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Student : Ming-Wei Lai Advisor : Dr. Chen-Yi1 Lee
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ABSTRACT

Turbo codes have received.a lot-ef-interest-since 90°s because of their excellent
performance. To applystutbo codes in high-speed digital communications, such as in
broadband wireless access based on-the IEEE 802.16 standard supporting data rates of up to
70 Mb/s, and in fourth generation cellular systems, which are expected to provide a data rate
from 20 to 100 Mb/s for high mobility, high throughput of turbo codes is a critical issue. The
recursive computations in the MAP-based decoding of turbo codes usually introduce a
significant amount of decoding delay. In this thesis, we present a total solution for a high
throughput application, including a contention-free interleaver design, a high radix turbo
decoder design, and the two-dimension parallel decoding architecture. The chip proposed in

this thesis is the most power efficient and the fastest design in the state of the art.
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Chapter 1
Introduction

1.1 Motivation

A communication system conveys a information source to a destination through a
channel. Fig. 1.1 shows a fundamental jblock diagram of traditional digital communication
system. Generally, the system can be divided into transmitter and receiver via a channel. The
main task of transmitter, including-source encoder,. channelyencoder and modulator, is to
transform the information into a form that can withstand the effect of noise over the
transmission media.And the receiver will réverse the signal transformation by demodulator,
channel decoder and source ydecoder:” Since theé- channel impairments such as noise,
interference and distortion may" ¢ause the error in the received signal, the channel encoder is
incorporated in the systemto add certain structural redundancy to the source codeword to
minimize the transmission errors. Although these redundant bits may lower data transmission
rate, the channel coding eliminate the effects of noise disturbances and thus improve the
performance, compared with an uncoded system.

With high coding gain provided by channel codes, the high performance channel codes
are widely used in some circumstances, such as low power transmission, high order
modulation, and complex channel conditions, in the recent decades. In channel codes, there
are three codes that provide marvelously high performance: block turbo code, convolutional
turbo code, briefly called turbo code, and low density parity check code. The block turbo code

is hard to implement due to the irregular Trellis structure. Therefore, the candidates for the



high performance criterion remain turbo code and LDPC code.

Information

Source

Information |

destination |

Source Channel

Encoder Encoder » Modulator
\
Channel
Y

Source Channel |

Decoder Decoder |+ Demodulator

Fig. 1.1 The block diagram of digital communication system

The comparison of turbo code and LDPC are listed in Table 1.1. From the point of view
with block length bigger than, 10000, the performance of LDPC would be better than turbo
code due to the property. of component.codes. With block: length smaller than 10000, the
performance of turbo code would be better dug to the girth problem of LDPC. The Parallelism
of LDPC is easier for implementation than turbo code. Most important of all, the routing
problem of LDPC is getting serious .as the throughput demand growing. Meanwhile, the
advanced process for high speed implementation, aggravates the routing congestion problem

of LDPC. Apparently, fora high speed application, the turbo codes would be more suitable

and area-efficient if we can increase the throughput of the turbo codes.

Table 1.1 Comparison of Turbo code and LDPC

LDPC Code Turbo Code
Performance >10000 Better Good
(Block length) <10000 Good Better
Throughput (Parallelism) Better Medium
Efficiency Medium Medium
Routing Difficult Medium




In this thesis, our work is motivated to design a high performance and high-throughput
turbo decoder. We attempt to achieve the target from two aspects: First one is to speed up the
decoding processing elements used in the whole turbo decoder by high radix structures and
perfect utilization of hardware. Second, we employ a well-designed interleaver fit for parallel
decoding architectures to reduce the latency caused by the interleaver and propose a practical
hardware architecture for the whole turbo decoder. Finally, we will propose a new point of

view of parallel decoding for MAP-based turbo decoder with the modest hardware cost.

1.2 Thesis Organization

This thesis consists of 7 chapters. In chapter 2, we’ll focus on interpreting turbo coding
and decoding algorithm and its relative techniques. Chapter 3 presents a total solution of a
high speed turbo decoder with a parallel architecture, including the design of a contention-free
interleaver, a high .radix “turbo decoder, and some techniques applied on our design.
Chapter 4 explains "how we improve-the utilization of the previous chip. A Modified
interleaver control for multiple ‘block lengths support will be introduced. In chapter 5, we
present the two architectures. A two-dimension_parallel architecture will be proposed.
Meanwhile, a simplified intra-codeword parallel architecture and the relative issues will be

discussed. Finally, conclusion and future work are made in chapter 6.



Chapter 2
Turbo Code

The parallel concatenated convolutional code (PCCC), named turbo code, was first
proposed by C. Berrou, A. Glavieux, and P. Thitimajshima in 1993[1]. It has been proved to
have a performance close to Shannon limit with simple constituent codes concatenated by an
interleaver. This new technique is now adopted in 3GPP, 3GPP2 and WiMAX standards due
to its excellent error correctipn ability. In this chapter; we’ll describe the principle of both
turbo encoding and turbo decoding methods:The sliding-window approach and the tail-biting

coding structure will also be interpreted here.

2.1 Principle of Turbo code

2.1.1 Turbo Encoding

The turbo encoder is composed. of twe tecursive systematic convolutional (RSC)
encoders, which are connected in parallel but separated by a turbo interleaver. The two RSC
encoders are also called constituent codes of the turbo code. The block diagram of the turbo
encoder is illustrated in Fig. 2.1. Note that the same input data are encoded by each RSC
encoder but in different order. In 3GPP2 standard, each input bit is encoded as one systematic
bit and two parity-check bits for each RSC encoder. Thus, the code rate of each component
encoder is 1/3. In order to increase the code rate of turbo code, the systematic bits of the
second RSC encoder are not transmitted. Therefore, the output encoded sequence should be

{X, Yo, Y1, Yo', Y1’}, and the overall code rate is 1/5.
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Fig. 2.1 Turbo.encoder, for:3GPP2 standard

After encodingrall input messages, we have to generatesseveral tail bits to set both
component encoders back to zero state..However, it’s impossible for a RSC encoder to return
zero state by inserting  dummy zeros into, the -encoder directly. Thus, a simple solution is
provided in Fig. 2.2. While encoding input messages, the switch is set to position “A”. Once
messages of whole block are encoded, the position: of switch is changed to “B” for three

additional cycles. This will force all registers to zeros and thus back to zero state.

» Systematic bit

» Parity-check bit
Ny
l/v\/
Input A -
W : Ny I . -
message \ @ V\/ > > >
BT | /I\‘)
NP

Fig. 2.2 Trellis Termination



2.1.2  Turbo Interleaver

The interleaver plays a very important role in turbo encoder. First of all, a proper coding
gain can be achieved with small memory RSC encoders since the interleaver scramble a long
block message. Besides, the interleaver de-correlates the input of two RSC encoders so that
iterative decoding algorithm can be applied between two component decoders. Theoretically,
the block size of interleaver is one of the major factors to lower the upper bound on bit error
probability of the turbo code system. The performance upper-bound of turbo code
corresponding to a uniform random interleaver has been evaluated in [9]. The result shows
that the bit-error-probability upper bound of turbo code is approximately proportional to 1/N,
where N is the block size of turbo interleaver. The factor.“1/N” is also called the interleaver

gain.

2.1.3 Turbo Decoding

A general idea for iterative turbe-decoding-is-illustrated in Fig. 2.3, where rs is the
received systematic information, I'pr 1s the received parity information generated by the first
RSC encoder, and ry; is the received parity information.generated by the second RSC encoder.
The iterative turbo decoding consists of two constituent decoders, which are soft-in/soft-out
(SISO) decoders concatenated serially via one interleaver and one de-interleaver. An
additional interleaver is used to interleave the input systematic information and then provides
the interleaved data to the second SISO decoder. Two component decoders can be
implemented based on either soft-output Viterbi algorithm (SOVA) [21] or maximum a
posteriori probability (MAP) algorithm [2], which will be discussed particularly in the next
section. During iterative decoding process, each constituent decoder delivers the extrinsic

information Le(u) which is taken as a priori information for the other constituent decoder.

That is L,,(u,)=L,,(u,) and L,,(u)=L,(u,). As the number of iterations increases,

6



better coding gain is expected. However, the correlation between two SISO decoders is also
raised up. Therefore, there is no significant performance improvement if the number of

iterations reaches a threshold.

LeXZ(u) De_ Lexz(u)
-
Interleaver
Lexl(u) Lexl(o)
—p ——| Interleaver p——»
. SISO q SISO ~
s Decoderl | L,(u) Decoder2 | L,(U)
gy —T— — > —
»| Interleaver

p2

Fig. 2.3 Turbo decoding flowchart

2.1.4 Error floor'effect

Although turbo €oding provides-an-excellent-performance, the bit-error-rate certainly
starts to decrease quite slowly at high signal-to-noise ratio (SNR). This phenomenon can be
observed in [19]. It is due to relativesmall free distance of turbo codes, and is called an “error
floor” [22]. Consider the relation of the minimum free distance and the bit error probability in

turbo coding, which can be expressed by

PbocQ[ 2dfreeR5] 2.1
NO

where iree is the minimum free distance and Ep/Np is the SNR. At low SNR, the major part of
errors can be corrected by iterative decoding since systematic information and parity
information can be regarded as highly independent events. However, as the channel provides
a reliable transmission, the dependency of the systematic and parity information grows up and

the interleaver does little contribution on iterative decoding. Thus, the error correction ability



is limited on the weak constituent code only. To overcome this issue, we can increase the
interleaver size to lower the position of the error floor or concatenate a block code, e.g. BCH

code, as an outer code to remove the left error bits. For more details, please refer to [9] [23].

2.2 Decoding Algorithms for Turbo Code

It has been proved that the MAP algorithm is the optimal decoding method for turbo
code while comparing with SOVA [10]. Unlike Viterbi algorithm which utilizes maximum
likelihood (ML) algorithm to find the codewords with minimum error probability, the MAP
algorithm minimizes the symbol (or bit).etror probability. In this section, we’ll focus on
introducing the turbo decoding methods based on" MAP algorithm [2][3]. Although SOVA is
also one of the commeonly used techniques for turbo decoding, we’ll skip it since it’s not
adopted in our proposed design. To understand more detail about SOVA, please refer to [21].
And some comparisens of MAP algorithm and SOVA applied in.turbo code system are shown

in [10].

2.2.1 The MAP algorithm

The main idea of MAP algorithm is to compute the log-likelihood ratio (LLR) of the

transmitted information bit ux conditioned on the received information ry for 1 =k=N, where

N is the block length of encoded message.

. P(u, =+1|r)
L@, ) =L, |r)=log—*——~2 2.2
(B0 =L I =log = (2.2)
Here r is the vector of received soft values, and can be represented as [ry,r, ..., I'y] where n is

the number of output bits for each encoded bit in the constituent code. Let’s consider the
trellis diagram of turbo code in 3GPP2 standard, which is shown in Fig. 2.4 as an example.
Note that the solid lines represent the transitions corresponding to an information bit Uk of -1,

while the dotted lines represent the transitions corresponding to an information bit uy of +1.
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Then, the equation can be further expressed as

2. Pseaisr)

P(Uk =+1’ r) =]og U =+1 )
P(u,=-11]r) Z P(sk-l’sk!r)

u,=-1

(2. 3)

L(G,) = log

where the numerator and denominator are the sum of joint probabilities for all existing
transitions from state Sy.1 to state Sy that corresponding to an information bit Uy of +1 and -1

respectively.

Backward Direction
for computing B

Fig. 2.4 Trellis diagram of turbo code in 3GPP2 standard

Assume the encoded data is transmitted through the discrete memoryless channel (DMC), and

then the term P(Sk.1,S¢F) can be decomposed as three terms:

P(Sk—lﬂskﬂ I’) = P(Sk—l’ rj<k)' P(Sk’ I | Sk—l)' P(rj>k | Sk)
| — —_— | —
(2.4)

= @%10k1) @7k ka8, (S

Here e”®™) is the joint probability of state s and received symbols r; from the beginning



of the block up to time index “k-1”. Similarly, % is that of state Sy and received symbols
rj from the end of block back to time index “k”. By shifting the value “k”, it can be perceived

that « is the forward recursion of the MAP algorithm, and can be formulated as

eak(sk) — Ze;’k(sk—lask) ,eak—l(sk—l) ) (2 5)

Sk-1
The same as above, the backward recursion £ can be formulated as

eﬂk—l(skfl) — Zeyk(sk—lvsk) ‘eﬂk(sk) ) (2 6)

Sk
Note that since the trellis of turbo code diverges from state zero and converges to state zero,

the initial condition of the forward recursion and backward recursion should be set as

%) — 1) fors =0
. P o 2.7
g™ =0, otherwise
and
eﬂN (sn) 1; - for Sy = 0 (2 8)
e/t =07 otherwise .

For any existing transitions from:Si.; to-Sgs-the-branch-transition probability €’**) can be
further decomposed as
eyk(sk—l’sk) = P(Sk, rk | Sk_l)
=P(s, '5.)- P(r 5158 (2.9)
= P(uk)' P(rk | uk)
Here, the term “P(ux)” is well-known as a priori probability. According to the definition of

LLR, which is

P(u, = +1)

L(u,) =log P, =—1)

: (2. 10)

P(uk) can be rewritten as

10



—L(u)/2

_ € L(ug )y, /2
_1+e"-(uk>'e o (2. 11)
— Ak _eL(uk)~uk/2.

where the term Ay is equal for all transitions at the same time index, and thus will cancel out

in (2. 3). On the other hand, the value of P(r¢|uk) is dependent on channel characteristic. For

an additive white Gaussian noise (AWGN) channel, the LLR of ry conditioned on Uk can be

expressed as

P(r |u, =+1
L(rk|uk):10g—( [U =+D)
P(rk |Uk =-1)
{ E
H eXp(_is(rk,v - Xk,v)z)
v=l1 No
=log " 5 (2. 12)
H exp(_is(rk,v w Xk,v)z)
F= Ny
il
n
= Z Lc } rk,v : Xk,v

v=1

where L=4E¢/N, and'is called the ichannel reliability.. Here, Xiy 18 the v-th transmitted symbol
while encoding Ux. Forgsystematic cedes, Xi-is-equal to Ux. Now we can obtain the value of

P(r]uk) by using the technique in(2. 11) but substitute L(Ux) with L(ri|u).

1 1<
P(r [u,) =B, ‘eXP(E Lcrk,luk +Ez Lcrk,vxk,v) (2. 13)

v=2

For the same reason in (2. 11), B will also cancel out in (2. 3). Combining (2. 11) and (2. 13),

the i in (2. 9) can be reduced to

s = A LB, 'exp(%((l—crk,l +L(Uy))- Uy +Z Lcrk,vxk,ij' (2. 14)

v=2

Substituting (2. 5), (2. 6), (2. 14) into (2. 4), we can derive the a posteriori LLR in the form of
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Z @%-1(81) | @7k (S8 eﬂk(sk)

(S ’fk)
AN U=+
L(uk) - lOg Z eak—l(skfl) . e}’k(sk—lvsk) . eﬂk(sk) (2 15)

(Sk-1S¢)
u=—1

= Lcrk,l + L)+ L, (uy)

where

lil-crkvxk,v

Z eakfl(skfl)_ezv:z ’ ,eﬁk(sk)

(Sk,pfk)

U=+

L, (u,) = log < . 2. 16)

> Lcr,vx v

3 e 2 RV YN

(Sk-1-8¢)
U =1

The term Le(Uk) is called extrinsic information since it’s a function of the redundant

information that comes from the encoder. It. removes the information about the systematic

input and a priori information from-L(U,:). Therefore, this term.is useful to estimate a priori

probability for the next component decoder, and great performance improvement in iterative

MAP decoding can beachieved.

2.2.2 The Log-MAP algorithm

It can be figured out easily that Max-Log-MAP algorithm is a sub-optimal solution for
turbo decoding since an approximation of (2. 21) is used to reduce the complexity of MAP
algorithm. This problem can be solved by Log-MAP algorithm [24]. It employs the Jacobian

algorithm

log(e® +e”) =max(5,,5,)+log(1+e %

2. 17)
= max(é‘laé‘z)—’_ fc(|51 _52 )’

where fi(|d1-0,|) is a correction function, and thus the performance can be improved. It has

been proved that (2. 21) can be computed exactly by a recursive operation of (2. 25) [10].

12



log(e® +e% +---+e)=log(A+e”), A=e’ +e” ...4ei =g’

= max(log A, 5,)+ f,(log A—6,|) (2. 18)
=max(3,6,) + f,((6-6,))
Substituting (2. 18) and (2. 19) into (2. 25), the forward and backward recursions can be

represented as

o (S¢) zgnaf*(ak—l(sk—ﬂ‘w/k (Sk—l’sk)) (2. 19)

k—1>Yk

and
B (5 =max* (B,(5) + 7(51:50) 2. 20)
where the max*(.) operation is defined as
max*(8;,5,) = max(3,, 5, ) +log(-+e ). (2.21)
Finally, L(0,) can besebtained by

L(0,) = max >I<(0‘k—1 (S 7 (S 158 + B (Sk))
(Sk155x)

K155k
U =+1

(2. 22)
— max *(ak_l(Sk_1)+7k (Sk_psk)"l'ﬂk (Sk))'

(sg1:5¢)
17

The performance of LogsMAP algorithm is identical to that of MAP algorithm. However,
the complexity is also increased compared with Max-Log-MAP algorithm since computing
fo(.) still involves complicated exponentiations and multiplications. Thus, the values of fc(.)
are usually stored in a pre-computed table and Log-MAP algorithm can be implemented by
table look-up. It has been found that excellent performance can be obtained with 8 stored
values and |d1-0,| ranging between 0 and 5, and no improvement is achieved with a finer

representation [10].

2.2.3 The Max-Log-MAP algorithm

As we can see, the MAP algorithm involves too many exponentiations and
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multiplications. These are quite complex for hardware realization. Thus, an approximation of
MAP algorithm termed Max-Log-MAP algorithm [24] was derived for simple implementation
of MAP decoders. Instead of calculating €<, e*, and e’ directly, all computations are
done in logarithm domain. Here we define u, o, and fk as transition metric, forward path

metric and backward path metric respectively. y# can be formulated as
7 (S5 S¢) =1og P(s,, T [5,) - (2.23)
Similarly, referring to (2. 4), ok and f can be expressed as

oy (8,) =log P(sy, 1) (2.24)

and
B (8r) = log P(Fgee] s,) (2.25)
respectively. After substituting (2.-17), (2=18); and (2, 19), L(U,) in (2. 15) can be re-written

as

Z exp (@i (s )+ 7 (8580 + B (5))
(Skil_;fk)
L(4,) =log kz 185E o AL (2.26)

(Sk-1-5)
U =-1

By utilizing the approximation of

log(e” +e% +---+e%)x max(d,,0,,+,5,), (2.27)
L(G,) can be further simplified to

L) = (gnasx)(ak—l (S + 7 (8>S + B (8¢ ))
ukélilk

(2. 28)
— max (ak—l(sk—l)"'?/k (Sc_15S) + By (Sk))-

(Sk-155¢)
U1

This computation consists of forward and backward recursions that repetitively compute the

ok and S, and can be expressed by

()= gnaji(ak—l (Se) + 74 (Sk—l’sk)) (2.29)

k—1>Yk
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and

B (8y) :rsrkl,%:((ﬂk (S)+ 7 (Sk—l’sk))' (2.30)

Both equations are add-compare-select (ACS) operations, which are similar to the path metric

updating of Viterbi algorithm.

2.2.4 SNR sensitivity of Max-Log-MAP and Log-MAP algorithm

Referring to (2.13) and its followed deductions, it’s evident that both MAP and log-MAP
algorithm requires SNR estimation to obtain the value of channel reliability, i.e. L.
Unfortunately, accurate estimation. cannot be achieved easily. Several papers have discussed
the effect of SNR mismateh'in turbo decoding. In [25], the.simulations show that about -3 to
+6 dB SNR estimation offset is tolerable before significant performance degradation.
However, Max-Log-MAP algorithm is able to provide a SNR ifidependent scheme if a priori

information is initialized with a reasonable value, such as all zero’s for each state [26]. Due to

the linearity of max(’) operations; the term g can-be canceled out while computing L(U, ).

The comparison of Max-Liog-MAP and Log-MAP algorithm under different SNR estimation

offsets was made in [26].

Although Log-MAP algorithm provides the performance better than that of
Max-Log-MAP algorithm, it suffers the risk of serious SNR mismatch offset. Thus, channel
characteristics play an important role in practical implementation. It has been concluded in
[26] that if channel characteristics change over time, the Max-Log-MAP decoder is suitable to
be the constituent decoder in turbo decoding. Otherwise, Log-MAP decoder should be

preferable in the aspect of coding gain.
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2.3 Sliding Window Approach

As what we described in the previous section, the MAP-based algorithm (including MAP
algorithm, Max-Log-MAP algorithm, and Log-MAP algorithm) requires both forward and
backward path metric to calculate the log-likelihood ratio. Since the forward and backward
recursions start from different initial point, the entire block message has to be received and
stored for computing forward and backward recursions. Furthermore, we have to store one of
the path metrics of forward or backward recursion and wait for another. These restrictions
enlarge the memory requirement for hardware implementation of turbo decoder. For example,
the maximum block length of 3GPP standard.is 5114, which means 5114 codewords and path
metrics should be stored. Besides, long output latency is.also introduced. It limits the speed
and throughput of turbo.decoder design.

The main problem is that long-block length' can not be divided into several shot
sub-blocks immediately, since the lack of boundary path metric of sub-blocks in opposite
direction of input sequences will degrade the performance. Thus, a sliding window approach
was proposed in [27] and later 'on in, [28] torovercome this drawback. This approach utilizes
the fact that the backward path metrics can be highly reliable even without knowing the initial
state if the backward recursion goes long enough. Fig. 2.5 and Fig. 2.6 shows the process of

this approach in both directions and the detail operating flow is described as follows.
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Fig. 2.5 The process diagram of sliding window approach in the forward direction

First, the received codeéword is divided. into many sub-blocks, with a sub-block length of
W. W is called the convergence length with typically five times the constraint length of the
encoder. For each sub-block I, the initial path metric values arevinherited from the neighbor
sub-blocks for both ‘forward and backward recursion operations. Note that in Fig. 2.5 the
dummy backward recursion £ is employed to obtain the initial path metric values for the true
backward recursion /. Although the initial condition for £ is unknown except the last

sub-block, we introduce the equal:probability condition for £ values:

i 1 .
ﬂl(xt‘):ﬁ, forallj=0,1,...,M (2. 31)
] . . ) . :
where X{ denotes the path metric of j-th state at time t, the last Trellis section of £ , and M
is equal to the total state number. During the forward recursion o proceeds in the i-th
sub-block and stores these values into memory, the dummy backward recursion £ is
performed in the i+1 sub-block concurrently. As soon as £ computation is finished, the initial

metrics in the i+1 sub-block are available for /£ metrics in computation, and the

corresponding branches metrics in the i-th sub-block.

17



Fig. 2.6 shows the process diagram of sliding window approach in the backward
direction. The operation flow is similar to the forward direction type except for two forward

recursions « and one backward recursion £.

«—W—>
i i+1 i+2 i+3
o 4 a,
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b= e I.|> < g
| | I I I I I
ts — | | =oeeeeeees > | < | > | L(u) | |
I o, | lhray, | | | |
o= | et | 8 iy L) | ! |
| | I JL I I I
Vo | b ) | ! !

Fig. 2.6 The process diagram of sliding window approach ifi'the backward direction

2.4 Tail-Biting Approach

Tail-biting convolutienal codes are first developed by G. Solomon and H. C. A. van
Tilborg[5] and recognized as ‘equivalent to quasi-cyclic block codes.[6] From the strict
definition of convolutional codes (CCs) it is clear that CCs can only be applied to
semi-infinite sequences, i.e., encoding starts at time t = 0 in the all-zero state and goes on
continuously. But almost any communication system is block-oriented, we must find methods
to obtain finite length code blocks of CCs. The standard solution is to add same bits at the tail
of information sequences to force the encoder back to the all-zero state. This method can
avoid the weak error protection for the last codeword bits, however it causes same rate loss
due to tail bits.

Tail-biting avoids the rate loss without suffering from degraded error protection at the

end of the codeword. With tail biting technique, the starting state of encoder is not necessarily
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the all-zero state. It can also be any one of the other states. The fundamental idea behind

tail-biting is that the starting state should be the same as the ending state after encoding the

information sequence, i.e., X, =X, . In the Trellis representation of tail-biting codes only
those paths that start and end at the state are valid codewords.

2.4.1 Encoding tail-biting codes using feedback encoders

Let us consider a feedforward encoder first. It is obvious that we only have to consider

the last m input Ko-tuples of information sequences to fulfill the tail-biting boundary

condition X, = X, . But the situation is more complicated for feedback encoders. The last
encoding state X, depends omsthe entire information veetor U= (U,,...,U,_,). Thus, we must

calculate for a given information vector U the initial state X, #that will lead to the same state

after N cycle. To solve:this problem, we consider the state represéntation:
1
X, = AX, + Bu, (2. 32)

To solve the iterated function by substitution, we can find that the complete solution of (2.32)

. . . [zi] . [zs]
equals to the superposition of the.zero-input solution X{ #and the zero-state solution X; .

t—1
. t (t-1)- T _ 1] [zs] _ t [zs]
X =A%, + ) ATITBU = x M = Alx + X . 33)

7=0

If we demand that the state as time t=N is equal to the initial state X,, we obtain from (2.33):
[zs] _ N
Xy =(AT+1)X, (2. 34)
Where | denotes the m-by-m identity matrix. If a feedback encoder with certain information
length N can provide an invertible matrix (A" +1_), the correct initial state X, can be

calculated by knowing the zero-state response X*'.

The encoding process of tail-biting convolutional code shown in Fig. 2.9 is divided into
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two steps:

First, the encoder starts from the all-zero state with given information sequences to determine

the zero-state response Xy°'. By knowing the zero-state response, we can calculate the
corresponding initial stateX, by (2.34). Second, the encoder starts from the correct initial

state X, and a valid codeword results.
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Fig. 2.7 The encoder process of tail-biting convolutional code

Since the matrix (A" +1_) has to be invertible, not every code length is legal with a

given feedback encoder. Moreover, some feedback encoder can not be tail-biting. Some detail

discussion can be found in [7], [8], and[9].

20



Chapter 3
The High Speed Turbo Decoder
Design |

3.1 Introduction

Presented by Berrou et al. in 1993 [1], turbo codes have been recognized as a milestone
in the channel coding theory. Du¢' to their outStanding error-correcting capabilities, turbo
codes have been highly appreciated in wireless communications, where signal-to-noise ratios
(SNRs) are generally low. Two commonly used soft-input-—soft-output (SISO) turbo decoding
algorithms are maximum aposteriori probability (MAP) algorithm [2] and soft-output Viterbi
algorithm (SOVA) [4]. MAP-based turbo.decoders are known toshave better performance than
SOV A-based turbo décoders while'havingsslightly-larger complexity.

Many researches afe proposed to improve the.speed” of turbo decoder. Bickerstaff
proposed a high radix decoder [11];Bougard introduced a full-duplex design [12]; Urard
implemented a 5 iterations series turbo decoder [16]. Their works increase the throughput by
refining the architectures of the SISO decoders. The highly parallel structure might be a
solution to substantial improvement, but there are two difficulties that have to be overcome.
One is the memory contention problem resulted from high-radix and multiple processing
elements; the other is the critical path resided in the add-compare-select (ACS) circuit. We
proposed a high speed solution that resolves these two problems by using a novel interleaving
methods and modifying the MAP decoders. Some interleaving algorithms with
contention-free properties have been published [9], and our design adopts the inter-block
permutation (IBP) interleaver [13]. Then we exploit a high-radix MAP decoder with shorter
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critical path to increase data rate [14]. The proposed turbo decoder provides both high
throughput capability and outstanding energy efficiency while maintaining equivalent

performance as 3GPP turbo code.

3.2 Decoder Structure

For high speed turbo decoder design, there are generally two types of architectures
proposed in the state of the art. Fig 3.1 shows these architectures, the series architecture and
the parallel architecture. The series architecture duplicates the same number of processing
elements as iterations and each processing element decodes the codeword for only one
iteration. After decoding, each processing.element will pass the extrinsic value to the next
element. This architecture is" easy to implement‘ bu% the hardware cost is very high. The
parallel architecture decodes one codewq;cl} with rriultiple decoders. This architecture is more
flexible since number of decoders varies fr;oni diffgf;:nt speciﬁ(;ations. The major problem of
this architecture is tha£ how to decode a block Ciocheword with mﬁitiple decoders. The forward
recursion and the backward recursion connect the whole codewor‘d, so we should apply some

techniques to separate thems. In the followi‘ng,’ we-will introduce our proposed design using the

parallel architecture to solve'this problem.
Serial Architecture

n iterations

|
Stage 1 Stage 2 Stage n

APP1 APP1 APP1
Memory > Memory > cee E> Memory
| app2 | [aPP2 | [app2 |

Parallel Architecture

APP 1 Memo
-— <:> Control <:> 2
APPF 2 ‘ Memory

APF3 |

Memory

Fig. 3.1 Block diagram of proposed turbo decoder
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Fig. 3.2 shows the block diagram of proposed decoder, which consists of 32 parallel
MAP decoders and 32 parallel memory sets. We separate a codeword into 32 sub-codewords
with length 128. Each sub-codeword is assigned to one decoder and decoded separately.
These sub-codewords are connected by a well-designed inter-block permutation (IBP)
interleaver. This method avoids the forward and backward recursion problem while using the
parallel architecture. The decoding process is described as follows: first, each memory will
collect a 128-bit sub-codeword from input buffer till the whole 4096-bit codeword is received.
The memory stores the received symbols and extrinsic information, which is divided into two
banks to support the radix-4 design. Second, the 32 memories will deliver the required data to
the 32 MAP decoders through. the IBP network, iwhich is part of the interleaver. The
interleaver is implemented with the address. generators inseach memory and the network
controller. The MAP ‘decoders perform the primary decoding procedures, and each one is
responsible for 128 buts. ‘After 8 iterations, this'design would output the decisions of current

block and start to decode next block.

Inter-Block -Permutation-Network

MAP x 32 o

Inter-Block Permutation Network

Fig. 3.2 Block diagram of proposed turbo decoder
3.3 Interleaver Design for High Speed Turbo Code

3.3.1 Contention-free Interleaver

To increase throughput, a log-MAP decoder is parallelized by dividing a size-N trellis
23



into M size-W windows (N = MW) and employing M synchronous MAP-based decoders with
M separate memory banks. Interleaving latency is eliminated by writing the M values
generated each clock cycle directly to their interleaved positions. However, if the interleaver
is not designed carefully, two or more MAP-based decoders may require access to the same
memory bank on a given clock cycle, resulting in a memory contention. Moreover, a high
radix decoding structure also suffers from the memory contention problem while accessing
multiple codeword symbols from memories. Fig 3.3 shows an example of memory contention
problem in a parallel decoding structure. We store a codeword sequence in order in four
different memory banks. It is obvious that it is a contention-free access at all different timing
with pre-permutation order. But it will have the mémory contention problem if we apply
different interleavers. The post-permutation l.is.a contention-free interleaver design. Because
every time we access four symbols, they come from*different memory banks. The interleaver
design of post-permutation 2 suffers two contention collisions attime t, and t3.

Time to tl tz t3

L |

Pre-Permutation EEE
DIEBIEIRIEICIED & o 10 11121314 15

12 13 14 15

Post-Permutation 1

[« RERT 7 o NG =12 [ B [l

—
©llw
-
sl o
—
[~

N

Collision
Post-Permutation 2
14“ 8 n1zﬂﬂn 9 13“10 15“11

Fig. 3.3 Example of a contention-free permutation

24



3.3.2 IBP Interleaver

The IBP interleaver in [13] favors both performance and throughput of turbo decoder.
Such method guarantees no hazards when multiple MAP decoders try to access multiple
memories concurrently. The IBP interleaver consists of two steps of permutation: intra-block
permutation and inter-block permutation. The first step rearranges the symbol sequences in
each sub-block with the same rule. The second step swaps the sequences between blocks
periodically. The destination can be derived by executing bit-wise exclusive-or between the
original block index and the IBP parameter. Fig. 3.4 demonstrates an example of IBP
interleaver with four sub-blocks. First, all sub-blocks are individually reordered by right rotate;

Second, they exchange data among these permuted sequences.

sOO sO1 SOZ sO3 s10 s11 s12 s13 sZO 821 s22 s23
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Fig. 3.4 An example of IBP interleaver with four sub-blocks

3.3.3 Butterfly network

The butterfly network is designed to perform the inter-block permutation in the IBP
interleaver. This structure also avoids the memory contention problem between sub-blocks
and reduces the circuit complexity. Fig. 4 shows the corresponding structure for above
example illustrated in Fig. 3. The network is divided into two levels, and each level has one

external signal to control the multiplexers. SO and S1 will define four possible connections. In
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general, the butterfly network links N memories to N MAP decoders by log,N levels of
switches. Each level requires 1-bit control signal to manage its N multiplexers; the total

log,N bits establish N possible connections.

=
wm
=

MEM MAP
4

Fig. 3.5 A 4x4 butterfly network for IBP interleaver

3.3.4 Double prime interleaver

All the data inside each block will be divided into two groups and be stored in the two
separate memory banks. When radix-4 MAP decoders request two symbols at each cycle,
these two symbols must be  derived from different memory;banks. This is another contention
problem that should be aware of. Our design uses the double prime interleaver to resolve this
problem. The double prime interleaver is constructed by two prime interleavers whose

function are expressed by

i ((L%Jx p) mod |2_)><2+1, i is odd
z(l) = { : L.
((L%Jx p+s) mod E)XZ’ I is even G. 1
This L is the block length, and it must be an even number. Note that p must be relative
prime to L/2 and s is a constant shift. Both the interleaver and de-interleaver could be
expressed in (3.1) with different parameters. Double prime interleaver with well-searched

parameters would outperform the interleaver in 3GPP turbo coding. Most important of all, an

well-designed double prime interleaver is an fully contention-free interleaver for certain
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sub-block length. For example, we can choose any factor of the sub-block length as the
parallel access number and the memory bank number. It is guaranteed that a well-designed

double prime interleaver is a contention-free interleaver.

3.4 High-Throughput MAP Decoders

3.4.1 Retimed radix-2x2 ACS unit

For trellis-based decoders, the branch number of conventional high-radix design
increases exponentially however the branch number of the two-stage structure increases
linearly. A two-stage ACS is introduced in [14] to ease the area overhead of high-radix ACS.
The complexity of ACS unit depends on the branch number, so our design prefers radix- 2 x 2
ACS to radix-4 ACS. But;the critical path of two-stage structure is longer than conventional
structure. The recursive property of path metric would make the pipelining method inefficient
here, however, the critical path can be reduced by our proposed rétiming method.

It is obvious that the ACS unit could.not €xecute compare-select operations until addition
results are ready; such data dependeney-sestriets-the-operating frequency. To eliminate the
dependency, the data path of ACS unit must be modified.:So the proposed decoder applies the
retiming technique, and Fig. 3.6 demonstrates.the procedure of a retimed radix-2x 2 ACS. The
first step shown in Fig. 3.6(a) is retiming of registers. Move and duplicate the registers ahead
of the compare circuits, then computation order is rearranged from add-compare-select to
compare-select-add. The registers have to store the summation of path metric and branch
metric rather than only path metric. The second step shown in Fig. 3.6(b) is relocation of
adders. Move and duplicate the adders ahead of the multiplexers; now the compare-select and
addition could execute concurrently. The modified ACS unit is shown in Fig. 3.7, where the
critical path becomes two consecutive compare-select operations. It would cause extra area
overhead because of double registers and double adders, and the improvement of the

radix-2x2 architecture could compensate for this loss. The relocated method can accomplish
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not only high-speed but area-efficient solution.
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Fig. 3.7 A retimed radix 2x2 ACS unit
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3.4.2 The circuit for log-likelihood ratio calculation

Our design adopts the modulo normalization to avoid over- flow of path metric [15].
This method requires only one more bit in the ACS unit and a simple modification inside the
LLR unit; there are no specific circuits for normalization in ACS unit. Only the differences
between forward path metrics and the differences between backward state metrics are
significant in modulo normalization, so the LLR unit has to use these differences to calculate
the log-likelihood value. Our design rearranges the computation order of log-likelihood value
from circuit in Fig. 3.8(a) to circuit in Fig. 3.8(b). Although the two circuits have the same
function, but original circuit may result ;in.overflow due to the limited data width. The

modified circuit could guarantée the correctness and cause.no extra path delay.
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(a) Original (b) Modified

Fig. 3.8 The circuit for log-likelihood calculation

3.5 Simulation Result and Chip Implementation

The proposed turbo code with code rate 1/2 could decode 4096 bits after 8 iterations, and
the implementation applies maximum log-MAP algorithm with a scaling factor 0.75. The
other specifications are listed in Table. 3.1. Fig. 3.10 and Fig. 3.11 shows the performance
comparison between the proposed code and 3GPP turbo code. The floating point and the fixed
point simulation result are both competitive to the result of 3GPP standard. However, the

proposed turbo design has better distance property due to the interleaver design than the 3GPP
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standard. Obviously, the 3GPP standard suffers from the error floor phenomenon more than

the proposed design.
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Table 3.1 Turbo Decoder Specification

Algorithm

Max-Log MAP

ACS unit

Radix 2x2 (retimed)

Code polynomial

1+D+D°
1 2 3
1+D°“+D

Interleaver IBP interleaver (p, s) = (15, 23)
Sliding Window 32
Code Rate 1/2 (punctured)
Block length 4096(128 x 32)
Quantization 6.bits (3.3)
iteration 8
Scaling Factor 0.75
Note Tail-Biting
Technology 0.13um 1P8M
Clock rate 250MHz /w DLE 80MHz/wo DLL *
Throughput 500Mbps 160Mbps *
Gate count 2.67TM
Core Area 17.8 mm2
power 762mW 275mW *
nJ/bit « iteration 0.19 0.22*

The decoder chip is fabricated with a 0.13um 1P8M CMOS technology, and the die
photo is shown in Fig. 3.12. The core area is 17.8mm” with 2.67M gates count, including the

3.33mm” memory block. A delay lock loop (DLL) circuit is applied to generate internal clock
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source as four times the external frequency. The design could operate at 250MHz with the
help of DLL during post-layout simulation, due to the relocation technique. However, the
DLL could not work as expected during measurement. The test chip could achieve 160Mb/s
and 275mW power consumption with 1.32V supply. For the decoder with 8 iterations, the
energy efficiency is 0.22nJ/b/iter. Table II lists the comparison of the proposed code with
other published works, and the proposed design has the optimal energy efficiency

[11][12][16].

Output Buffer

32 MAP
Decoders

Fig. 3.11 Micro photo of proposed turbo decoder chip
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Table 3.2 Comparison with Other Turbo Decoder

proposed [11] [12] [16]

Technology 0.13 um 0.18 ym 0.18 um 0.13 um
Clock rate 80MHz 145 MHz 160 MHz 352 MHz
Throughput 160Mbps 24 Mbps 71.7 Mbps 352 Mbps
Block Size 4096 5114 384 2048
Core Area 17.8mm’ 14.5 mm’ 7.16 mm’ 10 mm’

power 275mW 1450mW N/A 2464mW

Energy 0.22 10.0 9.7 1.4
Efficiency nl/bit - iter nl/bit « 1ter nl/bit + iter nl/bit « iter

3.6  Summary

The proposed turbo decoder with the parallel architecture _enables multiple processing
elements to decode one codeword concurrently.Lhe.proposed IBP interleaver connects all

processing elements in the parallel architecture and avoids the limit of the forward and

backward recursions. We also introduce a high.speed methodology for high radix decoder

structure. The combination of two stages ACS and the retiming technique efficiently speed up

the decoding throughput with acceptable hardware cost. The energy efficiency of proposed

turbo decoder is much smaller than that of the state of the art.
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Chapter 4
The High Speed Turbo Decoder
Design Il

In chapter 3, we have introduced a power efficient turbo decoder design with 32
processing elements. The throughput of the proposed design is about S00Mbps in pre-layout
simulation. The critical path of the proposed design is the ACS units. However, the
throughput of a radix 2x2 ACS_ unit working under 250MHz is 500Mbps and the total
throughput of the decoder.Should be 1Gbps with 32 processing elements under 8 iterations.
The total throughput is réduced by the following two issues:

e  One block is caleulated twice due to the tail-biting. The caleulation of a recursion of first
block introduces a dummy: sub-block and teduces the throughput.

e Due to the iterative decoding and the interleaver of turborcode, the decoder must stop
and wait until the processed data stored in the memories; This data hazards happen twice
per iteration between two different decoding rounds.

These issues will be discussed in detail in the following sections. We will propose
methods to solve these problems and implement a 1Gbps high throughput and power efficient

turbo decoder.

4.1 Introduction

4.1.1 Data Hazards

There is an iteration bound occurred in the MAP-based decoder structure, so the forward
and backward recursion in a turbo decoder is always the critical path and occupy a large area

in the implementation. This is a main reason that the hardware of the forward and backward
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recursion is always reused. The cycle-based decoding procedure is shown in Fig. 4.1. This
example shows a sub-block size 16 and a radix 4x4 decoder decodes 4 symbols each cycle. It
shows that the forward and backward recursion modules and the LLR module are reused for
four cycles. Furthermore, the pipelined method can be used while decoding different
sub-blocks because there is no data dependency between different sub-blocks in the same
decoding round. Fig. 4.2 shows the case we proposed in chapter 3 and a data hazard happens
while decoding. The data dependency results from the interleaver between sub-block 4 in the
pre-decoding round and sub-block 1 in the post-decoding round. The extrinsic information of
sub-block 4 in pre-decoding round may be used in sub-block 1 in post-decoding round. This is
the reason why the decoder.should be idle until the extrinsic information stored in the

memories.

12-15  15-12

4-7 8-11 11-8 74 30
ﬂ |

W

Fig. 4.1'Acycle-based decoding procedure

Sub-block 4

Pre Decoding Round I I I B

- [
Post Decoding Round .

Fig. 4.2 A data hazard occurred while decoding

4.1.2 A dummy sub-block

A valid codeword in the tail-biting Trellis makes the encoder to start and end at the same
state, instead of zero state only. Therefore, a dummy sub-block, as well as the last sub-block,
will be calculated first to estimate the initial value of the forward recursion of the first

sub-block. Decoding schedule of a sub-codeword is shown in Fig. 4.3 and Fig. 4.4. We can
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easily find that the data hazard and the dummy block make the decoding procedure longer. It
takes 128 cycles to decode a sub-codeword and the utilization of the hardware is 50% only.
The decoder is idle for 12 cycles and some modules are idle while other modules are
calculating. Therefore, the working duration of the forward and the backward recursion

modules and the LLR module is 64 cycles.

/ a ~ACS
\ B, -ACS
\ B, ~ACS -

Time >

Fig. 4.3 Decoding schedule of a sub-codeword

Total 128 cycles
| |

=—PBlock Index=—3p

Interleaved:  |«—s]

|—>
Idle 16 cycles | Sub=block |

Fig. 4.4 Decoding schedule of previous design

4.2 Decoding Schedule

The data hazard and the dummy sub-block cause a 50% degradation of the throughput. In
this section, we will propose a method to solve this problem and make the 100% utilization of
the hardware.

4.2.1 Decoding with two codewords

Due to the data dependency of pre-decoding round and post-decoding round connected

by the interleaver, a better way to break this relation is to decode two codewords alternately.
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The proposed method achieves 100% hardware utilization without any extra logic cost. The
only cost of this method is that we have to store two codewords in the memories. The detail
procedure in Fig.4.5 is described as follows:

e  Decode from the first sub-block and get the initial value of forward recursion of the
first sub-block from the previous iteration. If it is the first iteration, then set an all
zero initial value for beginning.

e  Store the initial value needed by the next iteration, so it is not necessary to calculate
the dummy sub-block.

e  First, decode the pre-permutation sequences of sub-codeword A.

e  Second, decode the pre-permutation sequences of sub-codeword B.

e  Third, decode the post-permutation.sequences of sub-codeword A.

e  Decode the post-permutation sequences of sub-codeword B.

e  Then decode alternately until the last iteration.

by
e sge
5 .

. .
’/“ .
.

Sub- |
codeword
A

Sub-
codeword
B

Interleaved Sub-codeword

Fig. 4.5 Decoding schedule with two codewords
There are two more steps should be noticed about the dummy block:
e  While decoding each sub-codeword, decode from the first sub-block and get the
initial value of forward recursion of the first sub-block from the previous iteration.

If it is the first iteration, then set an all zero initial value for beginning.
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e  Store the initial value needed by the next iteration, so it is not necessary to calculate
the dummy sub-block. The dot line in Fig. 4.5 shows where we store the initial
value and where we read the initial.

The fundamental idea of our proposed method is to keep the hardware calculating and
avoid to calculate the same sub-block twice. Notice that at any timing frame all hardware
modules are working, which means the hardware utilization reaches 100%. Applying the
method, we can double the throughput by reducing the decoding cycles from 128 to 64 for
each sub-codeword, but the extra storage of initial values is about 6144 bits in the case of our

proposed design in chapter 3.
4.3 MAP Decoders

4.3.1 The structuré:of each processing element.

It is mentionediin section 3.4 that the number of.the processing elements and the
throughput of each element are two main factors of the total throughput. In addition to adding
the number of processing elements; the-throughput-ef-each element should increase for a high
throughput turbo decoder'design. The method we used inithe'new proposed design is a higher
radix Trellis structure.

For any Trellis-based decoder, two important factors should be considered carefully are
the number of states and the branch number of each state, which affect the implementation
complexity numerously. While applying a high radix design, another dimension should also
be taken into account is the stage number of Trellis. In Fig. 4.6, both radix 16 and radix 4x4
Trellis diagram merge 4 stage Trellis diagram into one. The radix 16 Trellis has 16 branches
for each state. The radix 4x4 Trellis has 4 branches for each state, but it is a two stage
structure. However, the total branch number of the radix 4x4 is half of the radix 16. Therefore,

the hardware of radix 16 is twice as that of radix 4x4.
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Fig. 4.6 Radix 16 and radix 4x4 Trellis diagram
Fig. 4.7 shows the hardware cost of two structures. We can find that the number of
comparators and multiplexers of the radix 4x4 structure is twice as that of the radix 16
structure, but the complexity ,of'a 4 to 1 comparator’is much smaller than that of a 16 to 1
comparator. Besides, the;branch number.of the radix 4x4 is _less than that of the radix 16. The

new proposed design uses the radix 4x4 structure in each processing element.
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Fig. 4.7 Circuit diagrams of two structures
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4.3.2 The memory units

Considering the radix 4x4 structure and the storage of two codewords, the memory units
of the turbo decoder should be redesigned. First, the memory should be divided into four
banks and each bank consists of five sub-banks. The division of the memory units is due to
the bandwidth and contention. We have to access four input symbols for the processing
element at each cycle and each symbol consists of information bits, parity bits and the
extrinsic part. Fig. 4.8 shows one memory unit in detail. Notice that each bank in the memory
unit is the same as that mentioned in chapter 3, but the number of banks is double and the
bandwidth is also double. Furthermore, the total storage is double because of the additional
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Fig. 4.8 The memory unit

4.3.3 Retime or not retime

In chapter 3, we have introduced a retiming technique to shorten the critical path for a
two stage ACS structure. The retimed structure has more hardware costs than the no retiming
version. The critical path comparison between these two versions is shown in Fig. 4.9, and the

target technology of our implementation is the UMC 90 nanometers process. Obviously, the
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retimed version has higher clock rate. But there are other important issues that should be
considered in advance technology, such as wire delay. In advance technology, the wire delay
dominates and the crosstalk phenomenon will be more critical. A popular solution for a large
design is to reduce the routing complexity and the wire length. Table 4.1 shows the
comparison between two versions. The area and the routing complexity of the retimed vesion
are bigger than the no retiming one. Thus, the critical path of retimed version will grow faster
than no retiming one due to the routing congestion problem. Therefore, our proposed 1Gbps
turbo decoder chooses the no retiming radix 4x4 ACS structure for the processing elements.
With the decoding schedule introduced in section 4.2, the utilization of all module in each

processing element achieves 100%. The throughput of elements is 1Gbps each.

Process : 90nm [ } & N U

Adder Comparator ' ' Mutiplexer
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No Retiming
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3 4
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2

Fig. 4.9 A critical path comparison

Table 4.1 Comparison between two versions

90 nm Technology Radix 4x4(Retiming) Radix 4x4
Throughput 1600Mbps 1000Mbps
Area High Medium
Routing Complexity High Medium
Frequency 400MHz 250MHz
Critical Path 2.5ns(pre-layout) 4ns(pre-layout)
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4.4 Interleaver Design

In the proposed 1Gbps turbo decoder, we reuse the IBP interleaver and remain the
parameters. However, the number of processing elements reduces to 16 and the throughput of
each processing element reaches to 1Gbps. The sub-codeword size remains 128. Fig. 4.10
shows the differences between the decoder described in chapter 3 and the proposed 1Gbps
turbo decoder. Fig. 4.10(a) is the original architecture in chapter3, and Fig.4.10(b) reduces the
decoder number by half. Thus we can combine the memory unit 1 and 2 with 3 and 4, shown
in Fig.4.10(c). The original S; switch can be fixed to zero and the control signal S; will be
passed to the address generators of memory units. The combination of memory units will
make the total area of memory smaller and easier for placement. The flexibility of the IBP
interleaver makes the variation of design possible without any hardware cost and any extra

control overhead.

S1 S S

2
N

(c)
Fig. 4.10 The architecture transformation
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4.4.1 Multiple block lengths support

Since the IBP interleaver is flexible, the proposed 1Gbps turbo decoder can be
implemented to fit multiple block lengths. In Fig. 4.11(b), we fix the switch S; to zero so the
decoder is working with only half number of processing elements and memory units. This
means the block length of 2°s power from 128 to 4096 can be supported in our design. While
decoding different length codewords, the only difference in control turn the some switches of

the butterfly network to zero.

(a) (b)
Fig. 4.11 Multiple block:lengths support

4.5 Chip Implementation

The proposed 1Gbps turbo code reduces 'the code rate to 1/3 without any puncturing
compared with our previous design, and the implementation applies maximum log-MAP
algorithm with a scaling factor 0.75. The detail specifications are listed in Table. 4.1, and the
post-layout view is shown in Fig. 4.13 with pin counts 208. The performance of this design is
the same as that described in chapter 3. The power management of this design is more careful
due to the failure of the delay lock loop (DLL) circuit. Fig. 4.12 shows that we have applied
the power isolation technique on our design for the DLL module. The power supply of DLL is
isolated from the other circuits, thus the power noise of whole chip will not affect the DLL.

Furthermore, the internal clock would be more stable and the uncertainty of internal clock tree
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will be smaller because the isolation provides a stable working environment for DLL.
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Fig. 4.13 Chip layout view
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Table 4.2 Summary of the proposed 1Gbps turbo decoder

Algorithm

Max-Log MAP

ACS unit

Radix 4x4

Code polynomial

1+D+D?
1 2 3
1+D-+D

Interleaver IBP interleaver (p, s)=(15,23)
Sliding Window 32
Code Rate 1/3
Block length 4096(128 x 32)
Quantization 6 bits (3.3)
iteration 8
Scaling Factor 0.75
Note Tail-Biting
Technology 90nm-1P9M
Clock rate 250MHz *
Throughput 1Gbps *
Gate count 2.66M
Core Area 9.3 mm?2
power 1158mw *
nJd/bit « iteration 0.144 *

* post-layout simulation




4.6 Summary

The proposed 1Gbps turbo decoder is the first turbo decoder chip which achieves 1Gbps
throughput. We modified the utilization of processing elements and made the decoding
schedule more efficient. The improvement of throughput is marvelously 50%. The
implementation of interleaver is more flexible than the previous design and the proposed
1Gbps turbo decoder can support multiple code lengths. The energy efficiency of this design
improved from 0.22 to 0.144 nJ per bit per iteration compared with our previous design,
which is accredited by the radix 4x4 ACS,structure and the advanced process. The proposed

design is the fastest and most efficient turbo decoder in the state of the art.
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Chapter 5
Highly Parallel Decoding of Turbo
code

In parallel decoding of turbo code, there are three issues should be particularly
considered:

®  The throughput of each decoder (processing element)

® The utilization of each decoder

® Parallelism (number of decoders)

In previous chapters; we have préposed some methods to'improve the throughput of each
decoder and made the.decoding more efficient. In: this chapter;we will put emphasis on the
parallelism. In chapter 3 and chapter 4, the'way we used. to break the forward and backward
recursions for parallelism is to partition.a whole codeword into‘many sub-codewords. But the
length of sub-codeword is limited by the distance property of short block length. The distance
property of a component code with- constraint length 4'is getting worse when the length is
below 100. That’s why we choose a sub-codeword length 128. Fig. 5.1 shows the architecture
described in chapter 4, and the decoder with 16 processing elements achieves 1Gbps. The
sub-codeword length is fixed to 128. If we would like to apply more processing elements in
the design, we have to find some new approaches for parallelism. The problem returns to
“How to decode one sub-codeword with multiple decoders?” In the following section, we
will discuss the approach mentioned in [17] and [18] for parallel decoding and show the

innovation of our new architectures.
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Fig. 5.1 The architecture of 1Gbps turbo decoder

5.1 A Sectionalized Method for Parallel Decoding

In Trellis-based turbo decoder, the forward and.backward recursions connect the relation
between symbols. The path ‘metric values inherited from the previous Trellis stage make the
parallel decoding of a,.codeword difficult. Even if applying the sliding window approach in

fig.5.2, we still sufferfrom the connecting relation'of the forward'recursion.

1 32 64 96 128

A
A
y

—> o —-ACS
""" » ﬂ[ -ACS
«— f,-ACS

Fig. 5.2 Decoding procedure of sliding window approach

5.1.1 A sectionalized method

The solution of the inheritance of the initial value mentioned in [17] and [18] is to store
the needed initial values in this iteration and to apply them in the next iteration. Fig. 5.3
shows the detail procedure of the sectionalized method. In the first iteration, the initial values
needed in the next iteration are not available, thus the initial values will be set to zero. After
the first iteration, the needed values will be calculated and stored in the memories. Therefore,
the initial values will be accessed from the second iteration to the last one. Fig. 5.4 shows

different sizes of sectionalized Trellis. The codeword of total block length N can be

49



sectionalized into different ‘fixed-length’ parts. 4T in Fig. 5.4 means the sectionalized part
consists of four Trellis stage, as well as 4 symbols. The 8T and 16T cases are the same as 4T
and so on. With the some sub-codeword length, the smaller section we partition, the higher
parallelism we get. Note that if the N is getting bigger, the more storage we pay for. The
storage of initial values consists of a and 3, and the a and B initial values of different
decoding round should be stored separately. For example, with a block length 64, state
number 8, quantization 6 bits, and sectionalized to 4T case, total bits of the initial storage is

768.

n
a calculation
B calculation

|
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F1g"5.3 A sectionalized method
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Fig. 5.4 Difterent sizes of the sectionalized method
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5.1.2 Parallel decoding with the sectionalized method

When the recursion relation breaks by the initial storage method, it makes the parallel
decoding of a codeword simple. Fig. 5.5 shows the comparison between the sliding window
approach and the sectionalized method. The sliding window approach calculates the dummy 3
for the initial of the real B calculation. Besides, due to the forward recursion, this approach
can’t apply multiple decoders to decode concurrently. On the other hand, the sectionalized
method decodes concurrently by accessing initial values for o and B initial, and saves the
calculation time and hardware of the dummy [ in the sliding window approach. The

comparison of the trade-off will be discussed.in.the following sections.
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Fig. 5.5 Comparison of diffetent structures

5.2 Proposed Architectures

The sectionalized method partitions a codeword into several sub-blocks and makes
higher order parallelism possible. This method can be applied on our design to partition the
sub-codewords into some fix-length sub-blocks. The combination of these two methods
makes the higher order parallelism possible and can be accounted a ‘two-dimension’ parallel
decoding. The first dimension of the parallelism is called ‘inter-codeword’ parallelism, which
is used and introduced in chapter 3 and 4. The processing elements decode different

sub-codewords at the same time. The second dimension of the parallelism is called
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‘intra-codeword’ parallelism, which makes the processing elements decode the same
sub-codeword concurrently. The combined method makes all kind of parallel structures

possible under the contention-free constraint for memory-based design.

5.2.1 A two-dimension parallel architecture

Fig. 5.6 shows a two-dimension parallel method, which can be considered as a fully
parallel type decoder. The architecture can be applied on a highly parallel situation. The
contention-free constraint for the interleaver design in the case will be much more
complicated. The two-dimension contention constraint should be considered and the
interleaver which meets the constraint is few.and hard to find. Thinking of the IBP interleaver
mentioned in chapter 3, it consists of two-stage permutations and it is contention-free in both

two dimensions. The IBP interleaver can be applied in the architecture.

=

=u| T T 7 T

Memories Interleaver Decoders

—

Fig. 5.6 A two-dimension parallel method

5.2.2 A intra-codeword parallel architecture

A downgrade architecture called ‘intra-codeword parallel architecture’ is the version only

in one sub-codeword dimension. In this architecture, we only have to consider the contention
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problem in one sub-codeword. It makes things easier. This architecture decode one
sub-codeword each time with multiple processing elements. The sub-codewords will take

turns to the decoder and go back to the memories.

|
11 —— I
Memories Interleaver E Decoders

Fig. 5.7 A-intra-codeword parallel architecture

5.2.3 Data hazards

The data hazards due to the iterative decoding mentioned in section 4.1 idle the decoding
procedure and degrade the utilization. The intra-codeword parallel architecture provides
simple and efficient way to remove data hazards. Fig: 5.8 shows that the last few
sub-codewords of the pre-decoding and post-decoding rounds in every iteration cause data
hazards. The way to solve it is to arrange a proper decoding order of sub-codewords. In Fig.
5.9, the first sub-codeword of the post-decoding round can be decoded at the time we
decoding the last few sub-codewords, if we decode the first two sub-codeword of the
pre-decoding round first. Because the extrinsic values needed by the first sub-codeword of the
post-decoding round has been calculated and stored in the memories, we can decode it
without and data hazards. Therefore, a proper arrangement of decoding order would avoid the
data hazards and without any hardware overhead. However, the number of the sub-codewords

must be large enough for arrangement if the decoding latency is long.
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Fig. 5.9 A proper decoding order for data hazards

5.3 Performance Analysis

The sectionalized method partition a codeword by storing initial values. From Fig. 5.10
to Fig.5.14, they show the performance of different section sizes. Obviously, the 64T and 32T
almost have no performance loss with the same iteration. The loss for each case is less than
0.01dB. However, from 16T to 4T, the performance is getting worse. The performance of

BER convergence of the smaller section is worse than the bigger one.
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5.4 Proposed Method to Improve Performance

Since the performance is getting werse-and-diverge with small section size, we propose a
method to improve the performance. First, we would like tofigure out how the performance
degrades and then we can find approaches to improve it. The degradation of performance may
be formed by two factors: the fist one 1s the initial zero in the first iteration. The second is the
initial values from the previous iteration. The proposed method extend the path metric
recursion to more Trellis stage, Which means we would like to accumulate more Trellis stage
in this iteration. Fig. 5.15(a) shows that if we access the initial values from the earlier sections
and accumulate more correct path metric in this iteration, the performance increase as long as
we calculating a path metric long enough. The longer we accumulate, the better the
performance is. Fig. 5.16 and Fig. 5.17 show the case of 8T extending to 16T and 4T
extending to 8T, 12T, and 16T. The effect of the initial zero can also be found in Fig. 5.16 and

Fig. 5.17. It is unapparent to claim that the initial zero is the major factor, but it is obvious that
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extension improve the performance greatly.
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Fig. 5.15 A proposed method to impreve perfermance
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5.5 Decoding Schedule

As we mentioned 1 seetion 5.1, with a fixed blockdength, the smaller we partition, the
more decoders we have. In this section, we would like‘to apply more decoders for a higher
throughput. Fig. 5.18(a) shows the notation of decoding schedule. The circles and the squares
denote the initial storage of a and . The decoding schedule in Fig.5.18(b), (c) and (d) are the
original 4T, 8T, and 16T cases individually. If we can make a proper decoding schedule, the
number of decoders can be doubled for higher throughput. Comparing with Fig. 5.18(c) and
Fig. 5.19(b), the number of decoders is doubled without any overhead, and the decoding
latency is shortened. Moreover, the number of decoders in Fig. 5.19(b) is equal to the 4T case,
which means that we achieve the 4T case throughput with 8T case overhead. The decoder
number of 4T case can not be doubled because the design is based on radix 4x4 design. Fig.

5.18(a) shows that one step of vertical axe means reading 4 symbols per cycle. The Fig. 5.20
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shows the decoding schedule of the extension verision.
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5.6 Hardware Comparison

Table 5.1 and Table 5.2 list the comparison between original design and the proposed
two architectures. It 1S obvious that the storage different will be affected by three parameters,
N, n, ng, and M. the mest important parameters 1s M, because the greater M makes the storage
reduction larger. In other word, if we apply more processing elements in our design, the total
storage compared with the original SW case may be reduced. If the case is a medium M, there
will have some storage overhead. However, the reduction of ACS will save the area and gate

count apparently.
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Table 5.1 Hardware comparison of two-dimension parallel architecture

Cost
Path metric Total Reduction compare with SW
ACS No. Storage(bits) compare with SW (initial value storage)
Original SW 3x M I’IOXSXbXM
Approach
. . ACS :reduced M
T\;\;ol-dlm;nsmn 2xM [ if extending) N/n xSxbx?2
Parallel Architecture . .
. . nXSXbXM [Storage: reduced
— +Q] if extendin ge: (x B if no scheduling)
(nxM=N) (B & (n0 - M)xSxbxM
Total Reduction Cost
Example No Scheduling Scheduling No Scheduling Scheduling
N = 4096 M =256 M=1512 M =256 M=3512
nn - _l)g ACS : reduced ACS : reduced [FIFH Storage: increased Storage: increased
t(; -6 Storage: reduced Storage: reduced 49152 bits 24576 bits
S=6 196608 bits 393216 bits

N: Blockslength n: sectionalized-window size

M: No./of decoders ng: sliding-window size

b: quantization bit
No. of path metric

S: state No.

Table 5.2 ;Hatdware comparison of intra-codeword parallel architecture

Cost
Path metric Total Reduction compare with SW
ACS No. Storage(bits) compare with SW (initial value storage)
Original SW 3x M ngx SxbxM
Approach
ACS reduced M
Intra-code\.}vord 2xM m if extending) Nmnm xSxbx?2
Parallel Architecture nxSxbxM . . .
(nx M= p) (+B if extending) Storage: reduced (x A if no scheduling)
(n0 - n)xSxbxM
Total Reduction Cost
Example No Scheduling Scheduling No Scheduling Scheduling
N=4096 n-8 M =16 M =32 M =16 M =32
p=128 np=32 ACS : reduced ACS : reduced BBl | Storage: increased Storage: increased
q=32 b=6 |Storage: reduced Storage: reduced 98304 bits 49152 bits
S=6 18432 bits 36864 bits

p: sub-block length  n: sectionalized-window size

q: sub-block No.

N: Block length
M: No. of decoders

ny: sliding-window size
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5.7 Summary

In this chapter, we modified and combined the concept in [18] with our original design to
innovate a new two-dimension parallel structure. The performances with different section
sizes have been analyzed for different applications. A method to improve the performance
convergence is proposed with reasonable hardware cost. Two parallel architectures are
proposed for different design constraints and modified hazard-free method is discussed in
section 5.2.3. a double throughput scheduling method is proposed for highly parallelism.
Meanwhile, the parametric hardware comparisons are list in Table 5.1 and Table 5.2 with
example and they can be quick reviewed before design. This chapter facilitates the ultra high

speed turbo decoder design anid makes the parallel decoding complete.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed two turbo decoders with the parallel architecture which
enables multiple processing elements to decode one codeword concurrently. The proposed
IBP interleaver connects all processing elements with a easily implemented structure and
avoids the limit of the forward and backward recursions.

In the first design,swe also introduce a high speed methedology for high radix decoder
structure with a matching contention-free IBP interleaver. The combination of two stages
ACS and the retiming technique efficiently speed up the decoding throughput with acceptable
hardware cost. The energy efficiency of‘proposed turbo decoder is much smaller than that of
the state of the art.

In the second 1Gbps ‘design, we modified the utilization of processing elements and
made the decoding schedule more efficient with doubled throughput. The implementation of
interleaver is more flexible than the previous design and the proposed 1Gbps turbo decoder
can support multiple code lengths. The proposed 1Gbps turbo decoder is the most power
efficient and the fastest turbo decoder chip which achieves 1Gbps throughput in the state of
the art.

In chapter 5, we proposed a combined method to make the parallelism work in two
dimensions. The performance and the hardware cost with different condition have been
analyzed and a new extension method and a new scheduling method are proposed to improve

the performance and the throughput.

64



6.2 Future Work

Up to now, the early termination scheme is regarded as the most efficient way to reduce
the power consumption in turbo decoders. It uses several characteristics in turbo decoding to
judge if decoding sequence is nearly correct before maximum iteration number is achieved.
Once iterative decoding can be stopped earlier, then the power can be saved. In [37], an
iteration stopping criterion has been modified based on the cross entropy between the a
posteriori probabilities of two SISO decoders for each iteration. Some other simplified
criteria was proposed in [38] and [39]. Most of these criteria make the decoder idle for saving
power. The idea of utilization mentioned ;in.chapter 4 will be useful for thinking of a new
stopping criterion, which should be more precisely called “skipping criterion.” If we set a
“skipping criterion” for all sub-codewords in ‘our ‘proposed intra-codeword parallel
architecture, the decoder will skip decoding certain ‘sub-codewords which is meet the
“skipping criterion.” Therefore, the decoding procedure would be more efficient and the

throughput will increase as the channel condition going better.
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