminance blocks in the MB.

Overlapped motion compensation is performed when the flag obmc_disable = 0. Each
pixel in an 8 x 8 luminance prediction block is a weighted sum of three prediction values,

divided by 8 as follows:

P(i,j) = [p(i+ MV, j+ MV,)H(i,j)
+p(i+ MV}, j+ MV, Hi(i,j)

+p(i 4+ MV j A+ MV H (i, §) + 4]/8,

where (MV?, MVyO) denotes the motion vector for. the:current block, (M V!, nyl) the
motion vector of the block above or below, (MV:2, MI/;f) the motion vector of the block
to the left or to the right, and Hy(i%3), Hi(d;g)and Hs(i, j) are the weighting values of
each pixel in the current block and neighbor blocks: The values of Hy(, j), H1(i,), and
H,(i, j) are shown in Table 2.2.

Since the VOP may be coded in P or B mode, there are three types of motion pre-
diction, namely forward mode, backward mode, and bi-directional mode. The different

modes make different predictions P(i, j) as follows.

1. Forward mode: Only the forward vector (MVFx,MVFy) is applied in this mode.
The prediction blocks P, (i, j), P.(i, j), P,(i, j) are generated from the forward ref-
erence VOP.

2. Backward mode: Only the backward vector (MVBx,MVBY) is applied. The pre-
diction blocks P, (i,), P.(i, j), P,(i, j) are generated from the backward reference
VOP.

3. Bi-directional mode: Both the forward vector (MVFx,MVFy) and the backward

14

Table 2.2: Weighting Values Hy(i, j), H1(i,7), and Hy(3, j)

&
—~
-~

~
=
—~
=

~—
&
—~
=~

~—

rlo|la|la|la|loa|oa| s
aglao|lala|loa|lo|o| o
gl |lo|lo|lo|o || u
gl |lo|lo|lo|lo|uv| o
gl |o|lo oo | u mg:
gl |lo|lo|lo|o || o
agla|lala|la|lo|o| o
rlo|lala|loa|lo|lo| s
N R |Rr | RrRr|R,|FR,|N
N R |Rr[Rr|RPr|RP RPN
N NP R R[N
N NP [Rr RPN
N NP R R RN Nb:
N NP, R[N
N R |RPr[RPrRr[FR|[FRL,|N
N R |Rr [Rr|Rr|RL,|[FR,|N
NN NN NN NN
S S I ST CR I ORI CRN A O e
L I I B e B e B e e A
R lRr|lRrRr|Rr|Rr|RP|R
R |lRr|Rr|RrRr|Rk |k Hh:
R lRr|lRrlRr|Rr|Rr|RP|R
S CII SR SR ORI CRN A R e
[CI I ORI ORI ORI ORI R Y R I N}

vector (MVBx,MVBY) are applied. The prediction blocks P, (4, j), P.(i,), P, (i, §)
are generated from the forward andsthe backward reference VOPs by doing the
forward and the backward predictionssand:then'averaging both predictions pixel by

pixel.

2.2.3 Texture Coder

The texture information of a VOP is present in the luminance Y and two chrominance
components Cb and Cr of the video signal. In the case of an I-VOP, the encoded texture
information represents directly the values of the luminance and chrominance components.
In the case of motion compensated VOPs the encoded texture information represents the
residual values remaining after motion-compensated prediction. The texture coder in-
cludes padding process (for object-based coding, and applied only if needed), 8 x 8 two-
dimensional (2D) DCT, quantization, coefficient prediction, coefficient scan and VLC.

We describe the last four elements below.

Quantization

MPEG-4 video supports two quantization techniques, one referred to as the H.263 quan-

tization method and the other, the MPEG quantization method. The H.263 quantization

15

method is uniform with dead zone for intra and inter AC coefficients and uniform for intra
DC coefficients. The MPEG quantization method is uniform.

Figure 2.10 shows the quantizer characteristics in H.263. For inter DC and all AC
coefficients, input between —T'h and +T7'h is quantized to zero. All coefficients in an MB
go through the same quantizer step size ¢, which can be changed in increments of 2 from
2 10 62 as desired.

In the MPEG quantizer, each coefficient produced by 2D DCT is quantized with a
uniform quantizer. The default quantizer matrix is defined as shown in Table 2.3, which
can be changed if desired.

Furthermore, in order to provide a higher coding efficiency, a nonlinear scaler as
shown in Table 2.4 is used for the DC coefficient of 8 x 8 block in MEPG-4 video.
Note that the characteristics of nonlinear scaling are different between the luminance and

chrominance blocks and depend on the quantizer used for the block.

Intra Prediction

After quantization, the DC coefficients and many AC coefficients of an intra block are
coded by intra prediction (DC and_AC 'prediction): Intra prediction is a new operation
used in MPEG-4 standards to reduce the spatial redundancy between 8 x 8 blocks.

Figure 2.11 shows the prediction of DC coefficients in intra 8 x 8 blocks. The quan-
tized intra coefficients are predicted with three previous decoded DC coefficients. For
example, the DC coefficients of block X is predicted from the DC coefficients of blocks
A, B and C. Unlike MPEG-2, the method of prediction in MPEG-4 is gradient based. In
computing the prediction of block X, if the absolute value of a horizontal gradient is less
than the absolute value of a vertical gradient, then the quantized DC (QDC) of block C is
used as the prediction, else the QDC value of block A is used.

The AC prediction depends on DC prediction, as shown in Fig. 2.12. The AC coeffi-
cients in the first row or in the first column are predicted with three previous decoded AC

coefficients. The direction of prediction is the same as DC prediction.

16

32Q Th+1/2Q
1/2Q o - o
1120 -Th-Q Th
— -3/2Q
(@) (b)

Figure 2.10: Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC and

|
B ’ic D
O {)

- -
A

all AC coefficients.

X Y Macroblock

Figure 2.11: Prediction of DC coefficients of blocks in an intra MB (from [7]).

Scan and VLC

The predicted DC and AC coefficients (as well as the un-predicted AC coefficients) of
DCT blocks are scanned by one of three ways: alternate-horizontal, alternate-vertical and
zigzag (the normal scan used in H.263 and MPEG-1) to change the 2D image to one
dimensional data, as shown in Fig. 2.13. The actual scan used depends on the coefficient
prediction method used.

The coefficients after scan usually become data with many zeros at the end. This kind
of data stream is good for run-length coding. In MPEG-4, differential DC coefficients

in intra blocks are encoded in VLC. But the AC coefficients are encoded by the VLCs

17

Table 2.3: Default Quantization Matrix (Q)) [5]
Intra Inter

8 16 19 22 26 27 29 34|16 16 16 16 16 16 16 16
16 16 22 24 27 29 34 37|16 16 16 16 16 16 16 16
19 22 26 27 29 34 34 38|16 16 16 16 16 16 16 16
22 22 26 27 29 34 37 40|16 16 16 16 16 16 16 16
22 26 27 29 32 35 40 48|16 16 16 16 16 16 16 16
26 27 29 32 35 40 48 58|16 16 16 16 16 16 16 16
26 27 29 34 38 46 56 69|16 16 16 16 16 16 16 16
27 29 35 38 46 56 69 83|16 16 16 16 16 16 16 16

Table 2.4: Nonlinear Scaler for DC Coefficients (from [5])
Component DC Scaler for () Range

1-4°°5-8 924 25-31
Luminance 8 120 "Q+8 20— 16
Chrominance. "8 (@ +13)/2- Q — 16

for EVENTs. An EVENT is a combination'of a last non-zero coefficient indication, the
number of successive zeros preceding the coded coefficient (RUN), and the non-zero value
of the coded coefficient (LEVEL). Some statistically rare events have no VLC words to

represent them. For them an escape coding method is used.

2.2.4 Other Video Coding Tools[7]
In addition to texture video coding, there are some special tools defined in MPEG-4. We

briefly introduce robust video coding and scalable coding here.

Robust Video Coding

Error resilience is a particular concern over wireless networks. In the error resilient mode,

the MPEG-4 video offers a number of tools as follows:

18

Macroblock

Figure 2.12: Prediction of AC coefficients of blocks in an intra MB (from [7]).
0 [1 |2 [3 [10|11 |12 (13| |0 |4 |6 |20 |22 (36|38 (52| |0 |1 |5 |6 |14 [15 |27 |28
4 |5 |8 |9 |17 16 [15 (14| |1 |5 |7 |21 |23 (37 (39|53 | |2 |4 |7 |13 |16 |26 |29 |42
6 |7 |19 (18 |26 |27 |28 (29| |2 |8 |19 |24 |34 |40 |50 |54 | |3 |8 |12 |17 |25 |30 |41 |43
20 |21 |24 |25 |30 |31 (32 33 | |3 |9 |[18 |25 |35 [41 |51 (55 | |9 |11 |18 |24 |31 |40 |44 |53
22 |23 |34 |35 |42 |43 (44 |45 | |10 |17 |26 |30 |42 (46 |56 |60 | |10 |19 |23 |32 |39 |45 |52 |54
36 |37 |40 41 |46 |47 |48 (49 | |11 [16 |27 |31 |43 |47 |57 |61 | |20 |22 |33 |38 |46 |51 |55 |60
38 |39 |50 [51 |56 |57 |58 |59 | [12 |15 |28 |32 |44 |48 |58 |62 | |21 |34 |37 |47 |50 |56 |59 |61
52 |53 |54 |55 |60 |61 |62 (63 | [13 |14 |29 |33 |45 |49 |50 |63 | |35 |36 |48 |49 |57 |58 |62 |63

(a) Alternate-Horizontal scan

(b) Alternate-Vertical scan

(c) Zigzag scan

Figure 2.13: Scans for' 8 *x 8 blocks (from [5]).

1. Object priorities: The object based organization of MPEG-4 video facilitates priori-

tizing of the semantic objects based on their relevance. Further, the VOP types are a

form of inherent prioritization since B-VOPs do not contribute to error propagation

and thus can be transmitted at a lower priority or discarded in case of severe errors.

2. Resynchronization: The encoder can enhance error resilience by placing resynchro-

nization (resync) markers in the bitstream with approximately constant spacing,

such as beginning of each MB.

Data partitioning: Data partitioning provides a mechanism to increase error re-

silience by separating the normal motion and texture data of all MBs in a video

packet and send all of the motion data followed by a motion marker, followed by

19

all of the texture data.

4. Reversible VLCs: The reversible VLCs offer a mechanism for a decoder to recover
additional texture data in the presence of errors since the special design of reversible
VLCs enables decoding of codewords in both the forward (normal) and the reverse

directions.

5. Intra update and scalable coding: To prevent error propagation, intra update is a
simple method to solve the problem. However, intra coding will reduce the coding
efficiency. Another method is scalable coding, which can prevent error propagation

without more intra coding.

Scalable Coding

The scalability tools in MPEG-4 video are designed to support applications beyond that
supported by single layer video, such as internetvideo, wireless video, multi-quality video
services, video database browsing, etc. In scalable video coding, it is assumed that given
a coded bitstream, decoders of various complexities can-decode and display appropriate
reproductions of coded video.

Several different forms of scalability.are provided in MPEG-4 video. Temporal and
spatial scalability are the most basic scalability tools among them. A Fine Granularity
Scalability (FGS) is also defined which supports continuous scalability of bit rate and

video quality.

2.3 Profilesand Levels[5]

Although there are many tools in the MPEG-4 standard, not every MPEG-4 decoder will
have to implement all of them. Similar to MPEG-2, profiles and levels are defined as
subsets of the entire bitstreams syntax of all the tools. The purpose of defining confor-
mance points in the form of profiles and levels is to facilitate interchange of bitstreams

among different applications. There are eight profiles defined in MPEG-4: simple, core,

20

main, simple scalable, animated & mesh, basic animated texture, still scalable texture,
and simple face. The details are given in Table 2.5.

Compared with previous standards, the simple profile of MPEG-4 is similar to the
coding method in H.263. The difference is that the simple profile has error resilience
but does not have B-frame coding. The simple scalable profile is simple profile with
rectangular scalability. The core profile is the profile with all tools of the simple profile,
temporal scalability, B-VOP coding and binary shape coding. The main profile is the
profile with all tools in core profile, gray shape coding, interlace and sprite coding. The
other profiles are for particular purposes, such as 2D dynamic mesh coding and facial

animation coding.

21

Table 2.5: Profiles and Tools (from [5])

Tools

Simple

Core

Main

Simple
Scalable

Animated
2D Mesh

Basic
Animated

Texture

Still
Scalable

Texture

Simple
Face

Basic

1. 1 VOP

2. PVOP

3. AC/DC Prediction

4. AMV Unrestricted MV

Error resilience

1. Sice Resynchronization
2. Data Partitioning

3. Reversible VLC

Short Header

B-VOP

<

<

<

Method 1/Method 2

quantization

P-VOP based
temporal scalability
1. Rectangular

2. Arbitrary Shape

Binary Shape

Gray Shape

Interlace

Sprite

< | <4< <

Temporal scalability

(rectangular)

Spatial scalability

(rectangular)

Scalable still

texture

2D dynamic mesh

with uniform topology

2D dynamic mesh

with Delaunay topology

Facial animation

parameters

22

Chapter 3

Overview of PACDSP

The contents of this chapter have been taken to a large extent from [1].
We consider implementation of MPEG-4 object-based video decoder on the PACDSP
version 2.0. We focus on introducing it in this chapter. In the last section, we give a brief

introduction to version 3.0, which is theslatest version of the PACDSP.

3.1 Introduction

For high performance, the PACDSP 15:a VLIW processor with single instruction multiple
data (SIMD) instruction set architecture (ISA). The software supported reducing hard-
ware design complexity and power consumption. Variable length instruction and instruc-
tion packet solve the poor code density problem of the conventional VLIW architecture.
Another feature of the PACDSP, cluster architecture, reduces not only ports of the reg-
ister files but also the power consumption of read/write operations. Key features of the
PACDSP include the following items:

e Scalable VLIW datapath for easy extension of the performance.

e \ariable instruction word/packet length to avoid the drawback of poor code density

in the conventional VLIW architecture.

e Heterogeneous register files for more straightforward operations, less ports and

smaller entries in each register file to improve the performance and reduce power

23

and area.

e Constant register file in each cluster (32x 32 bits) for storage of some fixed data in
the applications to reduce the frequency of data movement which may cost signifi-

cant power consumption.

e Inter-cluster communication by memory controller for reusing hardware resource
and reducing the port number of ping-pong register file in order to reduce power

and area and to increase the scalability.

e Optimized interrupt design with fast interrupt response time (3 clock cycles) with
hardware supported context switch to reduce the processing time of interrupt service

routine (ISR).

e Hierarchical encoding scheme reducing the dependency between instructions and

packets to reduce area and latency of the.dispatch unit.
e Dynamic power management-for power saving.

e Customized instruction set and functional unit interface for the accelerators that are

used to enhance certain DSP operations.

There are three components in the PACDSP kernel: program sequence control unit,
scalar unit and VLIW datapath. The accelerators that execute in different threads and
synchronize the execution results through the scalar unit can enhance the computation

power of the VLIW datapath. Figure 3.1 shows the architecture of the PACDSP.

3.2 Program Sequence Control Unit

The program sequence control unit is a main component in the DSP kernel. It dispatches
instructions to the scalar unit and the VLIW datapath. It also executes the execution flow

control instructions and handles the interrupt and exception events.

24

Y Cluster |

Dizpatch Unit 5 [FrieerE] q
A A

H i
1 i
T : F
.|_I.:|L_,\I] YYy 1

Load!Stors Unit

Program Sequency
Control Unit

: LA Yy
. | IEEGEE | F
Scalar Unit e
L WLIW Diatapiath
Customized
DSP Kernel Functional Unit. |

., S

Bus Inferface Unit (BILT)

Figure 3.1: Architecture of the PACDSP (from [1]).

3.2.1 Branch Instructions

Branch instructions can be grouped into two categories, conditional branches and uncon-
ditional branches. There are three addressing modes defined in the PACDSP for generat-

ing the branch target address:

e Program counter (PC)-relative
Add the 16-bit signed immediate offset to the address in the PC register, and take
the result as the branch target address, i.e.,

TA = PC + OFFSET

where TA is the target address, PC is the address in PC register, and OFFSET is the

16-bit signed immediate value defined in branch instruction.

e Register
Take the value in the register as the target address, i.e.,

25

TA=Rs

where TA is the target address and Rs is the source register of address.

e Register-relative

Add the 16-bit signed immediate offset to the address saved in the register and take

the result as the branch target address, i.e.,
TA =Rs + OFFSET

where TA is the target address, Rs is the source register saving the address, OFFSET

is the 16-bit signed immediate value.

The branch instructions defined in the PACDSP support saving of the return address
into the assigned register. The programmer should take care of the return addresses of
nested loops. There are three branch delay slots in'the PACDSP, and independent instruc-

tions can be put in these delay slots.

3.22 Loop

The programmer can use the LBCB instruction to effect program loops. Loop Boundary
Registers (RBCO — RBC3), which are all 32-bit registers, can be used to record the loop
counts. However, the maximum loop count is 65,536 for each level. Since there are four
Loop Boundary Registers, up to four levels of nested loop can be supported with the use
of the LBCB instruction.

A constraint exists in using LBCB to control a nested loop, that is, the outer loop
should fully contain the inner loop. No exception will be generated if the constraints are
violated, but the program behavior may be different from expectation.

However, conditional branches can be used inside the nested loop to implement some
special branch behaviors in higher level languages, for example, “break” and “continue”
in C.

26

3.2.3 Customized Function Units

The PACDSP provides Customized Function Unit Interface for extension purpose. The
user can attach co-processors or customized function units to PACDSP and handle them
through the scalar instructions. If some error happens in a customized function unit, it can
inform the PACDSP and the PACDSP can process it based on the particular configuration.
If the work given is finished successfully, the PACDSP can use its results and continue
to work. It is recommended to use this interface to communicate with any added co-

processor; otherwise, the user may have to pay significantly more effort to handle it.

3.2.4 Exception Handling

Unpredictable exceptions may occur during program execution. The exceptions need to
be handled correctly for correct execution results. Exceptions may be caused by hard-
ware (e.g., overflow), software, internal (e.g., undefined instruction), or external (e.g.,
coprocessor exception). When an exception.happens;.the DSP kernel will be frozen or
listen to the main processing unit:(MPU). It is.still aware of debug requests and will

check the corresponding signal to see what kKind of exceptions have happened.

3.25 Interrupt Handling

Two types of interrupt are supported by the PACDSP. One is fast interrupt request (FIQ),
which has the higher priority, and the second is interrupt request (IRQ). The difference
between them is that the FIQ uses hardware to reduce the time in saving the context and
the hardware resources used for the FIQ interrupt service routine (ISR) consist only of
the scalar unit and program sequence control unit. In contrast, the IRQ can use all the
hardware resources in PACDSP to deal with the IRQ request, but the ISR of IRQ needs to
save the context by itself.

In the PACDSP, the minimum latency from interrupt request to the first ISR instruction
to be executed is 3 cycles for both types of interrupt, and it may be postponed when the

ISR experiences cache miss.

27

3.3 VLIW Datapath

The VLIW datapath is composed of two clusters which takes charge of complex data oper-
ations in the program. Each cluster contains a load/store unit (L/S) and an arithmetic unit
(AU). Both units can execute instructions concurrently. Another feature of the PACDSP,
the ping-pong register file, facilitates data transfers between these two units. With this
feature, the typically high power consumption of the DSP kernel can be reduced. The
maximum parallelism of the VLIW datapath in instruction and operation levels is 4 and

12, respectively.

3.3.1 Arithmetic Unit (AU)

The arithmetic unit (AU) comprises four 40-bit adders which can be reconfigured to two
16-bit adders or four 8-bit adders, two 16-bit multipliers, one shifter and one logical ALU.
All data processing instructions in AU begin at the same stage, but not finish at the same
time.

There are three types of precision:in DSP —full; integer, and fractional. Figure 3.2

shows how it works.

e Full precision: Rd = Rsl.L x Rs2.L;
e Integer: Rd.L = (Rsl.L x Rs2.L)[15:0].

e Fractional: Rd.L = Rsl.L x Rs2.L)[30:15].

3.3.2 Load/StoreUnit (L/S)

The load/store unit (L/S) comprises one address generation unit (AGU), one logical ALU,
and one shifter. Similar to AU, all instructions in L/S begin at the same stage, but not finish
at the same time.

The L/S unit supports powerful double load/store instructions, which can load or store

two operands in one instruction. Figure 3.3 shows how double and vector load/store work.

28

| Rsl1.L | >< | Rs2.L |

<~ =

| Rd.H | Rd.L |
Full Precision

| RsL.L 1 > | Rs2.L

o

=7
sletetetetetatatatetatatatetatatattatatstttatattatatattatatatetet Rd L |
=9 .

[RsL.L | > _‘ Rs2.L |

s s st Tt T et s |
R R R R SRR A SRS S SRR TSR
% Rd.l e e e

. -
Fractional

Figure 3.2: lllustration of multiplication instructions with different precisions (from [1]).

3.3.3 Ping-Pong Register File

A centralized register file (RF) provides storage for and interconnects to each functional
unit (FU), and each FU can read from or write to any register location. But in practical
designs, the communication between FU is usually restricted by partitioning the RF to
reduce the complexity significantly with some performance penalty. In other words, each
FU can only read and write a limited subset of registers. In the ping-pong hierarchical
RF, which is shown in Fig. 3.4, the RF is partitioned into private and ping-pong sub-
blocks. Each FU (L/S or AU) can simultaneously access two sub-blocks, one of which
is private (i.e., dedicated to the FU) and the other is dynamically mapped for inter-FU
communications within one cluster. Therefore, each sub-block only requires the access
ports for a single FU. The shared sub-blocks are organized in a ping-pong fashion to
reduce the control overhead, where the dynamic mapping is exposed to the VLIW ISA

with two switching bits and is directly specified by the programmers for each instruction

29

Load/Store Load/Store
Unit Unit

— —

[DO D1) (DO.H DO.L)
D2 D3 D1H D1.L
D4 D5 D2.H D2.L
D6 D7 D3.H D3.L
Double Vector
Load//Store Load/Store

Figure 3.3: Different load/store instructions (from [1]).

packet.

3.34 Data/Address/Accumulator Registers

As shown in Fig. 3.5, the address registers (A0=A7) are-all 32-bit and they are dedicated
to the load/store unit (L/S) for memory aceesses. ln'addition, A1, A3, A5, and A7 are also
treated as the base registers which contain the base addresses in modulo addressing mode.
EO-E3 (A8, Al0, Al2, and Al4) and D0O-D3 (A9, Al1, A13, and A15) are individually
treated as end registers and displacement registers which contain end addresses and dis-
placements in modulo addressing mode. Nevertheless, in linear addressing mode, they
can be treated as the address register like AO—A7. The accumulator registers (AC0-AC7)
are 40-bit (8 guard bits) and are dedicated to the arithmetic unit (AU) for data manipula-
tions. The data registers (DO-D7 and D8-D15) are organized in the form of ping-pong

with 1-bit control and the word-length of these registers is 32.

30

Private Registers

A0 — A15 (32-bit)

I
I

I

! I

! I

! I

! I

I

e e e e e e e e e e e e e e o e e e = = =

ACO - ACT (40-bit),,,,

| g |

Private Registers
Figure 3.4: Ping-pong register file'in one cluster (from [1]).
3.3,5 Statusand Control Registers ™"
The status register and control register which can be read and set by user instructions can
be used to monitor the DSP kernel status and handle the operation mode of DSP kernel.

Program Status Register (PSR)

The 16-bit program status register records the operation status in each cluster and the
scalar unit. It includes Overflow, Negative, and Carry bits. It can only be read by user

instructions.

Addressing M ode Control Register (AMCR)

The PACDSP provides three types of addressing modes:

31

DO.H | DO.L D8.H | D8.L acos| ACO.HI ACO.L A0 AB8/EO
D1H | D1.L D9.H | D9.L acte|l ACL.H|ACLL A2 Al10/E1
D2.H | D2.L D10.H| D10.L aczel AC2.H| AC2.L Ad A12/E2
D3.H | D3.L D11.H| D11.L acze| AC3.HIACI.L A6 Al4/E3
D4.H | D4.L D12.H| D12.L acss| ACA.HI ACA.L Al1/B0 A9/DO
D5.H | D5.L D13.H| D13.L acss| AC5.HI ACE.L A3/B1 All/D1
D6.H | D6.L D14.H| D14.L acse| AC6.H| AC6.L A5/B2 Al3/D2
D7.H | D7.L D15.H| D15.L acze|l AC7.HI ACT.L A7/B3 A15/D3
Data Register Data Register Accumulater Register Address Register End/Displacement
32-bit 32-bit 40-bit 32-bit Register
(L/S) (AU) (AU)) 32-bit

(L/S)

Figure 3.5: Available registers in one cluster (from [1]).

e Linear addressing mode.
e Bit-reverse addressing mode.
e Modulo addressing mode.

The addressing mode control register (AMCR) is.a 32-bit read/write register. This reg-
ister is used to control the addressing mode of relative address registers. The addressing
modes are related to where the operands are to be found and how the address calculations

are to be made.

3.3.6 Addressing Modes

The addressing modes are related to where the operands are to be found and how the

address calculations are to be made.

Linear Addressing Mode

There are three kinds of linear addressing mode, which are register direct mode, address

register indirect mode, and immediate data mode. These are briefly explained below.

32

1. Register direct mode: This mode specifies that the operand is in one or more of the
arithmetic unit (AU) registers, load/store unit (L/S) registers, control registers and
program counter (PC) registers. It is also used to specify a control register operand

and a PC register operand for special instructions.

2. Address register indirect mode: This mode specifies that the address register is
used to point to a memory location. The term indirect is used because the register
contents are not the operand itself, but the operand address. This addressing mode
specifies that an operand is in a memory location and specifies the effective address

of that operand. There are still two sub-modes in the address register indirect mode:

e Pre-increment, +(Rs) offset
The operand address is the sum of the contents of the address register and the
offset. The data stored at the address of the sum of register value and offset

will be loaded.

e Post-increment, (Rs)+ offset
The operand is in the address register:Rs.- After the operand address is used,
it is incremented by the offset and stored in the same address register. Incre-
menting the operand address by the offset places the next available address in
the register. That is, the data stored at the location of the address register will

be loaded first, and then the address is updated with the offset.

3. Immediate data mode: This mode does not use an address register. The instructions
use an immediate value that is included in the instruction for the data value or

address value.

Bit-Reverse Addressing Mode

Bit-reverse addressing mode is also called reverse-carry addressing mode. It is useful for
2F-point fast fourier transform (FFT) addressing. This mode is selected by setting the
corresponding bits in AMCR, and address modification is performed in the hardware by
propagating the carry from each pair of added bits in the reverse direction (from the MSB

end toward the LSB end). It can also use the pre- or post-increment addressing mode.

33

This address modification is useful for addressing the twiddle factors in 2% point-FFT

addressing as well as to unscramble 2%-point FFT data.

Modulo Addressing Mode

Modulo address modification is useful for creating circular buffers for FIFO queues, delay
lines, and sample buffers.

The definition of modulo addressing, using a base register (Bn) and a modulo register
(M7), enables the programmer to locate the modulo buffer at any address. The address
pointer, An, is not required to start at the lower address boundary, nor to end on the upper
address boundary. It can initially point to anywhere (aligned to its access width) within
the defined modulo address range, Bn < An < Bn + Mji.

Modulo addressing can be selected by configuring corresponding bits in AMCR and
write the desired modulo to modulo registers. The range of modulo registers, M7, is from
1to 232 — 1.

Each base address register (Bn) Isjassociated with. an address register. Offset and
modifier registers are also associated with the corresponding address registers in the same

way.

3.3.7 Data Exchange

As shown in Fig. 3.6, the PACDSP provides a data exchange mechanism between any
two of the scalar unit and the two clusters. Figure 3.7 shows that it can also provide
data broadcast to facilitate one of them to broadcast its data to the others even though the
number of clusters may be extended in the future. This job is accomplished by using the
ports of the memory interface unit (MIU) because MIU has connections with all register

files of the scalar unit and the two clusters.

Data Exchange Between Clusters

The PACDSP provides a special instruction (DEX) to accomplish data exchange between

clusters. For example:

34

MIU

I

|) y)
| |
Scalar l Load/Store I Load/Store

Unit I Unit ' I Unit '
I I I I

| ' | '

[Arithmetic I [Arithmetic I

| Unit | I Unit |

N Clusterl / N Cluster2 /

Figure 3.6: Data exchange between two clusters (from [1]).

y
— —_ —
| A\

/\ m
A A A
—— T - /=y - = -~ - -
I v v) I v]
|
Scalar I Load/Store I Load/Store I
Unit | Unit ! | Unit I
[| | |
I [I I
[Arithmetic | I Arithmetic |
| Unit | I Unit |
\ Clusterl / \ Cluster2 /

Figure 3.7: Data broadcast among clusters (from [1]).

Clusterl instruction: DEX D1, DO
Cluster?2 instruction: DEX D1, D2
At compile time, this instruction pair will cause direct exchange of the contents of DO and

D2 through MIU and each cluster will store them in D1, as shown in Fig. 3.6.

Data Broadcast

Like data exchange between clusters, PACDSP also provides a special instruction pair
(BDT and BDR) for data broadcast from one cluster to the others. For example:

Clusterl instruction: BDT DO

Cluster?2 instruction: BDR D3

35

Scalar instruction: BDR RO
At compile time, this set of instructions will broadcast data from clusterl to cluster2 and
the scalar unit as shown in Fig. 3.7.

On the other hand, if we just want to transmit data from one cluster to another (includ-
ing the scalar unit), it can be considered a special case of data broadcast. For example:
Clusterl instruction: ADD DO, D1, D2
Cluster2 instruction: BDR D7
Scalar instruction: BDT RO
In this example, the content of RO is transmitted to D7 in cluster2. At the same time,

clusterl can do other operations without interference with this transmission.

3.3.8 Constant Register File

In many DSP algorithms, such digital filtering, there are many fixed data such as the filter
coefficient. In order to avoid high frequency of data movement in the register file, the
PACDSP provides a small memory called Constant Register File to maintain the fixed
data. We can also use it to store:look up tables which contain fixed data for specific
applications. It can reduce the frequency.of data movement and thereby reduce power
consumption in such operations.

Data contained in the Constant Register File can be used in comparisons, multiplica-
tions, multiplications and accumulations, etc. They are used as the second source operand
in the instructions.

The specifications of Constant Register File (in one cluster) are as follows:
e 32 x 32 hits.
e Two read ports and one write port.

As shown in Fig. 3.8, the Constant Register File is initialized through the write port by
MIU at the beginning of the program. Not only the L/S but also the AU has a read port
for taking its value as one source operand. There are some rules when using the Constant

Register File:

36

e It can only be modified by particular instructions in L/S.

e Read and write operations may not occur at the same time in L/S.

3.4 Scalar Unit

The scalar unit executes the scalar instructions whose characteristics are low parallelism
and high data dependency. It also controls the power control interface and the customized

functional unit interface.

3.4.1 Scalar Unit

The Scalar Unit can perform three types of function, which are basic arithmetic oper-
ations, word and halfword-based load/store operations, and read/write operations per-
formed on the control/status registers,Under some running modes, the DSP core may
execute a program without activating the VLIW clusters. In this case, the scalar unit acts
like a simple machine, handling some easy tasks. Mostly, the scalar unit is in charge of
the control-based work while the VVLIW: Clustersrare dealing with data processing. Data

can be exchanged between the scalar unitand the VLLIW clusters.

3.4.2 Control Registers

In the PACDSP kernel, there are 15 control registers. Table 3.1 shows the names and the
widths of all the control registers in the PACDSP kernel.

Several control registers are memory mapped and can be accessed by others outside
the PACDSP kernel. Table 3.2 lists the memory mapped control registers and the mapping
memory addresses.

The control registers can be read or write by the scalar instructions. When writing
the control registers, we can assign a 16-bit immediate value to the destination or set a

general purpose scalar register as the source operand.

37

Memory Interface Unit (MIU)

Private RF

Tt

Load/Store Unit

Customized FU

HTTT

1
1
1
1
| Public Ping—Pong RF
1
1
1
1

Coefficient

Memory

T

Arithmetic Unit

| Customized FU |

113

Private RF

- Em o o e EE o e e EE E e e e Em o o o P

Figure 3.8: The Constant Register File of one cluster (from [1]).

3.4.3 General Purpose Scalar Register File

In the scalar unit of the PACDSP kernel, there are sixteen 32-bit general purpose registers

named RO to R15.

3.5 Conditional Execution Control

Unlike general purpose processors, the major mission of a DSP is to provide more com-
puting power for numerical calculations. To reduce control overhead, the PACDSP sup-
ports conditional execution of instructions. Programmers can set predicates by Compare-
and-Set instructions and then the instructions afterward can refer to the predicates to de-
cide whether to execute or not. When the program calls a function, we can save the
predicates and restore them after returning from the function call.

The Compare-and-Set instructions, such as SLT, SGT, etc., compare source operands

38

Table 3.1: Details of Control Register Files (from [1])

Type No Name Size(bits) Note
CRO | PREDN 16 Prediction information
CR1 | ENLINT 1 Interrupt enable flag
CR2 | MSK_EX 16 Mask inside exception
CR3 | SWIEX 16 Software exception
Control | CR4 | CFO 32 Custom function register 0
CR5 | CF1 32 Custom function register 1
CR6 | CF2 32 Custom function register 2
CR7 | CF3 32 Custom function register 3
CR8 | SD_MIXIFNO | 32 Mix information O’s shadow register
CR9 | SD_Rbcl 32 Loopboundary counter’s shadow
registerl
CR10 | SD_Rbc2 32 Loopboundary counter’s shadow
register2
Interrupt | CR11 | SD_BCTG 32 Branch target shadow register
CR12 | SD_CPC 32 CPC’s:shadow register
(ISR return address)
CR13 | SD_PREDN 16 Prediction’s shadow register
CR14 | SD_RO 32 RO’s shadow register
CR15 Reserved

and save the results to the predicate registers, and the comparison results can be saved to
the general purpose registers at the same time. The PACDSP provides 16 predicate bits
(PO-P15), and a Compare-and-Set instruction updates 2 predicate bits at the same time.
However, PO is always set to 1, and each predicate bit can be set by only one instruction

at the same time.

39

Table 3.2: Memory-Mapped Control Registers (from [1])

No Name Size Note Offset | R/W
00 | Exception_Cause | 32 Indicate inside exception cause | 0x50020 | R
01 | Busy 1 DSP is busy 0x5000C | R
02 | Start 1 Start signal 0x50008 | R/W
03 | Start_PC 32 Starting address 0x50000 | R/W
04 | MODE 4 DSP running mode 0x50040 | R
05 | VERSN 4 DSP version 0x50044 | R

3.6 |SA and Pipeline Stages

As said, the PACDSP architecture consists of the program sequence control unit, the
scalar unit, and the VLIW datapath. Each of the three has corresponding function units.
Therefore, the instruction set of PACDSP js classified according to the functional unit in
which the instruction is executed. Figure 3.9.depicts the instruction set architecture (ISA)
of the PACDSP.

Figure 3.10 shows the pipeline-stages/ofithe PACDSP. The program sequence control
can be divided into three stages, which.are IF, IDP, and' ID. The scalar unit operation and
the VLIW datapath are both divided into five stages, which are RO, EX1, EX2, EX3, and
WB. The job of each pipeline stage is described in Table 3.3.

3.7 DSP Running Modes

The PACDSP can work under several running modes. Each mode has different hardware
utilization. There are 7 different running modes. The corresponding hardware resource
and a simple description of each running mode is given in Table 3.4.

Not all running modes can be chosen to be entered by the instructions. We can only
change the three sub-modes of the the user mode by the instructions. The transitions

between running modes are shown in Fig. 3.11.

40

PACDSP ISA

Program
Sequence Scalar VLIW
I I |
I I I
Program crR Load/ Ay Load/ AU
Control Store Store

Figure 3.9: PACDSP instruction set architecture (from [1]).

Program Sequence

Control Unit VLIW Datapath
IF IDP ID RO EXL EX2 EX3 WB
< »
Scalar Unit

Figure 3.10: Pipeline stages of the PACDSP (from [1]).
3.8 Instruction Packet

The PACDSP can issue up to 5 instructions in one cycle. Instructions issued in the same
cycle are packeted into an instruction packet. The five slots of the instruction packet and
the types of instruction that can be contained in each slot are listed in Table 3.5.

The whole instruction packet is bounded by braces, and slots within packet are sepa-
rated by new-line characters. However, an instruction packet is allowed to be written in

a single line, and be separated by a pipe character

”. The simplified syntax is shown in
Fig. 3.12. A NOP instruction should be placed in a slot where there is no instruction to

be executed.

41

Table 3.3: Pipeline Stages and Their Descriptions (from [1])

Stage Description

IF Instruction Fetch

IDP | Instruction Dispatch

ID Instruction Decode

RO Read Operand

EX1 | Execution One

EX2 | Execution Two

EX3 | Execution Three

WB Write Back

3.9 Development Tools and Implementation Approach

3.9.1 Development Tools

At the present time, we have a C compiler/parted from the well-known Open-Research-
Compiler (ORC) on Linux systems, and we can give parameters to optimize the perfor-
mance of compiler. However, we c¢an choose only one optimization level currently. In
addition, base utilities have been ported from the GNU binutils, and there is an assembler,
a linker, and some other object handling tools. The debugger is ported from the GNU
GDB (the GNU project debugger). The debugger can be connected to both the instruction
set simulator (ISS) and the embedded ICE. These tool chains are developed by the Pro-
gramming Language Laboratory of the Computer Science Department of National Tsing
Hua University, Hsinchu, Taiwan, R. O. C.

The ISS is developed by SoC Technology Center (STC) of the Industrial Technology
Research Institute, Hsinchu, Taiwan, R. O. C. The input file of the simulator is split
through a parsing tool, *“as2tic”, which parses the assembly code into the two parts of
data and instructions. We can configure the ISS to decide which kinds of information we
want to print out to files. All the registers can be shown in each cycle, but the printable

memory range is 8 Kbytes only. The ISS can be used on Linux operating systems only.

42

Table 3.4: Running Modes of the PACDSP (from [1])

Running Modes

Description

Resources

Idle Mode

Idle after reset

or trap

Execution control

and interrupt interface

High Performance

Process program

which needs all resources

All available

Process program

User Mode | Medium Performance | which does not need All except Cluster 2
all resources
High power saving | Process FIQ ISR All except Cluster 1
or scalar program and Cluster 2
Wait for Customized CFU, interrupt,
Wait Mode | Function Unit debug interface, and
result exception handling unit
Froze DSP since Debug and interrupt interface,
Frozen Mode | exceptions happened exception handling unit
Debug interface,
Debug Mode | Debugging register files
3.9.2 Implementation approach

Since the goal of our implementation is achieve a real-time MPEG-4 video decoder on

PACDSP, the execution time and the code size are the most important issues. At the

present time, the compiler cannot provide the performance of well-scheduled hand code.

Moreover, the development of the compiler was not completed when we began our im-

plementation. Therefore, our implementation employs assembly programming and opti-

mization.

43

Reset reveived
Reset reveived | Idle Mode

ry
|z
ole 2|
52 B2
Z|% 5 fE Change by .
glz £[2 skr_Mopg|High Performance
£ l? Mode
. r
< Exception occured Medi
edium
Frozen Mode . User Mode »
Interrupt received Performance Mode
hc Y e Lxl‘-' = ?:ks— g A«‘? .
g & E8 = 8z |2 |2 High Power
= 2 212 5 |- Lt = .
I -] JElzs |z |z Saving Mode
g g =2 S G2 g |
z |z Wait Mode ilg |12 &
& g = £ o o
=z dg |2
a Iy =] = 4]
o, £ =
z = 2|2]
i g EF =
e = A=
%
A
Debug Mode

Figure 3.11: Transitions between.DSP running modes (from [1]).

Table 3.5: Instruction Types in Each Instruction Slot (from [1])

Instruction Slot | Instruction Types

1 (Scalar Unit) | Program Sequence Control Instructions

2 (Clusterl) | VLIW Load/Store Instructions

3 (Clusterl) | VLIW Arithmetic Instructions

4 (Cluster2) | VLIW Load/Store Instructions

5 (Cluster2) | VLIW Arithmetic Instructions

44

inst1 | inst2 | inst3 | inst4 | instS

Figure 3.12: Simplified syntax of instruction packet (from [1]).

3.10 Overview of the PSDK 2.0 Platform

The PAC System Developer’s Kit (PSDK) platform is developed by SoC Technology Cen-
ter (STC) of Industrial Technology Research Institute (ITRI) in Taiwan. We demonstrate

the implementation on it, which is a dual core system. It consists of following items:
e ARM Integrator-compatible Core Module: ARM920T CM
e Multi-ICE of ARM
e PACDSP Core Module (Burned in FPGA now)
e Generic peripherals (LCD translator)

The PSDK 2.0 hardware modules are shown in Fig. 3.13. Since the PACDSP core
module is replaced by an FPGA with the DSP-design burned-in, the operating frequency
of PACDSP is at most 22 MHz rather‘than-a-.200 MHz real chip. However, there is no
difference for the functionality of a real chip and a burned-in FPGA.

It is noted that the operation of PACDSP is controlled by the ARM core, and its
internal memory is accessible to the ARM core as well. For a PACDSP execution, we
have to inform the DSP with its corresponding machine code of program and the data in
the internal memory. Then we should give some signals to start the DSP execution. The
memory map of our demonstration is shown in Fig. 3.14, and it is noted that the start

address of instruction is configurable and we set the instruction memory at 0xb0000000.

3.11 Overview of PACDSP v3.0

The contents of this section have been taken to a large extent from [2]-[4].

45

Lo

Figure 3.13: PAC System Developer’s Kit (PSDK) 2.0.

In this section, we give a brief i'ﬁ:'tr_bgac_tjqn to _,thé";;PACDSP v3.0 which is the latest
version of PACDSP. We focus our discuss}bn on the difference between the v2.0 and the
v3.0. Although our implementation is based on PACDSP v2.0, the information about the
difference between the two versions can help us know the design trend of the PACDSP. It

also can help us if we do implementation on PACDSP v3.0 in the future.

3.11.1 Architecture Overview

PACDSP v3.0 is also a VLIW DSP processor. The key features of the v3.0 are the same
as the v2.0, which are already listed in section 3.1.1. Fig. 3.15 shows the architecture of
PACDSP v3.0. Similar to v2.0, the core elements include the Program Sequence Control
Unit (PSCU), Scalar Unit, Clusters (VLIW datapath), Customized Function Unit, and

memory interface. The following briefly introduces the differences between v2.0 and

46

0x22000000 Start of internal memory

0x2200FFFF End of intemal memory

Start address of instruction
memeory (0xbO000000)

0x22005008 DSP Start Flag

0x22005000

0xb0000000 Start of instruction memory

Figure 3.14: Memory map of the dualcore demonstration

v3.0 in PSCU, VLIW datapath, and the pipeline stages. Moreover, a comparison of some

instructions that we frequently use between the two versions is given.

3.11.2 Program Control Sequence Unit (PSCU)

e There are five branch delay slots in PAEGDSP, v3.0, compared to three in PACDSP
v2.0.

e In the PACDSP v2.0, up to four levels of nested loop are supported with the use of
the LBCB instruction, and the loop boundary registers (RBCO-RBC3) are used to
record the loop counts. Instead of loop boundary registers, PACDSP v3.0 uses the
general purpose registers (R0-R15) to record the loop counts. Up to sixteen levels

of nested loop can be supported with the LBCB instruction in v3.0.

e Compared to PACDSP v2.0, PACDSP v3.0 has simplified scenarios of interrupt,
debug, and exception. FIQ and IRQ are two types of interrupt supported by the
PACDSP. In PACDSP v2.0, the minimum latency from interrupt request to the first
ISR instruction to be executed is 3 cycles for both types of interrupt. The minimum

latency is 4 cycles in PACDSP v3.0, however.

47

BIU Cache Interface

Instruction Cache

Fetch Fetched

Exception
Handler

Figure 3.15: Architecture of PACDSP v3.0 (from [2]).

Contention Counter

3.11.3 VLIW Datapath

e In PACDSP v2.0, the comparison instructions can-only be executed in the L/S unit.

In PACDSP v3.0, the comparisen instructions can be executed in both L/S unit and

arithmetic unit.

e The inter-cluster communication latency is 2 cycles for PACDSP v2.0. PACDSP

v3.0 decrease the latency to 1 cycle.

AddressRen Instructions
Start Signal’Address
FIQy IRQ PSCU
Master CFU
Interface Instruction Ficlds Instruction Ficlds Instruction Fields
Slave
Interface
System RE/
Predicate RF Scalar Clustert Cluster2
DMA
Memory
mapped
Registers
(ncluding
reserved
mgisters) AHB LoadStere Data Memory

e PACDSP v3.0 adds register relative addressing mode for L/S instructions.

e The addressing mode control register (AMCR) is a 32-bit register in PACDSP v2.0.
In PACDSP v3.0, the AMCR is modified to a 16-bit register.

e In PACDSP v2.0, the constant register file in each clusters contains sixteen 32-bits
registers (CO—C15), while PACDSP v3.0 only has eight (C0-C7).

e For the constant register file, additional pointer addressing mode is supported in

PACDSP v3.0.

48

Program Sequence VLIW Dalapath,
Control Unit Scalar Unit

F
|
&
¥

IF IMEM | IDP D RO EX1 EX2 EX3 WB

Figure 3.16: Pipeline stages of the PACDSP v3.0 (from [4]).

3.11.4 Pipeline Stages

Fig. 3.16 shows the pipeline stages of PACDSP v3.0. Compare to v2.0, PACDSP v3.0
divides the PSCU into four stages,which are IF, IMEM, IDP, and ID. The added stage,
IMEM, accesses the instruction memory after the IF stage. The scalar unit operation and

the VLIW datapath are both divided into five stages.

3.11.5 Instruction Set Comparison

Compared to PACDSP v2.0, PACDSP v3.0-adds some-useful instructions and has en-
hanced some common by used instructions: Table 3.6.shows the modification of Load/Store
instructions from PACDSP v2.0 to PACDSP v3.0"and their supporting units. Table 3.7
lists the comparison instructions supported in PACDSP v2.0 and PACDSP v3.0.

49

Table 3.6: Modification of Load/Store Instructions from PACDSP v2.0 to PACDSP v3.0

PACDSP v2.0 PACDSP v3.0
Instruction | Scalar Unit | L/S Unit | Instruction | Scalar Unit | L/S Unit Note
(DLW \Y/ \ (DLW \Y/ \ LW only in scalar unit
LNW V (D)LNW Y
(D)LH(U) V LH(U) v V
LB(U) \Y; LB(V) Vv V
(D)SW \% \Y (D)SW \% \ SW only in scalar unit
without this instruction (D)SNW \
(D)SH(U) V SH(V) Vv V
(D)SB(V) V SB(U) V \%

Table 3.7: Comparison Instructions Supported in PACDSP v2.0 and PACDSP v3.0

Category PACDSP v2.0 | PACDSP v3.0
Set Less Than SLT(U) SLT(U)[.L/.H]
SLTI SLTI(V)
Set Greater Than SGT(U) SGT(U)[.L/.H]
SGTI SGTI(V)
Set Equal SEQ SEQ[.L/.H]
SEQI(V)

50

Chapter 4

Complexity Analysis of MPEG-4
Object-Based Video Decoder and

Dual-Core I mplementation Design

Prior to DSP implementation, we first analyze the computational complexity of the MPEG-
4 video codec software. Since the PAC platform and its associated software tools are still
in their early stage of development; it is impractical to earry out the computational com-
plexity analysis directly on PAC. As a-result, we carry out the analysis on standard per-
sonal computers (PCs) and employ Intel’s “VTune Performance Analyzer” in this work.
The resulting numbers may not carry over directly to the PAC platform, but can give
guidance to the subsequent codec programming on the PAC platform. Fig. 4.1 shows the
major blocks of MPEG-4 object-based video decoder, and our analysis will focus on some
important blocks shown in this figure.

After the complexity analysis, we discuss the implementation of the IDCT of the
MPEG-4 video decoder, which is a important function that consumes time. We address
the efficiency and the accuracy of our algorithm, and then we show the performance of
IDCT that is implemented on PACDSP. Finally, we show the design of the dual-core im-
plementation on PSDK, and the optimization of the implementation on the ARM proces-

sor. We leave the optimization of implementation on PACDSP to the next chapter.

51

Coded Bit Stream
(Shape) - Shape
Decoding Previous
Reconstructed
VOP
Coded Bit Stream
(Motion)
| Motion . | Motion o ——
"1 Decoding " | Compensation |
Dempltiplexer -
P ¢ vopP
C odcﬁr Bit Stream I Reconstruction
Texture) Variable
» Length » [nverse Scan
Decoding
L Inverse Inverse
DC & AC > er:rg:'on s IDCT
Prediction : !
Texture Decodin
N £ J

Figure 4.1: Block diagram 0f MPEG-4 object-based video decoder [5].
4.1 Profilesof the M PEG-4 Object-Based Video Decoder

In this section, we analyze the complexity of the-MPEG-4 object-based video decoder.
We focus on the execution time that the codec software spends in coding of practical
video sequences. For this, we employ the MoMuSys [10] software as the base. There
are three different sequence for our analysis, which are “stefan”, “foreman” and “akiyo”.
Table 4.1 shows the VOP size of each sequence, which contains the width, height and the
total number of pixels. We also show the first frame of each sequence in Fig. 4.2.

In the original codec of MoMusSys, the IDCT is implemented in floating-point, and it
consumes much time. In order to reduce the complexity and to implement it on DSP, we
modify the IDCT to fixed-point, which is discussed in the next section. After fixed-point
IDCT, we will do the complexity analysis of execution time again to find out the amount
of improvement.

The computational environment for the complexity analysis is a PC with a 2.0 GHz
Pentium-M CPU and 768 MB of DDR RAM, running Windows-XP. We use Intel’s “VTune

52

Table 4.1: VOP Size of Each Test Sequence
Test Seq. width height Total Num.
(QCIF) (pixels) (pixels) of pixels

stefan 48 96 4,608
foreman 112 144 16,128
akiyo 144 128 18,432

Figure 4.2: First frame of each test sequence (a) stefan. (b) foreman. (c) akiyo.

Performance Analyzer” to run the profile of the MoMuSys software. The profiling result,
shown in Table 4.2, is obtained from decoding 2 frames including one intra frame and one
inter frame. And the encoder employs H.263 quantization with a fixed quantization step
size (QP) of 4. Noted that QP affects the length of the bitstream, so a larger QP results in
a smaller bitstream size and reduces the required encoding and decoding time. However,
a large QP will reduce the quality of the output image.

In Table 4.2, “DecodeFirst” and “AlphaDecodeMB” are two key functions in shape
decoding. “DecodeFirst” decodes the BAB type and “AlphaDecodeMB” decodes the al-
pha plane using context-based arithmetic coding according to the BAB type. Since we
decoded one intra frame and one inter frame for the analysis, several functions are used
in both I and P frames. In order to distinguish these functions, functions used in | frame
are marked with underline I (_I), and functions used in P frame are marked with underline

P (_P). However, certain functions, such as “VOPMotionCompensate” and “DecodeMB-

53

Table 4.2: Profile of Object-Based MPEG-4 Decoding of QCIF Sequence on VTune

stefan_qcif foreman_qcif akiyo_qcif
Function Name Clockticks % Clockticks % Clockticks %
DecodeVVOLHeader 746 1.87 679 0.98 774 1.19
DecodeVVOPHeader 337 0.84 320 0.46 316 0.48
VOPPadding 3,785 9.46 9,300 13.38 9,405 14.40
DecodeFirst_| 28 0.07 109 0.16 162 0.25
AlphaDecodeMB_I 1,727 4.32 4,430 6.37 4,786 7.33
DecodeMBHeader_| 18 0.05 70 0.10 76 0.12
VlcGetBlock_I 1,043 2.61 1,353 1.95 2,484 3.80
doDCACrecon_I 106 0.27 588 0.85 476 0.73
BlockIDCT_I 870 2.18 3,320 4.78 2,931 4.49
BlockDequantH263_I 128 0.32 367 0.53 408 0.62
DecodeFirst_P 37 0.09 123 0.18 106 0.16
AlphaDecodeMB_P 1,941 4.85 4,121 5.93 2,412 3.69
DecodeMBHeader_P 29 0.07 89 0.13 122 0.19
VlcGetBlock_P 623 1.56 383 0.55 4 0.01
BlockIDCT_P 1,067 2.67 3,534 5.09 602 0.92
BlockDequantH263_P 103 0.26 262 0.38 48 0.07
VOPMotionCompensate 1,457 3.64 4,275 6.15 4,104 6.29
DecodeMBMVs 90 0.23 233 0.34 36 0.06
WriteOutlmage 15,940 39.85 15,588 22.43 15,921 24.38
Others 9,921 24.79 20,350 29.26 20,124 30.82
Total 39,996 100.00 69,494 100.00 65,297 100.00

o4

MVs”, are used in inter (P) frames only, and “doDCACrecon” is only called for intra (1)
frames for our test sequences. Certain functions, like “DecodeVOLHeader”, “Decode-
VOPHeader” and “WriteOutlmage”, have regular operations that are almost independent
of the test sequences. Hence we do not separate them for | frames and P frames, although
they are called by both. Therefore, the execution time of these functions should be divided
by two if we want to compare the computational complexity between them.

In the object-based video decoder, the VOP size is arbitrary in each frame. In our
test sequences, “akiyo_qcif” has the biggest VOP size, “foreman_qcif” the next, and the
VOP size of “stefan_qcif” is the smallest. The execution times of some functions, such
as “VOPPadding” and those called for | frame decoding, are directly proportional to the
VOP size. Hence they are the longest for “akiyo”. However, for the functions called
for P frames, not only the VOP size but also the sequence characteristics may affect
the execution time. Take “akiyo_qcif” for example, though its VOP size is the biggest,
because the motion in this sequence is very little;the execution time of the inter functions
are less than “foreman_qcif”, even less than “stefan_gcif” in some functions.

Though the test sequences have different VOP sizes. and motion characteristics, we
still can find in Table 4.2 that IDCT and 'shape decoding are very important parts in the
decoding procedure, in the sense that'they are time-consuming. We should pay more at-
tention to these blocks. In the next section, we first discuss our study of fixed-point IDCT,
and show the improvement of our optimization. The optimization of shape decoding will

be left to the next chapter.

4.2 Fixed-Point IDCT

The DCT and IDCT in MPEG-4 are defined as

N—1N-1
F(u,v) = ;C(U)C(U) >N flz,y) cos (2 ;_A})WT oS 2y ;];)UW, (4.2)
z=0 y=0
g NIl 2z + Dur 2y + Dorw
flz,y) = N > Y C(w)C(v)F(u,v) cos N ST oN 4.2)

=0 v=0

IS

95

where u,v,z,y =0,1,2,..., N — 1, and

1

Clu),Cv) = V*
1, otherwise.

for u,v =0,

Many fast algorithms have been proposed for efficient computation. To implement IDCT
on PACDSP, there are two critical issues, namely, efficiency and accuracy, which are

discussed below.

4.2.1 Efficiency of IDCT

For the fast computation of 2-D IDCT, the conventional approach is the row-column
method, which requires 16 1-D IDCTs for the computation of an 8x8 IDCT [15]. One fast
method reduces the required 1-D IDCTs from 16 to 8 [15]. However, since the number of
required registers is very big in this algorithm, it is not appropriate for implementation on
PACDSP. Similar to the derivation from.discreté Fourier transform (DFT) to fast Fourier
transform (FFT), a fast cosine transform (FCT) is proposed in [16]. A comparison of
computational complexity of differentalgorithms is listed in Table 4.3.

Note that the computational complexity-is-estimated for floating-point computation.
Since the transform coefficients used:in.[16] are reciprocals of cosine values, the error
increases because of limited accuracy in the fixed-point approximation on PACDSP. In
addition, the number of multiplications is bigger in the even-odd decomposition algo-

rithm. As a result, we first consider the IDCT algorithm of MoMuSys on PACDSP.

Table 4.3: Comparison of Computational Complexity for 8-point IDCT
Direct Form FCT [16] MoMuSys Even_Odd FCT [17]

Multiplications 64 12 16 20

Additions 56 29 26 28

56

4.2.2 Accuracy of IDCT

Since the PACDSP is not capable of floating-point computations, we have to convert the
IDCT algorithm to fixed-point computation. In this, the accuracy is a critical issue. Since
the native word length is 16-bit on PACDSP, we scale the floating-point cosine coefficients
with 212, We then right shift 15 bits after multiplications, which rounds the product to the
nearest integer.

The 1-D IDCT algorithm used in MoMuSys has the signal flow shown in Fig. 4.3.
We need to check if the implementation is accurate enough. Some tests for the IDCT
accuracy are defined in MPEG-4 [5], which are based on the IEEE Std. 1180-1190 with

some modifications. The tests require five statistical measurements, which are as follows:
e For any pixel location, the peak error (ppe) shall not exceed 2 in magnitude.

For any pixel location, the mean square error (pmse) shall not exceed 0.06.

Overall, the mean square error (omse) shall not.exceed 0.02.

For any pixel location, the meanerror (pr¢) shall not exceed 0.015 in magnitude.

Overall, the mean error (ome)-shall notexceed 0.0015 in magnitude.

e For all-zero input, the proposed IDCT ‘shall generate all-zero output.

The testing result of MoMuSys algorithm is shown in Table 4.4. We can see that this
implementation is not accurate enough. It is because the simple rounding method intro-
duces significant errors. Moreover, we see that the odd-indexed coefficients are rounded
twice in this algorithm, yielding more serious rounding errors. Therefore, we try to use
the even-odd decomposition algorithm [17] whose signal flow is shown in Fig. 4.4. In
this algorithm, each coefficient is rounded once, which can reduce the rounding error.

Moreover, we use the following rounding rules to improve the accuracy.

e Keep the shift as late as possible just enough to prevent the overflow.
e Minimize the bits shifted, just enough to prevent overflow.

e Minimize the number of shifts.

o7

Fl0]—e—=0 fI0]

F[4]

Fl2]

F[6]

F[1]

f5]
6]

fl7]

cf 1

O : round to the nearest integer with right shift 15 bits

1 ' 2.,i=0
i = C(E)Ecos[%szlj; C)y= JL‘/_ >t

1 ,ctherwise

Figure 4.3: The IDCT algorithmwused in MoMuSys [10].

Following the above rules, the rounding operations are postponed to the output stage
and we can reduce the number of roundings.-After the calculation of each row IDCT, we
only do right shift of 11 bits for rounding to maximize the accuracy, so we need to do
19 bits of right shift after each column IDCT to keep the correct format. The accuracy
testing result of our algorithm is also shown in Table 4.4. We can see that our fixed-point
IDCT has enough accuracy to pass the test. Then we show the profiling of the software
codec on PC which uses the fixed-point IDCT algorithm, and discuss the implement and

optimization on PACDSP in the following sections.

4.2.3 Profileon PC with Fixed-Point IDCT

Table 4.5 shows the execution time comparison between the floating-point IDCT and the
fixed-point IDCT obtained by profiling of the software codec. The clockticks gives the
total execution time of the IDCT in decoding one intra frame and one inter frame. The
percentage figures give the proportion of the clocktickes the IDCT consumes in the whole

decoding procedure. We see that the execution time and the percentage used in IDCT

58

F[0]

F[4]

F[2]

F[6]

F[1]

f[3]

f6]

fi7]

(O : round to the nearest integer with right shift 19 bits

r_‘ 15
3

2 L6

S
Ci=—cos

Figure 4.4: The even-odd decomposition IDCT algorithm [12].

both decrease much after our optimizations The implementation of fixed-point IDCT on
PACDSRP is left the next chapter.

4.3 Implementation of Decoder on Dual-Core PSDK

We now focus on our design of the MPEG-4 object-based video decoder for the dual-core
system, where “dual-core” refers to ARM core and PACDSP core, especially for the P
frame decoding.

Figure 4.5 shows a simple outline of the P frame decoding procedure. We first decode
the shape and texture information, which includes the motion vectors and the prediction
residuals. Then the padding procedure is executed on the reference frame (I frame in this
figure) before the motion compensation. At last, we use the padded frame and the motion
vectors to reconstruct the output frame and blend it according to the shape information.

In the decoding procedure, the padding process is independent of the bitstream, which
is executed only on the reference frame. We assign the padding process to the ARM core.

Then we can decode the bitstream information of the current frame with the DSP core at

59

Table 4.4: Test of Compliance for Modified IEEE Std. 1180-1190 in MPEG-4

Item Modified IEEE 1180-1190 MoMuSys Our Algorithm
ppe <2 >2 (X) <2 (0)
pmse <0.06 137.8279 (X) 0.0081 ()
omse <0.02 5.2222 (X) 0.0056 (0)
pme <0.015 10.8429 (X) 0.0019 (O)
ome <0.0015 0.5742 (X) 0.0001 (O)
all zero input all zero output O O

Table 4.5: Execution Time Comparison of IDCT

Test Sequences Original (Floating-Point) Optimized (Fixed-Point)

(QCIF) Clockticks % Clockticks %

stefan 1,937 4.85 559 1.47
foreman 6,854 9.87 1,976 3.07
akiyo 3,533 541 1,214 1.94

the same time. Moreover, we also use the ARM core to do the motion compensation (MC)
and blending functions. Then we can use the DSP to decode the bitstream information of
the next frame, when we do the MC and blending functions of the current frame. Fig. 4.6
illustrates the design.

Table 4.6 shows the total execution time on ARM core and PACDSP core, respectively.
According to our design, the major functions on ARM core include three parts, which are
“VOPPadding”, “Motion Compensation”, and “BlendVOP”, whose execution times are
listed in Table 4.6. The table shows that the execution time ratio between the two cores
are nearly equal, except for the sequence “akiyo”. For “akiyo”, because of its stationary
characteristic, the decoding work on PACDSP takes relatively little execution time due to

a large percentage of zero motion vectors and residuals. However, the decoding work on

60

[Frame Decoding

[———— — —1
Shape Decoding

h 4

Texture Decoding

P Frame
Decoding

VOP Padding

h

I
I
I
I
I
I
| h
I
I
I
I
I

MC and Blend

Figure 4.5: An outline of P frame decoding procedure.

the ARM, which does padding and MC, is_independent on the VOP size rather than the
characteristic of the sequence. Sincesthe VOP size of. “akiyo” is the biggest of three, it

takes a significant greater execution time on the' ARM core than the other two.

4.4 Optimization of mplementation on ARM

Before we discuss the optimization of implementation on PACDSP in the next chapter,
we first discuss the optimization on the ARM core, which is focused on efficient motion
compensation.

In the MPEG-4 object-based video decoder, the reference VOP needs to be inter-
polated before motion compensation when there are fractional motion vectors. In the
MoMusSys reference software, three directional interpolations are executed for the whole
VOP regardless whether the motion vectors are fractional or not. However, if the horizon-
tal and vertical motion vectors are both integers, the interpolation is useless. Moreover,
we need a large memory space for the interpolation results in this way. We decode twenty
frames of each sequence and count the number of total motion vectors and fractional

motion vectors, which is shown in Table 4.7. In the table “Both” means that both the

61

ARM PACDSP

| Start DSP
¥ R ——) -
Intra VOP Decoding : Shape Decoding |
“ |
1
| v
[m—————— i _______ ' : ¥ : P frame_1
i VOP Padding : : Texture Decoding :
1
: " 1 Stop DSP and transmit data - F-————- -
[~ 1 . .
P frame]: ' Start DSP
- - | A J :
: MC and Blend : :- ______ y--—---"7
| I | Shape Decoding :
e B ! ! iP_frame_2
l 3 '
e] . |
: _______ §——————— . : I'exture Decoding :
| VOP Padding i - ;
I
: " ! Stop DSP and transmit data
P_fmme_l:
I ¥
I
|
|
I

MC and Blend

Figure 4.6: The dual-core P+frame decoding.

horizontal and the vertical motion vectors aré fractional;-“Hor.” and “Ver.” mean that the
motion vector is fractional only in‘the horizontal and the-vertical directions, respectively.
In our test sequences, “stefan” has the largest percentage of fractional motion vectors. In
addition, the “akiyo” has the least number-of fractional motion vectors, although it has
the largest VOP size.

In our implementation, we only do necessary interpolations for each block according
to the type of motion vector. If the horizontal and vertical motion vectors are both integers,
no interpolation will be executed. Compared with MoMuSys, our implementation only
needs a memory space for storing the result of interpolation for each block. By removing
the unnecessary operations, the execution time also decreases. Table 4.8 shows the result.
Note that the proportion of fractional motion vectors and the VOP size will affect the

amount of decrease time.

62

Table 4.6: Execution Time Analysis Between ARM and PACDSP

Test Sequences

(QCIF)

Execution Time (Clockticks)

stefan foreman akiyo

VOPPadding

1,893 4,650 4,703

ARM | Motion Compensation

1,457 4,275 4,104

BlendVOP 585 1,207 1,492

Total 3,935 10,132 10,299
PACDSP 4,529 9,961 3,851
ARM:PACDSP 0.869:1 1.017:1 2.674:1

Table 4.7: Analysis of Necessary Interpolation Using MoMuSys Encoder

Bitstream Total MV

Fractional MV

(QCIF) Number Total % Both % Hor. % Ver. %

stefan 956 786 =82.21 313 '32.74: 218 2280 255 26.67
foreman 3,712 2,790 75.16 .1,202:32.38° 913 24.60 675 18.18
akiyo 2,184 383 1754777106 485 48 220 229 1049

Table 4.8: Execution Time of Motion Compensation after Eliminating Unnecessary Inter-

polations on ARM

Test Seqs. Execution Time (cycles)

(QCIF) Original Optimized Decreases Speedup (%)
stefan 524,725 255,944 268,781 51.22
foreman 1,144,238 516,038 628,200 54.90
akiyo 1,193,582 389,814 803,768 67.34

Chapter 5

Optimization of Implementation on

PACDSP

In this chapter, we discuss the optimization of our implementation of the MPEG-4 object-
based video decoder on PACDSP. The,optimization. contains three major parts, efficient
implementation strategies, architectural optimization, and algorithmic optimization. At
first, we discuss the efficient implementation strategies for several functions which utilize
the advantage of PACDSP. The discussion followstthe order of decoding procedure, which
contains shape decoding and texture decoding. The improvement of each function is also
shown.

After the reconstruction of the MPEG-4 object-based video decoder, we use the gen-
eral architectural optimization in our assembly code to reduce stalls. At the last part, we
use the characteristic of DCT to remove the unnecessary computations in the decoding
procedure. Because this optimization is focused on algorithm and can be extend to other
implementations of video decoder, we classify it as algorithmic optimization. We also
show the results of architectural and algorithmic optimization, which focuses on the im-
provement of the whole decoder. Fig. 5.1 shows the flow of software development on

PACDSP in our implementation.

64

Find efficient
implementation for
cach function

I Show the improvement |
1 i foreach function |

Architectural
Optimization

I Show the improvement |
| for the whole decoder |

Algorithmic
Optimization

I Show the improvement |
| for the whole decoder |

Complete

Figure 5.1: Flow of software development on PACDSP.
5.1 Implementation Strategiesion PACDSP

In this section, we show several more efficient methods for our implementation on PACDSP.
Our discussion can separate to twa part, shape decoding and texture decoding. In the
shape decoding, we discuss the efficient context calculation and efficient motion compen-
sation in the context-based arithmetic coding. ‘In‘the texture decoding, we first discuss the
implementation of VLD, and then we show our optimization of DC/AC reconstruction.

Finally, we shows our result of fixed-point IDCT implemented on PACDSP.

5.1.1 Efficient Context-Based Arithmetic Coding

Binary shape decoding is based on a block-based representation. The primary cod-
ing methods are block-based context-based arithmetic decoding and block-based motion
compensation. From the profiling analysis, we know that the shape coding is a time-
consuming part of the MPEG-4 object-based video decoder. We need to find out an ef-
ficient method to implement shape coding on PACDSP. In the following, we discuss our
implementation of the two part, namely context calculation and shape motion compensa-

tion.

65

Fast Context Calculation

In the context-based arithmetic coding, we need to calculate the context to obtain the
probability for arithmetic decoding. Therefore, for each 16 x 16 binary alpha block (BAB),
256 context calculations are needed. Fig. 5.2 shows the templates for intra and inter
context calculation, where the current pixel to be coded is marked with “?”. Because the
large number of context calculations, it should help the performance of shape decoding if
we can find an efficient implementation method.

Fig. 5.3 shows the intra context calculation of two successive pixels, which “P” and
“C” means the previous and current pixel, respectively. In fact, there are only three new
pixels we need to update for the context calculation of the current pixel, as shown with
shadowed pixels in Fig. 5.3. Therefore, in our implementation, we store the context of the
previous pixel and only load three pixel values to update the context for the current pixel.
Fig. 5.4 shows the fast calculation. However, this method cannot be used for a pixel on the
left column in each BAB. Table 5.1 shows the result:in speed performance on PACDSP.

We also do the optimization for inter context calculation. Recall that there are two
clusters on PACDSP that can perform computations simultaneously. We use one cluster
to compute the context inex for pixels.CQ to C3 and use the other cluster for that for pixels
C4 to C8 at the same time. Then we can get the full context value by combining the two.
The assembly code for fast inter context calculation is shown in Fig. 5.5. The result of

our inter optimization is also shown in Table 5.1.

Table 5.1: Execution Time Comparison of Context Calculation for One BAB on PACDSP
Original (Cycles) Optimized (Cycles) Speed Up (%)

Intra 13,824 7,824 43.40

Inter 10,240 6,144 40.00

66

ca|c2 |l Pixels of the
current BAB
Co r.Q‘_h
alignment
Co | C8 | C7 C8
Pixels of
- .
Co |C5 | C4 | C3|C2 C7T|1Ca) C5 bordered MC
ci|co| 2 ca :12)
{a) (b}

Figure 5.2: Pixel templates used for (a) INTRA and (b) INTER context calculation of
BAB (from [5]).

Figure 5.3: Intra context calculation.

Efficient Alpha Plane Motion Compensation

There is some difference of the motion compensation for shape decoding and that for
texture decoding. In shape decoding, after getting the reference BAB, there are two types
of motion compensation. We may directly use the reference BAB to represent the current
by decoding BAB or use the reference BAB for inter context calculation. Whichever the
type of motion compensation, we need to get the reference BAB according to the shape
motion vector. Therefore, we discuss our optimization for getting the reference BAB.
Because of the need for context calculation, we need to get a 20 x 20 reference BAB.
Pixels of reference BAB that fall outside of VOP are set to zero. In our initial imple-
mentation, we determine for each pixel in reference BAB if it is outside of VOP. Then
we need 18184 cycles to get one reference BAB, which is inefficient. However, for most

cases, the whole reference BAB is inside the VOP. We only need to check if the whole

67

Tmp = Prev_context & 0110111101;
Tmp=Tmp<<1;
Current_context = Tmp + new_C0

+new (C2<<2
+new C7<<T;

Figure 5.4: Fast intra context calculation.

NOP
NOP
NOP
NOP
NOP
HOP
HOP
HNOP
NOP
NOFP
NOP
NOP
NOP
NOP
NOP
HoP
NOP
HOP
NOP
NOP
NOP
NOP
NOP
NOP

=

ADDI D9,D6,= |
ADDI D10,D5,- |
NOP |
ADD P10,D10,D9 |
ADD A4, AZ, D10 |
LE D11, 44, |
LE D12, A4, |
LB D13, A4, |
SEQ D6,C13,p3,p4
SGTI D7,2,p5,p6
ANDP p7,p3,p5 |
ADDI A4, A4, |
LE D14, 44, |
{p7) COPY D13,D12
SLLI D11,Dil,
SLLI D12,D1Z, |
SLLI D13,D13, |
ADD DP11,Di1,Di1z
ADD D13,D13,D14
ADD D11,D11,D13 |
EDR D15 |
NOP | NOF | NOP
NOP | NOF | NOP
ADD D15,D15,D11

NOP
HOP

FHUL D10,DP10,C11]

HOP
HOP
HOP
HOP
NOP
NOP
HOP
NOP
NOP
HOP
NOP
HOP
HOP
NOP
HOP
HOP
NOP
NOP

| NOP
| NOP
| NOP

¥
i
| NOP

COPY D9, D6
ADDI D10,DS,-
NOP

ADD Di0,D10,D9
ADD A4,A7,D10
LE D11, Ad,

ADDT A4, A,

LE D1z, A4,

LE D13, A4,

LE D14, 44,

SLLI D15,D11,
SLLI D12,D12,
ADDI A4, Ad,

LE D1i,Ad,

SLLI D14,D14,
LDD D15,D15,D12
ADD D15,D15,D13
DD D15,D15,D14
SLLI D11,D11,
ADD D15,D1S,D11
EDT D1S

| NOP }

NCP
NCP
FHUL
HNCP
HCP
NOP
NCP
NCP
NOP
NCOP
NOP
NOP
SLLI
HNCP
HNCP
NCP
NCP
NOP
NOP
NOP
NOP

10,D10,C11

]
¥
D
}
i
}
i
¥
¥
¥
¥
¥
D13,D13,
i
}
i
i
}
]
¥
¥

¥

Figure 5.5: Example assémbly code for fastinter context calculation.

reference BAB is inside the VOP or not, instead of checking for each pixel. And when
the whole BAB is inside the VOP, because the operation is independent between pixels,
we can separate the calculation into the two clusters of the PACDSP, which is shown in
Fig. 5.6. Therefore, we only need half the time to complete the operation of getting the
reference BAB. Moreover, we can use the successive by changing characteristic of the
index to simplify the calculations of coordinates. Fig. 5.7 shows the assembly code for
getting the reference BAB. A comparison of the execution time on PACDSP for the case

of whole BAB inside VOP is listed in table 5.2. After our optimization, the performance

has improved much when the whole reference BAB is inside the VOP.

68

10! Clus

ter 2

Figure 5.6: Calculation distribution of two clusters on PACDSP.

{ (NOoP | NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
{ NOP

Q NOP

{ NOP | HNOP
;inside WOP

HOP
HNOP
NOP
NOP

ADD AS,AS,D11
LW D11,45,0

NOP

SUB D1z,D15,D12
SRL D11,D11,D12
AND D11,D11,C1

| MOP | ADDI A4, k4,200 |
| MOF | ADD D9,D9,Di0 |
;hddress offset

ADD D10,D9,D14 |
SRLI D11,D010,5 |
AND D12,D10,D15]
SLLI D11,D11,2 |
NOF |
NOF
NOP
NOP
NOP
NOP

HOP |
NOP |
NOP |
NOP |
ADD AS,A6,D11 |
LW D11,45,0 |
NOP |
SUB D12,D15,D12|
SRL D11,D11,D12|
AND D11,D11,C1 |

HNCOP
Jole) 3

ADD D10,D2,D14
SRLI D11,D10,5
AND D12,D10,D15
SLLI Di11,D11,2

NOP
NOP
NOFP
NOF
HNCP
HNCP

B
}

)
)
)
)
)
)
)
)
)

P

Figure 5.7: Example assembly:code for getting-reference BAB on PACDSP.

5.1.2 Efficient Variable L ength Decoding (VL D)

In this subsection, we discuss a efficient:method of VLD which uses the advantage of
PACDSP. In additions, we also compare‘the performance of different VLD methods on
PACDSP. The methods are proposed in [12] and [13]. We use the simple VLC table in

Table 5.3 for the following comparison, which has thirteen entries in this table.

One Table Mapping with M agnitude-Offset

In this technique, we build a table containing all possible codewords. Each entry in the

table has two elements, which are the corresponding VLC symbol and its code length.

Table 5.2: Execution Time of Getting One Reference BAB on PACDSP

Original (Cycles)

Optimized (Cycles)

Speed Up (%)

Whole BAB in VOP

18,184

4,325

76.22

69

Table 5.3: Variable Length Codes for dct_dc_size_luminance [5]

Variable length code dct_dc_size_luminance

011 0
11 1
10 2
010 3
001 4
0001 5
0000 1 6
0000 01 7
0000 001 8
0000 0001 9
0000 0000 1 10
0000 0000 01 11
0000 0000 001 12

Thus, because the maximum code length is 11 bits in this example, there would be 2!
entries in the table. We fetch the first 11 bits in the bitstream, whose magnitude gives the
index the corresponding entry in the table. Note that we only have to access the bitstream
once per symbol. The example assembly program of one-table mapping with magnitude-
offset on the PACDSP is shown in Fig. 5.8.

Bit by Bit Matching

If the size of VLC table is not very big, we can simply check the bitstream bit by bit,
and compare if any one symbol in the table is matched. The advantage of this method
is simplicity, but the number of memory accesses to acquire the bits and the number

of comparison instructions are many. Therefore, the average execution time to decode

70

I/{’I\IOP | HOVI.L D2, | NOP | NOP | NOP } ™

{ NOP | MOVI.H D2z, | NOP | NOP | NOP }
{ J Show_Bitstream, | NOP | MOP | NOP | NOP 1}

{ NOP | NOP | NOP | NOP | MNOP }

{ NOP | NOP | NOP | NOP | NOP }

{ NOP | NOP | NOP | NOP | MNOP }:D7 is code

{ NOP | MOVI.L A42,DC_Table | NOP | NOP | NOF }

{ NOP | MOVI.H i2,DC_Table | HNOP | NOF | NOF }

{ NOP | MOVI.L A3,DC_Size | NOP | NOP | NOP }

{ NOP | MOVI.H A3,DC_Size | NOP | NOP | NOP }

{ NOP | ADD AZ,AZ,D7 | NOP | MOP | NOP }

{ NOP | LBU DS,AZ, | NOP | NOP | NOP }

{ NOP | NOP | NOP | NOP | NOP }

{ NOP | NOP | NOP | NOP | NOP)

Q_NOP | SV DS, A3, | NOP | NOP | NOP) .

Figure 5.8: Example of one table mapping with magnitude-offset on PACDSP.

r/:_J Show_Bitstream, | MOVI.L D2,2 | NOP | NOP | NOP 3 I
{ NOP | MOWI.H D2,00 | NOP | MOP | MOP)
{ NOP NOF | NOP | NOP | NOP }

!
{ NOP | NOP | NOP | NOP | NOP 1}
{ NOP | 3EQ D?,C2,pd,pS | NOF | NOF | NOQF 1}
|
|

{ NOP SEG D7,C3,p6,p8 | NOP | NOP | NOP
{ NOP NOP | NOP | NOP | NOP }
{ (p4)B Get DCT DC Delta | (p4)MOVI.L DS,z | NOP | NOGP | NOP 3}
{ NOP | (p%)MOVI.H D5,0 | NOP | NOP | MWOP)
{ NOP | (pS)MOVI.L D5,1 | NOP | MOP | NOP)
{ NOP | (pB)MOVI.H DS,0 | MOP | MOP | MOP)
| |

{ (pB)B Ger_DCT_DC_Delta NOP | MOP
{ NOP | NOP | NOP | NOP | NOP 1}
{ NOP | NOP | NOP | NOP | NOP
{ NOP | NOP | NOP | NOP | NOP 1}

HOP | HOP |

{ J Shov_Bitstream, | HOVI.L D2, | NOF | NOF | NOQOFP }
{ NOP | MOVI.H DZ, | MOP | MOP | MOP }
{ HOP NOP | NOP | NOP | NOP

|

{ NOP | HOP | NOP | NOP | NOF }

{ NOP | 2EQ D7,Cl,p4.p5 | HOP | WOP | NOF 1}

{ HNOP | SEQ D7,C2,p8.p9% | MOFP | NOP | NOP)
|

{ NOP SEQ D7,C3,pl0,pll | NOP | NOP | NOP
{ (p4)B Get DCT DC Delta | NOP | NOP | NOF | HOP 1}
{ NOP | (p4)MOVI.L D5,4 | NOP | MOF | WOP)
! NOP | (p4)MOVI.H DS, | HOP | MOP | NOP)
k\{ NOP | NOP | NOP | NOP | NOP i

Figure 5.9: Example of bit-by-bit matching on PACDSP.

a symbol will be long. The example assembly program of bit by bit matching on the

PACDSP is shown in Fig. 5.9.

Multiple-Pass M atching

To reduce the frequency of accessing the bitstream, we may divide the VLC table into
several subtables. Since the symbol with shorter code appears more frequently, we can
search the subtable with shorter code length first. For example, we may divide the exam-
ple table into two subtables. The first half with symbols 0-6 are grouped into one subtable

and the second half with symbols 7-12 are grouped into the second subtable. In decod-

71

(’/; Show Bitstream,Fi | HOVI.L D2,5 | NOP | NOP | NOP) o
{ NOF | MOWI.H D2,0 | NOP | WOP | NOP)
{ NOF | NOP | WOP | NOP | NOP 3}
[NOP | WOP | HOP | NOP | WOP }:D7V iz code
{ MOP | SEQ D7,CO,p4,pS | NOP | MOP | NOP
{ NOP | SEQ D7,Cl,p2,p3 | NOP | NOP | NOP)
{ NOP | NOP | NOP | NOP | NOP 1}
{ NOP | NOP | NOP | NOP | NOP }
{ (p4)B Teble_z | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | WOP 3}
{ NOP | NOP | NOP | NOP | NOP 3
{ NOP | NOP | HOP | NoP | HoP)
{ (p2)B Get_DCT DC Delta | (p2)HOVI.L D2, | HCP | WGP | HOP 1}
{ NOP | (p2)HOVI.H D2, | HOP | NOP | NOP }
[NOP | (p2)HOVI.L D15, | NOP | NOP | NOP 1}
{ NOP | (p2)MOVI.H D15, | HOP | MOP | MOP 3
{ MOP | SEQ D7,C2,p2,p3 | NOP | NOP | NOF)
{ HOP | HOP | HOP | HOF | NOP)
{ NOP | WNOP | HOP | NOP | NOP 1}
[(p2)B Ger_DCT_DC_Delea | (p2)HOVI.L D2, | HNCP | NOP | HOP 1}
{ NOP | (p2)HOVI.H D2, | WOP | NOP | NOP 3}
[NOP | (p2)MOVI.L D15, | WOP | NOP | NOP 3}
l*:'_NDP | (p2)HMOVI.H D15, | WOP | NOF | NOP)
e

Figure 5.10: Example of multiple-pass matching on PACDSP.

ing, we read the first five bits in the bitstream and check if any code in the first subtable
matches the bits. If not, then we read the néxt six-bits and check the second subtable. The
procedure is similar when there aresmore subtables. The example assembly program of

multiple-pass matching on the PACDSP is shown in Fig.*5.10.

Optimized Multiple-Pass Matching

In our implementation, we use an idea similar to multiple-pass matching to realize the
VLD on PACDSP. At first, we also divide the VLC table into two subtables in this ex-
ample. However, without accessing the bitstream twice for the two subtables, we only
access the bitstream once. The number of bits that we fetch from the bitstream is the
longest code length in the VLC table. Then we can easily get the code from searching
the table by shifts. In addition, because the predicate registers (p0O—p15) are shared by
the two clusters in the PACDSP, we can transmit the code to the other cluster and execute
the comparison instruction at the same time. Then we can do the conditional execution
according to the contents of the predicate registers. The example assembly program of

optimized multiple-pass matching on the PACDSP is shown in Fig. 5.11.

72

ﬁ_J Show_Bitstream,R1 | HOVI.L D2,11 | NOFP | NOP | NOP):access bitstream _\
NOP | HOVI.H D2,0 | NOP | NOF | NOP 1}

{
{ HNOP | NOP | NOP | NOP | NOP 1}
{ NOP | NOF | NOP | HOP | NOP }:D7 is code
{ NOP |SGTI D7,63,pZ,p3| NOP | NOP | NOP H
{ NOP | BDT D7 | NP | BDR D7 | NCP H
{ NOP | NOF | WOF | HOP | WOF H
{(P3)B Get_Luma DC_Size2| NOP | NOP | NOP | NOP H
{ NOP | COPY Di4,D7 | NOF | COPY Di14,D7 | NOF ¥
{ NOP | NOF | NOP | NOp | NOP i
{ NOP | NOP | MNOP | Wop | MNGOP H
;DC_Size O~6 D2 i=s Code Length, D15 i=s DC =ize

HOP | SRLI DV,D7,.6 | SRLI D14,D14,6 SRLI D7,D7.7 SELI D14,D14,7}

MOP | 3EQ D7,C1,pZ,p3| SRLI Di4,Di4,2 SEQ D7,C1,p4,ps
MOP |SEQ D14,C1,p6,p7| SRLI D7,D7,2 SEQ D14,C2,p8,ps

|
| SRLI D14,D14,1};D2:5,D15:6 | D2:4,D15:5
|
NOP | SEQ D7,C3,pl0,p11] NOP | SEQ D7?,C2,p12,p13
[
|
[

SRLI D7,D7,2 };D2:3,D15:4 | D2:3,D15:3

NOP :D2:3,D15:0 | D2:2,D15:2
NOP | HOVI.L DZ,2 | HOWI.L Di5,1 HOoP NOP :D2:2,D15:1
HOP | (p2)HOVI.L D2,5| (p2)MHOVI.L D15,6 NOp NOP

NOF | (p4)MOVI.L D2,4| (p4)HOVI.L D15,5 HOP

B Get_DCT_DC_Delta (pS)HOVI.L D2Z,3| (p6)MOVI.L D1S,4 | MOP NOF }

b
]
¥
NOP i
|
L
]
]

HOP | (pB)MOVI.L D2,3| (pB)HOVI.L D15,3 | HOP | NOP
NOP | (plO)MOVI.L D2,3| (pl0)HOVI.L Di5,0 | Hop | MOP
\I‘_ NOP | (pl2)MOVI.L D2,2| (pl2)HOVI.L D15,2 | NoOp | WOP /J

Figure 5.11: Example of optimized multiple-pass matching on PACDSP.

Comparison of Different VLD Methods

We decode a bitstream consisting of all possible symbols on PACDSP, which use the four
different methods introduced above. Thesresults are shown in Fig. 5.12 and Table 5.4.
In the method “one table mapping with. magnitude-offset,” we only access the bitstream
once and get the output by searching the table. Therefore;the execution time for decoding
each symbol is all the same, only 35 cyeles.-The primary drawback of this method is the
memory requirement of the lookup table because of the exponentially increasing table
size with maximum code length.

The second method, “bit-by-bit matching,” has the best performance for the shortest
codeword. However, as the codeword gets longer, it is significant degraded in perfor-
mance. Therefore, because of the characteristic of entropy coding which uses shorter
codes to represent more frequently appearing symbols, the “bit-by-bit matching” method
can be used when most symbols may be encoded with shorter codewords.

The third method, “multiple-pass matching,” has a similar characteristic, where the
performance is also degraded with longer codewords. However, because we only access
the bitstream twice for the longest codeword, we need 89 cycles rather than 256 cycles in
the worst case.

Finally, in our implementation, we use the advantage of PACDSP to optimize the

multiple-pass matching and fetch the bitstream only one time. We see that the perfor-

73

Table 5.4: Execution Time of Different VLD Methods on PACDSP

One Table Optimized
Code Pattern Mapping with Bit-by-Bit Multiple-Pass Multiple-Pass
Magnitude-Offset Matching Matching Matching
10 35 27 34 38
11 35 31 41 38
001 35 54 48 38
010 35 58 55 38
011 35 62 62 38
0001 35 85 69 38
0000 1 35 108 75 38
0000 01 35 131 54 37
0000 001 35 154 61 37
0000 0001 35 il 68 37
0000 0000 1 35 210 75 37
0000 0000 01 35 233 82 37
0000 0000 001 35 256 89 37

cution time.

5.1.3 Efficient AC/DC Reconstruction

74

mance of our implementation is very close to “one table mapping with magnitude-offset.”
Moreover, there is no memory requirement for building a table in our implementation.

Therefore, this method provides a good tradeoff between memory requirement and exe-

There are two types of prediction, DC prediction and AC prediction, used in intra en-
coding of MPEG-4 video to reduce the spatial redundancy in texture coding, as shown

in Fig. 5.13. In the MoMuSys reference, it uses much memory space for the prediction

300 T T T T T T T T T T T
—&— One Table Matching with Mag. Offset
Bit-by-Bit Matching
+— Multiple-Pass Matching
—— Optimized Multiple-Pass Matching

250 =4

1 1 1 Ll

1 1 1
N A NS 0 A o \ o \ i
R N S o o®
o o o “Q(_(‘- o
, N
Code Pattern W

1 1 1
N \ N
R T

Figure 5.12: Comparison of different’V.L D methods on PACDSP.

operation. Our method can reduce the usage of memory substantially. We also modify

the code flow for efficiency on PACDSP.

Memory Usage Reduction

There are a total of six blocks in one MB, which are four luminance blocks and two
chroma blocks, as shown in Fig. 5.14(a). For the DC and AC prediction, we need to
store pixels of the first row and the first column of the 8 x 8 block. The shaped area in
Fig. 5.14(b) shows the pixels that we need to store. In MoMuSys, it stores the needed
pixel values in all blocks of each MB in the VOP and it uses one word of memory space
to store each pixel value. Therefore, for the worst case, it needs a memory space of 35,640
bytes for the DC and AC prediction in QCIF format. Obviously, the usage of memory is
inefficient, especially when we have only 64 kB of data memory on PACDSP.

In our implementation, we first reduce the memory space for each pixel value to half
word. Moreover, only the neighbor blocks are needed for the DC/AC prediction, which

are the left block, the above-left block, and the block immediately above. Therefore, in-

75

Qr r

v
v

Macrohlock

Figure 5.13: DC/AC prediction in MPEG-4 video decoder.

stead of storing the MBs of the whole VOP, we only store the necessary MBs. Fig. 5.15
shows the design of our implementation for two successive MBs. Only three parts of MBs
are stored, which are the current MBs; the left MBs,'and the MBs of the above row. Note
that for the MBs of the above row, block 0 and:-block 1 shown in Fig. 5.14 are useless in
DC and AC prediction. So we only store four-blocks forthe above row in our implemen-
tation. After this for memory usage.reduction,-we-only-need 1,680 bytes for DC and AC
prediction in our implementation. Table5:5 shows the detail of memory usage in DC and

AC prediction and the comparison between the MoMuSys and our implementation.

0 1
213 4 5
Luma. Chroma

(a) (b)

Figure 5.14: (a) Total blocks in one MB. (b) Pixels store for DC/AC prediction of one
block.

76

Above row Above row

| - - T R
my]| |
Left ; Current Le_—™: leurrent
Marcoblock Marcoblock Marcoblock Marcoblock

Figure 5.15: Memory usage design of DC/AC prediction for two successive MBs.

Table 5.5: Memory Usage Comparison of DC/AC Prediction on PACDSP

MoMuSys Our Implementation
Memory used for 1 word 1 half word
each pixel value
MBs stored Whole MBs in the Left, current MBs, and
for prediction VOP the above row without block 0 & block 1
Total memory used | 11 x 9 x 6 x 15words | 11 x 4 x 15+ 2 x 6 x 15 half words
for QCIF video = 35,640 bytes = 1,680 bytes

Code Flow Modification

After the optimization of memory-usage, we now discuss our modification of the code
flow which can do the DC/AC prediction.more-efficiently. Fig. 5.16 shows the program
flow of DC/AC prediction in MoMuSys: The:DC prediction is executed first, which con-
tains two steps. At first, we find the position of the prediction block, and then we get
the prediction DC value from this block. After the DC prediction, we check the flag
“ACPred_flag” to determine whether the AC prediction is necessary or not. Similar to
DC prediction, the AC prediction also contains two steps, finding prediction block and
getting prediction AC value. However, we use the same prediction block for DC and AC
prediction.

In our implementation, we modify the code flow. When we find the prediction block,
we check the “ACPred_flag” before getting the DC value. If we need to do the AC predic-
tion, we get both DC and AC prediction values. Therefore, we can reduce the calculation
for finding the prediction block in our implementation.

So far, we have shown several implementation strategies with optimization of the

77

DC
prediction

1. Find the prediction block
2. Get the DC prediction value

AC 1. Find the prediction block

prediction 2. Get the AC prediction value

DC/AC prediction finished

Figure 5.16: Program flow of DC/AC prediction in MoMuSys.

MPEG-4 object-based video decoder on PACDSP. Table 5.6 shows the performance of
our implementation on PACDSP. Table 5.6_contains two parts, which are intra decoding
and inter decoding. The inter decoding on PACDSP dees not include includes the “VVOP-
Padding,” “MotionCompensation,”;and the “Blend” functions, which are placed on ARM.
In Table 5.6, the execution time of intra decoding are approximately proportional to the
VOP size. Therefore, “akiyo” takes‘the fongest execution time for intra decoding. How-
ever, both VOP size and sequence characteristic affect the performance of inter decoding.
In the test sequences, the foreground object in “akiyo” is almost static. Thus most of the
residuals for inter decoding in this sequence are zero, which lead to a short bitstream and
fast decoding time. Therefore, the “akiyo” has the least execution time in inter decoding,

even less than “stefan”.

Table 5.6: Performance of MPEG-4 Object-Based Video Decoder on PACDSP

Test Seq. (QCIF) Intra (cycles) Inter (cycles)

stefan 1,114,552 1,040,929
foreman 2,510,208 1,795,598
akiyo 2,532,856 614,918

78

5.1.4 Optimization of IDCT on PACDSP

In the PACDSP, there are two clusters for doing computations at the same time. And
for the IDCT, we can complete individual computations simultaneously because the com-
putations of each row or column are independent. Therefore, we can simply distribute
eight 1-D row-wise and column-wise IDCTs to both clusters. As a result, there are four
iterations for both row and column computations.

In addition, according to the characteristics of the even-odd decomposition algorithm,
we can use double-store, MAC, and butterfly instructions to facilitate the computation,
where the butterfly instruction can sum and subtract the data in the two source registers
at the same time. After our optimization, we need 307 cycles to carry out a 8 x 8 block
IDCT.

The performance of various IDCT implementation are listed in Table 5.7. In Table 5.7,
we also use the number of processing units and the execution time to estimate the number
of fetched instructions for each method:'In this way, we can get a idea about the complex-
ity in each method. We see that our<implementation.of IDCT on PACDSP is competitive,

because of less arithmetic units required.

5.2 Architectural Optimization

An important issue of DSP implementation is the utilization of the architectural advan-
tages. In this section, we introduce some general software optimization techniques, in-
cluding static rescheduling, loop unrolling, and software pipelining. In addition, the com-
putations are dispatched to different units to utilize the advantage of VLIW processor.
Some special SIMD instructions of PACDSP are used to compute or load/store multiple
data at the same time. The advantage of SIMD instructions is increase in throughput of

computations.

79

Table 5.7: Comparison of IDCT on Different Platforms

Instruction
Designs Processing units Clock (MHz) 2-D fastalgo. Cycles counts
T1 C62x [20] 2 MUL, 6 ALU 200 row-column 230 1,840
TI C64x [21] 2 MUL, 6 ALU 600 row-column 154 1,232
IDCT Core [20] 1ALU 33 direct 2-D 1,208 1,208
PACDSP (ours)* 2AU, 2L/S 200 even-odd 307 1,228

*Note: If we consider the scalar unit, the instruction counts is 1,535 in our implementation

521 General Optimization Techniques

For our implementation on PACDSP, we should try to fill all the slots in an instruction
packet to get a higher performance. Therefore, how to achieve a full-pipeline imple-
mentation is very important to a better performance:- In this subsection, three general
optimization techniques are discussed, which are-static rescheduling, loop unrolling, and
software pipelining [11]. The purpose of these technigues is to reduce the number of
stalls resulting from hazards, and the appropriateness ‘for PACDSP of these techniques
are discussed as well.

For the discussion, we use an example of coefficients summing in a 1-D array, which
contains eight 8-bit data. Fig. 5.17 shows the corresponding C program. In order to
simplify the utilization of different techniques, we use only one instruction slot in the

instruction packet.

for (1=0;1<8 ; i++)
y t=x[1;

Figure 5.17: Example C code of vector addition.

80

Static Rescheduling

In the assembly code programming, the dependence of data may cause stalls in processor,
and these stalls increase the required computation time. There are three types of data
hazard, namely, read-after-write (RAW), write-after-read (WAR), and write-after-write
(WAW).

In the left of Fig. 5.18, we simply translate the C program in Fig. 5.17 to the PACDSP
assembly code. We can see that because the dependency of the register DO and the data
loading from memory requires two cycle to be valid in PACDSP, two stalls are inserted
after the “LB” instruction. In addition, the conditional branch, whose predicate register is
p2, depends on the comparison instruction “SLTI.” And the predicate register also need
two cycles to be valid for conditional execution, so two stalls are inserted after the “SLTI”
instruction. Therefore, there are totally seven stalls (NOPS) in the direct translation with
three delay slots, and these stalls significantly degrade the execution speed.

We can utilize the independence of instructions.to eliminate the stalls as much as
possible. In the right half of Fig. 5.18] we reschedule-the order of the assembly code,
which reduces the stalls from seven to four. However, since the computation is not very

complex, we cannot further reduce the number-of Stalls simply through rescheduling.

Loop Unralling

Loop unrolling is a general technique to deal with the implementation of an iterative
computation, especially if there are stalls in a single iteration.

To use the unrolling technique, we have to find the independent computations in con-
secutive iterations. We can use different registers to store data from different iterations,
and the instructions still need to be scheduled well to reduce the stalls. The number of
unrolled loops depends on the stalls and independent computations in a single loop. Fig-
ure 5.19 shows the assembly code before and after loop unrolling.

In Fig. 5.19, we see that all the stalls (NOPs) are eliminated. The loop maintenance
code and branch condition should be changed to adjust the new iterative computations.
However, there is a tradeoff between execution time and corresponding code size. Al-

though the stalls are all eliminated, the code size increases after loop unrolling. Therefore,

81

Loop: Loop:
LB DO0,A0,0;x[i] LB D0,A0,0
NOP ADDI A0,A0,1
NOP SLTI A0,8,p2,p3
ADD D1,D0,D1 ;y+=x]i] ADD D1,D0,D1
ADDI A0,A0,1 ;i++ NOP
SLTI A0,8,p2,p3 ;i<8 Reschedule (p2)B Loop
NOP > NOP
Loop NOP NOP
-
Maintainance (p2)B Loop NOP
NOP
NOP
NOP
7-NOPs 4-NOPs
Original Code Rescheduled

Figure 5.18: Example of static rescheduling technique.

Loop:

LB D0,A0,0 ;x[i]

ADDI A0,A0,1 ;i++
SLTI A0,8,02,p3 ;i<8
ADD D1,D0,D1 y+=x[i]

Loop:
LB DO0,A0,0 ;x[i]
LB D2,A0,1 ;x[i+1]
LB D3,A0,2 ;x[i+2]
LB D4,A0,3 ;x[i+3]

NOP ADDI A0,A0,4 ;i+=4]
(p2)B Loop SLTI A0,8,p2,p3 i<8 Loop
NOP Unroll ADD D1,D0,D1 ;y+=x[i] Maintainance
NOP (p2)B Loop —
NOP ADD D1,D2,D1 ;y+=x[i+1]
ADD D1,D3,D1 ;y+=x[i+2]
ADD D1,D4,D1 ;y+=x[i+3]
4-NOPs No NOP

Rescheduled

After Unrolling

Figure 5.19: Example of 1oop unrolling technique.

we have to assess that if code size is critical or not. In addition, the number of available

registers is a limitation to the use of loop unrolling.

Software Pipelining

The concept of software pipelining is to reorganize the loop and to interleave dependent
instructions from different loop iterations to separate dependent instructions within the
original loop. Different from loop unrolling, we just reschedule the loop, so the stalls may
not be entirely eliminated. An example of software pipelining is illustrated in Fig. 5.20.
It is noted that the start-up code and clean-up code are used to interleave the dependent

code. Compared to loop unrolling, there are still 2 stalls. The advantage of software

82

Loop: LB D0,A0,0 ;x[0] >, Start-up

LB D0,A0,0 ;xi] ADDI A0,A0,1 ;i=1 Code
LB D2,A0,1 ;x[i+1] Loop:
LB D3,A0.2 x[i+2] SLTI A0,7,p2,p3 ;i<7
LB D4.A03 ix[i+3] ADDIAOAOL i++ —
ADDI A0,A0.4 i+=4 ADD D1,D0,D1 ;y+=x[i] } oop
SLTI A0,8,p2,p3 ;i<8 (p2)B Loop —) Maintainance
[ADD D1,D0,D1;y+=x[i] Software LB D0,A0,0 :x[i]
Loop (p2)B Loop L NOP
Maintginance ADD D1,D2,DLiy+=x[i+1] Pipeline et —
ADD D1,D3,D1 jy+=x[i+2] ADD D1,D0,D1 jy+=x[7] |— Codf
ADD D1,D4,D1 ;i+=x[i+3]
No NOP 2-NOPs
After Unrolling S/W Pipelined

Figure 5.20: Example of software pipelining technique.

pipelining is the smaller code size. However, the loop overhead cannot be reduced through
software pipelining. But we can apply loop unrolling and software pipelining to our

implementation simultaneously and take the advantage of both techniques.

5.2.2 Advantages of PACDSP,

In order to speed up our implementation-on-PACDSP, we can utilize the advantages of
VLIW architecture and SIMD instructions. -However, not all the computations can be
distributed to both clusters, so we have-to check-If the feature of the computations are
appropriate to apply the advantages of PACDSP.

In addition, since the branch instructions affects the program sequence of both clus-
ters, it is better to put two regular and independent parts of computations in different clus-
ters. For example, an iterative computation can be separated into two parts if the com-
putations are independent in different iterations. Take the MPEG-4 frame-based video
decoder for instance, dequantization (IQ) and IDCT (IT) are very regular computations,
which are suitable to distribute into two clusters. Moreover, SIMD instructions are also

very helpful for our optimization.

5.2.3 Experiment Result of Architectural Optimization

After our architectural optimization, including general optimization techniques and using

the advantages of PACDSP, the improvement is shown in Table 5.8. We can find that

83

the architectural optimization introduces significant improvement, up to at most 28.27
percent. It is thus clear that the number of stalls affect the performance greatly. We can
increase the performance of our implementation, if we reduce the stalls in the assembly

code.

5.3 Algorithmic Optimization

In this section, we discuss the algorithmic optimization, which focuses on elimination
of inverse scan, dequantization (1Q), and IDCT (IT) in texture decoding. We separate
our discussion into two subsections. In the first subsection, we discuss the optimization
of inverse scan, and then we consider the optimization of 1Q and IT in the second sub-
section. At last, we show the improvement of our implementation on PACDSP after the

algorithmic optimization.

5.3.1 Efficient Inverse Scan

Fig. 5.21 shows the simplified program flow of texture decoding in MPEG-4 object-based
video decoder. In Fig. 5.21, two flags.we should pay attention to are the “VLD flag” and
the “ACPred_flag.” “VLD_flag” and “ACPred-flag” point out the necessity of VLD after
reconstruction of DC coefficient and the necessity of AC prediction, respectively. In this
subsection, we discuss our optimization for reducing the executed times of inverse scan.
After the reconstruction of DC coefficient and VLD, one of three inverse scans is

performed, which are alternate-horizontal scan, alternate-vertical scan, and zigzag scan.

Table 5.8: Improvement After Architectural Optimization on PACDSP

Test Segs. I-Frames (Cycles) P-Frames (Cycles)
(QCIF) Original Optimized % Original Optimized %

stefan 1,114,552 799,518 28.27 1,040,929 766,657 26.35
foreman 2,510,208 1,826,742 27.23 1,795,598 1,416,963 21.09
akiyo 2,532,856 1,834,410 27.58 614,918 546,104 11.19

84

Shape Decoding Finished

— Macroblock Loop:

¥

DecodeMBHeader

— Block Loop:

L 4

Decode DC Coefficient
& VLD «——1— VLD flag

:

Inverse Scan

r

AC Prediction «——1— ACPred_flag

¥
DequantH263 &
BlocklDCT

Last Block?

Output Decoding Frame

Figure 5.21: Program flow of texture decoding in MPEG-4 object-based video decoder.

85

0 |1 (2 (3 (10 (11 |12 (13 0 |4

4 |5 |8 |9 |17 |16 |15 |14 1 (5 |7 |21 |23 |37 |39 |53 26129 |42
G |7 (19 (18 (26 |27 |28 (29 2 |8 |19 (24 |34 |40 (50 (54 8 |12 |17 |25 |30 |41 |43
20 |21 |24 |25 |30 |31 |32 |33 3 |9 |18 |25 |35 |41 (51 (55 11118 [24 |31 |40 (44 (53
22 |23 |34 |35 |42 |43 |44 |45 10 |17 |26 |30 (42 |46 |56 |60 10 |19 |23 |32 |39 |45 |52 |54
36 |37 (40 (41 (46 (47 |48 (49 11 (16 |27 [31 (43 |47 |57 |61 20 (22 |33 |38 |46 |51 |55 |60
38 |39 (50 |51 (56 |57 |58 (59 12 (15 128 (32 (44 |48 |58 |62 21 |34 |37 |47 |50 |56 |59 |61
52 |53 |54 |55 (60 (B1 |62 (63 13 (14 120 [33 (45 |49 |50 |63 35 |36 |48 [49 |57 |58 (62 (63

6 |20 |22 |36 (38 |52 1|5 |6 |14 |15 (27 |28

0| W [RS R
3 = =
-1
[y
(o8]
=
@

(a) Alternate-Horizontal scan (b) Alternate-Vertical scan (c) Zigzag scan

Figure 5.22: Scan orders for 8 x 8 blocks [5].

These scan orders are shown in Fig. 5.22. Then we can do the AC prediction (if necessary)
after the inverse scan. However, if the VLD after the reconstruction of DC coefficient is
unnecessary, which can be determined by checking the “VLD_flag,” the decoded 8 x 8
block only has the DC component decoded from the bitstream. Then, there is no need of
the inverse scan. Therefore, we can skip the procedure of inverse scan by checking the
“VLD_flag.”

By skipping the inverse scan, we: can reduce the execution time of texture decoding.
Table 5.9 shows the number of skipped blocks.of different sequences by checking the
“VLD_flag”. We test twenty frames and nineteen frames for intra and inter decoding,
respectively. It is obvious that the saving time is praportion to the number of skipped
blocks. Note that because the texture decoding in fact decodes the residuals for inter
frame, which has bigger chance to be zero. Therefore, the number of skipped blocks in

inter frames is generally more than the number in intra frames.

Table 5.9: Number of Skipped Blocks in Twenty Intra Frames and Nineteen Inter Frames
(Checking VLD _flag Only)
Test Segs. I-Frames (20 I) P-Frames (19 P)
(QCIF) Total Blocks Skipped Blocks % Total Blocks Skipped Blocks %

stefan 1,234 134 10.86 1,162 282 24.27
foreman 5,341 1,075 20.13 4,906 2,123 43.27
akiyo 5,281 922 17.46 2,710 1,801 66.46

86

5.3.2 Efficient IQ and IDCT

Besides the skip of inverse scan, we discuss the skipping possibility of dequantization
(1Q) and IDCT (IT). As shown in Fig. 5.21, after the AC prediction, we need to do the
IQ and IT of the decoded block to get the texture information. Similar to the skip of
inverse scan discussed in the previous subsection, if we can find a method to skip the 1Q
and IT, the execution time can also be decreased. Fortunately, this idea can be realized by
checking the “VLD_flag” and the “ACPred_flag.”

As in the discussion about the “VLD_flag” before, we know that the decoded block
only has the DC component if the VLD does not execute before the AC prediction. More-
over, if the AC prediction is not executed either, the decoded block for the 1Q and IT still
only has the DC component. In such a case, the texture information can be easily obtained
without 1Q and IT. In addition, because there is no AC prediction for inter MBs, we do
not need to check the “ACPred_flag” in such a case.

An important property of DCT is that it concentrates signal energy in lower frequency
coefficients. That is, if a block is filled with constant coefficients, there will be only one
coefficient at the DC after transform:In other words, -if we can make sure that there
is only a DC component in the decoded block; the corresponding output block data can
be obtained with copying the DC component to-the entire block, and such property is
illustrated in Fig. 5.23. The assembly code of spreading DC value to the whole block is

shown in Fig. 5.24. We need four iterations to complete one block, so the execution time

4lofloflololo]olo 4|lalalalalalala
oloflolololololo 4lalalalalalalas
olofloflo|olo]olo alalalalalalala
olojo1e|9f9]o]0 Dequantize S IS R O O B B I
olololo|lo|lo|lo]lo 4lalalalala)ala
olofloflolo]lo]olo 10,610 4|lalalalalalala
olololo|lo|lo|lolo 4lalalalala)ala
olofloflo|olo]olo alalalalalalala

Figure 5.23: DC spreading from decoded coefficient to output block.

87

DC_Spreading: ; 4 iterations for one block
{ SET_LBCI RBCO, I HO‘J’I I.. Ao F_ Bluck 2D | COPY D15,D14 | MOVI.L A6,R_Block 2D | COPY D15,D14)
{ NOP | MOVI.L A6,R_Block 2D | NOP | HOVI.L A6,R Block_2D | NOP }:D14,D15 are DC wvalus

{ NGP | NOP | HNOP | ADDI A6,A5, | HNOP ¥
Spread DC Coeff: ;irerat

{ LECE RBCO,Spread DC Cneff | DEW D14,D15, (A6)+8 | NOP | DSW D14,D15, (hé)+8 | NOP 3

{ HOP | DSW D14,D15, (AGH- | NOP | DSW D14,D15, (A6)+8 | NOP }

{ HNOPFP | DSW D14,D15, (A6)+8 | NOP | D3W D14,DL15, (AG6)+2 | HNOP }

{ NOP | DSW D14,D15, (A6)+8 | NOP | DSW D14,DL1S5, (R6)+0 | MNOP }: s=tore 16 coemfficient in one iteration

Figure 5.24: Assembly code of DC spreading.

Table 5.10: Number of Skipped Blocks in Twenty Frames and Nineteen Inter Frames
form Checking VLD_flag and ACPred_flag (Intra Only)
Test Segs. I-Frames (20 1) P-Frames (19 P)
(QCIF) Total Blocks Skipped Blocks % Total Blocks Skipped Blocks %

stefan 1,234 119 9.64 1,162 282 24.27
foreman 5,341 655 12.26 4,906 2,123 43.27
akiyo 5,281 922 17.46 2,710 1,801 66.46

is 19 cycles including the setting of-loop register and address registers. However, we still
need several cycles to update the prediction data “DC _Store” for DC/AC prediction.

By checking the “VLD flag” and “ACPred-flag” together, we can get the the num-
ber of skipped blocks for DC spreading as;shown in Table 5.10, which includes twenty
intra frames and nineteen inter frames. Compared to the earlier result of checking the
“VLD_flag” only, because we check one more flag “ACPred_flag,” the number of skipped
blocks is decreased. Fig. 5.25 shows the program flow of texture decoding after algorith-

mic optimization in our implementation.

5.3.3 Experiment Result of Algorithmic Optimization

Table 5.11 shows the improvement after the algorithmic optimizations, as discussed in
this section. In Table 5.11, the decreased execution time is proportional to the number of
skipped blocks. Because we have already done the optimization of those functions which
we skip, such as fixed-point IDCT, not a high percentage of improvement is obtained by

our algorithmic optimization. However, if the skipped functions are time-consuming, then

88

we can obtain much improvement by our algorithmic optimization.

5.4 Conclusion

In this chapter, we introduced several efficient implementation strategies for different
function on PACDSP. We distributed the regular and independent computations into two
clusters as much as possible. And we reduced the “NOP” instructions in the instruction
packets. In addition, we also discussed the optimization on architecture and algorithm
levels. The improvement in execution time of architectural and algorithmic optimization
for intra frames and inter frames is shown in Figs. 5.26 and 5.27, respectively. Table 5.12
shows the overall improvement of our optimization on PACDSP. We can see that about

30% of execution time for decoding is reduced.

89

Table 5.11: Improvement After Algorithmic Optimization on PACDSP

Test Segs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original’ Optimized % Original® Optimized %

stefan 799,518 783,725 1.98 766,657 737,283 3.83

foreman 1,826,742 1,743,121 4.58 1,416,963 1,214,174 1431

akiyo 1,834,410 1,757,579 4.19 546,104 478,750 12.33

fOriginal means the execution time after architectural optimization.

Table 5.12: Overall Improvement After Optimization on PACDSP

Test Segs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original® Optimized % Original® Optimized %

stefan 1,114,552 783,725 29.68 1,040,929 737,283 29.17

foreman 2,510,208 1,743,121 30.56 1,795,598 1,214,174 32.38

akiyo 2,532,856 1,757,579 30.61 614,918 478,750 22.14

fOriginal means the execution time before optimization on PACDSP

(architectural and algorithmic optimization).

90

Shape Decoding Finished

— Macroblock Loop:

DecodeMBHeader
— Block Loop:
Decode DC Coefficient
& VLD «——1— VLD flag
=D ey
Inverse Scan
AC Prediction «——F— ACPred flag
VLD fag=0 &
ACPred flag =0
k.
DequantH263 & BT
BlockIDCT DC Spreading
L |

Output Decoding Frame

Figure 5.25: Program flow of texture decoding in MPEG-4 object-based video decoder

after optimization.

91

3,000,000

2,500,000 B8 BE
% 2,000,000
3] =
& = O Original
1,500,000 = Archirectural Optirize
= Algarithraic Optirnize
1,000,000 =
500,000 =

Stefan Foreman Akiyo

Test Sequences

Figure 5.26: Improvement in execution time of architectural and algorithmic optimiza-
tions for I-frames on PACDSP. ; 5

Cycles

B Original
8 Archirecwral Optrnize
Algorithric Optmize

il

Stefan Foreman Akivo
Test Sequences

Figure 5.27: Improvement in execution time of architectural and algorithmic optimiza-

tions for P-frames on PACDSP.

92

Chapter 6

Overall Performance of the

| mplementation

In this chapter, we analyze the performance of our implementation of MPEG-4 object-
based video decoder, includes the codeSize, data'size and the decoding frame rate. At

last, we discuss the effect of different QP values.

6.1 Performance Analysis

In this section, we discuss the code size and the data size of our implementation. In order
to prevent the problem of cache miss, we must ensure that the sizes are smaller than the
on-chip memory size provided by PACDSP, which are 32 kB and 64 kB for program and
data, respectively. After analysis of the memory usage, we give an estimate of the frame

rate of the implemented MPEG-4 object-based video decoder.

Code Size Analysis

Table 6.1 shows the code sizes of major functions in MPEG-4 object-based video decoder
on PACDSP. The size of “AlphaDecodeMB” is the biggest, which does shape decoding.
The size of “doDCACrecon” comes next. Since the instruction memory of PACDSP is 32
kB, we need to be concerned with the total size of our program. In our implementation,

the total program size is 30,540 bytes, which is smaller than the instruction cache size.

93

Therefore, no cache miss will happen in our implementation.

Data Size Analysis

The data memory used in our implementation can be divided into several parts, which are
shown in Table 6.2. The meaning of each item is as follows.

“Decoding Parameters” contain the header information of “VVOLHeader” and “VOP-
Header,” which are set in the encoder. Before the decoding procedure, we must get them
from the bitstream and store them in the data memory. In addition, because the number of
registers is limited, we may need some memory space for storing the parameters, which
are useful in the decoding procedure. Such memory space also belongs to “Decoding
Parameters”. The “Decoded VOP” means the memory we use to store the final output
of the VOP. However, the output means the residuals of the VOP in the inter decoding.
We still need to do the motion compensation and reconstruction to get the final recon-
structed VOP. Since the format of our segence is'QCIF, the memory space of this part is
176 x 144 x 1.5 = 38,016 bytes, which contains both luminance and chrominance.

The “Result Store” means the:memory used to store the result of some functions,
such as the motion vectors and the alpha-plane-~\We separate the “Result Store” into
three major parts, which are for shape decoding, texture decoding, and motion vectors.
Table 6.3 shows the used memory space of each part. “Ref. Information” stores the
information of the reference VOP for inter decoding. Finally, the total data memory used
in our implementation is 57,775 bytes without the bitstream. The required memory size
is smaller than the memory size provided by PACDSP, which is 64 kB. Therefore, no
cache miss will happento degrade the performance. We put the bitstream in the remaining
memory space. Therefore, we cannot decode too many frames if the bitstream size is

large.

Frame Rate Estimation

We now estimate the frame rate of the implemented decoder. The results are shown in
Tables 6.4 and 6.5. We demonstrate the MPEG-4 object-based video decoder on the

PDSK, which is a dual-core system. The operating frequencies of the two cores and the

94

Table 6.1: Code Size Profile of Object-Based MPEG-4 Video Decoder on PACDSP

Function Name Code Size (bytes) %

DecodeVVOPHeader 480 1.57
DecodeFirst 1,436 4.70
AlphaDecodeMB 8,124 26.60
DecodeMBHeader 3,208 10.50
VlicGetBlock 2,048 6.70
doDCACrecon 4,376 14.33
BlockIDCT 1,112 3.64
BlockDequantH263 360 1.18
DecodeMBMVs 3,712 12.15
BitstreamAccess 864 2.83
Others 5,300 15.80
Total 30,540 100.00

Table 6.2: Data Size Profile of Object-Based MPEG-4 Video Decoder on PACDSP

Usage Memory Size (bytes) %
Decoding Parameters 328 0.57
Decoded VOP 38,016 65.8
Result Store 9,412 16.29
Ref. Information 3,283 5.68
Table Information 6,736 11.66
Total 57,775 100.00

95

Table 6.3: Data Size Analysis of “Result Store” on PACDSP

Usage Memory Size (bytes) %
Shape Decoding 5,616 59.67
Texture Decoding 2,804 29.79
Motion Vectors 992 10.54
Total 9,412 100.00

transmitting frequency of the bus are shown below.
1. ARM core: 150 MHz.
2. PACDSP core: 200 MHz (real chip).
3. Bus: 22.5 MHz (32 bits width).

There are three major parts in Tablés 6.4 and: 6.5, which are ARM core, PACDSP
core and the transmitted data between the two cores.. The “cycles” of the “ARM” and
“PACDSP” mean the execution times of ARM core and PACDSP core, respectively. We
can get the execution times by dividing them by.the operating frequencies. In addition,
because the system is dual-core, we need-to.transmit data between two core modules,
which is why Tables 6.4 and 6.5 contain entries called “Transmitted Data”. Note that the
bus width is 32 bits. It means that we can transmit 32 bits of data at one time. We also can
get the execution time of data transmission on bus by dividing the transmitting frequency.
Moreover, the percentage of the total execution time for each part is shown in both tables.
The total execution time of our implementation of MPEG-4 object-based video decoder
is also shown in the tables. Then we can estimate the frame rate of each sequence, which
is shown at the bottom of both tables. Note that for inter decoding, we separate the
ARM core into two parts, which are “Padding&MC” and “Others.” According to our dual-
core design, the “Padding&MC” procedure is overlapped with the procedure of PACDSP.
Therefore, we only need to consider the longer part when we compute the total execution
time. In other words, the percentage of the shorter part contributed nothing to the total

execution time.

96

Table 6.4: Frame Rate Estimation for Intra Decoding of Our Implementation

Test Seq. (QCIF) stefan foreman akiyo

ARM (cycles) 231,080 807,932 923,210

% 26.46 36.09 37.57
PACDSP (cycles) 783,725 1,743,121 1,757,579

% 67.35 56.71 53.70
Transmitted (bytes) 32,272 112,912 129,040
Data % 6.19 7.2 8.73
Execution Time (ms) 5.82 15.36 16.37
Frame Rate (fps) 171.8 65.1 61.1
Pixels Per Second 1,187,481.6 1,574,899.2 1,689,292.8

Table 6.5: Frame Rate Estimation for Inter Decoding of Our Implementation

Test Seq. (QCIF) stefan foreman akiyo
ARM (cycles) 918,189 1,858,485 1,808,689
Padding&MC % 73.21 58.61 55.86
ARM (cycles) 282,058 1,122,723 1,211,833
Others % 22.49 35.38 37.42
PACDSP (cycles) 737,283 1,214,174 478,750

% 0 0 0
Transmitted (bytes) 32,524 113,794 130,048
Data % 4.30 6.01 6.72
Execution Time (ms) 8.36 21.14 21.59
Frame Rate (fps) 119.6 47.30 46.32
Pixels Per Second 826,675.2 1,144,281.6 1,280,655.4

97

For the sequence of “stefan” with the smallest VOP size, we can get the best frame rate
which are 171.8 and 119.6 frames per second for the intra and inter decoding, respectively.
For the sequences of “foreman” and “akiyo”, we still can reach about 60 fps and 45 fps for
intra and inter decoding. However, in the demo system, the PACDSP core module is on
FPGA with the DSP design burned in, whose operating frequency s 22 MHz rather than
the 250 MHz for a real chip. The lower operating frequency will degrade the performance

of our implementation. The real frame rate of the demo system is discussed as following.

Frame Rate Estimation of the Demo System

For the demo system, the PACDSP core module is replaced by a FPGA rather than a real
chip. The operating frequency of each core and the bus transmitting rate of our demo

system are list below:
e ARM core: 150 MHz.
e PACDSP core: 22 MHz (FPGA).
e Bus: 22 MHz (32 bits width).

Using above data, we can estimate the real frame rate of our demo system, which are
shown in Table 6.6 and Table 6.7.

Because we choose the debug mode for compiling on ARM core, and add some extra
functions that are necessary for displaying but useless for decoding procedure, the execu-
tion time of ARM core increases much. Moreover, because the operating frequency of the
FPGA is much lower than the real chip, the execution time of FPGA core also increases.

Therefore, the performance degrades greatly for the real demo platform.

6.2 Effect of Different Quantization Steps (QP)

In the MPEG-4 video encoder, quantization follows the DCT. Therefore, the quantization
step size affects the block coefficients. In the above discussion, we let QP value be 4 in

all cases. To have further understanding of how QP affects the video coding, we do some

98

Table 6.6: Frame Rate Estimation for Intra Decoding on Demo Platform

Test Seq. (QCIF) stefan foreman akiyo

ARM (cycles) 2,177,643 2,855,869 2,995,292

% 22.12 14.16 14.63
PACDSP (cycles) 1,114,552 2,510,208 2,532,856

% 77.31 84.89 84.30
Transmitted (bytes) 32,272 112,912 129,040
Data % 0.57 0.95 1.07
Execution Time (ms) 65.54 134.41 136.54
Frame Rate (fps) 15.26 7.44 7.32
Pixels Per Second 105,477.1 179,988.5 202,383.4

Table 6.7: Frame Rate Estimation forInter Decoding on Demo Platform

Test Seq. (QCIF) stefan foreman akiyo
ARM (cycles) 4,048,579 12,712,506 14,040,483
Padding&MC % 0 52.76 55.22
ARM (cycles) 9,156,179 11,187,675 11,162,323
Others % 56.14 46.43 43.91
PACDSP (cycles) 1,040,929 1,795,598 614,918

% 43.52 0 0
Transmitted (bytes) 32,524 113,794 130,048
Data % 0.34 0.81 0.87
Execution Time (ms) 108.72 160.62 169.50
Frame Rate (fps) 9.20 6.23 5.90
Pixels Per Second 63,590.4 150,716.2 163,123.2

99

analysis for different QP values in this section. We consider three different QP values,
which are 3, 4 and 8. And we discuss the effect on the number of skipped blocks for our
algorithmic optimization. Since there are two kinds of algorithmic optimization in our
implementation, we do the analysis for them separately.

Tables 6.8 and 6.10 show the numbers of skipped blocks under different QP values.
In our analysis, we decode 20 I-frames and 19 P-frames as shown. Since a larger QP value
introduces a rougher quantization, more block coefficients may be quantized to the same
value. As a result, the coefficient after DC/AC prediction may be simpler, and the number
of skipped blocks for our algorithmic optimization increases. When we increase the value
of QP, the percentage of skipped blocks also increases. In addition, the block coefficients
of inter coding have a larger probability to be zero, which results in a larger percentage of
skipped blocks, especially for “akiyo” which is quite stationary. Obviously, the execution
time will decrease when we increase the QP value, since the percentage of skipped blocks
increases with the QP value. We show the execution time of each sequence with different
QP in Tables 6.9 and 6.11.

100

Table 6.8: Number of Skipped Blocks in 20 Intra Frames with Different QP values

Check Check VLD flag
Test Segs. | QP | Total Block No. VLD_flag & ACPred _flag
(QCIF) Skipped Blocks % Skipped Blocks %

3 1,234 111 | 9.00 102 | 8.27
stefan 4 1,234 134 | 10.86 119 | 9.64
8 1,234 235 | 19.04 201 | 16.29
3 5,341 893 | 16.72 544 | 10.19
foreman 4 5,341 1,075 | 20.13 655 | 12.26
8 5,341 1,820 | 34.08 1,063 | 19.90
3 5,281 777 | 14.71 615 | 11.65
akiyo 4 5,281 922 | 17.46 733 | 13.88
8 5,281 1,604 [:30.37 1,073 | 20.32

Table 6.9: Effects of Different QP to Execution Time of I-Frame Decoding on PACDSP

Test Segs. Execution Time (Cycles Per Frame)

(QCIF) QP=3 QP =4 QP=8

stefan 837,280 783,725 674,367

foreman 1,822,649 1,743,121 1,540,830

akiyo 1,878,614 1,757,579 1,486,613

101

Table 6.10: Number of Skipped Blocks in 19 Inter Frames with Different QP

Check Check VLD flag
Test Segs. | QP | Total Block No. VLD_flag & ACPred _flag
(QCIF) Skipped Blocks % Skipped Blocks %

3 1,162 211 | 18.16 208 | 17.90
stefan 4 1,162 282 | 24.27 282 | 24.27
8 1,162 511 | 43.98 511 | 43.98
3 4,906 1,633 | 33.29 1,633 | 33.29
foreman 4 4,906 2,123 | 43.27 2,123 | 43.27
8 4,840 3,204 | 66.20 3,201 | 66.14
3 3,487 2,158 | 61.89 2,146 | 61.54
akiyo 4 2,710 1,801 | 66.46 1,786 | 65.90
8 2,023 1,573 +77.76 1,573 | 77.76

Table 6.11: Effects of Different QP to Execution Time of P-Frame Decoding on PACDSP

Test Segs. Execution Time (Cycles Per Frame)
(QCIF) QP=3 QP=4 QP=8

stefan 833,126 737,283 697,521

foreman 1,355,579 1,214,174 1,068,700

akiyo 545,047 478,750 474,627

102

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we considered the real-time implementation of MPEG-4 object-based video
decoder on PACDSP platform.

Before our implementation on PACDSP,-we first analyzed the reference software of
MPEG-4, MoMuSys, and done the profiling on the PC. By the analysis of the reference
software, we had an initial understand of ‘the decoding flow and the critical part of com-
putation. We could design the more efficient strategies of our implementation according
to the analysis. Since the PACDSP platform that we demonstrated on was a dual core
system, we then discussed the dual core design of our implementation.

After the implementation on both processing core was verified and optimized, we
also utilized several general software optimization techniques, such as static reschedul-
ing, loop-unrolling, and software-pipelining to reduce the stalls. Moreover,we further
analyzed the characteristics of decoding procedure to find if there was any removable
computation. Based on the analysis, we optimized the program sequence to reduce the
computation complexity.

Finally, the optimization results were discussed. For the best case, stefan, which has
the smallest VOP size, we can decode the MPEG-4 video bitstream over 171 frames and
119 frames per second for intra and inter decoding, respectively. And the program size

is 30 KB, which is smaller than the instruction cache size. In addition, the used data

103

size was also under the limit of memory that provided on PACDSP. Therefore, no cache
missing problem happened in our implementation. In conclusion, the performance of our

implementation of MPEG-4 object-based video decoder on PACDSP is competitive.

7.2 FutureWork

There are several improvements and extensions can be considered in the future:

e Combination of 1Q and IDCT

Since the computation of inverse quantization is followed by IDCT, we can simply

combine these computations to reduce the number of memory load/store.

e Data structure refinement

For the implementation on DSPs, the design of data structure is very important,
which affects the performance highly. If we can design the more efficient data
structure, the memory accesses can-be significantly reduced, and the performance

also can be improved.

e Dual-core implementation

Since the internal memory of PACDSP is 64 KB only and the access to external
memory consumes much execution time, the amount of bitstream that is written to
the memory is limited. Therefore, the number and the size of decoding frames are
also constrained. However, the internal memory of PACDSP can be accessed by the
ARM core on the PSDK platform, then we can manage the memory through ARM

core, and the usable memory size is enlarged.

In addition, some functions like the VLD. Because it has many branch instructions
in its decoding procedure, which degrades the performance of implementation on
PACDSP. In other words, using PACDSP to implement the VLD has no advantage.
We can redesign the dual-core implementation, and use the suitable core module to

implement each functions.

e Implement on PACDSP v3.0

104

In this thesis, we consider the implementation of MPEG-4 video decoder on PACDSP
v2.0. However, the latest version of PACDSP is version 3.0 which support some
new and useful instructions. We can further implement the decoder on PACDSP

v3.0, and use the new instructions to improve the performance.

Add other MPEG-4 tools

In our implementation, the tool of error-resilience in MPEG-4 simple profile is
left. However, for the bitstream transmitted through a real channel, this tool is
very important. We need to consider the implementation of error-resilience in the
future. Moreover, we also can implement other advanced profiles of MPEG-4 video

decoder for more decoding tools to extend the capability of PACDSP.

105

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

SOC Technology Center, Industrual Technology Research Institute, PACDSP v2.0
— Instruction Set Menu. Doc. no. PACDSP2S0000, June 2005.

SOC Technology Center, Industrual Technology Research InstitutePACDSP v3.0
— Software Developer’s Bible — Vol. 1 Software Developer’s Guide. Doc. no.
PACDSP3S0001, Feb. 2006.

SOC Technology Center, Industrual’ Technelogy Research InstitutePACDSP v3.0
— Software Developer’s Bible —Mol. 2, Instruction Set Manual. Doc. no.
PACDSP3S0002, April 2006;

SOC Technology Center, Industrual”Technology. Research Institute PACDSP v3.0 —
Software Developer’s Bible — \Vol./ 3 Programming Constraints and Optimization
Guide. Doc. no. PACDSP3S0003, May 2006.

ISO/IEC 14496-2:2001, Information Technology — Coding of Audio-Visual Objects
—Part 2: Visual. July 2001.

Chung-Yen Tsali, “Software implementation of MPEG-4 video decoder on PACDSP
platform,” M.S. thesis, Department of Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., July 2006.

A. Puri and A. Eleftheriadis, “MPEG-4: an object-based multimedia coding stan-
dard supporting mobile applications,” Mobile Networks Applic., vol. 3, pp. 5-32,
1998.

106

[8] A. Ebrahimi and C. Horne, “MPEG-4 natural video coding — an overview,” Sgnal

Processing Image Commun., vol. 15, pp. 365-385, 2000.

[9] MPEG-4 Video Group, “MPEG-4 video verification model version 18.0,” doc. no.
ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Jan. 2001.

[10] http://www.tnt.uni-hannover.de/project/eu/momusys.

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 3rd ed. San Francisco: Morgan Kaufmann Publishers, 2003.

[12] S. Sriram and C. Y. Hung, “MPEG-2 video decoding on the TMS320C6X DSP
architecture,” in IEEE Sgnal Systems Computer Conf., vol. 2, Nov. 1998, pp. 1735-
1739.

[13] C. E. Fogg, “Survey of software and hardware VLC architectures,” in Proc. SPIE
Image and Video Compression, vel: 2186, May: 1994, pp. 29-37.

[14] R. Prasad and R. Korada, “Efficient implementation of MPEG-4 video encoder on
RISC core,” IEEE Trans. Consumer Electronics, vol. 49, pp. 204-209, Feb. 2003.

[15] N.I. Choand S. U. Lee, “Fast algorithm and.implementations of 2-D discrete cosine

transform,” |EEE Trans. Circuit Syst., vol. 38,pp. 297-305, Mar. 1991.

[16] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” |EEE Trans.

Acoust. Speech Sgnal Processing, vol. 32, no. 6, pp. 1243-1245, Dec. 1984.

[17] C. Y. Hung and P. Landman, “A compact IDCT design for MPEG video decoding,”
in Proc. IEEE Workshop Sgnal Processing Systems, Nov. 1997.

[18] G. Plonka and M. Tasche, “Reversible integer DCT algorithms,” preprint, Gerhard-
Mercator-Univ. Duisburg, 2002.

[19] Y. Chen and P. Hao, “Integer reversible transformation to make JPEG loseless,” in

Int. Conf. Sganl Processing, Beijing, China, Sep. 2004, pp. 835-838.

107

[20]

[21]

[22]

[23]

[24]

T.S. Chang, C.S. Kung, and C.W. Jen, “A simple processor core design for
DCT/IDCT transform,” IEEE Trans. Circuits Syst. Video Technology, vol. 10, no.
3, pp. 439-447, Apr. 2000.

Texas Instuments, TMS320C64x Image/Video Processing Library — Programmers
Reference. Literature number SPRU023B, Oct. 2003.

N. Ventroux, J. F. Nezan, H. Raulet, and O. Deforges, “Rapid prototyping for an
optimized MPEG-4 decoder implementation over a parallel heterogenous architec-

ture,” in Proc. Int. Conf. Multimedia Expo, vol. 3, July 2003, pp. 417-420.

K. Ramkishor and U. Gunashree, “Real time implementation of MPEG-4 video de-
coder on ARM7TDMI,” in Proc. Int. Symp. Intelligent Multimedia Video Speech
Processing, May 2001, pp. 522-526.

J. H. Kuo, J. L. Wu, J. Shiu, and K, L.,Huang, “A low-cost media-processor based
real-time MPEG-4 video decoder;” in IEEE.Int."Conf. Consumer Electronics, June
2002, pp. 272-273.

108

FhE T AFS Lo EC N LA p AN g EFaeD o F o
PR £ FRFR LA LTRSS AR

rEATREEOoTARAEL T BCVEAFLTF IR Y TFLIT

-~

N

)
(Ui
E
o
-
5l
e
sl

A

TR E e 4EP 5 TMPEG4 & #4R3
fRr5 % & PACDSP & 5+ 2 Hi#F R, P FFEEAB L D40~ A Y
feDSP & & b2 AR AR R RS S SR

RS 5 -

	cover_picon_fixed2.pdf
	picon_abstract_fixed.pdf
	Department of Electronics Engineering

	blank.pdf
	content_complete.pdf
	自傳.pdf

