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高速渦輪解碼器晶片設計及其在 CCSDS 系統上的應用 

 

研究生：莊翔琮        指導教授：方 偉 騏  博士 

國立交通大學電子工程學系(研究所)碩士班 

中文摘要 

由於渦輪碼有著優異的錯誤更正能力，所以在近十年來已經被廣泛的運用在

通訊系統上。然而由於渦輪碼複雜的結構使得其速度無法有效提升，本論文將改

善解碼器的架構使渦輪解碼器速度有效提升。 

由於渦輪碼的時脈是被遞迴結構所限制的，我們利用偏移加法-比較-選擇器

和一級 CSA 的架構，來減少主要路徑延遲；除此之外，我們更進一步提出了 hybrid 

4-inputs addition/subtraction 基數-4 的遞迴結構使得此架構的吞吐量和傳統的遞迴

結構相比有近 80%的提升。另一方面，傳統渦輪解碼必須跑到固定次數的迭代以

確保事前資訊已經收斂，但如此一來造成速度慢，高延遲和功率浪費。事實上，

當通道狀況好的時候，渦輪解碼會提早收斂，因此，藉由分析，我們選用 HDA2

提早停止方法來降低迭代次數來達到高吞吐量的目的。 

根據實驗分析，此渦輪解碼器在 UMC90 nm 製程下最高能達到的時脈頻率為

357.14MHz，以及在單塊 MAP 解碼器之下，渦輪解碼器能達到 77.62MS/s 的傳輸

速度，晶片面積為 1.59mm2。另外，由於平行化的渦輪解碼會發生記憶體碰撞的問

體，我們可以利用修正過的退火演算法將這問題解決，並且在十四塊 MAP 解碼器

之下，渦輪解碼器能達到 884.91MS/s 的傳輸速度，晶片面積為 17.64mm2。 
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High Throughput Turbo Decoder Chip Implementation  

for CCSDS System Applications 

Student: Hsiang-Tsung Chuang Advisor: Dr. Wai-Chi Fang 

 

Department of Electronics Engineering Institute of Electronics 

National Chiao Tung University 

Abstract 

    Turbo codes have been applied widely in communication systems over the last decade 

due to its excellent error correction ability. However, because of complex structure, the data 

rate of turbo decoder could not improve more efficiently. Therefore, the thesis presents 

improved architectures to increase its data rate. 

The operating frequency of turbo decoder is greatly limited by the recursion unit. In 

order to decrease the critical path delay, the OACS and one stage CSA structure is 

employed. Furthermore, the hybrid 4-inputs addition/subtraction radix-4 recursion 

architecture is presented for CCSDS turbo decoder and finally the relative throughput of 

proposed recursion unit is faster than traditional one around 80%. On the other hand, the 

decoding process has to run a certain number of iterations to ensure the extrinsic have 

converged. In fact, turbo decoder may converge earlier when the channel condition is good. 

Hence, an early stopping criterion could be employed to reduce the number of iterations. 

After chip implementation in 90nm process, the maximum clock rate 357.14MHz can 

be achieved, and the 1.59mm2 core area can support the maximum data rate 77.62MS/s of 

turbo decoder with single MAP decoder. Besides, if the parallel MAP decoders are 

considered, the memory collision could be happened. We can introduce the modified 

annealing algorithm to solve the collision problems. The 17.64mm2 core area can support 

the maximum data rate 884.91MS/s of turbo decoder with fourteen MAP decoders. 
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Chapter 1 Introduction 

 

1.1 Background of Turbo Codes 

 Turbo codes [1] were invented in 1993 by C. Berrou, A. Glavieux and P. 

Thitimajshima. Turbo codes have outstanding error correction performance and their 

performance near the Shannon capacity limit by 0.7 dB [2]. Therefore, there are many 

researches on the realizations of turbo codes, and turbo codes have been applied widely 

for various communication standards, i.e., WiMax (Worldwide Interoperability for 

Microwave Access) [3], 3GPP (3rd Generation Partnership Project) [4], and CCSDS 

(Consultative Committee for Space Data Systems) [5]. 

 

1.2 Motivation and Objective 

  Turbo codes have become one of the necessary specifications for the 

state-of-the-art communication systems. How to efficiently realize the turbo decoder in 

the integrated circuit always causes much research attention.  

For traditional turbo decoder, it suffers high latency duo to the iterative decoding 

process. However, it requires high throughput and low latency of turbo decoding to 

apply high throughput communication system. To solve the high latency problem, the 

parallel SISO decoder architecture could be introduced to minimize the latency. The 

other draw for traditional turbo decoder is the memory usage, the sliding window (SW) 

can use to split the recursion of MAP algorithm into sub-recursions to decrease the 

memory usage heavy.  

Our work is to implement a high throughput rate and low latency turbo decoder 

where the area and the power are enhanced a little. In this thesis, we aim at the turbo 
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decoder implementation of CCSDS on Field-Programmable Gate Arrays (FPGAs) and 

automatically place and route (APR). 

 

1.3 Thesis Organization 

 This thesis consists of six chapters. Chapter 1 introduces the background and 

motivation of turbo codes. In chapter 2, the basic structures of turbo codes for CCSDS 

are presented. Moreover, turbo decoding algorithm (BCJR algorithm [6]) also 

introduces. In chapter 3, we discuss the proposed structure and methods of the turbo 

decoder, including the mapping interleaving law, and early stopping criteria. The 

improved radix-4 recursion unit, branch metric, log-likelihood ratio (LLR) unit and the 

data flow of sliding window are described in Chapter 4. In chapter 5, system simulation 

and performance analysis are presented. Then the hardware implementation results and 

comparison are shown in chapter 6. Eventually, conclude the thesis in chapter 7. 
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Chapter 2 Overview of Turbo Codes System 

 

Turbo codes 

  Turbo code [1] was invented in 1993 by Berrou, Glavieux and Thitimajshima, has 

outstanding error correction performance. Special features of turbo code are as follows: 

(1) Turbo encoder is composed of two parallel-concatenated recursive systematic 

convolutional code (RSC) with a large block size. (2) A pseudo random interleaver is 

used to re-permute the input sequence for the second RSC encoder. (3) Turbo decoder 

uses the maximum a posterior probability (MAP) algorithm. (4) The iterative 

technology is used. Those features make turbo decoder great ability for error correcting 

and almost near the Shannon capacity limit. 

 

2.1 The Structure of Turbo Code 

 

2.1.1 Encoder of Turbo Code 

 Turbo encoder is constructed by two parallel concatenated recursive systematic 

convolutional (RSC) encoders, each with a small number of states, and an interleaver to 

separate the RSC encoders (Figure 2.1). Puncturing is an option to increase bit error rate 

(BER) or speed. After encoding a frame that includes N input bits, we need to make 

sure the initial state is all-zero state for the next block. Hence, the tail bits need to drive 

the encoder to all-zero state. The number of tail bits is equal to the number of delay 

elements of RSC encoder. 



 

 

Figure 2.1 Turbo encoder with puncture 

 

2.1.2 CCSDS Encoder 

 The recommended turbo code is a systematic code with the following 

specification: 

(a) Code type:                    Systematic parallel concatenated turbo code 

(b) Number of component codes:    2 

(c) Type of component codes:       Recursive convolutional codes 

(d) Number of states of each 

Convolutional component code:  16 

(e) Nominal Code Rates:           r = 1/2, 1/3, 1/4, or 1/6 (selectable) 

(f) The specified message block lengths N are shown in Table 2.1. They are chosen for 

compatibility with the corresponding Reed-Solomon interleaving depths, also 

shown in Table 2.1. After encoding a block includes N input messages, we add four 

bits as tail bits. The corresponding code block lengths in bits: n=(k+4)/r, for the 

specified code rates are shown in Table 2.2 

 

 4



Table 2.1 Specified Information Block Lengths 

Information block 

length N, bits 

Corresponding Reed-Solomon 

interleaver depth I 
Notes 

1784 (=223*1 octets) 

3568 (=223*2 octets) 

7136 (=223*4 octets) 

8920 (=223*5 octets) 

16384 

1 

2 

4 

5 

Not Applicable 

For very low data 

rates or latency 

 

For highest coding 

gain 

Table 2.2 Codeblock Lengths for Supported Code Rates (Measured in Bits) 

Information block length N
Codeblock length n 

Rate 1/2 Rate 1/3 Rate 1/4 Rate 1/6 

1784 

3568 

7136 

8920 

16384 

3576 

7144 

14280 

17848 

32776 

5364 

10716 

21420 

26772 

49164 

7152 

14288 

28560 

35696 

65552 

10728 

21432 

42840 

53544 

98328 

 

(g) Turbo Code Permutation: 

The interleaver for turbo codes is a fixed bit-by-bit permutation of the entire 

block of data. Unlike the symbol-by-symbol rectangular interleaver used with 

Reed-Solomon codes, the turbo code permutation scrambles individual bits and 

resembles a randomly selected permutation in its lack of apparent orderliness. 

  The recommended permutation for each specified block length k is given by a 

particular reordering of the integers 1, 2, …, k as generated by the following 

algorithm: 

 1st step: Express k as k1k2. The parameters k1and k2 for the specified block 
 5



sizes are given in Table 2.3 

 2nd step: Do the following operation for s=1 to s=k to obtain permutation 

numbers π(s), pq denotes one of the following eight prime integers: 

1 2 3 4 5 6 7 831; 37; 43; 47; 53; 59; 61; 67p p p p p p p p= = = = = = = =  

 

Table 2.3 Parameters k1 and k2 for Specified Information Block Lengths 

Information block length k1 k2 

1784 8 223 

3568 8 223 x 2 

7136 8 223 x 4 

8920 8 223 x 5 

16384 (note) (note) 

Note – these parameters are currently under study and will be incorporated in 

a later version 

 

2

2

1

2

1

   ( 1) mod 2

1    
2

1   
2

   (19 1) mod
2

   mod8 1
   ( 21 ) mod

( ) 2( 1)
2

q

m s

si
k

sj ik

kt i

q t
c p j m

ks t c mπ

k

= −

⎢ ⎥−
= ⎢ ⎥

⎣ ⎦
−⎢ ⎥= −⎢ ⎥⎣ ⎦

= +

= +
= +

= + + −

 

The interpretation of the permutation numbers is such that the s-th bit read out 

on line “in b” in Figure 2.3 is the π(s)th bit of the input information block, as 
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shown in Figure 2.2. 

 

Figure 2.2 Interpretation of Permutation 

 

(h) Turbo Encoder Block Diagram: 
All connection vectors (Backward and Forward) for both component codes: G0 = 

(10011), G1 = (11011), G2 = (10101), G3 = (11111). In Figure 2.3, each input frame of 

N information bits is held in a frame buffer, and the bits in the buffer are read out in 

two different orders for the two RSC encoders. The first component encoder (a) 

operates on the bits in unpermuted order (“in a”), while the second component encoder 

(b) receives the same bits permuted by the interleaver (“in b”) 

 

Figure 2.3 Turbo Encoder Block Diagram 
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2.1.3 Decoder of Turbo Code 

    The basic structure of turbo decoder is illustrated in Figure 2.4, the main 

components are two soft-in soft-out (SISO) decoders, interleaver and de-interleaver. 

Those three input sequence are received from channel, where ys is the received 

systematic sequences, yp1 and yp2 are the received parity information sequences 

generated from the first and the second RSC encoder, separately. 

  The general turbo decoder consists of two SISO decoders, which serially 

concatenated via an interleaver or a de-interleaver. The SISO decoder is implemented 

according to maximum a posterior probability (MAP) algorithm [6] or soft-output 

Viterbi algorithm (SOVA) [7]. At first, the SISO decoder1 take ys and yp1 as input to 

produce two kinds of the soft outputs: log-likelihood ratio (Llr,1) and extrinsic 

information (Lex1). After producing Lex1, the Lex1 re-permute via interleaver and used as 

the a priori probabilities (Lin2) of the input sequence for the SISO decoder2. Besides, 

interleaved ys sequence and take it and yp2 as input to produce the log-likelihood ratio 

(Llr,2) and extrinsic information (Lex2). Similarly, the Lex2 re-permute via de-interleaver 

and used as the a priori probabilities (Lin1) of the input sequence for the SISO decoder1. 

Above all procedure, we defined it “one time turbo decoding iteration”. The more 

iteration procedures, the more decoder performance could be improved. However, there 

is no evident improvement after a certain number of iterations. This reason is the a 

priori probabilities (Lin) are saturation. After the last iteration, the Llr,2 sequences make a 

hard decision after de-interleaver. Performance comparison under different iteration 

numbers in CCSDS interleaver is shown in Figure 2.5. 



 
Figure 2.4 The basic Structure of Turbo Decoder 

 

 

Figure 2.5 Performance comparison under different iteration numbers in CCSDS 

interleaver (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK) 
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2.2 The Turbo Decoder Algorithm 

2.2.1  The MAP Algorithm 

The MAP algorithm (so-called BCJR algorithm) [6] was first introduced in 1974 

by Bahl, Cocke, Jelinik and Raviv. The MAP algorithm is optimal for estimating the 

states and the outputs of a Markov process. Due to minimizing the bit (or symbol) error 

rate (BER), the MAP algorithm generates the soft output (likelihood ratios) defined as

, based on received code sequence y, to estimate the hard value for the 

transmitted information bit  at time . In order to decision more easier, the 

logarithm of likelihood ratios (LLR) is used. The LLR of the kth input bit of the input 

sequence  is defined as: 

( | )kP u y

ku k

U

 ( 1|( ) ( | ) ln
( 1|

)
)

= +
= =

= −
k

k k
k

P u yL u L u y
P u y

 (2.1) 

For , where N is the frame size and the decision rule is defined as: 1 k N≤ ≤

  (2.2) 
+1      ( ) 0

1        
≥⎧

= ⎨−⎩
k

k

if L u
u

otherwise

Figure 2.6 shows a trellis diagram for four states RSC encoder as an example. If 

the last states '
k-1S = s  and the present states kS = s

ku

, then the input bit  can be 

estimated. Note that the dashed lines express the transitions from  to  caused 

by the input information bit  of +1, and the solid lines express the transitions from 

 to  caused by the input information bit  of -1. Then the equation (2.1) can 

be rewritten as: 

ku

kS-1kS

ku

-1kS kS

 
1 11 1

1 11 1

{ , | } { , ,{ 1| }( ) ln =ln =ln
{ 1| } { , | } { , , }

− −=+ =+

− −=− =−

= +
= −

}∑ ∑
∑ ∑

k k

k k

k k k ku uk
k

k k ku u

P S S y P S S yP u yL u
P u y P S S y P Sk kS y

 (2.3) 
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Figure 2.6 Trellis diagram for 4 states RSC encoder 
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}

1

− <

Assume the channel is memoryless and using the Bayes’ rule, we can the individual 

probabilities  from the numerator or denominator as: 1{ , ,k kP S S y−

 
1 1

1 1

1 1

{ , , } { , , , , }

                     { | , , , } { , | , } { , }

                      { | }            { , | }     { , }    

− − < >

> − < − < − <

> −

=

= × ×

= × ×

k k k k j k k j k

j k k k j k k k k k j k k j k

Markov

j k k k k k k j k

P S S y P S S y y y

P y S S y y P S y S y P S y

P y S P S y S P S y   

 (2.4) 

Now, we defined following metrics: 

 The forward recursion metric Α: 
  (2.5) 1 1( ') { , }− −Α =k ks P S y <j k

 The backward recursion metric Β: 
 ( ) { | }>Β =k j ks P y Sk

k

 (2.6) 

 The branch transition metric Γ: 
  (2.7) 1( ', ) { , | }−Γ =k k ks s P S y S

and the assumption that the channel is memoryless and using Bayes’ rule, Ak(s) can 

be derived from (2.8) 
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k k j k

k k j k
all S
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all S

Markov

k k k k j k
all S
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P S y

P S S y

P S y S y P S y

P S y S S y

s s
1

1
 

(s') 
−

−∑
k

k
all S

 (2.8) 

Note that since the registers are empty at the beginning in the turbo encoder, so we 

assume the trellis has the initial state S0 = 0, the initial conditions for  are: 0 (s)Α

  (2.9) 0 0

0 0

( 0) 1                         
( ) 0         0

Α = =⎧
⎨Α = = ≠⎩

S
S s for all s

Similar to the derivation of , (s)kΑ ( )k sΒ  can be written as: 

  (2.10) 

1

1

1

1
 

1 1 1
 

1 1 1 1 1
 

1 1 1

( ) { | }  

           = { , | } 

            { , , , } / { }

           { | , , } { , | }

           { | } { ,
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+

+

>

+ >

+ + > +

> + + + + +

> + + +

Β =

=

=

=

∑

∑

∑

k

k

k

k j k k

k j k k
all S

k k j k k k
all S

j k k k k k k k
all S

j k k k k

s P y S

P S y S

P S y y S P S

P y S y S P S y S

P y S P S y
1

1

1
 

1 1
 

| }

           ( '') ( , '')
+

+

+

+ += Β ⋅Γ

∑

∑
k

k

k
all S

k k
all S

S

s s s

Note that since the registers are empty at the ending in the turbo encoder, so we 

assume the trellis has the initial state SN = 0, the initial conditions for  are: (s)NΒ

  (2.11) 
( 0) 1                         

( ) 0         
Β = =⎧

⎨Β = = ≠⎩
N N

N N

S
S s for all s 0

Now, we know to calculate the forward recursion metric and the backward recursion 

metric that needs to acquire the branch transition metric first. The derivation of the 

branch transition metric  as below: ( ', )k s sΓ
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1

1

1

1 1

1 1

( ', )        { , | }
{ , , }                      

{ }
{ , } { , , }                      

{ } { , }
                      { | } { | , }
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−

−
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− −
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Γ =

=
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k

k k k k k
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s s P S y S
P S y S

P S
P S S P S S y

P S P S S
P S S P y S S

      ( ) ( | ) = k k kP u P y x

1

k

s

s

 (2.12) 

Where  is the input bit which would cause the transition from state  to 

state  as illustrated in Figure 2.6, 

ku

kS =

1 'kS − =

kx  and  are the corresponding 

transition codeword and the received symbol from channel, separately. Note that 

 is the a-priori probability of the input bit . According to the definition of the 

a-priori log-likelihood ratio: 

ky

( kP u ) ku

 {( )  ln
{ 1

1}
}

= +
= −

k
a k

k

P uL u
P u

 (2.13) 

The a-priori probability can be expressed as: 

 

( )

( )

( )/2
( )/2

( )

( )/2

{ 1}     
1

                     
1

                     

±

±

−
⋅

−

⋅

= ± =
+

⎡ ⎤
= ⋅⎢ ⎥+⎣ ⎦
= ⋅

a k

a k

a k
k a k

a k

k a k

L u

k L u

L u
u L u

L u

u L u
k

eP u
e

e e
e

A e

 (2.14) 

For a given , the parameter ( )a kL u kA  is independent of the actual value of  = +1 

or -1.  

ku

  For an addition white Gaussian noise (AWGN) channel, the term  in 

(2.12) can be written as: 

( | )k kP y x
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 (2.15) 

Here,  is called channel reliability. The terms 04 /c sL E N= kA  and kB  in (2.14) 

and (2.15) are equal for all transitions at the same time index, and hence will omit 

those terms in the following. Therefore, the branch transition metric can be rewritten 

to the equation (2.16): 

  (2.16) 
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e e

Final, substituting (2.8), (2.10) and (2.16) into (2.3), the LLR value can be further 

expressed as: 
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 (2.17) 

By the way, the LLR value can be also expressed as: 
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The term is called extrinsic information. Due to the extrinsic information 

is a redundant information that introduces by the RSC encoder, it is independent on 

systematic input and a-priori value  from LLR. The term  is passed 

to the input of the next decoder as the a-priori value  after (de-)interleaving. 

The overall MAP decoding flow is illustrated in Figure 2.7. 

( )ex kL u

( )a kL u ( )ex kL u

( )a kL u
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Figure 2.7 MAP decoding flow chart 

2.2.2 The Log-MAP Algorithm 

Although BCJR (MAP) algorithm will be fine for BER performance, that is very 

difficult and wasteful to implementation in hardware point of view. Therefore, the 

following algorithm will be from the hardware point of view to talk about the questions 

and solutions from papers. 

   The log-MAP algorithm is a transformation of MAP algorithm and without any 

performance loss in practical implementation. It operates in logarithm domain, and 

multiplication is converted to addition. Before introducing this algorithm, the Jacobian 

function is defined as: 

  (2.19) 

1 2
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x x lut x x

x x f x x

Where ( )cf ⋅ is a correction term, it can be implemented using a simple look-up table 

(LUT). The Jacobian function can be further expressed as: 

 
1 2 *
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* * *
1 2 3

ln( ... ) max ( , ,..., )

                                max (...max (max ( , ), )..., )

+ + +
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Nxx x
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 (2.20) 
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Now, we can re-express the forward recursion metric ( )k sα  from (2.8): 
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 (2.21) 

Where the branch metric can be expressed as: 
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We can also derive the backward recursion metric ( )k sβ in logarithm domain as: 
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Finally, from (2.17) can be expressed as: 
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2.2.3 The Maximum Log (ML) MAP Algorithm 

In hardware point of view, in spite of the log-MAP algorithm had reduced the 
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hardware cost, it is still too complex for some embedded applications. Hence, the 

ML-MAP algorithm is proposed with less complicated arithmetic, while a little 

performance loss compare with log-MAP algorithm. According to (2.21), (2.23), (2.24), 

we express the forward state metric, the backward state metrics and the LLR value for 

ML-MAP algorithm as (2.25), (2.26), and (2.27): 
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Compare with log-MAP algorithm, the difference between the two algorithms is the 

correct function  that can be implemented with a look-up-table (LUT). 

The maximum output value of the correct function is about 0.7 when

1 2| |ln(1 )x xe− −+

1x x= , and the 

output value of the correct function can be omitted when the absolute value greater than 

2. The correct function is illustrated in Figure 2.8. 
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Figure 2.8 The correct function 

 

Figure 2.9 The BER performance of ML-MAP algorithm compare with Log-MAP 

algorithm (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK) 
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2.3 Sliding Window Method for Turbo Decoding 

 In the traditional turbo decoding algorithm included MAP algorithm, log-MAP 

algorithm and Max-log-MAP algorithm. No matter what algorithm is used, the decision 

is based on forward and backward recursion metrics. We have to store every branch 

metric (γ ) and forward state metric α (or backward state metric β ) at every stage unit 

the backward state metric β  (or forward state metricα ) has been calculated out as 

shown in Figure 2.10, so as to calculate LLR in (2.24). 

Figure 2.10 The turbo decoding trellis diagram including the forward and backward 

direction 

 

  Now in hardware point of view the drawback of the log-MAP algorithm (or MAP 

algorithm) are the excessive memory required and a long decoding latency. As describe 

in the above, the entire state metric history must be stored, out to the end of trellis, at 

which point the backward state metric begins and decisions can be output starting with 

the last branch without the need to store any but the last set of state metrics computed 

backward state metric. This storage requirement is apparently excessive. Taking 

CCSDS specification as an example, according to encoder structure, we have 16 states 
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in trellis diagram, if we express every state by 9 bits, it would need 9*16=144 bits of 

storage per stage, and if the frame size is 1784 bits, the turbo decoder must at least have 

144*1784 bits to store for traditional MAP decoding algorithm. 

  Due to a lot of memory requirement and decoding latency for traditional MAP 

decoding, sliding window [8] method was proposed by Viterbi in 1998. We now briefly 

describe this method which reduces the memory requirement to just a few thousand bits, 

independent of the frame size N. Figure 2.11 indicates the bit processing times for one 

forward processorα and two backward processors β  operating in synchronism with 

received branch symbols. L means the sliding window size (typically 5~10 times 

constraint length). The label for each “node” below means the branch time instance. The 

main thought for sliding window is that we would estimate the set of backward state 

metrics via applying learning period (L). The basis for this approach is the fact that the 

backward processor can start cold in any state at any time; initially, the backward state 

metrics produced are almost worthless, but a few constraint lengths, the set of state 

metrics are as reliable as if the process had been started at the initial (or final) node. 

This applies equally to backward state metric as well as forward state metric. In Figure 

2.11, dashed line means that the un-reliable backward metric calculation (learning 

period). This backward processor is so-called dummy-β processor. After learning period 

computation, we get a reliable value for backward state metrics to take the initial value.  

Now we take the first decoder output (LLR) as an example to explain how those 

processors work. Let the received branch symbols be delayed by 2L trellis times. Then, 

from time 2L to 3L, we calculate all forward state metric start from the initial node 0 to 

L and storing these in memory, at the same time (2L~3L), the first backward processor 

starts to learning the initial backward state by the received symbol from node 2L to L 

(note that the direction is reverse with forward processor). During time 2L to 3L (or 
 21
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learning period), we do not store any backward metrics until time goes to 3L. At this 

time (3L), due to forward processor had already computed forward state metric from 

node 0 to L, so we can get the valid decoder output (node L to 0) from forward and 

backward state metric at time 3L to 4L 

  Also, the procedure of the second backward processor will be same as the first 

backward processor. While the first backward processor decode output from node L to 0 

at time 3L to 4L. From time 3L to 4L, we calculate all forward state metric start from 

the node L to 2L and storing these in memory, at the same time (3L~4L), the second 

backward processor starts to learning the initial backward state by the received symbol 

from node 3L to 2L. After learning period, we get the valid decoder output (node 2L to 

L) at time 4L to 5L. The two backward processors will take turn to decode out as the 

timing shows in Figure 2.11. We now also tale CCSDS turbo code as an example, the 

forward algorithm only needs to store 2L sets of forward state metrics, since after its 

first 2L computations (performed by time 4L), its first set of metrics will be discarded, 

then the empty memory can be filled starting with the new state metric for the node 

2L+1 to 4L. Thus, the storage requirement for a 16 trellis states using 9-bits to express 

forward state metric is only 2L*16*9=288L bits in all. If we assume L = 32, the storage 

requirement is approximately equal to 9K bits. That is the way for sliding window 

method saving huge memory and latency. After above mention, we simulated five 

different sizes of siding window as shown in Figure 2.12, and the sliding window size 

32 is more suitable in order best performance. 

 

 

 

 



 

Figure 2.11 Timing diagram for sliding window (refer to [8]) 

 

Figure 2.12  Performance comparison under different sizes of sliding window in 

CCSDS interleaver (N=1784, code rate = 1/3, state = 16, MAP algorithm, BPSK) 
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Chapter 3 Turbo Decoder Design Consideration 

 

 To analyze why the throughput of traditional turbo decoder is not fast enough, the 

most important reasons are limited by the operating frequency, a certain number of 

iterations, latency of sliding window and number of SISO decoders. In this Chapter, our 

proposed structure of turbo decoder is briefly presented to improve the disadvantage in 

the section 4.1, and then the methods to improve the throughput of turbo decoder are 

introduced, i.e. parallelism and early stopping criteria. On the other hand, due to the 

parallel decoding process, we have to solve the collision problem without any buffer. 

     

3.1 The Proposed Structure of Parallel Turbo Decoder 

    The proposed turbo decoder structure is shown in Figure 3.1. At the beginning, 

the input sequences (i.e. the systematic and parity information) are stored in the 

“IN_BUF” memories. That is, because of the radix-4 structure, the input sequences are 

divided from the odd and even stages. After that, the input sequences are accessed for 

the ‘SISO Decoder’ block decoding. As the log-likelihood ratios (LLR) and the extrinsic 

sequences (Lex) are produced, the Lex sequences are re-permuted to be the a-priori 

information (La) for the next iteration. Based on the high-radix or parallelism 

architecture, the mapping interleaving rule [21] with contention free is employed. 

Furthermore, in order to increase the data rate of turbo decoder, the HDA2 technique 

had been introduced and the hardware overhead should be negligible. 

 



 

Figure 3.1 The proposed turbo decoder structure 

 

3.2 The Parallel Turbo Decoder 

3.2.1 Sliding Window Timing Diagram 

    In a traditional sliding window, four dual port memory banks are needed. Besides, 

the latency of the traditional sliding window is at least 4L, where L is the window size. 

In our architecture, the function for each memory-bank is illustrated in Figure 3.2 (a). 

The black-slash block represents a store of the soft-input symbols to the memory bank, 

and the dotted block represents a read of the soft-input symbols to compute the forward 

state metrics α; the slash block represents first a read of the previous soft-input symbols 

to compute the backward state metrics β followed by an immediate store of the next 

input received symbols. A detailed dynamic description is also illustrated in Figure 3.2 

(b). The gray solid arrow represents calculation of the backward state metrics β. 

Furthermore, the dummy-β is calculated directly from the input symbols without the use 
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of any memory-banks. Based on the above reason, two memory banks are enough for 

our sliding window. Once we have the forward and backward state metrics, the soft 

output calculator is employed to decode the LLR out. Therefore, the latency of our 

proposed SW method is only about 2L.  

 

Figure 3.2 (a) Space and time relationship for memory-bank management (b) Space 

and time relationship for memory-bank management 

 

3.2.2 Parallel Sliding Window Decoding 

    Due to the parallel SISO decoding process, the flow diagram of sliding window 

could be a little altered as shown in Figure 3.3 that called ‘Parallel Sliding Window’. In 

Figure 3.3 giving ‘N’ SISO decoders, the PSW method divides the block K in N ‘super 

windows’, and performs sliding window decoding in each self SISO decoder. The 

‘super windows’ and the regular windows inside them can both be initialized by the 

method that intruding in section 3.2.1. Furthermore, in order to obtain reliable values of 

the forward state metrics, we use the forward state metrics of the previous iteration to 

ensure the initial value as reliable as traditional log-MAP algorithm. Hence, additional 
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)

registers would be needed, and the number of registers are N. The size of each register 

is:  (   ) (     number of states bits for forward metrics representations⋅

Here, we would like to note several properties of the suggested PSW technique: 

 Owing to the memories and the processing hardware cost, the area grows linearly 

with the number of parallel SISO decoders N, and the decoding latency drops 

linearly with N, making this PSW method very suitable for a parallel architecture. 

 For the same decoding latency as parallel log-MAP decoding and almost the same 

amount of processing hardware much less intermediate memory is used. 

 The decoding performance can be very closely estimated using the results obtained 

for sliding window decoding. 

 

 

Figure 3.3 Schedule of the parallel sliding window technique 

3.2.3 The Interleaver of Parallel Turbo Decoders 

In this section we discuss the collision problem [20] in the parallel turbo decoding 



process. The memory conflict problem is that the different SISO decoders work in 

parallel, it is necessary to access the extrinsic information by each SISO decoders in 

different RAM memories. In fact, depending on the specific permutation rule, it may 

happen that different SISO decoders try to access the same memory bank at the same 

time instant. We describe the problem in Figure 3.4, for a conventional turbo decoder in 

Figure 3.3 (a), it would not happen the collision problem as the only one SISO decoder 

stores or reads extrinsic information; while taking an example as 4-parallel SISO 

decoders in Figure 3.3(b), we permute the four extrinsic information in order and write 

the four extrinsic information according to interleaving order, then we find that SISO2 

and SISO4 decoders simultaneously access the same memory bank. In the next cycle, 

we also find that SISO1 and SISO3 decoders access simultaneously the same memory 

bank. 

 

Figure 3.4 (a) conventional turbo decoding without collision (b) parallel turbo 

decoding with collision problem 
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  To solve the problem, [21] had proposed a feasible method that can be used for any 

interleaver rules. We explain this method as follows. Given  banks of memory, 

each SISO decoder works on a sub-block with length 

wN

/ wNw L= . If we number all 

extrinsic information from 1 to L, the j-th SISO exports those values from  

to . We assume that all SISO decoders (i.e.  to ) export their 

extrinsic information at time instant  are those in position , , …, 

, and those relative position after write in (interleaving) or read out 

(de-interleaving) the memory banks are 

( 1)j w− +

w i+

1

i

jw

( 1wN

_1SISO _ wN

i

SISO

i

)w− +

( )iπ , ( )w iπ + , …, ( )w i+( 1N − )wπ . 

  To formalize the problem of mapping from decoders to memory banks, we can define 

a pair of functions ( ) { } { } { }, : 1,..., 1,..., 1,...,wM S L N→ × w , with the following meaning: 

For each decoder, the i-th output is written in the memory bank indexed by ( )M i , in 

position . The condition of lack of collisions translates then into the following 

constrains on 

( )S i

M , , ' 1,..., , 'k k L k k∀ = ≠ w, where =  means ‘equal modulo ’: w

 ' ( ) ( ')= → ≠wk k M k M k  (3.1) 

 ' ( ( )) ( ( '))π π= → ≠wk k M k M k  (3.2) 

Notice that the above constraints only depend on π , and that no constraint is imposed 

on the shift function . S

  It is useful to represent the mapping function as a wN w×  rectangular matrix, the 

mapping matrix, whose -th element, ( , )i j 1,..., wi N= , 1,...,j w= , represents the value 

of ( )( 1 )M i w j− + . In this way, constraint (3.1) translates into a constraint on the 

columns of such a matrix, while constraint (3.2) that depends on permutation π , 

defines a tiling of the matrix. Now, let us given an index k and defined the following 
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two sets: 

{ }[ ]( ) ' : ' ( 1) mod ,   1,...,= = − + = wC k k k i w k w i N  (3.3)  

 [ ]{ }( ) ( ') : ' ( 1) mod ,   1,...,π= = − + = wT k k k i w k w i N  (3.4) 

  Given an interleaverπ , the problem is to find a mapping matrix that satisfies (3.1) 

and (3.2). Here, we present an algorithm that gives the desired mapping matrix for any 

interleaver π . The algorithm can be described as below: 

 First step: Any step that produces an initial mapping matrix with the following 

properties: every column and tile contains at most one element equal to every 

symbol in { }1,..., wN . Nevertheless, there are some elements which are not 

assigned yet, and we label these unassigned elements as ‘-’. 

 Second step: This step accepts the initial mapping matrix output in the first step 

and fills all blank elements. This procedure of completing the mapping matrix is 

called annealing. This result is a mapping matrix with all elements in { }1,..., wN , 

satisfying (3.1) and (3.2). 

  To understand how the annealing algorithm works, it is better to give an example. 

  Example 1: Suppose L = 30, 5wN = , 6w = , and suppose the permutation π , for 

instance: 

    (29,  17,  5,  11,  21,  24,
            7,  2,  30,  28,  15,  10,
            22,  16,  1,  12,  3,  27,
            19,  14,  9,  25,  20,  4,
            13,  26,  18,  6,  8,  23)

π =

 

Thus, the column and tiling of the mapping matrix in this example can be shown in 

Figure 3.5(a), (b), respectively. 
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Figure 3.5 (a) The column (b) The tiling of the mapping matrix in this example 

 

Where the two sets are according to (3.3) and (3.4), for example, the indices 28 and 

9 of the tiling matrix are: 

[ ]{ }T(28)  =  ( ') : ' (2 1)6 28 mod 6 4 ,       1,...,5k k D iπ = − + = → =  

[ ]{ }T(9)    =  ( ') : ' (4 1)6 9 mod 6  3 ,      1,...,5k k C iπ = − + = → =  

  Suppose the output of the first step is the following initial mapping matrix: 

4 1 2 2 2
1 4 1 3 3 4
2 2 2 5 4 3
3 5 3 4 1
5 3 4 1 5 5

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Where the blanks in its (1,3) and (4,6) elements. The procedure of annealing starts from 

one of them, and we choose the (1,3) element and fill in the blank with the value that is 

not represented in its column yet, i.e., the value is 5. However, this change will cause a 

collision to happen, because (1,3) and (4,2) belong to the same tile E and both have the 

value 5. Owing to this reason, (4,2) is changed to the value 1 that is not represented in 

its tile E yet, as: 
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⎞
⎟
⎟
⎟
⎟

4 1 2 2 2 4 1 2 2 2
1 4 1 3 3 4 1 1 3 3 4
2 2 2 5 4 3 2 2 5 4 3
3 5 3 4 1 3 4 1
5 3 4 1 5 5 5 3 4 1 5

3
5

5
4

2
1

−⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜→
⎜ ⎟ ⎜

− −⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎟
⎟
⎠

 

Now, there is a collision happened in column 2 (the value 2 appears two times), so (1,2) 

is changed to 5. However, this change will cause a collision due to (1,2) and (3,4) 

belong to the same tile B and both have the value 5. So (3,4) is changed to the value 1 

that is not represented in its tile E yet, as: 

4 1 2 2 2 4 5 2 2 2
1 1 3 3 4 1 4 1 3 3 4
2 2 5 4 3 2 2 3
3 4 1 3 1 3 4 1
5 3 4 1 5 5 5 4 1 5

5

2 1 4

53

5
4

2
1 3

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟→
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Repeat the same procedure above mentioned all the while until no iterant number 

appears to the same tile and column. Hence, the final result is the following mapping 

matrix and one can verify that constraint (4.1) and (4.2) are all satisfied: 

4 5 5 2 2 2
5 4 1 3 3 4
2 2 2 1 4 3
3 1 3 4 5 1
1 3 4 5 1 5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  The annealing procedure can be decomposed into several cycles, each of them 

starting with a blank element, picked at random, and ending when no collisions are 

produced. After a cycle is ended, a new one starts if there are still blanks in the mapping 

matrix, otherwise, the annealing procedure is over. In the previous example, there are 4 

cycles. 

 



3.3 Early Stopping Criteria 

In traditional turbo decoding, in order to achieve a satisfactory performance, the 

turbo decoding has to run a certain number of iterations to ensure the extrinsic values 

have converged. This results in low speed, long decoding latency and large energy 

consumption as well. In fact, turbo decoder may early converge when the channel 

condition is good. Hence, an early stopping criterion should be employed to reduce the 

number of iterations. For the hardware point of view, a good stopping criterion should 

save as many iterations as possible with no or insignificant performance loss. At the 

same time, the hardware overhead should be negligible. 

  Here, we briefly introduce some early stopping criteria [23], then compare their 

advantages and disadvantages: 

 HDA (Hard-Decision Aided) Criterion: This criterion compares the decoded bits 

of the two continuous iterations. The turbo decoding is stopped working after 

iteration  , where : i 2i ≥

   

 ( ) ( ),2 1,2( )     ( ) , 1,...,−= ∀ ∈S Si i
k kL u L u k K  (3.5) 

  Where , ( )i j
kL u  denotes the log-likelihood ratios (LLR) output from the thj  

decoder in  iteration, and the  and thi K ( )xS  denote the frame size and the sign bit 

of x . 

 HDA2 Criterion: The method of HAD criterion is extended in [24] and we only 

represent a criterion that due to only this criterion has similar hardware 

implementation complexity, while the others require double or triple hardware 

implementation complexity. Therefore, the decoding process is stopped after 

iteration  for , if: i 2i ≥
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( ) ( ),1 ,2( )     ( ) ,       1,...,= ∀ ∈S Si i
k k u L u k K  (3.6) L

 SDR2 (Sign Different Ratio) Criterion: This criterion was proposed in [25], 

according to (2.18), since the term S
C kL y⋅  is fixed for all iterations, the change in 

the magnitudes of the LLR is owing to changes in the magnitudes of the extrinsic 

information. The hard decision based on ,2 ( )S i
C k a kL y L u⋅ +

,2 ( )i
a k

 from the SISO1 

decoder shows in Figure 2.4 should agree with the hard decision based on the LLR 

at the output of the SISO2 decoder, where the term L u  is the term ,1( )i
ex kL u  

from the SISO1 decoder after interleaving. Hence, the decoding process is 

terminated after iteration  for i , if: i 1≥

 ( ) ( )( ,2 ,2

1
( ) ( )   0

=
)⊕ ⋅ + =∑ S S

K
i S i

k C k a k
k

L u L y L u  (3.7) 

 Min-LLR Criterion: the criterion had proposed a method that use the minimum 

of absolute values of the LLR to decide the turbo decoding is terminating or not. 

This decoding process is stopped after iteration  for , if: i 1i ≥

 ,2

1
min  ( )   θ
≤ ≤

>i
kk K

L u  (3.8) 

 Decoding Metrics Criterion: This criterion is decided by three variables: the 

minimum of the absolute values of the LLR, the minimum of the absolute values of 

the extrinsic information, and the number of the non-matching bits (NMb). The 

idea of NMb evaluates the number of sign-bit differences between the LLR and the 

extrinsic information for the same SISO decoder of the same iteration. The turbo 

decoding process is stopped after iteration  for , if: i 1i ≥



 
( ) ( )

( ) ( )( )

, ,
1 21 1

, ,
3

1

min  ( )    & min  ( )    

      & ( ) ( )   

θ θ

θ

≤ ≤ ≤ ≤

=

> >

⎛ ⊕ <⎜ ⎟
⎝ ⎠
∑

i j i j
k ex kk K k K

K
i j i j

k ex k
k

L u L u

L u L uS S ⎞  (3.9) 

Where & denotes the ‘AND’ operation. 

 

Figure 3.6 The BER performance comparisons of early stopping criteria 

 

 

 Figure 3.7 The average number of iteration of six early stopping criteria 
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After MATLAB simulation, the simulation results are presented in Figure 3.6 and 

Figure 3.7. In Figure 3.6, the HDA2 and MOD1 criteria are the best performance among 

all curves; and in Figure 3.7, the MinLLR criterion is the least number of iteration 

among all curves, however, the NMb and HDA2 criteria are also good enough even 

though the MinLLR criterion has the least iterative number. Finally, we select the 

HDA2 criterion after a comprehensive survey. 
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Chapter 4 Soft-In-Soft-Out (SISO) Decoder Design 

Consideration 

 

 Due to the maximum a posterior probability (MAP) algorithm, turbo codes are one 

of the most powerful error correcting codes. However, its clock frequency is limited by 

recursion architecture of SISO decoder. In this chapter, section 4.1 shows the proposed 

SISO decoder structure. Then we introduce radix-4 log-MAP algorithm and the 

proposed ACS architecture of radix-4 log-MAP decoder in order to improve the 

throughput. Finally, we also introduce the architectures of branch metric and LLR.  

 

 

4.1 SISO Decoder Architecture 

The block diagram of the radix-4 MAP decoder is shown in Figure 4.1. During the 

SISO decoding process, the soft-input symbols are written to the four single-port 

memories, which work like ping-pong buffers and are read by the ACS α or β block to 

calculate the branch and state metrics. The state metrics computed from the ACS α 

block, are stored in “Alpha RAM”, and are later fetched by the LLR unit for LLR 

calculation when the ACS β block state metrics become available. In order to decrease 

the latency and memory, the dummy β ACS block fetches the soft-input symbols 

directly. 



 

Figure 4.1 Block diagram for sliding window log-MAP decoder (SISO decoder) 

 

4.2 Radix-4 Log-MAP Algorithm 

 The throughput of turbo decoder is limited by the critical path delay of ACS unit 

due to the recursion architecture. For the radix-4 decoder, if we directly implement the 

radix-4 algorithm, the critical path delay will be twice that of the radix-2 recursion unit, 

therefore, it cannot increase the throughput. Many articles [9-11] on recursion 

architectures have been presented to solve this problem. In this section we briefly 

introduce the radix-4 algorithm and next section the radix-4 recursion architecture will 

be presented. 

  Radix-4 architecture processes two stages per clock cycle as shown in Figure 4.2 (b), 

i.e. the decoder computes two bits per clock cycle; whereas radix-2 architecture 

processes only one trellis stage per clock cycle and its trellis diagram as shown in 

Figure 4.2 (a). The radix-4 trellis contains only the stage at the even times (k=0, 

k=2, …). Each node has four incoming paths (i.e. four candidates to select) and four 
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outgoing paths. Due to the radix-2 MAP algorithm was introduced in chapter 2, we 

express the recursion of the state metrics as followed: 

 The forward recursion metric ( )k sα : 

  (4.1) 

*
1'

* *
1 2' ''

*
1 2( ', '')

( ) max ( ( ', ) ( ')) 

        max { ( ', ) max [ ( '', ') ( '')]}

        max [ ( ', ) ( '', ') ( '')]

α γ α

γ γ α

γ γ α

−

− −

− −

= +

= + +

= + +

k k ks

k k ks s

k k ks s

s s s s

s s s s s

s s s s s

 The backward recursion metric ( )k sβ :  

  (4.2) 

*
2 1 1'

* *
1'

*
1( , ')

( '') max ( ( '', ') ( '))

             max { ( '', ') max [ ( ', ) ( )]}

             max [ ( '', ') ( ', ) ( )]

β γ β

γ γ

γ γ β

− − −

−

−

= +

= + +

= + +

k k ks

k ks s

k k ks s

s s s s

s s s s s

s s s s s

βk

 

Figure 4.2 Trellis diagram (a) Radix-2 trellis (b) Radix-4 trellis 

   

Finally, the log-likelihood ratios (LLR) can be written as: 
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 (4.4) 

  Moreover, if we want to improve our throughput more, we can use higher radix (e.g. 

radix-8, radix-16) log-MAP algorithm, but it may increase the area significantly. 

 

4.3 The Architecture of Recursion State Metric 

 

Figure 4.3 A traditional recursion architecture (with normalization) 
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4.3.1 OASC Structure 

For a radix-2 MAP decoder, the traditional recursion architecture and equation are 

shown in Figure 4.3 and (2.21), respectively, and the recursion architecture is called the 

add-compare-select-offset (ACSO) unit. 

 To analyze the recursion architecture, we make the recursion architecture expand 

to two trellis stages as shown in Figure 3.5 [12]. Pipelining those three different 

positions of the recursion loop registers. The first zone is type (a) architecture. It results 

in an ACSO unit. The second zone is type (b) architecture. It leads to a 

compare-select-offset-add (CSOA) unit. The third zone is type (c) architecture. It leads 

to an offset-add- compare-select (OACS) unit. We briefly compare the critical path of 

those three type architectures. In the case of type (a), the critical path is consisted of the 

propagation carry adder (tC), the propagation of the one full adder (tFA) for comparison, 

the time of the LUT block access (tLUT), the multiplier (tMUX), and the time of the 

propagation carry adder (tC) again due to adding the LUT value. The total critical is 

describe as (3.5). In the case of type (c), that is mean the OACS architecture, the critical 

path is consisted of the propagation carry adder (tC) only in the first adder. Due to the 

propagation of carry adder, only one full adder (tFA) for the addition of the branch 

metric in the critical path as well as the propagation of the one full adder (tFA) for 

comparison, the time of the LUT block access (tLUT), the multiplier (tMUX). Then the 

total critical is decrease from (3.5) to (3.6): 

 

 ( , )= ⋅ + + + ⋅ACSO SM C FA LUT MUX SM Ct n t t MAX t t n t

)

 (4.5) 

  (4.6) 2 ( ,= ⋅ + ⋅ +OACS SM C FA LUT MUXt n t t MAX t t
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Figure 4.4 Three different locations of the register in the data flow of the recursive 

algorithm result in three kinds of ACSO recursion architecture (refer to [12]) 

 

  Because the critical path of CSOA architecture is the same as OACS architecture, we 

compare OACS unit with CSOA unit in area point of view, OACS unit needs  bits 

and bits registers, whereas OACS unit needs 

SMn

LUTn 3 SMn⋅  bits registers. As a result of 

area, we use OACS-based concept and radix-2 OACS architecture as shown in Figure 

4.5. 

 

Figure 4.5 Architecture of a recursion OACS unit  
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4.3.2 Proposed Radix-4 Log-MAP Recursion State Metric 

 Although the radix-4 architecture reduces the total number of stages by 50% 

compare with the radix-2 architecture, it is expected the complexity and the branch bits 

increase in radix-4 architecture design. Therefore, the overall critical path of radix-4 

decoder will a little larger than radix-2 decoder. Hence, our design challenge of the 

radix-4 decoder is to design an ACS recursion unit which its critical path is less than 

twice of the radix-2 ACS recursion unit.  

  According to (4.1), radix-4 recursion unit has four candidates to select. We mention 

the max* function again in (4.7), and directly implement in this equation in Figure 4.6. 

The gray area expresses two-input max* ACS unit (i.e. 1 2max*( , )x x = 1 2max( , )x x  +

). It is clear that the critical path delay in Figure 4.6 is double that of 

radix-2 ACSO unit. To improve this problem, [9-10] proposed many ideas, but a little 

performance loss.  

1 2| |ln(1 )x xe− −+

  (4.7) 
31 2 4 *

1 2 3 4

* * *
1 2 3 4

ln( ) max ( , , , )

                                 max (max ( , ),max ( , )) 

+ + +

=

xx x xe e e e x x x x

x x x x

 

 

 Figure 4.6 A radix-4 recursion unit 
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Figure 4.7 Improved radix-4 recursion OACS architecture 

  In our proposed design, in order to further increase the throughput, we use the 

OACS [4] architecture as shown in Figure 4.7 and the computation for the max* 

function can be expressed as: 

( ) ( ) ( ){ }max* , , max* ,max* , , , max w x w xw x y z                              (3.8) 

 

The outputs of four comparators and the MSB of the difference output of each of 

two subtractors are fed to an array of multiplexers to select the maximum value of the 

four inputs, and its associated LUT index. In addition, we employ a one stage carry-save 

adder described in [10] to reduce a three-number addition to a two-number addition. 

Moreover, in order to further increase the clock rate, the hybrid 4-inputs 

addition/subtraction (e.g.  a0+ b0﹣a1﹣b1) is proposed and the structure like signed 
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binary digit (SBD) addition/subtraction [29]. It is clear that the term a0+ b0﹣a1 is 

computed by the plus-plus-minus (PPM) adder of the first stage, and then the sum ‘s’ 

and carry ‘c’ are produced from the PPM adder of the first stage  and b1 as the inputs 

of the PPM adder of the second stage as shown in Figure 4.8. Hence, the difference of 

each of two inputs could be early derived. Finally, the critical path delay of our design is 

less than three times the delay of a 10-bit adder. 

 

Figure 4.8 Hybrid 4-inputs subtraction 

 

In addition, the generalized LUT (GLUT) structure is illustrated in Figure 4.9, the 

advantage of the GLUT structure is it does not need to compute the absolute value from 

subtraction operation, while estimate the correct term by Ls2 and ELUT block. The Ls2 

function block is used to determine if the absolute value of the input is less than two or 

not, and the ELUT is used a smaller LUT only with 3-bit inputs and obtain 2-bit outputs. 

The output Z of Ls2 function can be express as 7 6 3 7 6 3( ... ) ( ,..., )Z S b b b S b b b= + + + + ⋅ ⋅ ⋅ . 

Besides, the inputs of ELUT block include the sign bit to make sure the output value 

correction, and Table 3.1 shows the LUT approximation value of Figure 4.9. Finally, the 

outputs (c0, c1) of ELUT block are combined with the output Z of Ls2 function block 
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by AND gate. That is, if the absolute value of the GLUT input is greater than 2.0, the 

output from the GLUT is zero. Otherwise, the GLUT output is decided by ELUT block. 

 

 

Figure 4.9 Structure of GLUT used in improved OACS architecture 

 

Table 4.1 ELUT function block approximation 

|x| f(x) (b2,b1,b0) 

000 0.00 0.75 

001 0.25 0.50 

010 0.50 0.50 

011 0.75 0.50 

100 1.00 0.25 

101 1.25 0.25 

110 1.50 0.25 

111 1.75 0.25 
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4.3.3 The State Metric Normalization 

    A significant issue for hardware implementation of turbo decoder, fixed-point 

implementation is necessary. Due to the finite numerical range representation, the 

forward and backward state metrics would overflow by using log-MAP recursion 

algorithm. This problem can be solved by a normalization method [13] or by using 

modulo arithmetic [14], [15]. In this section, we only address the rescaling method. 

   According to the proof of [14], [16], the bit-width  has to be large to allow 

straightforward evaluation of differences

w

Δ : 

 max 1Δ + ≤⎡ ⎤⎢ ⎥ld w  (4.8) 

   Let B be the upper bound for the absolute values of the signed branch metrics: 

 ( , ') ,          , 'γ ≤ ∈k s s B s s S  (4.9) 

With 1  being the memory order of a RSC code with constraint length K , the 

difference between any two state metrics of the same trellis stage k is bounded as: 

m K= −

 0 1 0 1( ) ( ) 2 ,            ,α α− ≤ ∈k ks s mB s s S  (4.10) 

Based on (3.10), the require bit-width smw  for the state metrics after a recursion is 

written as: 

 (2 ) 1= +⎡ ⎤⎢ ⎥smw ld mB  (4.11) 

Again, we can derive the candidate state metrics are upper bounded as: 

 0 1 0 1 1 1( ) ( , ') [ ( ) ( , '')] 2 2 2( 1)α γ α γ+ ++ − + ≤ + = +k k k ks s s s s s mB B m B  (4.12) 

The require bit-width csmw  for the candidate state metrics is written as: 

 (2( 1) ) 1= + +⎡ ⎤⎢ ⎥csmw ld m B  (4.13) 

As analyze above, we know the forward and backward state metrics will be 

bounded in a range after a few trellis stages computation. Therefore, the proposed 
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approach is the rescaling of the state metric via condition subtraction of a fixed value. 

We assume the upper bound of branch is 32 as shown in Figure 4.10, and the constraint 

length K=5 for CCSDS, the upper bound ( 2( 1) 320m B+ = ) of the forward and 

backward state metrics will be evaluated by (3.13), and the require bit-width = 9 

bits. Hence, if one of the state metrics is larger than 480, all the state metrics will be 

subtracted of 128 to guarantee all the state metrics would not overflow. By the way, 

when one or more state metrics over 480, the minimum value of the state metric (not 

less than 160) will not less than the maximum value of branch metric due to the upper 

bound of state metric. This ensures all state metrics are positive values. 

csmw

 

 

Figure 4.10 Integer ranges at forward and backward recursion arch. 

 

   This rescaling approach [13] only leads to a little critical path delay with the 

recursion unit. The structure within normalization is illustrated in Figure 4.11, take 

radix-4 ACS unit as an example, and the blue area is the normalization part, this 

structure detects the four candidates larger than 960 or not, if more than one of the four 

candidates larger than 960, the first OR gate send a “true 1” signal to the next OR gate, 

else send a “false 0” signal to the next OR gate. There are 16 input signals (the number 
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of input signals is according to the number of state metrics) in the second OR gate, if 

one of them send a “true 1” signal, then all state metrics will be subtracted by 256, 

otherwise doing nothing for original state metrics. 

 

Figure 4.11 The structure of radix-4 ACS unit within normalization 

4.4 The Structure of Branch Metric 

According to the equation (2.22), the equation of the branch metric for code rate 

1/3 and radix-4 log-MAP algorithm is derived as: 

 49



 

1

( ) ( )
1

( ) ( )
1 1 1 11

( '', ', ) ( ', ) ( '', ')
1                 ( )
2

1                    ( )
2

1                 ( ) (
2

δ γ γ −

=

− − − −=

+

⎡ ⎤= ⋅ ⋅ + ⋅ ⋅⎣ ⎦

⎡ ⎤+ ⋅ ⋅ + ⋅ ⋅⎣ ⎦

= ⋅ + ⋅ ⋅ + ⋅

∑

∑

k k k

n i i
k a k c k ki

n i i
k a k c k ki

s s p
k a k C k k k

s s s s s s s

u L u L y x

u L u L y x

u L u L y x y x

[ ]

1 1 1 1 1 1

1 1

1 1 1 1

)

1                    ( ) ( )
2

1                 ( ) ( )
2

1                     + ( )
2

− − − − − −

− −

− − − −

⎡⎣

⎡ ⎤+ ⋅ + ⋅ ⋅ + ⋅⎣ ⎦

= ⋅ + ⋅

⎡ ⎤⋅ ⋅ + ⋅ + ⋅ + ⋅⎣ ⎦

p
k

s s p p
k a k C k k k k

k a k k a k

s s p p s s p p
C k k k k k k k k

u L u L y x y x

u L u u L u

L y x y x y x y x

⎤⎦  (4.14) 

  The branch metric unit (BMU) for radix-4 log-MAP algorithm is shown in Figure 

4.12. The MSB and LSB of the delta (δ ) indices are at the time k-1 and k, respectively. 

 

Figure 4.12 The branch metric unit (BMU) for radix-4 log-MAP algorithm 
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4.5 The Structure of Log-Likelihood Ratios (LLR) 

4.5.1 Traditional LLR Computation Unit (LCU) Based on Radix-2 

Log-MAP Algorithm 

Based on (2.24), we have to compute the sum of the forward, backward state 

metrics and branch metrics. In order to decrease the critical path of LLR, we pipeline 

the outputs of the addition. We assume 4 trellis states RSC encoder as shown in Figure 

2.6, in conventional architecture, a total number of 16 adders are used in the first 

pipelined stage to obtain the LLR value as shown in Figure 4.13, and need [ ]2* 1M −  

MAX* unit to compare and select the LLR_0 and LLR_1 values, where M is the 

number of trellis states. The number of pipelined stages is ( )2log 2M + . 

4.5.2 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP 

Algorithm 

In this section, we also assume 4 trellis states RSC encoder as shown in Figure 

 

Figure 4.13 Traditional LLR Computation Unit (LCU) Based on Radix-2 Log-MAP 

Algorithm 
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4.13. For radix-2 log-MAP algorithm, there are 4 path candidates to compute the 

log-likelihood value (either LLR_1 or LLR_0) as shown in Figure 4.14 (a). However, 

for radix-4 log-MAP algorithm, according to (3.3), (3.4), there are both 8 path 

candidates to compute the log-likelihood value at time k and k-1(also either LLR_1 or 

LLR_0), and the architecture of the LLR will be illustrated in Figure 4.15. 

 

 

Figure 4.14 Trellis diagram (a) Radix-2 trellis (b) Radix-4 trellis 

 

Figure 4.15 LLR Computation Unit (LCU) Based on Radix-4 Log-MAP 

Algorithm 
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Chapter 5 System Simulation and Performance 

Analysis 

In previous chapter, our discussions about turbo codes are based on a condition of 

the floating point. However, the floating point value should be bounded since infinite 

precision is impossible to be achieved for practical hardware implementation. A 

trade-off between hardware cost and the performance must be concerned since coding 

performance may suffer quantization loss due to internal bit-width limitation. In general, 

the hardware complexity of turbo code can be estimation in computing complexity and 

memory size which is proportional to bit-with. In this chapter, based on acceptable 

performance loss, the fixed point analysis and computing complexity is discussed. 

Besides, we also analyze the parameter of scaling factor under MATLAB tools. Note 

that in this chapter, only hardware complexities of the CCSDS standard with 

length-1784 interleaver. And the sliding window method for turbo decoder is assumed, 

where the length of sliding window is set as 32. 

    Due to we have briefly described turbo encoder and decoder structure in chapter 2 

~ 4, and the encoder is earlier than the decoder, this chapter will focus on the decoding 

simulation and performance analysis. 

5.1 The Bit-Width Estimation of Soft-Input Information 

Most Turbo decoder hardware implementations are based on fixed-point operations 

[26]. As a result, a significant amount of effort must be focused on dynamic range, 

number density, and normalization before choosing a number system. Since our aim is a 

fast turbo decoder design, we choose a 2’s compliment integer representation. 

 For efficient implementation, we need to estimate the numerical range of the soft 



inputs, various state metrics. In this section, we focused on the estimation of the soft 

inputs, while other state metrics are unconcerned. We simulate four different types of 

input and three various numbers of iterations under MATLAB for BER comparison in 

Figure 5.1. Figure 5.1 shows the BER performance of a code rate 1/3, 16 states, and 

frame size of 1784 bits on CCSDS standard. The MATLAB simulations were operating 

under the assumption of AWGN channel and BPSK modulation, and where (q, f) 

denotes a quantization scheme that uses q bits in total and f bits to represent the 

fractional part. We finally chose the fixed-point (5, 2) as hardware input though the 

performance of the fixed-point (6, 3) is a little better than the fixed-point (5, 2).  

 

5.2 The Bit-Width Estimation of Lex  

After the last section estimation, we go on estimating extrinsic information. It is 

worth mentioning that if the entire range of extrinsic value is to be expressed, at least 7 

bits for the integer part is needed. If we take 2 bits as the fractional part, then 9 bits are 

 

Figure 5.1 The comparison of BER performance for various soft inputs 
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needed to store an extrinsic value. In fact, the quantization scheme for the extrinsic 

value can be employed. The reason why the scheme can be used is described in [26].      

At the beginning, we simulate the iterative decoding assuming that the soft-input 

information and other parameters are 5 bits (i.e.: (5, 2) bits) and ideal, respectively, 

except the representation of the extrinsic information. Figure 5.2 shows the simulated 

BER versus Eb/N0 for different bit numbers of fraction part. From the curves, we see 

that the one bit of fraction part is very close to the floating point case. Although the 

BER performances of the two and three bits of fraction1 part have a little better than the 

one bit of fraction part, we choose the one bit to present the fraction part of the extrinsic 

information in hardware point of view. 

    Then, Figure 5.3 shows the simulated BER versus Eb/N0 for different bit numbers 

of integer part, while one bit is enough to indicate the fraction part. From the curves, we 

see that four bits presents the integer part is very close to the floating one. 

 

Figure 5.2 The comparison of BER performance for various soft inputs and 

extrinsic information 
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    Figure 5.4 shows the simulated BER versus Eb/N0 for different values of channel 

reliability. Theoretically, it is necessary to estimate the SNR when using log-MAP 

constituent decoder, while [30] reported that the differences are surprisingly small if a 

suitable parameter of channel reliability is selected. We use five hypothetical values of 

channel reliability to obtain the best result. Figure 5.4 present that 1.75 is better than 

others; therefore, we assume the channel reliability value is 1.75 for hardware 

implementation. The other simple specifications of the proposed turbo decoder are 

given in Table 5.1.  

 

Figure 5.3The comparison of BER performance for various soft inputs and 



 

Figure 5.4 The comparison of various channel reliability 

Table 5.1 Proposed Turbo Decoder Specification 

 57

Code polynomial 
3 4

3 4

11 
1

D D D
D D

⎡ ⎤+ + +  

Note: because of HDA2 

method is employed in 

our design, the average 

number of iterations is 

about 4.5. 

⎢ ⎥+ +⎣ ⎦

Code rate 1/3 

Frame size 1784 

Window size 32 

Channel reliability 1.50 

≒4.5 Iteration number 

The first three times: 0.75
Scaling factor 

Others: 1 

Input  5(3,2) 

Data Width α、β、γ 10(8,2) 

Lex 6(4,2) 
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Chapter 6 Turbo Decoder Implementation in FPGA 

and ASIC 

 

After the simulation and performance analysis in chapter 5, the bit-width of input 

symbol, branch metric, state metric and LLR is decided. This chapter will focus on our 

proposed turbo decoder for hardware implementation. Besides, in the last section, we 

will compare with other papers in hardware point of view. 

 

6.1 The FPGA Implementation Results 

 In this section, we will first introduce the design and verify process, after that we 

report our FPGA implementation results. 

    First we write a MATLAB program to simulation the turbo decoding algorithm so 

that we can make sure we understand the flow of the process. Second, we develop a 

bit-accurate MATLAB model according to the architecture in the chapter three and 

chapter four. On the other hand, we write a RTL (Register Transfer Level) in Verilog 

code for hardware implementation. Then, we can verify our RTL code by MATLAB 

golden model, MATLAB model can help us to process Verilog HDL debugging easily. 

Third, after the functions of RTL code operate well, for the FPGA aspect, we use the 

Xilinx ISE 7.1i tools to produce the bit files and we can download the bit files to the 

FPGA develop broad. Afterward we verify the hardware circuit by Vericomm tools. 

Beside, the ASIC process will be presented in the next section. Summarize our 

development and design flow is shown in Figure 6.1. 

 



 

    Figure 6.2 is a flow graph of turbo decoder which is based on one Radix-4 MAP 

decoder to implement. As the turbo decoder starts, the input data frame is stored in the 

‘In Buffer’ memory. After that, MAP decoder fetches the input frame to calculate the 

LLR and extrinsic information. Then, the early stopping phase is beginning after two 

decoding iterations. The detail context is described in section 4.2. If the channel 

condition is not good, we also make a certain number of iteration to stop the decoding 

process. Finally, the decoding process make the hard decision according to the sign bit 

of LLR. 

 

Figure 6.1 Development and design flow of the process 
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Figure 6.2 The flow graph of turbo decoder 

 

  For convenience, we pack the decoder as a processing core and indicate the 

input/output ports in Table 6.1. When this processing core is used, we just need to 

configure those pins adequately. The I/O diagram of this FPGA processing core is 

shown in Figure 6.3. The simulation environment is as follows: 

FGPA development board: Xilinx Virtex-IV XC4VLX60-12FF1148 

Simulation Software: Xilinx ISE 7.1i, VeriComm Pro. 

HDL: verilog 

Maximum clock frequency: 144.4 MHz 

Therefore the turbo decoding rate is: 
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 : 3
2 ( 2 )

⋅ ⋅
= ≈

⋅ ⋅ + ⋅

K f M 3.23Data rate R MbpsKI W
N

 

The turbo decoding latency is: 

2 ( 2 )
  : 53.68 secμ

⋅ ⋅ + ⋅
= ≈

⋅

KI W
NLatency L
f M

 

Where all parameters above are defined: frame size K = 1784; clock frequency f = 

144.4 MHz; radix-2M (i.e. M=2) MAP decoder; the number of iterations I ≒ 4.25; 

number of MAP decoders N = 1; window size W = 16; input information data rate R = 

33.23 Mbps; and the latency L = 53.68 μsec. The total occupied area is around 12904 

slices (the input and output memory are included) from a total of 26624 slices. 

 

Table 6.1 I/O ports definition 
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I/O 
Bit 

Width 
Description Port 

CLK input 1 System clock 

RESET input 1 Reset the register contents 

IN_VALID input 1 Indicate the frame size of input data valid 

SYSTEMATIC input 5 The systematic input data 

PARITY1 input 5 
The parity input data (for in-order RSC 

encoder) 

PARITY2 5 
The parity input data (for re-permuted RSC 

encoder) 
input 

ITERATION output 5 The iteration number 

OUT_VALID output 1 Indicate the decoder bit vialid 

DECODER_OUT output 1 Decode bit output 



 

Figure 6.3 Turbo decoder I/O diagram under FPGA verification 

6.2 The ASIC Implementation Results 

 We are interested in how many gate counts are used in the proposed turbo decoder, 

where single SISO decoder is employed of the turbo decoder. Table 6.2 shows the area 

and gate counts reports for each block components of SISO decoder. The ASIC 

verification flow is shown in Figure 6.4. The encoder sequence, BPSK (binary phase 

shift keying) modulation and the AWGN (additive white Gaussian noise) are generated 

by MATLAB tools and are written the information into TESTBENCH block. We can 

compare the results with the decoding bits by bit-accurate MATLAB decoding program. 

If “Error” outputs the other number but not zero, there should be something wrong in 

the decoding hardware. 
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Table 6.2 Area report for each component of SISO decoder 

Component  

 63

 

 

 We use SOC_Encounter as APR (automatically place & route) tool and layout is 

shown in Figure 6.5. The chip density and core size for the decoder are 64.6% and 1.26 

x 1.26 mm2 = 1.5876 mm2, respectively. The detail ASIC simulation environment is as 

below: 

Gate Count (Size) Area (90 nm) 

α state metric 16040.86 68975.7 

β state metric 14597.56 62769.5 

Dummy β state 

metric 
13031.31 56034.66 

γ branch metric 2950.86 12688.71 

α memory 2560 bits 38335.0 x 4 

Sliding window 

memory 
1024 bits 20761.0 x 4 

LLR  44949.86 193284.4 

Total 152243.35 654646.4 

 

Figure 6.4 ASIC verification flow 



HDL: Verilog  

Compiler tool: NC-Verilog 

Debug tool: Debussy  

Synthesis tool: synopsys 

Process: UMC 90 nm 

The maximum clock rate for proposed turbo decoding process is 357.14 MHz, and the 

turbo decoding rate is: 

 : 77.62
2 ( 2 )

⋅ ⋅
= ≈

⋅ ⋅ + ⋅

K f MData rate R MbpsKI W
N

 

The turbo decoding latency is: 

2 ( 2 )
  : 22.98 secμ

⋅ ⋅ + ⋅
= ≈

⋅

KI W
NLatency L
f M

 

Moreover, in order to further improve the turbo decoder speed, the improved radix-4 

 

Figure 6.5 Chip layout of turbo decoder with single SISO decoder  
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recursion unit, HDA2 early stopping criterion and parallel SISO decoders are shown in 

Figure 6.6. On the other hand, in order to solve the collision issue, the modified 

annealing method is introduced and that results in contention free and no any extra 

buffers are needed. 

Finally, the 17.64mm2 core area can support the maximum data rate is: 

 : 884.91
2 ( 2 )

K f MData rate R MbpsKI W
N

⋅ ⋅
= ≈

⋅ ⋅ + ⋅

 

The turbo decoding latency is: 

2 ( 2 )
  : 2.016 sec

KI W
NLatency L
f M

μ
⋅ ⋅ + ⋅

= ≈
⋅

 

 

 

 

Figure 6.6 Chip layout of parallel turbo decoder by SoC Encounter 
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6.3 Comparison 

In this section, we summarize the BER performance, area, timing, and others 

comparison. The synthesis result is shown in Table 6.3, Arch-T denotes the traditional 

radix-2 ACSO architecture; Arch-L denotes the modified radix-4 architecture [9]; 

Arch-W the radix-4 architecture proposed by Wang [10]; and Arch-C the proposed 

architecture, having the highest throughput among all recursion units. 

Table 6.3  Comparison of four recursion architectures 
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Timing (ns) 
Relative 

area 

Relative 

throughput 
 

Arch-T 1.80 1 1 

Arch-L 2.40 1.61 1.50 

Arch-W 2.22 1.96 1.62 

Arch-C (proposed) 2.01 1.94 1.80 

 

 

Figure 6.7 Performance comparisons among those three architectures 



Figure 6.7 shows the BER performance of a code rate 1/3, 16 states, and frame size 

of 1784 bits on CCSDS standard. The number of total iterations is eight. The MATLAB 

simulations are operating under the assumption of AWGN channel and BPSK 

modulation. We could see that the traditional radix-2 architecture has the best 

performance due to least approximation, and the other two approximation architecture: 

Arch-L and Arch-C resulting to about 0.1 and 0.05dB performance loss, respectively. 

The proposed design is compared with [27], [28], and the results shown in Table 

6.4. Those three designs are all based on the CCSDS single-MAP decoding architecture 

for telemetry channel coding. Due to the high-radix structure (the early stopping rule is 

employed), the proposed design is the fastest one among all in Table6.4. 

Table 6.4  Comparison of CCSDS turbo decoders 
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 Refer to [27] 
Proposed 

architecture 
Refer to [28] 

TI TMS320C6000 

(DSP x 8) 

Xilinx Virtex-V 

XC5VLX30-3 

Xilinx Virtex-IV 

XC4VLX60 
Board type 

Area  NA. 3411 Slices 13504 Slices 

Speed  365 K bps 9.81 M bps 33.23 M bps 

Clock rate 200 MHz ~100 MHz 144.4 MHz 

Code rate 1/6 1/2 ~ 1/7 1/3 

Frame size 8920 1784~16056 1784 

Iteration numbers 10 5 ~4.25 

Note: the input/output buffer and interleaver address generator are not  

included in [28] 
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Chapter 7 Conclusions 

    In this thesis, a hardware implementation for the CCSDS turbo decoder is 

presented. This implementation based on high throughput radix-4 recursion architecture. 

In order to increase the clock frequency, our proposed architecture “Arch-C” uses four 

comparators to fetch the maximum value of the four inputs. Besides, the hybrid 4-inputs 

subtraction method is presented to avoid becoming the critical path. On the other hand, 

in order to further increase the decoder rate, the HDA2 early stopping rule is employed 

with an insignificant hardware overhead and performance loss. Additionally, due to the 

approximate radix-4 MAP algorithm, we need to estimate the scaling factor to 

compensate for the performance loss. The better choice that the scaling factor is 0.75 for 

the first three iterations, and other iterations is 1. By the way, because we do not have 

the information of the channel reliability (even though some papers had approached 

methods to estimate the channel reliability, in this thesis we do not to do so.), we need to 

select a constant as the channel reliability. After MATLAB simulation as shown in 

Figure 5.3, we select an appropriate value 1.5 as the channel reliability. After chip 

implementation in 90nm process, the maximum clock rate 357.14MHz can be achieved, and 

the 17.64mm2 core area can support the maximum data rate 884.91MS/s of turbo decoder 

with fourteen MAP decoders. 
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