IEEE802.16e OFDMA i i %

B i AR AR R Ry

Research in and DSP-Implementation of Channel Coding

Techniques for IEEE802.16e OFDMA

oy o4 %4p3a

R R L

P 3 R 4 L+ 2 & O 2

IEEE 802.16e OFDMA i :E ¥
BN R A AT B M2 ATy
Research in and DSP Implementation of Channel Coding

Techniques for IEEE 802.16e OFDMA

PrdEips Student: Po-Sheng Wu

R kA iE EL Advisor: Dr. David W. Lin

AThesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering
June 2007
Hsinchu, Taiwan, Republic of China

|IEEE 802.16e OFDMA i if %
BT AEEIE R ALY

e EREE T SRR L

IEEE 802.16e & %00 2ALIE ¢ » 3% % thehiB F 2827 21 7 o 24 S D ok i
F1 0 A M RUE P s BB 5T i Yokl Bk v hE B o
A E i L IR & g A3 77 7 |EEE 802.16e OFDMA #7137 F_hik 8 Sk & 4o
F R Al AT E(DSP) b &iﬁ DSP &L [ch {4 1 & 3 %2 4 Fh S i B
BTN TR o Y Po NP RARR Y FZrhn B F o 3R A ST kS %
Lo J1* CEZ HFAPE B ASGFEE s I be XM & B E TR
’ ‘éﬁ’%% B e % 0 5 VT E 4 93 I0B amp L BF - H U RE D
7 515 B 1 TMS320C6416 DSP & 75 51X 5 + 9 o s5i & DSP T 5 b o ik it A s
SAZ I 1S 0 i MR SRS BVH > 2% DSP st._%”‘gﬁ,} » T 0 B E F) 13793K 1= A ke
TLiE R @ fREE B ARRT L E P F F) 805K (A ST B o
rH 2 {8 X Nix £ 2o 77 3 IEEE 802.16e OFDMA #7137 Z_en™ @ B 4 % R % 4B &
KT P FRABE A LR Ty MR R P B RKB GRS E G FE i o
EAS- L MRBAERR R o CHETHRE CRIFEZ L R ml s e R
Mo ¢ FAUE THER T AAARELABRBFE 2 TR S5 - RkE L
50 B Ot R o B AN % BT M AR SRR i B2 o B SLenfEag A AR E 2T o
BRFHeEFEEY RpEE4HRR CEFF B IERagE 2 F R ALY
RESDF EDSP T 4 oo i DSP T 4 b B i i A efR N (8 0 Mg BN
G it VLT E §) 835K e Rk R o fEAR B AR W i 1) E 4y 47K
AR R o

__‘

Nll

/

Research in and DSP Implementation of Channel Coding

Techniques for IEEE 802.16e OFDMA

Student: Po-Sheng Wu Advisor: Dr. David W. Lin

Department of Electronics Engineering
& Institute of Electronics
National Chiao Tung University

Abstract

In the IEEE 802.16e wireless communication standard, a Forward Error Correction
(FEC) mechanism is presented at the,transmitter side to reduce the noisy channel effect.
The focus is on the channel coding:

The focus of the fist part of this thesis is'the research of the convolutional code defined
in IEEE 802.16e OFDMA standard and modifying FEC algorithms to match the
architecture of DSP platform. We have implemented-four required FEC schemes defined in
the standard on the C program to‘insure the correctness of our algorithm. We simulate the
different modulation in AWGN channel"and the coding gain is almost achieve theoretic
values. Then we implement the project on the Texas Instruments digital signal processor
(DSP). After optimizing the programs on the DSP platform, the improved FEC encoder can
achieve a data processing rate of 13793 kbps and the improved FEC decoder can achieve a
processing rate of 805 kbps on the TI TMS320C6416 DSP simulator.

The focus of second part is the low-density parity-check (LDPC) code defined in IEEE
802.16e OFDMA. We explain the conventional encoding and decoding algorithm, and
some reduced-complexity decoding algorithms. We simulate the LDPC code for different
modulation and decoding algorithms in AWGN and compare the simulation results with
analytical results. Simulation results show that these reduced-complexity decoding
algorithms for LDPC codes achieve a performance very close to that of conventional
algorithm. According to computational complexity and latency, we choose the adaptable
algorithm and implement on DSP. After optimizing the programs on the DSP platform, the
improved encoder can achieve a data processing rate of 835 kbps and the improved decoder
can achieve a processing rate of 4.7 kbps on the T1 C6416 DSP simulator.

AR ez S FRE RN g R R E L K il < F
THATEA SRR L A 2 S RAKE F P afie o gAY
PO RREE R RE A o PR EEOL SRR Y B A EAL
FIARELETE - Byt Wo EEF 2 X HRA R BF PR FHZ L

FORRMa IR OELEF Lol R EFL WP A m A
fRi0 3 5 G AP B ehig B

BRI T F EE LR % % (commlab) v #& & S LA W F R o R
AAEFT? AT L o B O3 BRiFp e F A mEE S nE 94
Bk AN oguiE MY S E RPN s TR AT RT S
BT pfet-dedd > - Aeim o2 AR R BT T 2 BB EE X
ATk o P EFA RE RSN G A AR R -

B RRFHAIADFAGR PO FRN Lo AR T ORI Y 1 0o

5~f'5~fLr}a:§TE'l’ﬁi\"]‘“‘\iﬁ ﬁkﬁa”mﬁﬂ;—;\ N A e =

3630 2007.6 R 32

tp &

Contents

1 Introduction 1
1.1 Scope of the Work 1
1.2 Organization of This Thesis 2

2 FEC in IEEE 802.16e OFDMA and _Associated Decoding methods 3
2.1 Convolutional Code Specifications [djmeat. "t 3

2.1.1 Randomizer [1] . =1 5. o oot L L 5
2.1.2 Convolutional Encoder [T+ 0r o0 00000 6
2.1.3 Imterleaver [1]0 Lo 8
2.1.4 Modulation [1] Lo 10
2.2 Decoding Under Convolutional Encoding 10
2.2.1 Demodulation Under Bit-Interleaved Coded Modulation 11
2.2.2 De-Interleaver 14
2.2.3 Tail-Biting Convolutional Decoding 15
2.3 LDPC Code Specifications 16
2.3.1 Overview of LDPC Code 18

2.3.2 LDPC Code in IEEE 802.16e OFDMA [1] 20

2.4 Decoding of LDPC code 21
2.4.1 The Belief Propagation Decoding Algorithm [17] 21
2.4.2 Some Reduced-Complexity LDPC Decoding Algorithms 24

DSP Implementation Environment 28

3.1 The DSP Baseboard (SMT395) 28

3.2 The DSP Chip 29
3.2.1 Central Processing Unit 23] 32
3.22 Memory [24] L 37

3.3 TI's Code Development Environment 25}, [26] 39

3.4 Code Development Flow [27] . L .l-b v D oo o000 41

3.5 Acceleration Rules . . . Z. . a0 L L L 43
3.5.1 Compiler Optimization Options [27]+". 43
3.5.2 Fixed—Point Coding 45
3.5.3 Loop Unrolling 45
3.5.4 Packet Data Processing 46
3.5.5 Register and Memory Arrangement 47
3.5.6 Software Pipelining oL 47
3.5.7 Macros and Intrinsic Functions 0000 48
3.5.8 Other Acceleration Rules 48

ii

4 Simulation and DSP Implementation of Convolutional Encoder and De-

coder 49
4.1 Coding Gain Analysis. L 49
4.2 Performance in AWGN with Floating-Point Processing 52
4.3 Performance in AWGN with Fixed-Point Processing 55
4.4 TImplementation on DSP o 61

4.4.1 Profile of the DSP code 62

5 Simulation and DSP Implementation of LDPC Encoder and Decoder 71

5.1 Performance in AWGN Channel with Floating-Point Processing 71
5.1.1 Number of Tterations . . _.ogew. - o o o o o 0oL 71

5.1.2 Performance at Different Codeword Liengths 72

5.1.3 Performance with Different Modulations 72

5.1.4 Performance at Different Coding Rates 74

5.1.5 Performance of Reduced-Complexity Algorithm 76

5.2 Performance in AWGN Channel with Fixed-Point Processing 7
5.2.1 Profile of the DSP code 81

6 Conclusion and Future Work 92

Bibliography 94

il

List of Figures

2.1 Convolutional coding structure in transmitter (top path) and decoding in

receiver (bottom path).
2.2 PRBS for data randomization (from [1]).
2.3 Convolutional encoder of rate 1/2 (from [1]).
2.4 The second permutation of interleaver.
2.5 QPSK, 16-QAM, and 64-QAM constellations’(from [1]).
2.6 Metric partitions of the 16-QAM constellation {(from [9]).
2.7 Trellis for tail-biting convolational decoding (from [2]).

2.8 LDPC coding structure in transmitter (top path) and decoding in receiver

(bottom path).
2.9 Tanner graph of a parity check matrix
2.10 Base model of the rate-1/2 code (from [1]).
2.11 Base model of the rate-2/3, type A code (from [1]).
2.12 Base model of the rate-2/3, type B code (from [1]).
2.13 Base model of the rate-3/4, type A code (from [1]).

2.14 Base model of the rate-3/4, type B code (from [1]).

v

3.1 SMT395 Module.

3.2 Block diagram of TMS320C6416 DSP (from [23]).

3.3 The TMS320C64x DSP chip architecture and comparison with earlier TMS320C62x/C67x

chip (from [23]).
3.4 Pipeline phases of TMS320C6416 DSP (from [23]).
3.5 Execution stage length description for each instruction type (from [23]). . . .
3.6 TMS320C64x CPU data paths (from [23]).
3.7 C64x cache memory architecture (from [24]).
3.8 Code development flow for 'TI C6000/DSP. (from [27])..
3.9 Loop unrolling. =, T L
3.10 The block diagram of SIMDw o .00 700 sl o 00 oo

3.11 Software-pipelined loop.

4.1 Soft-decision decoding performance of rate-1/2 coding in AWGN with differ-

ent value of o and (8 employing floating-point computation.

4.2 oft-decision decoding performance of rate-2/3 and rate-3/4 coding in AWGN

with different value of a and # employing floating-point computation.

4.3 Soft-decision decoding performance in AWGN employing floating-point com-

putation with a =0 =48.

4.4 Soft-decision decoding performance in AWGN with different input precisions.

31

33

35

95

o7

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

5.1

5.2

5.3

5.4

5.5

Soft-decision decoding performance employing fixed-point computation in AWGN

with different value cvand 3. oo 58

Soft-decision decoding performance in AWGN with @ = 48 and 3 = 48 em-

ploying fixed-point computation. L. 59

Comparison between soft-decision decoding performance in AWGN using floating-

point computation and that using fixed-point computation. 60
The C code of Viterbi decoder. 63
The assembly code of Viterbi decoder (1/5). 64
The assembly code of Viterbi decoder (2/5). 65
The assembly code of Viterbi decoder (3/5). 66
The assembly code of Viterbi decdder (4/5). 67
The assembly code of Viterhi decoder-(5/5). "o. 68
Software pipeline information for Viterbi.decoder. 69

LDPC decoding performance in different iteration numbers with floating-point

computation.o 72

LDPC decoding performance in different codeword length with floating-point

computation. 73

LDPC decoding performance with different modulation employing floating-

point computation. 73
LDPC Decoding Performance in Different Coding Rate (floating-point). . . . 75

LDPC decoding performance using different decoding algorithm employing

floating-point computation.o 76

vi

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

LDPC decoding performance at different bit numbers with different modula-

tions employing fixed-point computation.

LDPC decoding performance at different bit numbers at two different coding

rate employing fixed-point computation.

LDPC decoding performance at different bit numbers at two different code-

word lengths employing fixed-point computation.
The C codes of circular shift.
The assembly codes of circular shift (1/2).
The assembly codes of circular shift (2/2).
The C code of computing form check nodes to bit nodes.
The assembly code of computingiform check nodes to bit nodes (1/3).
The assembly code of computing form-cheek nodes to bit nodes (2/3).
The assembly code of computing/form check nodes to bit nodes (3/3).

Software pipeline informationfor LDPC decoder.

vil

88

89

90

List of Tables

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

Mandatory Channel Coding Schemes for Each Modulation Method 4
The Convolutional Code with Puncturing Configuration 7
Bit Interleaved Block Sizes and Modulos 9
Bit Metric for Method-ML and Method-LLR 13
Comparison of Main Operations of;Different Decoding Algorithms 27
Functional Units and Operations Performed (from [23]) 36
Sizes of Different Data Types s~ .= 45
Comparison Between Unrolled‘and not Unrolled 46
Coding Gain Upper-Bound in AWGN at BER =10"¢ 51

Approximate Coding Gain Based on Analysis of Minimum Codeword Distance 52
Comparison of Convolutional Coding Gain froms in AWGN at BER = 10~° 56

Soft-Decision Decoding Performance with @ = 48 and § = 48, in AWGN at

BER = 107% Employing Fixed-Point Computation 61
Final Profile of Convolution Code (Cycles) 69
Final Profile of Convolution Code (Processing Rate) 70

viil

4.7

5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

Final Profile of Convolution Code (Code Size) 70

Comparison of Coding Gain Between LDPC Codes and Convolutional Codes
at Code Rate 1/2 in AWGN at BER =10"% 74

Threshold for Each Code Rate under BPSK Modulation in AWGN Channel
200, . . 75

LDPC Coding Gain between Floating-point and Fixed-point in AWGN at

BER = 1072 77
Original Profile of LDPC Encoder (Cycles) 82
Profile of LDPC Encoder with Matrix Table (Cycles) 82
Profile of LDPC Encoder with Different Coding Rates 82
Profile of LDPC Decoder with-different Coding Rate 83
Final Profile of LDPC Code (Code Size).. « 87

X

Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission is a trend in the next generation of consumer electronics. Due to
this demand high data transmission rate andimnobility are needed. The OFDM modulation
technique for wireless communication has-been @:main stream in recent years. IEEE has
completed several standards, including the IEEE802.11 series for LANs (local area networks)
and IEEE 802.16 series for MANs (metropolitanarea networks), based on OFDM technique.
Our study is based on the IEEE 802.16¢ standard; which specifies the air interface of mobile

broadband wireless multiple access systems providing multiple access.

In wireless communication, the transmitted signals are easily interfered and distorted by
variance things sources such as the crowd traffic, bad weather, the obstacle of buildings,
etc. Digital wireless transmission with multimedia contents such as audio and video is a
trend. These services often exhibit high data rates and require high quality reproduction.
To improve the robustness of the wireless communication against the noisy channel condition,
the FEC (forward-error-correcting coding) mechanism is a must in almost every commercial

communication standard, including the IEEE 802.16e.

The mandatory channel coding scheme in IEEE 802.16e for OFDMA employs punctured

convolutional coding. In addition, bit interleaver and M-ary QAM modulation are used after

coding. We also discuss the LDPC code in IEEE 802.16e for OFDMA.

In this thesis, we focus on the study of the simulation and the DSP implementation of
the FEC schemes of the IEEE 802.16e standard. We first review the FEC methods used in
IEEE 802.16e and study the encoding and decoding techniques. Then we perform computer
simulation to investigate the coding performance. Finally, we implement the FEC algorithms
on DSP with fixed-point computation. We also seek to optimize the DSP program for efficient

execution.

1.2 Organization of This Thesis

This thesis is organized as follows.

e Chapter 2 introduces the convolutional code and*the LDPC code of IEEE 802.16e.

Chapter 3 describes the DSP dimplementation enyironment.

Chapter 4 discusses simulation and the DSP implementation of the convolution code.

Chapter 5 discusses simulation and the DSP implementation of the LDPC code.

Chapter 6 contains the conclusion and points out some future work.

Chapter 2

FEC in IEEE 802.16e OFDMA and
Associated Decoding methods

The channel coding schemes usually used in IEEE 802.16e is tail-biting convolutional code.
Block turbo code, convolutional turbo code, zero tailed convolutional code and LDPC code

are the options.

2.1 Convolutional Code| Specifications [1]

The contents of this section have been taken alarge extent from [2].

The mandatory channel coding scheme used in IEEE 802.16e OFDMA is as shown in Fig.
2.1. Input data streams are divided by the randomizer to clean up the bit correlation, and
then each data block is encoded by the convolutional encoder. The block-by-block coding

makes the convolutional code effectively a block code.

Between the convolutional coder and the modulator is a bit interleaver, which protects
the convolutional code from severe impact of burst errors and increases overall coding per-
formance. This approach has been termed “bit-interleaved coded modulation (BICM)” in

the literature [3].

) Convolutional
Randomizer - P
Encoder

Interleaver = Modulation —m=

Convolutional |

De-modulation |[—
Decoder

De-interleaver |-

-+— De-randomizer |

Figure 2.1: Convolutional coding structure in transmitter (top path) and decoding in receiver
(bottom path).

Table 2.1: Mandatory Channel Coding Schemes for Each Modulation Method

Uncoded Number of
Modulation Block Size | Overall Code (égdedeiock Used
(bytes) Rate ize (bytes) Sub-channels
QPSK 6 1/2 12 1
QPSK 2 1/2 24 7
QPSK 18 1/2 36 3
QPSK 24 1/2 48 4
QPSK 30 1/2 60 5
QPSK 36 12 7 6
QPSK 9 3/4 12 1
QPSK 8 3/4 2 2
QPSK 27 3/4 36 3
QPSK 36 3/4 18 1
16QAM 12 1/2 24 1
16QAM 24 1/2 48 2
16QAM 36 1/2 P 3
16QAM 18 3/4 24 1
16QAM 36 3/4 48 2
64QAM 8 12 36 1
64QAM 36 1/2 72 2
G4QAM 24 2/3 36 1
64QAM 27 3/4 36 1

Isb msh

6 |7 Ig |9 |10‘11|13|13}l4

]
— (|
S\ e

15

BB

5

—
‘l\; _data out

data in !l

— 7

Figure 2.2: PRBS for data randomization (from [1]).

To make the system more flexibly adaptable to the channel condition, nineteen coding-
modulation schemes are defined in IEEE 802.16e, as shown in Table 2.1. The different coding
rates are made by puncturing of the native convolutional code. The puncturing mechanism

in convolutional coding can provide variable code rates through one convolutional encoder.

2.1.1 Randomizer [1]

The randomizer is a pseudo random’binary sequence (PRBS) generator, as depicted in Fig.
2.2. If the amount of data to transmit does‘not fit exactly the amount of data allocated,
padding of OxFF (“1” only) shall be"added to the end’of the transmission block, up to the
amount of data allocated. The shift-registeriof the randomizer shall be initialized for every

1250 bytes passed through (if the allocation is larger then 1250 bytes).

The randomizer sequence is applied only to information bits. Preambles are not random-

ized.

Both in the uplink and downlink, the randomizer shall be re-initialized at the start of

each frame with the sequence

(sb) 100101010000000 (msb).

Data in

Figure 2.3: Convolutional encoder of rate 1/2 (from [1]).

2.1.2 Convolutional Encoder [1]

Each block is encoded by a binary convolutional encoder, which has native rate 1/2 and
constraint length 7. The generator polynomials for the two output bits are 171pcr and

1330cT, respectively. The generator is depicted in.Fig:, 2.3.

The coded bits may be punctured to allow different rates, which is known as rate-
compatible punctured convolutional“ecoding (RCPC). Fu‘rthermore, tail-biting is performed,
by initializing the encoder’s memory with /thelast data bits of the block. The encoding algo-
rithm and the decoding algorithm (based on Viterbi decoder) for the RCPC with tail-biting

convolutional are discussed late.
Punctured Convolutional Code

Puncturing patterns and serialization order of the convolutional code in IEEE 802.16e are
as defined in Table 2.2. In this table, “1” means a transmitted bit and “0” a removed bit,
whereas X and Y are in reference to Fig. 2.3. Note that the Dy, after puncturing is lower

than that of the native convolutional code at rate 1/2, which is equal to 10 [7, Chapter §].

Table 2.2: The Convolutional Code with Puncturing Configuration

Code Rates
Rate 1/2 2/3 3/4
Dtree 10 6 5
X 1 10 101
Y 1 11 110
XY XY, X1Y1Ys X1Y 1Y X5

Tail-Biting

The convolutional code in IEEE 802.16e is terminated in a block, and thus becomes a
block code. In general, there are three methods to achieve code termination[4]. For ease of
understanding, we describe these methods in terms of a binary (n, k,m) convolutional code

(of rate k/n and register length m) for an information sequence length of L bits.

e Direct truncation. The codeword is produced by inputting into the encoder (initialized
with all zeros) L information bits, so the'codeword:length is nL/k. However, this code
has the disadvantage that there is little error protection ability afforded to the last

information bits.

e Zero tail. The codeword is produced by inputting into the encoder (initialized with
all zeros) L information bits followed by m zeros (tail bits), so the codeword length is
n(L +m)/k. However, this code has the disadvantage of rate loss of m/(L + m) since
the effective rate is (k/n)(L/(L +m)) = (k/n)(1 —m/(L + m)).

e Tail biting. We first initialize the encoder with the last m information bits, and then
inputting into the encoder L information bits to produce codeword whose length is
nL/k. This code has the disadvantage of complex Viterbi decoder since the starting

and ending states of the trellis are unknown.

IEEE 802.16e uses the tail-biting approach, which has better performance compared
with direct-truncation convolutional code and does not lose rate compared with zero-tail
convolutional code. However, we pay the price of a complex decoder. The optimal decoder of
tail-biting convolutional code, as suggested in [4], is to run M parallel Viterbi decoders, where
M = 2™ is the number of states in the trellis. Each Viterbi decoder postulates a different
starting and ending state. The Viterbi decoder that produces the globally best metric gives
the maximum likelihood estimate of the transmitted bits. The obvious disadvantage of this
method is the M times complexity compared to decoding for the code with zero tail bits.
Therefore, we consider a suboptimal decoder which can reduce the complexity to less than 2
times the normal Viterbi algorithm. This decoder combines the algorithms proposed in [5]

and [6]. We introduce it later.

Another interesting property is the errersrates at different positions in the codeword,
which are analyzed in [5] and [6]. In‘zero-tailseonvolutional code, there is lower error rate
in the first and the last information-bits because the decoder knows the starting and ending
states in the trellis. In tail-biting convolutionaleode, if the suboptimal decoder is adopted,
there is almost equal error rate through-the codéword when the parameters used in the

decoder are proper.

2.1.3 Interleaver [1]

The encoded data bits are interleaved by a block interleaver with a block size corresponding
to the number of coded bits per the specified allocation, Ng,s (see Table 2.3). The inter-
leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are
mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped
alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.

Table 2.3: Bit Interleaved Block Sizes and Modulos

Modulati Coded Bits per Modulo used
odulation .
Subcarrier (Nepe) (d)
QPSK 2 16
16QAM 1 16
64QAM 6 16
QFEE 1604 T 640 A
0e | 184 36¢| .. » | 00 |330 | 6de | o4 0 56 ()] 109 (1)e | 162¢] «
12| 194 3% 10 320] 65 12 54 ()] 110 2 | 1634 .
2 | 204 38 20 |35 | 66 2 55 (1)+] 108 (0)- | 1644| #
30| 219394 _q e | 30 |34 | 67 30 59 (2 112 (1) | 165¢| o
4o | 224 40 40 |37 | 684 LE ST(0)] 113 (2)e | 1662] -
‘ 50 360 | 69: 5 58 (Do 111 (ye | 1674] o
16+ 344 524
174 354 53¢ ... q ¢ | 300 Deae Lode | - |- 51 107 | 160 (1| -
1o | 620 | 954 2| 52 105 | 161 (2 | »
53 [1060 | 159 ()= |

‘ el N =
Figure 2.4: The second bérmutation of interleaver.

Let s = Ngy/2, k be the index.of the coded bit before the first permutation, m the

index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

N, cbps

k
y)+ Emod(a) + floor(a), k=0,1,-- Neps — 1,

m=(

and the second permutation is defined by

d-
T) + (m + Neyps — floor(m
S cbps

j = S- flOO?"())mod(s), m = 07 17 o 7Ncbps -1

(2.1)

(2.2)

The first permutation is a block interleaving. And in Fig. 2.4, we show the second

permutation after the block interleaving.

babybg ? ¢ =145

011 = . - « o+ = . . .
010 . . e 51+ = L] . .
000 . . S . . .

001 . - o l+ = . . .
1 I
— | 5 -3 y 3 3 T
b.bﬁ JQ ¢=1/J10 101 : - a]_l--]Is : . .
01 - & 3+ e -
100 & & & -3 & - ['Y
00 = &] - -
+ } ; I 110 = . - -5+ s - . .
3 -1 1 3
10 s ol o H
111 » . . - = . . .
N o o3 eo o 11 110 100 101Y 001 000 010 011 bshgbs
L

1110 00 01 bsb,

Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations (from [1]).

2.1.4 Modulation [1]

After bit interleaving, the data bits-are entered seriallyto the constellation mapper. Gray-
mapped QPSK and 16-QAM are supportéed,-whereas tfle support of 64-QAM is optional.
The constellations as shown in Fig. 2.5 shall be normalized by multiplying the constellation
points with the indicated factor ¢ to achieve equal average power. The constellation-mapped

data shall be subsequently modulated onto the allocated data carriers.

2.2 Decoding Under Convolutional Encoding

For Viterbi decoder, there are two decision types: hard-decision and soft-decision. If hard-
decision is adopted, the metric used in Viterbi decoding is the Hamming distance, which
counts the bit errors, between each trellis path and the hard-limited output of the demodu-
lator to find the path with least errors. However, the coding gain will lose 2 to 3 dB compared

to soft-decision decoding [7, Chapter 8]. Hence soft-decision is adopted in our study.

10

For optimal soft-decision Viterbi decoding in AWGN channel, the metric should be the
Euclidean distance between each trellis path and the soft-output of the demodulator. The
problem now is that there is a bit interleaver between the convolutional encoder and the
modulator in the transmitter. Therefore, the optimal decoder should be based on the super-
trellis combining the convolutional code, the interleaver, and the QAM modulator, but this
is too complex to be practical. Indeed, the puncturing mechanism adds further complexity
to the super-trellis structure. Thus, we consider a suboptimal decoder based on bit-by-bit

metric computation, which is proposed in [3], [8], and [9].
2.2.1 Demodulation Under Bit-Interleaved Coded Modulation

Let ali] = asli] + jagli] denote the QAM symbol transmitted in the ith sub-carrier of
OFDMA symbol and {b;1, - ,brg, - ,bigsbgi. -+ 0ok, -+ ,bos} be the corresponding
bit sequence. Assuming that the ISE(inter=@EDMA-symbol interference) and ICI (inter—
channel interference) are completely eliminated; then the received signal of the sub-carrier

can be written as

ri] =Gali] - ali} + wli], (2.3)

where G, [7] is the channel frequency response complex coefficient for the ith sub-carrier and
w(i] is the complex additive white Gaussian noise (AWGN) with variance o = Ny. If the

channel estimate is error free, the output of the one-tap equalizer is given by
yli] = ali] + wli]/Genli] = ali] +w'[d], (2.4)

where w'[i] is still complex AWGN noise with variance 0/?(i) = 02/|G[i]]?.

According to the MAPSE (maximum a posterior sequence estimation) criterion, the

following maximization should be performed to estimate the encoded bit sequence b:

~

b= argm&xP[b]r], (2.5)

11

where r is the received sequence of QAM signals. Assume that the transmitted symbols
are equally distributed. Then the MAPSE criterion can be replaced by the ML (maximum
likelihood) criterion as:

~

b= argm&xP[ﬂb]. (2.6)

We further assume that G.;[i] is known to the receiver and that the transmitted bits are
ii.d.

For each in-phase or quadrature bit (i.e., by or bg), two metrics can be derived corre-
sponding to the two possible values 0 and 1,respectively. For bit b; j, first the QAM constel-
lation is split into two partitions of complex symbols, namely S}?,i comprising the symbols
with a “0” in position (I, k) and Sg,z, which is complementary. Then the two metrics are
obtained by

m.(brx) = Z log p(r[i]|ai] = o) 1ax log p(r[i]|ai] = o), ¢=0,1. (2.7)

. acs'®
ozES}‘,)c Lk

Since the conditional pdf of r[i] is complex‘Gaussian as

p(r[iljali] = a) = \/;T_Jexp{—% Irlé f;’h[i]a’ } (2.8)
and r[i] = Gali] - y[i], the metrics defined in (2.7) are equivalent to
me(brx) = |Genld]* - min [y[i] — af*. (2.9)

aesﬂ
Finally, these metrics are de-interleaved, i.e., each couple (mg, m;) is assigned to the bit
position in the decoded sequence according to the de-interleaver map, and fed to the Viterbi
decoder which selects the binary sequence with the smallest cumulative sum of metrics. We

name this method Method-ML in the following discussion.

From the concept of log-likelihood ratio (LLR), a method named Method-LLR is proposed

12

Table 2.4: Bit Metric for Method-ML and Method-LLR

Method-ML Method-LLR
Bit metric (decided “0”) mo [(mg —mq) + 1)
Bit metric (decided “17) my [z(mg —my) — 1)]2

P | s |

n [9] to reduce the complexity of Method-ML. It defines LLR(bry) as

LLR(b 4 M 2 _ 2
(brx) = { min |y[i] — al* — min_[y[i] — |7}
4 a€5’§0,z aest)
£ (molbrk) —ma(brg))/4
£ |Guli]? - Dy (2.10)

The quadrature part is similarly defined. The metrics sent to the Viterbi decoder of the
two methods are defined in Table 2.4. Note that the difference between the bit metrics for
the decided “0” and “1” is the same for the two methods, namely 4(mg — m;). Thus the

decoded bit sequence will be the same_ for the twe methods.

In Method-LLR, only (mg—m1) /4 is Sefit-to-the-de-interleaver while in Method-ML, both
mo and m; are sent. Besides, we can reduce (mg=n11)/4 = |Guli]|? - Dry to a simple form

constituting of y,[i] itself because Gray-coding is used in the constellation map of M-ary

QAM modulation in IEEE 802.16e.

Figure. 2.6 shows the partitions (S} ,2 S}l,z) for the generic bit by in the case of the
16-QAM constellation. As a consequence,
Dry = —{ min [y[i] — af* — min |yli] - af*}
aeS(O) aesy)

can be simplified as follows.

—ylil, lyr(1)] < 2

D;y = —2(yr[i] = 1), yr(i) > 2 = —yrli], (2.11)
—2(yr[i] + 1), yi(1) <2

Dis = l|yrli]] — 2. (2.12)

13

. o | o
S .
. . . °
e ! e .
-31) -10) 1(00) 3(01L -3y -110y 100)| 3(01
[] []) [L] L] [] [}
1 0 1 0 1

S|,1 S|‘1 Sl,Z Sl.Z S|.2
. ° .
Bi1 Bi2

Figure 2.6: Metric partitions of the 16-QAM constellation (from [9]).

The same observation holds for QPSK and 64-QAM constellations.
For QPSK, D; = —y;|i]. For 64-QAM,

[—yii], lyrli]| <2)

—2(y;li] = 1), 2<ylil <4
=3(yr[i] — 2)0 4 <yrh]< 6

Dy = —4(y;[i] =3), yili} =6 = —yrli],
—2(yrli]a 1), =4 ypfi] <2
=3(yrlil+ 2), 6= yrli] <4
—4(yri] = 3)4 yilih <=6)
2(|yrli)] —3)s Nyrli]] < 2

Dis = —4 + lyrld]], 2] < 6 = —4+ |yrli]],
2(lys[d]] = 5), |yrlil] > 6

_ —lyrli]| + 2, |yrli]] <4 B :
s = { L6 Il 0 f ==

2.2.2 De-Interleaver

The de-interleaver, as the interleaver, is also defined by two permutations.

(2.13)

(2.14)

(2.15)

Let 7 be the

index of the received bit before the first permutation, m be the index after the first and

before the second permutation, and k£ be the index after the second permutation, just prior

to delivering the coded bits to the convolutional decoder. The first permutation is defined

14

by the rule

J)
))MOd(S), J= Oa]-7 e 7Ncbps - 1, (216)

m=s- floor(‘l) + (j + floor(
S cbps
and the second permutation is defined by the rule

d-m
Ncbps

k=d-m— (Neups — 1) - floor(), m=0,1,--- Ngps — L. (2.17)

Note that the quantity sent to the decoder are the bit metrics from the demodulator.

2.2.3 Tail-Biting Convolutional Decoding

We first extend the received sequence by repeating the first (a+ 3)(n/k) received bits, where
«a and (3 are two important parameters that we have to set. In the Viterbi decoder, the trellis
is initialized by making all states equally likély,"and.the Viterbi algorithm is executed for the
extended received sequence. A traceback-ispperformed from the best state at the end of the
extended received sequence, and a portion of the data in the decoded block, from position

a on for the length of information bits, is chosen'as the estimate of the data block.

This scheme relies on the fact that if the received sequence is circularly repeated, the
trellis of the extended received sequence can be considered circular since tail-biting code
starts and ends in the same state. The trellis of the tail-biting convolutional decoder is
depicted in Fig. 2.7. Because the starting state is unknown, the first o surviving paths of
the decoder may not be the correct paths. Only after enough depth can the surviving paths
approach the correct ones. Thus the later part of the decoded block will be more likely to

be the correct information data.

Another issue that should be considered is the traceback mechanism. The surviving path
will be almost unique after some depth into the trellis. Therefore, the trellis can be truncated

and the traceback mechanism performed after some delay, say 7. A smaller 7 entails shorter

15

Information Length (L) Repeat Length{a+p)
/\

[
@ circularly /

repeat)

‘ L) : : : ‘ : AN ‘
i . AN Y .
G B e @
\ non-unique',
@ ©incorrect path : @ surviving path@

Lengtha Length L (the valid decoded bits) ~ Lengthp

Figure 2.7: Trellis for tail-biting convolutional decoding (from [2]).

decoding delay and smaller amount of memory requirement. To avoid multiple tracebacks
our Viterbi decoder does traceback only atithé 'end of the extended received sequence, and
the performance will be a little better thanthe one with truncation since the decision depth
is much longer than 7 for the earlier bit. For the value of 7 , a conventional value is 5 times

the register length [10].

Since the ending state of the trellis for the extended received data is unknown and the
decision depths for the latest decoded data are not long enough to make the surviving paths
unique, the latest decoded data will not be reliable and can not be as used the decoded data.
The unreliable data length is set to [, which should be related (actually equal) to 7. We

have used simulation results to decide the values of o and (.

2.3 LDPC Code Specifications

The low—density parity check (LDPC) coding scheme used in IEEE 802.16e OFDMA is

shown in Fig. 2.8. The randomized input data are first encoded by the LDPC encoder.

16

— Randomizer LDPC Encoder = [nterleaver - Modulation

) J

-4+— De-randomizer (- LDPC Decoder - De-interleaver - De-modulation a—

Figure 2.8: LDPC coding structure in transmitter (top path) and decoding in receiver (bot-
tom path).
The encoder and then interleaved by the bit interleaver. Likewise, there are three different

modulation types.

LDPC codes are a special case of error correcting codes that have recently been receiving
received much attention because of their very high throughput and very good decoding
performance. Inherent parallelism in the message passing decoding algorithm for LDPC
codes makes them very suitable for hardware implementation. The LDPC codes can be
used in any digital environment that high data rate and strong error correction ability are

important.

Gallager [11] proposed LDPC codes ifi the early 1960s, but his work received little atten-
tion until after the invention of turbo codeés in 1993, which used the same concept of iterative
decoding. In 1996, MacKay and Neal [12], [13] re-discovered LDPC codes. Chung et al. [14]
showed that a rate-1/2 LDPC code with block length of 107 in binary input AWGN can

achieve a threshold of just 0.0045 dB away from the Shannon limit.

LDPC codes have several advantages over turbo codes. First, the sum-product decoding
algorithm for these codes has inherent parallelism that can be exploited to achieve a greater
speed of decoding. Second, unlike turbo codes, decoding error is a detectable event which
results in a more reliable system. Third, very low complexity decoders, such as the modified
minimum-sum algorithm that closely approximate the sum-product in performance, can be

designed for these codes.

17

Our interest is in both low algorithm complexity and high decoding speed, as these are

both desirable under the IEEE 802.16e applications.

Complexity in iterative decoding can be divided into two types: first, complexity of the
computations in each iteration and second, the number iterations. Naturally, there is a

trade-off between the decoding performance and the complexity and decoding speed.

In this section, we will only discuss the LDPC encoder and decoder block. Other blocks

in Fig. 2.8 are the same as in previous section.

2.3.1 Overview of LDPC Code

LDPC codes are a class of linear block codes corresponding to a sparse parity check matrix
H. The term “low-density” means that the number of 1s in each row or column of H is
small compared to the block length n._Ia other wotds, the density of 1s in the parity check
matrix which consists of only Os and=ls is very low and sparse. Given k information bits, the
set of LDPC codewords ¢ in the code space C-of length n spans the null space of the parity

check matrix H, i.e., cH" = 0.

For a (W,, W,) LDPC code, each column"of the parity check matrix H has W, ones and
each row has W, ones; this is called a reqular code and W, and W, are tenoned the column
degree and the row degree, respectively. The degrees per row or column are not constant,
then the code is irregular. Some of the irregular codes have shown better performance than
regular ones. But irregularity results in more complex hardware and inefficiency in terms of
re-usability of functional units. The IEEE 802.16e standard uses irregular codes. Moreover,
the codes in 802.16e are systematic, which means that n — k redundant bits are added to &

bits of message to form an n bits codeword.

LDPC codes can be represented effectively by a bipartite graph called a Tanner graph

[15], [16]. A bi-partite graph is a graph (nodes or vertices are connected by undirected edges)

18

variable nodes

W SMOY

=

2Columns n=8

Column weight=

Figure 2.9: Tanner graph of a parity check matrix

whose nodes may be separated into two classes and where edges may only be connecting two
nodes not residing in the same class. The two classes of nodes in a Tanner graph are bit nodes
(or variable nodes) and check nodes. The Tanner graph of a code is drawn according to the
following rule: Check node f; , j = 1,-- - yni#1ks is connected to bit node z;, ¢ = 1,--- | n,
whenever element hj; in H (parity chéck matrix).ds a one. Figure 2.9 shows a Tanner graph
for a simple parity check matrix H: In this graph each bit node is connected to two check
nodes (bit degree = 2) and each chieck noderhasrasdegree of four. Degree of a node is the

number of branches that is connected to that node.

Let d and d

denote the maximum variable node degree and maximum check node

Umazx Cmazx

degree, respectively, and let \; and p; represent the fraction of edges emanating from variable
and check nodes of degrees d(v) =i and d(c) = i, respectively. Define

d’Umaz

NOED PP (2.18)

as the variable node degree distribution, and

deaz

plr) = Z pix'™! (2.19)

as the check node degree distribution.

19

A cycle of length [in a Tanner graph is a path comprised of [edges which closes back
on itself. The Tanner graph in Fig. 2.9 has a cycle of length four which has been shown in
dashed lines. The girth of a Tanner graph is the minimum cycle length of the graph. The
shortest possible cycle in a bi-partite graph is clearly a length-4 cycle. Short cycles have
negative impact on the decoding performance of LDPC codes. Hence we would like to have

large girths.

2.3.2 LDPC Code in IEEE 802.16e OFDMA [1]

The LDPC codes in IEEE 802.16e are systematic linear block codes. They are defined based
on a parity check matrix H of size mxn that is expanded from a binary base matrix H; of
size myXny, where m = z-my and n = z-n,. In this standard there are six different base
matrices, one for the rate 1/2 code as depicted in Fig. 2.10, two different ones for two rate
2/3 codes, type A in Fig. 2.11 and type B imyFigs 2.12, two different ones for two rate 3/4
codes, type A in Fig. 2.13 and type-B in Fig. 2.14; and one for the rate 5/6 code as depicted
in Fig. 2.15. In these base matrices, Size hyis-an-integer equal to 24 and the expansion factor
z is an integer between 24 and 96 . Therefore, we can compute the minimal code length is

Nomin = 24%24 = 576 bits and the maximum is 7,4, = 24x96 = 2304 bits.

For codes %, 2

55 3D %A, %B, and %, the shift sizes p(f,i,7) for a code size corresponding to

expansion factor z; are derived from p(i, j), which is the element at the ith row, jth column

in the base matrices, by scaling p(i, j) proportionally as

o pg). plg) <o,
plf ’”)_{L’%J, p(ij) > 0. (220)

For code %A, the shift sizes p(f,i,j) are derived by using a modulo function as

i) — p(i, J), p(i, j) <0,
p(f3.7) {mod(p(i,j),zf), p(i,7) > 0. (221)

20

Rate 1/2:

-194 73 -1 -1 -1 -1-1558 1.1 7 0.1 -1.1-1-1-1.12-21-1-:-1
-127 -1 -1 -12279 91 -1 -112-1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -124228 -133-1-1 -1 0-1 -1 0 0-1- -1 -1 -1-1-1-1
61-147 -1 -1 -1 -1-16525 -1-1-1-1-1 0 0- -1 -1 -1 -1 -1-1
1139 1 -1-18-1-141 72-1-1 -1-1-100-1-1-1-1-1-1
-1-1-1-14640-182-1-1-17 0 -1-1-1-10 0-1-1- -1-1
-1-198353-1-1-1-1-11418-1-1 -1-1-1-1-1 0 0 -1 -1 -1-1
-11173-1-1-12-1-147-1-1-1-1-12-12-1-12-110 0-1-1-1
12-1 -1 -1824 -143-1 -1 -151-1 -1-1-1-1-1-1-1 00 -1-1
-1-1-1-1-19%9%4-15%-1-17072-1 -1-1-1-1-1-1-1-1 0 0-1
-1-1 765-1-1-1-13949 -1-1-1-1-1-1-1-1-1-1-1-1 00
43-1-1-1-166 -141-1-1 -12 7 -1 -1 -1-1-1 --1-1-1-120

Figure 2.10: Base model of the rate-1/2 code (from [1]).

Rate 2/3 A code:

3 011 20-1 3 7-1 11+-1-1-1 -1
-1 -1 1-136 -1 -1 3410 -1 -118 2 -1 3 0
-1 -112 2 -115 -1 4 -1 3 -115 -1 213 -1 -1 00 -1-1-1-1
-1-11924 -1 3 ¢ -1 6 -117 -1 -1 -1 8 39 -1 -1 0 0-1-1-1
20-1 6-1-1102 -1 -1 28 -1 14 -138 -1 -1 0-1-1-100-1-1
-1-110-1282 -1 -1 8 -1 3 -1 9 -12145 -1 -1-1-1-120 0-1
32 137 121 -1 -1 5 -1 -1 0¢-1 420-1-1-1-1-1-1-11020
-1 6 6-1-1-1 4 -1 143 -1 336 -114-11-1-1-1-1-1-120

0-1-1-1-1-1-1
0 0-1-1-1-1-1

Eoty E ; 4 i
Figure 2.11: Base model;of the fatef-‘2/3, type A code (from [1]).

A base matrix entry p(f,i,j) = <L indicatesa feplacement with a 2z x z all-zero matrix
and an entry p(f,i,7) > 0 indicates a‘replacement‘ with a zXz permutation matrix. The
permutation matrix represents a circular right shift of p(f, 4, j) positions. This entry p(f,,7)

= 0 indicates a zxz identity matrix.

2.4 Decoding of LDPC code

2.4.1 The Belief Propagation Decoding Algorithm [17]

Using Tanner graph representation of LDPC codes is attractive, because it not only helps
understand their parity-check structure, but, more importantly, also facilitates a powerful

decoding approach. The key decoding steps are the local application of Bayes rule at each

21

Rate 2/3 B code:

By

-1

-1 69

10

-1

-1 28
23 -1
-1 30
32 41

-1

0

19 -1
-1 88

-1 32
29 -1
-1 65

-1 47

47
-1
62
-1
15
-1
15
-1

-1
33
-1
81
-1
54
-1
13

48
-1
28
-1
30
-1
56
-1

-1

-1
27
-1
14
-1
61

36

85
-1
66
-1
85

-1 82
16 -1
-1 16
88 -1
-1 24

-1 5

-1
37
-1

-1
30
-1
55

47
-1
34
-1
50
-1

-1

-1
40
-1
56
-1
74
-1
78

15
-1
3
-1
62
-1
52
-1

-1

-1
37
-1

-1
41

95 0 -1
-1 000

a1 -
a1 -
a1 -
a1 -
0 -
95 -

1 0
1 -1
1 -1
1 -1
1 -1
1 -1

Figure 2.12: Base model of the rate-2/3, type B code

Rate 3/4 A code:

6 38 3093

62
71
38
-1
-1

94
-1
61
-1
63

19 84
55 -1
-1 66
-1 -1
31 88

Rate 3/4 B code:

1 81
42 -1
-1 -1
64 2
153
77 1

-1
14
20
-1
60
-1

28

-1
-1
12

9
32
20

1

68 32
-1 63
-1 63
-1 26

-1

80

-1 15

-1
92
66
73
52
-1

1
-1

-1

28

-1
78
45
47
55
-1

14
-1
39
-1
75
-1

30
-1
79
64

-1

70
15
-1
-1

6

-1 86 -1
-1 -1 92
78 -1 -1
39 61 43
80 95 22
40 56 16

-1 -1 85

-1 70 43 11

-1 38

351 -1 8115

-1 86

-1 72 30 68

37 38 4
-1 45
10
-1
24
71 353

29 52
36 40

-1
-1
90

4 72

94 9

71

85 84

1

78
33
47
85

3
26

95
57
29
36
72

11
32
55
=1 =
20
-1

1 46
30 -1
70 82

195 32

22
38

14

11

-1 -1
27 26

92
24

19
25
89

48
-1
1

-1
48

0
-1

-1
-1

-1
-1
-1
-1

-1
-1
-1

-1
-1
-1

-1 -1
-1 -1
-1 -1
-1 -1

-1 0
-1 -1

-1
-1
-1
-1
-1
-1

(from [1]).

0 -1

0

-1

-1 -1
-1 -1

-1
-1
-1

-1 -1
-1 -1
0 -1
00
.10
-1 -1

-1 -1
-1 -1
0 -1
0 0
-1 0
-1 -1

0

1

-1
-1
0
0

Figure 2.14: Base model of the rate-3/4, type B code (from [1]).

Rate 5/6 code:

1 25 55 -1 47 4
-1 36 40 47
51 81 83 4 67
15 -1 36

-1

30

6

1

50

-1

-1
12
21
13

91 84 8 8652 82
79 47 -1 41 21 12
-1 31 24 91 61 81
10 11 20 53 90 29

33 5 036 20 4778 0 -1 -1
04449 0 0 0 0
9 86 78 60 88 67 15
92 57 30 84 92 11 66 80 -1 -1

71 14 72

Figure 2.15: Base model of the rate-5/6 code (from [1]).

22

-1

-1 -1 00

0

node and the exchange of the results (messages) with neighboring nodes. At each iteration,
two types of messages are passed: probabilities (or beliefs) from bit nodes to check nodes

and probabilities (or beliefs) from check nodes to bit nodes.

Let M (n) denote the set of check nodes connected to bit node n, i.e., the positions of ones
in the nth column of H, and let N(m) denote the set of bit nodes that participate in the mth
parity-check equation, i.e., the positions of ones in the mth row of H. Let N(m)\n represent
the exclusion of n from the set N(m), and M (n)\m represent the exclusion of m from the set
M(n). In addition, let ¢,—,(0) and g, (1) denote the message from bit node n to check
node m indicating the probability of bit n being zero or one, respectively, based on all the
checks involving n except m. Similarly, let 7,,.,(0) and r,,_,(1) denote the message from
check node m to bit node n indicating the probability of bit n being zero or one, respectively,
based on all the bits checked by m except nq Lt x = |2, xo, -, x| and y = [y1, Y2, -, Yn]
denote the transmitted codeword and the received codeword, respectively. Finally, let Lo
denote log(P(z, = Oly,)/P(x, = Hy})) at iteration”0, L%, denote log (Tm—n(0)/Tm—n(1))

at iteration i and Z4, denotes 1og (gneni(0)/gs=m{l)) at iteration i.

The belief propagation (BP) algorithmsis-summarized below. This algorithm is also

known as the sum-product (SP) algorithm.

Step 1 (check-node update): For each m and for each n € N(m), compute

‘ Z(i—/l)
LY — 2tanh™! 1T tanh =2 5 (2.22)

n’€N(m)\n

Step 2 (bit-node update): For each n, and for each m € M(n) compute

Z0 =10+ > Ll (2.23)
m/eM (n)\m
Step 3 (decision):
ZO=LO+ > LY. (2.24)
meM(n)

23

The decoder output vector follows the rule: z, = 0 if fo) >0, and z,, = 1 if Z,(f) < 0.

The decoded bit vector is checked with the parity check matrix H. The iterative decoding
decoding procedure stops when either H-X=0 or as the maximum decoding iteration number

has been reached, where X = [X7, Xy,--+, Xy] is the decoded codeword.

2.4.2 Some Reduced-Complexity LDPC Decoding Algorithms

We focus on methods that simplify the check node updates to obtain reduced-complexity

BP algorithms but also achieve good enough performance.
Min-Sum or BP-Based Algorithm [17]

Implementing the calculation in (2.22) in a hardware circuit is difficult and complex. It
is also relatively complicated to implement in DSP software. But we can simplify it only

approximating it as

' Z(i—l)
LW — 92tanh~! H tanhmT"'

n‘e N(m)\n

= H sgn(Zr(:;;/l))f Z f(’Zz 1)‘)

n’eN(m)\n n’€N(m)\n
[T son(zi.")s (f(min]Zﬁn,l)\))
, n’€N(m)\n
n’€N(m)\n
= I senzl.”) min |z, (2.25)

W EN(m\n n'eN(m)\n

Q

where f(z) = log&+; = —log(tanh %) is a fast decaying function as shown in Fig. 2.16.

Therefore the second row in (2.25) can be approximated by the third row. Because the f

function is it own inverse, we can simplify the third row to the fourth row.

This is a famous approximation called the min-sum or BP-based algorithm which only

uses the signum and the minimum functions for check nodes processing. The processing at

24

flx)

e’+1
er—1"

Figure 2.16: Fast decaying function f(z) = log

the bit nodes is identical to that of BP decoding. But coming with the approximation at the
check nodes is some performance degradation. We will see the effect later in the simulation

results.
Balanced Belief Propagation Algorithm [18]

Observe that the conventional BP ‘algorithm+has-unbalanced computation complexity be-
tween the check nodes operation (2.22)rand thesbit nodes operation (2.23). A modified
version based on algorithmic transformation has been proposed in order to balance the com-
putational load between the two decoding phases. The modified algorithm can be expressed

as

to. = TI sz > r(125.0). (2.26)

n’e€N(m)\n n’eN(m)\n
ZO0 =LO+ Y sgn(LO)f (ij),n). (2.27)
m/eM(n)\m

Note that L, computed here is different from that obtained with the BP algorithm. The

main benefit with the modified algorithm is the balance of computation complexity between

25

two decoding phases.
Normalized BP-Based Algorithm

Let L; and L, represent the values of Lo, computed by the BP algorithm and the BP-based
algorithm with (2.22) and (2.25), respectively. It can be shown that L; and Lo have the
same sign, i.e., sgn(L1) = sgn(L2) and L, has larger magnitude than Lj, i.e., |Ls| > |L4|
[19]. According to [19], we can further modify (2.25) to let the BP-based algorithm obtain

a BER vs. % performance curve closer to the conventional BP algorithm.

Because sgn(L1) = sgn(L2), the BP-based decoding can be improved by employing a

check-node update Lg,?n that uses a normalization constant o greater than one, that is,

— L.
Lo, = (2.28)
[0

where L%, is the output of the check nodegoperation for normalized BP-based algorithm.
The bit node operation stays unchanged: Ideally: ‘@ should vary with the signal-to-noise ratio
(SNR) and with iterations to achieve thé.optimum-performance. But it is kept constant for

the sake of simplicity.
Offset BP-Based Algorithm

For offset BP-based decoding, we modify LY. in BP-based decoding by subtracting from it

a positive constant 3 as

Lin «— sgn(L{),) max(|L{),| = 8,0) (2.29)
where L, is the output from the check node operation for the offset BP-based algorithm.
Again, the bit node operation stays the same. Also, 3 should vary with the signal-to-noise
ratio (SNR) and with iterations to achieve the optimum performance. But it is kept constant

for the sake of simplicity.

26

Table 2.5: Comparison of Main Operations of Different Decoding Algorithms

. . Main
Decoding Algorithm Operation
BP Decoding tanh and tanh™*
Min-Sum Decoding Minimum
Normalized BP-Based Decoding | Minimum and Division (or Multiplication)
Offset BP-Based Decoding Minimum, Maximum and Substraction

In summary, the BP decoding needs tanh~! and tanh operations, the min-sum algo-
rithm needs the minimum operation, the normalized BP-based algorithm needs minimum
and division operations, and the offset BP-based algorithm needs minimum, maximum and

substraction operations. A comparison of the different algorithms is given in Table 2.5.

Obviously, BP decoding is the most complex.operation, and min-sum is the least. The

two improved decoding methods are jn between:

27

Chapter 3

DSP Implementation Environment

The DSP baseboard (SMT395) we used is Texas Instruments’” TMS3200C6416T DSP chip
and Xilinx Virtex-II Pro FPGA. In this chapter, our discussion will concentrate on the DSP
system development environment, DSP chip and its features because our implementation is
software-based on the DSP. The softwate development tool, Code Composer Studio (CCS),

is also introduced.

3.1 The DSP Baseboard (SM'I'395)

The DSP card used in our implementation is Sundance’s SMT395 shown in Fig. 3.1. It
houses a 1 GHz 64-bit TMS320C6416T DSP of TI. The SMT395 is supported by the TI’s
Code Composer Studio and the 3L Diamond to enable multi-DSP systems with minimum

efforts by the programmers.

Features of SMT395 board include:

e 1GHz TMS320C6416T fixed-point DSP processor with L1, L2 cache and SDRAM.
e 8000MIPS peak DSP performance.

e Xilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.

28

—— TOP TIM CONNECTOR

 FPGA

Interfaces for
Communication ||
1E850UTCEs

L

|| exreRNAL [i—1
---- i T MEMORY "5_!

.

" BOTTOM TIM CONNECTOR

Figure 3.1: SM'T395 Module.

256 Mbytes of SDRAM at 133MHz

Eight 2Gbit/sec Rocket Serial Links ..(RSL) for inter module.

Two Sundance High-speed Bus (5OMHZ‘1‘ 100Mhz or 200MHz) ports at 32 bits width.

1
J

8 Mbytes flash ROM for conﬁéqratioﬁvéﬁd’n‘bdoﬁing.
3.2 The DSP Chip

The following text is mainly taken from references [21] and [22].

The TMS320C64x DSP is a fixed-point DSP in the TMS320C64x series of the TMS320C6000
DSP platform family. The TMS320C64x device is very-long-instruction-word (VLIW) archi-
tecture developed by TI. The C6416 device has two high-performance embedded coproces-
sors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that can
significantly speed up channel-decoding operations on-chip, but we do not make use of these

coprocessors in the present work.

29

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units.

Features of C6000 devices include:

e The eight functional units include two multipliers and six arithmetic units:

— Execute up to eight instructions per cycle.

— Allow designers to develop highly effective RISC-like code for fast development

time.

Instruction packing:

— Gives code size equivalence for eight instructions executed serially or in parallel.

— Reduces code size, program fetches, and power consumption.

Conditional execution of all instruetions:

— Reduces costly branching.

— Increases parallelism for higher' sustaified performance.

Efficient code execution on independent’furnctional units:

— Efficient C compiler on DSP benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/32/64-bit data support, providing efficient memory support for a variety of ap-

plications.

40-bit arithmetic options add extra precision for applications requiring it.

Saturation and normalization provide support for key arithmetic operations.

30

C62x/C84x/C6Tx device

Program cache/program memory
32-bit acdress
256-bit data

C62x/C64x/C67x CPU

Power Program fetch
down Instruction dispatch (See Note) Control
—— registers
Data path A Data path B
> DMA, EMIF Control
Register fie A | Register fileB | legic
IIII*—'IIII—"-‘*‘
jon —|
[uT st mfo1] p2] m2] s2[2]
Interrupts M——¥
Additional
Data cache/data memory ﬂ':"e' - ¥
32.bit address *”::‘ms'
8., 16-, 32-bit data (64-bit data, C64x only)

Figure 3.2: Block diagram of TMS320C6416 DSP (from [23]).

e Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and,datasmanipulation applications.

e 32x32-bit integer multiply with 32k or 6%1-1bit‘ pesult.
The C64x additional features include:

Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

Special communication-specific instructions have been added to address common op-

erations in error-correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.

31

The block diagram of the C6000 family is show in Fig. 3.2. The C6000 devices come with
program memory, which, on some devices, can be used as a program cashe. The devices
also have varying sizes of data memory. Peripherals such as a direct memory access (DMA)
controller, power-down logic, and external memory interface (EMIF) usually come with the
CPU, while peripherals such as serial ports and host ports are available only for certain

model.

In the following subsections, the TMS320C64x DSP Chip is introduced in the two part:

Central processing unit (CPU), Memory.

3.2.1 Central Processing Unit [23]

Besides the eight independent functional units and sixty-four general purpose 32-bit registers
that has been mentioned before, the C64x CPU-also consists of the program fetch unit,
instruction dispatch unit (attached with advanceéd.instruction packing), instruction decode
unit, two data path (A and B, each with fourfunetional units), test unit, emulation unit,
interrupt logic, several control registers and two register files (A and B with respect to the

two data paths).

The architecture is illustrated in more detail in Fig. 3.3. Compared with the other C6000

family DSP chip, the C64X DSP chip provides more available hardware resources.

The block diagram of C6416 DSP is shown in Fig. 3.2. The DSP contains: program
fetch unit, instruction dispatch unit, instruction decode unit, two data paths which each has
four functional units, 64 32-bit registers, control registers, control logic, and logic for test,

emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve
performance. The pipeline can dispatch eight parallel instructions every cycle. The follow-

ing two factors provide this flexibility: Control of the pipeline is simplified by eliminating

32

C62x/C67x CPU Cédx CPU

CB24/CETx CPU Ce4x CPU
Instruction fetch e 0 - "_:[_fetch Control registers =
trol nsiructior s
Instruction dispatch | registers | 'MeTUP! Advanced insiruction ‘ e Eg
Instruction decode Emulation Instruction decode
Data path 1 Data path 2
Data path 1 Data path 2
Register file A Register fiie B
A15-AD B15-B0
Register file A Register fie B
ogiier B o 88 I A31-ATS] [B31-816]

: .
T
ais RIiE

th Diual 64-bit lcad/store paths

Dual 32-bit load/store g:»a
(dual 64—bit load path — C67x only)

Figure 3.3: The TMS320C64x DSP chip architecture and comparison with earlier
TMS320C62x/C67x chip (from [23]).
pipeline interlocks, and the other is indféasing pi.p“.enlirlling to eliminate traditional architec-

tural bottlenecks in program fetch; .data éécjeéfg_,‘_‘]_"'a;nd" ipultiply operations. This provides

single cycle throughput. = P J

The pipeline phases are divided mto three stag_es:“ fetch, decode, and execute. All in-
structions in the C62x/C64x instruction set fow through the fetch, decode, and execute
stages of the pipeline. The fetch stage of the pipeline has four phases for all instructions,
and the decode stage has two phases for all instructions. The execute stage of the pipeline

requires a varying number of phases, depending on the type of instruction. The stages of

the C62x/C64x pipeline are shown in Fig. 3.4.

Reference [23] contains detailed information regarding the fetch and decode phases. The
pipeline operation of the C62x/C64x instructions can be categorized into seven instruction
types. Six of these are shown in Fig. 3.5, which gives a mapping of operations occurring

in each execution phase for the different instruction types. The delay slots associated with

33

4——— Fettch —————p4 Decode p4——— Execute —»p

PG PS| PW| PR DP| DC| E1 E2 E3 | E4 | ES

Figure 3.4: Pipeline phases of TMS320C6416 DSP (from [23]).

each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results
from instructions with delay slots are not available until the end of the last delay slot. For
example, a multiply instruction has one delay slot, which means that one CPU cycle elapses
before the results of the multiply are available for use by a subsequent instruction. However,
results are available from other instruetions fimishing execution during the same CPU cycle

in which the multiply is in a delay slot:

The program fetch unit shown in-the Figi3:37could fetch eight 32-bit instructions (which
implies 256-bit wide program data bus) every-single cycle, and the instruction dispatch and
decode units could also decode and arrange the eight instructions to eight functional units.
The eight functional units in the C64x architecture could be further divided into two data
paths A and B as shown in Fig. 3.3. Each path has one unit for multiplication operations
(.M), one for logical and arithmetic operations (.L), one for branch, bit manipulation, and
arithmetic operations (.S), and one for loading/storing, address calculation and arithmetic
operations (.D). The .S and .L units are for arithmetic, logical, and branch instructions.
All data transfers make use of the .D units. Two cross-paths (1x and 2x) allow functional
units from one data path to access a 32-bit operand from the register file on the opposite

side. There can be a maximum of two cross-path source reads per cycle. There are 32

34

Instruction Type

16 X 16 Single C64x
" Multiply/ Multiply
Single Cycle Store Load Branch
E : C64x .M Unit Extensions
Non-Multiply
Execution E1 Compute Read operands Compute Reads oper- Compute Target-
phases result and start address ands and address code
and write to computations start com- in PGE
register putations
E2 Compute result Send ad- Send ad-
and write to dress and dress fo
register datato memory
memory
E3 Access Access
memory memory
E4 Write results Send data
to register back to CPU
E5 Write data
into register
Delay 0 1 ot 3 41 5%

slots

Figure 3.5: Execution stage length description for each instruction type (from [23]).

general purpose registers, but some of them

ate teserved for specific addressing or are used
| i}
for conditional instructions. o “

The eight functional units in the C6000 data paths can be divided into two groups of
four; each functional unit in one data path/igfalmost identical to the corresponding unit in

the other data path. The functional units are described in Table 3.1.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit and
16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four
8x8 unsigned multiplies with a single instruction on a .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on a .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-
bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
register file (see Fig. 3.6). All units ending in 1 (for example, .L1) write to register file A,

and all units ending in 2 write to register file B. Each functional unit has two 32-bit read

35

Table 3.1: Functional Units and Operations Performed (from [23])

Function Unit

\ Operations

L unit (.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

.S unit (.S1, .52)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant generation

Register transfersito/from control register file (.S2 only)
Byte shifts

Data pacKingy/unpacking

Dual 16-bitycompare operations

Quad 8-bit compare operations

Dual 16-bit shift-operations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations and rotation

Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation

32-bit logical operations

36

ports for source operands srcl and src2. Four units (.L1, .12, .S1, and .S2) have an extra
8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because
each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

3.2.2 Memory [24]

Internal Memory

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip) memory
is organized in separate data and program spaces. When off-chip memory is used, these
spaces are unified on most devices to a single memory space via the external memory interface
(EMIF). The C64x has two 64-bit internal ports to access internal data memory and a single

internal port to access internal program memory,swith an instruction-fetch width of 256 bits
Memory Options

the C64x DSP Chip also provides awvariety of mémory options:

Large on-chip RAM, up to 7TM bits.

e Program cache.

2-level caches.

32-bit external memory interface supports SDRAM, SBSRAM, SRAM.

And other asynchronous memories for a broad range of external memory requirements and

maximum system performance.

37

Register
fig A
Data path A (AD-A31)
— » Ses Nate 1
-] Sec Natz 2
M scifa
sred] '
Lo1n—22M88 B >
LD1a— L8 »
= =
m‘_q— D1 seife
s
I P
/ I‘G—o-[
|__1x_
ou 7
D2 srifs
dsll »>
\Doa— 22188 iy
LDop__22MS8, ‘
;
sre2] o
M2 gy
ast < » See Note 2
fong ds! - » see Ntz 1
p
sre2|)
Data path B sretfe il
52 gl o ief
o9 def 5 (80-831)
Ww‘l 4
1
5Toh ¢ J2LSE
8
fong g
Jong dst — o
ast
12 |
srel
| contral Register
Notes for .M unit:

1. fong dstis 32 MSB
2. dstis 32 LSB

Figure 3.6: TMS320C64x CPU data paths (from [23]).

[Addressable memory
3 Cache memory C84x CPU
=== Data path managed

by cache controller)
256 bit 2 x 64 bit

L1P L1P
16K bytes 16K bytes

L1 cache

256 bit 256 bit

| 2sram | [r2cache |
On-chip L2 memory

I 64 bit

I External memory |

Figure 3.7: C64x cache memory architecture (from [24]).

Cache Memory

The C64x memory architecture consists of a two-level internal cache-based memory archi-
tecture plus external memory. Level 1 cache is split into program (L1P) and data (L1D)
caches. The C64x memory architecture is shown i Fig. 3.7. On C64x devices, each L1 cache
is 16 kB. All caches and data paths are automatically thanaged by cache controller. Level 1
cache is accessed by the CPU witheut stalls. Ievel 2 cache is configurable and can be split
into L2 SRAM (addressable on-chip memory)-and L2 cache for caching external memory
locations. On a C6416 DSP, the size of'I27cache is 1 MB, and the external memory on
Quixote baseboard is 32 MB. More detailed introduction to the cache system can be found

in [24].
3.3 TDI’s Code Development Environment [25], [26]

TT provides a useful GUI development interface to DSP users for developing and debug-
ging their projects: Code Composer Studio (CCS). The CCS development tools are a key
element of the DSP software and development tools from Texas Instruments. The fully
integrated development environment includes real-time analysis capabilities, easy to use

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,

39

XDS560 and XDS510 emulation drivers and DSP/BIOS support.
Some of CCS’s fully integrated host tools include:
e Simulators for full devices, CPU only and CPU plus memory for optimal performance.

e Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.
e Source code debugger common interface for both simulator and emulator targets:

— C/C++/assembly language support.
— Simple breakpoints.

Advanced watch window.

Symbol browser.
e DSP/BIOS host tooling supporty(configure; real-time analysis and debug).
e Data transfer for real time data exchange between host and target.

e Profiler to understand code performance.

CCS also delivers foundation software consisting of:

e DSP/BIOS kernel for the TMS320C6000 DSPs:

— Pre-emptive multi-threading.
— Interthread communication.

— Interupt Handling.

e TMS320 DSP Algorithm Standard to enable software reuse.

40

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The libraries include many C-callable,
assembly-optimized, general-purpose signal-processing and image /video processing rou-
tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

3.4 Code Development Flow [27]

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly.
These advantages allow the compiler to do all the laborious work of instruction selection,
parallelizing, pipelining, and register allocation. These features simplify the maintenance of
the code, as everything resides in a-C.framework that is simple to maintain, support, and

upgrade.

The recommended code development flow for the C6000 involves the phases described in
Fig. 3.8. The tutorial section of the Programmers Guide [27] focuses on phases 1-2 and the
Guide also instructs the programmer when to go to the tuning stage of phase 3. What is
learned is the importance of giving the compiler enough information to fully maximize its
potential. An added advantage is that this compiler provides direct feedback on the entire
program’s high MIPS areas (loops). Based on this feedback, there are some very simple steps
the programmer can take to pass complete and better information to the compiler allowing

the programmer a quicker start in maximizing compiler performance.

The following items list the goal for each phase in the 3-phase software development flow

shown in Fig. 3.8.

41

Phase 1. I Write C code |

Develop C Code T
I Compile I

v
| Profile |

Complete

—l Refine C code I

Phase 2: I
Refine C Code -
I Compile I
Y
I Profile I
Complete
Yes
optimization?,
—I Write linear assembly |
Phase 3: ==
Write Linear —
Assembly I Assembly optimize I
v
| Profile I
No
Yes

(Complete)

Figure 3.8: Code development flow for TT C6000 DSP (from [27]).

42

e Developing C code (phase 1) without any knowledge of the C6000. Use the C6000
profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

e Use techniques described in [27] to improve the C code. Use the C6000 profiling tools
to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear assembly.

We can use the assembly optimizer to optimize this code.

TT provides high performance C program optimization tools, and they do not suggest the
programmer to code by hand in assembly. In this thesis, the development flow is stopped at
phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

3.5 Acceleration Rules

In this section, we describe several methods that can accelerate our code and reduce the

execution time on the C64x DSP.

3.5.1 Compiler Optimization Options [27]

The compiler supports several options to optimize the code. The compiler options can be
used to optimize code size or execution performance. Our primary concern in this work is
the execution performance. The easiest way to invoke optimization is to use the cl6x shell
program, specifying the -on option on the cl6x command line, where n denotes the level of

optimization (0, 1, 2, 3) which controls the type and degree of optimization:

43

e -00:

— Performs control-flow-graph simplification.
— Allocates variables to registers.

— Performs loop rotation.

— Eliminates unused code.

— Simplifies expressions and statements.

— Expands calls to functions declared inline.
e -0l. Performs all -00 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local common-expressions.
e -02. Performs all -0l optimizations; and.;

— Performs software pipelining.
— Performs loop optimizations.
— Eliminates global common subexpressions.

— Eliminates global unused assignments.

Converts array references in loops to incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations, and:

— Removes all functions that are never called.

44

Table 3.2: Sizes of Different Data Types

Data type Char Short Int Long Float Double

Size (bits) 8 16 32 40 32 64

— Simplifies functions with return values that are never used.

Inline calls to small functions.

— Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

— Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

Identifies file-level variable charaeteristics.

3.5.2 Fixed—Point Coding

The C6000 compiler define a size for:each data type-as Table 3.2. The C64X DSP is a
fixed-point processor, so it can only perform-fixed-point operations. Although the C64X
DSP can simulate floating-point processing, it takes many clock cycles to do the job. The
“char”, “short”, “int” and “long” are fixed-point data types, and the “float” and “double”

are floating-point data types.

3.5.3 Loop Unrolling

Loop unrolling unrolls the loops so the all iterations of the loop appear in the code. It often
increases the number of instructions available to execute in parallel. It is also suitable for
use with software pipelining. When our code has conditional instructions, sometimes the

compiler may not be sure that the branch will occur or not. It needs more waiting time for

45

(1) Before Unrolling |(b) After Unrolling

int 1,a=0,b=0 int i=0,a=0,b=0
for (i=0,i<8,i++) at=ibt+=i1++;
{ at+=t;b+=ii1++;
at=i; at=i:bt+=iji++;
b+=i; a+=i:b+=i:i++;

H at=ibt+=izi++;
at=ib+=izi++;
at=ibt+=ii++;
at=i;bt=1;i++;

Figure 3.9: Loop unrolling.

Table 3.3: Comparison Between Unrolled and not Unrolled

Before After

Unrolling Unrolling
Execution Cycles 436 206
Code Size k16 479

the decision of branch operation. If svetdo loop urirolling; some of the overhead for branching
instruction can be reduced. Fig. 3.9 is ar example-about loop unrolling and Table 3.3 shows
the cycles and the code size with and without unrolling. We can see clearly that the clock

cycles decrease after loop unrolling, but the code size has increased.

3.5.4 Packet Data Processing

Packet data processing means processing of several data together in one instruction. For
example, we may use a single load or store instruction to access multiple data that are
located consecutively in the memory. It can enhance data throughput. The technique is also
called the single instruction multiple data (SIMD) method. For example, if we can place
four 8-bit data (char) or two 16-bit data (short) in a 32-bit space, we may do four or two

operations in one clock cycle. The code efficiency substantially. Some intrinsic functions

46

Single Instruction Multiple Data

Al (short) A2 (short)
+
B1 (short) B2 (short)
Al+B1 (short) A2+B2 (short)

Figure 3.10: The block diagram of SIMD.

enhance the efficiency in a similar way. Fig. 3.10 shows an example that uses word access

for adding short data.

3.5.5 Register and Memory Arrangement

When accessing in the external memeoty, it may tale.more clock cycles than accessing on—
chipdata. We can use registers to store data in order to reduce the transfer time. The C
compiler has a pre-defined way of placing different. code-segments (such as variable pointers,
malloc spaces, and the program codé) in"the memory. We can set up the link commend
(.cmd) file to allocate the memory for different types of data for efficient data reading and
writing. The key—words “CODE SECTION” and “DATA SECTION” can be used to put

the program code or data in the internal memory for greater execution speed.

3.5.6 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop so that multiple
iterations of the loop execute in parallel. The compiler always attempts to software pipeline.
In Fig. 3.11, illustrates a software pipelined loop. The stages of the loop are represented by
A, B, C, D and E. In this figure, a maximum of five iterations of the loop can execute at one

time. The shaded area represents the loop kernel. In the loop kernel, all five stages execute

47

Al
B1 A2
= = e Pipelined-loop prolog
D1 c2 B3 A4
E1 D2 C3 B4 A5 Kemnel
E2 D3 Cc4 B5
E3 D4 C5
= D% Pipelined-loop epilog

ES

Figure 3.11: Software-pipelined loop.

in parallel. The area above the kernel is known as the pipelined loop prolog, and the area

below the kernel is known as the pipelined loop epilog.

3.5.7 Macros and Intrinsic Functions

Because software-pipeline cannot contain function calls, it takes more clock cycles to com-
plete function calls. Changing functions to macressunder some conditions is a good way
for code optimization. In addition, replacing:functions with macros can cut down the code
for initial function definition and reduce theshumber of branches. But macros are expanded

each time they are called. Hence, they will increase the code size.

The TI C6000 compiler provides many special functions that map C codes directly to
inlined C64x instructions, which increase C code efficiency. These special functions are called
intrinsic functions. If some instructions have equivalent intrinsic functions, we can replace

them by intrinsic functions and the execution time can be decreased.

3.5.8 Other Acceleration Rules

Other code Acceleration rules include reducing memory access, using bit shifts for multi-
plication or division, declaring constants as constants that not variable, access the memory

sequentially, and minimizing use of conditional breaks or complex condition codes in loops.

48

Chapter 4

Simulation and DSP Implementation
of Convolutional Encoder and
Decoder

In this chapter, we present some floating-point:simulation results for the convolution encoder
and decoder. The simulation results provide imformation concerning proper choices of certain
design parameters, such as « and in tail-biting eonvolutional code decoder. We then present

fixed-point simulation result and compare them-with the floating-point results.

Then, we discuss the decoding algorithm of the IEEE802.16e OFDMA convolution codec
on DSP. We base our implementation on modification of the code of Lee [29] for IEEE
802.16a OFDMA to the specifications of IEEE 802.16e OFDM. We present the performance
results obtained from the profiler generated by the built-in profiler in TT’'s Code Composer
Studio (CCS) tool set.

4.1 Coding Gain Analysis

In this section, we analyse the convolutional coding gains to obtain to the reference to
compare simulation results with. Coding gains are usually analyzed for AWGN channel. In

AWGN channel, let the transmitted symbol energy E, = 1. Then the relationship between

49

E,/ Ny and the noise variance o2 is given by
E
o (Ls\
9 - (NO)
Nb : Ec —
= By
0
Ny-R.-Ep, 4
= 4.1
(ot B (1)

where
e [/Ny is sometimes called SNR,

e N, gives number of bits per symbol, which for QPSK, 16QAM, and 64QAM is 2, 4,

and 6, respectively,

o £.= ﬁ—i is energy per code bit,

o [= % is energy per information bit}and

R, is the code rate.

Crucial reference point is BER=107%at_which peint the IEEE 802.16e specifies the

performance requirement.

We investigate coding gains through several different views. First, we find the Shannon
bounds on coding gain at different code rates specified in IEEE 802.16e. This helps us
understand the limit in performance channel coding can provide. Then we estimate the

coding gains of the convolutional codes based on minimum codeword distances.

The Shannon-Hartley law for the capacity of an AWGN channel is given by

E,CR,
+ ”—0), (4.2)

CR. =log,(1

where C' is bit rate per Hz on channel and R, is the code rate. As a result, the lower bound

on E,/Njy is given by
Eb QCRC —1

Ny CR.

v

(4.3)

20

Table 4.1: Coding Gain Upper-Bound in AWGN at BER = 107°

Channel Bit Ej/ No for Coding
Uncoded .
Rate Under | Shannon . Gain
Code Minimum Bound Transmission Upper
Modulation ; B
Rate Bandwidth (dB) with Coher§nt Bound
Design (C) Demodulation (dB)
(dB)
QPSK 1/2 2 0 10.5 10.5
QPSK 3/4 2 0.86 10.5 9.64
16QAM 1/2 4 1.76 14.5 12.74
16QAM 3/4 4 3.68 14.5 10.82
64QAM 1/2 6 3.68 19.0 15.32
64QAM 2/3 6 5.74 19.0 13.26
64QAM 3/4 6 6.82 19.0 12.18

The coding gain upper-bound is thesdifferénee between the Shannon bound and the
Ey/Ny at BER = 107% for uncoded 4ransmission with:coherent demodulation. We list the
coding gain upper-bound of the seven eoding-modulation schemes in IEEE 802.16e in Table
4.1.

With BPSK or QPSK modulation, a‘rough‘estimate of convolutional coding gain in
AWGN is

where R, is the code rate and dy,.. is the free distance. This coding gain also assumes
soft-decision decoding. For hard-decision decoding, the coding gain should be smaller by 2
to 3 dB. We conjecture that, for 16-QAM and 64-QAM with Gray-coded bit mapping, the
coding gain will depend on how the coded bits are mapped into the different symbols. With
sufficiently random interleaving, the estimate based on (4.4) may still apply. In Table 4.2,
we list the coding gain estimates based on (4.4) for the seven convolutional coding schemes

in IEEE 802.16e.

o1

Table 4.2: Approximate Coding Gain Based on Analysis of Minimum Codeword Distance

Soft-Decision
Modulation CC Code Rate Afree CC Coding
Gain (dB)

QPSK 1/2 10 6.99
QPSK 3/4 5 5.74
16QAM 1/2 10 6.99
16QAM 3/4 5 574
64QAM 1/2 10 6.99
64QAM 2/3 6 6.02
64QAM 3/4 5 5.74

4.2 Performance in AWGN with Floating-Point Process-
ing

In this section, we discuss the floating=pointssimulation results of convolutional coding per-

formance in AWGN based on the system structute shown in Fig. 2.1.

We discussed the importance of the parameétersia and 5. In Figs. 4.1 and 4.2 we show the
floating-point simulation results of soft-decision.décoding performance of the seven codes at
different values of Ej/ N, for different values of a and 3 between 0 and 96. From Fig. 4.1, we
conclude that, for rate-1/2 and QPSK ,16QAM and 64QAM modulations, the performance
is almost the same when o > 12 and § > 12. From Fig. 4.2, we conclude that, for rate—
2/3 and rate-3/4 coding and QPSK ,16QAM and 64QAM modulations, the performance is

almost the same when o > 24 and (3 > 24.

At rate 1/2, the codeword contains more parity check bits than at other rate. Then
we can use smaller o and (to reduce the decoder complexity without performance loss.
Considering the trade-off between performance and decoder complexity, we decide to let

a = 48 and [= 48 in our Viterbi decoder. A value of § = 48 is equivalent to a decoding

52

_Soft-Decision Convolution Code Rate 1/2 with QPSK Modulation,Eb/No=5dB Sgft-Decision Convolution Code Rate 1/2 with 16QAM Modulation,Eb/No=7.6dB

10

10 T T T
R B
e e L EEEY (RESSEEE) SRR EE

—A—p=0 AR
v B —— p=12
—pB—p=24 1 O-Qk)ﬂék‘én,,,,,, b o _A;//,A b p=24 | A |
—<—p=36
10°F L —o—p=4s
| —+— =60

—x— =72
—k— p=84

BER

0 12 24 36 48 60 72 84 96

Soft-Decision Convolution Code Rate 1/2 with 64QAM Modulation,Eb/No=10.6dB
10 T T T T T T T T

—4A— =0

—v— B=12
—b—p=24
_AA\\A/A\A/A\\\Q//A L e La
10 —o— p=48
—+— B=60
—— p=72
—k— p=84
3 ——p=96

107 i # i e i i i
0 12 24 36 48+ - 60 72 84 96

Figure 4.1: Soft-decision decoding performance-of rite 1 /2 coding in AWGN with different
value of a and 3 employing floating-point computation.
delay of 48 bits. And it happens to be equal to 8 times the register length, a proper value

of delay by experience.

To further confirm that we have made a proper choice of o and (3, we run simulation under
different E, /Ny value for « = § = 48. The simulation results are depicted in Fig. 4.3. Table
4.3. lists the coding gains obtained from simulation with o = § = 48 and compares them
with the theoretic value obtained earlier. See that the coding gains obtained from simulation
are only less than the theoretic value by approximately 1 dB or less. Therefore, suboptimal

tail-biting Viterbi decoding and BICM de-interleaving provide acceptable performance at

23

10

S_gﬂ—Decision Convolution Code Rate 3/4 with QPSK Modulation,Eb/No=5.75dB

BER

T

—A— =0

—— p=12
—bB—p=24
—<+—p=36
—o— p=48
—+— =60
—x— =72

—— p=84

Sz_)xft—Decision Convolution Code Rate 2/3 with 64QAM Modulation,Eb/Nozﬂ'.idB
10 T =

T

T

ZM

107k

—4A— =0

——p=12
—bB—p=24
—<+— =36
—O— p=48
—+— =60
——— =72

T

A

Figure 4.2: oft-decision decoding performance of rate-2/3 and rate-3/4 coding in AWGN

SgKft—Decision Convolution Code Rate 3/4 with 16QAM Modulation,Eb/No=9.25dB

10 T T

T T T T

T T P
—v— B=12
—b—p=24 |A
—<—p=36
—c—p=48
—+— p=60
—— =72
——p=84

.
So_fgf.Decision Convolution Code Rate 3/4 with 64QAM Modulation,Eb/No=13.25dB
N

with different value of o and 3 employing floating-point computation.

o4

Soft-Decisoin Convolution Code Performance with QPSK Modulation o Soft-Decisoin Convolution Code Performance with 16QAM Modulation

10 : ; e . ; ; ; ; ; ; 10 ——————
Uncoded QPSK Uncoded 16QAM
” —*— Rate=1/2 a=48 =48 » —*— Rate=1/2 a=48 =48
10 —&— Rate=3/4 a=48 =48 |3 10k —&— Rate=3/4 a=48 =48 |3
107 E 107k
10°% 4 10°L
o @
w w
o 7 @ —4
107 4 107
10°F E 10°F
10° f 10°
1077 10’7 i i i i i i i i i i i i i i
o 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eb/No Eb/No

Soft-Decisoin Convolution Code Performance with 64QAM Modulation

10 N s
Uncoded 64QAM
B —*— Rate=1/2 a=48 =48
10 g : . ‘ —&— Rate=2/3 a=48 p=48
—&4&— Rate=3/4 a=48 =48
107°E E
10°F E
o
w
-
10 E
10°F E
10°L E
107

0 1 2 3 4 5 6 7 8 9 101x 12 13.14 15 16 17 18 19 20
Eb/No

Figure 4.3: Soft-decision decoding performance-in. AWGN employing floating-point compu-
tation with o = § = 48.

reasonable complexity.

4.3 Performance in AWGN with Fixed-Point Process-
ing

In order to implement the encoder and decoder on DSP, we need to convert the floating-point
processing to fixed-point processing. In this section we discuss the simulation results with

fixed-point processing.
First, we convert floating-point values to the fixed-point ones. By multiplying the original

95

Table 4.3: Comparison of Convolutional Coding Gain froms in AWGN at BER = 107°

Theore.t ¢ Soft-Decision CC Coding Gain from
, CC Code Soft-Decision : . . . :
Modulation . Simulation Using floating-point
Rate CC Coding computation with o = 5 = 48 (dB)
Gain (dB) p T
QPSK 1/2 6.99 5.62
QPSK 3/4 5.74 4.82
16QAM 1/2 6.99 6.28
16QAM 3/4 5.74 5.43
64QAM 1/2 6.99 6.35
64QAM 2/3 6.02 5.97
64QAM 3/4 5.74 5.64

floating-point values by 1000 and rounding the result to integer. Then we use 12 bits to

represent this result.

Note that we only change the number of bit in the decoder input. We fix the integer
part in 4 bit and change the fraction part. bit-numbers. But the precision of intermediate
results decoding computation is still 16 bits. In'Fig. 4.4, we see that, in QPSK we can use 4
bits to express the decoder input and achieve a performance less than 1 dB away from using
12 bits. In 16QAM and 64QAM, 4 bits are not good enough and we need at least 5 bits in
16QAM and 6 bits in 64QAM. In DSP implementation, we can only choose between char(8

bits) and short(16 bits). Thus we choose 16 bits as the decoder input width.

Next, we consider the impact of the parameters o and (3 in fixed-point processing. From
Fig. 4.5, we see that, when o > 24 and 3 > 24, the performance is almost the same as
for floating-point processing. Therefore, a = 48 and [= 48 is a suitable choice also for

fixed-point processing.

Now we run simulation under different E,/Ny value for o« = § = 48. The simulation

26

BER

10

1

10"

10°E

-3

10

BER

10”
10°
10”

-7

10

10°

107

10"

BER

107

10
-6

10

100

Figure 4.4: Soft-decision decoding performance in AWGN with different input precisions.

Soft-Decision Convolution Code Rate 1/2 with QPSK Modulation
T

T

T T T T

—+— 12-bit
—*— 8-hit
—H— 6-bit
—<— 5-hit
—v— 4-bit
—4— 3-bit

4
Eb/No

Soft-Decision Convolution Code Rate 1/2 with 16QAM Modulation
T T 1ot
—*— 8-hit
——&— 6-bit
—<+— 5-hit
—<— 4-bit
—&— 3-bit

Eb/No

Soft-Decision Convolution Code Rate 1/2 with 64QAM Modulation

—*— 8-bit
—b— 6-bit
—<+— 5-hit
—— 4-bit
—4A— 3-bit

Eb/No

—— 12-bit]

Soft-Decision Convolution Code Rate 3/4 with QPSK Modulation

BER

T T T T T T T T T T

—+— 12-bit
—*— 8-bit
—b— 6-bit
—<+— 5-hit
—v— 4-bit
—4— 3-bit

7 8 9 10 11 12 13 14
Eb/No

Soft-Decision Convolution Code Rate 3/4 with 16QAM Modulation

BER

-6

10

=

T T T T T T T T T

—+— 12-hit
—*— 8-hit
—bB— 6-bit
—<— 5-hit
—— 4-bit
—4A— 3-bit

“10

v Eb/No

Soft-Decision Convolution Code Rate 2/3 with 64QAM Modulation

BER

-7

10

—+— 12-hit
—*— 8-bit
—B— 6-bit
—<— 5-hit
—— 4-bit
—4A— 3-bit

BER

—+— 12-hit
—*— 8-bit
—— 6-hit
—<+— 5-hit
—v— 4-bit
—4— 3-bit

10 11 12
Eb/No

13 14 15 16

Soft-Decision Convolution Code Rate 1/2 with QPSK Modulation

Soft-Decision Convolution Code Rate 3/4 with QPSK Modulation

10 T T T T T T 10 T T T T T T T T
x ox
w w
o o
Eb/No
o Soft-Decision Convolution Code Rate 1/2 with 16QAM Modulation o Soft-Decision Convolution Code Rate 3/4 with 16QAM Modulation
10 , . ; : wve——
—+— £\=£]=72 e : —+— £\=£]=72
107k 107k E
107k 107k E
10°% 10°% §
x x
u 10 4 10 E
10° 10° F
10° 10° F
107 107 E
10 i i i i 1078 e i i i i i i i i i i i
0 2 4 6 8 10 0 12 3 4 5 6 7 8 9 10 11 12 13 14
Eb/No ‘ Eb/No
o Soft-Decision Convolution Code Rate 1/2 with 64QAM Modulation — g Soft-Decision Convolution Code Rate 2/3 with 64QAM Modulation
10 T T T T e 10 e T T
i —+— £\=£]=72 - - —+— £\=£]=72
10" 107
107 107
10° 10°
@ o
| w
@ o,
10 10
10° 10°
10° 10°
10’7 i i i i i i i i i i i i h i 10’7 i i i i i i i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Eb/No Eb/No
o Soft-Decision Convolution Code Rate 3/4 with 64QAM Modulation
10 T T T T T T T
0 B B e ——— £\=£]=72
—— £\=£]=60)
107k —%— £\=£]=48
—bB— £\=£]=36|
” —<— £\=£]=24|
10 o £\=£]=12
—A&— £\=£]=6
10°% 4
o
w
@ -4
10 'k E
10°F : E
) 58
10 "k : 4
1077 i i i i i i i i i i i i i
0O 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16
Eb/No

Figure 4.5: Soft-decision decoding performance employing fixed-point computation in AWGN
with different value v and (.

Soft-Decisoin Convolution Code Performance with QPSK Modulation o Soft-Decisoin Convolution Code Performance with 16QAM Modulation

10 : ; e . ; ; ; ; ; ; 10 ——————
Uncoded QPSK Uncoded 16QAM
” —*— Rate=1/2 a=48 =48 » —*— Rate=1/2 a=48 =48
10 —&— Rate=3/4 a=48 =48 |3 10k —&— Rate=3/4 a=48 =48 |3
107} E 107
10°% 4 10°
o @
w w
o 7 @ —4
107 4 10
10°F E 10°F
10° f 10°
1077 i i i i i i i i i i i 10’7 i i i i i i i i i i i i i i
o 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eb/No Eb/No

10 N s
Uncoded 64QAM
—%— Rate=1/2 a=48 =48
-1
10 —— Rate=2/3 a=48 p=48
—A— Rate=3/4 a=48 B=48
107°E E
10°F E
o
w
-
10 E
10°F E
10°L E
107

01 2 3°4 5.6 7 8 9 10/14712 13 14 15 16 17 18 19 20
Eb/No ‘

Figure 4.6: Soft-decision decoding performance in”/AWGN with o = 48 and § = 48 employing
fixed-point computation.

results are shown in Fig. 4.6. Table 4.4 compares the coding gain obtained from fixed-point
computation with a = 3 = 48 with the theoretic coding gains obtained previously.

In Fig. 4.7, we compare the simulation results of floating-point and fixed-point processing
with o = 3 = 48. The performance of floating-point and fixed-point computation is almost

the same for every code rate and every modulation method.

29

Sg)ft—Decisoin Convolution Code Performance with QPSK Modulation, a=48 =48

S%ﬁ—Decisoin Convolution Code Performance with 16QAM Modulation, a=48 3=48

10 T T T T T T 10 T T T T T T
Uncoded QPSK Uncoded 16QAM
—#— Rate=1/2 floating—point —%— Rate=1/2 floating—point
10" —<— Rate=1/2 fixed—point 107 —<— Rate=1/2 fixed—point
—+— Rate=3/4 floatint-point —+— Rate=3/4 floatint-point
102 —b— Rate=3/4 fixed—point 102 —bB— Rate=3/4 fixed—point
10°F E 10°F E
@ 14
w |
@ o,
10 & 3 10 & 3
10°F E 10°F E
10°F E 10°F q
107 i 107 i i i i i i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eb/No Eb/No
Sgh—Decisoin Convolution,Gode Performance with 64QAM Modulation,a=48 =48
10 T -
Uncoded 64QAM
B —*— Rate=1/2 floating—point
10 ' —— Rate=1/2 fixed—point
—+— Rate=2/3 floating—point
10,2 [——b— Rate=2/3 fixed—point
—6— Rate=3/4 floating—point
—4— Rate=3/4 fixed-point
10°%]
e
jm}
)
10 E
10°¢ E
10°F E
1077 i i i i i i i i i i i i i i i i i i i
01 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
Eb/No

Figure 4.7: Comparison between soft-decision decoding performance in AWGN

floating-point computation and that using fixed-point computation.

60

using

Table 4.4: Soft-Decision Decoding Performance with o = 48 and 5 = 48, in AWGN at BER
= 107% Employing Fixed-Point Computation

Soft-Decision CC

Soft-Decision CC

CcC Theore't » Coding Gain from Coding Gain from
Soft-Decision . A
Modulation| Code . Simulation Employing Simulation Employing
CC Coding . : : .
Rate Gain (dB) Fixed-Point Floating-Point

Computation (dB) Computation(dB)
QPSK 1/2 6.99 5.61 5.62
QPSK 3/4 5.74 4.51 4.82
16QAM 1/2 6.99 6.32 6.28
16QAM 3/4 5.74 5.41 5.43
64QAM 1/2 6.99 6.02 6.35
64QAM 2/3 6.02 5.62 5.97
64QAM 3/4 5.74 5.38 5.64

4.4 Implementation en, DSP

We introduce the compiler options that dontrol-the operation of the compiler. CCS compiler

offers high-level language support by transforming € /C++ code into more efficient assembly

language source code. The compiler options can be used to optimize our code size and the

executing performance.

The major compiler options we utilize are -03, -pm -op2, no -ms.

e -pm -op2. In the CCS compiler option, -pm and -op2 are combined into one option:

— -pm: Give the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

— -op2: Specifies that the module contains no functions or variables that are called

or modified from outside the source code provided to the compiler. This improves

61

variable analysis and allowed assumptions.

e no -ms. Speed most critical.

4.4.1 Profile of the DSP code

In this section, we show the optimized profile of our convolution code, which concatenates
the randomizer, interleaver and modulator. Table 4.5 show the execution speed of the final
concatenated program for processing different data length define in IEEE 802.16e on DSP.
In Table 4.5, we see that there is almost 97% execution time in the Viterbi decoder. In Fig.
4.8, we show the C code of Viterbi decoder. We do the full search to compare the Euclidean
distance with the stage diagram every two bits. For coding rate 1/2 and codeword length
576, it needs to compare 768%64=49152 times. In the C code, there are 768*32=24576 loops
when decoding one block. We show thesassembly code in Fig. 4.9, 4.10, 4.11, 4.12 and 4.13.
In these figures, we can see that the parallelism is good. In one cycle, it can execute more

than five instructions usually.

Table 4.6 show the processing rate.in different mandatory coding and modulation mode.
In the encoder, we can approach the data rate more than 10M bps. But in the decoder,
there is a bottleneck in viterbi algorithm. Viterbi algorithm need large operation and get

high complexity. In our decoder, we can approach the data rate about only 8k bps.

Table 4.7 show the code size in different mandatory coding and modulation mode. The

average code size is 2021 bytes in the encoder and is 5739 bytes in the decoder.

The programs will require multiple DSPs to run in parallel to handle the data rate under
a 10 MHz transmission bandwidth. Acknowledgeably, further optimization of the programs
may be possible. In addition, the C64x is equipped with a Viterbi decoder co-processor [30].

Using this co-processor may be helpful in raising the decoding speed. But its use requires

62

for (i=0;i<CC_Output_Expand_Block_rate;i++)
1
{fi{/{create the Trellis Tree //7///

f{discard the first repeat_number metrice
if{i=—=AA)
1

for(p=0;p=64:p++)

i
nod_prestate[0][p]=nod_prestate[AA][p]:
}

H

ifli==AA) j=i-AA;
else j=1;

ki=k; loop unrolling
k=(k+1)%2;

for (m=0; m=64; m+=2)

{
tempA=-sta[m][1]*v[i<<1];
tempB=-sta[m][2]*v[(i<<1)}+1];
tempC=-sta[m+1][1]*v[i<<1];
tempD=-sta[m-+1]|2]*v[(i==1)+1];
tempE=-sta[m][4]*v[i=<1];
tempF=-sta[m][5]*v[{i=<<1)+1]:
tempG=-sta[m+1][4]*v[i<<1];
tempH=-sta[m+1][5]*v[(i=<1)+1];

metricd{m|=nod_distance|k]|m|+tempA+tempB;
metricO[m+1]=nod_distance[k][m+1]-tempC+tempD;
metric] [m]=nod_distance[k][m]+tempE+tempF:
metricl [m+1]=nod_distance[k][m+1]+tempG+tempH;
—
if{metricO|m|<metricO[m+1]){
nod_distance[k1][sta[m][0]]=metricO[m];
nod_prestate[j+1][sta[m][0]]=m ;

compare the metric
remember the shorter path

else|
nod_distance(k1 |[sta|m][0]|=metricOm+1];
nod_prestate[j+1][stalm][0]]=m+1 ;

H

if{metric1[m]<metric][m+1]){
nod_distance(k1]|stalm][3]]=metric] [m];
nod_prestate[j+1][stalm][3]]=m;

}

else |
nod_distance[k1][sta[m][3]]=metric] [m+1];
nod_prestate[j+1][stalm][3][=m+1;

ffend switch

Figure 4.8: The C code of Viterbi decoder.

63

o e BB O T o o e o P o P P

le=0;

00082308 07004358 MVE.L1 0.A14

for |{1-D.utt_ﬂutput_E:puud_Black_ratn.1++‘,|

Q00E298C D0&6C0ADA CMPLT.L2 0,B27.80
oooa2eco I0ER4121 [FBD] BHIP.S51 L1B4,. 2
00DBZ9C4 22150224 || [BO] MVE.S2Z Dx2hB4.B4
00e2ang 22309042 [BO] ADDAW.D2 SP.B4 B4
Do0E290C 00000000 Mop

D0DE290B0 27901FDS [BO] OR.LIX 0,B4.515
Q0oE230C QpE02029 HVE. .81 Dx0040.A27
DOORZ9ED OBO0A3SS || MVRLEL 0,A12
lDooazeE D'WSLS_SoftlC_lecodeTS9058:
D00e2DE0 06302058 ADD.L1 1.A12.A12
000820E4 O0ATEOSA SuUB.L2 Bl1,1.B1
OoDe2Pes 4F21A120 [Bl] BHOF.Z1 IwsLs Softll_Decoders90sB.5

{
rEerereate the Trellis Tree ~wvs

Srdliscard the First repealr pimber getrice

if{i==AR)

00032904 OQO0ECOFDA OR.L2 0.B27.81

0DD829E4 IwsLS SoftCC_DecodersB05E:

O00829E4 01801823 ML S 0x0030,.43

DDDEZ9ED O0DODGEATE CMPEQ.L1 AlZ.A3.A0

DODE2SEC DOaqRi120 [FAD] BHOP.S1 PWSLS _SoftCC_DecoderS925E.5

EﬂT(P'“iP‘ﬁ45P+*}

nod_prestate[0][p]=nod_prestate[AA][p]:
OO00B29FD sls BeftlC DecoderSd15B:
ODOOB29F0 D20DC824 MVE.S2 0x1b90.B4
000829F4 003C807A ADD.LZ B4,SF.BD
000B29F8 02008386 LDDW.D2T2 =+BO[024),B5:54
000B2%FC O100E3ES LDOW.D2T2 =+B0[0x7].B3:B2
000BZADD 030063E6 LDDW.DZT2 =+B0[0x3].B7:Bo
000E2A04 D401E3ER LDDW.B2T2 =+B0[0zF].B9:B3
DOOB2A08 D600A3ES LDDW.DZT2 =+B0[0xS].B13:B12
00pazADC 02%01FDS OR.LIX 0,B4 .45
00082410 OS00C3EE || LDDW.D2T2 =+BO[0x6].811:B10
00082414 01941FD9 OF.L1X 0.B5.43
DOOBZATE D20043ES || LDDW . D2TZ s+BO[0x2] ,B5:B4
0ong2A1C OF0103ES LDDW.D2T2 =+B0[0x8)],.B31:830
O00BZAZ0 DED1Z3Es LDDW.D2T2 "+B0[0x9] ,B29:H23
popDezAZd ODD143EGD LDDw . 02T 2 =+BO[0=xA) .B27:B26
000B2AZ8 DBO1G3ES LDDW. D2T2 =+B0[0xB] . B23:B22
000BZAZC D4901FD9 GR.L1X 0,B4,A%
00o0e2a30 OAO183EE | | LDODwW.D2TZ2 =450 [0xC] .B21:B20
OO0B2A34 D3%41FD9 OR.L1X 0.B5.A7
00DEZA38 0200238 || LDDW.D2T2 “+BO[0x1].B5:B4
DOQEZA3C D901A3ES LDDW.D2T2 =+B0[0xD].B1%:B1A
00082540 DB0O1C3EE LDDW.Dp2T2 =+BO[0xE] . B17:B16
D0DBZR44 DI1OOF2EF SITW.[2T2 B2.=+3P [DxF2]
onng2A48 D1180FDRE || OR.L2 0,.B&6.B2
0D00B2a4C D32416a2 || OR.S2X 0,A9,.B6
DO0DGZAS0 D300EBFE SIW.DZTZ BB, =+5P[GxES)
000BZAS4 OBSO1FDY OR.L1¥ 0,E4.517
OO0B2A58 040102FF || STW.DZT2 BB, =+5P[0x102]
0D0BZABE D4141FDA | | OR.L2X 0,AS5,.E8
O00B2AG0 D4141FD9 OR.L1¥ 0.BS5.A8

Figure 4.9: The assembly code of Viterbi decoder (1/5).

64

GOOAZAED DA14IEnG OR.LIN 0,85.A%
OonfzAEd OZODOIES || LDDW. D272 =+HO{0x0] .85 54
ODOBZAES D3441FDE DR.L2X 0.AL7,.BE
ODOAZAGT OGBOOFAFE || STW.hIT2 B22,=+5P [0xFA]
ODD8ZAT0 O3IVDEEFF SIW.DZT2 B6.=+SF[OXEE]
ODODAZAT4 OB2OIEDA || OR.L2X B,.A3.922
UDOAZATE ODDOFEFF 5TW, D212 B26.=+5P [0xFH]
OOOB2ATC ODICIEDA || oR. L2 0.A7.B25
ODORZABD 0400ECFE =TW.DaT2 E8.=+5P[0REC])
00082484 D200E4FE STW.D2T2 B4, =+SP[O®E4]
ODO8ZAES OFOOFSFE STW.D2T2 B30, =+5P[DxF4]
OD0BZAEC OFOCLEDA || OR.L2X D.A3,830
0D0B2AS0 DIODDEAFE ETW.02T2 E2.=+5P[0OxEA]
ODOA2AS4 DGEODEEFE STW.D2T2 B12.#45P[xEE]
O00B2A%E OSODEOFE sTwW.h2T12 B10.=+5P[0xFd]
OD0AZAST DAGDFCFE 5TW. D2tz B20,=+5P [0xFC]
ODODBZAAD D90DEEFE STW.DaT2 B18, =43P [0xFE]
OO0AZANE DBO10OFE STW.D2T2 B16,=+SP[0x100)
OOOE2RAB DEODEBFE STW.DIT2 EEE,!+EP{E:F$]
DO0BZARC DEICOFDA || OR.L2 U.B7.B28
ODO0AZAED 0ZBUESFE BTW.DeT2 B5.#+SP[D%ES)
000 ZAES OBOOETFE STW.D2T2 B22.=+8P[0xET)
Oo08ZABE ODODESFE ETW.D02T2 Bl . =+5P [0xEY]
OO082AEC OFODEDFE 5TW.DZT2 Bi0,=+8P [0xED]
0008ZAC0 OEOUEEFE STW.D2T2 B28,%+5P [0xEH]
ODOBZACA ORBOEFFE STW.D2T2 B13,#+3P{{xEF]
0O082ACE8 OSH0FIFE 5TW.D3TZ B11.#+3P[0xF1]
ODDBZACC D180F3FE STW,D2T2 B3. =4SP [DxF 3]
0O0AZADD OFEOFSFE STW.D2T2 B¥1,#4+EP[0xF5)
DODS2ALY DESOFTFE ETW . D2T2 B29,%+5P [0xF7]
0D0&ZADS ODEOFOFE STW.D2TZ B27 . %+5P[0xFE]
UDDBZADS NBSUFBEE FIW.D2T2 B23,=+5P [0xFE]
DOOBZAED DABOFDFE STW.02T2 B21,%+3P [0xFD]
00DEZAES O3BOFFFE SIW.D2T2 B19, =480 [FF]
GODBZAES NBBI0IEE ETW.D2T2 B17,=+8P[0x101]
OD0BZAEC D4B103FE ETW.D2T2 Bo.=+SP [0x103)
]

}

if(ir=AN] Jei-AdA;

DOOB2AFD DWSLS_SoftCC_BecodersdzsB:

DDOBZAFO 01801829
DOOBZAF4 D27FEB2A ||
000B2AFE 0OODBAES
D0oe2AFC C3301FDA
G0082BO0D DI3090TA
00DezZEO4 DEBROFDA

eloa j=i:

ki=k;:
Yom (hek 1) %25

OD0EZE08 01842059
oooe2enC 02134128]|
0O0E2B10 OFBDEAGY |
000G2B14 OIGFE9AL

000E2B18. 02309043 ||
CODE2BLIC O415812A |

n00E2620 GlBDAOTY
po0B2BZ4 OIB0C42E ||

[AD]
[1&0]

ME.51
M. 52
CMELT.L1
OR.L2X
ADD LR
UR.L1

AOD.LY
MVE.52
LDw, 01T
SHRLLSL
ADDAW.D2
MVE .82
AlD, L1
MVE.52

Ox0030,A3
OxfEfEFdD.BY
A1Z.A3.A0
B.A12.886
B4.A12.B8
.Al14,413

1.A13.A3
Ox2b42.84
s+A15[A12] A31
Al 0e1E. A3
SP.B4.84
x2b02 . B8
A13.A3.AS
Qx0188.87

Figure 4.10: The assembly code of Viterbi decoder (2/5).

65

00DBZ2EZE OR3IDIC42 | ADDEW . D2 SP,BA.BZE
DDOBRREC (1802059 ADD.L1 1.A43.43
OO0B2B30 BFIO1I6A1 || GR.S1X 0,54 A30
OO0B2E34 DIBS10A2 | SHL .52% Al3, 0x8.,85
U00B2E3E O2BECESY AL -2, A3.A5
DDDB2E3C D4SBECHEZ || SHL .52 B6.0x7 .89
000B2B40 D195A0FH se.L) A13AS.AS
000EZB44 D7DC2O58 ADD. L 1.A3. 414
000B2B48 D1BF0CAD SHL.51 Ald.0xE,A3
Qo0B2E4C QOOQoO0000 ROP

0DOB2ESD QIEH105D ADD_ LI B,5P.A2
000B2BS4 G200FD7E || ADD. LY EP.AT. R4
OnOB2B58 ODS0EDZA ADD L2 BY.B4.B27

far [m-0: miBd: m+=2)

ODODRZEST 08806059 ADD.L1 11 A3A17
QOOB2BED O10403E1 | MV 52 CSR. B2
ODODBZ2EG4 COOGZ041 MVE.D1 1.A0

00DEZEER OE0D7O58 | ADDLLZX I1.A3.B16
OO0DE2E6C DIEICAZ9 HVE. 81 Ozd390,A3
DOOBZETO DADODDO42 | MVE.D2 B.B20

0O00eZB74 GECTA055 SUB.L1 Al7.6.AL7
000a2e7e 02DBCFSE | | AMD.LE =2.B2.84
oposzBTC EEBT.'?A.HI | ADD . DI E.S?&hil
QO0BZBED @leligzg. || HVYR.S1 0390, A3
OO08PEE4 CAAD20AT II [aD] LOB.DIT2 s-H1B[On1].B20
O00BZEES CABOOOZA | MV, 52 Gx0000,821
DOOBZESEC 09446025 LDE.DITL sA1T[0x3].AL0
DOOBZESD 0090033 || HYC .52 B4.CSH
DO0BZE94 DEBDA3SY | HvE.L1 0,Al9

nobez2e93 0BSOOOZY HYE.S81 oe0000,A23
O00BZRESC C400AZSE I MVE. L2 0.e8

OON0B2BA0 096C33E6 || LDDW . D2T2 »++B27[0x1).B19: 618
OD0B2EA4 DZOODCE2E MVF.52 0x0190.84
DO0GZHAR C9C48025 || [AD] LDB.DIT1 ®a517 [0x4] ALY
DOOBZBAC OS3acyoia || ADD.LIZ A3.5P.A10
ODOBZBEO DlsOCHE2Ze | MVE .51 Be0190.A3
ON0BZBE4 DBOQAISH | MVE.LZ 0.BZZ
O00B2EER OE202942 || ADD D2 B, 0xl.B24
OOOBZEES OFBCa0TE ADDLEZ B4.5P.B31
QOOBZECO 020ICHZE I MVE.S52 0x0390,.B4
00082804 CEC4RZES II [A0] LDB.DIT1 =+R17 0%} A2
DO0BZBCE DIiBDCEZS Il MY .51 0z0190,A3
oooB2RCC QI3CTOTE | ADDLLIX R3.EP.A2
0O0B2B00 OF3Ca0vB &DD L2 B4.5F B30
DO0R2ED4 DZ00CE2E MVE.E2 0x01390,84
OO08a2EDE Egﬂ;igé? “ [&0] ﬁE.EITE E-hi?[ﬂ:ﬁ].ﬂll
O00EZBDC ODE o | sl l wA26

000B2EED CDADEOAS II [AOD] LDB.DZTY «-B16[0x4] A28
OO00B2BE4 dQASO0RR2E || MVE. 51 Ox0000,&2%
O0082BES GEBCAGYE ADD L2 B4 5P B2
DUDEEE‘EE géﬂﬂ;ﬂ?ﬂ :I ADD L AN hE‘-SP.ﬁ:ﬂJ
oooez2arn SHLlAl | ADD.S1 L.A21.AZE
O00B2BF4 CRB4196AE || [kO] LDB.D2TZ2 =B1h+s [Dx0] B22
QO0BZEFS CAl41FDE QOR.LIX 0.B5,.A20
uuuazg;c OE241EDA ﬂR,leaﬂrigqsﬂu.BB.hzz
oooszeon DWaLS_Safell_Deco :

000B2C00 Q20iCER2B MV . S2 02039084
On0B2C04 03ICS962T |1 LOB. DiT2 wA 1744 [DxC] BT
OD0B2008 CACEE4ED || MPYHL M1 AR31,A1B,A7
gpoa200c OEBCAQYE ADD. L2 B4.5F . H23

Figure 4.11: The assembly code of Viterbi decoder (3/5).

66

UO08ZE10 G2FERCED HPYH AI9.A3LAS
OO0BZCL4 G4SFE4G1 HPYHL . M1 AJL.A23.AB
ON0B2CEE B2TEICHEI HEY M2 B20,A31.84
00082CIC GZ7EBCAEI HEY .H2X H21.A31,.B4
DO0B2CE0 DIFF4ACH] HPY . M1 B2BLAILAG
00082024 B29652FR SUB.L1X Bif,AS.AS
0008208 DZVEDBA) HPYLH. W2X P22 A31.B4
0008202C 031260FH B2 B19.B4.B6
00082030 BCICADFS SUB.L1 AS.AT.A24
Q0082C34 DOEGOGAI 0oR.51 G AZ4 Al
OOOBZCEE QZ7CFHET HPYLH.MZR B7.A31,B4
QUOE2C3C QB9Z40FE SiB.L3 Bi8.B4.B17
00082040 D29672FE SUB.L1X B19, A5 A5
0008IT44 03X0COFE SUB,L2 Be.B4.BY
00082048 DCADAGFE sUE.L1 AT AB. 4TS
0008ECAC QCEBIINS STIW. 02T AZSIAZA.=++B2E[021)
00082050 G3L220FE S5UB.L2 517 .84.B6
DODBICSY DOATOAFE CHPLT.L1 K24 ATS,AD
00082058 D4CIFDS OR.L1X 0.8v.A9
00082050 2641643 DR.SM 0.A25,84
00082060 BOICCAFE CMPLT.L2 B&.B7.60
(0082064 DOCZEOAT [1A0] LDR.DIT2 w-B18{0x17],B25
00082068 CECA2024 [407 LDE.DIT1 w-A1T[0e11] A2
D00E2CeC 0378334V STOW.DIT2 B7:Be.=s+A30[0x1]
ODOBZCTO 3R428044 [1B0] LDB.D2T1 w-BIE[0x14],A16
00089074 2CA280AG [BR] LDE.DIT2 “-Ble[0x14) B34
00082078 00002000 Hop 2

ODOBECTC B3973C43 ADDNW. D2 BS.B2S,.87
00082080 DZOBEA4D ADDAH. D1 AZ2_ AR N5
OO0BZCHA BZAGAO7Y ADD.T1 ALL.AS.AS
D00BZCES D3DALA4L ADDAH . D1 AZ2AIEAT
OO0B208C GEATIA43 ADDAH.B2 BS,B25,817
00082090 Q3MFENTA ADD L2 B31.B7,.67
QooBECa4 OOLD407E AOD.LY A1D AT 224
00082098 O303ET4L ADDEW.D1 A0 AZ9 k7
DO0RICIC Q24TL07E ADD L2 B30.B17.B4
OOOB2CAD D2BG4051 ADDF. .51 1P8.A5

DOO8ZCA4 D2 ICOZFE [I&0] STW.D2T2 B4, =+B7 [0x0]
O0082CAB DCOB4051 ADDE.S1 128,424
O008Z0AC A33C4079 ADD.L1 A2 A7
000e2CRY 4521C41 ADDAW. D1 A2 ALE A
OO08Z0B4 D3FAT1043 ADDAW. T2 BS.B24,B7
D008z0B8 02004052 ADDE.S2 128,84
000BZCEC D1ADEDTD ADD.L1 A3 BB A3
O00B20C0 DAD441A1 ADD.E1 2.821.821
00082004 CAB40255 [AQ] SIH.DITI AZl.=+R5[0x0]
O00BZCCE O3SFADTE ADD.L2 B25,B7.87
ONUB2C00 DBAT1A42 ADDAH . D2 B2, B24.817
00082000 OOGERAFS CHMBLT . L1 AZ1 R27 A0
00DHZCDA CORCO27S || [AD] STW.DITI Al *+AT [0x0]
00ga200s DELOO2DT || ['AD) ETH.D2T2 BIA. w+B4[0x0)
00082000 O246E0TA || ADD . L2 B23.B17,B4
DO0E2CED 34800275 [1B0] SIw.DITL A2, ==A3[0x0]
000RICE4 CFFFE413 || | AO) B.52 WSl SoftlC_Decoders945B
O00B2CES 23ICO2F6 || [BO] BIW.DETZ BE,=+B7 [Ox0]
0O0B2CEC 02004053 RDDE .82 128,84
00082CFD 01810823 || MY 31 00390,.43
DOOBECEA C96C33E7 || | AD] LODW.DZTI2 =++827 [0x1] . B19:518
OOpEZCES Ca448024 || [AD) LDBIDITH =A1T[0x3].A18
000B20FT 04204058 ADD L2 2,68, BB
Figure 4.12: The assembly code of Viterbi decoder (4/5).

67

[EEGEEE]
0008 20eT
oaos20eh
OO0B20e4
Qoggzces
onogacec
00D82CRD
ONoRzZCA4
ohoezoAS
OO0e20A2
onos 2080
OO082CEd
onoazoes
0008208
i afalelnindi]
On0EICC4
0ooBazooe
googzcoe
oooe2c00
0008a2c04
onog2cna
ounE2cone
poaga2CED
OO0B2TE4
OODHITER
000820EC
DOnBZCED
OODE2CE4
oooe2cEa

o0gaCED
opos2crEg
0o0082CF4
00D82CFS
Oooe2cFe
nooEzo0o
nooEaoo4
00082008
Noo&znoe
oonezDig
oooe2D14
0o0e2n1g
0ooe20as
ey el
00082024
nooaznze
Qooazoag
0o0&2030
000az034
foazbas
00082030
0o08Z20A0
f00az0a4
On0820es
no0ezn4ag
0o0a2ns0
00082054
n00820sE
DO0820ED
nooeduse

O3bR1A41] ATOEH . D1 AZ2 K16 AT
DEATIAAE || ADDAH .02 BY,B25.B17
QIBFEOTA 11 ADD L2 B31.B7.B7
oo LD407a ADD.L1 ALD, AT A7
03b3IBCAT || ADDAM. D1 AZDLAZOLAT
az4rcare || ADD.L2 Ba0.B17.H4
gzegansi || ADDE. 51 128, A5
PRICOZEE || {1AD] STW.DET2 B4,5+67[0%0]
CODE46SE ADDF. 51 128,424
oIscanTe || ADD . L1 R2.AT AV
04521041 || AODAW.DL AR ALE A
03971043 || ADDAW, T2 BS.B24.87
ozooans2. || ADDW 82 178, B4
01A0807S ADD.L1 A3 AR.AD
QADAAIAT [) ADD,E1 Z.AZ1.A2L
CAS40255 || | AD] ETH.DITI AZL, msA5[0e0]
O39FR07TE || ADDLLZ B29 . B7 B}
OBAT1A4Z || ADDAH . D2 BR.BE24.B17
DOGEARED CHPLT . L1 A21,.A27 A0
CO9CEZTS ||| AD] STW.DIT! Al =+AT[0R0]
DE1002Db7 || ['AO0] STH.DZT2 B2B.=+B4[0x0]
0Z46EQTA || ADDL.LZ B23,B17.B4
34800275 [180] SMW.DiT1 A9, m+A3[020]
QFFFE413 (] | AD] B.52 pasle Sof el _Decodersd4sh
Z3I002F6 || | BO] SIW.DET2 BE, w+B7 [Dxl]
02004053 ADDY¥ 82 128,84
QigicEzs || MVE.51 0x0390;43
GUeCIZET || [AD] LDDW.DIT2 s++B527[0x1].B19:810
94460234 || | AD] LDB.DITL s-A1700m3]. K16
ADD L2 .B8,.88
02004053 ADRDR.S2 128,84
gigicezs || MUK 51 Ox0390,.43
COREIIET 1| [AD] LDOW.D2T2 s+ +H27[0x1] B19:618
CR446024 | AO] LDB.DITL =-A17[0x3].A510
04204058 ADD L2 2,B8.68
24100207 || | BO] STH.pIT2 BE.=+B4[020]
oia1cERs || WV .51 0039045
OsECTOTS || ADDLL1X A3, SF.A11
opoocasE || MR 52 0x0190,84
CoC48024. || [AS] LDB.DIT1 w17 [D] AE9
01800829 HVE 51 0019043
0330707% 1| Al L1 A3 SP.ALD
ozoicezs || HVE.52 0x0390,.04
OFBOBGTE i ARD L2 H4,5P.B31
CEC46225 | | &0} LDB.DITL *+A17 [0x3].A23
Ch402086. || [AQ] LDB.D2T2 =-B1G[Dx1].B20
0iancezs HYR.51 fx0190, 43
azo6CEze || WVR.E2 fx0190 .04
0iacTove ADD,L1X AJEP.A2
OF30807E ADD. L2 B4,.80, B30
CAC42027 Af] [DB.DITZ s=-A17[0x1].H21
CO40B0A4 I A0] LDB.DIT1 =-B16[Dx4] 526
JEGDOZ5S [1BO] STH.DITY A2B.e+R24[020]
OEZ020%H ADDL L2 1.F8, 28
01pcTave ADD . L1X AJ.SP.AT
OEACBIEA ADD.E2 B4,SP,B29
CES421A1 | ADD .51 1.A21. M08
CE4198h8 || [AO] LDB.D2T2 sBle++[0x0].B22
BWSLE_Saft00_Decodersdash:
O0BED3AZ W .52 H2.E5R

Figure 4.13: The assembly code of Viterbi decoder (5/5).

68

MIOME ME ME M MT W NI MR M ME NI WE MI ME M ME M WE WM WE WD MI o WE M owE M
Ok K K Ok X K K K K K % K K K K K K K K K K K X ¥ K ¥

Loop source line

SOFTWARE PIPELINE INFORHMATIDN

Loop opening brace source line
Loop closing brace source line

Known Hinimum Trip Count
Known Haximum Trip Count

Known Max Trip Count Factor :
Loop Garried Dependency Bound(") :
Unpartitioned Resource Bound
Partitioned Resource Bound(=)

Resource Partition:

units

units

units

units

cross paths

-T address paths
Long read paths
Long write paths
Logical ops {.LS)
Addition ops {(.LSD)
Bound{.L .5 .L5)

e o aa
C = — I

Bound{.L .S .D .LS .LSD})

A-side

14
5
13

[¢] (.L or .S unit)

15 (.L or .S or .D unit)

y
13

Searching for software pipeline schedule at ...

Figure 4.14: Software pipeline‘information for Viterbi decoder.

Table 4.5: FinalProfile of Convolution Code (Cycles)

QPSK | QPSK | 16QAM | 16QAM | 64QAM | 64QAM | 64QAM

Fucntion | rate 1/2 | rate 3/4 | rate 1/2 | rate 3/4 | rate 1/2 | rate 2/3 | rate 3/4

36 bytes | 36 bytes | 36 bytes | 36 bytes | 36 bytes | 24 bytes | 27 bytes

Randomizer 4447 4433 4453 4443 4448 3009 3352
Encoder 3124 4133 3137 4139 3130 2954 3110
Interleaver 3526 2360 ATAT 3169 19678 9854 9836
Modulator 3845 2556 10141 6993 9281 5066 4846
TX total 14942 13482 22478 18744 36537 20883 21144
De-modulator 762 462 4394 2926 2569 1627 1629
De-interleaver 3590 2396 4163 2786 6487 3243 3243
Decoder 337017 337571 336995 337635 337111 254305 275019
De-randomizer 4492 4508 4496 4499 4494 3010 3382
RX total 345861 344937 350048 347846 350661 262185 283273

69

Table 4.6: Final Profile of Convolution Code (Processing Rate)

P“);{Zizmg QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM
(kbps) rate 1/2 rate 3/4 rate 1/2 rate 3/4 rate 1/2 rate 2/3 rate 3/4
Encoder 19724 21361 12812 15364 7882 9194 10215
Decoder 832 835 822 828 821 732 762

Table 4.7: Final Profile of Convolution Code (Code Size)

Code Size QPSK QPSK 16QAM 16QAM G64QAM 64QAM 64QAM
(byte) rate 1/2 rate 3/4 rate 1/2 rate 3/4 rate 1/2 rate 2/3 rate 3/4

Encoder 1868 1684 2164 1980 2176 2284 1992
Decoder 4648 5012 5152 9516 6400 6684 6764

study and testing of the “enhanced direct memory access (EDMA)” mechanism of the C64x

chips, which is bypassed in the present study.

70

Chapter 5

Simulation and DSP Implementation
of LDPC Encoder and Decoder

In this chapter, we present some simulation results for the LDPC codec in IEEE 802.16e. It

contains floating-point, fixed-point simulation and DSP implementation.

5.1 Performance in AWGN Channel with Floating-Point
Processing

5.1.1 Number of Iterations

The iteration number is a most important factor in the decoding algorithm. This number
affects the decoding accuracy and system complexity. A larger iteration number usually
leads to better performance. But the complexity and the and the latency are increased. We
compare the performance with iteration numbers between 10 and 70 for BP decoding of the

rate 1/2, length 576 code with QPSK modulation in Fig. 5.1.

In Fig. 5.1, the performance at 10 iterations is obviously inferior to other choice. We can
see that if the iteration number is more than 20, then the BER curves are almost the same.
To limit the decoding complexity and maintain a reasonable performance, we use 20 as the

iteration number in other simulations.

71

107ITDPC code BP decoding with Different Iteration, Rate 1/2, Length 576, QPSK
.. : —+— lteration 10

— —— Iteration 20
—*— lteration 30
—P— lteration 40
—<— lteration 50
—v— lteration 60
—4A— lteration 70

10 “F

107}

BER

10 " F

10k

10

Figure 5.1: LDPC decoding performance in different iteration numbers with floating-point
computation.

5.1.2 Performance at Different Codeword Lengths

In convolutional coding the codeword length -does not affect the performance. But LDPC
code is different. Fig. 5.2 shows the performance at four different codeword lengths at
code rate 1/2 with QPSK modulation and BP:decoding with 20 iterations. In Fig. 5.2, as
the codeword length becomes longer, the improved performance is obtained. The result is
not surprising, because at medium or short code lengths, the BP algorithm is not optimum,
owing to correlation among messages passed during iterative decoding [17]. For the codeword
length 2304, the coding gain is about 8 dB at BER 107%. This coding gain value is several

dB higher than convolutional coding as obtained in the last chapter.

5.1.3 Performance with Different Modulations

We compare the performance of QPSK, 16QAM and 64QAM at rate 1/2, codeword length
576, with BP decoding with 20 iterations. In Fig. 5.3, the coding gains of QPSK, 16QAM,

72

_{_DPC code BP decoding with Different Length, Rate 1/2, Iteration 20, QPSK

10 4 T T T T T T T
A Uncoded QPSK
—+— Length 576
102k —<— Length 1152 ||
—*%— Length 1728
—&— Length 2304
107}
x
w10}
m
10°}
10°}
10_7 I L I L L I L L I

Eb/No

Figure 5.2: LDPC decoding performance in different codeword length with floating-point
computation. y T

i
]
LDPC code BP decoding with Different Modulation, Rate 1/2, LengtH 576, Iteration 20
) E T T T ; T T T T T

T
— ¥ — Uncoded QPSK
—4— QPSK

— < — Uncoded 16QAM
—%— 64QAM E|
— B — Uncoded 64QAM
—*— 64QAM

2 4 6 8 10 12 14 16 18 20

Figure 5.3: LDPC decoding performance with different modulation employing floating-point
computation.

73

Table 5.1: Comparison of Coding Gain Between LDPC Codes and Convolutional Codes at
Code Rate 1/2 in AWGN at BER = 107¢

Modulation Type Convolutional Code LDPC Code
QPSK 5.62 7.31
16QAM 6.28 7.43
64QAM 6.35 9.32

64QAM are 7.31, 7.43 and 9.32 dB, respectively, at BER=10"°.

In Table 5.1, we compare the coding gains of LDPC codes and convolutional codes. The

LDPC codes are obviously better. They are close to Shannon limit [12].

5.1.4 Performance at Different Coding Rates

In TEEE 802.16e, six coding rate are defined for LDPC code, namely %, %A, %B, %A, %B
and %. In Fig. 5.4, we compare their performance under QPSK, code length 576 and BP
decoding with 20 iteration. As mat:be anticipated, the Best performance is obtained at rate
1/2. As the code rate gets higher, the pérformance gets worse. Note that the two curves
of %A and %B are very close, but still have some difference. We can explain why this little
difference exists from the point of view of “threshold” [32]. As the block length tends to
infinity, an arbitrarily small bit error probability can be achieved if the noise level is smaller
than a certain threshold. In Table 5.2, the threshold of 24 is only larger than that of B
by 0.012 dB. So, the BER curves are very close, and the curve for %A is a little better than
that of %B . In our simulation, these two curves really follow the threshold analysis. By the

similar method, we also easily explain the relationship between the two BER curves of %A

and %B.

74

LDFSC code BP decoding with Different Coding Rate, QPSK, Length 576, lIteration 20
10 T ; T T ;

—*— Rate 1/2
—<O— Rate 2/3A
—=— Rate 2/3B
—#*— Rate 3/4A
—&— Rate 3/4B
—v— Rate 5/6

1 0*1 — A

107k

BER
=
o

Figure 5.4: LDPC Decoding Performance in Different Coding Rate (floating-point).

Table 5.2: Threshold for Each Code Rate under BPSK Modulation in AWGN Channel [20].

Code Rate Threshold
1/2 0.9273
2/3A 0.7282
2/3B 0.7163
3/4A 0.6358
3/4B 0.6446
5/6 0.5607

75

LDPC code decoding with Different Algorithm, QPSK, Rate 1/2, Length 576, Iteration 20
T T T

—&— Normalized BP-Based Decoding with a=1.125|
—<— Offset BP-Based Decoding with =0.125

Eb/No

Figure 5.5: LDPC decoding performance using different decoding algorithm employing
floating-point computation.

5.1.5 Performance of Reduced-Complexity Algorithm

In chapter 2, we discuss some decoding algerithms with reduced complexity than the BP
algorithm. In Fig. 5.5, we compare the performvance of four algorithms at code rate 1/2,

length 576, QPSK modulation withi20 iterations.

As expected, the min-sun algorithm is-ebviously” worse than the other algorithms. The

reason also been discussed previously in chapter 2.

The other two reduced-complexity algorithms, offset BP-based and normalized BP-based,
have even a slightly better performance than the BP algorithm. These results are not sur-
prising, because at medium or short code lengths, the BP algorithm is not optimum. This
is because the number of short cycles in their Tanner graphs influences the BP decoding
performance which depends on the amount of correlation between messages, and the two
reduced-complexity BP-based algorithms seem to outperform the BP algorithm by reduc-
ing the negative effect of the correlations [17]. The normalized BP-based algorithm slightly

outperforms the offset BP-based algorithm, but may also be slightly more complex to im-

76

Table 5.3: LDPC Coding Gain between Floating-point and Fixed-point in AWGN at BER
= 107°.

Julati Floating-Point Fixed-Point 12 bit Fixed-Point 6 bit
Modulation | ¢y 4ing Gain (dB) Coding Gain (dB) Coding Gain (dB)
QPSK 6.58 6.17 5.17
16QAM 7.36 5.89 4.66
64QAM 8.75 6.71 4.65
plement.

As a result, we choose the offset BP-Based algorithm for DSP implementation. The
structure of the algorithm also makes the conversion from floating-point to fixed-point com-

putation easier.

5.2 Performance in AWGN: Channel with Fixed-Point
Processing

In the above, we select the offset BP-based algorithm to convert the floating-point value to
the fixed-point value. By multiplying the original floating-point values by 1000 and rounding
the result to integer. Then we use 12 bits to represent this result. Note that we only change
the number of bit in the decoder input. We fix the integer part in 4 bit and change the
fraction part bit numbers. But the precision of intermediate results decoding computation

is still 16 bits.

In Fig. 5.6, we compare the performance when bit number used in decoder is between 5
to 12 for offset BP-based decoding at rate 1/2, length 576 and three different modulations.
When we use 8 to 12 bits, the BER curves are almost the same for QPSK, 16QAM and
64QAM. For QPSK, the BER curve when we use 5 bit, is in our acceptable bound. But in

7

LDPC code Offset BP-Based decoding with B=0.125, QPSK, Rate 1/2, Length 576, lteration 20
3 T T T T T T T

— & — Uncoded QPSK
— ¥ — floating-point
—<— fixed-12 bit
—— fixed-11 bit
—+— fixed-10 bit
—#— fixed-9 bit
—=— fixed-8 bit
—o— fixed-7 bit
—o— fixed-6 bit
A {| —=—fixed-5 bit

LDPC code Offset BP-Based decoding with B=0.125, 16QAM, Rate 1/2, Length 576, Iteration 20
’ T ! ! ! ! ! ! ! ! — 4 — Uncoded 16QAM
— ¥ — floating-point
—<— fixed-12 bit
—— fixed-11 bit
—+— fixed-10 bit
—— fixed-9 bit
—<— fixed-8 bit
—6— fixed-7 bt
—6&—fixed-6 bit
—e— fixed-5 bit

LDPC code Offset BP-Based decading with B=0.125, 64QAM, Rate 1/2, Length 576, lteration 20
J T T T T T T T T T T

— A — Uncoded 64QAM
~ v — floating-point
—<— fixed-12 bit
—— fixed-11 bit
—+— fixed-10 bit
—#— fixed-9 bit
—<— fixed-8 bit
—6— fixed-7 bit
—o— fixed-6 bit
—e— fixed-5 bit

Figure 5.6: LDPC decoding performance at different bit numbers with different modulations
employing fixed-point computation.

78

LDPC code Offset BP-Based decoding with f=0.125, QPSK, Rate 1/2, Length 576, lIteration 20
T T T

— A& —Uncoded QPSK
— ¥ — floating—point

r —<+— fixed-12 bit
—— fixed-11 bit
—+— fixed-10 bit
—— fixed-9 bit
—v— fixed-8 bit
—<— fixed-7 bit
—6— fixed-6 bit
A —8— fixed-5 bit

Eb/No

LDPC code Offset BP-Based decoding with =0.125, QPSK, Rate 5/6, Length 576, Iteration 20

I
! ‘ F g ! ; 1 , ‘ -ac Uncoded QPSK

£ : gy, EIE o o | — ¥ — floating-point
[- L2) —<— fixed-12 bit

- —— fixed-11 bit
—+— fixed-10 bit
—*— fixed-9 bit
—— fixed-8 bit
—<— fixed-7 bit
—o— fixed-6 bit
—&— fixed-5 bit

P

7

7/
h|

Figure 5.7: LDPC decoding performance at different bit numbers at two different coding
rate employing fixed-point computation.

79

LDPC code Offset BP-Based decoding with f=0.125, QPSK, Rate 1/2, Length 576, lIteration 20

T

T

F — A —Uncoded QPSK

— ¥ — floating—point
—<+— fixed-12 bit

:| —=— fixed-11 bit

- | —+— fixed-10 bit

| —*— fixed—9 bit

|| —5— fixed-8 bit

¢| —6— fixed-7 bit
—o6— fixed-6 bit
—8— fixed-5 bit

AL
7E 3
E SAL E
[~ i
\A\
~ =
E A 3
E < E|
£ J]
[A]
[~]
~
® =
E N 3
3 <]
£ N]
i A]
<
7o S
£ N
F \ N
N\,
- \ A
e v fE
)8 I I I I I I I I
1 3 4 5 6 7 8 9 10 11
Eb/No
o LDPC code Offset BP-Based decoding with f=0.125, QPSK, Rate 1/2, Length 2304, Iteration 20
) T T T T T T T

— & — Uncoded QPSK
— ¥ — floating—point
—<+— fixed-12 bit
—— fixed-11 bit
—+— fixed-10 bit
—— fixed-9 bit
—v— fixed-8 bit
—<— fixed-7 bit
—6— fixed-6 bit

E ot
[—&— fixed-5 bit
L A - <
L i &

» e 4
E A]
L <]

4 A

) N E|
£ A E
[N]

<
[A]
L N]
N

Y % : B
E < 3
£ N]
[N]
L A\ 4
L N]

_ N

”E PR
E: N |
[N
[v]
L N

)7 I I I I I I I I
1 3 4 5 6 7 8 9 10 11

Eb/No

Figure 5.8: LDPC decoding performance at different bit numbers at two different codeword
lengths employing fixed-point computation.

80

16QAM and 64QAM, 6 bit is the limit that we can acceptable. Table 5.3 shows the coding

gain between floating-point and fixed-point.

In Fig. 5.7, we compare the performance between coding rates 1/2 and 5/6. When coding
rate is 5/6, the SNR need at least 6.5 dB to keep the performance better than uncoded QPSK
if we use 7-12 bit. 6 bit is the boundary that we can accept, that the SNR need more than

7 dB to keep the performance better than uncoded QPSK.

In Fig. 5.8, we compare the performance between codeword lengths 576 and 2304. As we
discuss above, when length is 576, 5 bit is not enough. But in long codeword length, the BP-
Based algorithm is optimum. For the codeword length 2304, it has very good performance.
Then, we can also use 5 bit to implement our decoder. The performance just less 1 dB than

we use 6 bit to implement.

5.2.1 Profile of the DSP code

Encoder

First, we optimize our code and showsthe profile. In the case, codeword length 512 and code
rate 1/2, it need 21715443 cycles to encode ‘onie block. However, the speed performance is
awful. As we discuss in chapter 2, LDPC encoder needs to compute the shift size and do the
circular shift. Coding one block, it uses circular shift 1002 times at rate 1/2 and codeword
length 576. In Table 5.4, 96.3% execution time expends on doing circular shift. In Fig. 5.9,
we show the C codes of circular shift. In Fig. 5.10 and 5.11, show the assembly codes of
circular shift. At every codeword length, the value of “ZZ” is known. Then we can calculate
the circular shift value and compute the circular shifted matrix by ourself. Now, we reduce
the C code about circular shift and compute the p(f,4,7j) initially. We write the circular
shifted matrix into a table. The encoder reads circular shifted matrix from the table. In

Table 5.5, it just needs 812491 cycles to encode one block.

81

Table 5.4: Original Profile of LDPC Encoder (Cycles)

Processing Rate
Areas Cycles Percentage (%) ! (kbitlsr}gec)
LDPC Encoder 21684592 100 13.3
Circular Shift 20881567 96.3

Table 5.5: Profile of LDPC Encoder with Matrix Table (Cycles)

A Cvdl Processing Rate Improvement
reas pAs 5 (Kbits/sec) (%)
LDPC Encoder (Original) 21684592 13.3 N/A
LDPC Encoder (with Table) 812491 354.5 96.3

Table 5.6: Profile of LDPC Encoder with Different Coding Rates
Coding Rate

Profile 1/2 2/3A 2/3B 3/4A 3/4B 5/6
Cycle 812491 482041 477639 316731 319386 1748774
Processing Rate (Kbps) 354.5 597.5 603.1 909.3 901.7 1646.9

82

vold circular shiftiint I[][zz].int HH[][zz]. int shift_size)

{
int row,colu;
int temp=0;
for(row=0;row{zz ; rawt+t]
1
for(colu=0;colu{zz;;colut+t)
d
if(shift_size==-1)
HH[row] [colu] =0;
else
d
temp=colu+shift _size;
while(tempZz=z<0) temp=temp+zz;
while(temp >= zz) temp = temp-zz;
HH[row] [temp]=I [row] [colu]:
b
t
¥

Figure 5.9: The C codes of circular shift.
Table 5.7: Profile of LDPC Decoder with different Coding Rate

Coding Rate

Profile 1/2 2/3A 2/38B 3/4A 3/4B 5/6
Cycle 37714286 . 56177704 58141064 76294841 85273741 93146880
Processing Rate (Kbps) 7.6 . 5.0 3.8 3.4 3.1

In Table 5.6, we show the profile with different coding rate when codeword length is 576.
In this case, when the coding rate is higher the cycle number is more. Because it need to

compute more parity bit, and it need more computation complexity.
Decoder

In this subsection, we show the profile of the LDPC decoder when codeword length 576 and
iteration 20. Table 5.7 shows the execution speed and the processing rate of our LDPC

decoder on DSP. In advance, the LDPC decoder is more complex.

In our code, coding rate 1/2 and codeword length 576, doing one iteration need the loop:

83

void circular_shiftiint I[][zz].int HH[][z=]. int shift_size)
{

D0ono400

cireular_shift:

000D0S00 OIBCS4FE STw. D2T2 B3,#5P-—<[0x2]
Do0DO404 O980A359 HVE.L1 O.A1%
00OpO408 Q2981FDE || OF. L2X 0:AG.BE
QoaR040c 041016R1 || OR.51X 0.84.A8
Qoop0410 D49008F0 || 0OR.D01 0.A4.A5
int row.colu;
int temp=0:
for{row=0;row!{zz ;Tow++)
0oobo414 GBB0AISE MVE.L1 0.A17
ooopo4re 03800028 MVE. 52 Ox001B,B7Y
0GOD041C 03441FDA OR. 2K 0.A17 .86
QooDos2e Pwsls. carcular_shift__ FPA24_ aT1i5175E:
00ODOszZe 08803050 ADDE.S1 95, A17
0oopos2C ODIFFOGS SUB.L1K B7.L.A0
QU0DOS30 039FEOSA SUB.L2 B7.1:.B7
00000534 CRCOALZ] [AQ] BEHCP.51 L1.5
?UUDHEBE C3441FDA || [AQ] OR.LIX O.AL7.BB
for(colu=l:coluizz :colu++)
0oODO420 L=
DOOD0420 03B0AISE WVE L1 O:AT
0oopos14 MWsLEs_sirenlar_shift__FPA24 iT1151758;
goon0sS 14 GIFCZ0S9 ADD.L1 1.7 A7
0oODOS18 01B00C29 || MVE.51 Ox0018,A3
0OODOS1C 031BBGSA || ADD.LZ {.56.B%
00000520 DODCEAFR CMPLT.L1 AT AZ.AD
0o0nns2d CEC1AL20 [A0] BHOP.S1 IWSLE circular shift FPA24 1T11525E,5
A {

if (shift_siZé==-1)
ooopo424
0DODo424 OOETEASA
00000428 203BA120

%

wsles cireular_shift FPAZ4_ATIS25E:
CHPED.L2
{ BO] EMOP.S1

EFfshiFt_size <)
{

HH[row] [golue] =0z

-1,85,80
DWSLs cireular shift_ FPA24_1TI1S16SE.5

oooposes Dsls_ eircular_shifr FPAZ24 (iTI1iS165E:
000pOS0C 01931078 ADD.L1IX A9.BEB.A3
00000510 09820274 STW.DIT1 Al9, =+ {0x0)

)

wlae

£
temp=colu+shift_size;
poooDo4g2c DwsLs. circular_shift FPAZA 1TI1:S535E:
000R043 09193078 ADDLLIX AY.BE.ALD
00000430 0BI4F078 ADD.L1X A7.B5,A16
AREIEST fcolueshi Fr_size)trr W AR « BRI — =B TE
while(tempizz{0) temp=tamp + ZTZT:
000D0434 D0OFSCIL B.51 _remi
000DO438 02400F08 || OR.L1 DL.AlE. A4
0O0DO43C 02000024 MVE .52 Ox0016.84
00000440 01816162 -ADDEPC .52 RLO.B3.3
Q00D0444 RLO:
00000444 OO120BDE CHMPGT. L1 0.44.40
00000448 DOOEA120 [lAO0)] BNOP.Z1 DWSLS eireular_shifr_ FPAZ4 1TI1158%5E.5
goopo4a4c Wsls circular shift_ FPAZ4 1T1i555E:
00oDo44C 000F5B13 B.52 _remi

Figure 5.10: The assembly codes of circular shift (1/2).

84

ODODO4S0 GEOOOCSD | | ADDE.SI 4RI

GoODO4S4 Gooo400h Mop
Gonbo4sa WELS mitoular_ lhil’t,__ﬂ'.hai iT14565E
OBODO4SE DLE90167 ADOEPC B2 BL1 E¥.0
SOORO4SC 02000028 MVIR.53 Gx 0018 B4
ODoL0O4sn GIA0OFDE | OF. L1 OD.ALS. A4
EEEEE*E‘ G 1 O ORES b CHRFGT L LT

464 001 L1 Wkt
oophO4ba CEFEJL1ZI Ab| BEOE.S52 els cireular_snift_ FPAM_IT1PSERE.]
ooGDosec CEOOOCSD || [A9] ADDE.S1 T4.A18
O0OD047D COOFE41D ARj B.51 _remi
CROD04TS ADDG400D R 3
while{temp 3= 23] temp - temp-33i
GLODO47E DWets oiteolar_shift FPAZY iT11585F:
DOGHOATE GOBEAARS GHPLTLL AMEAIRD

5 1

OpopO480 COLENLID [AD). BMOPR.51 PSS eireulas absfe_ FPAZ4_AT1:51%5E.5
CoODO4ss Msis eirculor shidt. FPAZE 1T1i593E:
GRODO4Rq TI400FDa OR.LT oL.AiD . A4
DOODO4SE 04D403E2 || WyC, 52 c5R.Ba
OOHODO4E0 G4AICFSE MTLLE ~5.068.8%
COODDASD B2 LI0a00 | | BUE.DL A4, 018 84
HOODO494 ODOOREED CMELTILE AALRY . AD
0D0b04Ac SandnsAZ || Wi 82 3
GO0DO4AD WSLﬁ_plrr:ulnr shifs _FPAS4_1T1iSI05E:
Shosoms soommat? M1 B T o

dhd 021 1 1 1R A4
BoODO4RE DOOOGEED || i'Al‘.'] CHFETHLLY Ad R A0
GOODO4AS DOOUGATI TAD) B.S52 Ls _
LooRoaled 0213091 || SUB.DL A G 18, AN
DOODO4%q DOOCESFRE |) [iA0] OCHPLTO.LL Ad A3 AD
Ooongess GOOO0&813 VAD ;ﬁ:’m hb SR

; 40018,

fooDadhe 02130%C1
o0ohadcd pOoCREre [[lad] CHPLIULLL L E IR L
WUOEd4eY noaag41d [1kO] B.8E L&

AOOnG4TE 02130901 || H, D1 Ba 010, Al
‘DOODORCS DODCREFE || |TA0) CMPLTULLY AL AR
NOODGAnD B2401F0E oR. L2 0,414,384
OO0DGAGE DODAO4YS || [i1AD] E.E2 LE
DOODO4DE D21304C1 || SUE.DY A%, 0x18,04
Qmopgels POOCHEFE LI [LhO] CHPLTIR LY kT AD
ooDgEED Liz

QOODGAED B21509C3 Sum.pe B, e 1.0
QOOOGAEA DOOQOQLE || QYAD] B.SE L&

oooba4qEs BoooesEs) (rA0] CHMELITE L1 A ADLAD

0oo0QaEs paidgscn |} St A4.0e1d. 84
Qoobasro DweLe eircular shife FPAX4 iT14S1486:
000DGEED DOAGOIAT HVL (EF BE.CER
ROODGErs DE101EDE ORLLIE D.B4 AL
HH[row] [m]-![mllﬂmn] i
00aD0AFE WELS rivoular unn_,,nu A ATHIGI%SE!
goangaFa oooDarae BEF .55 PHELS_piroular shift FPAL AT1ASITEE 2
QOOEgaFe | DIC8EdEd || LEM. DT el 18 Bub] AY
aoapoEnD 02461040 ADTRA . D E AT ALTRGAL
aoonos0d 02110078 MO L AR A
. OOOGE0E 01900074 STW T FERL LT ik
)
i
|BE0DOS3c DWskS carcular shify FPAR4 _iTIiB185E:
DOODOSAC O1BCLIEG LIW.DZT2 =++SP[0x2] .03
DO0Op0%40 0000000 Hap 4
[DEEEES44 DOBCAZEE BMOP .52 B3.5

Figure 5.11: The assembly codes of circular shift (2/2).

85

for (i=0; i<{N; i++)
for (j=0; j{code_node size[i]: j++)
{
code_node_pil[i][j] = 0O:
for (1=0; l<code_node_size[i1]; 1++)

i

aux = code_node_index[1i][1]-1:

if [aux != (code node_index[1][j]-11 1
1
o Compita Iadex m” of massaye frowm ofildran
m = 0;
while { ((check node_index[aux][m]-1) I=1)

& [m < check node_sizel[aux])) mt+;
code_node_pil[i][j] += check node lambdal[auxz] [m]:
H
¥

code_node_pil[i][j] += 1lrpl[i]:

if (code_node_pil[i]
code_node_pil[i][]

¥

[i] € —30*affset)
] = —30*affset;

Figure 5.12: The C code of computing form check nodes to bit nodes.
o 288*N(m)*N(m).
o 576*M(n)*M(n).

o 576*M(n).

In Fig. 5.12, we show the C code which computing the value from check nodes to bit
nodes. In the code. There are 576*M (n)*M (n) loops. 576 is the number of bit nodes and 288
is the numbers of check node. M (n) means the number of check nodes connected to bit node
n and N(m) denotes the number of bit nodes connected to the check nodes. The loop in one
iteration is depended on M (n) and N (m). However, in coding rate 1/2, M (n) is more than 6
and N (m) is more than 3. It means that there is more than 288+ 6%6+4576*%3+3+576%3 =
17280 loops in one iteration. In one loop, it should execute the bit node value or check node
value, read value from memory, and a little stall or NOP cycle. We approximate 90 cycles in

one loop and it need about 90 x 17280 = 1555200 cycles in one iteration. So, it needs about

86

Table 5.8: Final Profile of LDPC Code (Code Size).

Code Size (byte)

Encoder 6028
Decoder 2688

31104000 cycles after 20 iterations.

In Fig. 5.13, 5.14 and 5.15, we see the assembly code which computing the value from
check nodes to bit nodes. The parallelism is not good. We see that in our code, the value
in check nodes and bits nodes are read from memory many times. Reading memory costs

several cycles and reduces the code parallelism.

In Table 5.8, we just show the code size of encoder and decoder without randomizer,

interleaver and modulator.

87

Tor [i=0: i< 1e=

H0GEDOREE

000DOA38 DATEFZZD
DO0ODAASE 00440029
000D0A40 0900A358

goopoc4s

GooDDC4e OCEC0EDSD
QooDDCAT DlE4B0ZD
QOODOCED DU4E2340

G0QDOCS4 OOOFOAFS
DoGDOCSE CEE1B121
GOODOCE: DIO48428
DO0DOCED DEEDOOSA
DOODDCEY. DERTRATA

For (j=0: jicode_node sizefi]: j++

g‘-'I‘ELE LOPE. !hm:d-t FiPsHI1EToPeTFT2PAG_1PAG 1 BAG STIPAT _1PAT_s1PAT 15405E:

ORffEfEfod.B1R
| H"-'?' ﬁl OxffErOR0, 26
| | MVEL LY 0.A18
PWsLs_LDPC Decodar_ FiPiNTIFTSEeTTT2PAG_APAG i PAE_IT2PAT _LPAT_1PAT_15555E:
ADD.LE A4 A24
I MVE. 51 0x0900.A3
I ADD. D1 ALE Dxl.Al8
CHELT . L1 AZ4.AZ AD
[&0] EHOP.B1 DRElS_LDPC_Decoder FiPiHIITISPTFISPAG 1FAE_1PAG sTIPAT.
[] [MAG] MVE:S: fx0305 . 654
|| [1AD] ADD.LZ 8.80,B9
[tAG] ADD.L2 B4,5F, B8

ON0ORDAL4 DWSLS_LDPC Decoder_ FaPiHRIETEPST7T2PAG 1 PAG 1 PAE_1TePAT_APAT _1PAT_15415E:
QDDDOAAY DIB4BYED L. D2T1 =:SP D484]R3
DOODTA4S 00004000 Hp 3
Q0OD0A4C OFB4EGET Liw.GETl *SP [Q246G [.ATL
GO00OASD D1SE4AG4 LDW.DITI b I [A1B] LA
g0abdASd 0000EG00 HGP 4
000DDASE D1B00C2S MYE.51 Oz0018,4A3
Q00UDASE DODCOADS CHPLT.L1 D.A3.AD
DOODRAED DOFAELZL [1AS] BEROP.SI] Wsle LDPC Decoder FiPiNZ IITOP=TTTIPAL s PAG L1FAE TIPSR
ONODDAGE DBE4EESTE || MPYLI ;M1 AJ.AIB AZI:A22
COODORGE C2IF1RFE || [AD] ARD.LIX A4 EP A4
OUOQDARS DIDEEDTE. RO .LY AILLAZ2.AT
ONODORTO DCO00000 HOP
o0a00ATe ' DWeLS_LDEC_Decoder_ FAPiN21ETSPRTTI2PAE_ iPAG_LPAE_ A T2PAT_1PAT 3PAT_1542SE:
GoonhaYd OCRLOG59 ADD.L1 B.A4,A55
ORODOATS GEDEDGAL. || OR.S1 0.A22.A423
DODOOATD D40P9058. || SuB L Ad.4.88
CODDDABD DABRANSA HVE.L2 0.B17
DoopoCee DESERGSE ADB.LL 4 AZE.AMZ2
QOORDCET O1EAR4ED CDW.DIT1 5P 0x484].AT
Onopoc3o D8C4AZ05A. || ADR.L2 1L.BI7.B17
DOOD0C34 D@00e000 O i
Q00DOCIE DI1GE4REA LD . BITL =iAIAIHT LA
o00pocac 0006000 HaE 1
onOnOC40 QO0EIREA CMELT. L2 BI7.A3,B0
COOBOC4S TESINIZD [BO] BHOF.S3 BWSLS_LORC_ Decoder FiPiM21ETSeTTTIPAG sPAG_ s PAG 1 T2ER
{
code_node_pil{i][j] = O:
ooOPOoAAY Mwals LDPC: Dacoder_ FiPiW2IFTSESTTT2FAG 1 PAE iPAE A TIPAT A PAT_1PAT 15435E:
DODDOABR4 D2O0RAIGA HVE.L2 0.5
DOOROREE D2203IZFE SIW.DIT2 B, =++BA[0x1]
for (1=0: licode_pode_siza[i]: I'Hl'r
000DCART D1B4S4EC EDw.DJTL *+«5F[Oxd4B4]| A3
O00EORS0 D20485EC LIM.D2TL =8P [ed465] A4
OO00BOASS DO0Qg0E0 Hap 3
OODDOASE O1AE4ba4 Low. DiT1 seAI[A1IE] AT
OO0P0AST DOOQ00D0 WF _
OOUDDAKD- D292EQ7E ADDLLL A23.A4LAS
O0000AAY DO0000a0 HOF
OO0PORAR DE172I05A 5UB.LEC AS. 4. B1E
OO0D0AARD DOOCOADE CMPLT.L1 D.A3.AD _
0O0EBOARBD DOSEALZ] [tAD} BNOP.51 DWSLE LPPC _Decoder FiPaH2IETSOST7IZPAE _LPAE_APAR_1T:
000DOAR4 CORACO7E |1 1 AO] -ADD.L1 A22 A4 AT
Qo0DOABE Iwels [OPC_ Decoder _FiPFiH21ITSPeTYI2PAG_tPAG_IPRE_LTIPAT LPAT_APAY _1S445E:
NoObokEE 04968350 HVE.L2 0.E9

Figure 5.13: The assembly code of computing form check nodes to bit nodes (1/3).

88

DODDOABC OEQDADISE || HVE.L1 0,428

Ooopocao Dwsls EDPC Decodey_ FiPiNi2 IITSPsT7T2PAG_LPAG L PRE IT2PAT_ sPAT_iPAT _15535E:
000DECO0 DE7OZ0S8 ADD L1 1. AZB.AZE
0Q0DDCod NOTOEEER CHMPGT L1 AF AZEAD
OA0DOCOE CFENALZE [AO} “EMOP.E1 DHSLS_LDEC hecoder,_ FiDiM21rTSBeTrTIOAS_{BAG_{BAS_§TS
il.l.! = code_pode_index[i][l]-1:
[aRa]agaletAndu] TWSLE LDPC Decoder: FiPINZIFTSPETTIZPAG _1PAE 1PAG A TOPAT _APAT 1PAT_15455E3
QODDBACD DZ4032EG LoW . DEIT2 #++xB1E[0%1] . B4
QOODeATY ODODEDGO Hop 4
ODODOACE GA1IEDSA SUE.L2 B4.1.ER
iE [oadw 1= l:md-_mh_induu] [:_I] 1] 1
OOOTOACT 02600264 =aAT7[Mx0], 84
NoanoAR0 GOO0&0O0 HDF 4
DOOToRD4 GOI09KTE CMPEDR . L1X &4,.84,A0
OODDoARE CDS0ALZ0 [AD] BMOP.E1 DISls LDEC Dedoder_ FIPiMZIETSPETTTIPAE LFAG_iFAGE 1L
i
£ Compabe Joder W oF megsage Ffrom cAildoes
L. H
DOODOADE twsls LOPC Dmcodwr_ FiBiMZIfTSPeTrTI0AS 1 BAG_iEBAE_ITIPAT 1PAT 1BAT 15485Eq
ooopoADS DIBDARSR HVE.L2Y 0.87
while { (:hl:k_nndl__indu[a“] {l:] & L
QODODIKED 02 90ACHKZ B4 . 0x5.05
DDCDGAES DT 14902 MA“ p2 DE.B4.B4
OOODOAER 02124074 ADDLLE Bi8,54.54
DOODGAEC 02118074 ADD L2 Bi2.B4.B4
DOODEATOD 0210026 Ltow.paT2 =B 0x0] . B4
OO0ODaBE4 OO0O00DENG0 Rop 4
OoonDaFa 01CRG2FA SUB LK B4, A18, 43
DonDORFC 0O0C2ASE CMPED.LI 1.A3.4A0
DoopOB0n Jo3salill [AU} BHOP.51 WSLS_LDPC Decoder - FiPiNIIFTSPeTTTIPAG_iPAG 1 PAZ
ODODOEDY DEODODAL || 1A MV DY ORET ')
0B0B0E0S - D29a1FDe || [1A0 OR.LIX 0.Bb.ALY
OOODOBOC DZACCAEE || {[lAD] LIW.DZr2 m+B11[EE].BE
Do0pOE10 DOS4EAEA MPLT. L2 Br.BS.8]
UEOD0ELY Dwals LOPO Oecoder_ FiPtH2IETSPSITIZPAE iPAG_LPAG sTIPAT iPAT_iPAT_31547SE:
030DOE14 0D0ODAISS MYE.L1 0.Al6
oopopOo=16 0312161) OR. D 087,48
DHODOB1C 4E80CACAL]r [Bl) =HL.51 A9, 0x5.A17
QRODOB20 D20493EC || LI, DaT1 weSP [Oxd21] .44
OOOROEZ4 43103055 [Bl ADDLLIX 1.BT.RE
ODODOBZE - 484670CL || | B2 SUBAW. D1 AET.A15.A16
OODROE2C Q4G0Q0028 || HVR.51 Dz 0000 . AT
DO0DOBI0 4400004 1 I Bl MDAW b AIE RB AT
OB0D0ES4 OA00RE58 || HVE.L 0.A8
OR0D0E3E 44913078 [B1). ADD. LiH AY.F12.88
nonpaEIc WL LIFC Decodar_ FiPiNZ I TSPSTITIPAG 1 PAG_LPAG A TZPAT_iPAT_1PAT_15365E:
DOODOB3C O360AS5S THVELL1 O.hT
OODDOBA0 43M00264 || [Bi] LIW.DITI wa B 0x0] A7
DBOD0ESd DO0DOOGO a3
oopooB4e Q3R403ES WV BT CSR.B7
DODD0EAT 0O04A358 WVE.LE 1.680
OOOGOESD OR3GLFDS || OR.LIX D.B1Z.AZ0
0B0B0ESA DIIFCTAZ || MID.SZ =2,B7 B&
paOboEsE OadbAsse MVER.L1 0.AS
0oOpROESC 0104A358 | MV L2 182
oa0EnBaeD QADOOOZS | HYE.51 Ox0080,4821
LO0DOBA4 O19B0BEL || OR.D1 0.k A3
0oDpOEsR- 02181683 || QR. DL 0.A6.B4
DDDDOBET DOOBOZAZ || HViC.52 BE.C5R

Figure 5.14: The assembly code of computing form check nodes to bit nodes (2/3).

89

OoOnoBE?0 L25:

DOOBOBEY0 D3040K5H CHPED.L2 0. B1.86
DOODOET4 42C8ECERE | [81] SuB.Li1 AT R18,A%
000DOBTE 42 142A%59 [Bi] CHMPER.LI 1AS, Mg
ODODOETDY ODCECEEEE || MPGT LK B5.A%.B1
DODROEE0 TASDOFOE [B0} OR.L1 0. A4.AZ1
0pODOBE4 48CCACAD () [§1] EBHL.S1 ALY DS ALT
D20DOBESHE 0010BFFE OR.LA 86, 5h4,B0
0OODOEAS 43182059 || | B1] ADD.L1 1, AR AE
OOOBOES0 48467000 |; [K1} Susaw.bl ALT.A19.A16
0OONOBSS - 2 100K35E I BOl MwE.L2 ob.B2
OB0B0E98. 44C00RC40 | [Bi] ADDAW.DL AIEAEL A
Da0DOB30 GFFFFELS [B2) B.52 L2S
0aODOBROD B2181FDB | B2] 9OR.LZ 0.A6,.B4
NOODORAG 44268072 || I 51} ADD.L) AZO.AD, AR
DDOPOEAR: 7000042 || ['E2] WVE.D2 0.8l
ODOD0EAD 4 3R002E4 [Bl] LDW:DITI *cRBI0X0) A7
0R0pOEED 000020060 woe z

000DOEE4 OO0BOFDE oR.L2 082,60
OeDDOEES O1980FDE || OkR.L1 O.Ab A3
OB0DOEES OG00a0GD wap

QoonoECo Iesls LDPC Decoder_ FiPiMN2 IfTSPsT7T2PAG_1PAS_1PAGS 1T2PAT_1PAT 1PAT_1550SE:
0f0B0BC0 D34C1FDE OR.LZ% 0,.A1%,.86
OODDORCY 009CTO3IAR2 || WVC .52 BT .CER
NpoDpOBECE D30D0FCE OR. L2 0.B4.87
RE0SOR0C DAR491ED |) EIW. DIl Al .=+5P[0x491]
DoOnGEDD Desolaa || OR.STK D-AZD.B12

B m < check_node_size[aux])) mes:
code_noda_pil[1][1] = chack_pode_lsmbdal[aux] [m];:

DeoDoBn4 IWSIE LDFC Decoder FiPiN21ETSPeTITIPAG APRG_ 1PAG 1TZPAT 1PAT_$PAT 15525E:
OOODOBD4 O21BACAZ BHL.EZ Bf, 05 .04
O0ODROEDE 02 10MCC2 SUEN D2 Bd4.BE.04
0B0D0B0D D2 10FT42 RODAW . D2 B4 ,B7.84
DODDOBED DIS4@4ED LUW.DIT] *+SP[0x4dB4] . A3
ODODOEE4 021 LA07A ADD.EZ B13.54.84
N2ODOREA 02 1002ES LOW.RITZ s+ [Ox0].B4
0oORORES 00002000 Hop 2 .
OpDBRoEFD D1GE4R64 LDW.DITL =:R3{ALE AT
OOOROEES QooOODnan HOp
OEODOBED: OaA480Th ADD . LZ Bd.B%.B9
DOODOBFC - 04AQ02E R 5TW.DaT2 B9.=+BE8[0x0)
}
]
mm_nnd-_pnuj{j] += Lhrplli):
ooopne DRsls_[DPC nu-:nd-r_ﬁrrmz:mr-m PAB_sPAE_IPAE_ITIPAT_APAT_1PAT_15545E:
unnr}ucnc 022002E7 LI . OETS =+BE{Ox0] B4
oaoboCin D1E402e4 || LbwW.DIT1 w25 [D] A3
a0000C 14 D000E000 HOE 4
oooDocis o1907ovae ADD . LLX A3.B4.A3
if {cod 11[1][3] ¢« —I0mofiswt)
auopocic D1AQOZES SIW . B2T1 K3, =+5i | 0x0]
000DOC20° DOESEAFS | CHELT.E1 A3 AZE AD
code_nede_pt1{i][1] = -30=offeet:
ooopoc24 cB2O02E4 [AO)] STW.DET1 A6 =+BEA] ODud)

Figure 5.15: The assembly code of computing form check nodes to bit nodes (3/3).

90

SOFTWARE PIFELINE INFORMATION

Loop source line

Loop opening brace source line
Loop closing brace source line

Known Hinimum Trip Count
Known Hax Trip Count Factor

Loop Carried Dependency Bound(™)

Unpartitioned Resource Bound
Partitioned Resource Bound{=)
Resource Partition:

A-side

-L units

-% units

-D units

-H units

-X cross paths

-T address paths
Long read paths
Long write paths
Logical ops (.LS)
Addition ops (.LSD)
Bound{.L .S .LS)
Bound({.L .3 .D .LS .LSD)

1

-0 oI m =@ @ W -

=
*

167
168
168

B-side

FNOCoDoo@Wo o =N

{.L or .S unit)
{.L or .S or .D unit)

Searching for software pipeline schedule at ...
ii = 11 Schedule found with 2 iterations in parallel

Figure 5.16: Software pipeline information for LDPC decoder.

91

Chapter 6

Conclusion and Future Work

This work contained two parts of IEEE 802.16e. One was the research in convolution code
and implementation on DSP of 802.16e for WirelessMAN-OFDMA. And the other was the

reduced-complexity decoding research of the LDPC code.

In the first part work, we first analyzed the Shannon bounds on coding gain and theoretic
coding gain based on minimum codeword distance in' AWGN. In our implementation, the
convolution coding gain in AWGN was less than theoretic value by 1 dB. When we converted
the floating-point to fixed-point, the performance was almost the same and we could just
use 6 bits to implement the decoder. Finally, the convolutional decoder required multiple
DSPs to run in parallel to handle the data rate under a 10 MHz transmission bandwidth.

But encoder could achieve the data rate 10 Mhz.

In the second part work, we first evaluated the performance of LDPC code and compared
the results with the numerical results. The coding gain of LDPC code was much better than
convolution code. Then we focused on several complexity-reducing decoding algorithm.
Therefore, these simplified reduced-complexity decoding schemes could outperform the BP
decoding algorithm. Then we converted the floating-point to fixed-point, and we could

use 6 bits to implement the decoder. In the DSP implementation, it could not achieve

92

the bandwidth 10 MHz both in encoder and decoder. LDPC code is more complex than

convolution code in our DSP implementation.

In the future work, we need to revise the coding algorithms to be fixed-point to reduce
the complexity for actual DSP implementation. In convolution code, the C64x is equipped
with a Viterbi decoder co-processor [30]. Using this co-processor may be helpful in raising
the decoding speed. But it use requires study and testing of the “enhanced direct memory

access (EDMA)” mechanism of the C64x chips.

In LDPC code, there are two possible methods to enhance our DSP implementation.
First, we may rewrite our code. We discuss in chapter 5, in our code, there are too many
loops to execute. These cost too many cycles and must read the memory many times.
Second, we have find some references. If we need further reducing complexity by other
decoding algorithms, [34] is one of the referencestsIf we need to remove the effects of cycles
in the factor graph to make the BP:decoding algorithim optimal or improve the decoding

performance, [35] is one of the references.

93

Bibliography

1]

IEEE Std 802.16e, IEEE Standard for Local and Metropolitan Area Networks — Part 16:
Air Interface for Fixed Broadband Wireless Access Systems. Amendment 2: Physical and

Medium Access Control Layers for Combined Fized and Mobile Operation in Licensed

Bands and Corrigendum 1. New York: IEEE, Feb. 2006.

Y.-P. Ho, “Study on OFDM Signal Description and Channel Coding in the IEEE 802.16a
TDD OFDMA Wireless Communication Standard,” M.S. thesis, National Chiao Tung

University, Dep. of Electronics Eng., Hsinchu, Taiwan, R.O.C., June 2003.

E. Zehavi, “8-PSK trellis codes for ‘a Rayleigh channel,” IEFEE Trans. Commun., vol.
40, pp. 873-884, May 1992.

H. H. Ma and J. K. Wolf, “On tail biting convolutional codes,” IEFEE Trans. Commun.,
vol. 34, pp. 104-111, 1986.

Y.-P. E. Wang and R. Ramésh, “To bite or not to bite — a study of tail bits versus
tail-biting,” in Proc. IEEE Int. Symp. Personal Indoor Mobile Radio Commun., vol. 2,
Oct. 1996, pp. 317-321.

W. Sung and I.-K. Kim, “Performance of a fixed delay decoding scheme for tail biting
convolutional codes,” in IEEE Asilomar Signals Sys. Computers Conf. Rec., vol. 1, Oct.
1996, pp. 704-708.

94

[7]

8]

[10]

[11]

[13]

[14]

[15]

[16]

J. G. Proakis, Digital Communication, 4th ed. New York: McGraw-Hill, 2001.

M. Speth, A. Senst, and H. Meyr, “Low complexity space-frequency MLSE for multi-
user COFDM,” in IEEFE Global Telecommun. Conf. Rec., vol. 5, 1999, pp. 2395-2399.

F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved
COFDM with application to HIPERLAN/2,” in IEEFE Int. Conf. Commun. Conf. Rec.,
vol. 2, 2002, pp. 664—668.

I. S. Reed and X. Chen, Error-Control Coding for Data Network. Boston: Kluwer Aca-
demic Publishers, 1999.

R. G. Gallager, “Low-density parity-check codes,” IRFE Trans. Information Theory, vol.
8, pp. 21-28, Jan. 1962.

D. J. C. MacKay and R. M. Neal,"*Near.Shannon'dimit performace of low density parity
check codes,” Electronics Letters,wol. 32, no. 18; pp. 1645-1646, Aug. 1996.

D. J. C. MacKay, “Good error-correcting-codes based on very sparse matrices,” IFEFE

Trans. Information Theory, vol. 45, pp. 399431, Mar. 1999.

S. Chung, Jr. G. D. Forney, T. Richardson, and R. Urbanke, “On the design of low-
density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communica-

tion Letter, vol. 5, no. 2, pp. 5860, Feb. 2001.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Informa-

tion Theory, vol. 27, no. 5, pp. 533-547, Sep. 1981.

B. J. Frey F. R. Kschischang and H. A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEFE Trans. Information Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.

95

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Chen, A. Dholakia, E. Eleftheriou, and M. P. C. Fossorier, and X.Y. Hu, “Reduced-
complexity decoding of LDPC codes,” IEEE Trans. Commun., vol. 53, pp. 1288-1299,

July 2005.

Z. Wang, Y. Chen, and K. K. Parhi, “Area efficient decoding of quasi-cyclic low density
parity check codes,” IEEFE Int. Conf. Acoustics Speech Signal Processing, vol. 5, May
2004, pp. 49-52.

J. Chen and M. Fossorier, “Near optimum universal belief propagation based decoding
of low-density parity check codes,” IEEE Trans. Commun. , vol. 50, no. 3, pp. 406414,
March 2002.

Y.-C. Chen, “Research in Channel Coding Techniques and DSP Implementation for
IEEE 802.16e OFDM and OFDMA,”s M:S. thesis, National Chiao Tung University,
Dep. of Electronics Eng., Hsinchu, Taiwan; R.O.C., June 2006.

Quizote Data Sheet. http://www.innovative-dsp.com /support /datasheets/quixote.pdf.

T.-S. Chiang, “Study and DSP inmplementation'of IEEE 802.16a TDD OFDM downlink
synchronization,” M.S. thesis, Department of Electronics Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., July 2004.

Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number

SPRU189F, Oct. 2000.

Texas Instruments, TMS320C6000 DSP Cache User’s Guide. Literature number
SPRU656A, May 2003.

Texas Instruments, Code Composer Studio User’s Guide. Literature number SPRU328B,

Feb. 2000.

96

[26]

[27]

28]

[29]

[32]

[33]

[34]

Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide. Lit-
erature number SPRU509D, Aug. 2003.

Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct. 2002.

Texas Instruments, TMS320C6000 Optimizing Compiler User’s Guide. Literature num-
ber SPRU187L, May. 2004.

Y.-T. Lee, “DSP implementation and optimization of the forward error correction
scheme in IEEE 802.16a standard,” M.S. thesis, National Chiao Tung University, Dep.
of Electronics Eng., Hsinchu, Taiwan, R.O.C., June 2004.

Texas Instruments, TMS320C64x DSP Viterbi-Decoder Coprocessor (VCP) Reference
Guide. Literature no. SPRUb533D . Sep. 2004.

S.Y. Chung, T.J. Richardson,and R. L. Urbanke, “Analysis of sum-product decod-
ing of low-density parity-check-codesuising a Gaussian approximation,” IEEE Trans.

Information Theory, vol. 47, no.”2; pp. 657-670; Feb. 2001.

W. Lin, X. Juan, and G. Chen, “Density evolution method and threshold decision for
irregular LDPC codes,” Int. Conf. Commun. Circuits Systems, vol. 1, June 2004, pp.
25-28.

M. E. O’Sullivan, “Algebraic construction of sparse matrices with large girth,” IEEFE
Trans. Information Theory, vol. 52, no. 2, pp. 718-727, Feb. 2006.

J. Zhang, M. Fossorier, and D. Gu, “Two-dimensional correction for min-sum decoding
of irregular LDPC codes,” IEEE Communications Letters., vol. 10, no. 3, pp. 180-182,
Mar. 2006.

97

[35] D. Yonggiang, Z. Guangxi, L. Wenming, and M. Yijun, “An improved decoding algo-
rithm of low-density parity-check codes,” IEEE Int. Conf. Wireless Commun. Network-
ing Mobile Computing, vol. 1, Sep. 2005, pp. 449-452.

98

o H

¥ % 0% 4p 8 (Po-Sheng Wu)

4 p 1982 £ 12 % 21 p
e I g £
i@ A8 75142455 4 (2001.9-2005.6)
Qi < BT F Y ATAR L (2005.9~2007.6)

FRT AR DK Mo i kB B BB R
< 4L P : |IEEE 802:16e OEDMA :if g il Hjie

Ul et N/ et N DA iy
(Research in and DSP“Implementation of Channel

Coding Techniques for IEEE 802.16e OFDMA)

	Cover_01.doc
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	IEEE802.16e OFDMA通道編
	碼技術與數位訊號處理器實現之研究
	 Research in and DSP Implementation of Channel Coding Techniques for IEEE 802.16e OFDMA
	研究生：吳柏昇
	指導教授：林大衛 博士
	
	中華民國九十六年六月

	Cover2_02.doc
	A Thesis

	Abstract_03.doc
	誌謝_04.doc
	Thesis_05.pdf
	Vita_06.doc

