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Abstract

In this thesis, we have investigated the impacts of silicon nitride (SiN) capping
layer on drive current and the associated reliability issues. In addition, novel SOI
devices were also fabricated and:characterized in this study. This study includes the
fabrication and characterization=of devices with poly-SiGe gate electrode. Attentions
were paid on the drive current and NBTI'degradation of PMOSFETs with poly-SiGe
gate and PE-SiN capping layer. Moreover, NMOSFETs with LP-SiN capping were also
fabricated and investigated. Bandgap narrowing effect induced by local strain and
lateral diffusion of interface states after hot-carrier stress were addressed. Finally, novel
Schottky-barrier (SB) FInFET with impurity segregation and UTB SOI devices with
CMP-free and gate-last process were fabricated and characterized.

Devices with poly-SiGe gate electrodes can help alleviate poly-depletion and
boron penetration problems due to higher dopant activation in p-type semiconductor.
These result in about 5.8% enhancement of saturation current as compared with the
poly-Si-gated counterparts. During NBTI stress, devices with poly-SiGe gate even have
longer lifetime than those with conventional poly-Si gate.

Next, poly-SiGe-gated PMOSFETs with local compressive strain in the channel
induced by a compressive PECVD SiN capping layer were fabricated in this study. The
drive current of PMOSFETSs is found to be significantly enhanced by the incorporation
of the compressive PE-SiN capping layer. Specifically, the drive current enhancement
can reach about 29% and 36% for devices with PE-SiN capping thickness of 100 nm
and 300 nm, respectively, at a channel length of 0.45 pum. Despite this much-coveted
merit, our results also show that the PE-SiN capping may aggravate the NBTI

characteristics. The abundant hydrogen species contained in the PE-SiN layer as well as
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the strain energy stored in the channel may be the culprits for the worsened reliability.
Cares should therefore be exercised to optimize the amount of hydrogen species to
ensure that the NBTI effect is kept at bay, while simultaneously maintaining the
performance enhancement pertaining to the compressive strain channel. In addition, the
saturation phenomena in AVy, and ANj; are also observed during NBTI stress. This is
believed to be due to the fact that nearly all the interfacial Si-H bonds have been broken.

DNBTI and AC stressing were also performed on PMOSFETs with PE-SiN
capping layer. The results show that devices with SiN capping have larger recovery of
AVy, and ANj than those without capping. The neutral hydrogen species are mainly
responsible for the recovery phenomena of the generated interface states in the
SiN-capped devices. However, a strong dependence on the AC stress frequency is also
observed for the SiN-capped devices. Our observation reveals an important message
that the aggravated NBTI in the SiN-capped devices could be largely alleviated by high
frequency operation.

In this study, we have also investigated the effects of LPCVD SiN capping process
and the resultant channel strain induced by the SiN-capping layer on the device
characteristics. Enhancement ratio up,t0120%. is achieved for devices with LP-SiN
capping thickness of 300 nm at a‘channel length of 0.4 um. The bandgap narrowing
effect due to the channel strain-may result:in further lowering in Vg, as the channel
length is shortened. Our results indicate that the thermal budget associated with the
deposition of the SiN capping layer couldralleviate the reverse short-channel effect seen
in the uncapped devices. However, it is also.the main culprit for the gate dopant
out-diffusion and gate oxide thickness variation. The gate oxide thickness extracted by
F-N tunneling current would increase from 2.705nm for the control sample to 2.85nm
for the 300nm-SiN-capped sample. In addition, interface state density is also affected by
SiN capping procedure. More hydrogen species are expected to participate in interface
state passivation as the duration of the LP-SiN deposition increases.

Next, both the deposited LP-SiN layer and/or the deposition process itself have
significant impacts on the device operation and the associated reliability characteristics.
In fact, the accompanying bandgap narrowing and the increase in carrier mobility tend
to worsen the hot-electron reliability in the LP-SiN-capped devices. Nevertheless,
attentions should also be paid to the SiN deposition process itself. Owing to the use of
hydrogen-containing precursors, abundant hydrogen species is incorporated in the oxide
that may also contribute to the hot-electron degradation. The edge effect of hot carrier
stress is also a factor to cause reliability degradation in SiN-removal devices. In
addition, the hot carrier degradation of devices with SiN capping is independent of SiN
thickness due to gate oxide thickness variation and bandgap narrowing induced by
channel strain.

Finally, we have successfully demonstrated Schottky barrier (SB) FinFETs formed

v



by Pt salicide and impurity segregation. By adjusting SB height through impurity
segregation, excellent device performance is achieved without resorting to field-induced
drain (FID) structure to reduce the leakage current. The driving current can even be five
times larger than that of the SB device with FID. Moreover, we have also proposed and
successfully demonstrated a new CMP-free process for fabricating UTB SOI PMOS
transistors with SiGe raised source/drain and replacement gate schemes. Satisfactory
device characteristics have been achieved. With its inherent gate-last feature, the new
scheme lends itself handily to the advanced nano CMOS featuring high-k gate dielectric
and metal electrode.

Keyword: SiN capping, compressive strain, negative bias temperature instability (NBTI),
DNBTI, tensile strain, hot-electron effect, Schottky barrier (SB)
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without SiN-capping. The: subthreshold swing is nearly identical among all
devices, while the transconductance is, obviously larger in devices with
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after 5000 sec DC and AC stress (1 kHz and 1 MHz), all measured at Vg — Vi,
=-4Vand 125°C.

AV vs. channel length after 500 s NBTI stress. Regardless of the channel
length, devices with PE-SiN capping have. larger AVy,.

Charge pumping current of fresh devices for the control and devices with SiN

capping thickness of 100 nm,and. 300 nm.

Chapter 5

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Output Characteristics of different splits of NMOSFETs. Channel
length/width = 0.5um /10um. (a) Control and different SiN-capping. (b)
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SiN-removal devices.

5.7 Drain induced barrier lowing (DIBL) characteristics as a function of channel
length. DIBL was evaluated by measuring the drain current change as Vpg is
increased at a fixed gate voltage below threshold voltage. (a) Control and
three different SiN capping devices. (b) Control and SiN-removal devices.

5.8 J-V characteristics of NMOSFETs.

5.9 Energy band diagram-for conventional NMOS on a p-type substrate under
Fowler-Nordheim tunneling;

5.10 Gate oxide thickness extracted by Fowler-Nordheim tunneling current in a
control sample.

5.11 Typical C-V characteristics of the test samples. Thickness is theoretically
extracted by taking or not taking the poly depletion (PD) and/or quantum
mechanism (QM) into account.

5.12 The relationship between bandgap narrowing and strain from Thompson’s
simulation.

5.13 Gate current density versus gate voltage of all splits at channel length of
0.5um.

5.14 Gate oxide thickness extracted by Fowler-Nordheim tunneling current in
SiN-removal samples.

5.15 The electron tunneling barrier height measured by the Fowler-Nordheim
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tunneling plot.
Fig. 5.16 The charge pumping current of all splits. (a) Control and SiN-removal devices.

(b) Control and three different SiN-capping devices.

Chapter 6

Fig. 6.1 The measurement setup of single junction charge pumping measurement.

Fig. 6.2 (a) Energy band diagram for conventional NMOS on a p-type substrate. (b)
[ustration showing impact ionization occurring close to the drain in an
n-channel MOSFET.

Fig. 6.3 (a) Substrate current versus gate voltage with channel lengths of 0.5 pum, 0.7
um, 1 um, and 5 pum. (b) Substrate current versus gate voltage in devices with
three different SiN capping thicknesses.

Fig. 6.4 (a) The impact ionization rate (Ly/lIp).in-all splits. (b) The Iyw/Ip under
different gate oxide thickness: The gate oxide thickness between x and y is
about 0.4 nm.

Fig. 6.5 Subthreshold characteristics and transconductance of devices before and after
5000 sec hot-electron stressing. Channel length/width = 0.5um/10um. (a)
Control sample. (b) SiN-capped sample. (¢) SiN-removal sample.

Fig. 6.6 Results of hot-electron stressing at Vps = 4.5 V and maximum substrate
current performed on all three splits of devices with channel length/width =
0.5um/10um. (a) Threshold voltage shift; (b) interface state generation; (c)
transconductance degradation.

Fig. 6.7 Charge pumping current for the three splits of fresh devices with channel
length/width = 0.5um/10pum. The measurement was performed under fixed
amplitude of 1.5 V and frequency of 1 MHz.

Fig. 6.8 The increase in charge pumping current after hot carrier stress (Vo@isub.max
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and Vps = 4.5 V) for the three splits of devices with channel length/width =
0.5pum/10pm.

Fig. 6.9 10-year lifetime projection for the control, SiN-removal, and SiN capping
samples.

Fig. 6.10 Results of hot-electron stressing at Vps = 4.5 V and maximum substrate
current performed on all three splits of devices with channel length/width =
0.5pum/10pum among SiN capping thickness of 100 nm, 200 nm, and 300 nm.
(a) Threshold voltage shift; (b) interface state generation.

Fig. 6.11 (a) The normalized single-junction charge pumping current of the three splits
of test samples. The lateral dopant profile of all splits is nearly the same. (b)
illustration of nonunifrom distribution of local threshold voltage and flat-band
voltage across the device caused by variation of lateral doping concentration.

Fig. 6.12 Deriving the relationship between loeal threshold voltage and lateral distance
x from the single junction charge pumping data of the control device.

Fig. 6.13 The derived lateral profile of local threshold voltage near the graded drain
junction.

Fig. 6.14 Lateral profile of interface state generation under three different SiN capping

thickness. (a) 300 nm. (b) 200 nm. (c) 100 nm.

Chapter 7

Fig. 7.1 (a) The key process flow of the new SB MOSFET. (b) The cross-sectional
view of the new SB SOI PMOSFET with PtSi source/drain. Dopants are
segregated at the PtSi/Si interface.

Fig. 7.2 Key process flow for the new process of fabricating ultra-thin-body SOI
device with raised source/drain.

Fig. 7.3 The subthreshold characteristics of schottky barrier (SB) FinFET at a fixed fin
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7.4

7.6

7.7

7.8

width.

Subthreshold characteristics of SB device with FID and the new SB device
with impurity segregation. SB device with impurity segregation is superior to
SB device with FID.

Output characteristics of SB device with FID and the new SB device with
impurity segregation. SB device with impurity segregation is superior to SB
device with FID.

Subthreshold swing of the new SB MOSFET with different fin widths. The
subthreshold swing decreases with the smaller fin-width. This confirms that
FinFET structure is indeed effective in suppressing short channel effects when
fin width is smaller or equal to 0.7 times channel length.

The transconductance curves of the conventional SB PMOSFET and SB with
impurity segregation.

(a) SEM picture of a TEOS/SiN/poly-Si/SiN stacked dummy gate. (b) SEM
picture of a dummy gate after poly-Si sidewall oxidaion. The sidewall
becomes expanded due to the formation of thermal oxide.

(a) SEM picture after removing dummy gate. The bottom of the dummy gate
is very flat and suitable for device fabrication. (b) TEM picture of selective

SiGe-epi grown on source/drain region.

7.10 The threshold voltage roll-off of the UTB SOI PMOSFETs.

7.11 (a) Subthreshold chararcteristics and (b) output chararcteristics of an UTB

SOI PMOSFET.
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