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摘要 

 
IEEE 802.16e 無線通訊標準中，於系統的傳送端訂定了前向誤差改正編碼的機

制，藉此減低通訊頻道中雜訊失真的影響。通道編碼是本論文的重點。 
本篇論文前半部份重點在於，研究 IEEE 802.16e OFDMA 所訂定的迴旋編碼系統

並且實現在數位訊號處理器(DSP)上，針對 DSP 平台的特性以及迴旋編碼編碼的演算

法進行程式的改進。在論文中，我們將標準中制訂的四個必備的前向誤差改正編碼系

統，利用 C 語言驗證我們整個系統演算法上的正確性，在加成性白色高斯通道下模擬

了各種調變，模擬的結果增益比理論值大約有 1dB 的誤差，接著進一步以德州儀器公

司所發展的 TMS320C6416 DSP 為核心的平台上實現。經過在 DSP 平台上最佳化我們

的程式後，迴旋編碼的編碼器部份，於 DSP 模擬器上，可以到每秒 13793K 位元的處

理速度，而解碼器的部份可以達到每秒 805K 位元的處理速度。 
本論文後半部份重點，研究 IEEE 802.16e OFDMA 所訂定的低密度奇偶校驗碼系

統並且實現在數位訊號處理器。研究低密度奇偶校驗碼傳統的編碼與解碼演算法，並

且介紹一些降低解碼複雜度的演算法。用 C 語言驗證系統演算法上的正確性，在加成

性白色高斯通道下模擬了各種調變與各種解碼演算法，並把模擬之結果與一些數學分

析的結果做比較。模擬的結果顯示降低複雜度的演算法和傳統的解碼表現相當接近。

接著從這些演算法中，根據運算複雜度，延遲時間，找出合適的演算法，實現在德州

儀器公司所發展的 DSP 平台上。經過在 DSP 平台上最佳化我們的程式後，編碼器部

份經過改進，可以到每秒 835K位元的處理速度，而解碼器的部份僅可以達到每秒 4.7K
位元的處理速度。 
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Abstract 
 

In the IEEE 802.16e wireless communication standard, a Forward Error Correction 
(FEC) mechanism is presented at the transmitter side to reduce the noisy channel effect. 
The focus is on the channel coding. 

The focus of the fist part of this thesis is the research of the convolutional code defined 
in IEEE 802.16e OFDMA standard and modifying FEC algorithms to match the 
architecture of DSP platform. We have implemented four required FEC schemes defined in 
the standard on the C program to insure the correctness of our algorithm. We simulate the 
different modulation in AWGN channel and the coding gain is almost achieve theoretic 
values. Then we implement the project on the Texas Instruments digital signal processor 
(DSP). After optimizing the programs on the DSP platform, the improved FEC encoder can 
achieve a data processing rate of 13793 kbps and the improved FEC decoder can achieve a 
processing rate of 805 kbps on the TI TMS320C6416 DSP simulator. 

The focus of second part is the low-density parity-check (LDPC) code defined in IEEE 
802.16e OFDMA. We explain the conventional encoding and decoding algorithm, and 
some reduced-complexity decoding algorithms. We simulate the LDPC code for different 
modulation and decoding algorithms in AWGN and compare the simulation results with 
analytical results. Simulation results show that these reduced-complexity decoding 
algorithms for LDPC codes achieve a performance very close to that of conventional 
algorithm. According to computational complexity and latency, we choose the adaptable 
algorithm and implement on DSP. After optimizing the programs on the DSP platform, the 
improved encoder can achieve a data processing rate of 835 kbps and the improved decoder 
can achieve a processing rate of 4.7 kbps on the TI C6416 DSP simulator. 
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Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission is a trend in the next generation of consumer electronics. Due to

this demand high data transmission rate and mobility are needed. The OFDM modulation

technique for wireless communication has been a main stream in recent years. IEEE has

completed several standards, including the IEEE 802.11 series for LANs (local area networks)

and IEEE 802.16 series for MANs (metropolitan area networks), based on OFDM technique.

Our study is based on the IEEE 802.16e standard, which specifies the air interface of mobile

broadband wireless multiple access systems providing multiple access.

In wireless communication, the transmitted signals are easily interfered and distorted by

variance things sources such as the crowd traffic, bad weather, the obstacle of buildings,

etc. Digital wireless transmission with multimedia contents such as audio and video is a

trend. These services often exhibit high data rates and require high quality reproduction.

To improve the robustness of the wireless communication against the noisy channel condition,

the FEC (forward-error-correcting coding) mechanism is a must in almost every commercial

communication standard, including the IEEE 802.16e.

The mandatory channel coding scheme in IEEE 802.16e for OFDMA employs punctured

1



convolutional coding. In addition, bit interleaver and M -ary QAM modulation are used after

coding. We also discuss the LDPC code in IEEE 802.16e for OFDMA.

In this thesis, we focus on the study of the simulation and the DSP implementation of

the FEC schemes of the IEEE 802.16e standard. We first review the FEC methods used in

IEEE 802.16e and study the encoding and decoding techniques. Then we perform computer

simulation to investigate the coding performance. Finally, we implement the FEC algorithms

on DSP with fixed-point computation. We also seek to optimize the DSP program for efficient

execution.

1.2 Organization of This Thesis

This thesis is organized as follows.

• Chapter 2 introduces the convolutional code and the LDPC code of IEEE 802.16e.

• Chapter 3 describes the DSP implementation environment.

• Chapter 4 discusses simulation and the DSP implementation of the convolution code.

• Chapter 5 discusses simulation and the DSP implementation of the LDPC code.

• Chapter 6 contains the conclusion and points out some future work.
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Chapter 2

FEC in IEEE 802.16e OFDMA and
Associated Decoding methods

The channel coding schemes usually used in IEEE 802.16e is tail-biting convolutional code.

Block turbo code, convolutional turbo code, zero tailed convolutional code and LDPC code

are the options.

2.1 Convolutional Code Specifications [1]

The contents of this section have been taken a large extent from [2].

The mandatory channel coding scheme used in IEEE 802.16e OFDMA is as shown in Fig.

2.1. Input data streams are divided by the randomizer to clean up the bit correlation, and

then each data block is encoded by the convolutional encoder. The block-by-block coding

makes the convolutional code effectively a block code.

Between the convolutional coder and the modulator is a bit interleaver, which protects

the convolutional code from severe impact of burst errors and increases overall coding per-

formance. This approach has been termed “bit-interleaved coded modulation (BICM)” in

the literature [3].
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Figure 2.1: Convolutional coding structure in transmitter (top path) and decoding in receiver
(bottom path).

Table 2.1: Mandatory Channel Coding Schemes for Each Modulation Method

Modulation

Uncoded
Block Size

(bytes)

Overall Code
Rate

Coded Block
Size (bytes)

Number of
Used

Sub-channels

QPSK 6 1/2 12 1
QPSK 12 1/2 24 2
QPSK 18 1/2 36 3
QPSK 24 1/2 48 4
QPSK 30 1/2 60 5
QPSK 36 1/2 72 6
QPSK 9 3/4 12 1
QPSK 18 3/4 24 2
QPSK 27 3/4 36 3
QPSK 36 3/4 48 4
16QAM 12 1/2 24 1
16QAM 24 1/2 48 2
16QAM 36 1/2 72 3
16QAM 18 3/4 24 1
16QAM 36 3/4 48 2
64QAM 18 1/2 36 1
64QAM 36 1/2 72 2
64QAM 24 2/3 36 1
64QAM 27 3/4 36 1
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Figure 2.2: PRBS for data randomization (from [1]).

To make the system more flexibly adaptable to the channel condition, nineteen coding-

modulation schemes are defined in IEEE 802.16e, as shown in Table 2.1. The different coding

rates are made by puncturing of the native convolutional code. The puncturing mechanism

in convolutional coding can provide variable code rates through one convolutional encoder.

2.1.1 Randomizer [1]

The randomizer is a pseudo random binary sequence (PRBS) generator, as depicted in Fig.

2.2. If the amount of data to transmit does not fit exactly the amount of data allocated,

padding of 0xFF (“1” only) shall be added to the end of the transmission block, up to the

amount of data allocated. The shift-register of the randomizer shall be initialized for every

1250 bytes passed through (if the allocation is larger then 1250 bytes).

The randomizer sequence is applied only to information bits. Preambles are not random-

ized.

Both in the uplink and downlink, the randomizer shall be re-initialized at the start of

each frame with the sequence

(lsb) 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 (msb).
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Figure 2.3: Convolutional encoder of rate 1/2 (from [1]).

2.1.2 Convolutional Encoder [1]

Each block is encoded by a binary convolutional encoder, which has native rate 1/2 and

constraint length 7. The generator polynomials for the two output bits are 171OCT and

133OCT , respectively. The generator is depicted in Fig. 2.3.

The coded bits may be punctured to allow different rates, which is known as rate-

compatible punctured convolutional coding (RCPC). Furthermore, tail-biting is performed,

by initializing the encoder’s memory with the last data bits of the block. The encoding algo-

rithm and the decoding algorithm (based on Viterbi decoder) for the RCPC with tail-biting

convolutional are discussed late.

Punctured Convolutional Code

Puncturing patterns and serialization order of the convolutional code in IEEE 802.16e are

as defined in Table 2.2. In this table, “1” means a transmitted bit and “0” a removed bit,

whereas X and Y are in reference to Fig. 2.3. Note that the Dfree after puncturing is lower

than that of the native convolutional code at rate 1/2, which is equal to 10 [7, Chapter 8].
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Table 2.2: The Convolutional Code with Puncturing Configuration

Code Rates
Rate 1/2 2/3 3/4
Dfree 10 6 5
X 1 10 101
Y 1 11 110

XY X1Y1 X1Y1Y2 X1Y1Y2X3

Tail-Biting

The convolutional code in IEEE 802.16e is terminated in a block, and thus becomes a

block code. In general, there are three methods to achieve code termination[4]. For ease of

understanding, we describe these methods in terms of a binary (n, k,m) convolutional code

(of rate k/n and register length m) for an information sequence length of L bits.

• Direct truncation. The codeword is produced by inputting into the encoder (initialized

with all zeros) L information bits, so the codeword length is nL/k. However, this code

has the disadvantage that there is little error protection ability afforded to the last

information bits.

• Zero tail. The codeword is produced by inputting into the encoder (initialized with

all zeros) L information bits followed by m zeros (tail bits), so the codeword length is

n(L + m)/k. However, this code has the disadvantage of rate loss of m/(L + m) since

the effective rate is (k/n)(L/(L + m)) = (k/n)(1−m/(L + m)).

• Tail biting. We first initialize the encoder with the last m information bits, and then

inputting into the encoder L information bits to produce codeword whose length is

nL/k. This code has the disadvantage of complex Viterbi decoder since the starting

and ending states of the trellis are unknown.
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IEEE 802.16e uses the tail-biting approach, which has better performance compared

with direct-truncation convolutional code and does not lose rate compared with zero-tail

convolutional code. However, we pay the price of a complex decoder. The optimal decoder of

tail-biting convolutional code, as suggested in [4], is to run M parallel Viterbi decoders, where

M = 2m is the number of states in the trellis. Each Viterbi decoder postulates a different

starting and ending state. The Viterbi decoder that produces the globally best metric gives

the maximum likelihood estimate of the transmitted bits. The obvious disadvantage of this

method is the M times complexity compared to decoding for the code with zero tail bits.

Therefore, we consider a suboptimal decoder which can reduce the complexity to less than 2

times the normal Viterbi algorithm. This decoder combines the algorithms proposed in [5]

and [6]. We introduce it later.

Another interesting property is the error rates at different positions in the codeword,

which are analyzed in [5] and [6]. In zero-tail convolutional code, there is lower error rate

in the first and the last information bits because the decoder knows the starting and ending

states in the trellis. In tail-biting convolutional code, if the suboptimal decoder is adopted,

there is almost equal error rate through the codeword when the parameters used in the

decoder are proper.

2.1.3 Interleaver [1]

The encoded data bits are interleaved by a block interleaver with a block size corresponding

to the number of coded bits per the specified allocation, Ncbps (see Table 2.3). The inter-

leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are

mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped

alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.
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Table 2.3: Bit Interleaved Block Sizes and Modulos

Modulation
Coded Bits per

Subcarrier (Ncpc)
Modulo used

(d)

QPSK 2 16
16QAM 4 16
64QAM 6 16

Figure 2.4: The second permutation of interleaver.

Let s = Ncpc/2, k be the index of the coded bit before the first permutation, m the

index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

m = (
Ncbps

d
) · kmod(d) + floor(

k

d
), k = 0, 1, · · · , Ncbps − 1, (2.1)

and the second permutation is defined by

j = s · floor(
m

s
) + (m + Ncbps − floor(

d ·m
Ncbps

))mod(s), m = 0, 1, · · · , Ncbps − 1. (2.2)

The first permutation is a block interleaving. And in Fig. 2.4, we show the second

permutation after the block interleaving.
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Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations (from [1]).

2.1.4 Modulation [1]

After bit interleaving, the data bits are entered serially to the constellation mapper. Gray-

mapped QPSK and 16-QAM are supported, whereas the support of 64-QAM is optional.

The constellations as shown in Fig. 2.5 shall be normalized by multiplying the constellation

points with the indicated factor c to achieve equal average power. The constellation-mapped

data shall be subsequently modulated onto the allocated data carriers.

2.2 Decoding Under Convolutional Encoding

For Viterbi decoder, there are two decision types: hard-decision and soft-decision. If hard-

decision is adopted, the metric used in Viterbi decoding is the Hamming distance, which

counts the bit errors, between each trellis path and the hard-limited output of the demodu-

lator to find the path with least errors. However, the coding gain will lose 2 to 3 dB compared

to soft-decision decoding [7, Chapter 8]. Hence soft-decision is adopted in our study.
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For optimal soft-decision Viterbi decoding in AWGN channel, the metric should be the

Euclidean distance between each trellis path and the soft-output of the demodulator. The

problem now is that there is a bit interleaver between the convolutional encoder and the

modulator in the transmitter. Therefore, the optimal decoder should be based on the super-

trellis combining the convolutional code, the interleaver, and the QAM modulator, but this

is too complex to be practical. Indeed, the puncturing mechanism adds further complexity

to the super-trellis structure. Thus, we consider a suboptimal decoder based on bit-by-bit

metric computation, which is proposed in [3], [8], and [9].

2.2.1 Demodulation Under Bit-Interleaved Coded Modulation

Let a[i] = aI [i] + jaQ[i] denote the QAM symbol transmitted in the ith sub-carrier of

OFDMA symbol and {bI,1, · · · , bI,k, · · · , bI,t, bQ,1, · · · , bQ,k, · · · , bQ,t} be the corresponding

bit sequence. Assuming that the ISI (inter–OFDMA symbol interference) and ICI (inter–

channel interference) are completely eliminated, then the received signal of the sub-carrier

can be written as

r[i] = Gch[i] · a[i] + w[i], (2.3)

where Gch[i] is the channel frequency response complex coefficient for the ith sub-carrier and

w[i] is the complex additive white Gaussian noise (AWGN) with variance σ2 = N0. If the

channel estimate is error free, the output of the one-tap equalizer is given by

y[i] = a[i] + w[i]/Gch[i] = a[i] + w′[i], (2.4)

where w′[i] is still complex AWGN noise with variance σ′2(i) = σ2/|Gch[i]|2.

According to the MAPSE (maximum a posterior sequence estimation) criterion, the

following maximization should be performed to estimate the encoded bit sequence b:

b̂ = arg max
b

P [b|r], (2.5)
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where r is the received sequence of QAM signals. Assume that the transmitted symbols

are equally distributed. Then the MAPSE criterion can be replaced by the ML (maximum

likelihood) criterion as:

b̂ = arg max
b

P [r|b]. (2.6)

We further assume that Gch[i] is known to the receiver and that the transmitted bits are

i.i.d.

For each in-phase or quadrature bit (i.e., bI,k or bQ,k), two metrics can be derived corre-

sponding to the two possible values 0 and 1,respectively. For bit bI,k, first the QAM constel-

lation is split into two partitions of complex symbols, namely S
(0)
I,k comprising the symbols

with a “0” in position (I, k) and S
(1)
I,k, which is complementary. Then the two metrics are

obtained by

m′
c(bI,k) =

∑

α∈S
(c)
I,k

log p(r[i]|a[i] = α) ≈ max
α∈S

(c)
I,k

log p(r[i]|a[i] = α), c = 0, 1. (2.7)

Since the conditional pdf of r[i] is complex Gaussian as

p(r[i]|a[i] = α) =
1√
2πσ

exp{−1

2

|r[i]−Gch[i]α|2
σ2

} (2.8)

and r[i] = Gch[i] · y[i], the metrics defined in (2.7) are equivalent to

mc(bI,k) = |Gch[i]|2 · min
α∈S

(c)
I,k

|y[i]− α|2. (2.9)

Finally, these metrics are de-interleaved, i.e., each couple (m0,m1) is assigned to the bit

position in the decoded sequence according to the de-interleaver map, and fed to the Viterbi

decoder which selects the binary sequence with the smallest cumulative sum of metrics. We

name this method Method-ML in the following discussion.

From the concept of log-likelihood ratio (LLR), a method named Method-LLR is proposed
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Table 2.4: Bit Metric for Method-ML and Method-LLR

Method-ML Method-LLR
Bit metric (decided “0”) m0 [1

4
(m0 −m1) + 1)]2

Bit metric (decided “1”) m1 [1
4
(m0 −m1)− 1)]2

in [9] to reduce the complexity of Method-ML. It defines LLR(bI,k) as

LLR(bI,k) , |Gch[i]|2
4

{ min
α∈S

(0)
I,k

|y[i]− α|2 − min
α∈S

(1)
I,k

|y[i]− α|2}

, (m0(bI,k)−m1(bI,k))/4

, |Gch[i]|2 ·DI,k. (2.10)

The quadrature part is similarly defined. The metrics sent to the Viterbi decoder of the

two methods are defined in Table 2.4. Note that the difference between the bit metrics for

the decided “0” and “1” is the same for the two methods, namely ±(m0 −m1). Thus the

decoded bit sequence will be the same for the two methods.

In Method-LLR, only (m0−m1)/4 is sent to the de-interleaver while in Method-ML, both

m0 and m1 are sent. Besides, we can reduce (m0 −m1)/4 = |Gch[i]|2 ·DI,k to a simple form

constituting of yI [i] itself because Gray-coding is used in the constellation map of M -ary

QAM modulation in IEEE 802.16e.

Figure. 2.6 shows the partitions (S
(0)
I,k, S

(1)
I,k) for the generic bit bI,k in the case of the

16-QAM constellation. As a consequence,

DI,k =
1

4
{ min

α∈S
(0)
I,k

|y[i]− α|2 − min
α∈S

(1)
I,k

|y[i]− α|2}

can be simplified as follows.

DI,1 =




−yI [i], |yI(i)| ≤ 2
−2(yI [i]− 1), yI(i) > 2
−2(yI [i] + 1), yI(i) < 2





∼= −yI [i], (2.11)

DI,2 = |yI [i]| − 2. (2.12)

13



S
I,1
0S

I,1
1 S 1 S 1

I,2
S 0

I,2I,2

x x

−1 1 3−3 (10) (01)(00)
I

−1 1 3−3(11) (10) (01)(00)(11)

BI,1 BI,2

Q Q

I

Figure 2.6: Metric partitions of the 16-QAM constellation (from [9]).

The same observation holds for QPSK and 64-QAM constellations.

For QPSK, DI = −yI [i]. For 64-QAM,

DI,1 =





−yI [i], |yI [i]| ≤ 2
−2(yI [i]− 1), 2 < yI [i] ≤ 4
−3(yI [i]− 2), 4 < yI [i] ≤ 6
−4(yI [i]− 3), yI [i] > 6
−2(yI [i] + 1), −4 ≤ yI [i] < −2
−3(yI [i] + 2), −6 ≤ yI [i] < −4
−4(yI [i] + 3), yI [i] < −6





∼= −yI [i], (2.13)

DI,2 =





2(|yI [i]| − 3), |yI [i]| ≤ 2
−4 + |yI [i]|, 2 < |yI [i]| ≤ 6
2(|yI [i]| − 5), |yI [i]| > 6





∼= −4 + |yI [i]|, (2.14)

DI,3 =

{ −|yI [i]|+ 2, |yI [i]| ≤ 4
|yI [i]| − 6, |yI [i]| > 4

}
= ||yI [i]| − 4| − 2. (2.15)

2.2.2 De-Interleaver

The de-interleaver, as the interleaver, is also defined by two permutations. Let j be the

index of the received bit before the first permutation, m be the index after the first and

before the second permutation, and k be the index after the second permutation, just prior

to delivering the coded bits to the convolutional decoder. The first permutation is defined
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by the rule

m = s · floor(
j

s
) + (j + floor(

d · j
Ncbps

))mod(s), j = 0, 1, · · · , Ncbps − 1, (2.16)

and the second permutation is defined by the rule

k = d ·m− (Ncbps − 1) · floor(
d ·m
Ncbps

), m = 0, 1, · · · , Ncbps − 1. (2.17)

Note that the quantity sent to the decoder are the bit metrics from the demodulator.

2.2.3 Tail-Biting Convolutional Decoding

We first extend the received sequence by repeating the first (α+β)(n/k) received bits, where

α and β are two important parameters that we have to set. In the Viterbi decoder, the trellis

is initialized by making all states equally likely, and the Viterbi algorithm is executed for the

extended received sequence. A traceback is performed from the best state at the end of the

extended received sequence, and a portion of the data in the decoded block, from position

α on for the length of information bits, is chosen as the estimate of the data block.

This scheme relies on the fact that if the received sequence is circularly repeated, the

trellis of the extended received sequence can be considered circular since tail-biting code

starts and ends in the same state. The trellis of the tail-biting convolutional decoder is

depicted in Fig. 2.7. Because the starting state is unknown, the first α surviving paths of

the decoder may not be the correct paths. Only after enough depth can the surviving paths

approach the correct ones. Thus the later part of the decoded block will be more likely to

be the correct information data.

Another issue that should be considered is the traceback mechanism. The surviving path

will be almost unique after some depth into the trellis. Therefore, the trellis can be truncated

and the traceback mechanism performed after some delay, say τ . A smaller τ entails shorter
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Figure 2.7: Trellis for tail-biting convolutional decoding (from [2]).

decoding delay and smaller amount of memory requirement. To avoid multiple tracebacks

our Viterbi decoder does traceback only at the end of the extended received sequence, and

the performance will be a little better than the one with truncation since the decision depth

is much longer than τ for the earlier bit. For the value of τ , a conventional value is 5 times

the register length [10].

Since the ending state of the trellis for the extended received data is unknown and the

decision depths for the latest decoded data are not long enough to make the surviving paths

unique, the latest decoded data will not be reliable and can not be as used the decoded data.

The unreliable data length is set to β, which should be related (actually equal) to τ . We

have used simulation results to decide the values of α and β.

2.3 LDPC Code Specifications

The low–density parity check (LDPC) coding scheme used in IEEE 802.16e OFDMA is

shown in Fig. 2.8. The randomized input data are first encoded by the LDPC encoder.
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Figure 2.8: LDPC coding structure in transmitter (top path) and decoding in receiver (bot-
tom path).

The encoder and then interleaved by the bit interleaver. Likewise, there are three different

modulation types.

LDPC codes are a special case of error correcting codes that have recently been receiving

received much attention because of their very high throughput and very good decoding

performance. Inherent parallelism in the message passing decoding algorithm for LDPC

codes makes them very suitable for hardware implementation. The LDPC codes can be

used in any digital environment that high data rate and strong error correction ability are

important.

Gallager [11] proposed LDPC codes in the early 1960s, but his work received little atten-

tion until after the invention of turbo codes in 1993, which used the same concept of iterative

decoding. In 1996, MacKay and Neal [12], [13] re-discovered LDPC codes. Chung et al. [14]

showed that a rate-1/2 LDPC code with block length of 107 in binary input AWGN can

achieve a threshold of just 0.0045 dB away from the Shannon limit.

LDPC codes have several advantages over turbo codes. First, the sum-product decoding

algorithm for these codes has inherent parallelism that can be exploited to achieve a greater

speed of decoding. Second, unlike turbo codes, decoding error is a detectable event which

results in a more reliable system. Third, very low complexity decoders, such as the modified

minimum-sum algorithm that closely approximate the sum-product in performance, can be

designed for these codes.
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Our interest is in both low algorithm complexity and high decoding speed, as these are

both desirable under the IEEE 802.16e applications.

Complexity in iterative decoding can be divided into two types: first, complexity of the

computations in each iteration and second, the number iterations. Naturally, there is a

trade-off between the decoding performance and the complexity and decoding speed.

In this section, we will only discuss the LDPC encoder and decoder block. Other blocks

in Fig. 2.8 are the same as in previous section.

2.3.1 Overview of LDPC Code

LDPC codes are a class of linear block codes corresponding to a sparse parity check matrix

H. The term “low-density” means that the number of 1s in each row or column of H is

small compared to the block length n. In other words, the density of 1s in the parity check

matrix which consists of only 0s and 1s is very low and sparse. Given k information bits, the

set of LDPC codewords c in the code space C of length n spans the null space of the parity

check matrix H, i.e., cHT = 0.

For a (Wc,Wr) LDPC code, each column of the parity check matrix H has Wc ones and

each row has Wr ones; this is called a regular code and Wc and Wr are tenoned the column

degree and the row degree, respectively. The degrees per row or column are not constant,

then the code is irregular. Some of the irregular codes have shown better performance than

regular ones. But irregularity results in more complex hardware and inefficiency in terms of

re-usability of functional units. The IEEE 802.16e standard uses irregular codes. Moreover,

the codes in 802.16e are systematic, which means that n− k redundant bits are added to k

bits of message to form an n bits codeword.

LDPC codes can be represented effectively by a bipartite graph called a Tanner graph

[15], [16]. A bi-partite graph is a graph (nodes or vertices are connected by undirected edges)
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Figure 2.9: Tanner graph of a parity check matrix

whose nodes may be separated into two classes and where edges may only be connecting two

nodes not residing in the same class. The two classes of nodes in a Tanner graph are bit nodes

(or variable nodes) and check nodes. The Tanner graph of a code is drawn according to the

following rule: Check node fj , j = 1, · · · , n − k, is connected to bit node xi, i = 1, · · · , n,

whenever element hji in H (parity check matrix) is a one. Figure 2.9 shows a Tanner graph

for a simple parity check matrix H. In this graph each bit node is connected to two check

nodes (bit degree = 2) and each check node has a degree of four. Degree of a node is the

number of branches that is connected to that node.

Let dvmax and dcmax denote the maximum variable node degree and maximum check node

degree, respectively, and let λi and ρi represent the fraction of edges emanating from variable

and check nodes of degrees d(v) = i and d(c) = i, respectively. Define

λ(x) =

dvmax∑
i=2

λix
i−1 (2.18)

as the variable node degree distribution, and

ρ(x) =

dcmax∑
i=2

ρix
i−1 (2.19)

as the check node degree distribution.
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A cycle of length l in a Tanner graph is a path comprised of l edges which closes back

on itself. The Tanner graph in Fig. 2.9 has a cycle of length four which has been shown in

dashed lines. The girth of a Tanner graph is the minimum cycle length of the graph. The

shortest possible cycle in a bi-partite graph is clearly a length-4 cycle. Short cycles have

negative impact on the decoding performance of LDPC codes. Hence we would like to have

large girths.

2.3.2 LDPC Code in IEEE 802.16e OFDMA [1]

The LDPC codes in IEEE 802.16e are systematic linear block codes. They are defined based

on a parity check matrix H of size m×n that is expanded from a binary base matrix Hb of

size mb×nb, where m = z·mb and n = z·nb. In this standard there are six different base

matrices, one for the rate 1/2 code as depicted in Fig. 2.10, two different ones for two rate

2/3 codes, type A in Fig. 2.11 and type B in Fig. 2.12, two different ones for two rate 3/4

codes, type A in Fig. 2.13 and type B in Fig. 2.14, and one for the rate 5/6 code as depicted

in Fig. 2.15. In these base matrices, size nb is an integer equal to 24 and the expansion factor

z is an integer between 24 and 96 . Therefore, we can compute the minimal code length is

nmin = 24×24 = 576 bits and the maximum is nmax = 24×96 = 2304 bits.

For codes 1
2
, 2

3
B, 3

4
A, 3

4
B, and 5

6
, the shift sizes p(f, i, j) for a code size corresponding to

expansion factor zf are derived from p(i, j), which is the element at the ith row, jth column

in the base matrices, by scaling p(i, j) proportionally as

p(f, i, j) =

{
p(i, j), p(i, j) ≤ 0,

bp(i,j)zf

zo
c, p(i, j) > 0.

(2.20)

For code 2
3
A, the shift sizes p(f, i, j) are derived by using a modulo function as

p(f, i, j) =

{
p(i, j), p(i, j) ≤ 0,

mod(p(i, j), zf ), p(i, j) > 0.
(2.21)
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Figure 2.10: Base model of the rate-1/2 code (from [1]).

Figure 2.11: Base model of the rate-2/3, type A code (from [1]).

A base matrix entry p(f, i, j) = −1 indicates a replacement with a z × z all-zero matrix

and an entry p(f, i, j) ≥ 0 indicates a replacement with a z×z permutation matrix. The

permutation matrix represents a circular right shift of p(f, i, j) positions. This entry p(f, i, j)

= 0 indicates a z×z identity matrix.

2.4 Decoding of LDPC code

2.4.1 The Belief Propagation Decoding Algorithm [17]

Using Tanner graph representation of LDPC codes is attractive, because it not only helps

understand their parity-check structure, but, more importantly, also facilitates a powerful

decoding approach. The key decoding steps are the local application of Bayes rule at each

21



Figure 2.12: Base model of the rate-2/3, type B code (from [1]).

Figure 2.13: Base model of the rate-3/4, type A code (from [1]).

Figure 2.14: Base model of the rate-3/4, type B code (from [1]).

Figure 2.15: Base model of the rate-5/6 code (from [1]).
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node and the exchange of the results (messages) with neighboring nodes. At each iteration,

two types of messages are passed: probabilities (or beliefs) from bit nodes to check nodes

and probabilities (or beliefs) from check nodes to bit nodes.

Let M(n) denote the set of check nodes connected to bit node n, i.e., the positions of ones

in the nth column of H, and let N(m) denote the set of bit nodes that participate in the mth

parity-check equation, i.e., the positions of ones in the mth row of H. Let N(m)\n represent

the exclusion of n from the set N(m), and M(n)\m represent the exclusion of m from the set

M(n). In addition, let qn→m(0) and qn→m(1) denote the message from bit node n to check

node m indicating the probability of bit n being zero or one, respectively, based on all the

checks involving n except m. Similarly, let rm→n(0) and rm→n(1) denote the message from

check node m to bit node n indicating the probability of bit n being zero or one, respectively,

based on all the bits checked by m except n. Let x = [x1, x2,· · · , xN ] and y = [y1, y2,· · · , yN ]

denote the transmitted codeword and the received codeword, respectively. Finally, let L
(0)
n

denote log(P (xn = 0|yn)/P (xn = 1|yn)) at iteration 0, L
(i)
mn denote log (rm→n(0)/rm→n(1))

at iteration i and Z
(i)
mn denotes log (qn→m(0)/qn→m(1)) at iteration i.

The belief propagation (BP) algorithm is summarized below. This algorithm is also

known as the sum-product (SP) algorithm.

Step 1 (check-node update): For each m and for each n ∈ N(m), compute

L(i)
mn = 2 tanh−1





∏

n′∈N(m)\n
tanh

Z
(i−1)
mn′

2



 . (2.22)

Step 2 (bit-node update): For each n, and for each m ∈ M(n) compute

Z(i)
mn = L(0)

n +
∑

m′∈M(n)\m
L

(i)
m′n. (2.23)

Step 3 (decision):

Z(i)
n = L(0)

n +
∑

m∈M(n)

L(i)
mn. (2.24)
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The decoder output vector follows the rule: x̂n = 0 if Z
(i)
n ≥ 0, and x̂n = 1 if Z

(i)
n < 0.

The decoded bit vector is checked with the parity check matrix H. The iterative decoding

decoding procedure stops when either H ·X=0 or as the maximum decoding iteration number

has been reached, where X = [X1, X2,· · · , XN ] is the decoded codeword.

2.4.2 Some Reduced-Complexity LDPC Decoding Algorithms

We focus on methods that simplify the check node updates to obtain reduced-complexity

BP algorithms but also achieve good enough performance.

Min-Sum or BP-Based Algorithm [17]

Implementing the calculation in (2.22) in a hardware circuit is difficult and complex. It

is also relatively complicated to implement in DSP software. But we can simplify it only

approximating it as

L(i)
mn = 2 tanh−1





∏

n′∈N(m)\n
tanh

Z
(i−1)
mn′

2





=
∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′ )f


 ∑

n′∈N(m)\n
f

(
|Z(i−1)

mn′ |
)



≈
∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′ )f

(
f

(
min

n′∈N(m)\n
|Z(i−1)

mn′ |
))

=
∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′ ) min

n′∈N(m)\n
|Z(i−1)

mn′ |, (2.25)

where f(x) = log ex+1
ex−1

= −log(tanh x
2
) is a fast decaying function as shown in Fig. 2.16.

Therefore the second row in (2.25) can be approximated by the third row. Because the f

function is it own inverse, we can simplify the third row to the fourth row.

This is a famous approximation called the min-sum or BP-based algorithm which only

uses the signum and the minimum functions for check nodes processing. The processing at
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Figure 2.16: Fast decaying function f(x) = log ex+1
ex−1

.

the bit nodes is identical to that of BP decoding. But coming with the approximation at the

check nodes is some performance degradation. We will see the effect later in the simulation

results.

Balanced Belief Propagation Algorithm [18]

Observe that the conventional BP algorithm has unbalanced computation complexity be-

tween the check nodes operation (2.22) and the bit nodes operation (2.23). A modified

version based on algorithmic transformation has been proposed in order to balance the com-

putational load between the two decoding phases. The modified algorithm can be expressed

as

L(i)
mn =

∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′ )

∑

n′∈N(m)\n
f

(
|Z(i−1)

mn′ |
)

, (2.26)

Z(i)
mn = L(0)

n +
∑

m′∈M(n)\m
sgn(L

(i)
m′n)f

(
L

(i)
m′n

)
. (2.27)

Note that L
(i)
mn computed here is different from that obtained with the BP algorithm. The

main benefit with the modified algorithm is the balance of computation complexity between
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two decoding phases.

Normalized BP-Based Algorithm

Let L1 and L2 represent the values of L
(i)
mn computed by the BP algorithm and the BP-based

algorithm with (2.22) and (2.25), respectively. It can be shown that L1 and L2 have the

same sign, i.e., sgn(L1) = sgn(L2) and L2 has larger magnitude than L1, i.e., |L2| > |L1|
[19]. According to [19], we can further modify (2.25) to let the BP-based algorithm obtain

a BER vs. Eb
No

performance curve closer to the conventional BP algorithm.

Because sgn(L1) = sgn(L2), the BP-based decoding can be improved by employing a

check-node update L
(i)
mn that uses a normalization constant α greater than one, that is,

L̂
(i)
mn ←− L

(i)
mn

α
, (2.28)

where L̂
(i)
mn is the output of the check node operation for normalized BP-based algorithm.

The bit node operation stays unchanged. Ideally, α should vary with the signal-to-noise ratio

(SNR) and with iterations to achieve the optimum performance. But it is kept constant for

the sake of simplicity.

Offset BP-Based Algorithm

For offset BP-based decoding, we modify L
(i)
mn in BP-based decoding by subtracting from it

a positive constant β as

L̂
(i)
mn ←− sgn(L(i)

mn) max(|L(i)
mn| − β, 0) (2.29)

where L̂
(i)
mn is the output from the check node operation for the offset BP-based algorithm.

Again, the bit node operation stays the same. Also, β should vary with the signal-to-noise

ratio (SNR) and with iterations to achieve the optimum performance. But it is kept constant

for the sake of simplicity.
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Table 2.5: Comparison of Main Operations of Different Decoding Algorithms

Decoding Algorithm
Main

Operation

BP Decoding tanh and tanh−1

Min-Sum Decoding Minimum
Normalized BP-Based Decoding Minimum and Division (or Multiplication)

Offset BP-Based Decoding Minimum, Maximum and Substraction

In summary, the BP decoding needs tanh−1 and tanh operations, the min-sum algo-

rithm needs the minimum operation, the normalized BP-based algorithm needs minimum

and division operations, and the offset BP-based algorithm needs minimum, maximum and

substraction operations. A comparison of the different algorithms is given in Table 2.5.

Obviously, BP decoding is the most complex operation, and min-sum is the least. The

two improved decoding methods are in between.
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Chapter 3

DSP Implementation Environment

The DSP baseboard (SMT395) we used is Texas Instruments’ TMS3200C6416T DSP chip

and Xilinx Virtex-II Pro FPGA. In this chapter, our discussion will concentrate on the DSP

system development environment, DSP chip and its features because our implementation is

software-based on the DSP. The software development tool, Code Composer Studio (CCS),

is also introduced.

3.1 The DSP Baseboard (SMT395)

The DSP card used in our implementation is Sundance’s SMT395 shown in Fig. 3.1. It

houses a 1 GHz 64-bit TMS320C6416T DSP of TI. The SMT395 is supported by the TI’s

Code Composer Studio and the 3L Diamond to enable multi-DSP systems with minimum

efforts by the programmers.

Features of SMT395 board include:

• 1GHz TMS320C6416T fixed-point DSP processor with L1, L2 cache and SDRAM.

• 8000MIPS peak DSP performance.

• Xilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.
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Figure 3.1: SMT395 Module.

• 256 Mbytes of SDRAM at 133MHz

• Eight 2Gbit/sec Rocket Serial Links (RSL) for inter module.

• Two Sundance High-speed Bus (50MHz, 100Mhz or 200MHz) ports at 32 bits width.

• 8 Mbytes flash ROM for configuration and booting.

3.2 The DSP Chip

The following text is mainly taken from references [21] and [22].

The TMS320C64x DSP is a fixed-point DSP in the TMS320C64x series of the TMS320C6000

DSP platform family. The TMS320C64x device is very-long-instruction-word (VLIW) archi-

tecture developed by TI. The C6416 device has two high-performance embedded coproces-

sors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that can

significantly speed up channel-decoding operations on-chip, but we do not make use of these

coprocessors in the present work.
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The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units.

Features of C6000 devices include:

• The eight functional units include two multipliers and six arithmetic units:

– Execute up to eight instructions per cycle.

– Allow designers to develop highly effective RISC-like code for fast development

time.

• Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in parallel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/32/64-bit data support, providing efficient memory support for a variety of ap-

plications.

• 40-bit arithmetic options add extra precision for applications requiring it.

• Saturation and normalization provide support for key arithmetic operations.
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Figure 3.2: Block diagram of TMS320C6416 DSP (from [23]).

• Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

• 32x32-bit integer multiply with 32- or 64-bit result.

The C64x additional features include:

• Each multiplier can perform two 16×16 bits or four 8×8 bits multiplies every clock

cycle.

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

• Special communication-specific instructions have been added to address common op-

erations in error-correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.
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The block diagram of the C6000 family is show in Fig. 3.2. The C6000 devices come with

program memory, which, on some devices, can be used as a program cashe. The devices

also have varying sizes of data memory. Peripherals such as a direct memory access (DMA)

controller, power-down logic, and external memory interface (EMIF) usually come with the

CPU, while peripherals such as serial ports and host ports are available only for certain

model.

In the following subsections, the TMS320C64x DSP Chip is introduced in the two part:

Central processing unit (CPU), Memory.

3.2.1 Central Processing Unit [23]

Besides the eight independent functional units and sixty-four general purpose 32-bit registers

that has been mentioned before, the C64x CPU also consists of the program fetch unit,

instruction dispatch unit (attached with advanced instruction packing), instruction decode

unit, two data path (A and B, each with four functional units), test unit, emulation unit,

interrupt logic, several control registers and two register files (A and B with respect to the

two data paths).

The architecture is illustrated in more detail in Fig. 3.3. Compared with the other C6000

family DSP chip, the C64X DSP chip provides more available hardware resources.

The block diagram of C6416 DSP is shown in Fig. 3.2. The DSP contains: program

fetch unit, instruction dispatch unit, instruction decode unit, two data paths which each has

four functional units, 64 32-bit registers, control registers, control logic, and logic for test,

emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve

performance. The pipeline can dispatch eight parallel instructions every cycle. The follow-

ing two factors provide this flexibility: Control of the pipeline is simplified by eliminating
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Figure 3.3: The TMS320C64x DSP chip architecture and comparison with earlier
TMS320C62x/C67x chip (from [23]).

pipeline interlocks, and the other is increasing pipelining to eliminate traditional architec-

tural bottlenecks in program fetch, data access, and multiply operations. This provides

single cycle throughput.

The pipeline phases are divided into three stages: fetch, decode, and execute. All in-

structions in the C62x/C64x instruction set flow through the fetch, decode, and execute

stages of the pipeline. The fetch stage of the pipeline has four phases for all instructions,

and the decode stage has two phases for all instructions. The execute stage of the pipeline

requires a varying number of phases, depending on the type of instruction. The stages of

the C62x/C64x pipeline are shown in Fig. 3.4.

Reference [23] contains detailed information regarding the fetch and decode phases. The

pipeline operation of the C62x/C64x instructions can be categorized into seven instruction

types. Six of these are shown in Fig. 3.5, which gives a mapping of operations occurring

in each execution phase for the different instruction types. The delay slots associated with
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Figure 3.4: Pipeline phases of TMS320C6416 DSP (from [23]).

each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is

a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results

from instructions with delay slots are not available until the end of the last delay slot. For

example, a multiply instruction has one delay slot, which means that one CPU cycle elapses

before the results of the multiply are available for use by a subsequent instruction. However,

results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.

The program fetch unit shown in the Fig. 3.3 could fetch eight 32-bit instructions (which

implies 256-bit wide program data bus) every single cycle, and the instruction dispatch and

decode units could also decode and arrange the eight instructions to eight functional units.

The eight functional units in the C64x architecture could be further divided into two data

paths A and B as shown in Fig. 3.3. Each path has one unit for multiplication operations

(.M), one for logical and arithmetic operations (.L), one for branch, bit manipulation, and

arithmetic operations (.S), and one for loading/storing, address calculation and arithmetic

operations (.D). The .S and .L units are for arithmetic, logical, and branch instructions.

All data transfers make use of the .D units. Two cross-paths (1x and 2x) allow functional

units from one data path to access a 32-bit operand from the register file on the opposite

side. There can be a maximum of two cross-path source reads per cycle. There are 32
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Figure 3.5: Execution stage length description for each instruction type (from [23]).

general purpose registers, but some of them are reserved for specific addressing or are used

for conditional instructions.

The eight functional units in the C6000 data paths can be divided into two groups of

four; each functional unit in one data path is almost identical to the corresponding unit in

the other data path. The functional units are described in Table 3.1.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit and

16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four

8×8 unsigned multiplies with a single instruction on a .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on a .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose

register file (see Fig. 3.6). All units ending in 1 (for example, .L1) write to register file A,

and all units ending in 2 write to register file B. Each functional unit has two 32-bit read
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Table 3.1: Functional Units and Operations Performed (from [23])
Function Unit Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations and rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant
Load and store non-aligned words and double words
5-bit constant generation
32-bit logical operations
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ports for source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra

8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because

each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

3.2.2 Memory [24]

Internal Memory

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip) memory

is organized in separate data and program spaces. When off-chip memory is used, these

spaces are unified on most devices to a single memory space via the external memory interface

(EMIF). The C64x has two 64-bit internal ports to access internal data memory and a single

internal port to access internal program memory, with an instruction-fetch width of 256 bits

Memory Options

the C64x DSP Chip also provides a variety of memory options:

• Large on-chip RAM, up to 7M bits.

• Program cache.

• 2-level caches.

• 32-bit external memory interface supports SDRAM, SBSRAM, SRAM.

And other asynchronous memories for a broad range of external memory requirements and

maximum system performance.
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Figure 3.6: TMS320C64x CPU data paths (from [23]).
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Figure 3.7: C64x cache memory architecture (from [24]).

Cache Memory

The C64x memory architecture consists of a two-level internal cache-based memory archi-

tecture plus external memory. Level 1 cache is split into program (L1P) and data (L1D)

caches. The C64x memory architecture is shown in Fig. 3.7. On C64x devices, each L1 cache

is 16 kB. All caches and data paths are automatically managed by cache controller. Level 1

cache is accessed by the CPU without stalls. Level 2 cache is configurable and can be split

into L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

locations. On a C6416 DSP, the size of L2 cache is 1 MB, and the external memory on

Quixote baseboard is 32 MB. More detailed introduction to the cache system can be found

in [24].

3.3 TI’s Code Development Environment [25], [26]

TI provides a useful GUI development interface to DSP users for developing and debug-

ging their projects: Code Composer Studio (CCS). The CCS development tools are a key

element of the DSP software and development tools from Texas Instruments. The fully

integrated development environment includes real-time analysis capabilities, easy to use

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,
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XDS560 and XDS510 emulation drivers and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

• Simulators for full devices, CPU only and CPU plus memory for optimal performance.

• Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator targets:

– C/C++/assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debug).

• Data transfer for real time data exchange between host and target.

• Profiler to understand code performance.

CCS also delivers foundation software consisting of:

• DSP/BIOS kernel for the TMS320C6000 DSPs:

– Pre-emptive multi-threading.

– Interthread communication.

– Interupt Handling.

• TMS320 DSP Algorithm Standard to enable software reuse.
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• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

• DSP libraries for optimum DSP functionality. The libraries include many C-callable,

assembly-optimized, general-purpose signal-processing and image/video processing rou-

tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

3.4 Code Development Flow [27]

The recommended code development flow involves utilizing the C6000 code generation tools

to aid in optimization rather than forcing the programmer to code by hand in assembly.

These advantages allow the compiler to do all the laborious work of instruction selection,

parallelizing, pipelining, and register allocation. These features simplify the maintenance of

the code, as everything resides in a C framework that is simple to maintain, support, and

upgrade.

The recommended code development flow for the C6000 involves the phases described in

Fig. 3.8. The tutorial section of the Programmers Guide [27] focuses on phases 1–2 and the

Guide also instructs the programmer when to go to the tuning stage of phase 3. What is

learned is the importance of giving the compiler enough information to fully maximize its

potential. An added advantage is that this compiler provides direct feedback on the entire

program’s high MIPS areas (loops). Based on this feedback, there are some very simple steps

the programmer can take to pass complete and better information to the compiler allowing

the programmer a quicker start in maximizing compiler performance.

The following items list the goal for each phase in the 3-phase software development flow

shown in Fig. 3.8.

41



Figure 3.8: Code development flow for TI C6000 DSP (from [27]).
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• Developing C code (phase 1) without any knowledge of the C6000. Use the C6000

profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

• Use techniques described in [27] to improve the C code. Use the C6000 profiling tools

to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

• Extract the time-critical areas from the C code and rewrite the code in linear assembly.

We can use the assembly optimizer to optimize this code.

TI provides high performance C program optimization tools, and they do not suggest the

programmer to code by hand in assembly. In this thesis, the development flow is stopped at

phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

3.5 Acceleration Rules

In this section, we describe several methods that can accelerate our code and reduce the

execution time on the C64x DSP.

3.5.1 Compiler Optimization Options [27]

The compiler supports several options to optimize the code. The compiler options can be

used to optimize code size or execution performance. Our primary concern in this work is

the execution performance. The easiest way to invoke optimization is to use the cl6x shell

program, specifying the -on option on the cl6x command line, where n denotes the level of

optimization (0, 1, 2, 3) which controls the type and degree of optimization:
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• -o0:

– Performs control-flow-graph simplification.

– Allocates variables to registers.

– Performs loop rotation.

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

• -o1. Performs all -o0 optimization, and:

– Performs local copy/constant propagation.

– Removes unused assignments.

– Eliminates local common expressions.

• -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

• -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.
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Table 3.2: Sizes of Different Data Types

Data type Char Short Int Long Float Double

Size (bits) 8 16 32 40 32 64

– Simplifies functions with return values that are never used.

– Inline calls to small functions.

– Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

– Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

– Identifies file-level variable characteristics.

3.5.2 Fixed–Point Coding

The C6000 compiler define a size for each data type as Table 3.2. The C64X DSP is a

fixed-point processor, so it can only perform fixed-point operations. Although the C64X

DSP can simulate floating-point processing, it takes many clock cycles to do the job. The

“char”, “short”, “int” and “long” are fixed-point data types, and the “float” and “double”

are floating-point data types.

3.5.3 Loop Unrolling

Loop unrolling unrolls the loops so the all iterations of the loop appear in the code. It often

increases the number of instructions available to execute in parallel. It is also suitable for

use with software pipelining. When our code has conditional instructions, sometimes the

compiler may not be sure that the branch will occur or not. It needs more waiting time for
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Figure 3.9: Loop unrolling.

Table 3.3: Comparison Between Unrolled and not Unrolled

Before
Unrolling

After
Unrolling

Execution Cycles 436 206
Code Size 116 479

the decision of branch operation. If we do loop unrolling, some of the overhead for branching

instruction can be reduced. Fig. 3.9 is an example about loop unrolling and Table 3.3 shows

the cycles and the code size with and without unrolling. We can see clearly that the clock

cycles decrease after loop unrolling, but the code size has increased.

3.5.4 Packet Data Processing

Packet data processing means processing of several data together in one instruction. For

example, we may use a single load or store instruction to access multiple data that are

located consecutively in the memory. It can enhance data throughput. The technique is also

called the single instruction multiple data (SIMD) method. For example, if we can place

four 8-bit data (char) or two 16-bit data (short) in a 32-bit space, we may do four or two

operations in one clock cycle. The code efficiency substantially. Some intrinsic functions
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Figure 3.10: The block diagram of SIMD.

enhance the efficiency in a similar way. Fig. 3.10 shows an example that uses word access

for adding short data.

3.5.5 Register and Memory Arrangement

When accessing in the external memory, it may tale more clock cycles than accessing on–

chipdata. We can use registers to store data in order to reduce the transfer time. The C

compiler has a pre–defined way of placing different code segments (such as variable pointers,

malloc spaces, and the program code) in the memory. We can set up the link commend

(.cmd) file to allocate the memory for different types of data for efficient data reading and

writing. The key–words “CODE SECTION” and “DATA SECTION” can be used to put

the program code or data in the internal memory for greater execution speed.

3.5.6 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop so that multiple

iterations of the loop execute in parallel. The compiler always attempts to software pipeline.

In Fig. 3.11, illustrates a software pipelined loop. The stages of the loop are represented by

A, B, C, D and E. In this figure, a maximum of five iterations of the loop can execute at one

time. The shaded area represents the loop kernel. In the loop kernel, all five stages execute
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Figure 3.11: Software-pipelined loop.

in parallel. The area above the kernel is known as the pipelined loop prolog, and the area

below the kernel is known as the pipelined loop epilog.

3.5.7 Macros and Intrinsic Functions

Because software-pipeline cannot contain function calls, it takes more clock cycles to com-

plete function calls. Changing functions to macros under some conditions is a good way

for code optimization. In addition, replacing functions with macros can cut down the code

for initial function definition and reduce the number of branches. But macros are expanded

each time they are called. Hence, they will increase the code size.

The TI C6000 compiler provides many special functions that map C codes directly to

inlined C64x instructions, which increase C code efficiency. These special functions are called

intrinsic functions. If some instructions have equivalent intrinsic functions, we can replace

them by intrinsic functions and the execution time can be decreased.

3.5.8 Other Acceleration Rules

Other code Acceleration rules include reducing memory access, using bit shifts for multi-

plication or division, declaring constants as constants that not variable, access the memory

sequentially, and minimizing use of conditional breaks or complex condition codes in loops.
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Chapter 4

Simulation and DSP Implementation
of Convolutional Encoder and
Decoder

In this chapter, we present some floating-point simulation results for the convolution encoder

and decoder. The simulation results provide information concerning proper choices of certain

design parameters, such as α and β in tail-biting convolutional code decoder. We then present

fixed-point simulation result and compare them with the floating-point results.

Then, we discuss the decoding algorithm of the IEEE802.16e OFDMA convolution codec

on DSP. We base our implementation on modification of the code of Lee [29] for IEEE

802.16a OFDMA to the specifications of IEEE 802.16e OFDM. We present the performance

results obtained from the profiler generated by the built-in profiler in TI’s Code Composer

Studio (CCS) tool set.

4.1 Coding Gain Analysis

In this section, we analyse the convolutional coding gains to obtain to the reference to

compare simulation results with. Coding gains are usually analyzed for AWGN channel. In

AWGN channel, let the transmitted symbol energy Es = 1. Then the relationship between
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Eb/N0 and the noise variance σ2 is given by

σ2 = (
Es

N0

)−1

= (
Nb · Ec

N0

)−1

= (
Nb ·Rc · Eb

N0

)−1 (4.1)

where

• Es/N0 is sometimes called SNR,

• Nb gives number of bits per symbol, which for QPSK, 16QAM, and 64QAM is 2, 4,

and 6, respectively,

• Ec = Es

Nb
is energy per code bit,

• Eb = Ec

Rc
is energy per information bit, and

• Rc is the code rate.

Crucial reference point is BER=10−6, at which point the IEEE 802.16e specifies the

performance requirement.

We investigate coding gains through several different views. First, we find the Shannon

bounds on coding gain at different code rates specified in IEEE 802.16e. This helps us

understand the limit in performance channel coding can provide. Then we estimate the

coding gains of the convolutional codes based on minimum codeword distances.

The Shannon-Hartley law for the capacity of an AWGN channel is given by

CRc = log2(1 +
EbCRc

N0

), (4.2)

where C is bit rate per Hz on channel and Rc is the code rate. As a result, the lower bound

on Eb/N0 is given by

Eb

N0

≥ 2CRc − 1

CRc

. (4.3)
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Table 4.1: Coding Gain Upper-Bound in AWGN at BER = 10−6

Modulation
Code
Rate

Channel Bit
Rate Under
Minimum
Bandwidth
Design (C)

Shannon
Bound
(dB)

Eb/N0 for
Uncoded

Transmission
with Coherent
Demodulation

(dB)

Coding
Gain

Upper-
Bound
(dB)

QPSK 1/2 2 0 10.5 10.5
QPSK 3/4 2 0.86 10.5 9.64
16QAM 1/2 4 1.76 14.5 12.74
16QAM 3/4 4 3.68 14.5 10.82
64QAM 1/2 6 3.68 19.0 15.32
64QAM 2/3 6 5.74 19.0 13.26
64QAM 3/4 6 6.82 19.0 12.18

The coding gain upper-bound is the difference between the Shannon bound and the

Eb/N0 at BER = 10−6 for uncoded transmission with coherent demodulation. We list the

coding gain upper-bound of the seven coding-modulation schemes in IEEE 802.16e in Table

4.1.

With BPSK or QPSK modulation, a rough estimate of convolutional coding gain in

AWGN is

10 log10(Rc · dfree) dB, (4.4)

where Rc is the code rate and dfree is the free distance. This coding gain also assumes

soft-decision decoding. For hard-decision decoding, the coding gain should be smaller by 2

to 3 dB. We conjecture that, for 16-QAM and 64-QAM with Gray-coded bit mapping, the

coding gain will depend on how the coded bits are mapped into the different symbols. With

sufficiently random interleaving, the estimate based on (4.4) may still apply. In Table 4.2,

we list the coding gain estimates based on (4.4) for the seven convolutional coding schemes

in IEEE 802.16e.
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Table 4.2: Approximate Coding Gain Based on Analysis of Minimum Codeword Distance

Modulation CC Code Rate dfree

Soft-Decision
CC Coding
Gain (dB)

QPSK 1/2 10 6.99
QPSK 3/4 5 5.74
16QAM 1/2 10 6.99
16QAM 3/4 5 5.74
64QAM 1/2 10 6.99
64QAM 2/3 6 6.02
64QAM 3/4 5 5.74

4.2 Performance in AWGN with Floating-Point Process-

ing

In this section, we discuss the floating-point simulation results of convolutional coding per-

formance in AWGN based on the system structure shown in Fig. 2.1.

We discussed the importance of the parameters α and β. In Figs. 4.1 and 4.2 we show the

floating-point simulation results of soft-decision decoding performance of the seven codes at

different values of Eb/N0 for different values of α and β between 0 and 96. From Fig. 4.1, we

conclude that, for rate–1/2 and QPSK ,16QAM and 64QAM modulations, the performance

is almost the same when α ≥ 12 and β ≥ 12. From Fig. 4.2, we conclude that, for rate–

2/3 and rate–3/4 coding and QPSK ,16QAM and 64QAM modulations, the performance is

almost the same when α ≥ 24 and β ≥ 24.

At rate 1/2, the codeword contains more parity check bits than at other rate. Then

we can use smaller α and β to reduce the decoder complexity without performance loss.

Considering the trade-off between performance and decoder complexity, we decide to let

α = 48 and β = 48 in our Viterbi decoder. A value of β = 48 is equivalent to a decoding
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Figure 4.1: Soft-decision decoding performance of rate–1/2 coding in AWGN with different
value of α and β employing floating-point computation.

delay of 48 bits. And it happens to be equal to 8 times the register length, a proper value

of delay by experience.

To further confirm that we have made a proper choice of α and β, we run simulation under

different Eb/N0 value for α = β = 48. The simulation results are depicted in Fig. 4.3. Table

4.3. lists the coding gains obtained from simulation with α = β = 48 and compares them

with the theoretic value obtained earlier. See that the coding gains obtained from simulation

are only less than the theoretic value by approximately 1 dB or less. Therefore, suboptimal

tail-biting Viterbi decoding and BICM de–interleaving provide acceptable performance at
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Figure 4.2: oft-decision decoding performance of rate–2/3 and rate–3/4 coding in AWGN
with different value of α and β employing floating-point computation.
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Figure 4.3: Soft-decision decoding performance in AWGN employing floating-point compu-
tation with α = β = 48.

reasonable complexity.

4.3 Performance in AWGN with Fixed-Point Process-

ing

In order to implement the encoder and decoder on DSP, we need to convert the floating-point

processing to fixed-point processing. In this section we discuss the simulation results with

fixed-point processing.

First, we convert floating-point values to the fixed-point ones. By multiplying the original
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Table 4.3: Comparison of Convolutional Coding Gain froms in AWGN at BER = 10−6

Modulation
CC Code

Rate

Theoretic
Soft-Decision
CC Coding
Gain (dB)

Soft-Decision CC Coding Gain from
Simulation Using floating-point

computation with α = β = 48 (dB)

QPSK 1/2 6.99 5.62
QPSK 3/4 5.74 4.82
16QAM 1/2 6.99 6.28
16QAM 3/4 5.74 5.43
64QAM 1/2 6.99 6.35
64QAM 2/3 6.02 5.97
64QAM 3/4 5.74 5.64

floating-point values by 1000 and rounding the result to integer. Then we use 12 bits to

represent this result.

Note that we only change the number of bit in the decoder input. We fix the integer

part in 4 bit and change the fraction part bit numbers. But the precision of intermediate

results decoding computation is still 16 bits. In Fig. 4.4, we see that, in QPSK we can use 4

bits to express the decoder input and achieve a performance less than 1 dB away from using

12 bits. In 16QAM and 64QAM, 4 bits are not good enough and we need at least 5 bits in

16QAM and 6 bits in 64QAM. In DSP implementation, we can only choose between char(8

bits) and short(16 bits). Thus we choose 16 bits as the decoder input width.

Next, we consider the impact of the parameters α and β in fixed-point processing. From

Fig. 4.5, we see that, when α ≥ 24 and β ≥ 24, the performance is almost the same as

for floating-point processing. Therefore, α = 48 and β = 48 is a suitable choice also for

fixed-point processing.

Now we run simulation under different Eb/N0 value for α = β = 48. The simulation
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Figure 4.4: Soft-decision decoding performance in AWGN with different input precisions.
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Figure 4.5: Soft-decision decoding performance employing fixed-point computation in AWGN
with different value α and β.
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Figure 4.6: Soft-decision decoding performance in AWGN with α = 48 and β = 48 employing
fixed-point computation.

results are shown in Fig. 4.6. Table 4.4 compares the coding gain obtained from fixed-point

computation with α = β = 48 with the theoretic coding gains obtained previously.

In Fig. 4.7, we compare the simulation results of floating-point and fixed-point processing

with α = β = 48. The performance of floating-point and fixed-point computation is almost

the same for every code rate and every modulation method.
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Figure 4.7: Comparison between soft-decision decoding performance in AWGN using
floating-point computation and that using fixed-point computation.
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Table 4.4: Soft-Decision Decoding Performance with α = 48 and β = 48, in AWGN at BER
= 10−6 Employing Fixed-Point Computation

Modulation

CC
Code
Rate

Theoretic
Soft-Decision
CC Coding
Gain (dB)

Soft-Decision CC
Coding Gain from

Simulation Employing
Fixed-Point

Computation (dB)

Soft-Decision CC
Coding Gain from

Simulation Employing
Floating-Point

Computation(dB)

QPSK 1/2 6.99 5.61 5.62
QPSK 3/4 5.74 4.51 4.82
16QAM 1/2 6.99 6.32 6.28
16QAM 3/4 5.74 5.41 5.43
64QAM 1/2 6.99 6.02 6.35
64QAM 2/3 6.02 5.62 5.97
64QAM 3/4 5.74 5.38 5.64

4.4 Implementation on DSP

We introduce the compiler options that control the operation of the compiler. CCS compiler

offers high-level language support by transforming C/C++ code into more efficient assembly

language source code. The compiler options can be used to optimize our code size and the

executing performance.

The major compiler options we utilize are -o3, -pm -op2, no -ms.

• -pm -op2. In the CCS compiler option, -pm and -op2 are combined into one option:

– -pm: Give the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

– -op2: Specifies that the module contains no functions or variables that are called

or modified from outside the source code provided to the compiler. This improves
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variable analysis and allowed assumptions.

• no -ms. Speed most critical.

4.4.1 Profile of the DSP code

In this section, we show the optimized profile of our convolution code, which concatenates

the randomizer, interleaver and modulator. Table 4.5 show the execution speed of the final

concatenated program for processing different data length define in IEEE 802.16e on DSP.

In Table 4.5, we see that there is almost 97% execution time in the Viterbi decoder. In Fig.

4.8, we show the C code of Viterbi decoder. We do the full search to compare the Euclidean

distance with the stage diagram every two bits. For coding rate 1/2 and codeword length

576, it needs to compare 768*64=49152 times. In the C code, there are 768*32=24576 loops

when decoding one block. We show the assembly code in Fig. 4.9, 4.10, 4.11, 4.12 and 4.13.

In these figures, we can see that the parallelism is good. In one cycle, it can execute more

than five instructions usually.

Table 4.6 show the processing rate in different mandatory coding and modulation mode.

In the encoder, we can approach the data rate more than 10M bps. But in the decoder,

there is a bottleneck in viterbi algorithm. Viterbi algorithm need large operation and get

high complexity. In our decoder, we can approach the data rate about only 8k bps.

Table 4.7 show the code size in different mandatory coding and modulation mode. The

average code size is 2021 bytes in the encoder and is 5739 bytes in the decoder.

The programs will require multiple DSPs to run in parallel to handle the data rate under

a 10 MHz transmission bandwidth. Acknowledgeably, further optimization of the programs

may be possible. In addition, the C64x is equipped with a Viterbi decoder co-processor [30].

Using this co-processor may be helpful in raising the decoding speed. But its use requires
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Figure 4.8: The C code of Viterbi decoder.
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Figure 4.9: The assembly code of Viterbi decoder (1/5).
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Figure 4.10: The assembly code of Viterbi decoder (2/5).
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Figure 4.11: The assembly code of Viterbi decoder (3/5).
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Figure 4.12: The assembly code of Viterbi decoder (4/5).
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Figure 4.13: The assembly code of Viterbi decoder (5/5).
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Figure 4.14: Software pipeline information for Viterbi decoder.

Table 4.5: Final Profile of Convolution Code (Cycles)

Fucntion

QPSK
rate 1/2
36 bytes

QPSK
rate 3/4
36 bytes

16QAM
rate 1/2
36 bytes

16QAM
rate 3/4
36 bytes

64QAM
rate 1/2
36 bytes

64QAM
rate 2/3
24 bytes

64QAM
rate 3/4
27 bytes

Randomizer 4447 4433 4453 4443 4448 3009 3352
Encoder 3124 4133 3137 4139 3130 2954 3110

Interleaver 3526 2360 4747 3169 19678 9854 9836
Modulator 3845 2556 10141 6993 9281 5066 4846
TX total 14942 13482 22478 18744 36537 20883 21144

De-modulator 762 462 4394 2926 2569 1627 1629
De-interleaver 3590 2396 4163 2786 6487 3243 3243

Decoder 337017 337571 336995 337635 337111 254305 275019
De-randomizer 4492 4508 4496 4499 4494 3010 3382

RX total 345861 344937 350048 347846 350661 262185 283273
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Table 4.6: Final Profile of Convolution Code (Processing Rate)

Processing
Rate

(kbps)

QPSK
rate 1/2

QPSK
rate 3/4

16QAM
rate 1/2

16QAM
rate 3/4

64QAM
rate 1/2

64QAM
rate 2/3

64QAM
rate 3/4

Encoder 19724 21361 12812 15364 7882 9194 10215
Decoder 832 835 822 828 821 732 762

Table 4.7: Final Profile of Convolution Code (Code Size)

Code Size
(byte)

QPSK
rate 1/2

QPSK
rate 3/4

16QAM
rate 1/2

16QAM
rate 3/4

64QAM
rate 1/2

64QAM
rate 2/3

64QAM
rate 3/4

Encoder 1868 1684 2164 1980 2176 2284 1992
Decoder 4648 5012 5152 5516 6400 6684 6764

study and testing of the “enhanced direct memory access (EDMA)” mechanism of the C64x

chips, which is bypassed in the present study.
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Chapter 5

Simulation and DSP Implementation
of LDPC Encoder and Decoder

In this chapter, we present some simulation results for the LDPC codec in IEEE 802.16e. It

contains floating-point, fixed-point simulation and DSP implementation.

5.1 Performance in AWGN Channel with Floating-Point

Processing

5.1.1 Number of Iterations

The iteration number is a most important factor in the decoding algorithm. This number

affects the decoding accuracy and system complexity. A larger iteration number usually

leads to better performance. But the complexity and the and the latency are increased. We

compare the performance with iteration numbers between 10 and 70 for BP decoding of the

rate 1/2, length 576 code with QPSK modulation in Fig. 5.1.

In Fig. 5.1, the performance at 10 iterations is obviously inferior to other choice. We can

see that if the iteration number is more than 20, then the BER curves are almost the same.

To limit the decoding complexity and maintain a reasonable performance, we use 20 as the

iteration number in other simulations.
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Figure 5.1: LDPC decoding performance in different iteration numbers with floating-point
computation.

5.1.2 Performance at Different Codeword Lengths

In convolutional coding the codeword length does not affect the performance. But LDPC

code is different. Fig. 5.2 shows the performance at four different codeword lengths at

code rate 1/2 with QPSK modulation and BP decoding with 20 iterations. In Fig. 5.2, as

the codeword length becomes longer, the improved performance is obtained. The result is

not surprising, because at medium or short code lengths, the BP algorithm is not optimum,

owing to correlation among messages passed during iterative decoding [17]. For the codeword

length 2304, the coding gain is about 8 dB at BER 10−6. This coding gain value is several

dB higher than convolutional coding as obtained in the last chapter.

5.1.3 Performance with Different Modulations

We compare the performance of QPSK, 16QAM and 64QAM at rate 1/2, codeword length

576, with BP decoding with 20 iterations. In Fig. 5.3, the coding gains of QPSK, 16QAM,
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Figure 5.2: LDPC decoding performance in different codeword length with floating-point
computation.
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Figure 5.3: LDPC decoding performance with different modulation employing floating-point
computation.
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Table 5.1: Comparison of Coding Gain Between LDPC Codes and Convolutional Codes at
Code Rate 1/2 in AWGN at BER = 10−6

Modulation Type Convolutional Code LDPC Code

QPSK 5.62 7.31
16QAM 6.28 7.43
64QAM 6.35 9.32

64QAM are 7.31, 7.43 and 9.32 dB, respectively, at BER=10−6.

In Table 5.1, we compare the coding gains of LDPC codes and convolutional codes. The

LDPC codes are obviously better. They are close to Shannon limit [12].

5.1.4 Performance at Different Coding Rates

In IEEE 802.16e, six coding rate are defined for LDPC code, namely 1
2
, 2

3
A, 2

3
B, 3

4
A, 3

4
B

and 5
6
. In Fig. 5.4, we compare their performance under QPSK, code length 576 and BP

decoding with 20 iteration. As mat be anticipated, the best performance is obtained at rate

1/2. As the code rate gets higher, the performance gets worse. Note that the two curves

of 2
3
A and 2

3
B are very close, but still have some difference. We can explain why this little

difference exists from the point of view of “threshold” [32]. As the block length tends to

infinity, an arbitrarily small bit error probability can be achieved if the noise level is smaller

than a certain threshold. In Table 5.2, the threshold of 2
3
A is only larger than that of 2

3
B

by 0.012 dB. So, the BER curves are very close, and the curve for 2
3
A is a little better than

that of 2
3
B. In our simulation, these two curves really follow the threshold analysis. By the

similar method, we also easily explain the relationship between the two BER curves of 3
4
A

and 3
4
B.
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Figure 5.4: LDPC Decoding Performance in Different Coding Rate (floating-point).

Table 5.2: Threshold for Each Code Rate under BPSK Modulation in AWGN Channel [20].

Code Rate Threshold

1/2 0.9273
2/3A 0.7282
2/3B 0.7163
3/4A 0.6358
3/4B 0.6446
5/6 0.5607
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Figure 5.5: LDPC decoding performance using different decoding algorithm employing
floating-point computation.

5.1.5 Performance of Reduced-Complexity Algorithm

In chapter 2, we discuss some decoding algorithms with reduced complexity than the BP

algorithm. In Fig. 5.5, we compare the performance of four algorithms at code rate 1/2,

length 576, QPSK modulation with 20 iterations.

As expected, the min-sun algorithm is obviously worse than the other algorithms. The

reason also been discussed previously in chapter 2.

The other two reduced-complexity algorithms, offset BP-based and normalized BP-based,

have even a slightly better performance than the BP algorithm. These results are not sur-

prising, because at medium or short code lengths, the BP algorithm is not optimum. This

is because the number of short cycles in their Tanner graphs influences the BP decoding

performance which depends on the amount of correlation between messages, and the two

reduced-complexity BP-based algorithms seem to outperform the BP algorithm by reduc-

ing the negative effect of the correlations [17]. The normalized BP-based algorithm slightly

outperforms the offset BP-based algorithm, but may also be slightly more complex to im-
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Table 5.3: LDPC Coding Gain between Floating-point and Fixed-point in AWGN at BER
= 10−5.

Modulation
Floating-Point

Coding Gain (dB)
Fixed-Point 12 bit
Coding Gain (dB)

Fixed-Point 6 bit
Coding Gain (dB)

QPSK 6.58 6.17 5.17
16QAM 7.36 5.89 4.66
64QAM 8.75 6.71 4.65

plement.

As a result, we choose the offset BP-Based algorithm for DSP implementation. The

structure of the algorithm also makes the conversion from floating-point to fixed-point com-

putation easier.

5.2 Performance in AWGN Channel with Fixed-Point

Processing

In the above, we select the offset BP-based algorithm to convert the floating-point value to

the fixed-point value. By multiplying the original floating-point values by 1000 and rounding

the result to integer. Then we use 12 bits to represent this result. Note that we only change

the number of bit in the decoder input. We fix the integer part in 4 bit and change the

fraction part bit numbers. But the precision of intermediate results decoding computation

is still 16 bits.

In Fig. 5.6, we compare the performance when bit number used in decoder is between 5

to 12 for offset BP-based decoding at rate 1/2, length 576 and three different modulations.

When we use 8 to 12 bits, the BER curves are almost the same for QPSK, 16QAM and

64QAM. For QPSK, the BER curve when we use 5 bit, is in our acceptable bound. But in
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Figure 5.6: LDPC decoding performance at different bit numbers with different modulations
employing fixed-point computation.
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Figure 5.7: LDPC decoding performance at different bit numbers at two different coding
rate employing fixed-point computation.
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Figure 5.8: LDPC decoding performance at different bit numbers at two different codeword
lengths employing fixed-point computation.
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16QAM and 64QAM, 6 bit is the limit that we can acceptable. Table 5.3 shows the coding

gain between floating-point and fixed-point.

In Fig. 5.7, we compare the performance between coding rates 1/2 and 5/6. When coding

rate is 5/6, the SNR need at least 6.5 dB to keep the performance better than uncoded QPSK

if we use 7–12 bit. 6 bit is the boundary that we can accept, that the SNR need more than

7 dB to keep the performance better than uncoded QPSK.

In Fig. 5.8, we compare the performance between codeword lengths 576 and 2304. As we

discuss above, when length is 576, 5 bit is not enough. But in long codeword length, the BP-

Based algorithm is optimum. For the codeword length 2304, it has very good performance.

Then, we can also use 5 bit to implement our decoder. The performance just less 1 dB than

we use 6 bit to implement.

5.2.1 Profile of the DSP code

Encoder

First, we optimize our code and show the profile. In the case, codeword length 512 and code

rate 1/2, it need 21715443 cycles to encode one block. However, the speed performance is

awful. As we discuss in chapter 2, LDPC encoder needs to compute the shift size and do the

circular shift. Coding one block, it uses circular shift 1002 times at rate 1/2 and codeword

length 576. In Table 5.4, 96.3% execution time expends on doing circular shift. In Fig. 5.9,

we show the C codes of circular shift. In Fig. 5.10 and 5.11, show the assembly codes of

circular shift. At every codeword length, the value of “ZZ” is known. Then we can calculate

the circular shift value and compute the circular shifted matrix by ourself. Now, we reduce

the C code about circular shift and compute the p(f, i, j) initially. We write the circular

shifted matrix into a table. The encoder reads circular shifted matrix from the table. In

Table 5.5, it just needs 812491 cycles to encode one block.
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Table 5.4: Original Profile of LDPC Encoder (Cycles)

Areas Cycles Percentage (%)
Processing Rate

(kbits/sec)

LDPC Encoder 21684592 100 13.3
Circular Shift 20881567 96.3

Table 5.5: Profile of LDPC Encoder with Matrix Table (Cycles)

Areas Cycles
Processing Rate

(kbits/sec)
Improvement

(%)

LDPC Encoder (Original) 21684592 13.3 N/A
LDPC Encoder (with Table) 812491 354.5 96.3

Table 5.6: Profile of LDPC Encoder with Different Coding Rates

Coding Rate

Profile 1/2 2/3A 2/3B 3/4A 3/4B 5/6

Cycle 812491 482041 477639 316731 319386 1748774
Processing Rate (Kbps) 354.5 597.5 603.1 909.3 901.7 1646.9
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Figure 5.9: The C codes of circular shift.

Table 5.7: Profile of LDPC Decoder with different Coding Rate

Coding Rate

Profile 1/2 2/3A 2/3B 3/4A 3/4B 5/6

Cycle 37714286 56177704 58141064 76294841 85273741 93146880
Processing Rate (Kbps) 7.6 5.1 5.0 3.8 3.4 3.1

In Table 5.6, we show the profile with different coding rate when codeword length is 576.

In this case, when the coding rate is higher the cycle number is more. Because it need to

compute more parity bit, and it need more computation complexity.

Decoder

In this subsection, we show the profile of the LDPC decoder when codeword length 576 and

iteration 20. Table 5.7 shows the execution speed and the processing rate of our LDPC

decoder on DSP. In advance, the LDPC decoder is more complex.

In our code, coding rate 1/2 and codeword length 576, doing one iteration need the loop:
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Figure 5.10: The assembly codes of circular shift (1/2).
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Figure 5.11: The assembly codes of circular shift (2/2).
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Figure 5.12: The C code of computing form check nodes to bit nodes.

• 288*N(m)*N(m).

• 576*M(n)*M(n).

• 576*M(n).

In Fig. 5.12, we show the C code which computing the value from check nodes to bit

nodes. In the code. There are 576*M(n)*M(n) loops. 576 is the number of bit nodes and 288

is the numbers of check node.M(n) means the number of check nodes connected to bit node

n and N(m) denotes the number of bit nodes connected to the check nodes. The loop in one

iteration is depended on M(n) and N(m). However, in coding rate 1/2, M(n) is more than 6

and N(m) is more than 3. It means that there is more than 288∗6∗6+576∗3∗3+576∗3 =

17280 loops in one iteration. In one loop, it should execute the bit node value or check node

value, read value from memory, and a little stall or NOP cycle. We approximate 90 cycles in

one loop and it need about 90 ∗ 17280 = 1555200 cycles in one iteration. So, it needs about
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Table 5.8: Final Profile of LDPC Code (Code Size).

Code Size (byte)

Encoder 6028
Decoder 2688

31104000 cycles after 20 iterations.

In Fig. 5.13, 5.14 and 5.15, we see the assembly code which computing the value from

check nodes to bit nodes. The parallelism is not good. We see that in our code, the value

in check nodes and bits nodes are read from memory many times. Reading memory costs

several cycles and reduces the code parallelism.

In Table 5.8, we just show the code size of encoder and decoder without randomizer,

interleaver and modulator.
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Figure 5.13: The assembly code of computing form check nodes to bit nodes (1/3).
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Figure 5.14: The assembly code of computing form check nodes to bit nodes (2/3).

89



Figure 5.15: The assembly code of computing form check nodes to bit nodes (3/3).
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Figure 5.16: Software pipeline information for LDPC decoder.
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Chapter 6

Conclusion and Future Work

This work contained two parts of IEEE 802.16e. One was the research in convolution code

and implementation on DSP of 802.16e for WirelessMAN-OFDMA. And the other was the

reduced-complexity decoding research of the LDPC code.

In the first part work, we first analyzed the Shannon bounds on coding gain and theoretic

coding gain based on minimum codeword distance in AWGN. In our implementation, the

convolution coding gain in AWGN was less than theoretic value by 1 dB. When we converted

the floating-point to fixed-point, the performance was almost the same and we could just

use 6 bits to implement the decoder. Finally, the convolutional decoder required multiple

DSPs to run in parallel to handle the data rate under a 10 MHz transmission bandwidth.

But encoder could achieve the data rate 10 Mhz.

In the second part work, we first evaluated the performance of LDPC code and compared

the results with the numerical results. The coding gain of LDPC code was much better than

convolution code. Then we focused on several complexity-reducing decoding algorithm.

Therefore, these simplified reduced-complexity decoding schemes could outperform the BP

decoding algorithm. Then we converted the floating-point to fixed-point, and we could

use 6 bits to implement the decoder. In the DSP implementation, it could not achieve
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the bandwidth 10 MHz both in encoder and decoder. LDPC code is more complex than

convolution code in our DSP implementation.

In the future work, we need to revise the coding algorithms to be fixed-point to reduce

the complexity for actual DSP implementation. In convolution code, the C64x is equipped

with a Viterbi decoder co-processor [30]. Using this co-processor may be helpful in raising

the decoding speed. But it use requires study and testing of the “enhanced direct memory

access (EDMA)” mechanism of the C64x chips.

In LDPC code, there are two possible methods to enhance our DSP implementation.

First, we may rewrite our code. We discuss in chapter 5, in our code, there are too many

loops to execute. These cost too many cycles and must read the memory many times.

Second, we have find some references. If we need further reducing complexity by other

decoding algorithms, [34] is one of the references. If we need to remove the effects of cycles

in the factor graph to make the BP decoding algorithm optimal or improve the decoding

performance, [35] is one of the references.
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