

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

Gbps 高速渦輪碼之設計與實現

Design and Implementation of Gbps Turbo Decoders

學生 ： 賴名威

 指導教授 ： 李鎮宜 教授

中華民國九十六年七月

 I

Gbps 高速渦輪碼之設計與實現

Design and Implementation of Gbps Turbo Decoders

 研 究 生：賴名威 Student：Ming-Wei Lai

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班
碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in

Electronics Engineering

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

 II

 Gbps 高速渦輪碼之設計與實現

學生：賴名威 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

自九零年代初渦輪碼被發現以來，由於出色的錯誤更正能力一直以來廣泛的引起研

究者的注意，在近期寬頻無線通訊以及第四代行動通訊等協定中，對於高速渦輪碼的資

料流量的要求，也分別訂定了每秒 70Mb 以及每秒 20Mb 到 100Mb 的高速傳輸量，因此，

對於高速渦輪碼的需求也與日俱增。而在渦輪碼的解碼中，由於尋找最大事後機率的解

碼方式中，含有遞迴式的計算方式，也因此造成了在渦輪碼的解碼中，產生了很可觀的

時間延遲。在這篇論文當中，針對高速的渦輪碼解碼，我們提出了一個完整的解決方案，

其中，包含一個資料讀寫平順無誤的打散器設計，一個多級高階的渦輪解碼器，以及提

出ㄧ種能夠運用在兩個維度的平行解碼器架構，由於這些因素，使得我們在本論文中所

提出的設計，與現今科技之水準比較下，達到最高的能源效率以及每秒的資料解碼量，

達到最高的水準。

 III

Design and Implementation for Gbps Turbo Decoders

Student : Ming-Wei Lai Advisor : Dr. Chen-Yi Lee

Institute of Electronics Engineering

National Chiao Tung University

 ABSTRACT

Turbo codes have received a lot of interest since 90’s because of their excellent

performance. To apply turbo codes in high-speed digital communications, such as in

broadband wireless access based on the IEEE 802.16 standard supporting data rates of up to

70 Mb/s, and in fourth generation cellular systems, which are expected to provide a data rate

from 20 to 100 Mb/s for high mobility, high throughput of turbo codes is a critical issue. The

recursive computations in the MAP-based decoding of turbo codes usually introduce a

significant amount of decoding delay. In this thesis, we present a total solution for a high

throughput application, including a contention-free interleaver design, a high radix turbo

decoder design, and the two-dimension parallel decoding architecture. The chip proposed in

this thesis is the most power efficient and the fastest design in the state of the art.

 IV

誌 謝

忙碌而充實的研究生生活，隨著口試的結束也悄悄地接近了尾聲。在這二年的研究

生涯中，首先要感謝指導教授李鎮宜教授在這段時間對我的指導，並且提供一個良好的

研環境讓我能夠專注於學業與研究。此外，還要感謝 Si2 實驗室以及 Ocean Group 所有

的成員，在這段時間給了我非常多的協助與討論，使得我的研究得以順利的完成。其中，

特別要感謝張錫嘉教授、林建青學長、陳志龍學長以及翁政吉學長給予我非常多的協助

與指導，並且在相互的討論中，給予了我非常多的構想與啟發，使得這些研究能夠順利

的完成。最後，感謝我的父母一路上對我的支持與協助，沒有你們也就沒有今天的我。

 V

Contents

ABSTRACT ... IV

CONTENTS ... VI

LIST OF FIGURES... IX

LIST OF TABLES ..XII

CHAPTER 1 INTRODUCTION...1

1.1 MOTIVATION.. 1

1.2 THESIS ORGANIZATION.. 3

CHAPTER 2 TURBO CODE..4

2.1 PRINCIPLE OF TURBO CODE ... 4

2.1.1 Turbo Encoding.. 4

2.1.2 Turbo Interleaver ... 6

2.1.3 Turbo Decoding.. 6

2.1.4 Error floor effect .. 7

2.2 DECODING ALGORITHMS FOR TURBO CODE .. 8

2.2.1 The MAP algorithm.. 8

2.2.2 The Log-MAP algorithm .. 12

2.2.3 The Max-Log-MAP algorithm.. 13

2.2.4 SNR sensitivity of Max-Log-MAP and Log-MAP algorithm.............................. 15

2.3 SLIDING WINDOW APPROACH ... 16

2.4 TAIL-BITING APPROACH.. 18

2.4.1 Encoding tail-biting codes using feedback encoders ... 19

 VI

CHAPTER 3 THE HIGH SPEED TURBO DECODER DESIGN I21

3.1 INTRODUCTION.. 21

3.2 DECODER STRUCTURE... 22

3.3 INTERLEAVER DESIGN FOR HIGH SPEED TURBO CODE .. 23

3.3.1 Contention-free Interleaver.. 23

3.3.2 IBP Interleaver... 25

3.3.3 Butterfly network.. 25

3.3.4 Double prime interleaver ... 26

3.4 HIGH-THROUGHPUT MAP DECODERS... 27

3.4.1 Retimed radix-2x2 ACS unit... 27

3.4.2 The circuit for log-likelihood ratio calculation.. 29

3.5 SIMULATION RESULT AND CHIP IMPLEMENTATION .. 29

3.6 SUMMARY ... 34

CHAPTER 4 THE HIGH SPEED TURBO DECODER DESIGN II................................35

4.1 INTRODUCTION.. 35

4.1.1 Data Hazards ... 35

4.1.2 A dummy sub-block .. 36

4.2 DECODING SCHEDULE ... 37

4.2.1 Decoding with two codewords ... 37

4.3 MAP DECODERS ... 39

4.3.1 The structure of each processing element. ... 39

4.3.2 The memory units ... 41

4.3.3 Retime or not retime... 41

4.4 INTERLEAVER DESIGN ... 43

4.4.1 Multiple block lengths support... 44

 VII

4.5 CHIP IMPLEMENTATION.. 44

4.6 SUMMARY ... 47

CHAPTER 5 HIGHLY PARALLEL DECODING OF TURBO CODE48

5.1 A SECTIONALIZED METHOD FOR PARALLEL DECODING .. 49

5.1.1 A sectionalized method... 49

5.1.2 Parallel decoding with the sectionalized method... 51

5.2 PROPOSED ARCHITECTURES .. 51

5.2.1 A two-dimension parallel architecture... 52

5.2.2 A intra-codeword parallel architecture.. 52

5.2.3 Data hazards .. 53

5.3 PERFORMANCE ANALYSIS.. 54

5.4 PROPOSED METHOD TO IMPROVE PERFORMANCE ... 57

5.5 DECODING SCHEDULE ... 59

5.6 HARDWARE COMPARISON.. 61

5.7 SUMMARY ... 63

CHAPTER 6 CONCLUSION AND FUTURE WORK...64

6.1 CONCLUSION ... 64

6.2 FUTURE WORK .. 65

BIBLIOGRAPHY...66

 VIII

List of Figures

FIG. 1.1 THE BLOCK DIAGRAM OF DIGITAL COMMUNICATION SYSTEM ...2

FIG. 2.1 TURBO ENCODER FOR 3GPP2 STANDARD..5

FIG. 2.2 TRELLIS TERMINATION ...5

FIG. 2.3 TURBO DECODING FLOWCHART...7

FIG. 2.4 TRELLIS DIAGRAM OF TURBO CODE IN 3GPP2 STANDARD...9

FIG. 2.5 THE PROCESS DIAGRAM OF SLIDING WINDOW APPROACH IN THE FORWARD DIRECTION .17

FIG. 2.6 THE PROCESS DIAGRAM OF SLIDING WINDOW APPROACH IN THE BACKWARD DIRECTION

..18

FIG. 2.7 THE ENCODER PROCESS OF TAIL-BITING CONVOLUTIONAL CODE...................................20

FIG. 3.1 BLOCK DIAGRAM OF PROPOSED TURBO DECODER ...22

FIG. 3.2 BLOCK DIAGRAM OF PROPOSED TURBO DECODER ...23

FIG. 3.3 EXAMPLE OF A CONTENTION-FREE PERMUTATION ...24

FIG. 3.4 AN EXAMPLE OF IBP INTERLEAVER WITH FOUR SUB-BLOCKS..25

FIG. 3.5 A 4X4 BUTTERFLY NETWORK FOR IBP INTERLEAVER...26

FIG. 3.6 RETIMING PROCEDURE OF A RADIX 2X2 ACS UNIT..28

FIG. 3.7 A RETIMED RADIX 2X2 ACS UNIT ...28

FIG. 3.8 THE CIRCUIT FOR LOG-LIKELIHOOD CALCULATION ...29

FIG. 3.9 FER PERFORMANCE COMPARED WITH 3GPP TURBO CODE...30

FIG. 3.10 BER PERFORMANCE COMPARED WITH 3GPP TURBO CODE ..31

FIG. 3.11 MICRO PHOTO OF PROPOSED TURBO DECODER CHIP ..33

FIG. 4.1 A CYCLE-BASED DECODING PROCEDURE ...36

FIG. 4.2 A DATA HAZARD OCCURRED WHILE DECODING..36

 IX

FIG. 4.3 DECODING SCHEDULE OF A SUB-CODEWORD...37

FIG. 4.4 DECODING SCHEDULE OF PREVIOUS DESIGN ...37

FIG. 4.5 DECODING SCHEDULE WITH TWO CODEWORDS ...38

FIG. 4.6 RADIX 16 AND RADIX 4X4 TRELLIS DIAGRAM...40

FIG. 4.7 CIRCUIT DIAGRAMS OF TWO STRUCTURES...40

FIG. 4.8 THE MEMORY UNIT..41

FIG. 4.9 A CRITICAL PATH COMPARISON..42

FIG. 4.10 THE ARCHITECTURE TRANSFORMATION ..43

FIG. 4.11 MULTIPLE BLOCK LENGTHS SUPPORT ..44

FIG. 4.12 POWER ISOLATION OF DLL ...45

FIG. 4.13 CHIP LAYOUT VIEW ...45

FIG. 5.1 THE ARCHITECTURE OF 1GBPS TURBO DECODER...49

FIG. 5.2 DECODING PROCEDURE OF SLIDING WINDOW APPROACH ..49

FIG. 5.3 A SECTIONALIZED METHOD ...50

FIG. 5.4 DIFFERENT SIZES OF THE SECTIONALIZED METHOD...50

FIG. 5.5 COMPARISON OF DIFFERENT STRUCTURES...51

FIG. 5.6 A TWO-DIMENSION PARALLEL METHOD...52

FIG. 5.7 A INTRA-CODEWORD PARALLEL ARCHITECTURE..53

FIG. 5.8 DATA HAZARDS ...54

FIG. 5.9 A PROPER DECODING ORDER FOR DATA HAZARDS..54

FIG. 5.10 64T PERFORMANCE...55

FIG. 5.11 32T PERFORMANCE ...55

FIG. 5.12 16T PERFORMANCE...56

FIG. 5.13 8T PERFORMANCE...56

FIG. 5.14 4T PERFORMANCE...57

FIG. 5.15 A PROPOSED METHOD TO IMPROVE PERFORMANCE ...58

 X

FIG. 5.16 8T EXTEND TO 16T ...58

FIG. 5.17 4T EXTEND TO 8T, 12T, AND 16T ..59

FIG. 5.18 THE ORIGINAL DECODING SCHEDULE ..60

FIG. 5.19 EXAMPLE OF THE NEW 8T AND 16T DECODING SCHEDULE ..60

FIG. 5.20 DECODING SCHEDULE OF EXTENSION..61

 XI

 List of Tables

TABLE 1.1 COMPARISON OF TURBO CODE AND LDPC...2

TABLE 3.1 TURBO DECODER SPECIFICATION ..32

TABLE 3.2 COMPARISON WITH OTHER TURBO DECODER...................................34

TABLE 4.1 COMPARISON BETWEEN TWO VERSIONS ...42

TABLE 4.2 SUMMARY OF THE PROPOSED 1GBPS TURBO DECODER.................46

TABLE 5.1 HARDWARE COMPARISON OF TWO-DIMENSION PARALLEL

ARCHITECTURE ...62

TABLE 5.2 HARDWARE COMPARISON OF INTRA-CODEWORD PARALLEL

ARCHITECTURE ...62

 XII

Chapter 1
Introduction

1.1 Motivation
A communication system conveys a information source to a destination through a

channel. Fig. 1.1 shows a fundamental block diagram of traditional digital communication

system. Generally, the system can be divided into transmitter and receiver via a channel. The

main task of transmitter, including source encoder, channel encoder and modulator, is to

transform the information into a form that can withstand the effect of noise over the

transmission media. And the receiver will reverse the signal transformation by demodulator,

channel decoder and source decoder. Since the channel impairments such as noise,

interference and distortion may cause the error in the received signal, the channel encoder is

incorporated in the system to add certain structural redundancy to the source codeword to

minimize the transmission errors. Although these redundant bits may lower data transmission

rate, the channel coding eliminate the effects of noise disturbances and thus improve the

performance, compared with an uncoded system.

With high coding gain provided by channel codes, the high performance channel codes

are widely used in some circumstances, such as low power transmission, high order

modulation, and complex channel conditions, in the recent decades. In channel codes, there

are three codes that provide marvelously high performance: block turbo code, convolutional

turbo code, briefly called turbo code, and low density parity check code. The block turbo code

is hard to implement due to the irregular Trellis structure. Therefore, the candidates for the

 1

high performance criterion remain turbo code and LDPC code.

Fig. 1.1 The block diagram of digital communication system

The comparison of turbo code and LDPC are listed in Table 1.1. From the point of view

with block length bigger than 10000, the performance of LDPC would be better than turbo

code due to the property of component codes. With block length smaller than 10000, the

performance of turbo code would be better due to the girth problem of LDPC. The Parallelism

of LDPC is easier for implementation than turbo code. Most important of all, the routing

problem of LDPC is getting serious as the throughput demand growing. Meanwhile, the

advanced process for high speed implementation aggravates the routing congestion problem

of LDPC. Apparently, for a high speed application, the turbo codes would be more suitable

and area-efficient if we can increase the throughput of the turbo codes.

Table 1.1 Comparison of Turbo code and LDPC

 LDPC Code Turbo Code

>10000 Better Good Performance

(Block length) <10000 Good Better

Throughput (Parallelism) Better Medium

Efficiency Medium Medium

Routing Difficult Medium

 2

In this thesis, our work is motivated to design a high performance and high-throughput

turbo decoder. We attempt to achieve the target from two aspects: First one is to speed up the

decoding processing elements used in the whole turbo decoder by high radix structures and

perfect utilization of hardware. Second, we employ a well-designed interleaver fit for parallel

decoding architectures to reduce the latency caused by the interleaver and propose a practical

hardware architecture for the whole turbo decoder. Finally, we will propose a new point of

view of parallel decoding for MAP-based turbo decoder with the modest hardware cost.

1.2 Thesis Organization
This thesis consists of 7 chapters. In chapter 2, we’ll focus on interpreting turbo coding

and decoding algorithm and its relative techniques. Chapter 3 presents a total solution of a

high speed turbo decoder with a parallel architecture, including the design of a contention-free

interleaver, a high radix turbo decoder, and some techniques applied on our design.

Chapter 4 explains how we improve the utilization of the previous chip. A Modified

interleaver control for multiple block lengths support will be introduced. In chapter 5, we

present the two architectures. A two-dimension parallel architecture will be proposed.

Meanwhile, a simplified intra-codeword parallel architecture and the relative issues will be

discussed. Finally, conclusion and future work are made in chapter 6.

 3

Chapter 2
Turbo Code

The parallel concatenated convolutional code (PCCC), named turbo code, was first

proposed by C. Berrou, A. Glavieux, and P. Thitimajshima in 1993[1]. It has been proved to

have a performance close to Shannon limit with simple constituent codes concatenated by an

interleaver. This new technique is now adopted in 3GPP, 3GPP2 and WiMAX standards due

to its excellent error correction ability. In this chapter, we’ll describe the principle of both

turbo encoding and turbo decoding methods. The sliding-window approach and the tail-biting

coding structure will also be interpreted here.

2.1 Principle of Turbo code

2.1.1 Turbo Encoding

The turbo encoder is composed of two recursive systematic convolutional (RSC)

encoders, which are connected in parallel but separated by a turbo interleaver. The two RSC

encoders are also called constituent codes of the turbo code. The block diagram of the turbo

encoder is illustrated in Fig. 2.1. Note that the same input data are encoded by each RSC

encoder but in different order. In 3GPP2 standard, each input bit is encoded as one systematic

bit and two parity-check bits for each RSC encoder. Thus, the code rate of each component

encoder is 1/3. In order to increase the code rate of turbo code, the systematic bits of the

second RSC encoder are not transmitted. Therefore, the output encoded sequence should be

{X, Y0, Y1, Y0’, Y1’}, and the overall code rate is 1/5.

 4

Fig. 2.1 Turbo encoder for 3GPP2 standard

After encoding all input messages, we have to generate several tail bits to set both

component encoders back to zero state. However, it’s impossible for a RSC encoder to return

zero state by inserting dummy zeros into the encoder directly. Thus, a simple solution is

provided in Fig. 2.2. While encoding input messages, the switch is set to position “A”. Once

messages of whole block are encoded, the position of switch is changed to “B” for three

additional cycles. This will force all registers to zeros and thus back to zero state.

Systematic bit

Parity-check bit

Input
message

A

B

Fig. 2.2 Trellis Termination

 5

2.1.2 Turbo Interleaver

The interleaver plays a very important role in turbo encoder. First of all, a proper coding

gain can be achieved with small memory RSC encoders since the interleaver scramble a long

block message. Besides, the interleaver de-correlates the input of two RSC encoders so that

iterative decoding algorithm can be applied between two component decoders. Theoretically,

the block size of interleaver is one of the major factors to lower the upper bound on bit error

probability of the turbo code system. The performance upper-bound of turbo code

corresponding to a uniform random interleaver has been evaluated in [9]. The result shows

that the bit-error-probability upper bound of turbo code is approximately proportional to 1/N,

where N is the block size of turbo interleaver. The factor “1/N” is also called the interleaver

gain.

2.1.3 Turbo Decoding

A general idea for iterative turbo decoding is illustrated in Fig. 2.3, where rs is the

received systematic information, rp1 is the received parity information generated by the first

RSC encoder, and rp2 is the received parity information generated by the second RSC encoder.

The iterative turbo decoding consists of two constituent decoders, which are soft-in/soft-out

(SISO) decoders concatenated serially via one interleaver and one de-interleaver. An

additional interleaver is used to interleave the input systematic information and then provides

the interleaved data to the second SISO decoder. Two component decoders can be

implemented based on either soft-output Viterbi algorithm (SOVA) [21] or maximum a

posteriori probability (MAP) algorithm [2], which will be discussed particularly in the next

section. During iterative decoding process, each constituent decoder delivers the extrinsic

information Lex(u) which is taken as a priori information for the other constituent decoder.

That is 1 2() ()in k ex kL u L u= � and 2 1() ()in k ex kL u L u= � . As the number of iterations increases,

 6

better coding gain is expected. However, the correlation between two SISO decoders is also

raised up. Therefore, there is no significant performance improvement if the number of

iterations reaches a threshold.

SISO
Decoder1

SISO
Decoder2

Interleaver

De-
Interleaver

Interleaver

Lex1(u)

L1(u)rs

rp1

rp2

Lex1(u)
~ ^

L2(u)̂

Lex2(u)
~

Lex2(u)

Fig. 2.3 Turbo decoding flowchart

2.1.4 Error floor effect

Although turbo coding provides an excellent performance, the bit-error-rate certainly

starts to decrease quite slowly at high signal-to-noise ratio (SNR). This phenomenon can be

observed in [19]. It is due to relative small free distance of turbo codes, and is called an “error

floor” [22]. Consider the relation of the minimum free distance and the bit error probability in

turbo coding, which can be expressed by

0

2 b
b free

EP Q d R
N

⎛ ⎞
∝ ⎜⎜

⎝ ⎠
⎟⎟ (2. 1)

where dfree is the minimum free distance and Eb/N0 is the SNR. At low SNR, the major part of

errors can be corrected by iterative decoding since systematic information and parity

information can be regarded as highly independent events. However, as the channel provides

a reliable transmission, the dependency of the systematic and parity information grows up and

the interleaver does little contribution on iterative decoding. Thus, the error correction ability

 7

is limited on the weak constituent code only. To overcome this issue, we can increase the

interleaver size to lower the position of the error floor or concatenate a block code, e.g. BCH

code, as an outer code to remove the left error bits. For more details, please refer to [9] [23].

2.2 Decoding Algorithms for Turbo Code
It has been proved that the MAP algorithm is the optimal decoding method for turbo

code while comparing with SOVA [10]. Unlike Viterbi algorithm which utilizes maximum

likelihood (ML) algorithm to find the codewords with minimum error probability, the MAP

algorithm minimizes the symbol (or bit) error probability. In this section, we’ll focus on

introducing the turbo decoding methods based on MAP algorithm [2][3]. Although SOVA is

also one of the commonly used techniques for turbo decoding, we’ll skip it since it’s not

adopted in our proposed design. To understand more detail about SOVA, please refer to [21].

And some comparisons of MAP algorithm and SOVA applied in turbo code system are shown

in [10].

2.2.1 The MAP algorithm

The main idea of MAP algorithm is to compute the log-likelihood ratio (LLR) of the

transmitted information bit uk conditioned on the received information rk for 1≦k≦N, where

N is the block length of encoded message.

(1|ˆ() (|) log
(1|

k
k k

k

P uL u L u
P u

)
)

= +
= =

= −
rr
r

 (2. 2)

Here r is the vector of received soft values, and can be represented as [r1,r2, …, rn] where n is

the number of output bits for each encoded bit in the constituent code. Let’s consider the

trellis diagram of turbo code in 3GPP2 standard, which is shown in Fig. 2.4 as an example.

Note that the solid lines represent the transitions corresponding to an information bit uk of -1,

while the dotted lines represent the transitions corresponding to an information bit uk of +1.

 8

Then, the equation can be further expressed as

(1|)ˆ() log log
(1|)

k

k -1 k
u =+1k

k
k k

u =-1

P(s ,s ,)
P uL u
P u P(s ,s ,)

= +
= =

= −
k

-1 k

∑
∑

r
r
r r

. (2. 3)

where the numerator and denominator are the sum of joint probabilities for all existing

transitions from state sk-1 to state sk that corresponding to an information bit uk of +1 and -1

respectively.

Fig. 2.4 Trellis diagram of turbo code in 3GPP2 standard

Assume the encoded data is transmitted through the discrete memoryless channel (DMC), and

then the term P(sk-1,sk,r) can be decomposed as three terms:

1 1 1

1 1 1

() (,) ()

(, ,) (,) (, |) (|

k k k k k k k

k k k j k k k k j k k

s s s s

P s s P s r P s s P r s

e e eα γ β− − −

− − < − >= ⋅ ⋅

= ⋅ ⋅

���	��
)
��	�
 ��	�

r r
. (2. 4)

Here is the joint probability of state s1 1()k kseα − −
k-1 and received symbols rj from the beginning

 9

of the block up to time index “k-1”. Similarly, ()k kseβ is that of state sk and received symbols

rj from the end of block back to time index “k”. By shifting the value “k”, it can be perceived

that α is the forward recursion of the MAP algorithm, and can be formulated as

1 1

1

() (,) ()k k k k k k k

k

s s s

s

e e eα γ α− −

−

= ⋅ 1s −∑ . (2. 5)

The same as above, the backward recursion β can be formulated as

1 1 1() (,) ()k k k k k k k

k

s s s s

s

e e eβ γ− − −= ⋅ β∑ . (2. 6)

Note that since the trellis of turbo code diverges from state zero and converges to state zero,

the initial condition of the forward recursion and backward recursion should be set as

0 0

0 0

()
0

()

1, for 0
0, otherwise

s

s

e
e

α

α

⎧ s= =
⎨

=⎩
 (2. 7)

and

()

()

1, for 0
0, otherwise

N N

N N

s
N

s

e
e

β

β

⎧ s= =
⎨

=⎩
 (2. 8)

For any existing transitions from sk-1 to sk, the branch transition probability 1(,)k k ks seγ − can be

further decomposed as

1(,)
1

1 1

(, |)
(|) (| ,)
() (|)

k k ks s
k k k

k k k k k

k k k

e P s s
P s s P s s
P u P u

γ −
−

− −

=
= ⋅

= ⋅

r
r

r
. (2. 9)

Here, the term “P(uk)” is well-known as a priori probability. According to the definition of

LLR, which is

(() log
(1

k
k

k

P uL u
P u

1)
)

= +
=

= −
, (2. 10)

P(uk) can be rewritten as

 10

()

()

() / 2
() / 2

()

() / 2

(1)
1

1

 .

k

k

k
k k

k

k k

L u

k L u

L u
L u u

L u

L u u
k

eP u
e

e e
e

A e

±

±

−
⋅

−

⋅

= ± =
+

= ⋅
+

= ⋅

 (2. 11)

where the term Ak is equal for all transitions at the same time index, and thus will cancel out

in (2. 3). On the other hand, the value of P(rk|uk) is dependent on channel characteristic. For

an additive white Gaussian noise (AWGN) channel, the LLR of rk conditioned on uk can be

expressed as

2
, ,

1 0
1

2
, ,

1 0
1

, ,
1

(| 1)() log
(| 1)

exp(())

log
exp(())

k

k

k k
k k

k k
n

s
k v k v

v
u

n
s

k v k v
v
u

n

c k v k v
v

P uL u
P u

E r x
N

E r x
N

L r x

=
=+

=
=−

=

= +
=

= −

− −

=
− −

= ⋅ ⋅

∏

∏

∑

rr
r

 (2. 12)

where Lc=4Es/N0 and is called the channel reliability. Here, xk,v is the v-th transmitted symbol

while encoding uk. For systematic codes, xk,1 is equal to uk. Now we can obtain the value of

P(rk|uk) by using the technique in (2. 11) but substitute L(uk) with L(rk|uk).

,1 , ,
2

1 1(|) exp()
2 2

n

k k k c k k c k v k v
v

P u B L r u L r x
=

= ⋅ + ∑r (2. 13)

For the same reason in (2. 11), Bk will also cancel out in (2. 3). Combining (2. 11) and (2. 13),

the γk in (2. 9) can be reduced to

1(,)
,1 , ,

2

1exp (())
2

k k k

n
s s

k k c k k k c k v k v
v

e A B L r L u u L r xγ −

=

⎛ ⎞⎛ ⎞= ⋅ ⋅ + ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ . (2. 14)

Substituting (2. 5), (2. 6), (2. 14) into (2. 4), we can derive the a posteriori LLR in the form of

 11

1 1 1

1

1 1 1

1

() (,) ()

(,)
1

() (,) ()

(,)
1

,1

ˆ() log

() ()

k k k k k k k

k k
k

k k k k k k k

k k
k

s s s s

s s
u

k s s s s

s s
u

c k k ex k

e e e

L u
e e e

L r L u L u

α γ β

α γ β

− − −

−

− − −

−

=+

=−

⋅ ⋅

=
⋅ ⋅

= + +

∑

∑ (2. 15)

where

, ,
1 1 2

1

, ,
1 1 2

1

1
2() ()

(,)
1

1
2() ()

(,)
1k

() log

n

c k v k v
k k v k k

k k
k

n

c k v k v
k k v k k

k k

L r x
s s

s s
u

ex k
L r x

s s

s s

e e e

L u

e e e

α β

α β

− − =

−

− − =

−

=+

∑
⋅ ⋅

=
∑

⋅ ⋅

∑

∑
. (2. 16)

coder

nt decoder, and great performance improvement in iterative

AP decoding can be achieved.

2.2.

his problem can be solved by Log-MAP algorithm [24]. It employs the Jacobian

algorithm

u =−

The term Lex(uk) is called extrinsic information since it’s a function of the redundant

information that comes from the en . It removes the information about the systematic

input and a priori information from ˆ()kL u . Therefore, this term is useful to estimate a priori

probability for the next compone

M

2 The Log-MAP algorithm

It can be figured out easily that Max-Log-MAP algorithm is a sub-optimal solution for

turbo decoding since an approximation of (2. 21) is used to reduce the complexity of MAP

algorithm. T

1 21 2
1 2

1 2 1 2max(,) (),cfδ δ δ δ= + −

where f

log() max(,) log(1)e e e δ δδ δ δ δ − −+ = + +
 (2. 17)

has

been proved that (2. 21) can be computed exactly by a recursive operation of (2. 25) [10].

c(|δ1-δ2|) is a correction function, and thus the performance can be improved. It

 12

11 2 1 2log() log(),
max(log ,) (log)

max(,) ()

n n n

n c n

n c n

e e e e e e e e
f

f

δ δ δδ δ δ δ δ

δ δ

δ δ δ δ

−+ + + = ∆ + ∆ = + + + =

= ∆ + ∆ −

= + −

" "
 (2. 18)

Substituting (2. 18) and (2. 19) into (2. 25), the forward and backward recursions can be

represented as

()
1

1 1 1,
() max* () (,)

k k
k k k k k k ks u

s s sα α γ
−

− − −= + s (2. 19)

and

()1 1 1,
() max* () (,)

k k
k k k k k k ks u

s s sβ β γ− − −= + s , (2. 20)

where the max*(.) operation is defined as

1 2
1 2 1 2max*(,) max(,) log(1)e δ δδ δ δ δ − −= + + . (2. 21)

Finally, can be obtained by ˆ()kL u

()

()

1

1

1 1 1(,)
1

1 1 1(,)
1

ˆ() max * () (,) ()

max * () (,) () .

k k
k

k k
k

k k k k k k ks s
u

k k k k k k ks s
u

L u s s s s

s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

= + +

− + +

k

c c

1 2

 (2. 22)

 The performance of Log-MAP algorithm is identical to that of MAP algorithm. However,

the complexity is also increased compared with Max-Log-MAP algorithm since computing

f (.) still involves complicated exponentiations and multiplications. Thus, the values of f (.)

are usually stored in a pre-computed table and Log-MAP algorithm can be implemented by

table look-up. It has been found that excellent performance can be obtained with 8 stored

values and |δ -δ | ranging between 0 and 5, and no improvement is achieved with a finer

representation [10].

2.2.3 The Max-Log-MAP algorithm

As we can see, the MAP algorithm involves too many exponentiations and

 13

multiplications. These are quite complex for hardware realization. Thus, an approximation of

MAP algorithm termed Max-Log-MAP algorithm [24] was derived for simple implementation

of MAP decoders. Instead of calculating keγ , keα , and keβ directly, all computations are

done in logarithm domain. Here we define γk, αk, and βk as transition metric, forward path

metric and backward path metric respectively. γk can be formulated as

1 1(,) log (, |k k k k k ks s P s s)γ − −= r . (2. 23)

Similarly, referring to (2. 4), α and β can be expressed as k k

() log (,)k k k j ks P sα <= r (2. 24)

and

1 1() log (|k k j k ks P)sβ − − >= r (2. 25)

respectively. After substituting (2. 17), (2. 18), and (2. 19), in (2. 15) can be re-written

as

ˆ()kL u

()

()
1

1

1 1 1
(,)

1

1 1 1
(,)

1

exp () (,) ()

ˆ() log
exp () (,) ()

k k
k

k k
k

k k k k k k k
s s

u
k

k k k k k k k
s s

u

s s s s

L u
s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

+ +

=
+ +

∑

∑
. (2. 26)

By utilizing the approximation of

1 2
1 2log() max(, , ,)n

ne e eδδ δ δ δ δ+ + + ≈" " , (2. 27)

can be further simplified to ˆ()kL u

()

()

1

1
1 1 1(,)

1
k k

k

k k k k k k ks s
u

−
− − −

=−

his computation consists of forward

1 1 1(,)
1

ˆ() max () (,) ()

max () (,) () .

k k
k

k k k k k k k ks s
u

L u s s s s

s s s s

α γ β

α γ β

−
− − −

=+

= + +

− + +
 (2. 28)

T and backward recursions that repetitively compute the

αk and βk, and can be expressed by

()
1

1 1 1,
() max () (,)

k k
k k k k k k ks u

s s sα α γ
−

− − −= + s (2. 29)

 14

and

()1 1 1,
() max () (,)

k k
k k k k k k ks u

s s s sβ β γ− − −= + . (2. 30)

Both equations are add-compare-select (ACS) operations, which are similar to the path metric

pdating of Viterbi algorithm.

2.2.

 and Log-MAP algorithm under different SNR estimation

fsets was made in [26].

 Otherwise, Log-MAP decoder should be

 the aspect of coding gain.

u

4 SNR sensitivity of Max-Log-MAP and Log-MAP algorithm

Referring to (2.13) and its followed deductions, it’s evident that both MAP and log-MAP

algorithm requires SNR estimation to obtain the value of channel reliability, i.e. Lc.

Unfortunately, accurate estimation cannot be achieved easily. Several papers have discussed

the effect of SNR mismatch in turbo decoding. In [25], the simulations show that about -3 to

+6 dB SNR estimation offset is tolerable before significant performance degradation.

However, Max-Log-MAP algorithm is able to provide a SNR independent scheme if a priori

information is initialized with a reasonable value, such as all zero’s for each state [26]. Due to

the linearity of max(.) operations, the term Lc can be canceled out while computing ˆ()kL u .

The comparison of Max-Log-MAP

of

Although Log-MAP algorithm provides the performance better than that of

Max-Log-MAP algorithm, it suffers the risk of serious SNR mismatch offset. Thus, channel

characteristics play an important role in practical implementation. It has been concluded in

[26] that if channel characteristics change over time, the Max-Log-MAP decoder is suitable to

be the constituent decoder in turbo decoding.

preferable in

 15

2.3 Sliding Window Approach
As what we described in the previous section, the MAP-based algorithm (including MAP

algorithm, Max-Log-MAP algorithm, and Log-MAP algorithm) requires both forward and

backward path metric to calculate the log-likelihood ratio. Since the forward and backward

recursions start from different initial point, the entire block message has to be received and

stored for computing forward and backward recursions. Furthermore, we have to store one of

the path metrics of forward or backward recursion and wait for another. These restrictions

enlarge the memory requirement for hardware implementation of turbo decoder. For example,

the maximum block length of 3GPP standard is 5114, which means 5114 codewords and path

metrics should be stored. Besides, long output la

state if the backward recursion goes long enough. Fig. 2.5 and Fig. 2.6 shows the process of

this approach in both directions and the detail operating flow is described as follows.

tency is also introduced. It limits the speed

and throughput of turbo decoder design.

The main problem is that long block length can not be divided into several shot

sub-blocks immediately, since the lack of boundary path metric of sub-blocks in opposite

direction of input sequences will degrade the performance. Thus, a sliding window approach

was proposed in [27] and later on in [28] to overcome this drawback. This approach utilizes

the fact that the backward path metrics can be highly reliable even without knowing the initial

 16

i i+1 i+2 i+3

L(u)t

L(ut)

L(ut)

t1

3

4

t2

t

t

W

α 1β2β

1β

1β2β

1β2β

α2β

α

α

Fig. 2.5 The process diagram of sliding window approach in the forward direction

path metric values for the true

backward recursion

First, the received codeword is divided into many sub-blocks, with a sub-block length of

W. W is called the convergence length with typically five times the constraint length of the

encoder. For each sub-block i, the initial path metric values are inherited from the neighbor

sub-blocks for both forward and backward recursion operations. Note that in Fig. 2.5 the

dummy backward recursion β1 is employed to obtain the initial

 β2. Although the initial condition for β1 is unknown except the last

sub-block, we introduce the equal probability condition for β1 values:

1
1() , for all 0,1,...,j

tx j M
M

β = = (2. 31)

where
j

tx denotes the path metric of j-th state at time t, the last Trellis section of β1 , and M

is equal to the total state number. During the forward recursion α proceeds in the i-th

sub-block and stores these values into memory, the dummy backward recursion β1 is

performed in the i+1 sub-block concurrently. As soon as β1 computation is finished, the initial

metrics in the i+1 sub-block are available for β2 metrics in computation, and the

corresponding branches metrics in the i-th sub-block.

 17

Fig. 2.6 shows the process diagram of sliding window approach in the backward

direction. The operation flow is similar to the forward direction type except for two forward

recursions α and one backward recursion β.

β

β

β

β

2α1α

1α

1α

2α

2α

2α1α

ength code blocks of CCs. The standard solution is to add same bits at the tail

of in

Fig. 2.6 The process diagram of sliding window approach in the backward direction

2.4 Tail-Biting Approach
Tail-biting convolutional codes are first developed by G. Solomon and H. C. A. van

Tilborg[5] and recognized as equivalent to quasi-cyclic block codes.[6] From the strict

definition of convolutional codes (CCs) it is clear that CCs can only be applied to

semi-infinite sequences, i.e., encoding starts at time t = 0 in the all-zero state and goes on

continuously. But almost any communication system is block-oriented, we must find methods

to obtain finite l

formation sequences to force the encoder back to the all-zero state. This method can

avoid the weak error protection for the last codeword bits, however it causes same rate loss

due to tail bits.

Tail-biting avoids the rate loss without suffering from degraded error protection at the

end of the codeword. With tail biting technique, the starting state of encoder is not necessarily

 18

the all-zero state. It can also be any one of the other states. The fundamental idea behind

state after encoding the

infor

tail-biting is that the starting state should be the same as the ending

mation sequence, i.e., 0 Nx x= . In the Trellis representation of tail-biting codes only

those paths that start and end at the state are valid codewords.

2.4.1 Encoding tail-biting codes using feedback encoders

Let us consider a feedforward encoder first. It is obvious that we only have to consider

the last m input k0-tuples of information sequences to fulfill the tail-biting boundary

condition 0 N

x x= . But the situation is more complicated for feedback encoders. The last

encoding state Nx depends on the entire information vector 0 1(, ,)Nu u u −=
K

… . Thus, we must

calculate for a given information vector u
K

 the initial state 0x that will lead to the same state

after N cycle. To solve this problem, we consider the state representation:

1
T

t tx x+ = +A B tu (2. 32)

To solve the iterated function by substitution, we can find that the complete solution of (2.32)

equals to the superposition of the zero-input solution and the zero-state solution .

0

t

τ

−

=

A

 the in

[]zi []zs
tx tx

1
(1) [] [] []

0 0
t t T zi zs t zs

t t t tx x u x x x xτ
τ

− −= + = + = +∑A B A (2. 33)

If we demand that the state as time t=N is equal to itial state 0x , we obtain from

[]zs N

 (2.33):

N m 0()x x= +A I (2. 34)

Where denotes the m-by-m identity matrix. If a feedback encoder with certain information Im

length N can provide an invertible matrix ()N
m+A I , the correct initial state 0x can be

calculated by knowing the zero-state response []zs
Nx .

The encoding process of tail-biting convolutional code shown in Fig. 2.9 is divided into

 19

two steps:

First, the encoder starts from the all-zero state with given information sequences to determine

the zero-state response . By knowing the zero-state response, we can calculate the

corresponding initial state

[]zs
Nx

0x by (2.34). Second, the encoder starts from the correct initial

state 0x and a valid codeword results.

 Fig. 2.7 The encoder process of tail-biting convolutional code

Since the matrix has to be invertible, not every code length is legal with a

given feedback encoder. Moreover, some feedback encoder can not be tail-biting. Some detail

discussion can be found in [7], [8], and[9].

()N
m+A I

 20

Chapter 3
The High Speed Turbo Decoder
Design I

3.1 Introduction

Presented by Berrou et al. in 1993 [1], turbo codes have been recognized as a milestone

in the channel coding theory. Due to their outstanding error-correcting capabilities, turbo

codes have been highly appreciated in wireless communications, where signal-to-noise ratios

(SNRs) are generally low. Two commonly used soft-input–soft-output (SISO) turbo decoding

algorithms are maximum a posteriori probability (MAP) algorithm [2] and soft-output Viterbi

algorithm (SOVA) [4]. MAP-based turbo decoders are known to have better performance than

SOVA-based turbo decoders while having slightly larger complexity.

Many researches are proposed to improve the speed of turbo decoder. Bickerstaff

proposed a high radix decoder [11]; Bougard introduced a full-duplex design [12]; Urard

implemented a 5 iterations series turbo decoder [16]. Their works increase the throughput by

refining the architectures of the SISO decoders. The highly parallel structure might be a

solution to substantial improvement, but there are two difficulties that have to be overcome.

One is the memory contention problem resulted from high-radix and multiple processing

elements; the other is the critical path resided in the add-compare-select (ACS) circuit. We

proposed a high speed solution that resolves these two problems by using a novel interleaving

methods and modifying the MAP decoders. Some interleaving algorithms with

contention-free properties have been published [9], and our design adopts the inter-block

permutation (IBP) interleaver [13]. Then we exploit a high-radix MAP decoder with shorter

 21

critical path to increase data rate [14]. The proposed turbo decoder provides both high

throughput capability and outstanding energy efficiency while maintaining equivalent

performance as 3GPP turbo code.

3.2 Decoder Structure
For high speed turbo decoder design, there are generally two types of architectures

proposed in the state of the art. Fig 3.1 shows these architectures, the series architecture and

the parallel architecture. The series architecture duplicates the same number of processing

elements as iterations and each processing element decodes the codeword for only one

iteration. After decoding, each processing element will pass the extrinsic value to the next

element. This architecture is easy to implement but the hardware cost is very high. The

parallel architecture decodes one codeword with multiple decoders. This architecture is more

flexible since number of decoders varies from different specifications. The major problem of

this architecture is that how to decode a block codeword with multiple decoders. The forward

recursion and the backward recursion connect the whole codeword, so we should apply some

techniques to separate them. In the following, we will introduce our proposed design using the

parallel architecture to solve this problem.

Fig. 3.1 Block diagram of proposed turbo decoder

 22

Fig. 3.2 shows the block diagram of proposed decoder, which consists of 32 parallel

MAP decoders and 32 parallel memory sets. We separate a codeword into 32 sub-codewords

with length 128. Each sub-codeword is assigned to one decoder and decoded separately.

These sub-codewords are connected by a well-designed inter-block permutation (IBP)

interleaver. This method avoids the forward and backward recursion problem while using the

parallel architecture. The decoding process is described as follows: first, each memory will

collect a 128-bit sub-codeword from input buffer till the whole 4096-bit codeword is received.

The memory stores the received symbols and extrinsic information, which is divided into two

banks to support the radix-4 design. Second, the 32 memories will deliver the required data to

the 32 MAP decoders through the IBP network, which is part of the interleaver. The

interleaver is implemented with the address generators in each memory and the network

controller. The MAP decoders perform the primary decoding procedures, and each one is

responsible for 128 bits. After 8 iterations, this design would output the decisions of current

block and start to decode next block.

Fig. 3.2 Block diagram of proposed turbo decoder

3.3 Interleaver Design for High Speed Turbo Code

3.3.1 Contention-free Interleaver

To increase throughput, a log-MAP decoder is parallelized by dividing a size-N trellis

 23

into M size-W windows (N = MW) and employing M synchronous MAP-based decoders with

M separate memory banks. Interleaving latency is eliminated by writing the M values

generated each clock cycle directly to their interleaved positions. However, if the interleaver

is not designed carefully, two or more MAP-based decoders may require access to the same

memory bank on a given clock cycle, resulting in a memory contention. Moreover, a high

radix decoding structure also suffers from the memory contention problem while accessing

multiple codeword symbols from memories. Fig 3.3 shows an example of memory contention

problem in a parallel decoding structure. We store a codeword sequence in order in four

different memory banks. It is obvious that it is a contention-free access at all different timing

with pre-permutation order. But it will have the memory contention problem if we apply

different interleavers. The post-permutation 1 is a contention-free interleaver design. Because

every time we access four symbols, they come from different memory banks. The interleaver

design of post-permutation 2 suffers two contention collisions at time t0 and t3.

Fig. 3.3 Example of a contention-free permutation

 24

3.3.2 IBP Interleaver

The IBP interleaver in [13] favors both performance and throughput of turbo decoder.

Such method guarantees no hazards when multiple MAP decoders try to access multiple

memories concurrently. The IBP interleaver consists of two steps of permutation: intra-block

permutation and inter-block permutation. The first step rearranges the symbol sequences in

each sub-block with the same rule. The second step swaps the sequences between blocks

periodically. The destination can be derived by executing bit-wise exclusive-or between the

original block index and the IBP parameter. Fig. 3.4 demonstrates an example of IBP

interleaver with four sub-blocks. First, all sub-blocks are individually reordered by right rotate;

Second, they exchange data among these permuted sequences.

Fig. 3.4 An example of IBP interleaver with four sub-blocks

3.3.3 Butterfly network

The butterfly network is designed to perform the inter-block permutation in the IBP

interleaver. This structure also avoids the memory contention problem between sub-blocks

and reduces the circuit complexity. Fig. 4 shows the corresponding structure for above

example illustrated in Fig. 3. The network is divided into two levels, and each level has one

external signal to control the multiplexers. S0 and S1 will define four possible connections. In

 25

general, the butterfly network links N memories to N MAP decoders by log2N levels of

switches. Each level requires 1-bit control signal to manage its N multiplexers; the total

log2N bits establish N possible connections.

Fig. 3.5 A 4x4 butterfly network for IBP interleaver

3.3.4 Double prime interleaver

All the data inside each block will be divided into two groups and be stored in the two

separate memory banks. When radix-4 MAP decoders request two symbols at each cycle,

these two symbols must be derived from different memory banks. This is another contention

problem that should be aware of. Our design uses the double prime interleaver to resolve this

problem. The double prime interleaver is constructed by two prime interleavers whose

function are expressed by

(() mod) 2 1, is odd2 2
(() mod) 2, is even2 2

() {
Li p i

Li p s i
iπ

⎢ ⎥× × +⎣ ⎦

⎢ ⎥× + ×⎣ ⎦

=
 (3. 1)

This L is the block length, and it must be an even number. Note that p must be relative

prime to L/2 and s is a constant shift. Both the interleaver and de-interleaver could be

expressed in (3.1) with different parameters. Double prime interleaver with well-searched

parameters would outperform the interleaver in 3GPP turbo coding. Most important of all, an

well-designed double prime interleaver is an fully contention-free interleaver for certain

 26

sub-block length. For example, we can choose any factor of the sub-block length as the

parallel access number and the memory bank number. It is guaranteed that a well-designed

double prime interleaver is a contention-free interleaver.

3.4 High-Throughput MAP Decoders

3.4.1 Retimed radix-2x2 ACS unit

For trellis-based decoders, the branch number of conventional high-radix design

increases exponentially however the branch number of the two-stage structure increases

linearly. A two-stage ACS is introduced in [14] to ease the area overhead of high-radix ACS.

The complexity of ACS unit depends on the branch number, so our design prefers radix- 2 × 2

ACS to radix-4 ACS. But the critical path of two-stage structure is longer than conventional

structure. The recursive property of path metric would make the pipelining method inefficient

here, however, the critical path can be reduced by our proposed retiming method.

It is obvious that the ACS unit could not execute compare-select operations until addition

results are ready; such data dependency restricts the operating frequency. To eliminate the

dependency, the data path of ACS unit must be modified. So the proposed decoder applies the

retiming technique, and Fig. 3.6 demonstrates the procedure of a retimed radix-2× 2 ACS. The

first step shown in Fig. 3.6(a) is retiming of registers. Move and duplicate the registers ahead

of the compare circuits, then computation order is rearranged from add-compare-select to

compare-select-add. The registers have to store the summation of path metric and branch

metric rather than only path metric. The second step shown in Fig. 3.6(b) is relocation of

adders. Move and duplicate the adders ahead of the multiplexers; now the compare-select and

addition could execute concurrently. The modified ACS unit is shown in Fig. 3.7, where the

critical path becomes two consecutive compare-select operations. It would cause extra area

overhead because of double registers and double adders, and the improvement of the

radix-2×2 architecture could compensate for this loss. The relocated method can accomplish

 27

not only high-speed but area-efficient solution.

Fig. 3.6 Retiming procedure of a radix 2x2 ACS unit

Fig. 3.7 A retimed radix 2x2 ACS unit

 28

3.4.2 The circuit for log-likelihood ratio calculation

Our design adopts the modulo normalization to avoid over- flow of path metric [15].

This method requires only one more bit in the ACS unit and a simple modification inside the

LLR unit; there are no specific circuits for normalization in ACS unit. Only the differences

between forward path metrics and the differences between backward state metrics are

significant in modulo normalization, so the LLR unit has to use these differences to calculate

the log-likelihood value. Our design rearranges the computation order of log-likelihood value

from circuit in Fig. 3.8(a) to circuit in Fig. 3.8(b). Although the two circuits have the same

function, but original circuit may result in overflow due to the limited data width. The

modified circuit could guarantee the correctness and cause no extra path delay.

Fig. 3.8 The circuit for log-likelihood calculation

3.5 Simulation Result and Chip Implementation
The proposed turbo code with code rate 1/2 could decode 4096 bits after 8 iterations, and

the implementation applies maximum log-MAP algorithm with a scaling factor 0.75. The

other specifications are listed in Table. 3.1. Fig. 3.10 and Fig. 3.11 shows the performance

comparison between the proposed code and 3GPP turbo code. The floating point and the fixed

point simulation result are both competitive to the result of 3GPP standard. However, the

proposed turbo design has better distance property due to the interleaver design than the 3GPP

 29

standard. Obviously, the 3GPP standard suffers from the error floor phenomenon more than

the proposed design.

Fig. 3.9 FER performance compared with 3Gpp turbo code

 30

Fig. 3.10 BER performance compared with 3Gpp turbo code

 31

Table 3.1 Turbo Decoder Specification

Algorithm Max-Log MAP

ACS unit Radix 2x2 (retimed)

Code polynomial
3

2 3

11
1

D D
D D

⎡ ⎤+ +
⎢ ⎥+ +⎣ ⎦

Interleaver IBP interleaver (p, s) = (15, 23)

Sliding Window 32

Code Rate 1/2 (punctured)

Block length 4096(128 x 32)

Quantization 6 bits (3.3)

iteration 8

Scaling Factor 0.75

Note Tail-Biting

Technology 0.13um 1P8M

Clock rate 250MHz /w DLL 80MHz/wo DLL *

Throughput 500Mbps 160Mbps *

Gate count 2.67M

Core Area 17.8 mm2

power 762mW 275mW *

nJ/bit‧iteration 0.19 0.22 *

 The decoder chip is fabricated with a 0.13µm 1P8M CMOS technology, and the die

photo is shown in Fig. 3.12. The core area is 17.8mm2 with 2.67M gates count, including the

3.33mm2 memory block. A delay lock loop (DLL) circuit is applied to generate internal clock

 32

source as four times the external frequency. The design could operate at 250MHz with the

help of DLL during post-layout simulation, due to the relocation technique. However, the

DLL could not work as expected during measurement. The test chip could achieve 160Mb/s

and 275mW power consumption with 1.32V supply. For the decoder with 8 iterations, the

energy efficiency is 0.22nJ/b/iter. Table II lists the comparison of the proposed code with

other published works, and the proposed design has the optimal energy efficiency

[11][12][16].

Output Buffer

DLL

Fig. 3.11 Micro photo of proposed turbo decoder chip

 33

Table 3.2 Comparison with Other Turbo Decoder

 proposed [11] [12] [16]

Technology 0.13μm 0.18μm 0.18μm 0.13μm

Clock rate 80MHz 145 MHz 160 MHz 352 MHz

Throughput 160Mbps 24 Mbps 71.7 Mbps 352 Mbps

Block Size 4096 5114 384 2048

Core Area 17.8mm2 14.5 mm2 7.16 mm2 10 mm2

power 275mW 1450mW N/A 2464mW

Energy

Efficiency

0.22

nJ/bit‧iter

10.0

nJ/bit‧iter

9.7

nJ/bit‧iter

1.4

nJ/bit‧iter

3.6 Summary
The proposed turbo decoder with the parallel architecture enables multiple processing

elements to decode one codeword concurrently. The proposed IBP interleaver connects all

processing elements in the parallel architecture and avoids the limit of the forward and

backward recursions. We also introduce a high speed methodology for high radix decoder

structure. The combination of two stages ACS and the retiming technique efficiently speed up

the decoding throughput with acceptable hardware cost. The energy efficiency of proposed

turbo decoder is much smaller than that of the state of the art.

 34

Chapter 4
The High Speed Turbo Decoder
Design II

In chapter 3, we have introduced a power efficient turbo decoder design with 32

processing elements. The throughput of the proposed design is about 500Mbps in pre-layout

simulation. The critical path of the proposed design is the ACS units. However, the

throughput of a radix 2x2 ACS unit working under 250MHz is 500Mbps and the total

throughput of the decoder should be 1Gbps with 32 processing elements under 8 iterations.

The total throughput is reduced by the following two issues:

 One block is calculated twice due to the tail-biting. The calculation of α recursion of first

block introduces a dummy sub-block and reduces the throughput.

 Due to the iterative decoding and the interleaver of turbo code, the decoder must stop

and wait until the processed data stored in the memories. This data hazards happen twice

per iteration between two different decoding rounds.

These issues will be discussed in detail in the following sections. We will propose

methods to solve these problems and implement a 1Gbps high throughput and power efficient

turbo decoder.

4.1 Introduction

4.1.1 Data Hazards

There is an iteration bound occurred in the MAP-based decoder structure, so the forward

and backward recursion in a turbo decoder is always the critical path and occupy a large area

in the implementation. This is a main reason that the hardware of the forward and backward

 35

recursion is always reused. The cycle-based decoding procedure is shown in Fig. 4.1. This

example shows a sub-block size 16 and a radix 4x4 decoder decodes 4 symbols each cycle. It

shows that the forward and backward recursion modules and the LLR module are reused for

four cycles. Furthermore, the pipelined method can be used while decoding different

sub-blocks because there is no data dependency between different sub-blocks in the same

decoding round. Fig. 4.2 shows the case we proposed in chapter 3 and a data hazard happens

while decoding. The data dependency results from the interleaver between sub-block 4 in the

pre-decoding round and sub-block 1 in the post-decoding round. The extrinsic information of

sub-block 4 in pre-decoding round may be used in sub-block 1 in post-decoding round. This is

the reason why the decoder should be idle until the extrinsic information stored in the

memories.

 Fig. 4.1 A cycle-based decoding procedure

 Fig. 4.2 A data hazard occurred while decoding

4.1.2 A dummy sub-block

A valid codeword in the tail-biting Trellis makes the encoder to start and end at the same

state, instead of zero state only. Therefore, a dummy sub-block, as well as the last sub-block,

will be calculated first to estimate the initial value of the forward recursion of the first

sub-block. Decoding schedule of a sub-codeword is shown in Fig. 4.3 and Fig. 4.4. We can

 36

easily find that the data hazard and the dummy block make the decoding procedure longer. It

takes 128 cycles to decode a sub-codeword and the utilization of the hardware is 50% only.

The decoder is idle for 12 cycles and some modules are idle while other modules are

calculating. Therefore, the working duration of the forward and the backward recursion

modules and the LLR module is 64 cycles.

 Fig. 4.3 Decoding schedule of a sub-codeword

Interleaved
Sub-blockIdle 16 cycles

Total 128 cycles

… …

 Fig. 4.4 Decoding schedule of previous design

4.2 Decoding Schedule
The data hazard and the dummy sub-block cause a 50% degradation of the throughput. In

this section, we will propose a method to solve this problem and make the 100% utilization of

the hardware.

4.2.1 Decoding with two codewords

Due to the data dependency of pre-decoding round and post-decoding round connected

by the interleaver, a better way to break this relation is to decode two codewords alternately.

 37

The proposed method achieves 100% hardware utilization without any extra logic cost. The

only cost of this method is that we have to store two codewords in the memories. The detail

procedure in Fig.4.5 is described as follows:

 Decode from the first sub-block and get the initial value of forward recursion of the

first sub-block from the previous iteration. If it is the first iteration, then set an all

zero initial value for beginning.

 Store the initial value needed by the next iteration, so it is not necessary to calculate

the dummy sub-block.

 First, decode the pre-permutation sequences of sub-codeword A.

 Second, decode the pre-permutation sequences of sub-codeword B.

 Third, decode the post-permutation sequences of sub-codeword A.

 Decode the post-permutation sequences of sub-codeword B.

 Then decode alternately until the last iteration.

 Fig. 4.5 Decoding schedule with two codewords

There are two more steps should be noticed about the dummy block:

 While decoding each sub-codeword, decode from the first sub-block and get the

initial value of forward recursion of the first sub-block from the previous iteration.

If it is the first iteration, then set an all zero initial value for beginning.

 38

 Store the initial value needed by the next iteration, so it is not necessary to calculate

the dummy sub-block. The dot line in Fig. 4.5 shows where we store the initial

value and where we read the initial.

The fundamental idea of our proposed method is to keep the hardware calculating and

avoid to calculate the same sub-block twice. Notice that at any timing frame all hardware

modules are working, which means the hardware utilization reaches 100%. Applying the

method, we can double the throughput by reducing the decoding cycles from 128 to 64 for

each sub-codeword, but the extra storage of initial values is about 6144 bits in the case of our

proposed design in chapter 3.

4.3 MAP Decoders

4.3.1 The structure of each processing element.

It is mentioned in section 3.4 that the number of the processing elements and the

throughput of each element are two main factors of the total throughput. In addition to adding

the number of processing elements, the throughput of each element should increase for a high

throughput turbo decoder design. The method we used in the new proposed design is a higher

radix Trellis structure.

For any Trellis-based decoder, two important factors should be considered carefully are

the number of states and the branch number of each state, which affect the implementation

complexity numerously. While applying a high radix design, another dimension should also

be taken into account is the stage number of Trellis. In Fig. 4.6, both radix 16 and radix 4x4

Trellis diagram merge 4 stage Trellis diagram into one. The radix 16 Trellis has 16 branches

for each state. The radix 4x4 Trellis has 4 branches for each state, but it is a two stage

structure. However, the total branch number of the radix 4x4 is half of the radix 16. Therefore,

the hardware of radix 16 is twice as that of radix 4x4.

 39

16

Radix 16 Radix 4x4

Fig. 4.6 Radix 16 and radix 4x4 Trellis diagram

Fig. 4.7 shows the hardware cost of two structures. We can find that the number of

comparators and multiplexers of the radix 4x4 structure is twice as that of the radix 16

structure, but the complexity of a 4 to 1 comparator is much smaller than that of a 16 to 1

comparator. Besides, the branch number of the radix 4x4 is less than that of the radix 16. The

new proposed design uses the radix 4x4 structure in each processing element.

Fig. 4.7 Circuit diagrams of two structures

 40

4.3.2 The memory units

Considering the radix 4x4 structure and the storage of two codewords, the memory units

of the turbo decoder should be redesigned. First, the memory should be divided into four

banks and each bank consists of five sub-banks. The division of the memory units is due to

the bandwidth and contention. We have to access four input symbols for the processing

element at each cycle and each symbol consists of information bits, parity bits and the

extrinsic part. Fig. 4.8 shows one memory unit in detail. Notice that each bank in the memory

unit is the same as that mentioned in chapter 3, but the number of banks is double and the

bandwidth is also double. Furthermore, the total storage is double because of the additional

codeword B.

Fig. 4.8 The memory unit

4.3.3 Retime or not retime

In chapter 3, we have introduced a retiming technique to shorten the critical path for a

two stage ACS structure. The retimed structure has more hardware costs than the no retiming

version. The critical path comparison between these two versions is shown in Fig. 4.9, and the

target technology of our implementation is the UMC 90 nanometers process. Obviously, the

 41

retimed version has higher clock rate. But there are other important issues that should be

considered in advance technology, such as wire delay. In advance technology, the wire delay

dominates and the crosstalk phenomenon will be more critical. A popular solution for a large

design is to reduce the routing complexity and the wire length. Table 4.1 shows the

comparison between two versions. The area and the routing complexity of the retimed vesion

are bigger than the no retiming one. Thus, the critical path of retimed version will grow faster

than no retiming one due to the routing congestion problem. Therefore, our proposed 1Gbps

turbo decoder chooses the no retiming radix 4x4 ACS structure for the processing elements.

With the decoding schedule introduced in section 4.2, the utilization of all module in each

processing element achieves 100%. The throughput of elements is 1Gbps each.

Fig. 4.9 A critical path comparison

Table 4.1 Comparison between two versions

90 nm Technology Radix 4x4(Retiming) Radix 4x4

Throughput 1600Mbps 1000Mbps

Area High Medium

Routing Complexity High Medium

Frequency 400MHz 250MHz

Critical Path 2.5ns(pre-layout) 4ns(pre-layout)

 42

4.4 Interleaver Design
In the proposed 1Gbps turbo decoder, we reuse the IBP interleaver and remain the

parameters. However, the number of processing elements reduces to 16 and the throughput of

each processing element reaches to 1Gbps. The sub-codeword size remains 128. Fig. 4.10

shows the differences between the decoder described in chapter 3 and the proposed 1Gbps

turbo decoder. Fig. 4.10(a) is the original architecture in chapter3, and Fig.4.10(b) reduces the

decoder number by half. Thus we can combine the memory unit 1 and 2 with 3 and 4, shown

in Fig.4.10(c). The original S1 switch can be fixed to zero and the control signal S1 will be

passed to the address generators of memory units. The combination of memory units will

make the total area of memory smaller and easier for placement. The flexibility of the IBP

interleaver makes the variation of design possible without any hardware cost and any extra

control overhead.

Fig. 4.10 The architecture transformation

 43

4.4.1 Multiple block lengths support

Since the IBP interleaver is flexible, the proposed 1Gbps turbo decoder can be

implemented to fit multiple block lengths. In Fig. 4.11(b), we fix the switch S1 to zero so the

decoder is working with only half number of processing elements and memory units. This

means the block length of 2’s power from 128 to 4096 can be supported in our design. While

decoding different length codewords, the only difference in control turn the some switches of

the butterfly network to zero.

MAP
3

MAP
1

MAP
2

MAP
4

MEM
1

MEM
2

MEM
3

MEM
4

0 S2

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

MAP
3

MAP
1

MAP
2

MAP
4

MEM
1

MEM
2

MEM
3

MEM
4

S1 S2

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

(a) (b)

Fig. 4.11 Multiple block lengths support

4.5 Chip Implementation
The proposed 1Gbps turbo code reduces the code rate to 1/3 without any puncturing

compared with our previous design, and the implementation applies maximum log-MAP

algorithm with a scaling factor 0.75. The detail specifications are listed in Table. 4.1, and the

post-layout view is shown in Fig. 4.13 with pin counts 208. The performance of this design is

the same as that described in chapter 3. The power management of this design is more careful

due to the failure of the delay lock loop (DLL) circuit. Fig. 4.12 shows that we have applied

the power isolation technique on our design for the DLL module. The power supply of DLL is

isolated from the other circuits, thus the power noise of whole chip will not affect the DLL.

Furthermore, the internal clock would be more stable and the uncertainty of internal clock tree

 44

will be smaller because the isolation provides a stable working environment for DLL.

Fig. 4.12 Power isolation of DLL

 Fig. 4.13 Chip layout view

 45

Table 4.2 Summary of the proposed 1Gbps turbo decoder

Algorithm Max-Log MAP

ACS unit Radix 4x4

Code polynomial
3

2 3

11
1

D D
D D

⎡ ⎤+ +
⎢ ⎥+ +⎣ ⎦

Interleaver IBP interleaver (p, s)=(15,23)

Sliding Window 32

Code Rate 1/3

Block length 4096(128 x 32)

Quantization 6 bits (3.3)

iteration 8

Scaling Factor 0.75

Note Tail-Biting

Technology 90nm 1P9M

Clock rate 250MHz *

Throughput 1Gbps *

Gate count 2.66M

Core Area 9.3 mm2

power 1158mW *

nJ/bit‧iteration 0.144 *

 * post-layout simulation

 46

4.6 Summary
The proposed 1Gbps turbo decoder is the first turbo decoder chip which achieves 1Gbps

throughput. We modified the utilization of processing elements and made the decoding

schedule more efficient. The improvement of throughput is marvelously 50%. The

implementation of interleaver is more flexible than the previous design and the proposed

1Gbps turbo decoder can support multiple code lengths. The energy efficiency of this design

improved from 0.22 to 0.144 nJ per bit per iteration compared with our previous design,

which is accredited by the radix 4x4 ACS structure and the advanced process. The proposed

design is the fastest and most efficient turbo decoder in the state of the art.

 47

Chapter 5
Highly Parallel Decoding of Turbo
code

In parallel decoding of turbo code, there are three issues should be particularly

considered:

 The throughput of each decoder (processing element)

 The utilization of each decoder

 Parallelism (number of decoders)

In previous chapters, we have proposed some methods to improve the throughput of each

decoder and made the decoding more efficient. In this chapter, we will put emphasis on the

parallelism. In chapter 3 and chapter 4, the way we used to break the forward and backward

recursions for parallelism is to partition a whole codeword into many sub-codewords. But the

length of sub-codeword is limited by the distance property of short block length. The distance

property of a component code with constraint length 4 is getting worse when the length is

below 100. That’s why we choose a sub-codeword length 128. Fig. 5.1 shows the architecture

described in chapter 4, and the decoder with 16 processing elements achieves 1Gbps. The

sub-codeword length is fixed to 128. If we would like to apply more processing elements in

the design, we have to find some new approaches for parallelism. The problem returns to

“How to decode one sub-codeword with multiple decoders?” In the following section, we

will discuss the approach mentioned in [17] and [18] for parallel decoding and show the

innovation of our new architectures.

 48

Fig. 5.1 The architecture of 1Gbps turbo decoder

5.1 A Sectionalized Method for Parallel Decoding
In Trellis-based turbo decoder, the forward and backward recursions connect the relation

between symbols. The path metric values inherited from the previous Trellis stage make the

parallel decoding of a codeword difficult. Even if applying the sliding window approach in

fig.5.2, we still suffer from the connecting relation of the forward recursion.

Fig. 5.2 Decoding procedure of sliding window approach

5.1.1 A sectionalized method

The solution of the inheritance of the initial value mentioned in [17] and [18] is to store

the needed initial values in this iteration and to apply them in the next iteration. Fig. 5.3

shows the detail procedure of the sectionalized method. In the first iteration, the initial values

needed in the next iteration are not available, thus the initial values will be set to zero. After

the first iteration, the needed values will be calculated and stored in the memories. Therefore,

the initial values will be accessed from the second iteration to the last one. Fig. 5.4 shows

different sizes of sectionalized Trellis. The codeword of total block length N can be

 49

sectionalized into different ‘fixed-length’ parts. 4T in Fig. 5.4 means the sectionalized part

consists of four Trellis stage, as well as 4 symbols. The 8T and 16T cases are the same as 4T

and so on. With the some sub-codeword length, the smaller section we partition, the higher

parallelism we get. Note that if the N is getting bigger, the more storage we pay for. The

storage of initial values consists of α and β, and the α and β initial values of different

decoding round should be stored separately. For example, with a block length 64, state

number 8, quantization 6 bits, and sectionalized to 4T case, total bits of the initial storage is

768.

Fig. 5.3 A sectionalized method

Fig. 5.4 Different sizes of the sectionalized method

 50

5.1.2 Parallel decoding with the sectionalized method

When the recursion relation breaks by the initial storage method, it makes the parallel

decoding of a codeword simple. Fig. 5.5 shows the comparison between the sliding window

approach and the sectionalized method. The sliding window approach calculates the dummy β

for the initial of the real β calculation. Besides, due to the forward recursion, this approach

can’t apply multiple decoders to decode concurrently. On the other hand, the sectionalized

method decodes concurrently by accessing initial values for α and β initial, and saves the

calculation time and hardware of the dummy β in the sliding window approach. The

comparison of the trade-off will be discussed in the following sections.

Fig. 5.5 Comparison of different structures

5.2 Proposed Architectures
The sectionalized method partitions a codeword into several sub-blocks and makes

higher order parallelism possible. This method can be applied on our design to partition the

sub-codewords into some fix-length sub-blocks. The combination of these two methods

makes the higher order parallelism possible and can be accounted a ‘two-dimension’ parallel

decoding. The first dimension of the parallelism is called ‘inter-codeword’ parallelism, which

is used and introduced in chapter 3 and 4. The processing elements decode different

sub-codewords at the same time. The second dimension of the parallelism is called

 51

‘intra-codeword’ parallelism, which makes the processing elements decode the same

sub-codeword concurrently. The combined method makes all kind of parallel structures

possible under the contention-free constraint for memory-based design.

5.2.1 A two-dimension parallel architecture

Fig. 5.6 shows a two-dimension parallel method, which can be considered as a fully

parallel type decoder. The architecture can be applied on a highly parallel situation. The

contention-free constraint for the interleaver design in the case will be much more

complicated. The two-dimension contention constraint should be considered and the

interleaver which meets the constraint is few and hard to find. Thinking of the IBP interleaver

mentioned in chapter 3, it consists of two-stage permutations and it is contention-free in both

two dimensions. The IBP interleaver can be applied in the architecture.

Fig. 5.6 A two-dimension parallel method

5.2.2 A intra-codeword parallel architecture

A downgrade architecture called ‘intra-codeword parallel architecture’ is the version only

in one sub-codeword dimension. In this architecture, we only have to consider the contention

 52

problem in one sub-codeword. It makes things easier. This architecture decode one

sub-codeword each time with multiple processing elements. The sub-codewords will take

turns to the decoder and go back to the memories.

Fig. 5.7 A intra-codeword parallel architecture

5.2.3 Data hazards

The data hazards due to the iterative decoding mentioned in section 4.1 idle the decoding

procedure and degrade the utilization. The intra-codeword parallel architecture provides

simple and efficient way to remove data hazards. Fig. 5.8 shows that the last few

sub-codewords of the pre-decoding and post-decoding rounds in every iteration cause data

hazards. The way to solve it is to arrange a proper decoding order of sub-codewords. In Fig.

5.9, the first sub-codeword of the post-decoding round can be decoded at the time we

decoding the last few sub-codewords, if we decode the first two sub-codeword of the

pre-decoding round first. Because the extrinsic values needed by the first sub-codeword of the

post-decoding round has been calculated and stored in the memories, we can decode it

without and data hazards. Therefore, a proper arrangement of decoding order would avoid the

data hazards and without any hardware overhead. However, the number of the sub-codewords

must be large enough for arrangement if the decoding latency is long.

 53

Fig. 5.8 Data hazards

Fig. 5.9 A proper decoding order for data hazards

5.3 Performance Analysis
The sectionalized method partition a codeword by storing initial values. From Fig. 5.10

to Fig.5.14, they show the performance of different section sizes. Obviously, the 64T and 32T

almost have no performance loss with the same iteration. The loss for each case is less than

0.01dB. However, from 16T to 4T, the performance is getting worse. The performance of

BER convergence of the smaller section is worse than the bigger one.

 54

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R
3Gpp SW=32 8iter
3Gpp SW=32 12iter
64T 8iter
64T 10iter
64T 12iter

Fig. 5.10 64T performance

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R

3Gpp SW=32 8iter
3Gpp SW=32 12iter
32T 8iter
32T 10iter
32T 12iter
32T 20iter

Fig. 5.11 32T performance

 55

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R
3Gpp SW=32 8iter
3Gpp SW=32 12iter
16T 8iter
16T 12iter
16T 16iter

Fig. 5.12 16T performance

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R

3Gpp SW=32 8iter
3Gpp SW=32 12iter
8T 8iter
8T 12iter
8T 16iter
8T 20iter

Fig. 5.13 8T performance

 56

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R
3Gpp SW=32 8iter
3Gpp SW=32 12iter
4T 8iter
4T 12iter
4T 16iter
4T 20iter
4T 24iter

Fig. 5.14 4T performance

5.4 Proposed Method to Improve Performance
Since the performance is getting worse and diverge with small section size, we propose a

method to improve the performance. First, we would like to figure out how the performance

degrades and then we can find approaches to improve it. The degradation of performance may

be formed by two factors: the fist one is the initial zero in the first iteration. The second is the

initial values from the previous iteration. The proposed method extend the path metric

recursion to more Trellis stage, Which means we would like to accumulate more Trellis stage

in this iteration. Fig. 5.15(a) shows that if we access the initial values from the earlier sections

and accumulate more correct path metric in this iteration, the performance increase as long as

we calculating a path metric long enough. The longer we accumulate, the better the

performance is. Fig. 5.16 and Fig. 5.17 show the case of 8T extending to 16T and 4T

extending to 8T, 12T, and 16T. The effect of the initial zero can also be found in Fig. 5.16 and

Fig. 5.17. It is unapparent to claim that the initial zero is the major factor, but it is obvious that

 57

extension improve the performance greatly.

Fig. 5.15 A proposed method to improve performance

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R

3Gpp SW=32 8iter
3Gpp SW=32 12iter
8T extend 16T 8iter
given initial at first iteration
Original 8T 8iter

Fig. 5.16 8T extend to 16T

 58

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-4

10-3

10-2

10-1

Eb/No(dB)

B
E

R

3Gpp SW=32 8iter
3Gpp SW=32 12iter
4T extend 16T 8iter
4T extend 12T 8iter
4T extend 8T 8iter
given initial at first iteration
original 4T 8iter

Fig. 5.17 4T extend to 8T, 12T, and 16T

I

5.5 Decoding Schedule
As we mentioned in section 5.1, with a fixed block length, the smaller we partition, the

more decoders we have. In this section, we would like to apply more decoders for a higher

throughput. Fig. 5.18(a) shows the notation of decoding schedule. The circles and the squares

denote the initial storage of α and β. The decoding schedule in Fig.5.18(b), (c) and (d) are the

original 4T, 8T, and 16T cases individually. If we can make a proper decoding schedule, the

number of decoders can be doubled for higher throughput. Comparing with Fig. 5.18(c) and

Fig. 5.19(b), the number of decoders is doubled without any overhead, and the decoding

latency is shortened. Moreover, the number of decoders in Fig. 5.19(b) is equal to the 4T case,

which means that we achieve the 4T case throughput with 8T case overhead. The decoder

number of 4T case can not be doubled because the design is based on radix 4x4 design. Fig.

5.18(a) shows that one step of vertical axe means reading 4 symbols per cycle. The Fig. 5.20

 59

shows the decoding schedule of the extension verision.

Fig. 5.18 The original decoding schedule

Fig. 5.19 example of the new 8T and 16T decoding schedule

 60

Fig. 5.20 Decoding schedule of extension

5.6 Hardware Comparison
Table 5.1 and Table 5.2 list the comparison between original design and the proposed

two architectures. It is obvious that the storage different will be affected by three parameters,

N, n, n0, and M. the most important parameters is M, because the greater M makes the storage

reduction larger. In other word, if we apply more processing elements in our design, the total

storage compared with the original SW case may be reduced. If the case is a medium M, there

will have some storage overhead. However, the reduction of ACS will save the area and gate

count apparently.

 61

Table 5.1 Hardware comparison of two-dimension parallel architecture

Table 5.2 Hardware comparison of intra-codeword parallel architecture

 62

5.7 Summary
In this chapter, we modified and combined the concept in [18] with our original design to

innovate a new two-dimension parallel structure. The performances with different section

sizes have been analyzed for different applications. A method to improve the performance

convergence is proposed with reasonable hardware cost. Two parallel architectures are

proposed for different design constraints and modified hazard-free method is discussed in

section 5.2.3. a double throughput scheduling method is proposed for highly parallelism.

Meanwhile, the parametric hardware comparisons are list in Table 5.1 and Table 5.2 with

example and they can be quick reviewed before design. This chapter facilitates the ultra high

speed turbo decoder design and makes the parallel decoding complete.

 63

Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed two turbo decoders with the parallel architecture which

enables multiple processing elements to decode one codeword concurrently. The proposed

IBP interleaver connects all processing elements with a easily implemented structure and

avoids the limit of the forward and backward recursions.

In the first design, we also introduce a high speed methodology for high radix decoder

structure with a matching contention-free IBP interleaver. The combination of two stages

ACS and the retiming technique efficiently speed up the decoding throughput with acceptable

hardware cost. The energy efficiency of proposed turbo decoder is much smaller than that of

the state of the art.

In the second 1Gbps design, we modified the utilization of processing elements and

made the decoding schedule more efficient with doubled throughput. The implementation of

interleaver is more flexible than the previous design and the proposed 1Gbps turbo decoder

can support multiple code lengths. The proposed 1Gbps turbo decoder is the most power

efficient and the fastest turbo decoder chip which achieves 1Gbps throughput in the state of

the art.

In chapter 5, we proposed a combined method to make the parallelism work in two

dimensions. The performance and the hardware cost with different condition have been

analyzed and a new extension method and a new scheduling method are proposed to improve

the performance and the throughput.

 64

6.2 Future Work
Up to now, the early termination scheme is regarded as the most efficient way to reduce

the power consumption in turbo decoders. It uses several characteristics in turbo decoding to

judge if decoding sequence is nearly correct before maximum iteration number is achieved.

Once iterative decoding can be stopped earlier, then the power can be saved. In [37], an

iteration stopping criterion has been modified based on the cross entropy between the a

posteriori probabilities of two SISO decoders for each iteration. Some other simplified

criteria was proposed in [38] and [39]. Most of these criteria make the decoder idle for saving

power. The idea of utilization mentioned in chapter 4 will be useful for thinking of a new

stopping criterion, which should be more precisely called “skipping criterion.” If we set a

“skipping criterion” for all sub-codewords in our proposed intra-codeword parallel

architecture, the decoder will skip decoding certain sub-codewords which is meet the

“skipping criterion.” Therefore, the decoding procedure would be more efficient and the

throughput will increase as the channel condition going better.

 65

Bibliography

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error- correcting

coding and decoding: Turbo-codes (1),” in Proc. IEEE Int. Conf. on Commun., Geneva,
Switzerland, May 1993, pp. 1064–1070.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol,” IEEE Trans. Inform. Theory, no. IT-20, pp. 284–287, Mar. 1974.

[3] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-445, Mar.
1996.

[4] J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-decision Outputs and its
Applications,” in IEEE GLOBE-COM, Dallas, TX, pp. 47.1.1-47.1.7, Nov. 1989.

[5] G. Solomon and H. C. A. van Tilborg, “A connection between block and convolutional
codes,” SIAM J. Appl. Math., vol. 37, pp. 358–369, Oct. 1979.

[6] H. H. Ma and J. K. Wolf, “On tail biting convolutional codes,” IEEE Trans. Commun.,
vol. COM-34, pp. 104–111, Feb. 1986.

[7] C. Weiss, C. Bettstetter, S. Riedel, and D. J. Costello, “Turbo decoding with tailbiting
trellises,” in Proc. URSI Int. Symp. Signals, Systems, Electronics, 1998, pp. 343–348.

[8] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding of parallel
concatenated tail-biting codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 366-386, Jan.
2001.

[9] J. Sun and O. Y. Takeshita, ”Interleavers for Turbo codes using permutation polynomials
over integer rings,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 101-119, Jan. 2005.

 66

[10] P. Robertson, E.Villebrun and P. Hoeher, “A Comparison of Optimal and Sub-optimal
MAP Decoding Algorithms operating in the Log Domain,” Proc. ICC’95, Seattle, June
1995.

[11] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4
logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in ISSCC Dig. Tech. Papers,
2003, pp. 151–484.

[12] B. Bougard, A. Giulietti, V. Derudder, J. Willem, S. Dupont, L. Hollevoet, F. Catthoor,
L. V. der Perre, H. D. Man, and R. Lauwereins, “A scalable 8.7nj/bit 75.6Mb/s parallel
concatenated convolutional (turbo-)codec,” in ISSCC Dig. Tech. Papers, 2003, pp.
152–484.

[13] Y. Zheng, “Network for permutation or de-permutation utilized by channel coding
algorithm,” U.S. Patent Pending.

[14] C. H. Tang, C. C. Wong, C. L. Chen, C. C. Lin, and H. C. Chang, “A 952Mb/s Max-Log
MAP decoder chip using radix-4×4 ACS architecture,” in IEEE A-SSCC, 2006, pp.
79–82.

[15] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI architectures for
metric normalization in the Viterbi algorithm,” in Int. Conf. Communications, vol. 4,
Atlanta, CA, Apr. 1990, pp. 1723–1728.

[16] P. Urard, L. Paumier, M. Viollet, E. Lantreibecq, H. Michel, S. Muroor, and B. Gupta,
“A generic 350Mb/s turbo-codec based on a 16-states SISO decoder,” in ISSCC Dig.
Tech. Papers, 2004, pp. 424–536.

[17] Z. He, P. Fortier, and S. Roy, “Highly parallel decoding architectures for convolutional
turbo codes,” IEEE Trans. VLSI Syst., vol. 14, no. 10, Oct. 2006.

[18] S. Yoon, and Y. Bar-Ness, “A Parallel MAP Algorithm for Low Latency Turbo
Decoding,” IEEE Commun. Lett., vol. 6, no. 7, pp.288-290, Jul. 2002.

[19] J. H. Andersen, “‘Turbo’ Coding for Deep Space Application,” in IEEE International
Symposium on Inform. Theory, 17-22, pp.36, Sep. 1995.

[20] D.Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, “Performance Analysis of Turbo
Codes,” in IEEE Military Communication conf., vol. 1, 5-8, pp. 91-96, Nov. 1995.

 67

[21] J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-decision Outputs and its
Applications,” in IEEE GLOBE-COM, Dallas, TX, pp. 47.1.1-47.1.7, Nov. 1989.

[22] J. H. Andersen, “‘Turbo’ Coding for Deep Space Application,” in IEEE International
Symposium on Inform. Theory, 17-22, pp.36, Sep. 1995.

[23] J. H. Andersen, “Turbo codes extended with outer BCH code,” in Electronics Letters,
vol. 32, no. 22, 24, pp.2059-2060, Oct. 1996.

[24] J. A. Erfanian, S. Pasupathy, and G.Gulak, “Reduced Complexity Symbol Detectors with
Parallel Structures for ISI Channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4,
pp.1261-1271, Feb./Mar./Apr. 1994.

[25] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in Turbo
Decoding,” IEEE Trans. Commun., vol. 46, pp.421-423, Apr. 1998.

[26] A. Worm, P. Hoeher, N. Wehn, “Turbo-Decoding Without SNR Estimation,” IEEE
Commun. Letters, vol. 4, no. 6, pp.193-195, June 2000.

[27] S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,”
University of South Australia, PhD Dissertation, Aug. 1995.

[28] S. A. Barbulescu, “On Sliding Window and Interleaver Design,” Electronics Letters, vol.
37, no. 21, pp.1299-1300, Oct. 2001.

[29] A. J. Viterbi, “Error bounds for convolutional codes and asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp.260-269, Mar.
1973.

[30] Y. Wu and B. D. Woerner, “Internal data width in SISO decoding module with modular
renormalization,” in IEEE Vehic. Tech. Conf., vol. 1, pp. 675-679, May 2000.

[31] Y. Wu, B. D. Woerner, and T. K. Blankenship, “Data Width Requirements in SISO
Decoding With Module Normalization,” in IEEE Trans. On Commun., vol. 49, no. 11,
pp. 1861-1868, Nov. 2001.

[32] T. K. Blankenship and B. Classon, “Fixed-Point Performance of Low-Complexity Turbo
Decoding Algorithms,” in IEEE Vehic. Tech. Conf., vol. 2 pp. 1483-1487, May 2001.

 68

[33] C. B. Shung, P. H. Siegel, G. Ungerboeck and H. K. Thapar, “VLSI architectures for
metric normalization in the Viterbi algorithm,” IEEE International Conference on
Communications, vol. 4, pp.1723-1728, Apr. 1990.

[34] A. P. Hekstra, “An Alternative to Metric Rescaling in Viterbi Decoders,” IEEE Trans.
Commun., vol. 37, no. 11, pp. 1220-1222, Nov. 1989.

[35] G. Feygin and P. G. Gulak, “Architectural Tradeoffs for Survivor Sequence Memory
Management in Viterbi Decoder,” IEEE Trans. On Commun., vol. 41, no. 3, pp. 425-429,
Mar. 1993.

[36] M. A. Bickerstaff, D. Garrate, T. Prokop, C. Thomas, B. Widdup, G. Zhou, L. M. Davis,
G. Woodward, C. Nicol, R. H. Yan, “ A Unified Turbo/Viterbi Channel Decoder for
3GPP Mobile Wireless in 0.18-μm CMOS”, in IEEE Journal of Solid-State Circuits,
vol.37, no.11, Nov. 2002

[37] M. Moher, “Decoding via Cross Entropy Minimization,” in Proc. IEEE Globecom Conf.,
Houston, TX, Dec. 1993, pp.809-813.

[38] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two Simple Stopping Criteria for Turbo
Decoding,” IEEE Trans. On Commun., vol. 47, no. 8, pp.1117-1120, Aug. 1999.

[39] Y Wu, D. Woerner, and J. Ebel, "A simple stopping criteria for turbo decoding," IEEE
Commun. Letters, vol. 4, pp. 258-260, Aug. 2000.

 69

