B R fRAE B K32 B A CCSDS ko st
R

High Throughput Turbo. Décoder Chip Implementation for

CCSDS System.Applications

SRR R L R

- N =3 S AR S S S

FEEIAAES P K2 H A CCSDS kst e
High Throughput Turbo Decoder Chip Implementation

for CCSDS System Applications

R4 AW Student : Hsiang-Tsung Chuang
PR e SR 3 Advisor : Wai-Chi Fang
R ABIRA A2T
THFF Y AT AR
Al @z
A Thesis

Submitted to Department’of Electronies-Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering

June 2009

Hsinchu, Taiwan, Republic of China

PEARA L NES D

Bk RIS E S PR 2 2 & COSDS Jk st e

Fid e s o B

Rz d A ETF1/8 L "DpLs

PR

IR FRB g Rt o T RT Rk SRR LEY B
W kst o Rad WERAROEE R BHEREEF R > AR Bk
L RBEBOERR FEH BEAG A o

d 3R RS PP TR B S e R SR R e RGE R R
o i CSA % > ke 0 R BE R U S okt 2 0t p k0 i~ B4 T hybrid
4-inputs addition/subtraction” Zk #c-4, efe FhRRELMEE NS E e i sLenviae
BHARY G 1T 80%:d o § =T G SR R A8 L R B D] F] AT s Y
FERE S TS gt Rdost - A XE AR BUEBEfH FAF cFF L

¥R R R o R RS § RS a0 Bt Jid 247 A E ™ HDA2

IR oA 170 2 F R % & UMCO0 nm R A2 T & B i i 3] PP iR 4 5 5
357.14MHz » 11 2 (8 5. MAP 288 B2 7 » [#hf#6 F i £ 7] 77.62MS/s il fi
HE &GS 1.59mm’e ¥ ob o d 0T 70 R R ¢ 8 4 e AL R
o APET I BT EeniT U FE MR AR 0 AL e B MAP 255 %

2T R R F i) 884.9IMS/s cn@ B B 0 o B ff 5 17.64mm” -

High Throughput Turbo Decoder Chip Implementation

for CCSDS System Applications

Student: Hsiang-Tsung Chuang Advisor: Dr. Wai-Chi Fang

Department of Electronics Engineering Institute of Electronics
National Chiao Tung University

Abstract

Turbo codes have been applied widely in communication systems over the last decade
due to its excellent error correction ability, However, because of complex structure, the data
rate of turbo decoder could not'improve more efficiently. Therefore, the thesis presents
improved architectures to increase its data rate.

The operating frequency of ‘turbo decoder is greatly limited by the recursion unit. In
order to decrease the critical path:.delay,-the . OACS and" one stage CSA structure is
employed. Furthermore, the “hybrid 4-inputs addition/subtraction radix-4 recursion
architecture is presented for CCSDS turbo decoder and finally the relative throughput of
proposed recursion unit is faster than traditional one around 80%. On the other hand, the
decoding process has to run a certain number of iterations to ensure the extrinsic have
converged. In fact, turbo decoder may converge earlier when the channel condition is good.
Hence, an early stopping criterion could be employed to reduce the number of iterations.

After chip implementation in 90nm process, the maximum clock rate 357.14MHz can
be achieved, and the 1.59mm? core area can support the maximum data rate 77.62MS/s of
turbo decoder with single MAP decoder. Besides, if the parallel MAP decoders are
considered, the memory collision could be happened. We can introduce the modified
annealing algorithm to solve the collision problems. The 17.64mm? core area can support

the maximum data rate 884.91MS/s of turbo decoder with fourteen MAP decoders.
il

=)

PR ALY R RAEL S 0 AR AR S RAFI T F SR
FR o TR P R RS & 2 fle s BAR S b
ERp: DA VEE SRR 93 ER-EaE 28 CNVE E S EELELE S8
KA Feh1 (T BAP AR g R SRR B o
LRERHIHTOTE FEZF P hig- £ F kI ApFE - A

AR HF oo Atk o VAR MR E YR 0 A F @ DA PR 0 AL J
FAATF 0 AT S AT BB EMHA SR REA L RE 5 BN

MARSECHAFTARE S A RAAFTRFEG B RFTY R ALE
v & BRI EY U A e A SR

il

CONTENTS

TR B € 5 T e #
B i
ADSTIACE. Lottt 1
B B et e e e e e e e et e e etaeeateeeateeeeteeeataeeaaaaeans i1l
CONTENTS .ottt ettt ettt ettt e bt et s st eae e st e st entebenbesbenaeas v
LIST OF FIGURES ..ottt vii
LIST OF TABLES ...ttty sttt ettt et saeene s et e s e naesbesbeeseeneeneens X
(O gF-To] (=1 M a1 0o [1 o3 £ o] o PO sSSP 1
1.1 Background of TUrbo Codes ..ol i il . iiireee e eveeiee e eeeeeaee e 1

1.2 Motivation andsObJECLIVEe. ot oiiteiear et e 1

1.3 Thesis Organization..... ... il T mii e desi e eeveeseeeereenneeeseesseesnseenseesnnes 2
Chapter 2 Overview of TUrBO Codes SYSteM ittt reiieieieeie e 3
2.1 The Structure of Turbo Code.........coeriiriiiiiiiiieieeeeeeee e 3
2.1.1 Encoder of Turbo Codecceviriiriiniiiiiiiinieiiesteecieseeesie e 3

2.1.2 CCSDS ENCOURTccuiriiiiiiiiiiieniieieeitesieee ettt sttt 4

2.1.3 Decoder of Turbo Code........cccuevirriiriiniiiiiiinieiiesteeeieeeeeee e 8

2.2 The Turbo Decoder AlgOrithmcccueeviiiriiiiiieniieieie e 10
2.2.1 The MAP AlOrithm.........ccciiiiiiiiiiiieiiee et 10

2.2.2 The Log-MAP AIgorithm........cccccuiiiiiiiiiiiiiiiieieeeeeeee e 16

2.2.3 The Maximum Log (ML) MAP Algorithm..........cccceeeveriiinninnirnnnne. 17

2.3 Sliding Window Method for Turbo Decodingcccceeevveiienieeiiiennennnn. 20
Chapter 3 Turbo Decoder Design Considerationcccoccevvvereiieseereeseesnenenns 24

v

3.1 The Proposed Structure of Parallel Turbo Decoder...........c.cccocvvrenvrrennennnne. 24

3.2 The Parallel Turbo Decoder..........ccceeviieiiniiniiiiiieieeeeee e 25
3.2.1 Sliding Window Timing Diagramcccccceervrenienieenieenreenieeennenn 25
3.2.2 Parallel Sliding Window Decoding............cccceevvienieriienieenieenieeeee, 26
3.2.3 The Interleaver of Parallel Turbo Decoders...........ccceevvevreerreennrennnnnne. 27

3.3 Early Stopping Criteria.......c.ceceerieeiiierieeiieniieeieeniieereesieeeseeseesseesseessseenne 33

Chapter 4 Soft-In-Soft-Out (SISO) Decoder Design Consideration.................... 37

4.1 SISO Decoder ATChItECTUIEeevuiiriiiriiieiienieeie et 37

4.2 Radix-4 Log-MAP AlgOrithm..........ccceeviiiriiiiiiiiieeiieiecreeee e 38

4.3 The Architecture of Recursion:State Metric.........ccovvevieienienenieneeieeeenne 40
4.3.1 OASC SHUCHIIE .. oo Ceiestf e 41
4.3.2 Proposed Radix-4-Log-MAP Recursion State Metric...............c......... 43
4.3.3 The State Metric Normalization............ccccteeoveeiereenieeieseeieeieseeen 47

4.4 The Structure ofiBranch MetriCo ioeereeeiidoifinieiinieiececee e 49

4.5 The Structure of Log-Likelihood Ratios (LLR)cccccccvveviiniiieniinieenne. 51

4.5.1 Traditional LLR Computation Unit (LCU) Based on Radix-2
Log-MAP AlOTithm.......cccuvveiiiiiiieeiieeieeeeeee e 51

4.5.2 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP

ALZOTIERIM L. 51

Chapter 5 System Simulation and Performance Analysis..........c.cccccevvviveinennenn. 53
5.1 The Bit-Width Estimation of Soft-Input Information..................cceerurennnne. 53

5.2 The Bit-Width Estimation of LeXccceccveriieiiieniieiieiecieceeeeeee e 54
Chapter 6 Turbo Decoder Implementation in FPGAand ASIC.............cccce....... 58
6.1 The FPGA Implementation ReSults..........ccccovveeeiieriieiienieeiieieeieeee e, 58

6.2 The ASIC Implementation ReSultsccoeevieviierieniienieeiieieeieeee e, 62

v

6.3 COMPATISOM....eiiiiiiiiieiientieieeit ettt ettt ettt ettt ettt et nae e saeen

Chapter 7

REFERENCE

CONCIUSTONS ..o e et e e e e e e e

vi

LIST OF FIGURES

Figure 2.1 Turbo encoder with PUNCLUTEcoocuiiiiiiiiiiiiiiie et 4
Figure 2.2 Interpretation of Permutationccceeiiiiiiiiiiiiiieniee e 7
Figure 2.3 Turbo Encoder Block Diagramcccccceeriiiiiiiiiiniieiecieeeeeee e 7
Figure 2.4 The basic Structure of Turbo Decoderccooceeveriiiniininiiniiieicniceee 9

Figure 2.5 Performance comparison under different iteration numbers in CCSDS

interleaver (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK)....9

Figure 2.6 Trellis diagram for 4 states RSC encoder............coceverviiniininiiniincnicneenens 11
Figure 2.7 MAP decoding flow chartcooiiiiiiiiiiiieee e 16
Figure 2.8 The correct function ... e i i et 19

Figure 2.9 The BER performance ofyML-MAP :algorithm compare with Log-MAP
algorithm (N=1784, code rate = 1/3; state =16, MAP algorithm, BPSK) ...19
Figure 2.10 The turbo decoding trellis*diagram including the forward and backward
dIreCtioN ..o i He e 20
Figure 2.11 Timing diagram for sliding window (refer to [8])........cccceveeviniinenicninnns 23
Figure 2.12 Performance comparison under different sizes of sliding window in

CCSDS interleaver (N=1784, code rate = 1/3, state = 16, MAP algorithm,

Figure 3.1 The proposed turbo decoder Structure.............oceeveeeiierieeieenienieeiieeeeiens 25
Figure 3.2 (a) Space and time relationship for memory-bank management (b) Space and

time relationship for memory-bank management...............ccooeceeriieniennne 26
Figure 3.3 Schedule of the parallel sliding window technique............ccccecceveeneninennens 27
Figure 3.4 (a) conventional turbo decoding without collision (b) parallel turbo decoding

with collision problemccooiiiiiiiiiiii e 28

vii

Figure 3.5 (a) The column (b) The tiling of the mapping matrix in this example........... 31
Figure 3.6 The BER performance comparisons of early stopping criteria...................... 35
Figure 3.7 The average number of iteration of six early stopping criteria...................... 35
Figure 4.1 Block diagram for sliding window log-MAP decoder (SISO decoder)......... 38
Figure 4.2 Trellis diagram (a) Radix-2 trellis (b) Radix-4 trellis.........cccccevvveninneninnnens 39
Figure 4.3 A traditional recursion architecture (with normalization).........c..cccceeveveenen. 40
Figure 4.4 Three different locations of the register in the data flow of the recursive

algorithm result in three kinds of ACSO recursion architecture (refer to

L1 2]) ettt ettt 42
Figure 4.5 Architecture of a recursion OAGSUNILcceevvirieriiiinieieieceeeee e 42
Figure 4.6 A radix-4 recurSion Gtcooveeeer s ioiiaiid et 43
Figure 4.7 Improved radix-4:recursion OACS:architecture w..........coceevvvevevieneneneenen, 44
Figure 4.8 Hybrid 4-inputs"Subtractiona i e 45
Figure 4.9 Structure of GLUT used in improved OACS architecture...........cccceevverennen. 46
Figure 4.10 Integer ranges at forward.and backward recursion arch.cccceeereennen. 48
Figure 4.11 The structure of radix-4 ACS unit within normalizationcccceeeenee. 49
Figure 4.12 The branch metric unit (BMU) for radix-4 log-MAP algorithm 50

Figure 4.13 Traditional LLR Computation Unit (LCU) Based on Radix-2 Log-MAP

ALZOTIERIML ...ttt 51
Figure 4.14 Trellis diagram (a) Radix-2 trellis (b) Radix-4 trellis.........ccccovveeverveneennens 52
Figure 4.15 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP Algorithm....52
Figure 5.1 The comparison of BER performance for various soft inputs 54
Figure 5.2 The comparison of BER performance for various soft inputs and extrinsic

INFOTMATION ..ovtiiiiiiiiiiici e 55

Figure 5.3The comparison of BER performance for various soft inputs and extrinsic

viii

IIEOTIMIATION -t e e e e e e e et e e e e e e e e e e aaaeeeeeennnens 56

Figure 5.4 The comparison of various channel reliability...........ccccoocevieviniininninenen, 57
Figure 6.1 Development and design flow of the processcccceeeveeeiienieeciienienneennens 59
Figure 6.2 The flow graph of turbo decoder...........cccveviiiiiiiiiiiniieieeieceeeee e 60
Figure 6.3 Turbo decoder I/O diagram under FPGA verificationccccceceeveevencennens 62
Figure 6.4 ASIC verification fIoWcoceeiiiiiiniiiiiieeeee e 63
Figure 6.5 Chip layout of turbo decoder with single SISO decoderccccevvenennen. 64
Figure 6.6 Chip layout of parallel turbo decoder by SoC Encounter...........cccceevueruennens 65
Figure 6.7 Performance comparisons among those three architectures 66

X

LIST OF TABLES

Table 2.1 Specified Information Block Lengths........c..cccooieviniiniiiiniiniininiinccieneee, 5
Table 2.2 Codeblock Lengths for Supported Code Rates (Measured in Bits)................... 5
Table 2.3 Parameters k1 and k2 for Specified Information Block Lengths 6
Table 4.1 ELUT function block approXimation...........cceceeiereenerieneenienieneenienieneenens 46
Table 5.1 Proposed Turbo Decoder Specificationcceceeveeverienieieniicneenienicneeens 57
Table 6.1 I/O ports defINItioNcc.evieriiiiiriiniiieeeeee e 61
Table 6.2 Area report for each component of SISO decoder...........ccccocerviiniinininennens 63
Table 6.3 Comparison of four rectirsion architeeturescccceeceevuervieneencnicneenens 66
Table 6.4 Comparison of CESDS turbo decoders :.......ctt....ooooriininiiniiniiiniceens 67

Chapter 1 Introduction

1.1 Background of Turbo Codes

Turbo codes [1] were invented in 1993 by C. Berrou, A. Glavieux and P.
Thitimajshima. Turbo codes have outstanding error correction performance and their
performance near the Shannon capacity limit by 0.7 dB [2]. Therefore, there are many
researches on the realizations of turbo codes, and turbo codes have been applied widely
for various communication standards, i.e., WiMax (Worldwide Interoperability for
Microwave Access) [3], 3GPP (3™ Generation Partnership Project) [4], and CCSDS

(Consultative Committee for Space Data Systems) [5].

1.2 Motivation and Objective

Turbo codes have become. one of ' the necessary specifications for the
state-of-the-art communication systems. How to-€fficiently realize the turbo decoder in
the integrated circuit always causes much research attention.

For traditional turbo decoder, it suffers high latency duo to the iterative decoding
process. However, it requires high throughput and low latency of turbo decoding to
apply high throughput communication system. To solve the high latency problem, the
parallel SISO decoder architecture could be introduced to minimize the latency. The
other draw for traditional turbo decoder is the memory usage, the sliding window (SW)
can use to split the recursion of MAP algorithm into sub-recursions to decrease the
memory usage heavy.

Our work is to implement a high throughput rate and low latency turbo decoder

where the area and the power are enhanced a little. In this thesis, we aim at the turbo
1

decoder implementation of CCSDS on Field-Programmable Gate Arrays (FPGAs) and

automatically place and route (APR).

1.3 Thesis Organization

This thesis consists of six chapters. Chapter 1 introduces the background and
motivation of turbo codes. In chapter 2, the basic structures of turbo codes for CCSDS
are presented. Moreover, turbo decoding algorithm (BCJR algorithm [6]) also
introduces. In chapter 3, we discuss the proposed structure and methods of the turbo
decoder, including the mapping interleaving law, and early stopping criteria. The
improved radix-4 recursion unit, branch metric, log-likelihood ratio (LLR) unit and the
data flow of sliding window are described in Chapter 4:'In chapter 5, system simulation
and performance analysis are presented. Then the hardware implementation results and

comparison are shown in chapter 6. Eventually, conclude the thesis in chapter 7.

Chapter 2 Overview of Turbo Codes System

Turbo codes

Turbo code [1] was invented in 1993 by Berrou, Glavieux and Thitimajshima, has
outstanding error correction performance. Special features of turbo code are as follows:
(1) Turbo encoder is composed of two parallel-concatenated recursive systematic
convolutional code (RSC) with a large block size. (2) A pseudo random interleaver is
used to re-permute the input sequence for the second RSC encoder. (3) Turbo decoder
uses the maximum a posterior probability. (MAP) algorithm. (4) The iterative
technology is used. Those features make turbo decoder-great ability for error correcting

and almost near the Shannon capacity-limit.

2.1 The Structure of Turbo Code

2.1.1 Encoder of Turbo Code

Turbo encoder is constructed by two parallel concatenated recursive systematic
convolutional (RSC) encoders, each with a small number of states, and an interleaver to
separate the RSC encoders (Figure 2.1). Puncturing is an option to increase bit error rate
(BER) or speed. After encoding a frame that includes N input bits, we need to make
sure the initial state is all-zero state for the next block. Hence, the tail bits need to drive
the encoder to all-zero state. The number of tail bits is equal to the number of delay

elements of RSC encoder.

——————————

Input bits u,, Systematic bits x,®

Parity bits x,F1
Puncturing >
Qutput
b
ity bi P2
Interleaver @ Parity bits x,

Figure 2.1 Turbo encoder with puncture

2.1.2 CCSDS Encoder

The recommended turbo cede is a systematic code with the following

specification:
(a) Code type: Systematic parallé]l concatenated turbo code
(b) Number of component codes: 2
(c) Type of component codes: Recursive convolutional codes

(d) Number of states of each
Convolutional component code: 16

(e) Nominal Code Rates: r=1/2,1/3, 1/4, or 1/6 (selectable)

(f) The specified message block lengths N are shown in Table 2.1. They are chosen for
compatibility with the corresponding Reed-Solomon interleaving depths, also
shown in Table 2.1. After encoding a block includes N input messages, we add four
bits as tail bits. The corresponding code block lengths in bits: n=(k+4)/r, for the

specified code rates are shown in Table 2.2

Table 2.1 Specified Information Block Lengths

Information block Corresponding Reed-Solomon
Notes
length N, bits interleaver depth I
1784 (=223*1 octets) 1 For very low data
3568 (=223*2 octets) 2 rates or latency
7136 (=223%4 octets) 4 l
8920 (=223*5 octets) 5 For highest coding
16384 Not Applicable gain

Table 2.2 Codeblock Lengths for Supported Code Rates (Measured in Bits)

Codeblock length n
Information block length N
Rate 1/2 | Rate 1/3 | Rate 1/4 | Rate 1/6
1784 3576 5364 7152 10728
3568 7144 10716 14288 21432
7136 14280 21420 28560 42840
8920 17848 26772 35696 53544
16384 32776 49164 65552 98328

(g) Turbo Code Permutation:

The interleaver for turbo codes is a fixed bit-by-bit permutation of the entire
block of data. Unlike the symbol-by-symbol rectangular interleaver used with
Reed-Solomon codes, the turbo code permutation scrambles individual bits and
resembles a randomly selected permutation in its lack of apparent orderliness.

The recommended permutation for each specified block length k is given by a
particular reordering of the integers 1, 2, ..., k as generated by the following
algorithm:

B 1% step: Express k as k1k2. The parameters kland k2 for the specified block
5

sizes are given in Table 2.3

m 2" step: Do the following operation for s=1 to s=k to obtain permutation

numbers 7 (s), pq denotes one of the following eight prime integers:

p=3Lp, =37, p; =43, p, = 47; p; = 53, p; =59; p, =61, p, =67

Table 2.3 Parameters k1 and k2 for Specified Information Block Lengths

Information block length k; k>
1784 8 223
3568 8 223x2
7136 8 223 x4
8920 8 223 x5
16384 (note) (note)
Note — these parameters are currently under study and will be incorporated in
a later version

m = (s—1)mod2
_ 3]

2k,

s—=1] .
= \‘TJ_ZI{Z

~.

J
. kl
t = (19z+1)mod5
= tmod8+1
¢ = (p,j+2lm)modk,

ﬂ(s)=2(t+c%+1)—m

The interpretation of the permutation numbers is such that the s-th bit read out

on line “in b” in Figure 2.3 is the n(s)th bit of the input information block, as

shown in Figure 2.2.

] B P B e) L bits on line "in a"
"-'fk;’ ad A1) (input of encoder a)

bits on line "in b*
(input of encoder b)

Figure 2.2 Interpretation of Permutation

(h) Turbo Encoder Block Diagram:
All connection vectors (Backward and Forward) for both component codes: GO =

(10011), G1 =(11011), G2 = (10101), G3 = (1T1111)..In Figure 2.3, each input frame of
N information bits is held in a frame buffer, and the bits in the buffer are read out in
two different orders for“the two RSC encoders. The first component encoder (a)
operates on the bits in unpermuted order (“in a”), while the second component encoder

(b) receives the same bits permuted by the interleaver (©in b”)

Out Oa
Input Inf " na j R Encoder a -
information ' ol mation o
, Block
Suter +{D]e{ DD }{D
G — Rt Out 1a—
3 G2 R e Out 2a
Interleaver 3 I —Out3a
_‘ 00D
Inb , Encoder b - % % % %
. 1117
2346
= -xor +{D Ol {BDk
o=
Take every symbol o1 \?D \’\D \m out1b
O = Take every other symbol ey ‘@ \m
S A oh
-—@- = One bit delay G3 D < v D Out 3b l

Figure 2.3 Turbo Encoder Block Diagram

2.1.3 Decoder of Turbo Code

The basic structure of turbo decoder is illustrated in Figure 2.4, the main
components are two soft-in soft-out (SISO) decoders, interleaver and de-interleaver.
Those three input sequence are received from channel, where ys is the received
systematic sequences, yp1 and yp are the received parity information sequences
generated from the first and the second RSC encoder, separately.

The general turbo decoder consists of two SISO decoders, which serially
concatenated via an interleaver or a de-interleaver. The SISO decoder is implemented
according to maximum a posterior probability (MAP) algorithm [6] or soft-output
Viterbi algorithm (SOVA) [7]. At first,"the SISO, decoderl take y, and y,; as input to
produce two kinds of the ssoft outputs:.log-likeliheod ratio (Li;) and extrinsic
information (Lex;). After producing Lej, the Ley) re-permute via interleaver and used as
the a priori probabilities (Lin) of the input-sequence for the SISO decoder2. Besides,
interleaved ys sequence and'take it.and yp, as-input to'produce the log-likelihood ratio
(Li2) and extrinsic information (Lexa)- Similarlys the L., re-permute via de-interleaver
and used as the a priori probabilities (Li,1) of the input sequence for the SISO decoderl.
Above all procedure, we defined it “one time turbo decoding iteration”. The more
iteration procedures, the more decoder performance could be improved. However, there
is no evident improvement after a certain number of iterations. This reason is the a
priori probabilities (Li,) are saturation. After the last iteration, the L., sequences make a
hard decision after de-interleaver. Performance comparison under different iteration

numbers in CCSDS interleaver is shown in Figure 2.5.

L

int
I—ex1 Lmz Le><2
Yor— MAP Interleaver MAP > De-
Decoder1 L Decoder2 .| interleaver
Ys i1 : L
Ir.2
» Interleaver
yp2 —
Hard-Decision
Figure 2.4 The basic Structure of Turbo Decoder
10" i T T T ; T E
10"

BER

[== iteration10 -
—#— jteration8
10° || —B— iterations
F| =—©— iteration4
—fr— iteration2

[| =% iteration1
107 '

0.2 03 0.4 05 0.6 0.7 0.3 0.9 1
Eb/No(dB)

Figure 2.5 Performance comparison under different iteration numbers in CCSDS

interleaver (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK)

2.2 The Turbo Decoder Algorithm

2.2.1 The MAP Algorithm

The MAP algorithm (so-called BCJR algorithm) [6] was first introduced in 1974
by Bahl, Cocke, Jelinik and Raviv. The MAP algorithm is optimal for estimating the
states and the outputs of a Markov process. Due to minimizing the bit (or symbol) error

rate (BER), the MAP algorithm generates the soft output (likelihood ratios) defined as
P(u, |y), based on received code sequence y, to estimate the hard value for the
transmitted information bit u, at time k. In order to decision more easier, the

logarithm of likelihood ratios (LLR) is used. The LLR of the k™ input bit of the input

sequence U is defined as:

P(u,=+1
L) = L |3 <o L) R
P(u, =-1])
For 1<k <N, where N is the frame 'size-and the decision rule is defined as:
+1 if L >0
M if Lw,) : 2.2)
-1 otherwise

Figure 2.6 shows a trellis diagram for four states RSC encoder as an example. If

the last states S,, =s and the present states S, =s, then the input bit u, can be
estimated. Note that the dashed lines express the transitions from S, to S, caused
by the input information bit u, of +1, and the solid lines express the transitions from
S,, to S, caused by the input information bit u, of -1. Then the equation (2.1) can

be rewritten as:

Pl =11y} Do PSS 19} 3, L PSS
Plu,==1y} X, PSSy X, PSS

L) 21n (23)

10

k-1 k k+1

Figure 2.6 Trellis diagram for 4 states RSC encoder

Assume the channel is memotyless and using the Bayes’ rule, we can the individual

probabilities P{S, ,,S,,y} from the numerator or denominator as:

PS5 81y = PiS, 5580, Voo Vis Vysics
:P{yj>k [Sk—l’Sk’yj<k9yk}xP{Sk7yk |Sk—l:yj<k}XP{Sk—1:yj<k} (2.4)

Markov

= P{yj>k |8, x P{S,, y |8, .} XP{Skflaka}
Now, we defined following metrics:

» The forward recursion metric A:
A (8)=P{S, 1Y) (2.5)

» The backward recursion metric B:
B, (s)= P{y_;>k | S} (2.6)

» The branch transition metric 1 :
L(shs)=P{S, v S} (2.7)

and the assumption that the channel is memoryless and using Bayes’ rule, Ax(s) can

be derived from (2.8)

11

A,(8) =P{S,,y4)
= z P{Sk—lﬂskﬂyjsk}

all' S,
= Z P{Sk’yk |Sk—1’yj<k}P{Sk—19yj<k} (2.8)

all S;_,
Markov

= Z P{S v 1S b PAS Ly
all S,

= D T,(s.9)-A(s)

all S,

Note that since the registers are empty at the beginning in the turbo encoder, so we

assume the trellis has the initial state So = 0, the initial conditions for A,(s) are:

Ay(S, =0)=1 2.9)
A(S,=5)=0 foralls # 0 '
Similar to the derivation of Aj(s), B, (s) canbe written as:
B, (s) :P{yj>k | 83
= z P{Sk+1’yj>k FSi
all Sy,
= Z PSS derpdsemsS,) | PLS, }
WS
2.10
= Z P{yj>k+1 | Stots Viwrs S S, 15 Vi [S4) ()
all Sy,
= Z P{y_/>k+] | Skt d PAS s Vi |54
all S,
= D B (") (s,8"
all Sy,

Note that since the registers are empty at the ending in the turbo encoder, so we

assume the trellis has the initial state Sy = 0, the initial conditions for B, (s) are:

(2.11)

B, (S, =0)=1
B,(S,=5)=0 foralls # 0

Now, we know to calculate the forward recursion metric and the backward recursion
metric that needs to acquire the branch transition metric first. The derivation of the

branch transition metric I',(s',s) as below:

12

Ly (s's) =P{S,.y 1S}
P{S,, v, 81}
PiS, 3
P{S,. 8,1} XP{SkBSk—lﬁyk}
PiS, .3 PiS;. 843
PAS, | S, 3% Py |84, 8,1}
P(u)P(y, [x,)

(2.12)

Where u, is the input bit which would cause the transition from state S, , =s' to
state S, =s as illustrated in Figure 2.6, x, and y, are the corresponding

transition codeword and the received symbol from channel, separately. Note that

P(u,) 1s the a-priori probability of the input bitu, . According to the definition of the

a-priori log-likelihood ratio:

Plu, =+1}

L) = lnP{uk =5 |\

(2.13)

The a-priori probability ¢an be expressed-as:

eil‘a (“k)

1+e

e_La(uk)/z L ()12
L ot L (g
L | 2.14)

Plu =%l =

+L, (uy)

— 4 .ol
- k

For a given L (u,) , the parameter A, is independent of the actual value of u, =+1
or-1.
For an addition white Gaussian noise (AWGN) channel, the term P(y, |x,) in

(2.12) can be written as:

13

P(y,|x,) = [je B
270°
{ n ZLK«VY))Z“XZ”)Z] Z,.”:lyiz”-xi”

_ g Tkl
k

Here, L. =4E /N, is called channel reliability. The terms A, and B, in (2.14)

and (2.15) are equal for all transitions at the same time index, and hence will omit
those terms in the following. Therefore, the branch transition metric can be rewritten

to the equation (2.16):

L (s'ys) =Py)Py)

Ly ()2 Loy 512
:Ak et La ! _Bkezlzl Yk (2.16)

drop A, & By

OGO
PR OR T 'eZHLc a2

Final, substituting (2.8);%(2.10) and (2.16)-into (2.3), the LLR value can be further
expressed as:

=1L

Pl =105

Zuk:ﬂP{Sk—l’Sk | v}

> PSS

>, PSS

> PSS

Z(s',s)ec;l A (8L (s',5)B, ()
2 e At T (s1,5)B (5)

Lu,) =In

=In

(2.17)
=In

=In

By the way, the LLR value can be also expressed as:

14

- Dt A 8O (1 5)B)

Z(Sv,s)eql A, (D (s',5)B, (s)
X A OO [P =P [5)]BL ()
2 [P, =-DPOL |%)]B, (5)

() _ xy2 1
2. 1<y ") B.o)

L(w,) =

(s',s)eC,:] Ak_l (S

Z(s',s)ec,:] Ak—l (S) eXp(
=L,(u,)+In

@) _ (i) 2 7
2. 1(y "B, s)

(s',5)eCy ! k I(S eXp(

2

y —x® (O — xO)? |
Z(v 5)eC;! k 1(S GXp(—() 2201 0% 7) Bk(S)
2

=L (u,)+1In

Y (1) (YO = x0)?]
E_.y -x.")
(s" s)eC* k I(S eXp(—() : -) Bk(S)

i |

i]({1)_1 2] (0 Iii) 2]
L iR 200 g

eXp(— 2 A O_2 : Z(S',S)GC,:K Ak—l (‘S) eXp(

1T

=L,(u,)+In - : -

Y : (l) (1) 2
7 - (y)
(2.02)> 'Z(sv,necflAH(s) exp(- 2200 5 g

exp(=

(ym x0)? l
Z(s',s)ec,:’ A (s))LexpE Zl : k) |Bi(s)

)
:La(uk)+4 Ve 4 n
2.6

@i _ (l') 2 7
2. 2(y) 1B, (s)

Z(S',S)EC,:1 Ak—l (S) eXp(

=L, (u)+L.- y,ﬁl) +L, (u,)
(2.18)

The term L, (u,) is called extrinsic information. Due to the extrinsic information

is a redundant information that introduces by the RSC encoder, it is independent on

systematic input and a-priori value L, (u,) from LLR. The termZ, (u,) is passed
to the input of the next decoder as the a-priori value L, (u,) after (de-)interleaving.

The overall MAP decoding flow is illustrated in Figure 2.7.

15

Channel values A-priori
Yau Y1 Y2 Lo Information Ly{u,)

. .

Branch metric

estimate [Kk

h 4
Forward metric Calculate LLR & | [Backward metric
—

|
calculate A Lex calculate B

To the next SISO decoder

Figure 2.7 MAP decoding flow chart

2.2.2 The Log-MAP Algorithm

Although BCJR (MAP) algorithm will be fine for BER performance, that is very
difficult and wasteful to implementation in hardware point of view. Therefore, the
following algorithm will befrom the hardware point of view to talk about the questions
and solutions from papers.

The log-MAP algorithm 1s a transformation of MAP algorithm and without any
performance loss in practical mplementation. It-operates in logarithm domain, and
multiplication is converted to addition. Before introducing this algorithm, the Jacobian

function is defined as:

In(e" +¢”) 2 max” (x,,x,)
= max(x,,x,)+In(1+ ehialy (2.19)
= max(x,,x,)+ut(x;,x,) |

= max(x1:x2)+ f;(| X=X |)
Where f.(-)is a correction term, it can be implemented using a simple look-up table
(LUT). The Jacobian function can be further expressed as:

In(e" +e” +...+e™) 2 max (x,,%,,....x
() *(v N)* (2.20)
=max (..max (max (x,,X,),X;)...,Xy)

16

Now, we can re-express the forward recursion metric , (s) from (2.8):

2,(5)=In A,(5)
= In Z L (s'8)- Ay (s)

all S,

=In) "0 .em (2.21)

all S,

:ln z e7k(5"5)+ak—l(sy)

all S,

- m?'X* (7, (s',)+, (s)

Where the branch metric can be expressed as:
7.(s's)=InT, (s',5s)

Ly ()2 L2
:ln[euk a)/ ,eZ,:l kT (2.22)

1 n i i
5.(uk .La(uk)-i_zi:ll’c ylf’) xlf’))

We can also derive the backward recursion metric S, (s) in logarithm domain as:

B.(s)=InB,(s)
= In Z l—‘k+1(S9*S'")'Bk+1 (S")

all'S;

=1In Z ol (55" B (58 (2.23)

all i

=1In Z e}’k+1(535“)+;3k+1(s")
all S,

B mﬁlX* (Vi (8:8") + By (s")
Finally, from (2.17) can be expressed as:
Z(s',s)ec;‘ A (8O (s',9)B, (s)

Z(sts)ec,:‘ A (s (s',9)B(s)
- maxl*[akfl(s ')+7k(5'as)+ﬂk(s)] (2.24)

(s',5)eCy

L) = In

— max [, (s)+7,(s"5)+ B.(5)]

(s',5)eCy
2.2.3 The Maximum Log (ML) MAP Algorithm

In hardware point of view, in spite of the log-MAP algorithm had reduced the

17

hardware cost, it is still too complex for some embedded applications. Hence, the
ML-MAP algorithm is proposed with less complicated arithmetic, while a little
performance loss compare with log-MAP algorithm. According to (2.21), (2.23), (2.24),
we express the forward state metric, the backward state metrics and the LLR value for

ML-MAP algorithm as (2.25), (2.26), and (2.27):

a,(s)=max (y,(s',s)+a, (s")

(2.25)
= m?‘X(J/k (s'8)+a, ,(s")
B (s) =max (7,.,(s,5") + Bi(s")
) (2.26)
- ms?'X(J/kﬂ (5,894 ;.. (s")
L) == (r'n)a>cgl* [+ 7,655 B ()]
— max e (8947, (s, 8)+ B, ()]
(et (2.27)

11

maxl[akfl(s')+;/k(s',s)+,b’k (S)]

(s,5)eCy

- (YI,I})E?C(,X [ak—l)+ r.(s',)+ B, (S)]
Compare with log-MAP algorithm, the difference between the two algorithms is the
correct function In(l1+e™ ™) that can be implemented with a look-up-table (LUT).
The maximum output value of the correct function is about 0.7 whenx, = x,, and the

output value of the correct function can be omitted when the absolute value greater than

2. The correct function is illustrated in Figure 2.8.

18

07 T T T

06 5

05+ =

0.4 1

03+ B

In(1+exp(-pei-x2]))

y=

0.2 \

01} S .

[x1-x2|

Flgurf_ _}%,z_Sl:lth_t:HOIirqjc‘l]_;_lr .Inct1on
S .~

BER

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Eb/No(dB)

Figure 2.9 The BER performance of ML-MAP algorithm compare with Log-MAP

algorithm (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK)

19

2.3 Sliding Window Method for Turbo Decoding

In the traditional turbo decoding algorithm included MAP algorithm, log-MAP
algorithm and Max-log-MAP algorithm. No matter what algorithm is used, the decision
is based on forward and backward recursion metrics. We have to store every branch
metric () and forward state metric « (or backward state metric) at every stage unit

the backward state metric £ (or forward state metric) has been calculated out as

shown in Figure 2.10, so as to calculate LLR in (2.24).

— : forward state metric

— : backward state metric

Figure 2.10 The turbo decoding trellis diagram including the forward and backward

direction

Now in hardware point of view the drawback of the log-MAP algorithm (or MAP
algorithm) are the excessive memory required and a long decoding latency. As describe
in the above, the entire state metric history must be stored, out to the end of trellis, at
which point the backward state metric begins and decisions can be output starting with
the last branch without the need to store any but the last set of state metrics computed
backward state metric. This storage requirement is apparently excessive. Taking

CCSDS specification as an example, according to encoder structure, we have 16 states

20

in trellis diagram, if we express every state by 9 bits, it would need 9*16=144 bits of
storage per stage, and if the frame size is 1784 bits, the turbo decoder must at least have
144*1784 bits to store for traditional MAP decoding algorithm.

Due to a lot of memory requirement and decoding latency for traditional MAP
decoding, sliding window [8] method was proposed by Viterbi in 1998. We now briefly
describe this method which reduces the memory requirement to just a few thousand bits,
independent of the frame size N. Figure 2.11 indicates the bit processing times for one

forward processor« and two backward processors f operating in synchronism with

received branch symbols. L means the sliding window size (typically 5~10 times
constraint length). The label for each “nede” below means the branch time instance. The
main thought for sliding window is that we would estimate the set of backward state
metrics via applying learning period (L). The basis for this approach is the fact that the
backward processor can start cold 1n any state at any timej;initially, the backward state
metrics produced are almost worthless, but-a“few constraint lengths, the set of state
metrics are as reliable as if the“proeess had been started at the initial (or final) node.
This applies equally to backward state metric as well as forward state metric. In Figure
2.11, dashed line means that the un-reliable backward metric calculation (learning
period). This backward processor is so-called dummy-f3 processor. After learning period
computation, we get a reliable value for backward state metrics to take the initial value.
Now we take the first decoder output (LLR) as an example to explain how those
processors work. Let the received branch symbols be delayed by 2L trellis times. Then,
from time 2L to 3L, we calculate all forward state metric start from the initial node 0 to
L and storing these in memory, at the same time (2L~3L), the first backward processor
starts to learning the initial backward state by the received symbol from node 2L to L

(note that the direction is reverse with forward processor). During time 2L to 3L (or
21

learning period), we do not store any backward metrics until time goes to 3L. At this
time (3L), due to forward processor had already computed forward state metric from
node 0 to L, so we can get the valid decoder output (node L to 0) from forward and
backward state metric at time 3L to 4L

Also, the procedure of the second backward processor will be same as the first
backward processor. While the first backward processor decode output from node L to 0
at time 3L to 4L. From time 3L to 4L, we calculate all forward state metric start from
the node L to 2L and storing these in memory, at the same time (3L~4L), the second
backward processor starts to learning the initial backward state by the received symbol
from node 3L to 2L. After learning period,swe.get the valid decoder output (node 2L to
L) at time 4L to SL. The two_backward processors will take turn to decode out as the
timing shows in Figure 2.11. We noew also tale CCSDS turbo code as an example, the
forward algorithm only needs to store 2L sets of forward state metrics, since after its
first 2L computations (performed by time 4L),-its first set-of metrics will be discarded,
then the empty memory can be' filled starting with the new state metric for the node
2L+1 to 4L. Thus, the storage requirement for a 16 trellis states using 9-bits to express
forward state metric is only 2L*16*9=288L bits in all. If we assume L = 32, the storage
requirement is approximately equal to 9K bits. That is the way for sliding window
method saving huge memory and latency. After above mention, we simulated five
different sizes of siding window as shown in Figure 2.12, and the sliding window size

32 is more suitable in order best performance.

22

Nodes | | | | \ |

0 L oL 3L 4L 5L
Forward | | | | ‘ =|
Processor oL 3L 4L 5L 6L 7L
Timing
15t Backward r—rIq_r ‘
Processor 4L 3L 2L6L 5L 4L 6L
Timing e R
2nd Backward | o T D |
Processor 5L 4L 3L7L 6L 5L 7L
Timing e et

AT L

Decoder | | | | |
Output 4L 3L5L 4L 6L 5L7L 6L
Timing

Figure 2.11 Timing _diagfam for éliding window (refer to [8])

10
107k
10°
% 10"‘_
(xi]
10°}
10°4 —A— SWsize: 32|
] SW size: 24
—A— sW size: 20|
—O— sW size: 16 :
== swsiee 8 l l
10 '
0.2 03 0.4 05 0.6 0.7 0.8 0.9 |

Eb/Mo(dB)

Figure 2.12 Performance comparison under different sizes of sliding window in

CCSDS interleaver (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK)

23

Chapter 3 Turbo Decoder Design Consideration

To analyze why the throughput of traditional turbo decoder is not fast enough, the
most important reasons are limited by the operating frequency, a certain number of
iterations, latency of sliding window and number of SISO decoders. In this Chapter, our
proposed structure of turbo decoder is briefly presented to improve the disadvantage in
the section 4.1, and then the methods to improve the throughput of turbo decoder are
introduced, i.e. parallelism and early stopping criteria. On the other hand, due to the

parallel decoding process, we have to solve the collision problem without any buffer.

3.1 The Proposed,Structure of Parallel. Turbo Decoder

The proposed turbo-decoder structure’is'shown in Figure 3.1. At the beginning,
the input sequences (i.e. the systematiewandwparity . information) are stored in the
“IN_BUF” memories. That is, because of the radix-4 structure, the input sequences are
divided from the odd and even stages. After that, the input sequences are accessed for
the ‘SISO Decoder’ block decoding. As the log-likelihood ratios (LLR) and the extrinsic
sequences (Lex) are produced, the Lex sequences are re-permuted to be the a-priori
information (La) for the next iteration. Based on the high-radix or parallelism
architecture, the mapping interleaving rule [21] with contention free is employed.
Furthermore, in order to increase the data rate of turbo decoder, the HDA2 technique

had been introduced and the hardware overhead should be negligible.

24

(——— |
! ! = g
| 1
e - =) 2r) e
| L —/ B >
= o
:D} IN_BUF siso |f o) Lex MEM | z
I x28 B/ Decoder X14' = X28)
| ' c =
! I > i
' | " s FIFO
; write_en write| en
‘ T wiite en 4 write_addr + [XOR
Start write_addr ‘ }
[write_addr
read_addr write_addr

1L—

Lut
x28 |
(Q" o
1 & Control
| v Stop

MAPPING TABLE ADDRESSTABLE DE MAPPING TABLE%

Figure 3.1 The proposed turbo decoder structure

3.2 The Parallel Turbo.Decoder.

3.2.1 Sliding Window Timing Diagram

In a traditional sliding window, four dual port memory banks are needed. Besides,
the latency of the traditional sliding window is at least 4L, where L is the window size.
In our architecture, the function for each memory-bank is illustrated in Figure 3.2 (a).
The black-slash block represents a store of the soft-input symbols to the memory bank,
and the dotted block represents a read of the soft-input symbols to compute the forward
state metrics a; the slash block represents first a read of the previous soft-input symbols
to compute the backward state metrics £ followed by an immediate store of the next
input received symbols. A detailed dynamic description is also illustrated in Figure 3.2
(b). The gray solid arrow represents calculation of the backward state metrics f.

Furthermore, the dummy-£ is calculated directly from the input symbols without the use
25

of any memory-banks. Based on the above reason, two memory banks are enough for
our sliding window. Once we have the forward and backward state metrics, the soft
output calculator is employed to decode the LLR out. Therefore, the latency of our

proposed SW method is only about 2L.

B1 B2
0T - E : Soft-input symbols
t1— &\\\ N \ write in

N : : Symbols read out
o 3

m
=
;

o
R ' ~. : Caleulate dummy-

s
: Calculate 5 & LLR

1 Idle

: Writing

A i a Reading

: Write after read

%0 /

Input RAM 1 1 3 @ 5 6 7 Time
(a) (b)

Figure 3.2 (a) Space and:itime relationship-for memory-bank management (b) Space

and time rélationship, for memory-bank management

3.2.2 Parallel Sliding Window Decoding

Due to the parallel SISO decoding process, the flow diagram of sliding window
could be a little altered as shown in Figure 3.3 that called ‘Parallel Sliding Window’. In
Figure 3.3 giving ‘N’ SISO decoders, the PSW method divides the block K in N ‘super
windows’, and performs sliding window decoding in each self SISO decoder. The
‘super windows’ and the regular windows inside them can both be initialized by the
method that intruding in section 3.2.1. Furthermore, in order to obtain reliable values of
the forward state metrics, we use the forward state metrics of the previous iteration to

ensure the initial value as reliable as traditional log-MAP algorithm. Hence, additional

26

registers would be needed, and the number of registers are N. The size of each register

is: (number of states)-(bits for forward metrics representations)

Here, we would like to note several properties of the suggested PSW technique:

B Owing to the memories and the processing hardware cost, the area grows linearly
with the number of parallel SISO decoders N, and the decoding latency drops
linearly with N, making this PSW method very suitable for a parallel architecture.

B For the same decoding latency as parallel log-MAP decoding and almost the same
amount of processing hardware much less intermediate memory is used.

B The decoding performance can be very closely estimated using the results obtained

for sliding window decoding.

Number of
SIS(B decoder

SISO Decoder4

SISO Decoder3

SISO Decoder2 >§
J
v

SISO Decodert

-

Iteration 1 Iteration 2 Iteration 3

Figure 3.3 Schedule of the parallel sliding window technique

3.2.3 The Interleaver of Parallel Turbo Decoders

In this section we discuss the collision problem [20] in the parallel turbo decoding

27

process. The memory conflict problem is that the different SISO decoders work in
parallel, it is necessary to access the extrinsic information by each SISO decoders in
different RAM memories. In fact, depending on the specific permutation rule, it may
happen that different SISO decoders try to access the same memory bank at the same
time instant. We describe the problem in Figure 3.4, for a conventional turbo decoder in
Figure 3.3 (a), it would not happen the collision problem as the only one SISO decoder
stores or reads extrinsic information; while taking an example as 4-parallel SISO
decoders in Figure 3.3(b), we permute the four extrinsic information in order and write
the four extrinsic information according to interleaving order, then we find that SISO2
and SISO4 decoders simultaneously aceess the_same memory bank. In the next cycle,
we also find that SISO1 and SISO3 decoders access simultaneously the same memory

bank.

No parallel .

| T e e B e e e A

4-Parallel : ~

- -

B o o o —

Figure 3.4 (a) conventional turbo decoding without collision (b) parallel turbo

decoding with collision problem

28

To solve the problem, [21] had proposed a feasible method that can be used for any

interleaver rules. We explain this method as follows. Given N, banks of memory,
each SISO decoder works on a sub-block with length w=L/N, . If we number all
extrinsic information from 1 to L, the j-th SISO exports those values from (j—1)w+1
to jw. We assume that all SISO decoders (i.e. SISO 1 to SISO N,) export their

extrinsic information at time instant i are those in position i, w+i, ...,

(N,—Dw+i, and those relative position after write in (interleaving) or read out
(de-interleaving) the memory banks are 7 (i), z(w+i), ..., 7((N, —Dw+i).

To formalize the problem of mapping_ from decoders to memory banks, we can define

a pair of functions (M,S):{L, 4L} > {L..,.N, | x{l,.gw}, with the following meaning:

For each decoder, the i-th output is written in the memory bank indexed by M (i), in

position S(i). The condition' of lack of collisions translates then into the following
constrains on M ,Vik,k'=1,",L,k#4", where =, means ‘equal modulo w’:

k=, k> M(k)zMKk" (3.1)

k=, k'—>M(r(k))#M(x(k'") (3.2)

Notice that the above constraints only depend on 7, and that no constraint is imposed

on the shift function S'.

It is useful to represent the mapping function as a N, xw rectangular matrix, the
mapping matrix, whose (i, j)-th element, i=1,..,N, , j=1...,w, represents the value
of M ((i—l)w+ j). In this way, constraint (3.1) translates into a constraint on the
columns of such a matrix, while constraint (3.2) that depends on permutation 7,

defines a tiling of the matrix. Now, let us given an index k and defined the following

29

two sets:

Cky={k':k'=[(i-D)w+k]modw, i=1,..,N,} (3.3)
T(k)={m(k"):k'=[(i-Dw+k]modw, i=1,..,N,| (3.4)

Given an interleaver 7z, the problem is to find a mapping matrix that satisfies (3.1)
and (3.2). Here, we present an algorithm that gives the desired mapping matrix for any
interleaver 7. The algorithm can be described as below:

» First step: Any step that produces an initial mapping matrix with the following

properties: every column and tile contains at most one element equal to every

symbol in {1,..,N,}. Nevertheless, there are some elements which are not

assigned yet, and we label these unassigned elements as ‘-’.
» Second step: This stép accepts thezinitial mapping matrix output in the first step

and fills all blank elements. This procedure of completing the mapping matrix is
called annealing. This result i$ axmapping matrix with all elements in {1, ves Nw} ,
satisfying (3.1) and (3.2):

To understand how the annealing algorithm works, it is better to give an example.

Example 1: Suppose L = 30, N, =5, w=6, and suppose the permutation 7, for

instance:

T = (29,17, 5, 11, 21, 24,
7, 2, 30, 28, 15, 10,
22,16, 1, 12, 3, 27,
19, 14, 9, 25, 20, 4,
13, 26, 18, 6, 8, 23)

Thus, the column and tiling of the mapping matrix in this example can be shown in

Figure 3.5(a), (b), respectively.

30

A B|C D|EF C B|E|F|C|D

A B|C D|EF A E|C|F DD

A B|C D|EF A B|E|B|B|C

A B|C D|EF A E|E|A|F|F

A B|C DJIE F D B|F|DJ|A|C
(a) (b)

Figure 3.5 (a) The column (b) The tiling of the mapping matrix in this example

Where the two sets are according:to (3.3) and, (3.4), for example, the indices 28 and

9 of the tiling matrix are:

T(28) = {7(k):k'=[2-16+28]mod6=4—> D, i=1..,5
TQ) = {z(kyik'=[4-D6+9]mod6 = 3 »C, i=1,..,5}

Suppose the output of the first step is the following initial mapping matrix:

4 TH=E282 2
1 41 3 3 4
2 2 2 5 43
353 41 -
53 4155

Where the blanks in its (1,3) and (4,6) elements. The procedure of annealing starts from
one of them, and we choose the (1,3) element and fill in the blank with the value that is
not represented in its column yet, i.e., the value is 5. However, this change will cause a
collision to happen, because (1,3) and (4,2) belong to the same tile E and both have the
value 5. Owing to this reason, (4,2) is changed to the value 1 that is not represented in

its tile E yet, as:

31

4 1 - 2 2 2 4 1 5 2 2 2
1 41 3 3 4 1 41 3 3 4
2 22 5 4 3|12 2 2 5 43
353 41 - 31 3 41 -
534155 534155

Now, there is a collision happened in column 2 (the value 2 appears two times), so (1,2)
is changed to 5. However, this change will cause a collision due to (1,2) and (3,4)
belong to the same tile B and both have the value 5. So (3,4) is changed to the value 1

that is not represented in its tile E yet, as:

4 1 5 2 2 2 4 55 2 2 2
1 41 3 3 4 1 41 3 3 4
2 2 2 5 448(>02,.2 2 1 4 3
3 1 3 -« — e 4 1 -
5 3 £ 59 R sl S5 5

Repeat the same procedure ‘above mentioned-all the while until no iterant number
appears to the same tile and column. Hence, the final result is the following mapping

matrix and one can verify thaticonstraint (4.1) and (4.2) are all satisfied:

AP RIE" 2
5413 3 4
2221 43
31 3 45 1
1 3 45135

The annealing procedure can be decomposed into several cycles, each of them
starting with a blank element, picked at random, and ending when no collisions are
produced. After a cycle is ended, a new one starts if there are still blanks in the mapping
matrix, otherwise, the annealing procedure is over. In the previous example, there are 4

cycles.

32

3.3 Early Stopping Criteria

In traditional turbo decoding, in order to achieve a satisfactory performance, the
turbo decoding has to run a certain number of iterations to ensure the extrinsic values
have converged. This results in low speed, long decoding latency and large energy
consumption as well. In fact, turbo decoder may early converge when the channel
condition is good. Hence, an early stopping criterion should be employed to reduce the
number of iterations. For the hardware point of view, a good stopping criterion should
save as many iterations as possible with no or insignificant performance loss. At the
same time, the hardware overhead should be negligible.

Here, we briefly introduce some' early stopping criteria [23], then compare their

advantages and disadvantages:
€ HDA (Hard-Decision+Aided) Criterion: This criterion compares the decoded bits
of the two continuous iterations. . The turbo decoding is stopped working after

iteration i , where i>2:

S(L?w)) = S(L"(w,)).Vkel,...K (3.5)
Where L/(u,) denotes the log-likelihood ratios (LLR) output from the ;"

decoder in i” iteration, and the K and S(x) denote the frame size and the sign bit

of x.

€ HDAZ2 Criterion: The method of HAD criterion is extended in [24] and we only
represent a criterion that due to only this criterion has similar hardware
implementation complexity, while the others require double or triple hardware
implementation complexity. Therefore, the decoding process is stopped after

iteration ¢ for i>2, if:
33

S(L'w)) = S(£7@w)), Vkel..K (3.6)

€ SDR2 (Sign Different Ratio) Criterion: This criterion was proposed in [25],
according to (2.18), since the term L. -y} is fixed for all iterations, the change in

the magnitudes of the LLR is owing to changes in the magnitudes of the extrinsic
information. The hard decision based on L.-y; +L7(u,) from the SISOI

decoder shows in Figure 2.4 should agree with the hard decision based on the LLR

at the output of the SISO2 decoder, where the term L*(u,) is the term L (u,)

from the SISO1 decoder after interleaving. Hence, the decoding process is
terminated after iteration j4for 7>1, if:

< i,2 S i,2

Z(S(L” (u))OS(Loiyi +L; (uk))) =0 (3.7)
k=1

€ Min-LLR Criterion:“the criterion had propesed a method that use the minimum

of absolute values of the’LLR to decide the turbo.decoding is terminating or not.

This decoding process is stoppediafter iteration i for i>1, if:

min |L?(u,)| > 6 (3.8)

1<k<K
€ Decoding Metrics Criterion: This criterion is decided by three variables: the
minimum of the absolute values of the LLR, the minimum of the absolute values of
the extrinsic information, and the number of the non-matching bits (NMb). The
idea of NMb evaluates the number of sign-bit differences between the LLR and the
extrinsic information for the same SISO decoder of the same iteration. The turbo

decoding process is stopped after iteration i for i>1,if:

34

(min |27 @] > 6)&(min [@] > 6,)
ok N (3.9)
&(Z(S(Li’j(uk))@S(L’;{(uk))) < 63j

k=1

Where & denotes the ‘AND’ operation.

10"
2 |1 gy P, - |
107
10*
&
i1}
107
10" 1 L 1 L L L !
02 03 0.4 05 0.6 o7 0.8 09 1
Eb/No(dB)
.- [gl :'I
. i | g ! il r - . . .
Figure 3.6 The BER performancercomparisons of carly stopping criteria
-’ h B "R K 1 -L lI-- '. '.
.-_.- 9 ' ' .-:. E]
5 # e - o]]
75
T_
65
6_
a5
i
1]
5_
45k
4+
35
?2 03 04 05 06 07 08 09 1

Eb/No(dE)

Figure 3.7 The average number of iteration of six early stopping criteria

35

After MATLAB simulation, the simulation results are presented in Figure 3.6 and
Figure 3.7. In Figure 3.6, the HDA2 and MODI criteria are the best performance among
all curves; and in Figure 3.7, the MinLLR criterion is the least number of iteration
among all curves, however, the NMb and HDA?2 criteria are also good enough even
though the MinLLR criterion has the least iterative number. Finally, we select the

HDAZ2 criterion after a comprehensive survey.

36

Chapter 4 Soft-In-Soft-Out (SISO) Decoder Design

Consideration

Due to the maximum a posterior probability (MAP) algorithm, turbo codes are one
of the most powerful error correcting codes. However, its clock frequency is limited by
recursion architecture of SISO decoder. In this chapter, section 4.1 shows the proposed
SISO decoder structure. Then we introduce radix-4 log-MAP algorithm and the
proposed ACS architecture of radix-4 log-MAP decoder in order to improve the

throughput. Finally, we also introduce the.architectures of branch metric and LLR.

4.1 SISO Decoder Architecture

The block diagram of the radix-4 MAP-decoder is shown in Figure 4.1. During the
SISO decoding process, the soft-input-symbols are written to the four single-port
memories, which work like ping-pong buffers and are read by the ACS « or f block to
calculate the branch and state metrics. The state metrics computed from the ACS «
block, are stored in “Alpha RAM”, and are later fetched by the LLR unit for LLR
calculation when the ACS p block state metrics become available. In order to decrease
the latency and memory, the dummy S ACS block fetches the soft-input symbols

directly.

37

{¥s> ¥p L (u)}

| BMU | | BMU | | BMU |
ACS ¢ ACS 3 Dur:l?q? 8 Ij):l

Alpha RAM

——

i_LL_R_ [Liu, ,)} [L(uk)] i

L] l _________ i 1

Figure 4.1 Block diagram for sliding window 16g-MAP decoder (SISO decoder)

4.2 Radix-4 Log-MAP Algorithm

The throughput of turbo decoder is limited by the critical path delay of ACS unit
due to the recursion architecture. For-the radix-4-decoder, if we directly implement the
radix-4 algorithm, the critical path delay will be twice that of the radix-2 recursion unit,
therefore, it cannot increase the throughput. Many articles [9-11] on recursion
architectures have been presented to solve this problem. In this section we briefly
introduce the radix-4 algorithm and next section the radix-4 recursion architecture will
be presented.

Radix-4 architecture processes two stages per clock cycle as shown in Figure 4.2 (b),
i.e. the decoder computes two bits per clock cycle; whereas radix-2 architecture
processes only one trellis stage per clock cycle and its trellis diagram as shown in
Figure 4.2 (a). The radix-4 trellis contains only the stage at the even times (k=0,

k=2, ...). Each node has four incoming paths (i.e. four candidates to select) and four
38

outgoing paths. Due to the radix-2 MAP algorithm was introduced in chapter 2, we

express the recursion of the state metrics as followed:
» The forward recursion metric «,(s):
a,(s)= max (7 (s s)+ o (s)
=max {y,(s.s)+max [7, ,(s".s) +a,_,(s"]}

= max [, (5,5 + 7 (55) + 5 (5]

» The backward recursion metric S, (s):
Bio(s") = mf,lx* (Vi (8" 8)+ B (s1)
= msqx* {7, (s" s+ m?x*[yk (s,8)+B.(9)]}

B r(rsl,%'))(*[yk’1 (s",s)+7,(s8)+ B, (5)]

(a) (b)

Figure 4.2 Trellis diagram (a) Radix-2 trellis (b) Radix-4 trellis

Finally, the log-likelihood ratios (LLR) can be written as:

39

(4.1)

4.2)

L) = maXl*[ak—l(s')+yk(s'as)—'—ﬂk(s)]

(s',5)eCy

— max 1* [ak_l(S ')-{-yk(s"s)-i—ﬂk(S)]

(s',5)eC;,

= max *{rrlsqx*[yk,l(s",s')+ak,2(s")] +7/k(S',S)+IBk(S)}

(s',s)eC,:r (43)
- (sr'l;l)ael)C(*I {H’lﬁx [yk—l (S "7 N v) + ak—z (S ")] + 7/k (S " S) + ﬂk (S)
= max {o (") 478")47 (559 + B ()
= max {a (s +7 (") + 7,559 + B ()}
L) = (s}?)ae')é‘ﬂ * [ak—z (") + 7 (8" s)+ B (s ')]
B (spvl')?c(—l * [Otk_2 ")+ 7 (" s)+ B (s ')]
= max a6) [6L + A O]
st (4.4)
- max e+ (5" D max [, (55) + A (5]
- (mse)?cn * {ak—z SN 7 s R (s 8) + By (S)}
- max e (67 7N) + 7')+ ()]

Moreover, if we want to improve our throughput motre, we can use higher radix (e.g.

radix-8, radix-16) log-MAP algorithm; but it may‘increase the area significantly.

4.3 The Architecture of Recursion State Metric

———/ Abs || LUT |

|
|
|
Yo 1
|
+ N |

g I

a{81) X

AE / & n(Sy)
T | Ssignbit

Figure 4.3 A traditional recursion architecture (with normalization)

a k(SO)l

40

4.3.1 OASC Structure

For a radix-2 MAP decoder, the traditional recursion architecture and equation are
shown in Figure 4.3 and (2.21), respectively, and the recursion architecture is called the
add-compare-select-offset (ACSO) unit.

To analyze the recursion architecture, we make the recursion architecture expand
to two trellis stages as shown in Figure 3.5 [12]. Pipelining those three different
positions of the recursion loop registers. The first zone is type (a) architecture. It results
in an ACSO unit. The second zone is type (b) architecture. It leads to a
compare-select-offset-add (CSOA) unit. The third zone is type (c) architecture. It leads
to an offset-add- compare-select (OA€S) unit: We briefly compare the critical path of
those three type architectures..n the case.of type«a), the critical path is consisted of the
propagation carry adder (t¢), the propagation-of the one full adder (tps) for comparison,
the time of the LUT block access (tLup), the multiplier (tyiux), and the time of the
propagation carry adder (t¢).again.duc to adding the LUT value. The total critical is
describe as (3.5). In the case of type (¢), that is mean the OACS architecture, the critical
path is consisted of the propagation carry adder (tc) only in the first adder. Due to the
propagation of carry adder, only one full adder (tps) for the addition of the branch
metric in the critical path as well as the propagation of the one full adder (tgs) for
comparison, the time of the LUT block access (tLyr), the multiplier (tyux). Then the

total critical is decrease from (3.5) to (3.6):

Licso =Ny “Be by + MAX (8 sty) +0gy, e (4.5)

Loacs =Ngy "Ic t 2'tFA +MAX(tLUT’tMUX) (4-6)

41

4

[;_
[;_

)
_/

-+
’

i
A
kﬁ.\

P C >
[\ / I

Figure 4.4 Three different locations of the registerin the data flow of the recursive

algorithm result in thrée kinds of ACSO recursion architecture (refer to [12])

Because the critical path'of CSOA' architecture is the saime as OACS architecture, we

compare OACS unit with CSOA wunit in area point of view, OACS unit needs ng, bits
and n,,, bits registers, whereas OACS unit needs 3-ng, bits registers. As a result of

area, we use OACS-based concept and radix-2 OACS architecture as shown in Figure

4.5.
i |
| LUT Dr-!
a5 Ll
& (S0} o' (S ———
D
@ '(5,0)
o (S0} o' (S ————

7 (S0.50)

Figure 4.5 Architecture of a recursion OACS unit

42

4.3.2 Proposed Radix-4 Log-MAP Recursion State Metric

Although the radix-4 architecture reduces the total number of stages by 50%
compare with the radix-2 architecture, it is expected the complexity and the branch bits
increase in radix-4 architecture design. Therefore, the overall critical path of radix-4
decoder will a little larger than radix-2 decoder. Hence, our design challenge of the
radix-4 decoder is to design an ACS recursion unit which its critical path is less than
twice of the radix-2 ACS recursion unit.

According to (4.1), radix-4 recursion unit has four candidates to select. We mention
the max* function again in (4.7), and ditectly implement in this equation in Figure 4.6.

The gray area expresses two-input max*-ACS unit-(i.ex max*(x,,x,) = max(x,,x,) +

In(1+e™72)). It is clear ‘thatythe critical path”delay- in Figure 4.6 is double that of

radix-2 ACSO unit. To improve this problem, [9-10] proposed many ideas, but a little

performance loss.

In(e” +e™ +e" +e*)= max (x,x,, X;,X,) 47)

= max”(max" (x,,x,), max (x,,x,))

Figure 4.6 A radix-4 recursion unit

43

et LT
GLUT
el by] \b = 4_@
7 & gulk] TO -1 +
0
/i
a plkl] N T
i a, WT
! b, 1 GLUTH
agplk]l | . ’T‘
N — l i N
a5[k] i]
a skl U —[
| | LICMP T\
CMP
Li-icnp}——

Figure 4.7 Improved radix-4 recursion,OACS architecture

In our proposed design, in lorder-to-further.increase the throughput, we use the
OACS [4] architecture as shown .in Figure 4.7 and*the computation for the max*

function can be expressed as:

max*(w,x, y,z)=max {max*(w,x),max*(w,x)} (3.8)

The outputs of four comparators and the MSB of the difference output of each of
two subtractors are fed to an array of multiplexers to select the maximum value of the
four inputs, and its associated LUT index. In addition, we employ a one stage carry-save
adder described in [10] to reduce a three-number addition to a two-number addition.
Moreover, in order to further increase the clock rate, the hybrid 4-inputs

addition/subtraction (e.g. a;+ b,~— a,— b,) is proposed and the structure like signed

44

binary digit (SBD) addition/subtraction [29]. It is clear that the term a;+ b,~ a, is

computed by the plus-plus-minus (PPM) adder of the first stage, and then the sum ‘s’
and carry ‘c’ are produced from the PPM adder of the first stage and b; as the inputs
of the PPM adder of the second stage as shown in Figure 4.8. Hence, the difference of
each of two inputs could be early derived. Finally, the critical path delay of our design is

less than three times the delay of a 10-bit adder.

by[] by[2] by[1] by (0]
by[5] &[B] a,[8] bol2] ag2] c4[2]) by[1] &[1] & (1] | bl0] &[0] =,[0]
FA || remrrrees FA FA FA
58] 152 ISy IS0
Y £ 7] ;CIEJ ¥ v i ¥ ¥ L4] 1
FA | «aeaeunns FA FA FA

e e

Figure 4.8 Hybrid-4-inputs.subtraction

In addition, the generalized LUT (GLUT) structure is illustrated in Figure 4.9, the
advantage of the GLUT structure is it does not need to compute the absolute value from
subtraction operation, while estimate the correct term by Ls2 and ELUT block. The Ls2
function block is used to determine if the absolute value of the input is less than two or

not, and the ELUT is used a smaller LUT only with 3-bit inputs and obtain 2-bit outputs.

The output Z of Ls2 function can be express as Z = S(b, + b, +...+b,) + S(b, -b,-,...,'b) .

Besides, the inputs of ELUT block include the sign bit to make sure the output value
correction, and Table 3.1 shows the LUT approximation value of Figure 4.9. Finally, the

outputs (c0, cl) of ELUT block are combined with the output Z of Ls2 function block

45

by AND gate. That is, if the absolute value of the GLUT input is greater than 2.0, the

output from the GLUT is zero. Otherwise, the GLUT output is decided by ELUT block.

S |b7| e b3 | b2 { b1 | bO
\ / \\ /
T Ls2 ELUT
cl c0
GLUT | .
d1 d0

Figure 4.9 Structure of GLUT used in improved ©OACS architecture

Table 4. I"ELUT function block approximation

(b2,b1,b0) X f(x)
000 0.00 0.75
001 0.25 0.50
010 0.50 0.50
011 0.75 0.50
100 1.00 0.25
101 1.25 0.25
110 1.50 0.25
111 1.75 0.25

46

4.3.3 The State Metric Normalization

A significant issue for hardware implementation of turbo decoder, fixed-point
implementation is necessary. Due to the finite numerical range representation, the
forward and backward state metrics would overflow by using log-MAP recursion
algorithm. This problem can be solved by a normalization method [13] or by using
modulo arithmetic [14], [15]. In this section, we only address the rescaling method.

According to the proof of [14], [16], the bit-width w has to be large to allow

straightforward evaluation of differences A :

[ldA,,]+1<w (4.8)

Let B be the upper bound for, the absolute values of the signed branch metrics:
|}/k(s,s')|SB, §;5'e S 4.9)
With m=K -1 being thesmemory order of a’RSC code with constraint length K, the
difference between any two state metrics -of the same trellis stage £ is bounded as:
|, (s)=e (s,)| < 2mB, 8.5, €S (4.10)
Based on (3.10), the require bit-width w,, =~ for the state metrics after a recursion is
written as:
w,, =[1d(2mB)|+1 (4.11)
Again, we can derive the candidate state metrics are upper bounded as:
|t (50) + Vit (50,8) =L (5) + Vi G5y, 8| < 2mB+2B =2(m+1)B (4.12)

The require bit-width w__ for the candidate state metrics is written as:

W, =[1d(2(m+1)B) |+1 (4.13)

As analyze above, we know the forward and backward state metrics will be

bounded in a range after a few trellis stages computation. Therefore, the proposed

47

approach is the rescaling of the state metric via condition subtraction of a fixed value.
We assume the upper bound of branch is 32 as shown in Figure 4.10, and the constraint

length K=5 for CCSDS, the upper bound (2(m+1)B=320) of the forward and
backward state metrics will be evaluated by (3.13), and the require bit-width w,_ =9

bits. Hence, if one of the state metrics is larger than 480, all the state metrics will be
subtracted of 128 to guarantee all the state metrics would not overflow. By the way,
when one or more state metrics over 480, the minimum value of the state metric (not
less than 160) will not less than the maximum value of branch metric due to the upper

bound of state metric. This ensures all state metrics are positive values.

max(|y, (s.s)) =B

I | | | | [

-32 0 32 160 430 312

. /
'

The upper bound of state metric :
20+ 1B =2%(4+1)*32
=320

Figure 4.10 Integer ranges at forward and backward recursion arch.

This rescaling approach [13] only leads to a little critical path delay with the
recursion unit. The structure within normalization is illustrated in Figure 4.11, take
radix-4 ACS unit as an example, and the blue area is the normalization part, this
structure detects the four candidates larger than 960 or not, if more than one of the four
candidates larger than 960, the first OR gate send a “true 1” signal to the next OR gate,

else send a “false 0” signal to the next OR gate. There are 16 input signals (the number

48

of input signals is according to the number of state metrics) in the second OR gate, if
one of them send a “true 1” signal, then all state metrics will be subtracted by 256,

otherwise doing nothing for original state metrics.

. GwT |
T S | B

2 1+
=y
3 > GLUT

— Lm \
4’_ |

1 S EE—— r=—
_.7 [:EJ ____H:L_E_)_}L
= [+

N CMP

Figure 4.11 The structure of radix-4-ACS unit within normalization
4.4 The Structure of Branch Metric

According to the equation (2.22), the equation of the branch metric for code rate

1/3 and radix-4 log-MAP algorithm is derived as:

49

5k(S">S'>S)éyk(svﬂs)-i_]/k—l('g"’sv)

1 n i i
= L)+ X L]

2
1 n i i
+E : |:uk—1 L, (u)+ ZH Ly, .xl(c—)l:|
1 \ S
=l L)+ Le- Qi+ 3 D) | (4.14)
1 s s p p
+§[”k—1 L)+ Le - (Vi X + Vi 'xk—l)]
1
= E[uk L,(w)+u,_ - L,(u_,)]
1 s Ky p P s N P p
+§[Lc Ve X VX F Ve X T Vi 'xk—l)}
The branch metric unit (BMU) for radix-4 log-MAP algorithm is shown in Figure

4.12. The MSB and LSB of the delta (") indices are at the time k-1 and k, respectively.

La(uk)

b~

=
ORE
o]

W
NP
[+

]
o Hc':i

O O O D D e o ™

=

=
%

=

>

D
L

L) e
il ==
e

by
L}
——»

NP
-l{ %

=

b
a
—

[

S
L/

=

=
)
o i[o]

| = S

M | -
JLW +
-1

Figure 4.12 The branch metric unit (BMU) for radix-4 log-MAP algorithm

G ML B

]
o,

v
Jahy

[

o

50

4.5 The Structure of Log-Likelihood Ratios (LLR)

4.5.1 Traditional LLR Computation Unit (LCU) Based on Radix-2

Log-MAP Algorithm

Based on (2.24), we have to compute the sum of the forward, backward state
metrics and branch metrics. In order to decrease the critical path of LLR, we pipeline
the outputs of the addition. We assume 4 trellis states RSC encoder as shown in Figure

2.6, in conventional architecture, a total number of 16 adders are used in the first

pipelined stage to obtain the LLR value as shown in Figure 4.13, and need 2*[M —1]

MAX* unit to compare and select the ILILR 0 and LLR 1 values, where M is the

number of trellis states. The numiber of pipelined stagessis (log2 M) +2.

(8 +y,(s"8)

+8.(s)
______________________________ Pipelined 1
[MA}(* unit ‘ AT unit]
____________________________ FPipelined 2
v v
MAXT Lnit

Pipelined 3

T | R0

{ Subtraction }

% Pipelined 4
LLR Output

Figure 4.13 Traditional LLR Computation Unit (LCU) Based on Radix-2 Log-MAP
Algorithm
452 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP
Algorithm

In this section, we also assume 4 trellis states RSC encoder as shown in Figure

51

4.13. For radix-2 log-MAP algorithm, there are 4 path candidates to compute the
log-likelihood value (either LLR 1 or LLR 0) as shown in Figure 4.14 (a). However,
for radix-4 log-MAP algorithm, according to (3.3), (3.4), there are both 8 path
candidates to compute the log-likelihood value at time k and k-1(also either LLR 1 or

LLR 0), and the architecture of the LLR will be illustrated in Figure 4.15.

(a) (b)

[Subtraction]

% LLR Qutput

Figure 4.15 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP

Algorithm

52

Chapter 5 System Simulation and Performance

Analysis

In previous chapter, our discussions about turbo codes are based on a condition of
the floating point. However, the floating point value should be bounded since infinite
precision is impossible to be achieved for practical hardware implementation. A
trade-off between hardware cost and the performance must be concerned since coding
performance may suffer quantization loss due to internal bit-width limitation. In general,
the hardware complexity of turbo code can be estimation in computing complexity and
memory size which is proportional to,bit-with. In this chapter, based on acceptable
performance loss, the fixed peint analysis and ‘computing complexity is discussed.
Besides, we also analyze the parameter of scaling factor-under MATLAB tools. Note
that in this chapter, only hardware complexities of the CCSDS standard with
length-1784 interleaver. And the sliding window.method for turbo decoder is assumed,
where the length of sliding window is set as 32.

Due to we have briefly described turbo encoder and decoder structure in chapter 2
~ 4, and the encoder is earlier than the decoder, this chapter will focus on the decoding

simulation and performance analysis.

5.1 The Bit-Width Estimation of Soft-Input Information

Most Turbo decoder hardware implementations are based on fixed-point operations
[26]. As a result, a significant amount of effort must be focused on dynamic range,
number density, and normalization before choosing a number system. Since our aim is a
fast turbo decoder design, we choose a 2’s compliment integer representation.

For efficient implementation, we need to estimate the numerical range of the soft

53

inputs, various state metrics. In this section, we focused on the estimation of the soft
inputs, while other state metrics are unconcerned. We simulate four different types of
input and three various numbers of iterations under MATLAB for BER comparison in
Figure 5.1. Figure 5.1 shows the BER performance of a code rate 1/3, 16 states, and
frame size of 1784 bits on CCSDS standard. The MATLAB simulations were operating
under the assumption of AWGN channel and BPSK modulation, and where (g, f)
denotes a quantization scheme that uses ¢ bits in total and f bits to represent the
fractional part. We finally chose the fixed-point (5, 2) as hardware input though the

performance of the fixed-point (6, 3) is a little better than the fixed-point (5, 2).

Turbo deceder for CCSDS, code rate 1/3, Frame size 1784

T T
A — —O— iter2 floating point
. == iter2 fixed point(5,2)
—l— iter2 fixed point(4,1)
—F— iter2 fixed point{6.3)
—O— iter3 floating point

=8 iter3 fixed point(5.2) |

—db— iter3 fixed point(4,1)

=% iter3 fixed point(6,3)
By, | O iter8 floating point

N —B— iters fixed point(5.2)

= iter8 fixed point(4,1)

—7— iterd fixed point{,3)

10'- L 1 i T Il ! L
0.2 0.4 0.6 08 1 12 14 16

Eb/No(dB)

Figure 5.1 The comparison of BER performance for various soft inputs

5.2 The Bit-Width Estimation of Lex

After the last section estimation, we go on estimating extrinsic information. It is
worth mentioning that if the entire range of extrinsic value is to be expressed, at least 7

bits for the integer part is needed. If we take 2 bits as the fractional part, then 9 bits are

54

needed to store an extrinsic value. In fact, the quantization scheme for the extrinsic
value can be employed. The reason why the scheme can be used is described in [26].

At the beginning, we simulate the iterative decoding assuming that the soft-input
information and other parameters are 5 bits (i.e.: (5, 2) bits) and ideal, respectively,
except the representation of the extrinsic information. Figure 5.2 shows the simulated
BER versus Ey/Nj for different bit numbers of fraction part. From the curves, we see
that the one bit of fraction part is very close to the floating point case. Although the
BER performances of the two and three bits of fractionl part have a little better than the
one bit of fraction part, we choose the one bit to present the fraction part of the extrinsic
information in hardware point of view,

—&— floating |/
-

—E&— fraction2||
—— fraction3 ||

BER

10° 1 L L 1 1 1 L)
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Eb/Mo(dB)

Figure 5.2 The comparison of BER performance for various soft inputs and

extrinsic information

Then, Figure 5.3 shows the simulated BER versus Ey/Nj for different bit numbers
of integer part, while one bit is enough to indicate the fraction part. From the curves, we

see that four bits presents the integer part is very close to the floating one.

55

0.1 0.2 03 0.4 0.5 0.6 07 0.8 09
Eb/No(dB)

Figure 5.3The comparison of BER performance for various soft inputs and

Figure 5.4 shows the simulated BER versus Eu/Ngfor different values of channel
reliability. Theoretically, it is necessary, to estimate the SNR when using log-MAP
constituent decoder, while [30] reported that the differences are surprisingly small if a
suitable parameter of channel reliability is selected. We use five hypothetical values of
channel reliability to obtain the best result. Figure 5.4 present that 1.75 is better than
others; therefore, we assume the channel reliability value is 1.75 for hardware
implementation. The other simple specifications of the proposed turbo decoder are

given in Table 5.1.

56

10'E
o
Ll
m
10°
10°
107
10-! L i | 1
0.2 03 0.4 05 06 0.7 0.8 09 1
Eb/Mo(dB)

Note: because of HDA2

1.50 method is employed in

—45 our design, the average

number of iterations is

The first three times: 0.75

about 4.5.
Others: 1

Input 5(3,2)

a By 10(8.2)

Lex 6(4,2)

57

Chapter 6 Turbo Decoder Implementation in FPGA

and ASIC

After the simulation and performance analysis in chapter 5, the bit-width of input
symbol, branch metric, state metric and LLR is decided. This chapter will focus on our
proposed turbo decoder for hardware implementation. Besides, in the last section, we

will compare with other papers in hardware point of view.

6.1 The FPGA Implementation Results

In this section, we will first introduce| the deésign and verify process, after that we
report our FPGA implementation.results.

First we write a MATLAB program to simulation the turbo decoding algorithm so
that we can make sure we understand the flow of the process. Second, we develop a
bit-accurate MATLAB model according-te-theé architecture in the chapter three and
chapter four. On the other hand, we write a RTL (Register Transfer Level) in Verilog
code for hardware implementation. Then, we can verify our RTL code by MATLAB
golden model, MATLAB model can help us to process Verilog HDL debugging easily.
Third, after the functions of RTL code operate well, for the FPGA aspect, we use the
Xilinx ISE 7.11 tools to produce the bit files and we can download the bit files to the
FPGA develop broad. Afterward we verify the hardware circuit by Vericomm tools.
Beside, the ASIC process will be presented in the next section. Summarize our

development and design flow is shown in Figure 6.1.

58

Algorithm
MATLAB Model
(Floating)

RTL Code

Yes

Algorithm
MATLAB Model
{Fixed-point)

Synthesis
timing
erification

FPGA

verification

Place & Route
(APR) Physical
verification

Figure 6.1 Development;and.design flow of the process

Figure 6.2 is a flow graph of turbo-decoder which is based on one Radix-4 MAP
decoder to implement. As the turbo-decoder starts, the input data frame is stored in the
‘In Buffer’ memory. After that, MAP decoder fetches the input frame to calculate the
LLR and extrinsic information. Then, the early stopping phase is beginning after two
decoding iterations. The detail context is described in section 4.2. If the channel
condition is not good, we also make a certain number of iteration to stop the decoding
process. Finally, the decoding process make the hard decision according to the sign bit

of LLR.

59

In Buffer

-

MAP
Decoders |-

Y

Decision

Valid Output

Figure 6.2 The flow graph of turbo décoder

For convenience, we pack "the decoder as a' processing core and indicate the
input/output ports in Table 6.1. When this processing core is used, we just need to
configure those pins adequately. The I/O diagram of this FPGA processing core is
shown in Figure 6.3. The simulation environment is as follows:

FGPA development board: Xilinx Virtex-IV XC4VLX60-12FF1148
Simulation Software: Xilinx ISE 7.1i, VeriComm Pro.

HDL.: verilog

Maximum clock frequency: 144.4 MHz

Therefore the turbo decoding rate is:

60

K-f-M

2.7 K 2w
N

Data rate: R =

~ 33.23Mbps

The turbo decoding latency is:

2.0 Ko

Latency L= fNM ~ 53.68 usec

Where all parameters above are defined: frame size K = 1784; clock frequency f =

144.4 MHz; radix-2" (i.e. M=2) MAP decoder; the number of iterations / = 4.25;

number of MAP decoders N = 1; window size W = 16; input information data rate R =
33.23 Mbps; and the latency L = 53.68 psec. The total occupied area is around 12904

slices (the input and output memery are included) from a total of 26624 slices.

Table 6.1 I/O ports definition

Bit -
Port /O _ Description
Width
CLK input 1 System clock
RESET input 1 Reset the register contents
IN VALID input 1 Indicate the frame size of input data valid
SYSTEMATIC | input 5 The systematic input data
The parity input data (for in-order RSC
PARITY1 input 5
encoder)
. The parity input data (for re-permuted RSC
PARITY2 mput 5
encoder)
ITERATION output 5 The iteration number
OUT_VALID output 1 Indicate the decoder bit vialid
DECODER_OUT | output 1 Decode bit output

61

— PARITY1(4:0) ITERATION(4:0) —

1 PARITY2(4.0)

— SYSTEMATIC{4.0)

— CLK OUT_VALID —
— ENABLE
— IN_VALID
—RESET TURBODECCDER_OUT ——

Figure 6.3 Turbo deceder I/0 diagram.tinder FPGA verification

6.2 The ASIC Implementation Results

We are interested in how many gate’'counts are used 'in the proposed turbo decoder,
where single SISO decoder is.employed of the turbo-decoder. Table 6.2 shows the area
and gate counts reports for each’ blockrcomponents of SISO decoder. The ASIC
verification flow is shown in Figure 6.4. The encoder sequence, BPSK (binary phase
shift keying) modulation and the AWGN (additive white Gaussian noise) are generated
by MATLAB tools and are written the information into TESTBENCH block. We can
compare the results with the decoding bits by bit-accurate MATLAB decoding program.
If “Error” outputs the other number but not zero, there should be something wrong in

the decoding hardware.

62

Table 6.2 Area report for each component of SISO decoder

Component Gate Count (Size) Area (90 nm)
a state metric 16040.86 68975.7
/3 state metric 14597.56 62769.5
Dummy /3 state
13031.31 56034.66
metric
v branch metric 2950.86 12688.71
a memory 2560 bits 38335.0x4
Sliding window
1024 bits 20761.0x 4
memory
LLR 44949.86 193284.4
Total 152243 .35 654646.4

MATLAB phase

Turbo
encoder

—BPSK Mod \r

AWGN noise

I

Hardware phase

SISO
Decader

TESTBENCH[—

Turbo decoder

—» OK!

» Qutput hits

Error =0

_—s
Compare™ o sthars

Bit-accurate

MATLAB program

]

Figure 6.4 ASIC verification flow

We use SOC_Encounter as APR (automatically place & route) tool and layout is

shown in Figure 6.5. The chip density and core size for the decoder are 64.6% and 1.26

x 1.26 mm* = 1.5876 mm’, respectively. The detail ASIC simulation environment is as

below:

63

HDL: Verilog

Compiler tool: NC-Verilog

Debug tool: Debussy

Synthesis tool: synopsys

Process: UMC 90 nm

The maximum clock rate for proposed turbo decoding process is 357.14 MHz, and the
turbo decoding rate is:

K-f-M

210K
N

Data rate: R = ~77.62Mbps

The turbo decoding latency is:

2-1‘(%+2-W) .7"' - F
Latency :L=——-""———=2298usec . .
fM 7_ === -!_.I i B kg

=y -

Figure 6.5 Chip layout of turbo decoder with single SISO decoder

Moreover, in order to further improve the turbo decoder speed, the improved radix-4

64

recursion unit, HDA?2 early stopping criterion and parallel SISO decoders are shown in
Figure 6.6. On the other hand, in order to solve the collision issue, the modified
annealing method is introduced and that results in contention free and no any extra
buffers are needed.

Finally, the 17.64mm? core area can support the maximum data rate is:

K-f-M

K
2. 1-(=+2W
(N)

Data rate: R = ~ 884.91Mbps

The turbo decoding latency is:

2-1~(£+2'W)
Latency :LzN—z2.016,usec
f-M
) ’
(L |
h o n :
il
l,

T TEE e
e

Figure 6.6 Chip layout of parallel turbo decoder by SoC Encounter

65

6.3 Comparison

In this section, we summarize the BER performance, area, timing, and others
comparison. The synthesis result is shown in Table 6.3, Arch-T denotes the traditional
radix-2 ACSO architecture; Arch-L denotes the modified radix-4 architecture [9];

Arch-W the radix-4 architecture proposed by Wang [10]; and Arch-C the proposed

architecture, having the highest throughput among all recursion units.

Table 6.3 Comparison of four recursion architectures

- Relative Relative
Timing (ns)
area throughput
Arch-T 1.80 1 1
Arch-L 2.40 l1.61 1.50
Arch-W 2.22 1.96 1.62
Arch-C (proposed) 2.01 1.94 1.80

Bit Error Rate (BER)

= —— Arch-T
T =t Arch-L L
Proposed Arch-C | |

"""""" B e il ettt el
' ' ' '

03 0.4

Figure 6.7 Performance comparisons among those three architectures

05 0.

" Eb/Mo{dB)

66

B 07

08

Figure 6.7 shows the BER performance of a code rate 1/3, 16 states, and frame size
of 1784 bits on CCSDS standard. The number of total iterations is eight. The MATLAB
simulations are operating under the assumption of AWGN channel and BPSK
modulation. We could see that the traditional radix-2 architecture has the best
performance due to least approximation, and the other two approximation architecture:
Arch-L and Arch-C resulting to about 0.1 and 0.05dB performance loss, respectively.

The proposed design is compared with [27], [28], and the results shown in Table
6.4. Those three designs are all based on the CCSDS single-MAP decoding architecture
for telemetry channel coding. Due to the high-radix structure (the early stopping rule is
employed), the proposed design is the fastest:onc among all in Table6.4.

Table 6.4 €omparison of CCSDS turbo decoders

Proposed
Refer to [27] Refer to [28] :
architecture
TETMS320C6000 Xilinx Virtex=V Xilinx Virtex-1V
Board type
(DSP x 8) XE5VLX30-3 XC4VLX60
Area NA. 3411:Slices 13504 Slices
Speed 365 K bps 9.81"M bps 33.23 M bps
Clock rate 200 MHz ~100 MHz 144.4 MHz
Code rate 1/6 1/2~1/7 1/3
Frame size 8920 1784~16056 1784
Iteration numbers 10 5 ~4.25
Note: the input/output buffer and interleaver address generator are not
included in [28]

Chapter 7 Conclusions

In this thesis, a hardware implementation for the CCSDS turbo decoder is
presented. This implementation based on high throughput radix-4 recursion architecture.
In order to increase the clock frequency, our proposed architecture “Arch-C” uses four
comparators to fetch the maximum value of the four inputs. Besides, the hybrid 4-inputs
subtraction method is presented to avoid becoming the critical path. On the other hand,
in order to further increase the decoder rate, the HDA2 early stopping rule is employed
with an insignificant hardware overhead and performance loss. Additionally, due to the
approximate radix-4 MAP algorithm, we need to estimate the scaling factor to
compensate for the performance less: The better choice that the scaling factor is 0.75 for
the first three iterations, andotheryiterations is 1. By therway, because we do not have
the information of the channel reliability (even:though seme papers had approached
methods to estimate the channel reliability; in this thesis we'do not to do so.), we need to
select a constant as the channel reliability. After MATLAB simulation as shown in
Figure 5.3, we select an appropriate value 1.5 ‘as the channel reliability. After chip
implementation in 90nm process, the maximum clock rate 357.14MHz can be achieved, and
the 17.64mm? core area can support the maximum data rate 884.91MS/s of turbo decoder

with fourteen MAP decoders.

68

[8]

[9]

[10]

REFERENCE

C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. ICC 93, Geneva,
Switzerland, May 1993, pp. 1064—-1070.

C. E. Shannon, “A Mathematical Theory of Communication,” Bell System
Technical Journal, pp. 379-427, 1948.

IEEE Std 802.16e-2005, 802.16 TGe, Feb. 2006.

3GPP Specifications. 3rd generation partnership project. [Online].

Available: http:// www.3GPP.org

Consulative Committee for,Space Data Systéms, Recommendation for Telemetry

Channel Coding, CCSDS 101.0-B=6, Blue Book, October 2002.

L. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal.decoding of linear codes for
minimizing symbol error rate,”’ IEEE Trans.. on Information Theory, vol. 20, pp.
284-287, May 1974.

J. Hagenauer and P. Hoeher, “"A Viterbi algorithm with soft-decision outputs and
its applications,” in Proc. IEEE Globecom Conf., Nov. 1989, pp. 1680-1686.

A. J. Viterbi, “An intuitive justification and a simplified implementation of the
MAP decoder for convolutional codes,” IEEE J. Select. Areas Communication,
vol. 16, pp. 260-264, Feb. 1998.

M. Bicherstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s
Radix-4 LogMAP Turbo Decoder for 3GPP-HSDPA Mobile Wireless,” in /[EEE
ISSCC Dig. Tech. Papers, 2003, pp. 150 — 151.

Z. Wang, “High-speed recursion architecture for MAP-based Turbo decoders”, in

IEEE Trans. VLSI Syst, vol 14, No. 4, pp. 470-474, April 2007.

69

http://www.3gpp.org/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Zhang, X. Wang, F. Ye and J. Ren, “A 400Mb/s radix-4 MAP decoder with fast
recursion architecture” in IEEE ICACT 2008, vol. 2, 17-20 Feb. 2008 paper(s):
1339-1342.

E. Boutillon,W.J. Gross and P.G. Gulak, “VLSI architectures for the MAP
algorithm,” IEEE Transactions on Communications, vol. 51(2), pp. 175 - 185, Feb.
2003.

J. Ertel, J. Vogt, A. Finger, “A high throughput Turbo Decoder for an
OFDM-based WLAN demonstrator,” in proceedings of 5th International ITG
Conference on Source and Channel Coding (SCC), Jan. 2004.

A. Hekstra, “An alternative to metnic: rescaling in Viterbi decoders” IEEE Trans.
on Communications, 37(1:1): 1220-1222, Nov 1989.

C. B. Shung, G. Ungerboeck-and H. K. Thapar, “VLSI architectures for metric
normalization in the Viterbi algorithm,” in Proc. IEEE Int. Conference
Communications (ICCG+90), vol.4, Atlanta, GA, Apr.-16-19, 1990, pp.1723-1728.
A. Worm, H. Michel, F: Gilbert, G. Kreiselmaier, M. Thul and N. When,
“Advanced implementation issues of turbo-decoders” in Proc. 2nd Int. Symp. on
Turbo Codes, Brest, France, Sept. 2000, pp. 351-354.

T.-H. Tsai, C.-H. Lin, and A.-Y. Wu, “A memory-reduced log-MAP kernel for
turbo decoder,” in Prof. IEEE ISCAS, 2005, pp. 1032-1035.

Ahmed and T. Arslan, “VLSI Design of Multi Standard Turbo Decoder for 3G and
Beyond,” 12th Asia and South Pacific Design Automation Conference (ASP-DAC
2007), pp. 589-594, Pacifico Yokohama, Yokohama, Japan, January 23-26, 2007.
Engin. N, “Turbo decoder architecture with scalable parallelism,” in Proceedings
of IEEE Workshop on Signal Processing Systems, 2004, pp. 298.303

A. Giulietti, L. Van der Perre, and A. Strum, “Parallel turbo coding interleavers:

70

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Avoiding collisions in accesses to storage elements,” Electron. Lett., vol. 38, pp.
232-234, Feb. 2002.

A. Tarable, S. Benedetto, G. Montorsi, “Mapping interleaving laws to parallel
turbo and LDPC decoder architectures,” in I[EEE Transaction on, vol 50, pp.
2002-2009, Sept. 2004.

J. Vogt, J. Ertel, and A. Finger, “Reducing bit width of extrinsic memory in turbo
decoder realizations,” Electron. Lett., pt. 20, pp. 1714-1716, Sept. 2000.

Z. Wang, Y. Zhang and K. K. Parhi, “Study of early stopping criteria for turbo
decoding and their applications in WCDMA systems” in Proc of ICASSP 06, pp.
111-1016-1019, May. 2006.

A. Matache, S. Dolinar, and F. Pollara, “Stopping rules for turbo decoders,” Tech.
Rep., Jet Propulsion Liaboratory; Pasadena, California, Aug. 2000.

T. M. N. Ngatched and F. Takawira, “Simple stopping criterion for turbo
decoding,” Electronics-Letters, vol. 37, -ne; 22, pp! 1350 — 1351, Oct. 2001.

Z. Wang, H. Suzuki, and K K. Parhi, “Vlsi“implementation issues of turbo
decoder design for wireless applications,” in Proc. of 1999 IEEE Workshop on
Signal Processing Systems (SIPS’99), Oct. 1999, pp. 503-512.

Jeff B. Berner, Kenneth S. Andrews, “Deep Space Network Turbo Decoder
Implementation” Aerospace Conference, 2001, IEEE Proceedings.

http:// www.sworld.com.au/pub/pcd04c.pdf, Small World Communications.

Keshab K. Parhi, “VLSI Digital Signal Processing Systems: Desing and
Implementation,” New York:Wiley, 1999.
A. Worn, Peter. Hoeher, Norbert. Wehn,”Turbo-decoding without SNR estimation”

IEEE Communications leter, vol 4, NO 6, June 2000.

71

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7416
http://www.sworld.com.au/pub/pcd04c.pdf

	Chapter 1 Introduction
	1.1 Background of Turbo Codes
	1.2 Motivation and Objective
	1.3 Thesis Organization

	Chapter 2 Overview of Turbo Codes System
	2.1 The Structure of Turbo Code
	2.1.1 Encoder of Turbo Code
	2.1.2 CCSDS Encoder
	2.1.3 Decoder of Turbo Code

	2.2 The Turbo Decoder Algorithm
	2.2.1 The MAP Algorithm
	2.2.2 The Log-MAP Algorithm
	2.2.3 The Maximum Log (ML) MAP Algorithm

	2.3 Sliding Window Method for Turbo Decoding

	Chapter 3 Turbo Decoder Design Consideration
	3.1 The Proposed Structure of Parallel Turbo Decoder
	3.2 The Parallel Turbo Decoder
	3.2.1 Sliding Window Timing Diagram
	3.2.2 Parallel Sliding Window Decoding
	3.2.3 The Interleaver of Parallel Turbo Decoders

	3.3 Early Stopping Criteria

	Chapter 4 Soft-In-Soft-Out (SISO) Decoder Design Consideration
	4.1 SISO Decoder Architecture
	4.2 Radix-4 Log-MAP Algorithm
	4.3 The Architecture of Recursion State Metric
	4.3.1 OASC Structure
	4.3.2 Proposed Radix-4 Log-MAP Recursion State Metric
	4.3.3 The State Metric Normalization

	4.4 The Structure of Branch Metric
	4.5 The Structure of Log-Likelihood Ratios (LLR)
	4.5.1 Traditional LLR Computation Unit (LCU) Based on Radix-2 Log-MAP Algorithm
	4.5.2 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP Algorithm

	Chapter 5 System Simulation and Performance Analysis
	5.1 The Bit-Width Estimation of Soft-Input Information
	5.2 The Bit-Width Estimation of Lex

	Chapter 6 Turbo Decoder Implementation in FPGA and ASIC
	6.1 The FPGA Implementation Results
	6.2 The ASIC Implementation Results
	6.3 Comparison

	Chapter 7 Conclusions

