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摘要 

 

自九零年代初渦輪碼被發現以來，由於出色的錯誤更正能力一直以來廣泛的引起研

究者的注意，在近期寬頻無線通訊以及第四代行動通訊等協定中，對於高速渦輪碼的資

料流量的要求，也分別訂定了每秒 70Mb 以及每秒 20Mb 到 100Mb 的高速傳輸量，因此，

對於高速渦輪碼的需求也與日俱增。而在渦輪碼的解碼中，由於尋找最大事後機率的解

碼方式中，含有遞迴式的計算方式，也因此造成了在渦輪碼的解碼中，產生了很可觀的

時間延遲。在這篇論文當中，針對高速的渦輪碼解碼，我們提出了一個完整的解決方案，

其中，包含一個資料讀寫平順無誤的打散器設計，一個多級高階的渦輪解碼器，以及提

出ㄧ種能夠運用在兩個維度的平行解碼器架構，由於這些因素，使得我們在本論文中所

提出的設計，與現今科技之水準比較下，達到最高的能源效率以及每秒的資料解碼量，

達到最高的水準。 
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 ABSTRACT 
 

 

Turbo codes have received a lot of interest since 90’s because of their excellent 

performance. To apply turbo codes in high-speed digital communications, such as in 

broadband wireless access based on the IEEE 802.16 standard supporting data rates of up to 

70 Mb/s, and in fourth generation cellular systems, which are expected to provide a data rate 

from 20 to 100 Mb/s for high mobility, high throughput of turbo codes is a critical issue. The 

recursive computations in the MAP-based decoding of turbo codes usually introduce a 

significant amount of decoding delay. In this thesis, we present a total solution for a high 

throughput application, including a contention-free interleaver design, a high radix turbo 

decoder design, and the two-dimension parallel decoding architecture. The chip proposed in 

this thesis is the most power efficient and the fastest design in the state of the art. 
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Chapter 1  
Introduction 

 

1.1 Motivation 
A communication system conveys a information source to a destination through a 

channel. Fig. 1.1 shows a fundamental block diagram of traditional digital communication 

system. Generally, the system can be divided into transmitter and receiver via a channel. The 

main task of transmitter, including source encoder, channel encoder and modulator, is to 

transform the information into a form that can withstand the effect of noise over the 

transmission media. And the receiver will reverse the signal transformation by demodulator, 

channel decoder and source decoder. Since the channel impairments such as noise, 

interference and distortion may cause the error in the received signal, the channel encoder is 

incorporated in the system to add certain structural redundancy to the source codeword to 

minimize the transmission errors. Although these redundant bits may lower data transmission 

rate, the channel coding eliminate the effects of noise disturbances and thus improve the 

performance, compared with an uncoded system.  

With high coding gain provided by channel codes, the high performance channel codes 

are widely used in some circumstances, such as low power transmission, high order 

modulation, and complex channel conditions, in the recent decades. In channel codes, there 

are three codes that provide marvelously high performance: block turbo code, convolutional 

turbo code, briefly called turbo code, and low density parity check code. The block turbo code 

is hard to implement due to the irregular Trellis structure. Therefore, the candidates for the 
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high performance criterion remain turbo code and LDPC code.  

 

Fig. 1.1 The block diagram of digital communication system 

The comparison of turbo code and LDPC are listed in Table 1.1. From the point of view 

with block length bigger than 10000, the performance of LDPC would be better than turbo 

code due to the property of component codes. With block length smaller than 10000, the 

performance of turbo code would be better due to the girth problem of LDPC. The Parallelism 

of LDPC is easier for implementation than turbo code. Most important of all, the routing 

problem of LDPC is getting serious as the throughput demand growing. Meanwhile, the 

advanced process for high speed implementation aggravates the routing congestion problem 

of LDPC. Apparently, for a high speed application, the turbo codes would be more suitable 

and area-efficient if we can increase the throughput of the turbo codes. 

Table 1.1 Comparison of Turbo code and LDPC 

 LDPC Code Turbo Code 

>10000 Better Good Performance 

(Block length) <10000 Good Better 

Throughput (Parallelism) Better Medium 

Efficiency Medium Medium 

Routing Difficult Medium 
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In this thesis, our work is motivated to design a high performance and high-throughput 

turbo decoder. We attempt to achieve the target from two aspects: First one is to speed up the 

decoding processing elements used in the whole turbo decoder by high radix structures and 

perfect utilization of hardware. Second, we employ a well-designed interleaver fit for parallel 

decoding architectures to reduce the latency caused by the interleaver and propose a practical 

hardware architecture for the whole turbo decoder. Finally, we will propose a new point of 

view of parallel decoding for MAP-based turbo decoder with the modest hardware cost. 

 

1.2 Thesis Organization 
This thesis consists of 7 chapters. In chapter 2, we’ll focus on interpreting turbo coding 

and decoding algorithm and its relative techniques. Chapter 3 presents a total solution of a 

high speed turbo decoder with a parallel architecture, including the design of a contention-free 

interleaver, a high radix turbo decoder, and some techniques applied on our design.   

Chapter 4 explains how we improve the utilization of the previous chip. A Modified 

interleaver control for multiple block lengths support will be introduced. In chapter 5, we 

present the two architectures. A two-dimension parallel architecture will be proposed. 

Meanwhile, a simplified intra-codeword parallel architecture and the relative issues will be 

discussed. Finally, conclusion and future work are made in chapter 6. 
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Chapter 2  
Turbo Code 

 
The parallel concatenated convolutional code (PCCC), named turbo code, was first 

proposed by C. Berrou, A. Glavieux, and P. Thitimajshima in 1993[1]. It has been proved to 

have a performance close to Shannon limit with simple constituent codes concatenated by an 

interleaver. This new technique is now adopted in 3GPP, 3GPP2 and WiMAX standards due 

to its excellent error correction ability. In this chapter, we’ll describe the principle of both 

turbo encoding and turbo decoding methods. The sliding-window approach and the tail-biting 

coding structure will also be interpreted here. 

 

2.1 Principle of Turbo code 

2.1.1 Turbo Encoding 

The turbo encoder is composed of two recursive systematic convolutional (RSC) 

encoders, which are connected in parallel but separated by a turbo interleaver. The two RSC 

encoders are also called constituent codes of the turbo code. The block diagram of the turbo 

encoder is illustrated in Fig. 2.1. Note that the same input data are encoded by each RSC 

encoder but in different order. In 3GPP2 standard, each input bit is encoded as one systematic 

bit and two parity-check bits for each RSC encoder. Thus, the code rate of each component 

encoder is 1/3. In order to increase the code rate of turbo code, the systematic bits of the 

second RSC encoder are not transmitted. Therefore, the output encoded sequence should be 

{X, Y0, Y1, Y0’, Y1’}, and the overall code rate is 1/5. 
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Fig. 2.1 Turbo encoder for 3GPP2 standard 

 

After encoding all input messages, we have to generate several tail bits to set both 

component encoders back to zero state. However, it’s impossible for a RSC encoder to return 

zero state by inserting dummy zeros into the encoder directly. Thus, a simple solution is 

provided in Fig. 2.2. While encoding input messages, the switch is set to position “A”. Once 

messages of whole block are encoded, the position of switch is changed to “B” for three 

additional cycles. This will force all registers to zeros and thus back to zero state. 

 

Systematic bit

Parity-check bit

Input
message

A

B

 

Fig. 2.2 Trellis Termination 
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2.1.2 Turbo Interleaver 

The interleaver plays a very important role in turbo encoder. First of all, a proper coding 

gain can be achieved with small memory RSC encoders since the interleaver scramble a long 

block message. Besides, the interleaver de-correlates the input of two RSC encoders so that 

iterative decoding algorithm can be applied between two component decoders. Theoretically, 

the block size of interleaver is one of the major factors to lower the upper bound on bit error 

probability of the turbo code system. The performance upper-bound of turbo code 

corresponding to a uniform random interleaver has been evaluated in [9]. The result shows 

that the bit-error-probability upper bound of turbo code is approximately proportional to 1/N, 

where N is the block size of turbo interleaver. The factor “1/N” is also called the interleaver 

gain. 

 

2.1.3 Turbo Decoding 

A general idea for iterative turbo decoding is illustrated in Fig. 2.3, where rs is the 

received systematic information, rp1 is the received parity information generated by the first 

RSC encoder, and rp2 is the received parity information generated by the second RSC encoder. 

The iterative turbo decoding consists of two constituent decoders, which are soft-in/soft-out 

(SISO) decoders concatenated serially via one interleaver and one de-interleaver. An 

additional interleaver is used to interleave the input systematic information and then provides 

the interleaved data to the second SISO decoder. Two component decoders can be 

implemented based on either soft-output Viterbi algorithm (SOVA) [21] or maximum a 

posteriori probability (MAP) algorithm [2], which will be discussed particularly in the next 

section. During iterative decoding process, each constituent decoder delivers the extrinsic 

information Lex(u) which is taken as a priori information for the other constituent decoder. 

That is 1 2( ) ( )in k ex kL u L u= �  and 2 1( ) ( )in k ex kL u L u= � . As the number of iterations increases, 
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better coding gain is expected. However, the correlation between two SISO decoders is also 

raised up. Therefore, there is no significant performance improvement if the number of 

iterations reaches a threshold. 

SISO
Decoder1

SISO
Decoder2

Interleaver

De-
Interleaver

Interleaver

Lex1(u)

L1(u)rs

rp1

rp2

Lex1(u)
~ ^

L2(u)̂

Lex2(u)
~

Lex2(u)

 

Fig. 2.3 Turbo decoding flowchart 

 

2.1.4 Error floor effect 

Although turbo coding provides an excellent performance, the bit-error-rate certainly 

starts to decrease quite slowly at high signal-to-noise ratio (SNR). This phenomenon can be 

observed in [19]. It is due to relative small free distance of turbo codes, and is called an “error 

floor” [22]. Consider the relation of the minimum free distance and the bit error probability in 

turbo coding, which can be expressed by  

0

2 b
b free

EP Q d R
N

⎛ ⎞
∝ ⎜⎜

⎝ ⎠
⎟⎟                        (2. 1) 

where dfree is the minimum free distance and Eb/N0 is the SNR. At low SNR, the major part of 

errors can be corrected by iterative decoding since systematic information and parity 

information can be regarded as highly independent events. However, as the channel provides 

a reliable transmission, the dependency of the systematic and parity information grows up and 

the interleaver does little contribution on iterative decoding. Thus, the error correction ability 
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is limited on the weak constituent code only. To overcome this issue, we can increase the 

interleaver size to lower the position of the error floor or concatenate a block code, e.g. BCH 

code, as an outer code to remove the left error bits. For more details, please refer to [9] [23]. 

 

2.2 Decoding Algorithms for Turbo Code 
It has been proved that the MAP algorithm is the optimal decoding method for turbo 

code while comparing with SOVA [10]. Unlike Viterbi algorithm which utilizes maximum 

likelihood (ML) algorithm to find the codewords with minimum error probability, the MAP 

algorithm minimizes the symbol (or bit) error probability. In this section, we’ll focus on 

introducing the turbo decoding methods based on MAP algorithm [2][3]. Although SOVA is 

also one of the commonly used techniques for turbo decoding, we’ll skip it since it’s not 

adopted in our proposed design. To understand more detail about SOVA, please refer to [21]. 

And some comparisons of MAP algorithm and SOVA applied in turbo code system are shown 

in [10]. 

 

2.2.1 The MAP algorithm 

The main idea of MAP algorithm is to compute the log-likelihood ratio (LLR) of the 

transmitted information bit uk conditioned on the received information rk for 1≦k≦N, where 

N is the block length of encoded message. 

( 1|ˆ( ) ( | ) log
( 1|

k
k k

k

P uL u L u
P u

)
)

= +
= =

= −
rr
r

                  (2. 2) 

Here r is the vector of received soft values, and can be represented as [r1,r2, …, rn] where n is 

the number of output bits for each encoded bit in the constituent code. Let’s consider the 

trellis diagram of turbo code in 3GPP2 standard, which is shown in Fig. 2.4 as an example. 

Note that the solid lines represent the transitions corresponding to an information bit uk of -1, 

while the dotted lines represent the transitions corresponding to an information bit uk of +1. 
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Then, the equation can be further expressed as 

( 1| )ˆ( ) log log
( 1| )

k

k -1 k
u =+1k

k
k k

u =-1

P(s ,s , )
P uL u
P u P(s ,s , )

= +
= =

= −
k

-1 k

∑
∑

r
r
r r

.             (2. 3) 

where the numerator and denominator are the sum of joint probabilities for all existing 

transitions from state sk-1 to state sk that corresponding to an information bit uk of +1 and -1 

respectively. 

 

Fig. 2.4 Trellis diagram of turbo code in 3GPP2 standard 

 

Assume the encoded data is transmitted through the discrete memoryless channel (DMC), and 

then the term P(sk-1,sk,r) can be decomposed as three terms: 

1 1 1

1 1 1

( ) ( , ) ( )

( , , ) ( , ) ( , | ) ( |

k k k k k k k

k k k j k k k k j k k

s s s s

P s s P s r P s s P r s

e e eα γ β− − −

− − < − >= ⋅ ⋅

= ⋅ ⋅

���	��
 )
��	�
 ��	�


r r
.             (2. 4) 

Here  is the joint probability of state s1 1( )k kseα − −
k-1 and received symbols rj from the beginning 
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of the block up to time index “k-1”. Similarly, ( )k kseβ  is that of state sk and received symbols 

rj from the end of block back to time index “k”. By shifting the value “k”, it can be perceived 

that α is the forward recursion of the MAP algorithm, and can be formulated as 

1 1

1

( ) ( , ) ( )k k k k k k k

k

s s s

s

e e eα γ α− −

−

= ⋅ 1s −∑ .                    (2. 5) 

The same as above, the backward recursion β can be formulated as 

1 1 1( ) ( , ) ( )k k k k k k k

k

s s s s

s

e e eβ γ− − −= ⋅ β∑ .                    (2. 6) 

Note that since the trellis of turbo code diverges from state zero and converges to state zero, 

the initial condition of the forward recursion and backward recursion should be set as 

0 0

0 0

( )
0

( )

1,     for 0
0,     otherwise

s

s

e
e

α

α

⎧ s= =
⎨

=⎩
                       (2. 7) 

and 

( )

( )

1,     for 0
0,     otherwise

N N

N N

s
N

s

e
e

β

β

⎧ s= =
⎨

=⎩
                       (2. 8) 

For any existing transitions from sk-1 to sk, the branch transition probability 1( , )k k ks seγ −  can be 

further decomposed as 

1( , )
1

1 1

( , | )
( | ) ( | , )
( ) ( | )

k k ks s
k k k

k k k k k

k k k

e P s s
P s s P s s
P u P u

γ −
−

− −

=
= ⋅

= ⋅

r
r

r
.                 (2. 9) 

Here, the term “P(uk)” is well-known as a priori probability. According to the definition of 

LLR, which is 

(( ) log
( 1

k
k

k

P uL u
P u

1)
)

= +
=

= −
,                        (2. 10) 

P(uk) can be rewritten as 
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( )

( )

( ) / 2
( ) / 2

( )

( ) / 2

( 1)
1

                 
1

                 .

k

k

k
k k

k

k k

L u

k L u

L u
L u u

L u

L u u
k

eP u
e

e e
e

A e

±

±

−
⋅

−

⋅

= ± =
+

= ⋅
+

= ⋅

                   (2. 11) 

where the term Ak is equal for all transitions at the same time index, and thus will cancel out 

in (2. 3). On the other hand, the value of P(rk|uk) is dependent on channel characteristic. For 

an additive white Gaussian noise (AWGN) channel, the LLR of rk conditioned on uk can be 

expressed as 

2
, ,

1 0
1

2
, ,

1 0
1

, ,
1

( | 1)( ) log
( | 1)

exp( ( ) )

log
exp( ( ) )

k

k

k k
k k

k k
n

s
k v k v

v
u

n
s

k v k v
v
u

n

c k v k v
v

P uL u
P u

E r x
N

E r x
N

L r x

=
=+

=
=−

=

= +
=

= −

− −

=
− −

= ⋅ ⋅

∏

∏

∑

rr
r

                (2. 12) 

where Lc=4Es/N0 and is called the channel reliability. Here, xk,v is the v-th transmitted symbol 

while encoding uk. For systematic codes, xk,1 is equal to uk. Now we can obtain the value of 

P(rk|uk) by using the technique in (2. 11) but substitute L(uk) with L(rk|uk). 

,1 , ,
2

1 1( | ) exp( )
2 2

n

k k k c k k c k v k v
v

P u B L r u L r x
=

= ⋅ + ∑r               (2. 13) 

For the same reason in (2. 11), Bk will also cancel out in (2. 3). Combining (2. 11) and (2. 13), 

the γk in (2. 9) can be reduced to 

1( , )
,1 , ,

2

1exp ( ( ))
2

k k k

n
s s

k k c k k k c k v k v
v

e A B L r L u u L r xγ −

=

⎛ ⎞⎛ ⎞= ⋅ ⋅ + ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ .          (2. 14) 

Substituting (2. 5), (2. 6), (2. 14) into (2. 4), we can derive the a posteriori LLR in the form of 
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1 1 1

1

1 1 1

1

( ) ( , ) ( )

( , )
1

( ) ( , ) ( )

( , )
1

,1

ˆ( ) log

( ) ( )

k k k k k k k

k k
k

k k k k k k k

k k
k

s s s s

s s
u

k s s s s

s s
u

c k k ex k

e e e

L u
e e e

L r L u L u

α γ β

α γ β

− − −

−

− − −

−

=+

=−

⋅ ⋅

=
⋅ ⋅

= + +

∑

∑               (2. 15) 

where 

, ,
1 1 2

1

, ,
1 1 2

1

1
2( ) ( )

( , )
1

1
2( ) ( )

( , )
1k

( ) log

n

c k v k v
k k v k k

k k
k

n

c k v k v
k k v k k

k k

L r x
s s

s s
u

ex k
L r x

s s

s s

e e e

L u

e e e

α β

α β

− − =

−

− − =

−

=+

∑
⋅ ⋅

=
∑

⋅ ⋅

∑

∑
.          (2. 16) 

coder

nt decoder, and great performance improvement in iterative 

AP decoding can be achieved. 

2.2.

his problem can be solved by Log-MAP algorithm [24]. It employs the Jacobian 

algorithm  

u =−

The term Lex(uk) is called extrinsic information since it’s a function of the redundant 

information that comes from the en . It removes the information about the systematic 

input and a priori information from ˆ( )kL u . Therefore, this term is useful to estimate a priori 

probability for the next compone

M

 

2 The Log-MAP algorithm 

It can be figured out easily that Max-Log-MAP algorithm is a sub-optimal solution for 

turbo decoding since an approximation of (2. 21) is used to reduce the complexity of MAP 

algorithm. T

1 21 2
1 2

1 2 1 2max( , ) ( ),cfδ δ δ δ= + −

where f

log( ) max( , ) log(1 )e e e δ δδ δ δ δ − −+ = + +
              (2. 17) 

has 

been proved that (2. 21) can be computed exactly by a recursive operation of (2. 25) [10]. 

c(|δ1-δ2|) is a correction function, and thus the performance can be improved. It 
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11 2 1 2log( ) log( ),     
max(log , ) ( log )

max( , ) ( )

n n n

n c n

n c n

e e e e e e e e
f

f

δ δ δδ δ δ δ δ

δ δ

δ δ δ δ

−+ + + = ∆ + ∆ = + + + =

= ∆ + ∆ −

= + −

" "
      (2. 18) 

Substituting (2. 18) and (2. 19) into (2. 25), the forward and backward recursions can be 

represented as  

( )
1

1 1 1,
( ) max* ( ) ( , )

k k
k k k k k k ks u

s s sα α γ
−

− − −= + s                 (2. 19) 

and  

( )1 1 1,
( ) max* ( ) ( , )

k k
k k k k k k ks u

s s sβ β γ− − −= + s ,                (2. 20) 

where the max*(.) operation is defined as  

1 2
1 2 1 2max*( , ) max( , ) log(1 )e δ δδ δ δ δ − −= + + .               (2. 21) 

Finally,  can be obtained by  ˆ( )kL u

( )

( )

1

1

1 1 1( , )
1

1 1 1( , )
1

ˆ( ) max * ( ) ( , ) ( )

max * ( ) ( , ) ( ) .

k k
k

k k
k

k k k k k k ks s
u

k k k k k k ks s
u

L u s s s s

s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

= + +

− + +

k

c c

1 2

            (2. 22) 

 

 The performance of Log-MAP algorithm is identical to that of MAP algorithm. However, 

the complexity is also increased compared with Max-Log-MAP algorithm since computing 

f (.) still involves complicated exponentiations and multiplications. Thus, the values of f (.) 

are usually stored in a pre-computed table and Log-MAP algorithm can be implemented by 

table look-up. It has been found that excellent performance can be obtained with 8 stored 

values and |δ -δ | ranging between 0 and 5, and no improvement is achieved with a finer 

representation [10]. 

 

2.2.3 The Max-Log-MAP algorithm 

As we can see, the MAP algorithm involves too many exponentiations and 
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multiplications. These are quite complex for hardware realization. Thus, an approximation of 

MAP algorithm termed Max-Log-MAP algorithm [24] was derived for simple implementation 

of MAP decoders. Instead of calculating keγ , keα , and keβ  directly, all computations are 

done in logarithm domain. Here we define γk, αk, and βk as transition metric, forward path 

metric and backward path metric respectively. γk can be formulated as 

1 1( , ) log ( , |k k k k k ks s P s s )γ − −= r .                    (2. 23) 

Similarly, referring to (2. 4), α  and β  can be expressed as k k

( ) log ( , )k k k j ks P sα <= r                   (2. 24) 

and  

1 1( ) log ( |k k j k ks P )sβ − − >= r                   (2. 25) 

respectively. After substituting (2. 17), (2. 18), and (2. 19), in (2. 15) can be re-written 

as 

ˆ( )kL u  

( )

( )
1

1

1 1 1
( , )

1

1 1 1
( , )

1

exp ( ) ( , ) ( )

ˆ( ) log
exp ( ) ( , ) ( )

k k
k

k k
k

k k k k k k k
s s

u
k

k k k k k k k
s s

u

s s s s

L u
s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

+ +

=
+ +

∑

∑
.      (2. 26) 

By utilizing the approximation of  

1 2
1 2log( ) max( , , , )n

ne e eδδ δ δ δ δ+ + + ≈" " ,             (2. 27) 

can be further simplified to ˆ( )kL u  

( )

( )

1

1
1 1 1( , )

1
k k

k

k k k k k k ks s
u

−
− − −

=−

his computation consists of forward

1 1 1( , )
1

ˆ( ) max ( ) ( , ) ( )

max ( ) ( , ) ( ) .

k k
k

k k k k k k k ks s
u

L u s s s s

s s s s

α γ β

α γ β

−
− − −

=+

= + +

− + +
             (2. 28) 

T  and backward recursions that repetitively compute the 

αk and βk, and can be expressed by  

( )
1

1 1 1,
( ) max ( ) ( , )

k k
k k k k k k ks u

s s sα α γ
−

− − −= + s                   (2. 29) 
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and 

( )1 1 1,
( ) max ( ) ( , )

k k
k k k k k k ks u

s s s sβ β γ− − −= + .                 (2. 30) 

Both equations are add-compare-select (ACS) operations, which are similar to the path metric 

pdating of Viterbi algorithm. 

2.2.

 and Log-MAP algorithm under different SNR estimation 

fsets was made in [26]. 

 

 Otherwise, Log-MAP decoder should be 

 the aspect of coding gain. 

u

 

4 SNR sensitivity of Max-Log-MAP and Log-MAP algorithm 

Referring to (2.13) and its followed deductions, it’s evident that both MAP and log-MAP 

algorithm requires SNR estimation to obtain the value of channel reliability, i.e. Lc. 

Unfortunately, accurate estimation cannot be achieved easily. Several papers have discussed 

the effect of SNR mismatch in turbo decoding. In [25], the simulations show that about -3 to 

+6 dB SNR estimation offset is tolerable before significant performance degradation. 

However, Max-Log-MAP algorithm is able to provide a SNR independent scheme if a priori 

information is initialized with a reasonable value, such as all zero’s for each state [26]. Due to 

the linearity of max(.) operations, the term Lc can be canceled out while computing ˆ( )kL u . 

The comparison of Max-Log-MAP

of

Although Log-MAP algorithm provides the performance better than that of 

Max-Log-MAP algorithm, it suffers the risk of serious SNR mismatch offset. Thus, channel 

characteristics play an important role in practical implementation. It has been concluded in 

[26] that if channel characteristics change over time, the Max-Log-MAP decoder is suitable to 

be the constituent decoder in turbo decoding.

preferable in
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2.3 Sliding Window Approach 
As what we described in the previous section, the MAP-based algorithm (including MAP 

algorithm, Max-Log-MAP algorithm, and Log-MAP algorithm) requires both forward and 

backward path metric to calculate the log-likelihood ratio. Since the forward and backward 

recursions start from different initial point, the entire block message has to be received and 

stored for computing forward and backward recursions. Furthermore, we have to store one of 

the path metrics of forward or backward recursion and wait for another. These restrictions 

enlarge the memory requirement for hardware implementation of turbo decoder. For example, 

the maximum block length of 3GPP standard is 5114, which means 5114 codewords and path 

metrics should be stored. Besides, long output la

state if the backward recursion goes long enough. Fig. 2.5 and Fig. 2.6 shows the process of 

this approach in both directions and the detail operating flow is described as follows. 

tency is also introduced. It limits the speed 

and throughput of turbo decoder design. 

The main problem is that long block length can not be divided into several shot 

sub-blocks immediately, since the lack of boundary path metric of sub-blocks in opposite 

direction of input sequences will degrade the performance. Thus, a sliding window approach 

was proposed in [27] and later on in [28] to overcome this drawback. This approach utilizes 

the fact that the backward path metrics can be highly reliable even without knowing the initial 
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Fig. 2.5 The process diagram of sliding window approach in the forward direction 

path metric values for the true 

backward recursion

 

First, the received codeword is divided into many sub-blocks, with a sub-block length of 

W. W is called the convergence length with typically five times the constraint length of the 

encoder. For each sub-block i, the initial path metric values are inherited from the neighbor 

sub-blocks for both forward and backward recursion operations. Note that in Fig. 2.5 the 

dummy backward recursion β1 is employed to obtain the initial 

 β2. Although the initial condition for β1 is unknown except the last 

sub-block, we introduce the equal probability condition for β1 values: 

1
1( ) ,    for all 0,1,...,j

tx j M
M

β = =                                  (2. 31) 

where 
j

tx  denotes the path metric of j-th state at time t, the last Trellis section of β1 , and M 

is equal to the total state number. During the forward recursion α proceeds in the i-th 

sub-block and stores these values into memory, the dummy backward recursion β1 is 

performed in the i+1 sub-block concurrently. As soon as β1 computation is finished, the initial 

metrics in the i+1 sub-block are available for β2 metrics in computation, and the 

corresponding branches metrics in the i-th sub-block. 
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Fig. 2.6 shows the process diagram of sliding window approach in the backward 

direction. The operation flow is similar to the forward direction type except for two forward 

recursions α and one backward recursion β. 

β

β

β

β

2α1α

1α

1α

2α

2α

2α1α

 

ength code blocks of CCs. The standard solution is to add same bits at the tail 

of in

Fig. 2.6 The process diagram of sliding window approach in the backward direction 

 

2.4 Tail-Biting Approach 
Tail-biting convolutional codes are first developed by G. Solomon and H. C. A. van 

Tilborg[5] and recognized as equivalent to quasi-cyclic block codes.[6] From the strict 

definition of convolutional codes (CCs) it is clear that CCs can only be applied to 

semi-infinite sequences, i.e., encoding starts at time t = 0 in the all-zero state and goes on 

continuously. But almost any communication system is block-oriented, we must find methods 

to obtain finite l

formation sequences to force the encoder back to the all-zero state. This method can 

avoid the weak error protection for the last codeword bits, however it causes same rate loss 

due to tail bits. 

Tail-biting avoids the rate loss without suffering from degraded error protection at the 

end of the codeword. With tail biting technique, the starting state of encoder is not necessarily 
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the all-zero state. It can also be any one of the other states. The fundamental idea behind 

state after encoding the 

infor

tail-biting is that the starting state should be the same as the ending 

mation sequence, i.e., 0 Nx x= . In the Trellis representation of tail-biting codes only 

those paths that start and end at the state are valid codewords. 

2.4.1 Encoding tail-biting codes using feedback encoders 

Let us consider a feedforward encoder first. It is obvious that we only have to consider 

the last m input k0-tuples of information sequences to fulfill the tail-biting boundary 

condition 0 N

 

x x= . But the situation is more complicated for feedback encoders. The last 

encoding state Nx  depends on the entire information vector 0 1( , , )Nu u u −=
K

… . Thus, we must 

calculate for a given information vector u
K

 the initial state 0x  that will lead to the same state 

after N cycle. To solve this problem, we consider the state representation: 

1
T

t tx x+ = +A B tu                                                   (2. 32) 

To solve the iterated function by substitution, we can find that the complete solution of (2.32) 

equals to the superposition of the zero-input solution and the zero-state solution . 

0

t

τ

−

=

A

 the in

[ ]zi [ ]zs
tx  tx

1
( 1) [ ] [ ] [ ]

0 0
t t T zi zs t zs

t t t tx x u x x x xτ
τ

− −= + = + = +∑A B A               (2. 33) 

If we demand that the state as time t=N is equal to itial state 0x , we obtain from

[ ]zs N

 (2.33): 

N m 0( )x x= +A I                                                 (2. 34) 

Where denotes the m-by-m identity matrix. If a feedback encoder with certain information Im

length N can provide an invertible matrix ( )N
m+A I , the correct initial state 0x  can be 

calculated by knowing the zero-state response [ ]zs
Nx .  

The encoding process of tail-biting convolutional code shown in Fig. 2.9 is divided into 
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two steps: 

First, the encoder starts from the all-zero state with given information sequences to determine 

the zero-state response . By knowing the zero-state response, we can calculate the 

corresponding initial state

[ ]zs
Nx

0x  by (2.34). Second, the encoder starts from the correct initial 

state 0x  and a valid codeword results. 

 

 Fig. 2.7 The encoder process of tail-biting convolutional code   

 

Since the matrix has to be invertible, not every code length is legal with a 

given feedback encoder. Moreover, some feedback encoder can not be tail-biting. Some detail 

discussion can be found in [7], [8], and[9].  

( )N
m+A I  
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Chapter 3  
The High Speed Turbo Decoder 
Design I  

 
3.1 Introduction 

Presented by Berrou et al. in 1993 [1], turbo codes have been recognized as a milestone 

in the channel coding theory. Due to their outstanding error-correcting capabilities, turbo 

codes have been highly appreciated in wireless communications, where signal-to-noise ratios 

(SNRs) are generally low. Two commonly used soft-input–soft-output (SISO) turbo decoding 

algorithms are maximum a posteriori probability (MAP) algorithm [2] and soft-output Viterbi 

algorithm (SOVA) [4]. MAP-based turbo decoders are known to have better performance than 

SOVA-based turbo decoders while having slightly larger complexity.  

Many researches are proposed to improve the speed of turbo decoder. Bickerstaff 

proposed a high radix decoder [11]; Bougard introduced a full-duplex design [12]; Urard 

implemented a 5 iterations series turbo decoder [16]. Their works increase the throughput by 

refining the architectures of the SISO decoders. The highly parallel structure might be a 

solution to substantial improvement, but there are two difficulties that have to be overcome. 

One is the memory contention problem resulted from high-radix and multiple processing 

elements; the other is the critical path resided in the add-compare-select (ACS) circuit. We 

proposed a high speed solution that resolves these two problems by using a novel interleaving 

methods and modifying the MAP decoders. Some interleaving algorithms with 

contention-free properties have been published [9], and our design adopts the inter-block 

permutation (IBP) interleaver [13]. Then we exploit a high-radix MAP decoder with shorter 
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critical path to increase data rate [14]. The proposed turbo decoder provides both high 

throughput capability and outstanding energy efficiency while maintaining equivalent 

performance as 3GPP turbo code.  

3.2 Decoder Structure 
For high speed turbo decoder design, there are generally two types of architectures 

proposed in the state of the art. Fig 3.1 shows these architectures, the series architecture and 

the parallel architecture. The series architecture duplicates the same number of processing 

elements as iterations and each processing element decodes the codeword for only one 

iteration. After decoding, each processing element will pass the extrinsic value to the next 

element. This architecture is easy to implement but the hardware cost is very high. The 

parallel architecture decodes one codeword with multiple decoders. This architecture is more 

flexible since number of decoders varies from different specifications. The major problem of 

this architecture is that how to decode a block codeword with multiple decoders. The forward 

recursion and the backward recursion connect the whole codeword, so we should apply some 

techniques to separate them. In the following, we will introduce our proposed design using the 

parallel architecture to solve this problem. 

 

Fig. 3.1 Block diagram of proposed turbo decoder 
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Fig. 3.2 shows the block diagram of proposed decoder, which consists of 32 parallel 

MAP decoders and 32 parallel memory sets. We separate a codeword into 32 sub-codewords 

with length 128. Each sub-codeword is assigned to one decoder and decoded separately. 

These sub-codewords are connected by a well-designed inter-block permutation (IBP) 

interleaver. This method avoids the forward and backward recursion problem while using the 

parallel architecture. The decoding process is described as follows: first, each memory will 

collect a 128-bit sub-codeword from input buffer till the whole 4096-bit codeword is received. 

The memory stores the received symbols and extrinsic information, which is divided into two 

banks to support the radix-4 design. Second, the 32 memories will deliver the required data to 

the 32 MAP decoders through the IBP network, which is part of the interleaver. The 

interleaver is implemented with the address generators in each memory and the network 

controller. The MAP decoders perform the primary decoding procedures, and each one is 

responsible for 128 bits. After 8 iterations, this design would output the decisions of current 

block and start to decode next block. 

 

Fig. 3.2 Block diagram of proposed turbo decoder 

3.3 Interleaver Design for High Speed Turbo Code 

3.3.1 Contention-free Interleaver 

To increase throughput, a log-MAP decoder is parallelized by dividing a size-N trellis 
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into M size-W windows (N = MW) and employing M synchronous MAP-based decoders with 

M separate memory banks. Interleaving latency is eliminated by writing the M values 

generated each clock cycle directly to their interleaved positions. However, if the interleaver 

is not designed carefully, two or more MAP-based decoders may require access to the same 

memory bank on a given clock cycle, resulting in a memory contention. Moreover, a high 

radix decoding structure also suffers from the memory contention problem while accessing 

multiple codeword symbols from memories. Fig 3.3 shows an example of memory contention 

problem in a parallel decoding structure. We store a codeword sequence in order in four 

different memory banks. It is obvious that it is a contention-free access at all different timing 

with pre-permutation order. But it will have the memory contention problem if we apply 

different interleavers. The post-permutation 1 is a contention-free interleaver design. Because 

every time we access four symbols, they come from different memory banks. The interleaver 

design of post-permutation 2 suffers two contention collisions at time t0 and t3. 

 

Fig. 3.3 Example of a contention-free permutation 
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3.3.2 IBP Interleaver 

The IBP interleaver in [13] favors both performance and throughput of turbo decoder. 

Such method guarantees no hazards when multiple MAP decoders try to access multiple 

memories concurrently. The IBP interleaver consists of two steps of permutation: intra-block 

permutation and inter-block permutation. The first step rearranges the symbol sequences in 

each sub-block with the same rule. The second step swaps the sequences between blocks 

periodically. The destination can be derived by executing bit-wise exclusive-or between the 

original block index and the IBP parameter. Fig. 3.4 demonstrates an example of IBP 

interleaver with four sub-blocks. First, all sub-blocks are individually reordered by right rotate; 

Second, they exchange data among these permuted sequences. 

 
Fig. 3.4 An example of IBP interleaver with four sub-blocks 

3.3.3 Butterfly network 

The butterfly network is designed to perform the inter-block permutation in the IBP 

interleaver. This structure also avoids the memory contention problem between sub-blocks 

and reduces the circuit complexity. Fig. 4 shows the corresponding structure for above 

example illustrated in Fig. 3. The network is divided into two levels, and each level has one 

external signal to control the multiplexers. S0 and S1 will define four possible connections. In 
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general, the butterfly network links N memories to N MAP decoders by log2N levels of 

switches. Each level requires 1-bit control signal to manage its N multiplexers; the total    

log2N bits establish N possible connections. 

 

Fig. 3.5 A 4x4 butterfly network for IBP interleaver 

3.3.4 Double prime interleaver 

All the data inside each block will be divided into two groups and be stored in the two 

separate memory banks. When radix-4 MAP decoders request two symbols at each cycle, 

these two symbols must be derived from different memory banks. This is another contention 

problem that should be aware of. Our design uses the double prime interleaver to resolve this 

problem. The double prime interleaver is constructed by two prime interleavers whose 

function are expressed by 

(( ) mod ) 2 1,   is odd2 2
(( ) mod ) 2,   is even2 2

( ) {
Li p i

Li p s i
iπ

⎢ ⎥× × +⎣ ⎦

⎢ ⎥× + ×⎣ ⎦

=
                              (3. 1) 

This L is the block length, and it must be an even number. Note that p must be relative 

prime to L/2 and s is a constant shift. Both the interleaver and de-interleaver could be 

expressed in (3.1) with different parameters. Double prime interleaver with well-searched 

parameters would outperform the interleaver in 3GPP turbo coding. Most important of all, an 

well-designed double prime interleaver is an fully contention-free interleaver for certain 
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sub-block length. For example, we can choose any factor of the sub-block length as the 

parallel access number and the memory bank number. It is guaranteed that a well-designed 

double prime interleaver is a contention-free interleaver. 

3.4 High-Throughput MAP Decoders 

3.4.1 Retimed radix-2x2 ACS unit 

For trellis-based decoders, the branch number of conventional high-radix design 

increases exponentially however the branch number of the two-stage structure increases 

linearly. A two-stage ACS is introduced in [14] to ease the area overhead of high-radix ACS. 

The complexity of ACS unit depends on the branch number, so our design prefers radix- 2 × 2 

ACS to radix-4 ACS. But the critical path of two-stage structure is longer than conventional 

structure. The recursive property of path metric would make the pipelining method inefficient 

here, however, the critical path can be reduced by our proposed retiming method. 

It is obvious that the ACS unit could not execute compare-select operations until addition 

results are ready; such data dependency restricts the operating frequency. To eliminate the 

dependency, the data path of ACS unit must be modified. So the proposed decoder applies the 

retiming technique, and Fig. 3.6 demonstrates the procedure of a retimed radix-2× 2 ACS. The 

first step shown in Fig. 3.6(a) is retiming of registers. Move and duplicate the registers ahead 

of the compare circuits, then computation order is rearranged from add-compare-select to 

compare-select-add. The registers have to store the summation of path metric and branch 

metric rather than only path metric. The second step shown in Fig. 3.6(b) is relocation of 

adders. Move and duplicate the adders ahead of the multiplexers; now the compare-select and 

addition could execute concurrently. The modified ACS unit is shown in Fig. 3.7, where the 

critical path becomes two consecutive compare-select operations. It would cause extra area 

overhead because of double registers and double adders, and the improvement of the 

radix-2×2 architecture could compensate for this loss. The relocated method can accomplish 
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not only high-speed but area-efficient solution. 

 

Fig. 3.6 Retiming procedure of a radix 2x2 ACS unit 

 

Fig. 3.7 A retimed radix 2x2 ACS unit 
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3.4.2 The circuit for log-likelihood ratio calculation 

Our design adopts the modulo normalization to avoid over- flow of path metric [15]. 

This method requires only one more bit in the ACS unit and a simple modification inside the 

LLR unit; there are no specific circuits for normalization in ACS unit. Only the differences 

between forward path metrics and the differences between backward state metrics are 

significant in modulo normalization, so the LLR unit has to use these differences to calculate 

the log-likelihood value. Our design rearranges the computation order of log-likelihood value 

from circuit in Fig. 3.8(a) to circuit in Fig. 3.8(b). Although the two circuits have the same 

function, but original circuit may result in overflow due to the limited data width. The 

modified circuit could guarantee the correctness and cause no extra path delay. 

 

Fig. 3.8 The circuit for log-likelihood calculation 

3.5 Simulation Result and Chip Implementation 
The proposed turbo code with code rate 1/2 could decode 4096 bits after 8 iterations, and 

the implementation applies maximum log-MAP algorithm with a scaling factor 0.75. The 

other specifications are listed in Table. 3.1. Fig. 3.10 and Fig. 3.11 shows the performance 

comparison between the proposed code and 3GPP turbo code. The floating point and the fixed 

point simulation result are both competitive to the result of 3GPP standard. However, the 

proposed turbo design has better distance property due to the interleaver design than the 3GPP 
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standard. Obviously, the 3GPP standard suffers from the error floor phenomenon more than 

the proposed design. 

 

Fig. 3.9 FER performance compared with 3Gpp turbo code 
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Fig. 3.10 BER performance compared with 3Gpp turbo code  
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Table 3.1 Turbo Decoder Specification 

Algorithm Max-Log MAP 

ACS unit Radix 2x2 (retimed) 

Code polynomial 
3

2 3

11    
1

D D
D D

⎡ ⎤+ +
⎢ ⎥+ +⎣ ⎦

 

Interleaver IBP interleaver  (p, s) = (15, 23) 

Sliding Window 32 

Code Rate 1/2 (punctured) 

Block length 4096(128 x 32) 

Quantization 6 bits (3.3) 

iteration 8 

Scaling Factor 0.75 

Note Tail-Biting 

Technology 0.13um 1P8M 

Clock rate 250MHz /w DLL 80MHz/wo DLL * 

Throughput 500Mbps 160Mbps * 

Gate count 2.67M 

Core Area 17.8 mm2 

power 762mW 275mW * 

nJ/bit‧iteration 0.19 0.22 * 

 

    The decoder chip is fabricated with a 0.13µm 1P8M CMOS technology, and the die 

photo is shown in Fig. 3.12. The core area is 17.8mm2 with 2.67M gates count, including the 

3.33mm2 memory block. A delay lock loop (DLL) circuit is applied to generate internal clock 
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source as four times the external frequency. The design could operate at 250MHz with the 

help of DLL during post-layout simulation, due to the relocation technique. However, the 

DLL could not work as expected during measurement. The test chip could achieve 160Mb/s 

and 275mW power consumption with 1.32V supply. For the decoder with 8 iterations, the 

energy efficiency is 0.22nJ/b/iter. Table II lists the comparison of the proposed code with 

other published works, and the proposed design has the optimal energy efficiency 

[11][12][16]. 

Output Buffer

DLL

 

Fig. 3.11 Micro photo of proposed turbo decoder chip 
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Table 3.2 Comparison with Other Turbo Decoder  

 proposed [11] [12] [16] 

Technology 0.13μm 0.18μm 0.18μm 0.13μm 

Clock rate  80MHz 145 MHz 160 MHz 352 MHz 

Throughput 160Mbps 24 Mbps 71.7 Mbps 352 Mbps 

Block Size 4096 5114 384 2048 

Core Area 17.8mm2 14.5 mm2 7.16 mm2 10 mm2

power 275mW 1450mW N/A 2464mW 

Energy  

Efficiency 

0.22 

nJ/bit‧iter 

10.0 

nJ/bit‧iter 

9.7 

nJ/bit‧iter 

1.4 

nJ/bit‧iter 

 

3.6 Summary 
The proposed turbo decoder with the parallel architecture enables multiple processing 

elements to decode one codeword concurrently. The proposed IBP interleaver connects all 

processing elements in the parallel architecture and avoids the limit of the forward and 

backward recursions. We also introduce a high speed methodology for high radix decoder 

structure. The combination of two stages ACS and the retiming technique efficiently speed up 

the decoding throughput with acceptable hardware cost. The energy efficiency of proposed 

turbo decoder is much smaller than that of the state of the art.    
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Chapter 4  
The High Speed Turbo Decoder 
Design II 

In chapter 3, we have introduced a power efficient turbo decoder design with 32 

processing elements. The throughput of the proposed design is about 500Mbps in pre-layout 

simulation. The critical path of the proposed design is the ACS units. However, the 

throughput of a radix 2x2 ACS unit working under 250MHz is 500Mbps and the total 

throughput of the decoder should be 1Gbps with 32 processing elements under 8 iterations.  

The total throughput is reduced by the following two issues: 

 One block is calculated twice due to the tail-biting. The calculation of α recursion of first 

block introduces a dummy sub-block and reduces the throughput. 

 Due to the iterative decoding and the interleaver of turbo code, the decoder must stop 

and wait until the processed data stored in the memories. This data hazards happen twice 

per iteration between two different decoding rounds.  

These issues will be discussed in detail in the following sections. We will propose 

methods to solve these problems and implement a 1Gbps high throughput and power efficient 

turbo decoder.    

4.1 Introduction 

4.1.1 Data Hazards 

There is an iteration bound occurred in the MAP-based decoder structure, so the forward 

and backward recursion in a turbo decoder is always the critical path and occupy a large area 

in the implementation. This is a main reason that the hardware of the forward and backward 
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recursion is always reused. The cycle-based decoding procedure is shown in Fig. 4.1. This 

example shows a sub-block size 16 and a radix 4x4 decoder decodes 4 symbols each cycle. It 

shows that the forward and backward recursion modules and the LLR module are reused for 

four cycles. Furthermore, the pipelined method can be used while decoding different 

sub-blocks because there is no data dependency between different sub-blocks in the same 

decoding round. Fig. 4.2 shows the case we proposed in chapter 3 and a data hazard happens 

while decoding. The data dependency results from the interleaver between sub-block 4 in the 

pre-decoding round and sub-block 1 in the post-decoding round. The extrinsic information of 

sub-block 4 in pre-decoding round may be used in sub-block 1 in post-decoding round. This is 

the reason why the decoder should be idle until the extrinsic information stored in the 

memories.       

 

 Fig. 4.1 A cycle-based decoding procedure 

 

 
 Fig. 4.2 A data hazard occurred while decoding 

4.1.2 A dummy sub-block 

A valid codeword in the tail-biting Trellis makes the encoder to start and end at the same 

state, instead of zero state only. Therefore, a dummy sub-block, as well as the last sub-block, 

will be calculated first to estimate the initial value of the forward recursion of the first 

sub-block. Decoding schedule of a sub-codeword is shown in Fig. 4.3 and Fig. 4.4. We can 
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easily find that the data hazard and the dummy block make the decoding procedure longer. It 

takes 128 cycles to decode a sub-codeword and the utilization of the hardware is 50% only.  

The decoder is idle for 12 cycles and some modules are idle while other modules are 

calculating. Therefore, the working duration of the forward and the backward recursion 

modules and the LLR module is 64 cycles.  

 

 
 Fig. 4.3 Decoding schedule of a sub-codeword 

Interleaved 
Sub-blockIdle 16 cycles

Total 128 cycles

… …

 

 Fig. 4.4 Decoding schedule of previous design 

4.2 Decoding Schedule 
The data hazard and the dummy sub-block cause a 50% degradation of the throughput. In 

this section, we will propose a method to solve this problem and make the 100% utilization of 

the hardware.  

4.2.1 Decoding with two codewords 

Due to the data dependency of pre-decoding round and post-decoding round connected 

by the interleaver, a better way to break this relation is to decode two codewords alternately.  
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The proposed method achieves 100% hardware utilization without any extra logic cost. The 

only cost of this method is that we have to store two codewords in the memories. The detail 

procedure in Fig.4.5 is described as follows: 

 Decode from the first sub-block and get the initial value of forward recursion of the 

first sub-block from the previous iteration. If it is the first iteration, then set an all 

zero initial value for beginning. 

 Store the initial value needed by the next iteration, so it is not necessary to calculate 

the dummy sub-block. 

 First, decode the pre-permutation sequences of sub-codeword A. 

 Second, decode the pre-permutation sequences of sub-codeword B. 

 Third, decode the post-permutation sequences of sub-codeword A. 

 Decode the post-permutation sequences of sub-codeword B. 

 Then decode alternately until the last iteration. 

 

 Fig. 4.5 Decoding schedule with two codewords 

There are two more steps should be noticed about the dummy block: 

 While decoding each sub-codeword, decode from the first sub-block and get the 

initial value of forward recursion of the first sub-block from the previous iteration. 

If it is the first iteration, then set an all zero initial value for beginning. 
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 Store the initial value needed by the next iteration, so it is not necessary to calculate 

the dummy sub-block. The dot line in Fig. 4.5 shows where we store the initial 

value and where we read the initial.  

The fundamental idea of our proposed method is to keep the hardware calculating and 

avoid to calculate the same sub-block twice. Notice that at any timing frame all hardware 

modules are working, which means the hardware utilization reaches 100%. Applying the 

method, we can double the throughput by reducing the decoding cycles from 128 to 64 for 

each sub-codeword, but the extra storage of initial values is about 6144 bits in the case of our 

proposed design in chapter 3.  

4.3 MAP Decoders 

4.3.1 The structure of each processing element. 

It is mentioned in section 3.4 that the number of the processing elements and the 

throughput of each element are two main factors of the total throughput. In addition to adding 

the number of processing elements, the throughput of each element should increase for a high 

throughput turbo decoder design. The method we used in the new proposed design is a higher 

radix Trellis structure. 

For any Trellis-based decoder, two important factors should be considered carefully are 

the number of states and the branch number of each state, which affect the implementation 

complexity numerously. While applying a high radix design, another dimension should also 

be taken into account is the stage number of Trellis. In Fig. 4.6, both radix 16 and radix 4x4 

Trellis diagram merge 4 stage Trellis diagram into one. The radix 16 Trellis has 16 branches 

for each state. The radix 4x4 Trellis has 4 branches for each state, but it is a two stage 

structure. However, the total branch number of the radix 4x4 is half of the radix 16. Therefore, 

the hardware of radix 16 is twice as that of radix 4x4.     
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16

Radix 16 Radix 4x4
 

Fig. 4.6 Radix 16 and radix 4x4 Trellis diagram 

Fig. 4.7 shows the hardware cost of two structures. We can find that the number of 

comparators and multiplexers of the radix 4x4 structure is twice as that of the radix 16 

structure, but the complexity of a 4 to 1 comparator is much smaller than that of a 16 to 1 

comparator. Besides, the branch number of the radix 4x4 is less than that of the radix 16. The 

new proposed design uses the radix 4x4 structure in each processing element.  

 

Fig. 4.7 Circuit diagrams of two structures 
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4.3.2 The memory units 

Considering the radix 4x4 structure and the storage of two codewords, the memory units 

of the turbo decoder should be redesigned. First, the memory should be divided into four 

banks and each bank consists of five sub-banks. The division of the memory units is due to 

the bandwidth and contention. We have to access four input symbols for the processing 

element at each cycle and each symbol consists of information bits, parity bits and the 

extrinsic part. Fig. 4.8 shows one memory unit in detail. Notice that each bank in the memory 

unit is the same as that mentioned in chapter 3, but the number of banks is double and the 

bandwidth is also double. Furthermore, the total storage is double because of the additional 

codeword B.   

 

 

Fig. 4.8 The memory unit 

4.3.3 Retime or not retime 

In chapter 3, we have introduced a retiming technique to shorten the critical path for a 

two stage ACS structure. The retimed structure has more hardware costs than the no retiming 

version. The critical path comparison between these two versions is shown in Fig. 4.9, and the 

target technology of our implementation is the UMC 90 nanometers process. Obviously, the 
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retimed version has higher clock rate. But there are other important issues that should be 

considered in advance technology, such as wire delay. In advance technology, the wire delay 

dominates and the crosstalk phenomenon will be more critical. A popular solution for a large 

design is to reduce the routing complexity and the wire length. Table 4.1 shows the 

comparison between two versions. The area and the routing complexity of the retimed vesion 

are bigger than the no retiming one. Thus, the critical path of retimed version will grow faster 

than no retiming one due to the routing congestion problem. Therefore, our proposed 1Gbps 

turbo decoder chooses the no retiming radix 4x4 ACS structure for the processing elements. 

With the decoding schedule introduced in section 4.2, the utilization of all module in each 

processing element achieves 100%. The throughput of elements is 1Gbps each.     

 

 

Fig. 4.9 A critical path comparison 

 

Table 4.1 Comparison between two versions 

90 nm Technology Radix 4x4(Retiming) Radix 4x4 

Throughput 1600Mbps 1000Mbps 

Area High Medium 

Routing Complexity High Medium 

Frequency 400MHz 250MHz 

Critical Path 2.5ns(pre-layout) 4ns(pre-layout) 
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4.4 Interleaver Design 
In the proposed 1Gbps turbo decoder, we reuse the IBP interleaver and remain the 

parameters. However, the number of processing elements reduces to 16 and the throughput of 

each processing element reaches to 1Gbps. The sub-codeword size remains 128. Fig. 4.10 

shows the differences between the decoder described in chapter 3 and the proposed 1Gbps 

turbo decoder. Fig. 4.10(a) is the original architecture in chapter3, and Fig.4.10(b) reduces the 

decoder number by half. Thus we can combine the memory unit 1 and 2 with 3 and 4, shown 

in Fig.4.10(c). The original S1 switch can be fixed to zero and the control signal S1 will be 

passed to the address generators of memory units. The combination of memory units will 

make the total area of memory smaller and easier for placement. The flexibility of the IBP 

interleaver makes the variation of design possible without any hardware cost and any extra 

control overhead.  

 
Fig. 4.10 The architecture transformation 
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4.4.1 Multiple block lengths support 

Since the IBP interleaver is flexible, the proposed 1Gbps turbo decoder can be 

implemented to fit multiple block lengths. In Fig. 4.11(b), we fix the switch S1 to zero so the 

decoder is working with only half number of processing elements and memory units. This 

means the block length of 2’s power from 128 to 4096 can be supported in our design. While 

decoding different length codewords, the only difference in control turn the some switches of 

the butterfly network to zero. 
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Fig. 4.11 Multiple block lengths support 

4.5 Chip Implementation 
The proposed 1Gbps turbo code reduces the code rate to 1/3 without any puncturing 

compared with our previous design, and the implementation applies maximum log-MAP 

algorithm with a scaling factor 0.75. The detail specifications are listed in Table. 4.1, and the 

post-layout view is shown in Fig. 4.13 with pin counts 208. The performance of this design is 

the same as that described in chapter 3. The power management of this design is more careful 

due to the failure of the delay lock loop (DLL) circuit. Fig. 4.12 shows that we have applied 

the power isolation technique on our design for the DLL module. The power supply of DLL is 

isolated from the other circuits, thus the power noise of whole chip will not affect the DLL. 

Furthermore, the internal clock would be more stable and the uncertainty of internal clock tree 
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will be smaller because the isolation provides a stable working environment for DLL. 

 

Fig. 4.12 Power isolation of DLL 

 

 Fig. 4.13 Chip layout view 
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Table 4.2 Summary of the proposed 1Gbps turbo decoder 

Algorithm Max-Log MAP 

ACS unit Radix 4x4 

Code polynomial 
3

2 3

11    
1

D D
D D

⎡ ⎤+ +
⎢ ⎥+ +⎣ ⎦

 

Interleaver IBP interleaver (p, s)=(15,23) 

Sliding Window 32 

Code Rate 1/3 

Block length 4096(128 x 32) 

Quantization 6 bits (3.3) 

iteration 8 

Scaling Factor 0.75 

Note Tail-Biting 

Technology 90nm 1P9M 

Clock rate 250MHz * 

Throughput 1Gbps * 

Gate count 2.66M 

Core Area 9.3 mm2 

power 1158mW * 

nJ/bit‧iteration 0.144 * 

                                             * post-layout simulation 
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4.6 Summary 
The proposed 1Gbps turbo decoder is the first turbo decoder chip which achieves 1Gbps 

throughput. We modified the utilization of processing elements and made the decoding 

schedule more efficient. The improvement of throughput is marvelously 50%. The 

implementation of interleaver is more flexible than the previous design and the proposed 

1Gbps turbo decoder can support multiple code lengths. The energy efficiency of this design 

improved from 0.22 to 0.144 nJ per bit per iteration compared with our previous design, 

which is accredited by the radix 4x4 ACS structure and the advanced process. The proposed 

design is the fastest and most efficient turbo decoder in the state of the art. 
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Chapter 5  
Highly Parallel Decoding of Turbo 
code 

In parallel decoding of turbo code, there are three issues should be particularly 

considered: 

 The throughput of each decoder (processing element) 

 The utilization of each decoder 

 Parallelism (number of decoders) 

In previous chapters, we have proposed some methods to improve the throughput of each 

decoder and made the decoding more efficient. In this chapter, we will put emphasis on the 

parallelism. In chapter 3 and chapter 4, the way we used to break the forward and backward 

recursions for parallelism is to partition a whole codeword into many sub-codewords. But the 

length of sub-codeword is limited by the distance property of short block length. The distance 

property of a component code with constraint length 4 is getting worse when the length is 

below 100. That’s why we choose a sub-codeword length 128. Fig. 5.1 shows the architecture 

described in chapter 4, and the decoder with 16 processing elements achieves 1Gbps. The 

sub-codeword length is fixed to 128. If we would like to apply more processing elements in 

the design, we have to find some new approaches for parallelism. The problem returns to 

“How to decode one sub-codeword with multiple decoders?”  In the following section, we 

will discuss the approach mentioned in [17] and [18] for parallel decoding and show the 

innovation of our new architectures. 
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Fig. 5.1 The architecture of 1Gbps turbo decoder 

 

5.1 A Sectionalized Method for Parallel Decoding 
In Trellis-based turbo decoder, the forward and backward recursions connect the relation 

between symbols. The path metric values inherited from the previous Trellis stage make the 

parallel decoding of a codeword difficult. Even if applying the sliding window approach in 

fig.5.2, we still suffer from the connecting relation of the forward recursion.  

 
Fig. 5.2 Decoding procedure of sliding window approach 

5.1.1 A sectionalized method 

The solution of the inheritance of the initial value mentioned in [17] and [18] is to store 

the needed initial values in this iteration and to apply them in the next iteration. Fig. 5.3 

shows the detail procedure of the sectionalized method. In the first iteration, the initial values 

needed in the next iteration are not available, thus the initial values will be set to zero. After 

the first iteration, the needed values will be calculated and stored in the memories. Therefore, 

the initial values will be accessed from the second iteration to the last one. Fig. 5.4 shows 

different sizes of sectionalized Trellis. The codeword of total block length N can be 
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sectionalized into different ‘fixed-length’ parts. 4T in Fig. 5.4 means the sectionalized part 

consists of four Trellis stage, as well as 4 symbols. The 8T and 16T cases are the same as 4T 

and so on.  With the some sub-codeword length, the smaller section we partition, the higher 

parallelism we get. Note that if the N is getting bigger, the more storage we pay for. The 

storage of initial values consists of α and β, and the α and β initial values of different 

decoding round should be stored separately. For example, with a block length 64, state 

number 8, quantization 6 bits, and sectionalized to 4T case, total bits of the initial storage is 

768. 

 

Fig. 5.3 A sectionalized method 

 

 

Fig. 5.4 Different sizes of the sectionalized method 
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5.1.2 Parallel decoding with the sectionalized method 

When the recursion relation breaks by the initial storage method, it makes the parallel 

decoding of a codeword simple. Fig. 5.5 shows the comparison between the sliding window 

approach and the sectionalized method. The sliding window approach calculates the dummy β 

for the initial of the real β calculation. Besides, due to the forward recursion, this approach 

can’t apply multiple decoders to decode concurrently. On the other hand, the sectionalized 

method decodes concurrently by accessing initial values for α and β initial, and saves the 

calculation time and hardware of the dummy β in the sliding window approach. The 

comparison of the trade-off will be discussed in the following sections. 

 

Fig. 5.5 Comparison of different structures 

 

5.2 Proposed Architectures 
The sectionalized method partitions a codeword into several sub-blocks and makes 

higher order parallelism possible. This method can be applied on our design to partition the 

sub-codewords into some fix-length sub-blocks. The combination of these two methods 

makes the higher order parallelism possible and can be accounted a ‘two-dimension’ parallel 

decoding. The first dimension of the parallelism is called ‘inter-codeword’ parallelism, which 

is used and introduced in chapter 3 and 4. The processing elements decode different 

sub-codewords at the same time. The second dimension of the parallelism is called 
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‘intra-codeword’ parallelism, which makes the processing elements decode the same 

sub-codeword concurrently. The combined method makes all kind of parallel structures 

possible under the contention-free constraint for memory-based design. 

5.2.1  A two-dimension parallel architecture 

Fig. 5.6 shows a two-dimension parallel method, which can be considered as a fully 

parallel type decoder. The architecture can be applied on a highly parallel situation. The 

contention-free constraint for the interleaver design in the case will be much more 

complicated. The two-dimension contention constraint should be considered and the 

interleaver which meets the constraint is few and hard to find. Thinking of the IBP interleaver 

mentioned in chapter 3, it consists of two-stage permutations and it is contention-free in both 

two dimensions. The IBP interleaver can be applied in the architecture.  

  

 
Fig. 5.6 A two-dimension parallel method 

 

5.2.2 A intra-codeword parallel architecture 

A downgrade architecture called ‘intra-codeword parallel architecture’ is the version only 

in one sub-codeword dimension. In this architecture, we only have to consider the contention 
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problem in one sub-codeword. It makes things easier. This architecture decode one 

sub-codeword each time with multiple processing elements. The sub-codewords will take 

turns to the decoder and go back to the memories. 

 

Fig. 5.7 A intra-codeword parallel architecture 

 

5.2.3 Data hazards 

The data hazards due to the iterative decoding mentioned in section 4.1 idle the decoding 

procedure and degrade the utilization. The intra-codeword parallel architecture provides 

simple and efficient way to remove data hazards. Fig. 5.8 shows that the last few 

sub-codewords of the pre-decoding and post-decoding rounds in every iteration cause data 

hazards. The way to solve it is to arrange a proper decoding order of sub-codewords. In Fig. 

5.9, the first sub-codeword of the post-decoding round can be decoded at the time we 

decoding the last few sub-codewords, if we decode the first two sub-codeword of the 

pre-decoding round first. Because the extrinsic values needed by the first sub-codeword of the 

post-decoding round has been calculated and stored in the memories, we can decode it 

without and data hazards. Therefore, a proper arrangement of decoding order would avoid the 

data hazards and without any hardware overhead. However, the number of the sub-codewords 

must be large enough for arrangement if the decoding latency is long. 
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Fig. 5.8 Data hazards 

 

 
Fig. 5.9 A proper decoding order for data hazards 

 

5.3 Performance Analysis 
The sectionalized method partition a codeword by storing initial values. From Fig. 5.10 

to Fig.5.14, they show the performance of different section sizes. Obviously, the 64T and 32T 

almost have no performance loss with the same iteration. The loss for each case is less than 

0.01dB. However, from 16T to 4T, the performance is getting worse. The performance of 

BER convergence of the smaller section is worse than the bigger one.  
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Fig. 5.10 64T performance  
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Fig. 5.11 32T performance 
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Fig. 5.12 16T performance 
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Fig. 5.13 8T performance 
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Fig. 5.14 4T performance 

5.4 Proposed Method to Improve Performance 
Since the performance is getting worse and diverge with small section size, we propose a 

method to improve the performance. First, we would like to figure out how the performance 

degrades and then we can find approaches to improve it. The degradation of performance may 

be formed by two factors: the fist one is the initial zero in the first iteration. The second is the 

initial values from the previous iteration. The proposed method extend the path metric 

recursion to more Trellis stage, Which means we would like to accumulate more Trellis stage 

in this iteration. Fig. 5.15(a) shows that if we access the initial values from the earlier sections 

and accumulate more correct path metric in this iteration, the performance increase as long as 

we calculating a path metric long enough. The longer we accumulate, the better the 

performance is. Fig. 5.16 and Fig. 5.17 show the case of 8T extending to 16T and 4T 

extending to 8T, 12T, and 16T. The effect of the initial zero can also be found in Fig. 5.16 and 

Fig. 5.17. It is unapparent to claim that the initial zero is the major factor, but it is obvious that 

 57



extension improve the performance greatly.  

 
Fig. 5.15 A proposed method to improve performance 
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Fig. 5.16 8T extend to 16T 
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Fig. 5.17 4T extend to 8T, 12T, and 16T 

I 

5.5 Decoding Schedule 
As we mentioned in section 5.1, with a fixed block length, the smaller we partition, the 

more decoders we have. In this section, we would like to apply more decoders for a higher 

throughput. Fig. 5.18(a) shows the notation of decoding schedule. The circles and the squares 

denote the initial storage of α and β. The decoding schedule in Fig.5.18(b), (c) and (d) are the 

original 4T, 8T, and 16T cases individually. If we can make a proper decoding schedule, the 

number of decoders can be doubled for higher throughput. Comparing with Fig. 5.18(c) and 

Fig. 5.19(b), the number of decoders is doubled without any overhead, and the decoding 

latency is shortened. Moreover, the number of decoders in Fig. 5.19(b) is equal to the 4T case, 

which means that we achieve the 4T case throughput with 8T case overhead. The decoder 

number of 4T case can not be doubled because the design is based on radix 4x4 design. Fig. 

5.18(a) shows that one step of vertical axe means reading 4 symbols per cycle. The Fig. 5.20 
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shows the decoding schedule of the extension verision. 

 

Fig. 5.18 The original decoding schedule 

 

 

Fig. 5.19 example of the new 8T and 16T decoding schedule 
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Fig. 5.20 Decoding schedule of extension 

5.6 Hardware Comparison 
Table 5.1 and Table 5.2 list the comparison between original design and the proposed 

two architectures. It is obvious that the storage different will be affected by three parameters, 

N, n, n0, and M. the most important parameters is M, because the greater M makes the storage 

reduction larger. In other word, if we apply more processing elements in our design, the total 

storage compared with the original SW case may be reduced. If the case is a medium M, there 

will have some storage overhead. However, the reduction of ACS will save the area and gate 

count apparently.  
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Table 5.1 Hardware comparison of two-dimension parallel architecture 

 

Table 5.2 Hardware comparison of intra-codeword parallel architecture 
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5.7 Summary 
In this chapter, we modified and combined the concept in [18] with our original design to 

innovate a new two-dimension parallel structure. The performances with different section 

sizes have been analyzed for different applications. A method to improve the performance 

convergence is proposed with reasonable hardware cost. Two parallel architectures are 

proposed for different design constraints and modified hazard-free method is discussed in 

section 5.2.3. a double throughput scheduling method is proposed for highly parallelism. 

Meanwhile, the parametric hardware comparisons are list in Table 5.1 and Table 5.2 with 

example and they can be quick reviewed before design. This chapter facilitates the ultra high 

speed turbo decoder design and makes the parallel decoding complete.  
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Chapter 6  
Conclusion and Future Work 

 
6.1 Conclusion 

In this thesis, we proposed two turbo decoders with the parallel architecture which 

enables multiple processing elements to decode one codeword concurrently. The proposed 

IBP interleaver connects all processing elements with a easily implemented structure and 

avoids the limit of the forward and backward recursions.  

In the first design, we also introduce a high speed methodology for high radix decoder 

structure with a matching contention-free IBP interleaver. The combination of two stages 

ACS and the retiming technique efficiently speed up the decoding throughput with acceptable 

hardware cost. The energy efficiency of proposed turbo decoder is much smaller than that of 

the state of the art.  

In the second 1Gbps design, we modified the utilization of processing elements and 

made the decoding schedule more efficient with doubled throughput. The implementation of 

interleaver is more flexible than the previous design and the proposed 1Gbps turbo decoder 

can support multiple code lengths. The proposed 1Gbps turbo decoder is the most power 

efficient and the fastest turbo decoder chip which achieves 1Gbps throughput in the state of 

the art. 

In chapter 5, we proposed a combined method to make the parallelism work in two 

dimensions. The performance and the hardware cost with different condition have been 

analyzed and a new extension method and a new scheduling method are proposed to improve 

the performance and the throughput.  
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6.2 Future Work 
Up to now, the early termination scheme is regarded as the most efficient way to reduce 

the power consumption in turbo decoders. It uses several characteristics in turbo decoding to 

judge if decoding sequence is nearly correct before maximum iteration number is achieved. 

Once iterative decoding can be stopped earlier, then the power can be saved. In [37], an 

iteration stopping criterion has been modified based on the cross entropy between the a 

posteriori probabilities of two SISO decoders for each iteration. Some other simplified 

criteria was proposed in [38] and [39]. Most of these criteria make the decoder idle for saving 

power. The idea of utilization mentioned in chapter 4 will be useful for thinking of a new 

stopping criterion, which should be more precisely called “skipping criterion.” If we set a 

“skipping criterion” for all sub-codewords in our proposed intra-codeword parallel 

architecture, the decoder will skip decoding certain sub-codewords which is meet the 

“skipping criterion.” Therefore, the decoding procedure would be more efficient and the 

throughput will increase as the channel condition going better. 
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