if * >t JEEE 802.16e 2 802. 11n & & 2
FEE MBAER A AAEEE BRI EFIR

Design and Implementation of a Configurable
LDPC Decoder for IEEE 802.16¢ and 802.11n

EEERENL RN

By PlRE EL

- A - A

i * +* TEEES02.16¢ % 802.11n L2 ¥ e § (%A b =~

Design and Implementation of a Configurable LDPC Decoder for IEEE
802.16e and 802.11n

MoypoA DELE Student: Shih-Hsien Liu
IR RARA L Advisor: Dr. Chih-Wei Liu

Gl X S R Sl SR Y T S X

FA D3~

A Thesis
Submitted to Department of-Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National .Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Electronics Engineering
September 2007

Hsinchu, Taiwan, Republic of China

if * ** IEEE 802.16e 3 802.11n &3 2
FREMBAFCARABBEERIEIR

Ayt ELE hERE PR £L

&

Thw &4 - B4 > o * Y [EEE.802. 16e 2 802. 11n # % 2. 7 fie
BEMBRR R AEEMS e~ BIEA DNFTIT L B E 2 Ry T T2
ARG RE B @ B SRR A S AR - LA AT A RS ﬂ/é
43T E Bl v o AR AR Mo 3k R T T8 (early termination) -

B 3 7% $ 77 (multi-codeword“decoding) > #4212 % {5 B fF k& é‘fﬂ’]fsf%iﬁﬁ::}j%;
(post-layout simulation)

M2 RF A 58 (LDPCcode) E b Fen] PABH P 2.~ o BITFT 44
fEG e * % ﬁr «xF-“im%*-]“aL) 5]5,\? SRy EAE.d v RT T f—]@)
RAFERF 2R E BAE o - B and Mk Bdeiz = & TEEE
802. 16e &2 1 WiMAX fr 802. lln ﬂ—%mwm BEY MR AR Ak ﬁz,% % #
Bl LR il 4 o ARG - B AR % AR T >t 802, 16e 12 802. 11n ey
FABmERBE o

- B G ff (core size) 3 2. 14x2. 14 nm’ 278 BAAF A S T 0. 13 um
1P8M CMOS 8l 427 = & 802. 166“ 10 =cw BT v B RR T@ﬁi%li? % 590 Mb/s
2T F A 451 mWe A #& 802. 11n¥ > BB i# 3 4_506 Mb/sm # F i 4=
A_436 mW - %ﬁ%“é‘ i< 3% IF*F'\ F 3] 66 MHz (333 MHz:T & 2. -) > 12§+ & 802. 16e
ﬁx@@ﬁlif Feng f > 30 Mb/s > @ﬁ?]ii F'% % 42.6~118 Mb/st45 % F 78 &
AR o Loyt oAk 2 91 mWet¥ 802, 16e” > A5 5/6 0 B & 2304 =

;u/FHJZE_'-"T °

Design and Implementation of a Configurable

LDPC Decoder for IEEE 802.16¢ and 802.11n

Student: Shih-Hsien Liu Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis presents a fully compliant, configurable LDPC decoder for 802.16e
and 802.11n. A partially parallel architecture with scheduled row-update message
passing algorithm is designed to archive high throughput and decoding performances.
We discuss some topics, decoding_ algerithmi analysis and optimization, architecture
design and implementation, eatly termination, multi-codeword decoding technique,

scheduling, and post-layout simulation results.

LDPC code is one of best error correction codes. Recently, it engages much
research interest because of its sparse matrix and well decoding performance. Due to
its high parallelizable algorithm, the high'speed architecture is easy to be designed
and implemented. Some high speed communication systems, WiMAX based on
IEEE 802.16e standard and WiFi based on 802.11n standard both take LDPC codes
to provide channel correction ability. We design a configurable architecture for full
code rates and codeword lengths in 802.11n and 802.16e.

The decoder with a core size 2.14x2.14 mm” is implemented in TSMC 0.13 um
IPSM CMOS technology. It has a peak throughput of 590 Mb/s and power
dissipation of 451 mW with 10 iterations for 802.16¢ and a throughput of 506 Mb/s
with 436 mW power consumption for 802.11n. By slowing down operating
frequency to 66 MHz (one-fifth of 333 MHz) to meet required minimum throughput,
30 Mb/s for 802.16e, its throughput is 42.6~118 Mb/s for different code rates and
codeword lengths. Average power consumption is lower to 91 mW for code rate 5/6,
codeword length 2304 bits in 802.16e.

I

2+ 2
Y

oy 2 RS E RGO BT SERAEAKEAY T F e egr
hiefpimir FAd > A ERLER S A DFES > BLF AU ER o

FAORMELREF PR BRALLECRIET AL > [4
SR e, o B3 DSP-LAB eh& £ 42 ¢ » %"‘-‘ﬁw S P EEA ST RE)
A\grs:;ﬁ;rgﬁxrﬂm;fﬂ% e E g 3 \g@‘\ 2% vheko~ 3% ~ % jat M
I g Y EE s § R - F 5 T p il

B & R 3% OCEAN group 1= § i » % B EEfFadp g R 2T H
{‘ﬁﬁ§%‘$%§£‘Wﬂ\%ﬁ\ﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁfﬁ?%%yﬁ
7}5‘55@ Fgﬁi};@%ok}r’g—ﬁ?r\ N _g?; ix&‘@?‘c‘l'}”,ﬁ‘&ﬂﬂ '}lmu;
.,_,nbh’!§av-lz%:]’“\ﬁﬁim7fp)“/‘ RS IR S) B A I S

FAREF CELAA TR v BEF oOMEAEE o U2 S X F X
EHEFPHgzhd @G DBl - 2K -

&@ v B AT PRA D A ke e § W5 R o SRS P -
%ﬁ&%’##&“—ﬁiﬁ%&ﬁﬁwoﬁé;*@MM,K L sk

r%wgaéﬁﬁ%ﬁgiﬁﬂ~ﬁyﬂﬁ4’Kuw@fvﬂmuﬁ°

=
HiE AT
2007 4

I

CONTENTS

ABSTRAC (CHINESE) 1
ABSTRAC (ENGLISH) 11
ACKNOWLEDGEMENT III
CONTENTS v
LIST OF TABLES VI
LIST OF FIGURES v
CHAPTER 1 INTRODUCTION 1
1.1 OVERVIEW OF WIRELESS COMMUNICATION SYSTEMcceiiiiiiiiiieeeieeeeeiiiiieeeeeeeeeiiiieeeeeseesennnnneeeess 1

J IS\ (01 5 1Y/ & (6] [RSRRRT 2
1.3 THESIS ORGANIZATIONuvvvviiieiiiiittieeeeeeeeeietieeeeeeeeeeesaaseeseesseesaaresssesseasssasseeesssssssrrseeesessmssrrseeees 3
CHAPTER 2 LDPC IN 802.16E AND 802.11N 6
2.1 QUASI-CYCLIC MATRIX IN 802. FIN AND 802. 16E . .iie it et 7
2.1.1 Parameters FOr Q0 2. 1 Im ... o e i st i S sneeeeensnnnnns 9

2.1.2 Parameters fOr 802.10€cieiiu.. i iines bt dem son st seeeaessnaannnns 10

2.2 LDPC ENCODER METHODcccoeiie i ieiiisee e eeeueeeeesittansifaneeeeeeeeeesesseeseeeesesssssseseessssssnssnssssssessemnnnees 12
CHAPTER 3 LOW DENSITY PARITY CHECK CODE 16
3.1 CONCEPT OF LOW-DENSITY PARITY CHECK CODES ...uuvviiiiiiiiiiiieeeeeeeeeeiieeeeeeeeeinniaeeeeeeeessnnsaneeeens 17
3.1.1 Message Passing AIGOTIthImcc.ooiuiiiiiiiiiiiic e e 18

3.1.2 LDPC Decoding AIZOTithimccccoiiiiiiiiiiiiiieiieee e 25

3.2 OPTIMIZED APPROACH FOR HARDWARE IMPLEMENTATIONouvvviieiiiiiiiiereeeeeeeiiiiereeeeeeseennnnneeeess 34
3.2.1 MiIn-Sum AIGOTTRIMcouiiiiiii ettt 35

3.2.2 Row-Update Message Passing Algorithm..........c..cooceiveiiiiiiiniiniiiniiieeeeecee e 38

3.2.3 Trade-off between Decoding Algorithms and Code Structures.cecererereeeeienienennens 42

3.3 DESIGN CONSIDERATIONS......cctttuttitieeeeeeiiiuereeeeeeeiessereeeeeesenssaresssesseesssessseesssssnssrsseesssssmmsssseesees 43
3.3.1 NOIMAZAION FACLOT oottt et e e e e eeee et e e eeeeseeaereeeeeseesraneeeens 43

3.3.2 Bit Width fOr HArdWare COStoeeviiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeereeeeereeereeenenens 44

3.3.3 NUMDET OF TEIATION....eeeeteeeeeeeee ettt e e e e e et e e e eee e et eeeeeeeeaeeaaereeeseseesraeeeeens 46

3.4 IMPLEMENTATION ISSUE ...coiiiiiiiiiiiieiiee ettt e e et e e e e e aaaae e e e s s e esnaaaneeeeeseennsaaneeeeas 47
CHAPTER 4 ARCHITECTURE DESIGN AND IMPLEMENTATION 49
4.1 ARCHITECTURE DESIGNuuttiiiiiiiiiiiiieiee e eeeitie e e e eeeeaeee e e e eesaaaaeeeeeseesaasareeeeeessnsanaeeesessennnnees 50

4.1.1 DECOAINEZ FLOWeiiiitiitieiteieee ettt ettt st b e es e st et et esaeseeebeeneeneeneenean 50

4.1.2 Overall ArchiteCture DESIZN.......ccuiiuieeiiieiieieieie ettt sttt be et enee e eas 52

4.2 IMPLEMENTATIONcooiiiiiiuuieeieeeeeeiiiuereeeeeeeeesuaaeeeeeeeseesassereeesseesssssesseessessssseseeesesssnsassesseessennnnees 69
4.2.1 IMPLEMENTATION RESULTSoiiiiitiiiiiie ittt ettt ee et e e e e e e eaaaareeeeeesensaaaeeeeeeseenannnes 71
CHAPTER 5 SUMMARY 76
REFERENCE 78

LIST OF TABLES

TABLE 2-1
TABLE 2-2 :
TABLE 2-3 :
TABLE 3-1 :
TABLE 4-1 :
TABLE 4-2 :
TABLE 4-3 :
TABLE 4-4 :
TABLE 4-5 :
TABLE 4-6 :
TABLE 4-7 :

TABLE 4-8 :

PARAMETERS OF LDPC CODE FOR 802.1INooiiiiiiiiiiiiiiiienieeciteereenie e 10
PARAMETERS OF LDPC CODE FOR WIMAN 802.16Ecooooiviiiiiiiieeeiieeeieee e, 11
STEPS OF ENCODING METHODoooitiiiiiienieeniiienieenteesieensseesseensseesseessseessesssseenssesnsees 14

PARAMETERS SUMMARYcoooutitiitieiitentieteeteeseeseessesessesseeseessessassessessessesseesssssessessessens 47
COMPARISON WITH DESIGN [21] FORAREAcccccviiiiiiiiieeiieeeeeieeeeeieeeeeiveeeeavneeeeenneas 58
THROUGHPUT ENHANCEMENT WITH SCHEDULING FOR 802.16Eccc0eoeeennennne. 68
SUMMARY OF RAMS AND ROMS.......oooiiiiiiiiiiieniienitecit ettt 69
SYNTHESIS RESULTS.......cuteittientteiuiienteenittesteessteesseessseesseesssessseessseessseessseessseessseesssesnsses 71
SUMMARY OF MEMORYuuuteitieiiiienreentienteesiseesseessseesseessseesseessseessseesssesssseessseesssesnsses 72
SUMMARY SPECIFICATION OF LDPC DECODERcooitiiiiieniieiiienieeniee e svee s 73
AVERAGE POWER CONSUMPTION IN LOW POWER MODE AT 66 MHZ, *1......................... 74
COMPARISON OF LDPC CODE DECODER 55.........coovveviireiiereeieenieeeesseseseeseessessessessessessens 75

VI

LIST

OF FIGURES

FIGURE 1-1 : EXAMPLE OF QC PARITY CHECK MATRIX STRUCTURE FOR CODE RATE 3/4................... 3
FIGURE 2-1 : EXAMPLE OF PARITY CHECK MATRIX FOR CODE RATE 5/6, Z,=54 IN 802.1IN................ 9
FIGURE 2-2 : ELEMENTS OF PARITY CHECK MATRIXccccoitiiiiiiiiiieiiieeeeiteeeecireeeesireeeesevseeeeeveseenns 12
FIGURE 2-3 : EXAMPLE OF 8-BY-8 T MATRIXcoctuouioeieeeeeeeeeeeeeeeeeseeeeeeeeeeeseesseseeseess s e e ssesnaes 13
FIGURE 2-4 ! THE BLOCK DIAGRAM OF ENCODER METHODccccctteiitiiieeniieeiieenieeenireennresssneensneenes 14
FIGURE 3-1 : EXAMPLE OF BIPARTITE GRAPH FOR EQUATION (3.1).......oooiiiiiiiiiiiiecieeecieee e 18
FIGURE 3-2 : EXAMPLE OF NORMAL GRAPHcoccctiiiiiiiitiiieeiteetieeieesieeeieestaeeaeessseenssesnsseensnesnns 20
FIGURE 3-3 : GRAPH PRESENTATION OF THE INTRINSIC AND EXTRINSIC PROBABILITIES.................. 20
FIGURE 3-4 : GRAPH PRESENTATION OF MESSAGE PASSING BETWEEN TWO VERTICES...................... 22
FIGURE 3-5 : BIPARTITE GRAPH OF MATRIX (3.23)coiiiiiiiiiiiiceieeeeeieee ettt e 25
FIGURE 3-6 : TRANSMISSION PROBABILITY FOR BSCccocoiiiiiiiiiiiiiiiccccecee e 27
FIGURE 3-7 : MERGED GRAPH OF CHECK NODE AND BIT NODE WITH L+1 DEGREEc......... 28
FIGURE 3-8 : FUNCTION GRAPH OF U/ (X) ... st E 5 ettt 37
FIGURE 3-9 : PROCESS OF BP ALGORITHIMcostcues .t cesafostieeenseesseeenseesnseeenseesssseenseessssessseesseesnaesnns 39
FIGURE 3-10 : PROCESS OF ROW-UPDATE MESSAGE'PASSINGALGORITHMccceevveevierennienreenenns 39
FIGURE 3-11 : BPV.S RMP ALGORITHM IN 802.11N WITH CODEWORD LENGTH 648 BITS.................. 40
FIGURE 3-12 : BP V.S RMP ALGORITHM IN 802:11N"WITH CODEWORD LENGTH 1944 BITS................ 41
FIGURE 3-13 : BP V.S RMP ALGORITHM IN'802.16E CODEWORD LENGTH 576 BITS........c..ccccvveunennn. 41
FIGURE 3-14 : BP v.s RMP ALGORITHM IN 802.16E, CODEWORD LENGTH 2304 BITS..........ccc.......... 42
FIGURE 3-15 : SIMULATION FOR NORMALIZATION FACTOR SIMULATIONccceevvterniiienireenieenneenns 44
FIGURE 3-16 : FIXED-POINT SIMULATION WITH FIXED 6 BITS INTEGERcccc0eoeeiiuiiiiniiiieeireeeenns 45
FIGURE 3-17 : FIXED-POINT SIMULATION FOR INTEGER PARTcccoiuiiiiiiiiieaiiieeeiineeeeevreeeeireeeenens 45
FIGURE 3-18 : SIMULATION FOR ITERATION NUMBER, 5,8,10,15,20ccccvvvviiiiiiiiiiieeeeee e, 46
FIGURE 4-1 : DECODING FLOW CHARTccooiiitiiiiiiiiieeiieeiieeiteeiteeieesiteeieesbaeeaeesbaeesaesnsaeensneenes 51
FIGURE 4-2 : DECODING PROCESS DIAGRAM FOR MXN PARITY CHECK MATRIXc..cceevvrereeereannnns 51
FIGURE 4-3 : OVERALL ARCHITECTUREccoittiiiiiaiieeieeaieeeueesieeeseessseeeseesseeeseesnssesnssessseesnnenes 53
FIGURE 4-4 : DATA PATH FROM “IN_BUFFER” TO “IMIS”coiiiiiiiiiiiieiiieete ettt nene e 54
FIGURE 4-5 © 3-BY-6 PARITY MATRIX WITH Z70cccoocuvvviieeeieiiieeeeee et eeeaeeee e eeeaaaneee s 55
FIGURE 4-6 : 6-BY-6 IDENTITY MATRIX WITH SHIFT AMOUNTS 0, 2, RESPECTIVELYcccouvun...... 55
FIGURE 4-7 : REGISTER ARRANGEMENT FOR SHIFT AMOUNTS 0, 1 WITH SHIFT SIZEG...................... 56
FIGURE 4-8 : EXAMPLE OF SHIFT SIZE Z, SMALLER THAN MAXIMUM REGISTERSIZE L 56
FIGURE 4-9 : PERMUTATION DESIGN WITH HEAD AND TAIL POINTERSccooiiviiieiiiiieiiieeeeireeeennns 57
FIGURE 4-10 : PERMUTATION FOR MAXIMUM SIZE 8 AND SHIFT SIZE 6 AND SHIFT AMOUNT 1 57
FIGURE 4-11 : THREE LEVELS OF LOGIC BARREL SHIFTER FOR 96 DATA..........ccccceeviiiiniieirienieenieenns 58

VIl

FIGURE 4-12 :
FIGURE 4-13 :
FIGURE 4-14 :
FIGURE 4-15 :
FIGURE 4-16 :
FIGURE 4-17 :
FIGURE 4-18 :
FIGURE 4-19 :
FIGURE 4-20 :
FIGURE 4-21 :
FIGURE 4-22 :
FIGURE 4-23 :

FIGURE 4-24 :

DATAPATHFROM MSTO CHKooooiiiiiiiiic e 59
ARCHITECTURE FOR PROCESSING UNITS (CHK/VAR)cooooviiiiiiiiiieeeeieeee, 60
BLOCK DIAGRAM OF “BETA_RAM” MEMORY AND CONTROLScccceevvienieeririennneenns 61
BLOCK DIAGRAM FOR MULTI-CODEWORD DECODING TECHNIQUE...............c..coeuvnnn.. 62
POINT BASED PERMUTATION FOR MULTI-CODEWORDccccvviieiiiiieeirieeeenireeeenenen 63
THROUGHPUT FOR 802.11N, FULL CODE RATESAT 333 MHZ.........ccc.coooviiienniannn. 63
THROUGHPUT FOR 802.16E, LENGTH 576, 1152,2304 AT333 MHZ.............cccevvvn.... 64
HARD DECISION BASED EARLY TERMINATION V.S PARITY CHECK CONSTRAINTS 65
PROCESS OF DYNAMIC EARLY TERMINATIONceoiiiiriieeniieenireeireenireeneeensneensneennesnns 66
EXAMPLE OF SCHEDULINGcvoiviitiitiotietteeeesiesessesseeseeseeseessessessessessassesseessessessessessenns 67
OVERLAPPED V.S NON-OVERLAPPEDcc.ceoittiiiiieiieenireenireenireenineeninesssseensneessseennennns 68
DESIGN FLOW OF PROPOSED LDPC DECODERcccueeviiiiiiieniieiiieeieeeieeeieesieeeneens 70
PHOTO OF LDPC DECODER..........coooiiiitiieiieeiiieeniie ettt eniteeiteesiteesiteenaaesssseensneensseenanesnns 73

VI

CHAPTER 1 INTRODUCTION

1.1 Overview of Wireless, Communication System

Recently, the Worldwide Interoperability for Microwave Access (WiMAX)
and Wireless Fidelity (WiFi) have been received wide attention in wireless
broadband standard. They are proposed to provide end-users to travel throughout a
hot zone cell without losing connectivity. The WiMAX standard group is collectively
called IEEE 802.16. The standard for fixed WiMAX, i.e. the stationary devices such
as home or office PCs, is 802.16-2004, which offers data transfer rate of up to 75
Mbps (megabits per second) over distances of up to 30 miles (4~6 miles is typical).
The advanced standard, 802.16e [1], established specifications for mobile WiMAX,
i.e. laptops or cell phones, offers similar speeds over slightly shorter distances,
typically 1~3 miles.

WiFi, on the other hand, adheres to the IEEE 802.11 standard, which provides

close-range, wireless broadband access in fixed environment. This standard went
through several waves of development before arriving at the current leader, 802.11g,
which supports speeds of as much as 54 Mbps over distances of up to 300 feet. In
2003, the IEEE responded to growing demand for increased wireless performance by
authorizing the creation of IEEE 802.11 Task Group. They developed and modified
the 802.11 specification, called 802.11n [2], to support a minimum speed of 100Mbps
with MIMO technology. Developers asset the final specification may support transfer
speeds exceeding 200Mbps over longer distances than 802.11 currently supports.
802.11n is backward-compatible with earlier standards: 802.11a, 802.11b, and
802.11g.

As a fixed broadband access technology, WiFi has its weakness. The user can
only use the technology within the'confines of'a 300 feet radius and, hence, the level
of mobility is limited. For practical purpeses, most observers have considered
WiMAX to be an outdoor technology.-A-combined scenario of WiIMAX (for the
building) and Wi-Fi (for the interior).looks-like a viable solution. Combining the
ability to use both kinds of networks on a single device allows consumers to take

advantage of the best each has to offer.

1.2 Motivation

LDPC code is first introduced by Gallager [6] in 1962. It can provide better error
correction capacities than other channel codes. In recent years, many papers discuss
the implementation architecture and structured parity check matrix. The defining
LDPC codes in IEEE 802.11n and 802.16e are classical Quasi-Cyclic (QC) structured
parity check matrix. Figurel-1 illustrates an example of Quasi-Cyclic matrix for code

rate 3/4. Each element in the parity check matrix denotes a shift amount which can be

expanded to an identity circular right shift matrix. The properties of Quasi-Cyclic

matrix will be presented in chapter 2.

shift amount H bl hb H ba
\48/ 201371521 2 |16 6 [14|53 |31 (34| 5 [18|42[53|31|45| - |52 1
1714 (30 7 (43|11 |24 6 |14]|21| 6 |39|17(40|47| 7 [15]|41
4 712|513]146(23]16|11|53[40|10(7 |46|53(33|35]| - [25]|38(0
1948 (41 1 [10| 7 |36|47| 5 [29(52(52(31(10(26| 6|3 |2 |51|1|-|-({0]0O0
24 block Code rate 5/6, Z=54 for 802.11n

Figure 1-1 : Example of QC parity check matrix structure for code rate 5/6

Because 802.16e and 802.11n have similar technology modulation, OFDM
system and their application properties of WiFi for wireless data transmission on local
distance and WiMAN for mobility and portability, a combined scenario looks like a
variable solution. It provides combinational properties to design a configurable
data-path for the similar code structures of LDPC codes in 802.11n and 802.16e. In
this thesis, a configurable LDPC ' decoder~is proposed for multi-standard. The
architecture adopts partially paralleltdécoding for QC LDPC codes and supports 19
modes in 802.16e and 3 modes in 802:11n. A-high throughput of 590 Mb/s and power
dissipation of 451-mW for 802.16e and 506 Mb/s, 436-mW for 802.11n with a core
size 4.58 mm?” are estimated in post-layout simulation/PrimePower at 333 MHz. A
multi-codeword decoding technique for preserving hardware utilization and early
termination to save power are considered. Scheduling issue and Row-update Message
Passing algorithm (RMP) [17] are applied to accelerate the speed of convergence.
This work is the first published LDPC decoder for multi-standard 802.11n and
802.16e. The detail discussion and proposed architecture will be given in the

following chapters.

1.3 Thesis Organization

The rest of this thesis is organized as follows. The definition of parity check
matrix of LDPC in 802.16e and in 802.11n is presented in chapter 2. Several efficient
LDPC decoding algorithms including min-sum approximation and other
implementation issues are briefly described in Chapter 3. It also shows the simulation
results of c-codes and discusses the related performance comparisons. Among them,
scheduled row-update message passing algorithm is suggested. Chapter 4 introduces
the proposed architecture including the detail functional implementation and memory
arrangements. We summarize implementation results in chapter 4. Finally summary

will be given in chapter 5.

CHAPTER 2 LDPCIN 802.16E
AND 802.11N

In this chapter, we introduce the specification of LDPC codes in 802.11n [2]
and 802.16e [1]. LDPC code, a linear codeword code can be defined by a parity check
matrix. The parity check matrix based on the methods of construction, can be
generally classified into two categories: 1) random codes generally generated by
computer search under certain design constraints, e.g. the girth and degree
distributions [7, 9, 10]; 2) structured codes constructed by algebraic geometry and
combinatorial method [31, 32]. One class of structured LDPC codes that allows low
complexity encoding [33] is the quasi-cyclic (QC) LDPC codes. Well designed
QC-LDPC codes have been shown to perform as well as regular or irregular
computer-generated random LDPC codes [32]. QC-LDPC codes, moreover, have
advantages in VLSI implementations of decoders since the cyclic symmetry results in

simple regular wiring and modular structure.

2.1 Quasi-Cyclic Matrix in 802.11n and 802.16e

QC-LDPC codes, one class of linear block codes, are specified by sparse

circular parity-check matrices. An myxn;, matrix is said to be in circular form if it is

generated by an array of {P circulant of same size, where a

,J }OSiSmh -1;0<j<n, -1

circularnt is a square matrix in which each row is the cyclic shift (one place to the
right) of the row above it, and the first row is the cyclic shift of the last row. The Z;is
the abbreviation of Z-factor. Without loss of generality, for sparse matrices, the
circular P;; is assumed to be either a p(i,j,Zy) cyclically shifted identity matrix or a
zero matrix of size ZxxZ; mxn where p(i,j,Zy) is non-negative integer and Zris positive
integer related to parameter f. Then, P;; is the ZyxZ; identity matrix if p(i,j,Z)=0; and,
for simplicity, we define p(i,J,Zy) ==1, if P;; is a' zero matrix. Note that, either the zero

matrix or the cyclically shifted idenrity matrix-is a.special circulant. Consequently, the

QC-LDPC code with rate Y andylength of n,xZ; can be defined by the
My

following sparse parity check matrix,

I)O,O 1)0,1 I)O,Z I)(),nb—Z I)O,nb—l
I)I,O I)l,l I)I,Z I)l,nb—2 I)l,nb—l
— — H,
H - 1)2,0 1)2,1 1)2,2 b P2,nb—2 PZ,nb—l - P (2 1)
| my-1,0 Pmb -1,1 my,—1,2 my,—1,n, =2 my—1,n,—1 |

where n,=24 in 802.11n and 802.16e and my is a variable according to different code
rates.

In 802.11n and 802.16e, the mxn parity check matrix H is expanded from a
binary base matrix Hj of size of my-by-n,, where m=myxZ;, n=nyxZ; . Because each
circular matrix is specified by a single circular right shift, the binary base matrix

information and permutation replacement information can be combined into a single

7

compact model matrix H, . The matrix H,, is the same size as the binary matrix
H,, with each binary entry (i,j) of the base matrix H, replaced to create the model
matrix H, . Each element P;; in H, is replaced by a denote a circular right shift
matrix described in last paragraph. The model matrix H,,K can the be directly
expandedto H .

The matrix H, is partitioned into two sections, where H,, corresponds to

the systematic bits and H,, corresponds to the parity check bits, such that

H,=[(H,), . |(Hy),] Section H,, is further partitioned into two sections,

where vector h, has odd weight, and H,, has a dual-diagonal structure with

matrix elements at row i, column j equal to 1 for i=j, 1 fori=j+1 and 0
elsewhere. The base matrix hasqih (0)=1L,, h,(m,)=1, and a third value

h(j)=1, 0<j<(m,,) equal to 1. Equation (2.2) shows the definition of H,,.

RO 0 -1
RO 00
H,,=[h, | H'bz] =| 2 | . 0 (2.2)
| i, (m,—1) | -1 e 0]

In particular, the non-zero sub-matrices are circularly right shifted by a

particular circular shift value. Each 1 in H,, is assigned a shift amount of 0, and is

replaced by a ZyxZ,identity matrix when expanding to H . The two located at the top
and the bottom of 7/, are assigned equal shift amounts, and the third 1 in the middle
of A, is given an unpaired shift amount.

Following we describe the shift amount p(i,j,Zy) for the circulant P;; in (2.1)
according to different code rates in 802.11n and 802.16e, respectively: 1) For rate

1/2A, 2/3B, 3/4(A,B), and 5/6 in 802.16e, we have

p(.Jj) ;if p(i, j) <0
p(i,j,Zf) = p(l:])Zf (23)
96

;otherwise

2) For rate 2/3A in 802.16e and rate 1/2, 2/3, 3/4 and 5/6 in 802.11n, we have

p(i,) ;ifp(i, j) <0

2.4
p(i, j)mod Z ;; otherwise 24)

p.j,Z,)= {
where [x| in (2.3) is the floor function that returns the largest integer less than or
equal to x, and p(i,j) is either —1 or non-negative integer, given by the specification,
which is used to determine the shift amounts for all other lengths of the same rate.
And, in 802.11n, Zy= 81 —27f, =0, 1, and 2; while in 802.16e, Z,=81—4f, /=0, 1,.,
18. To be summarized, there are 19 modes for 802.16e and 3 modes for 802.11n,
respectively (totally 22 modes). Figure 2-1 shows.an example of parity check matrix

for code rate 5/6 and Z, 54, defined.in 802.11n:

shift amount H b1 hb H b2
\48/ 2013715212 |16 6 | 1453|3134 5 |18[42(53|31|45] - |52| 1
171 4|30 7 |43 |11 24| 6 | 14|21 | 6 |39|17]40|47| 7 15|41
A7 121513 [46] 2316|1153 (40| 10| 7 |46]53(33]35] - |25|38] 0
1914841 | 1 |10| 7 |36|47| 5 |29|52(52(31|10f{26|6 |3 |2|51|1|-]-]0]0
24 block Code rate 5/6, Z=54 for 802.11n

Figure 2-1 : Example of parity check matrix for code rate 5/6, Z,=54 in 802.11n

2.1.1 Parameters for 802.11n

In 802.11n, there are 3 types of codeword length, 648, 1296 and 1944 bits. The

lengths are multiple of 24. The required minimal throughput is 300 Mb/s. The Z; is

codeword length
24

defined as , corresponding to different codeword lengths. So there

are 3 types of Z;, 27, 54, 81 corresponding to codeword lengths, 648, 1296 and 1944

9

bits. There are 4 types of code rate, including 1/2, 2/3, 3/4, 5/6. Table 2-1 shows the 3

types of codeword length and their corresponding parameters. The “k” presents the

€69

information bit length. The

n’ presents

Table 2-1 : Parameters of LDPC code for 802.11n

the total transmission codeword length.

k (bytes) (information bits)
n(bits) n(bytes) Zr
Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6
648 81 27 40.5 54 60.75 67.5
1296 162 54 81 108 121.5 135
1944 243 81 121.5 162 182.25 202.5

2.1.2 Parameters for 802.16¢

In WiIMAN 802.16e, there.are 19 types of codeword length from 576 to 2304
bits. The required minimal throughput is 30"Mb/s. The Z; varies form 24 to 96 with
increment of 4. Totally there are 19 Z-factor from 24 to 96 corresponding to different
codeword lengths. There are 4 types of code rate, including 1/2, 2/3, 3/4, 5/6 and
define 6 types of parity check matrix, 1/2, 2/3A, 2/3B, 3/4A, 3/4B, and 5/6. Table 2-2
shows the summary of 19 types of codeword length and their corresponding

€C_ 9%

parameters. The “n” presents the total transmission codeword length. The data

throughput requires a minimal 30 Mb/s.

10

Table 2-2 : Parameters of LDPC code for WiMAN 802.16¢

k(bytes) (information bits)

n(bits) n(bytes) Zr Rate 2/3 Rate 3/4
Rate 1/2 Rate 5/6
(A,B) (A,B)

576 72 24 36 48 54 60

672 84 28 42 56 63 70

768 96 32 48 64 72 80

864 108 36 54 72 81 90

960 120 40 60 80 90 100
1056 132 44 66 88 99 110
1152 144 48 | 29) 96 108 120
1248 156 52 78 104 117 130
1344 168 56 84 112 126 140
1440 180 60 90 120 135 150
1536 192 64 96 128 144 160
1632 204 68 102 136 153 170
1728 216 72 108 144 162 180
1824 228 76 114 152 171 190
1920 240 80 120 160 180 200
2016 252 84 126 168 189 210
2112 264 88 132 176 198 220

2208 276 92 138 184 207 230

2304 288 96 144 192 216 240

2.2 LDPC Encoder Method

The general method of encoding is quite complex by determining a generator
matrix G form H such that GH'=0. LDPC encoder in 802.11n and 802.16¢ provides a
memory efficient method to encode codeword instead of generator matrix G,
G xx=v for the properties of defined parity check matrices. Because the parity
check matrix H is an approximate lower triangular form, so the mxn matrix can

be written in the form,

[A B T}
H = (2.5)
C D \E

where 4 is (m—Z,)xk, Biis (m=2)xZ,, T i1s (m-Z,)x(m—-Z2,), C is
Z,xk, D is Z,xZ,,and E 18 Z,x(m—Z;). And k is the length of information

B
x. The [Dj and D correspond to the expanded h, and h,(m, —1), respectively.

Figure 2-2 shows the summary of notations above.

N Zg m-Zy
tmn -Zp A E T
Zy C D E
k=n-m Code rate=lk/n

Figure 2-2 : Decomposition of Parity Check Matrix

12

Let codeword v =(x, p,,p,), X isthe systematic information, p,, p, are the

parity parts from encoder. p, haslength Z, and p, haslength m—Z, . With the

definition, v must satisfy the condition H xv" =0. We replace v=(x, p,,p,) into

the equation H xv" =0. Then we can derive the equalities.

{AxT+BpIT+Tp2T =0 - (D) (2.6)

Cx"+Dp +Ep,” =0 —(2)

From equation (1) of (2.6), we can rewrite p,” as p,” =T '(4Ax" +Bp,”) and
replace p,” into (2) of (2.6). It can derive as

(ET"'A+C)x" +(ET'B+D)p,” =0 (2.7)

Define ¢=(ET'4+C) and with the parity ¢heck matrix as indicated ¢=1, [
denotes identity matrix. ¢ = (ET ;A+C)=L+is the-property of parity check matrix

with the definition of A, .
Continuing with the derivation, p,” *¢an/be rewritten as
p =(ET'4+C)x" (2.8)

Because the matrix 7 is a dual diagonal matrix, lower triangular matrix is the

characteristic of 7' shown as the example in Figure 2-3.

Blank block means zero

Figure 2-3 : Example of 8-by-8 77 matrix

13

By the equation p,” =T'(4x" + Bp,") and (2.7), we can derive the values, p, and

p, . Figure 2-4 shows the block diagram of encoder and Table 2-5 summarize all the

encoding steps.

L

1V

L1

1/
J

Figure 2-4 . The block diagram of encoder method

Table 2-3 : Steps of encoding method

Stepl Compute Ax” and Cx”
Step2 Compute’ET ' (Ax")
Step3 Compute p," = ET='(4Ax")+ Cx"
Step4 Compute Ip," = Ax" + Bp,”

14

15

CHAPTER 3 Low DENSITY
PARITY CHECK CODE

Low-density Parity Check (EDPC) code was first introduced by Gallager in
1962 [6], but was almost forgotten until its' rediscovery it in the late 1990s. The
graphical representation for the LDPC code was presented by R. N. Tanner [7, 30] in
1981. Mackay and Neal rediscovered the LDPC code and investigated its graph based
iterative decoding algorithm [8, 9]. It has been shown in [10] that long LDPC codes
based on the belief propagation [11] can achieve an error performance very closing to
the Shannon limit. Many high speed communication systems such as /EEE 802.11n,
802.16e and DVB-S2 have considered employing LDPC code to enhance
performance for its benefits, including good error performance and high parallelism.
Besides, the decoding algorithm provides very simple arithmetic computations to
decrease the complexity of hardware design and parallelism to increase the data rate.

In this chapter, we discuss the decoding algorithms including belief propagation,

16

row-update message passing algorithm and some implementation issues, Min-Sum
approach, fixed-point simulation and etc. A trade-off between decoding algorithms is

analyzed and scheduled row-update message passing with Min-Sum is suggested.

3.1 Concept of Low-density Parity Check Codes

Low-density Parity Check code, a linear block code defined by a very sparse
parity check matrix H which means there are only a small number of ones in the
entries. It was first introduced by Gallager [6] and rediscovered by MacKay [8,9]. For
the properties of a sparse matrix, it makes the decoding algorithm simple and practical
at good communication rates [9]. The sparse matrix also reduces the complexity of
computation in decoding and encoding. However, LDPC decoders, which are highly
parallelizable, have a much higher decoding speed than other decoder. The decoding
algorithm based on sum-product | algorithm (SPA) is capable of parallel
implementation, leading to a much higher decoding speed than other channel code
decoder. We often divide LDPC codes into two types according to its degree
distribution. One is regular LDPC code, the other is irregular. The regular LDPC
codes mean that each row has the same number of ones, and each column does so.
The irregular mean that numbers of ones in the rows or in the columns are different.

In the following example, it shows a parity check matrix of (10,5) regular

LDPC code and its constraint equation,

0001 100T1O01
1100010001

H=[0 1 01001010 3.1)
00107111000
10100001 1 0]

17

And

T
[xo X X X x X X X X XIXH =[¢q ¢ ¢ ¢] (G2

Co: X +x,+x,+x,=0
(3.3)

¢ X tx +x,+x,=0
Cy X +X+x+x, =0
C,t X, +x,+x,+x,=0
Cs: Xo+x,+x,+x,=0
Figure 4-1 represents the five parity check equations (3.3) in the bipartite graph with
10 bit nodes (or variable node) and 5 check nodes. The column weight of H
determines the number of edges (or degree) for each bit node. We usually illustrate the

relationship between bit nodes and check nodes or treat direction of message passing

from its bipartite graph.

check nodes
Cn < Ca Ci Cy

bit nodes

Figure 3-1 : Example of bipartite graph for equation (3.1)

3.1.1 Message Passing Algorithm

LDPC decoding algorithm is based on soft iterative decoding which relies on
the message passing algorithm or belief propagation [11,12]. We consider the
following conditional probability,

P(x=a|C) (3.4)

18

which is a posterior probability x to be a value a based on the condition event C.

According to the Bayes’s theorem, we extend the posterior equation as

P(C|x=a)P(x=a)

P(x=a|C)= P(C)

(3.5)

We want to know the value P(x=a|C) when knowing other terms. The term
P(x=a) is a prior probability or referred to the intrinsic probability, denoted by
P .(x=a). The other term P(C|x=a) 1is proportional to the extrinsic probability
which describes the probability that new information for x is obtained from the event
C when assuming a is a value from alphabet set 4. We can express extrinsic
probability as

P,(x=a)=() P(C|x=a")"'p(Clx=a)=p,P(C|x=a) (3.6)

a'eA

The p, represents the normalization'censtant to satisfy the condition

P (x=a"=1,

a'eA

The posteriori probability in (3.5) can be-described as

P,(x=a)=(P(Cl¥5a)) p(Clx=a)=p,P(Clx=a) (3.

a'eA
where p,=(p.P(C N~ is also the normalization factor
-1
(p,= (Z P, (x=a")B, (x=a ')j). If A=GF(2) , the log-likelihood ratio
a'ed
representation for (3.7) will be

Ppust (x = 1) _ ln th (x = 1) +1
P (x=0) £ (x=0)

P (x=1
LLR, (x)=In n-t) _ [LR_(x)+LLR,.(x) (3.8)

t(x =
ext
 (x=0)
In the graph representation, we use an undirected graph, referred to the normal
graph [13,14]. The vertices (nodes) denote the constraints. The ordinary edges denote

the state variables for message passing. Symbol variables are denoted by left edges

(half edges). Figure 3-2 shows the example with three vertices; the edges connecting

19

only one node are left edges, the edges connecting two vertices are ordinary.

ordinary \{f/'

edge
Figure 3-2 : Example of normal graph

r Pim{.‘-h}
pll'l {"'L:] i P”“[Kd]

NRAL
_h;\ ?\lef X;)

Figure 3-3 . Graph presentation of the intrinsic and extrinsic probabilities

Figure 3-3 illustrates the-graph of a single node (vertex) and d edges with the
intrinsic and extrinsic probabilities. ‘There-are-d symbols, x;, x,,..., x4 respect to the

constraint C. We define a set S, which is a'subspace of the d-dimensional vector space
A'(S, c A"), and any d-tuple x=(x,,x,,..,x,) €S, will satisfy the constraint C.

Each edge has the intrinsic probability P (x,) associated with the symbol x; for
i=1~d . Therefore a posteriori probability of a symbol x, will be the combination
of the intrinsic probability P, (x,) and extrinsic P_(x;) (3.8).

From equation (3.8), we have to evaluate P

ext

(x,) based on the constraint C and the

other intrinsic probabilities B, (x;) with j#i.The F, (x,) willbe

20

P, (x)=pP(C|x)
=p, Z P(CoX)yees Xy Xy Xy | X,)

X;,
xeS,

=p, Z P(C X%y 50y X)P(Xy o0y Xy X500 Xy | X;)

X;,
xeS,

=p. > [1R.(x)

X, =l
xeS, J#l

(3.9)

The P(C|x, x,,...,x,) is always equal to 1 because the constraint is true given
(x,%,,...,x,) where x; for j=1~d belong to the constraint set S¢. Then a posteriori

probability can be written as
Pl’ost (x[) — ppPint (x[)Pext (x,-)

=10p Z ﬁpim(xj) (310)

XLV =1
XeS,

where we assume the symbol variables %7%531..,X, are independent, and p, p,is

also a normalization constant.

® Two Vertices

Now we consider message passing between two vertices. Figure 3-4 shows the
graph presentation of two constraints (two vertices, C; and C). The C; constraint has i

edges where i-1 edges are left edges and only x; is ordinary edge. On the other hand,

X, ~ X, are constrained by C, where only x; on the ordinary edge. Besides the two

constraints S, ,S8, sets are defined such that X, =(x,x,,...,X;,)€S, and
1 2 1

X, =(X,%,,.0%,) €S,

21

Py (7] P 25

Pu(%) Pia(Xgq)
wm PR pR(x) l 2
' {f\ R T ’/E‘ —
Pu(®) plx) \'\
/i

£ m[xi—l) Lm (i1)

Figure 3-4 : Graph presentation of message passing between two vertices

As shown in Figure 3-4, we have to evaluate the extrinsic probabilities for the
left edges constrained by C; and C,. First we only consider the constraint C..

According to (3.9), the extrinsic probability can be written as :

Pext (xi+l) = p2P(C1 | xi+l)
=031 P (x,) 3.11)

X \Xyy
X eS;,

. 2 . .
But we have to considet-the value Pilﬁt)(x,.) constrained with C;. Therefore

we evaluate the extrinsic probability based on bothconstrains C, and C,.

P (x.)=pPC.,C,|x,,)
= Y P(CLCyu X, Xy Xy | X))

% \X

Xy €S,

= Z P(C1 |Cl,xz)P(CpxiaxHZ"“’xd |xz'+1) (312)

% \X;

Xy ES,,

= Z P(Cyx;5 %X, 500 Xy [X41)

X \Xi4
Xy €S,

where the third equality comes from a Markov chain
P(Clacz |xi):P(Cl |xi)P(C2 |xi) (3.13)
such that the term

P(C, |G, x,)=P(C, | x,) =1, forx, eS8, (3.14)

22

Continuing from (3.12), we derive the equality as

P(Claxi:xi+2a---»xd |xi+1):P(Cl |x2)P(xi’xi+2""’xd |xi+1)

= P(C, | x,)P(x,)P(x,,,)...P(x,) (3.15)
d
= (Pl)_lfigt) (x) By (x;) H P(‘xj)
J=i+2
From Figure 3-4,
Peiclt)(xi) =pP(C | x,) (3.16)

it is the extrinsic probability of x; with respect to C;. P, (xj) is the intrinsic
probability for the left edge connecting C,, and P, (x;) is the intrinsic probability

for the ordinary edge X, . Because the ordinary connecting C; and C, without external

input, we can initialize the B, (xi) to.be a constant. We set B, (x;)=—— for

| A

x.€A . Then the extrinsic probability. in ~(3.12) will be written as

d
P, (x)=p, DB [] Px)) (3.17)

X \X 4 Jj=i+2

X, €S,

where p,'=p,/(p[A4]).

Referring to Figure 3-4, we know if the extrinsic probability . W (x;) from C is

ext

available and

P (x) =P (x) (3.18)
only the constraint C, is necessary to estimate P, (X,,,). Therefore P, (Xj)
for j=(i+2)~d can also be calculated by the same method. For P, (X,) with

[=1~(i-1), the extrinsic probability Pefj’(xi) with respect to C, should be

23

first computed and the intrinsic probability for C, is set to be

P (x) =P (x,) (3.19)
The process of (3.18) or (3.19) is the message passing between vertices C; and C, .
With the message passing algorithm, we can simplify the problem of solving both C,
and C, into the problem of solving the single vertex graph, which is much simpler

than the two vertices case. The message passed on the edge X; can be represented by

i-1
He e, () =P (x)=p D[] Pu(x) (3.20)
g,
d
He, ¢, (x;)= Pegj) (xX).=.0, Z H E, (x_j) (3.21)
X \x; j=i+l
XEes,,

The operation of (3.20) and.(3.21) are.the sum of products, thus the message

passing algorithm is also called theisum-product algorithm [15]. Generally in the

graph with vertices, C,,Gy,..., G, Jtherwertex C, has d ordinary edges that
respectively connect to Gy, G,,...,G, with symbol variables X;,X,,...,X, .
Assuming the messages IUC,-—>C0 (X j) with j = 1~ d have been obtained from G;~Gy,

we can get the value K¢ ¢ by

d
He, e, (x,) = Z H/ucjaco (x_j) (3.22)

x\x; j=l
XeS,, Jj#i

where SC@ is the constrain set for C,, and X =(X,X,,...,X;). The message

Hc, ¢ for i=1~d can be obtained because they are the intrinsic probability inputs

for vertices C1~Cy.

Based on the concept of message passing algorithm above, LDPC decoding

24

algorithm will be introduced on the next section.

3.1.2 LDPC Decoding Algorithm
Same as the linear block codes, a m-by-n LDPC code have a codeword
X =[x,,X,,....,Xy] needed to satisfy the equality Hx" =0. The bipartite graph,

Figure 3-5 is used to describe the relation between parity check matrix and codeword.
It is the graph representation of equation (3.23). The check nodes and bit nodes are
denoted as column constraint of parity check matrix and row index of codeword. The

message passing algorithm is applied to passing the message between two nodes.

[0 001 1001 0 1]
1 1.0 001 0 0 01
H=/0 1 0 1 .0100ss. 0 1 O (3.23)
0 0 1,50 1_1.1"0.0 0
11 04 0-0-0:0 171 0]
check nodes
Co C Ca (51 Cy
bit nodes
Figure 3-5 : Bipartite graph of matrix (3.23)
Co: Xy +x,+x,+x,=0
(3.24)

¢ Xy tx +xs+x,=0

Gl X XX +Hx, =0
C,t X, +x,+x,+x,=0

Csi Xg+X,+x,+x,=0
Equation (3.24) presents the parity check constraints that are similar to the role

25

of vertex nodes in the massage passing graph. The operation in (3.24) all are
exclusive-or. LDPC decoding algorithm is based on the belief propagation algorithm
also called message passing algorithm. The bit node transfer information to other bits
under the check node constraints. By iteratively exchanging more reliable information
from other bits, the error bits are corrected.

The message passing algorithm is an APP (a posterior probability) only if the
code graph has no cycles. The cycle-free implies that all code bits X, X;,...., X, ; are

independent. However the algorithm performs remarkably well even if dependent.
Now we will derive the message passing algorithm for LDPC from first principles.

Prior to introduce the decoding algorithm, we have to know some notations, n code

k

bits, the number of information bits is kK =m=—m , and the code rate is , h
n

channel received output » = (7,7, F,)5 ¥ =x £noise, M(j) be the set of parity

nodes connected to the code bits. X, C j1s the event that all parity check

constraints associated with X, are satisfied and N(m) be the set of bit nodes

connected to the m’th parity check, and a parity check matrix is m-by-n dimension.
The derivation below referred to the description of Gallager [6].

Using the assumption of code bit independence and Baye’s rule, a posterior

probability P(x; =b|C;,r) can be written as
P(x;=b|C,,r)=KxP(r;|x;)xP(C, | x, =b,r) (3.25)

where K is a constant for both b=1 or 0,

o T 4
p(B)p(b,r) _ pb)pb)p(r|b) _p (’)jl:[j#l.p(rf)

p(S,P)p(r,b) p(S,r)pB)p(r|b) p(S,r)

The equation (3.25) is similar to equation (3.5).

26

For Gaussian noise :

1 (+(=D)?

P(r,|x;)= Wexp 20° (3.26)

For BSC (Binary Synchronous Communication)
P(r;|x;=0)=p"(1-p)"" (3.27)
P(r;|x,=0)=p " (1-p)’ (3.28)

where assuming false probability is equal to p, so true probability is 1~ p as shown in

Figure 3-6.

1-P
Figure 3-6 : “Iransmission probability for BSC

The second term in (3.25) is the probability that all parity check constraints

connected to X; are satisfied given r and X, =b. Notice that C, ={C,,..,C,}

is a collection set of events, where ij is the m’th parity check node connected to

X, is satisfied. Because of the assumption of code bits independence, the term can be

written as

P(C,|x,=b,r)=P(C,;,C,,...C,; | x, =b,r) = H P(C,, |x,=b,r) (3.28)

meM (j)

If b=0, it implies that code bits other than X, connected to the m’th parity check

have an even number of 1’s. If b=1, the other bits must have odd parity. Using the fact,
we will derivate P(C; | x;, =b,r) as arelatively simple form as follows.

As a preliminary calculation, suppose two bits satisfy a parity check constraint

27

x, @x, =0, and we know that p,=P(x,=1) and p,=P(x,=1). Let ¢, =1-p,

and g, =1- p,. Then when the constraint is satisfied, the probability will be

P(x,®x,=0) =(1-p)(1-p,)+pp,

(3.29)
=2p1p2 —P—D; +1

which can be written as
2P(x ®x, =0)~1=(1-2p)(1-2p,)) =(q, =)9, — P\) (3.30)
We suppose L+1 bits connected to one parity check node as shown in Figure
3-7. First we compute the term P(x, @ x, =0) as a new node x' then compute the
probability P(x'®x, =0), iteratively to find out the probability to satisfy the
constraint C' with L+1 nodes ((x,,x,,...,x;)). It is a mathematically technique to
reduce the complex problem to be simple two nodes problem. Following description

will derive the detail LDPC decoding algorithm.

Check
C node

bit node

Figure 3-7 - Merged graph of check node and bit node with L+1 degree

For known probabilities {p,p,,...,p,} corresponding to the bits
{x,,x,,....,x,} . We want to generalize (3.30) to find the probability distribution for
z, =X, +x,+..+x,,where z, =z, ®x,.

2P(z, =)-1=(1-2P(z, ,=D)1-2p,)

=(2P(z,, =0)1-2p,))
where p, = P(x, =1). Applying the recursively yields

(3.31)

28

2P(z, :0)—1:1£[(1—2p1.) (3.32)

or Pz, =0 = 1+ T[0-2p) =2 (4] Ja,- p) (3.33)
Similarly it can show

Pz, =) =30-T](@~p) (334)

Returning to our calculation of P(S,, [x, =b,r), we derivate the equalities according

to x,=1 or x,=0 tochoose P(z,=1) or P(z,=0).

1

P(ij | xj = 07 r) = _(1 + H (qr(:m' - q:nn')) (335)
2 n'=N(m)\j
1

PC,lx,=Ln==0- [T (4. ~q.) (3.36)
2 n'=N(m)\j

where ¢° . is the probability that cederbit.x,.=0, given r and excluding any
information about x, from parity check m. It.must need the exclusion operation
because we desire extrinsic knowledge aboutx;. form parity check constraints to get

the extrinsic information about x;. By combination of (3.25) (3.27) (3.35), we get

the final expressions for a posterior probability.

P(x;=0|C,,r)=KxP(r;| x, =0)P(C; | x, =0,r)

1 (3.37)
=KxP(1x,=0) [T ~0+ [(@b —dh)
meM (j) n'eN(m)\j
P(x, =1|C,,r)=KxP(r,|x, =1)P(C, |x; =L,r)
(3.38)

“kxP(r |x, =) [T ~(- [T @-d\)

meM (j) n'eN(m)\j

Inspection of the APP in (3.38), we can denote some operations as “check node”,

some operations as : ”bit node”. For example,

29

check node update

channel value

P(x,=1|C,,r)=KxP(r,| x; =1) H —(1— H (G — qmn)) (3.39)

meM () n'eN(m)\j

bit node update (variable)
The notation can be simplified by letting ¢, = q) . —q. . and then define the check

node equation as

o 1
ri==0+ T 64,.) (3.40)
/ 2 n'eN(m)\j
1
V,l,-=5(1— IT %4..) (3.41)
n'eN(m)\j

For the BSC, the right terms of expressions in (3.39) can be simplified. When

first iteration, the probabilities 7,7 can be rewritten as

ny 2 ny

qy; = Py 201 Y2l (1-p)™"

1 i (3.42)
q,; =P =1Hr)=p. (- p)’
We rewrite (3.40) (3.41) with (3:42),
0 1 7o
=— (1% 1—2p)(—1)"
Vo 2(,,'eﬂ(m)\j(pI-1)")
=—(1+(1 2p)" 0 TT (=D™) (3.43)
n'=N(m)\j
=—(1 A-2p)* " IT ™)
n'=N(m)\j

According to numbers of N(m), we summarize the check node functions as (3.44)

Ty = (1 (1-2p)"™) " if the bits of N(m)\j is odd
= %(l +(1-2p)¥" N if the bits of N(m)\j is even

: (3.44)
Fy = 5(1 —(1=2p)"" 1 if the bits of N(m))j is even

= %(1 +(1=2p)¥") " if the bits of N(m)\j is odd

The APP can be further simplified as

30

P(x;=0|C,,r)=P(r;|x; =0) H l(l_(l_zp)\N(m)\—l) H l(1+(1_2p)\1v(m)|—1)

meM®™ (j) meM ()
1 mi- 1 .
P(x,=1]C,,r)=P(r,| x; =1) H ~ (L4 (1=2p)Nemity H E(l—(1—2p)w(-y
mEMOdd (@) meM e)

(3.45)

where M°“(j) are the sets of nodes connected to x ; with odd parity, and

M (j) are sets with even parity.

» Decision Step
With the analysis of APP operation, we can decode the value x=0 orx=1.

We derivate the equation as,

(3.46)

X;

{o ; if P(x; =0|C,,r)2 P(x; =0|C,,r)
15if P(x, 50{Cpr) < P(x; =0[C,,r)
We have to analyze the magnitude of the:APPs to decode the value. We can simplify
the equation (3.46) to compare with sign.value by dividing the APPs as log domain.
The check node and bit node operations are-the main procedures to iteratively
passing message to correct error bits. In next sub-section, we will introduce the Belief
Propagation (BP) algorithm in log domain. The multiplication in log domain will be
simplified to be summation form. Obviously, the advantages are to reduce the
hardware complexity and to decode the soft results more easily by verifying the sign

of APPs.

® Message Passing algorithm in log domain

We introduce the APP equations in log domain. The operations in log domain

make computations more clear and easy. Equality (3.46) combines (3.25) with x; =0

and szl.

31

posterior P(Xj =0 | r, Cj)
LLR (x.)=log
’ P(x,=1|r,C))

(3.46)

x=1 if LLR"™ " (x;)>0, otherwise x,=1. We only compute that if APP is

positive or negative value. The decision for APPs will become easy in log domain.

First,

posterior P(xj = 0 | r, C‘/)
LLR (x;)=log
P(x,=1|r,C,)

o —d, 3.47
P(r, | x,=0) 1+ 1 @-g.) G4D

n'=N(m)\j
=log———+log
P(r,|x; =1) melM_[(,-)l— 1 @, -a.)

n'=N(m)\j

For Gaussian noise,

P(x; =0imC,) 2r,
Plx,=1|r,C) .0’

(3.48)

Letting dg,, = Gy —Ge and ELR(g,,:)=l0g

0
q;"”' , simple substitution gives

mn'

0
0q,, = tanh(LLR(%)) . We rewrite (3.47) as.(3.49).

1+ H §q \ A A
2r; N 2r, l+s, e 2r l—s, e
X log =t 3 log—" o= — 3 log—" -
oy P B H 0G,y O i l=s,e” 0" uemyy l+s,e”
n'eN(m)\j
2r, smjeA’—
==L- Y g ()
meM (j) S,;€ +1
(3.49)
where
) 1 ;x>0
sgn(x) =
s 1 x<0
s, = | sendq,,)= [] sen(LLR(g,,)) (3.50)
n'=N(m)\j n'=N(m)\j
LLR(q,,)
4, = T log(tanh(===2)))

n'=N(m)\j

32

Because the argument of log() in (2.50) is always positive. The equation (3.49)

can be simplified further to (3.51)

2r. A
—L- > s, log(—tanh(Tj))
meM (j) (351)
7S s log(tanh(22))
= S .10 ann(——
0-2 meM (j) " g 2

Letting y/(x) =log(| tanh(%) |) called persi function, (3.47) will be substituted as

. 2r,
LLR™" (x)=—L= > s,w(4,) (3.52)
O meM())
LLR(q°
where 4, =] log(tanh(“= ey~ ¥ y(LLR(g,) (3.53)
n'eN(m)\j n'=N(m)\j

We summarize the BP (Belief:Propagation) algorithm in log domain for LDPC

codes as follows.

» Notation :
X e +1 o
w(x)= log(tanh(g)) =log i iicaald (x) (3.54)
» Initialization :
LLR(q;,)=log(——)=—; for j=0,...,N-1 (3.55)
jm
» Check node (CHK/row operation)
ro=sw(Y v,) sp= [sena.) (3.56)
i'eN(j)\i i'eN(j)\i
» Bitnode (VAR/column operation) :
G=Dit D2 Tu= D TutpT (3.57)
JeM i)\ JeM @)\
I, ifg. >0
» Decision: ¢, =p, + Faoo X, = L (3.58)
! j;:(i) / ! {0; ifg; <0

33

3.2 Optimized Approach for Hardware Implementation

In chapter 3.1, we will derive the LDPC decoding algorithm, message passing

or belief propagation (BP) for LDPC codes. But it is hard to implement the function

X

¢ +i in hardware and the complexity of exponential and

v (x) = log(tanh(>)) = log

2 e —
log is very huge. Some methods are suggested to approximate the nonlinear function,
like Look Up Table (LUT) or Min-Sum approach [16]. LUT is limited to the trade-off
between size of LUTs and data accuracy. The other method, min-sum approach can
reduce decoding complexity and all nonlinear calculations can be averted. However
there would be approximation inaccuracy between BP algorithm and Min-Sum
approach. To compensate the performances, a constant normalization factor or an
offset value is often applied [24,°25, 26]. However, min-sum algorithm does not
consider the area problem like LUTs. It has well-decoding performance with an
appropriate compensation value and.-calculations avoid arithmetic log. The
compensation factor should be explored.by simulations which provide error correction

performance closed to BP algorithm. In chapter 3.2.1, we will introduce min-sum

algorithm.

BP algorithm iteratively exchanges message to correct error bits, but its over
numbers of iteration is the most disadvantage. Chapter 3.2.2 will introduce the
row-update message passing algorithm [17] (RMP) to reduce the iteration problem.
The concept of RMP is to use newer information to instead of older information as
soon as possible. It can be taken as a scheduling layered decoding [18]. The obvious
effect is that information converges faster than BP algorithm. Row-update message
passing algorithm is adopted with min-sum approach in the proposed architecture.

The main rationale in detail will be introduced in Chapter 3.2.2.

34

3.2.1 Min-Sum Algorithm

The ratio of defined in (3.35) and (3.36) can be simplified to two node and be

rewritten as

P(Cppyip) 1%, =0,1)

LLR(x,)=log (3.60)
PCouip 1%, =11)
We redefine the notation to simplify equations.
LLR(x,.)zlogM—lo 1-P(x,=1) (3.61)

P =1) ° P(x=1)
P(x,=0) is aextrinsic probability x, =0, given computing node x; =0 and

received r.

If dealing with two connecting nodes, notated as x.and y, rewriting (3.58) as (3.59)

and continue the derivation.

1 LLR(x)

PR =0)=—
e

LLR(x) 4]

P(x=1)=
e

LER() 4

(3.62)

e —1
e’ +1

e" R 1 LLR(x)
1-2P(x=1)=———— = tanh(———~
(r=1) | (2

3

With the definition, tanh(g) -

) (3.63)

Then calculate the probabilities of constraints satisfied with two nodes,

1 4+ MR GLLR()

(1+eLLR(x))(1+eLLR(y))

LLR(x) | ,LLR(7)

Px®y=0)=

e

P(X@y :1) = (1+eLLR(x))(1+eLLR(y))

1 4+ MR GLLR()

= LLR(X @ y) = 108 eLLR(x) 4 eLLR(y)

(3.63)

We want to derive the formulas based on tanh rules, so express the notations as tanh

form. And then take use of tanh algebraic property and then express (3.63) as (3.64).

35

(LLR(x) +1)(€LLR(y)+1)+(eLLR(x) 1)(eLLR(y) 1)

LLR('X @ y) = log (LLR(x) + 1)(eLLR(v) + 1) _ (eLLR(X) _ 1)(eLLR(J’) _1)

(3.64)
1+ (eLLR(x) _1)(eLLR(y) _1) /(eLLR(x) + 1)(eLLR(y) + 1)
= 1_ (eLLR(x) _1)(eLLR(y) _1) /(eLLR(x) + 1)(eLLR(y) + 1)
Note :
LLR(x) _ 1+ x
tanh(LLR(x) / 2) = m, tanh™ (X) = —log:
Rewrite (3.61) as
LLR(x® y)=2 tanh’l(tanh(LLR(x))ta h(LLR(y) (3.65)

With decomposition of operations, we can simplify the operations to sign-operation

and absolute value operation. The following will use the cosh(x) to substitute tanh(x),

Note -
log(cosh(x)) <loa(c—-5) & 1ogex(l+e_zlx) .66
= x|-In2+In(1+e")
(3.65) can be rewrite as
e LIRGV*LIR(y) LLR(x)+LLR(y)
LR) =tog O o e

(e 2 +e 2)/2
LLR(x) —12- LLR(y)) - log(cosh(LLR(x) ; LLR(y)
:| LLR(x)+ LLR(y) - LLR(x)—LLR(y)
2 2
=sgn(LLR(x))sgn(LLR(y))min(] LLR(x)|,| LLR(y)|)+ A(LLR(x),LLR(y))
=CHK(x®)

= log(cosh(

)

| +A(LLR(x),LLR(y))

(3.67)

1 + e—\LLR(x)+LLR(y)\

Note : log1 TR TR (3.68)

When extending two nodes to d degrees, we can derive (3.67). The “min” in equation
(3.67) is to find out the minimal value. As the same idea, it derives equation (3.69)

when applying d nodes.

36

LLR(C, |r,x,))=LLR(x, ®x,®..0x, ®x, ,D..Ox,)

[T signLLRG)xp(Y, w(ILLR(x,)])

n'eN(m)\n n'eN(m)\n

~ T sien(LLR(x,) min (LLRGx,))xp; 0<p<1 G0
n'eN(m)\n mexumhn

~ [] sign(LLR(x,))x yr]Ivl(in)\ (|LLR(x,))-a; a=0
n'eN(m)\n e mn

Note : y(x)=y ' (x)

¥ (x)

Figure 3-8 : Funetiongraph of y(x)
Figure 3-8 shows the functional curve of w(x). Its output is as smaller as x
increasing and y(x) =y '(x) S0 that we-can simplify y(x) by sorting absolute
LLR(x) to find out the corresponding” minimal value. The «,/5 are compensation
factors to compensate performance degradations due to inaccuracy approximation.
The [is called normalization factor [24,25,26] that often own better compensation
capacity than o [27,28,29] called offset factor. It is difficult to find an adequate
constant factor for different LDPC codes with various degree distributions. To
improve the approximation accuracy, a self-compensation technique is proposed by
using dynamic normalization in [19]. However, considering of hardware
implementation, a fixed factor is adopted compensate the deviation according to the
simulations with different factors, 0.625, 0.75, 0,875 and 1. The related simulation

results are shown in chapter 3.3.1.

The min-sum algorithm reduces the hardware complexity, but the iteration

37

problem still exists. We adopt row-update message passing algorithm (RMP) with

min-sum to solve the problem. The main rationale is described in the next section.

3.2.2 Row-Update Message Passing Algorithm

The main concept of row-update message passing algorithm (RMP) [17] is a
scheduling version from layered decoding algorithm that update information as soon
as possible, not same as BP algorithm, that has to update check node first and then bit
node, called one iteration. On layered decoding algorithm, each row of H can be
considered as a component code (or a layer). We call the iterations within a layer as
the sub-iterations and the overall processifor layer to layer as super-iterations (or just
iteration). From layer to layer, the component code is just an interleaved version of
each other. As each next layer starts decoding, like Turbo decoding, its inputs are
combined from the last layer or other prior-layers; if necessary. Simulation results
show that the layered decoding algorithm requires only 20~50% number of iterations
of the conventional BP algorithm to achieve the same error-correction performance
[17, 18]. For high parallelizable implementation, some rows are merged into one layer
and decoded simultaneously. For efficient message update, row/column schedule for
the parity check matrix is suggested to group a collision-free layer in which the
column weight is at most one. The algorithm decode them row-by-row in sequence so
that called row-update message passing algorithm, which is compatible for QC-LDPC
because of itself Quasi-Cyclic structure. Figure 3-9 and Figure 3-10 show the
differences between BP algorithm and row-update message passing algorithm (RMP),
respectively. Stepl~2 describe the detail equation steps for BP algorithm and RMP

algorithm, respectively.

38

iy

o ! After bit nodes updating, check
& | node access new information In
= J'_,L next iteration.

P

Qij‘"T_T T bit

[(check | Bt | check | bt

13t [ter, Ind Iter,

Figure 3-9 : Process of BP algorithm

\Lll Immediately update bit node
.] messages after updating check
1 VR node per row
arn
[check [check |

[bat] [bat] [bat] [Tt

rd

| st [ter. Ind Tter.

Figure 3-10 : Process of row-update message passing algorithm

<>

LDPC Dé¢coding Algorithm Steps :

Initialization :

0

LLR(q, —log(3)= 285 for =00 N-1
o

2

1

Check node (CHK/row operation) :

ro=sw(Y wila, M s,= [] senq,)

i'eN(j)\i i'eN(j)\i

Bit node (VAR/column operation) :

G=Dit D2 Tu= D Tutp

J'eM(\j J'eM(\j

; p, = LLR(q,); 1initial channel value

Belief Propagation Algorithm

Stepl-1: {Vj > {Vi':<1>} } > {Vj > {Vi':<2>}}

Step1-2: check early termination: finish decoding or return step1-1.

<l>

<2>

39

<> Optimized Row-Update Message Passing Algorithm
Step2-1: V) — {Vi':<2>} - {Vi':<1>}

Step2-2: check early termination: finish decoding or return step 2-1.

The following Figures will show the floating simulation results and comparison
between BP and row-update message passing algorithm. Because channel coding is
belong to outer receiver and a good receiver can recover multi-channel, fading
channel and other channel model into simple AWGN channel, so that we only
consider AWGN channel model which is enough to stand for error-correction
performances. For simulation time, we only consider BPSK modulation excluding
other modulation types. The simulation environment is setting as BPSK modulation
and AWGN channel model and 10¥'data is sirhulated to show 10° BER (Bit Error
Rate) by C-language. In Figure 3-11~14, they show floating simulation results of
maximum codeword lengths “and , mimimal - lengths for 802.1ln and 802.16e,

respectively.

BER versus SMR for IEEE 802.11n, block legnth 643

1\1)‘\\{__‘%\ Irnw—updatle: iter.=1|D —+— BP 112
N P:iter.=20 —&— BP 123
—&— BP 13/4

BEP 56 £
—%— row-update r1/2 H

row-update r2/3 ||
—5— row-update 13/4 ||
—4+— row-update 15/5 f

BER

4 45 5

SNR [dB]

Figure 3-11 : BP v.s RMP algorithm in 802.11n with codeword length 648 bits

40

BER wersus SNR for IEEE 802.11n, block Iegnlh 1944

T update iteration=10 —*—ElF'r1.f2

tegtion=20 —&—BP 23
—— BP r3/4

BP 56
—#— row-update r1/2 |

row-update 123 1
—&— row-update (3/4 |
—+— row-update 155

%

BER

) R W
1 15 2 25 3 35 4 45
SNR [dBI

Figure 3-12 : BP v.s RMP algorithm in 802.11n with codeword length 1944 bits

Figure 3-11 and 3-12 show the simulations for full code rates, 1/2, 2/3, 3/4, and
5/6 in IEEE 802.11n with the max1mum codeword length 1944 bits and minimal

codeword length 648 bits, respectWely . :

BER versus SNR for IEEE 802.16e, block length 576

10 g . ; : . v v . ;
1 —+—BPr1/2
—&— BP r2/3a
2 —— BP 12/3b
o —<— BP 13/4a
—+—BP 56
row-update r1/2
Tind? M\, | —&— row-update 2/3a |}
\ —b— row-update 12/3b |3
i —<— row-update 13/4a |]
o —+— row-update 5%
1wt d
10’} : \ E
10° :

1 15 2 25 3 35 4 45 5 5.5
SNR [dB]

Figure 3-13 : BP v.s RMP algorithm in 802.16e codeword length 576 bits

41

BER wersus SNR for IEEE 802.16e, block legnth 2304

" row-update: iteration=10
482 iteration=20 +—BP 2
) . —&— BP 233

b— BP r2/3b]
\@ Ny &— BP 34 E

b | —+—BP 56
\

row-update r1/2 |]

\\ \ —&— row-update 233 H
1

\ —— row-update 12/3b |3
\ \ i
10° \ A \ 5

S— row-update r3/4a |]
—+— row-update 56 |7
10’ 1 1 1 L 1 1
1 15 2 25 3 35 4 45

SNR [dB]

BER

Figure 3-14 : BP v.s RMP algorithm in 802.16e, codeword length 2304 bits

Figure 3-13 and 2-14 show the simulations for with code rate, 1/2, 2/3A, 2/3B,
3/4A, and 5/6 in IEEE 802.16e withsthé maximum codeword length 2304 bits and
minimal codeword length 576 .bits} respectively.. Maximum number of iteration is
limited to 20-time for Belief Propagation and 10-time-for row-update message passing
algorithm. Only half iterations+(10 “iterations) are needed to achieve the same
performance as BP algorithm (20 iterations). Some hardware design issues are

considered deeply in section 3.3.

3.2.3 Trade-off between Decoding Algorithms and Code Structures

Row-update algorithm is an optimum version of layered decoding [18] for
QC-LDPC because the column weight is at most one in one layer. It is the most
adaptable decoding algorithm for QC-LDPC, having the fastest speed of convergence
up to now. For 802.11n and 802.16e, Belief Propagation algorithm often needs 20
iterations to achieve 10° BER (Bit Error Rate). However, row-update message
passing algorithm only needs 10 iterations to achieve 10° BER. Besides, its grouped

layer property provides highly parallelism on VLSI implementations. It not only

42

provides throughput enhancement but also flexibility for adaptive code rates and
lengths for future wireless communication systems. However, a configurable
data-path for variable code rates and lengths is the main design bottleneck, hence a
high flexible permutation design is proposed to overcome different size of Zr (totally

22 modes). The detail design with row-update is discussed in next chapter.

3.3 Design Considerations

Figures 2-11~2-14 present the advantages to adopt RMP algorithm. This
sub-section will simulate some parameters for design considerations, including
min-sum algorithm, fixed-point simulations and number of iteration, etc. According to
the trade-off between error-correction performance and hardware complexity, the

appropriate parameters are chosen for VLSEimplementations.

3.3.1 Normalization Facfor

The CHK operation is listed "as®(3.70). Min-sum algorithm is adopted to
approximate the nonlinear function /(x)=-log(tanh(|x|/2)), so that a normalization
factor is needed to compensates the performance degradation due to inaccuracy
approximation. However, it is difficult to find an adequate factor depending on coding
type, code rate and etc. A self-compensation technique [19] is proposed to improve
the performances. To ease implementation design, a fixed normalization constant is
chosen by exploring some factors, 0.625, 0.75, 0.875, 1 which performance is close to

RMP algorithm without min-sum approach (the theoretical result).

1y =s;(min (lg,;))xp; p=0.75

PeN(N
s(min (> et po—n DxA (3.70)

JEM DV channel value Jast old message

bit node update

43

Figure 3-15 shows the simulation with factors, 0.625, 0.75, 0.875 and 1 (without

normalization factor).

.y Toating-point simulation for normalization factor with 11n, rate 1/2, Z=31

10 E T T
£ —<4— 11n M2 theoretical.
11n A2 min-sum 0.625 |
7 —=— 11n 2 min-sum 0.75
10 11n r12 min-sum 0.875
—&—11n ri2 min-sum,1
107}
o
J
m
i
10°} .
o
10'3‘ 1 1 1 1
1 15 2 25 3 35 i

SNR [dB)
Figure 3-15 : Simulation for normalization factor simulation
(802.11n, floating point, rate 1/2, block length 1944 bits, BPSK, AWGN)
0.75 is the optimum factor. most ‘close to' the theoretical result. A formula
xx0.75=xx0.5+xx025=x>>1+x>>2""s implemented for HDL (hardware

description language).

3.3.2 Bit Width for Hardware Cost

In hardware implementation, we have to decide how many bits to present one
data. (Integer, Fraction) denotes bit widths of integer part and fractional part,
respectively. Figure 3-16 shows fixed-point simulation with (6,0), (6,1) and (6,2).
Figure 3-17 shows fixed-point simulation for different integer parts, (6,0), (7,0) and
(8,0). The theoretical result means floating point simulation with RMP algorithm with
min-sum. The object code simulates code rate 1/2, codeword length 1944 bits in

802.11n.

44

i simulation of fixed-paint for rate 1/2,1944bits of 802.11n
10 T T T T T T T T

—+— 11n r1/2 theoretical result

—&— 11n /2 floating,min-sum 0.75

—#— 11n /2 fixed-point, min-sum,(6.0)
“—11n r/2 fixed-point min-sum,(B.1)

—<— 11n 1142 fixed-point min-sum (5.2)

BER

100 = —— '..'I . — E——— 1 I o &
1 1.2 1.4 16 18 2 22 2.4 26 28

SNR [dB]

Figure 3-16 : Fixed-point simulation with fixed 6 bits integer
(802.11n, 10 iterations, rate 1/2, block length 1944 bits, BPSK, AWGN)

fixed-point simulation for different integer parts

10 T ;
g —#— 11n /2 fixed-point,min-surn,(5.0)
—+— 11n r/2 fixed-point min-sum (7 .0)
11]'2 —2—11n /2 fixed-point min-sum (B.0)
10°}
v
]
w N\
10* N
_\
! AN
10° N\
AN
,ln-ﬂ " N
1 1.5 2 25

SNR [dB]

Figure 3-17 : Fixed-point simulation for integer part

Of course, larger bit widths can approach floating simulation curve more.
However, a trade off between bit width and performance should be considered. Finally,
we choose 6 bits for integer parts and 0 bit for fraction part, (6,0) because (6,0) is

good enough.

45

3.3.3 Number of Iteration

In the decoding process, maybe an error bit string causes that codeword can’t be
corrected in finite number of iteration, so that we must set the maximum number of
iteration to stop infinite iterations. How many number of iteration is the adequate
number to have an acceptable data rate and error-correction performance? We
simulate the fixed-point simulation with different number of iterations, 5, 8, 10, 15,

and 20 for 802.11n, rate 1/2, length 1944 bits as shown in Figure 3-18.

" fixed-point simulation for iteration number with 11n rate1/2,1944bits

10 ! 3
—<&— nr2iter5
\ —+—11nr2iter8 ||
2 —&— 11n r1/2 iter.10
107 ¢ Ok, 11n r/2 iter.15
O —fe— 110 r1/2 iter.20
w0k 5
E \\\ Yy i
@ NN 1
10l \Ili.'-:-_ G 4
LN 5
10.5 | \\'\.\ i- -E
-
10 ' : :
1 1.5 2 25 3 315
SNR [dB)

Figure 3-18 : Simulation for iteration number, 5,8,10,15,20

(802.11n, floating point, rate 5/6, block length 1944 bits, BPSK, AWGN)

Of course, the simulation curve with more number of iterations can own well
error correction performance. However, the data throughput has spoiling effect.
Except for data throughput, 10-time and 20-time iteration performances are almost
close, because of its performance saturation. Consequently, limited 10-iteration is

good enough for high decoding speed and acceptable error correcting performance.

We summarize the parameters discussed in the prior sub-sections as Table 3-1.

46

Table 3-1 : Parameters summary

Decoding algorithm Min-Sum RMP algorithm
Max. Iteration 10
Normalization factor 0.75
Integer 6 bits
Bit width
Fraction 0 bit

3.4 Implementation Issue

We present the decoding algorithm above. Some implementation issues to

design a configurable architecture should be considered as follows,

1.

A flexible permutation design is a very important bottleneck to merge 22 modes
in 802.11n and 802.16e corresponding tor different codeword lengths. How to

design a configurable data-path merging 22 types of hardware units.

We group Z; rows into one layer-and-decode them in parallel. 96 PEs are
implemented to process data in parallel’and merge other Z/s (24~96). When
decoding a short codeword length, low hardware utilization is necessary to be

enhanced. Multi-codeword decoding technique is proposed to solve the problem.

In order to avoid memory access confliction, schedule is applied on row-update
message passing algorithm in VLSI implementation. There are 31%~44%

enhanced throughput with scheduling.

Number of iteration plays an important role in error-correction performance and
date rate. Hard decision based early termination is implemented to reduce

redundant iterations.

In chapter 4, we will introduce our proposed configurable decoder architecture

and related solutions in detail.

47

48

CHAPTER 4 ARCHITECTURE

DESIGN AND IMPLEMENTATION

For a trade-off between hardware complexity and performance, the partially
parallel architecture is designed with row-update message passing algorithm with
min-sum. We will introduce the design analysis, overall architecture, related
functional block and techniques to solve some design bottlenecks and enhance
decoding performance. For example, flexible permutation is proposed to merge all
types of Zs’s and multi-codeword decoding technique is adopted for preserving
hardware utilization. Scheduling, hard decision based early termination and other
techniques will be introduced and discussed as following content. The LDPC decoder
with a core size of 2.14x2.14 mm’ is implemented in TSMC 0.13 pm CMOS
technology. The detail post-layout simulation results including throughput, area, and

power and some comparisons with state-of-arts will be presented in the final section.

49

4.1 Architecture Design

Fully parallel architecture can achieve a maximum throughput but the lack of
flexibility and its large area is the major problem in current and future wireless
systems that require support for adaptive code rates and codeword lengths. A partially
parallel not only provides a trade-off between hardware complexity and throughput
but also high flexibility for different code rate and lengths. Thus, we adopt a partially
parallel architecture to match the QC-structure with variable Z:. However, how many
parallel levels for functional units should be considered with adopted decoding
algorithm? Because the maximum Z; for 802.16e and 802.11n is 96, 96 processing
units in parallel is instinctively the best choice to merge all cases. Hence, we group Z;
rows into one layer which can be yiew as a component code and decode layers in
sequence. There are 12 layers for code rate 1/2, 8 layers for code rate 2/3, 6 layers for
code rate 3/4 and 4 layers for code rate 5/6. On the other hand, there are 24 x(1—R)
layers for code rate R. The parallel 96 processing units are the best numbers of PEs to
achieve maximum data rate without losing error-correction performance, although it is
a over design when decoding a short codeword (Zy <96). However, multi-codeword

decoding technique discussed later is proposed to preserve hardware utilization.

4.1.1 Decoding Flow

Figure 4-1 shows the decoding flow chart with row-update message passing
algorithm. The rows of parity check matrix are grouped into a layer and updating in
sequence as shown in Figure 4-2. Initialization includes the input receiver and setting
for some parameters. “shift message” means the operation to shift data according to a

shift amount, because data has be shifted to appropriate permutation for next layer.

50

Check node update and bit node update denote the corresponding CHK (4.1) and VAR
(4.2), respectively. When decoding one layer, PEs first read d degree data according to
its row degree distribution from memory, then update check node/bit node. And then
shift the updated message, store data and temperate parameters back into
corresponding memory, respectively. The time of next layer update can be overlapped
with storing operation by appropriate pipelining. After finish 24x(1-R) layers update,
the decoder will stop when a valid codeword is found, otherwise, it moves toward the
next iteration. However, if the number of iterations exceeds a predefined value, the
decoder claims decoding failure and terminate the decoding process. We will discuss

detail the corresponding architecture design in next sub-section.

initialization
i-th layer
Memory access
process read read
write No
check node - -
shift message termination
update
Yes
bit node update output
Figure 4-1 : Decoding Flow Chart
1" iteration 10 iteration

1" laver | - - -|m"' layer t-ermilmuon| o Player | - - - m':' layer

Figure 4-2 : Decoding process diagram for mxn parity check matrix

rji = Sjiﬂx i'g\flg%\i | qi",' |9 ﬂ = 075, Sﬁ = ive]];/[)\[Sgn(qi'j) (41)
q; =p;+ Z oy = Z ryt DTy, 4.2)
J'eM D\ J'eM (i)

51

4.1.2 Overall Architecture Design

Figure 4-3 shows the overall decoding architecture. The “input buffer” block,
having data bandwidth 96x6 bits, is the input buffer serially receiving input data.
The “permutation” denotes the interconnection design to permute data between

successive layers.

ROM tables are constructed by prior analysis for defined parity check matrices
in 802.11n and 802.16e to store shift amounts and addresses defined in parity check
matrices, respectively. The “Proc.#1~96” denote 96 processing units for CHK/VAR
update. It serially accesses d data according to address ROMs (d is the row degrees).
After CHK/VAR update, messages are fist shifted with related shift amounts for next
successive layers by “permutation”; then stered back into original memory. It

immediately updates each layer’s information for. next layer’s update.

“Beta_ram” is the temperate memory that stores relative parameters from last
iteration, Betal, Beta2, index, and sign value. “Betal” means the normalized first
minimum, Fxminl (minl: fist minimum). “Beta2” means the normalized second
minimum, Fxmin2 (min2: second minimum). “Index” denotes the index for the
first minimum value. Sign value indicates sign part of updated messages. When
processing one layer, we need to subtract older messages and then produce new
messages and related parameters, index, Betal, Beta2, sign, store back into the
memory with same addresses. “Termination” execute decoding stop if a valid
codeword is found or the number of iterations exceed a predefined value, 10,

otherwise move toward next iteration.

A roughly description presents basic operations and decoding flow for the
proposed architecture. Then we discuss the detail functional block respectively in

continuous sub-sections.

52

shift address

e

UOIEUTLIE |,

Beis

ram »

1
decading ||hElu] |[Betad |[index |[sign ||

¥
output buffer

Figure 4-3 : Overall architecture

® [nput/Process Buffer

Suppose that N denote codeword length and N; represent the total number of
edges in the Tanner graph of the LDPC:code. From (4.1) and (4.2), the sum-product
algorithm, within an iteration, requires;to store. the:message traveling on each edge.
And, apart from these, the N-=channel extrinsic data have to be stored. Thus, the
memory required from iteration: to-iteration is. (N+N;)xb for conventional BP
algorithm, where b is the bit width of the fixed-point number. Since N; is generally
larger than N greatly, the message passing on each edge can be generated by updated
VAR indeed, and, hence, when in VLSI implementation, the designer usually uses
2Nxb, in stead of (N+N;)xb, memory for message of node not edge. For efficient

memory saving, a value-reuse architecture is proposed with RMP decoding algorithm.
2r, : : -

We first store channel value, —- from “input buffer”into memory, “MS” in Figure
o

4-3 and “Input buffer” is capable of receiving next block codeword. Thus, there are
only Nxb sizes needed for process buffer so that it save almost half size of memory
compared to the conventional BP algorithm. “In_buffer” is a single port memory and
“MS” is a dual port memory in order to read and write simultaneously for scheduling

issue. They are both 24 entries with 576 bits (96x6) per entry. Figure 4-4 shows the

53

“In_buffer” and “MS” memory block diagram.

:4 'ﬂ”lriﬁﬁ ‘j‘;]_ “""eq
24 2NIres

uonEnd

single port dual port
CHK output process huffer

Figure 4-4 : Data path from “in_buffer” to “MS”

® Flexible Permutation Design

A configurable data-path is a design bottleneck for adaptive code rates and
codeword lengths. In 802.11n and 802.16e, LDPC codes define identity right shift
block matrix according to different code, lengths and shift amounts. Total 22 modes
need to be considered in the design, including3 modes for 802.11n and 19 modes for
802.16e. Figure 4-5 illustratesza' simple 3x6 parity check matrix with 6x6 block
matrix, Z~=6. The numbers in parity matrix.denote shift amounts and all the shift

amounts are smaller than 6 because Zis'equal‘to 6.

For the example, shift amounts shown in Figure 4-5, we expand block matrices
with related shift amounts and a size of 6x6 matrix in Figure 4-6. When processing
first layer, we have to read data from column addresses 1, 3, 5. After CHK/VAR
operations, we have to permute the output results and restore back the same addresses,
1, 3, 5. Then, process addresses 2, 4, 6 and continue decoding until a valid codeword
is found or termination stop. In hardware, we store 6 data in registers in sequences
according to its shift amounts. However, permutation is needed to cyclically shift data
for required arrangement of next processing layer. We store differences of successive
shift amounts in column direction instead of absolute values defined in parity check

matrices in ROM tables. For example, the sets of difference, (1, 1, 2) are shown as

54

Figure 4-5. The trick can provide us to only permute data one time when decoding
layer-by-layer. On the other hand, it does not need inverse permutation except for

output operation.

difference —

Figure 4-5 : 3-by-6 parity matrix with Z=6

1 23 456

AN N AW N~
[
Ju—

[[2]3[a]5]6] [3[a]5]6]1]2]

shift amout- () shift amout 2

Figure 4-6 : 6-by-6 identity. matrix with shift amounts 0, 2, respectively

Figure 4-6 shows shift amounts and their data sequences in registers. We define
that L means L 6-bit data registers are constructed in hardware and Zr denotes a block
matrix size ZxxZ;related to its codeword length. When L is equal to Zj it is a simple
barrel shift problem that can be solved easily by design ware or logic multiplexers. An
L 6-bit data shifter can support 0~L-1 shift amounts of cyclic shifter. However, the
hardware cost is too large to implement 22 types of permutation units. We want to
construct 96 6-bit data shifter to merge all variable defined shift sizes Zj, from 24~96.
It produces another implementation issue with a dynamic shift size when L is not
equal to Z. Figure 4-8 shows a simple example of the problem, L+ Z, with shift size,
Z=6 and L=8,. Totally there are 22 types of Z; from 24 to 96 in 802.11n and 802.16¢

according to different code rates and lengths.

55

L=Z, L=F

1254515'[}1'345&'1
¥

shitt amount=0 shift amount=1

Figure 4-7 . Register arrangement for shift amounts 0, 1 with shift size 6

1 2 3 4 5 6 7T 8 23 4 5 6 7 8

(EOEGENE] © ERLEERED

o

shift amount 0 L= J,
WIDIE SeqUENCE

X do not care element
expected sequence

How to permute or data with dynamic
P . . : : 2 Ol X
shilfi size Zand fixed register size L 7! | & | 3 | 4 | 3 | b | I | X | A |
shift amount =1 l T
processing iZnore

Figure 4-8 : Example of shift size’Zssmaller than maximum register size L

Configurable, point based permutation is proposed to solve the bottleneck by
enhancing enable bits of patent20] and the main rationale is illustrated as Figure 4-9.
The head and tail points the available data length; Z. The pointers rotate left, like a
cyclic buffer with a shift amount S=shift amount. The distance between updated
pointer head (head’) and old pointer head indicates desired parts. Likewise, tail and
tail’ do so. An expected data sequences can be available by combining the left part
and right part from L-data, respectively. Figure 4-10 shows an example of
permutation for this idea with L=8, shift amount=1, Z=6. Because the design supports
a multi-codeword decoding mode, a multi-codeword shifter is needed to be supported.

The design also supports multi-codeword permutation.

56

Ca

[7 1 104
head tail

S=shill amouw

ead ﬂ il tail head é’

et s —> [

head right side .. e expected sequence

111 IEEEE H
head’ e

Figure 4-9 . Permutation design with head and tail pointers

i 2 3 45 6 7 8
]|2’3|4’5]ﬁ x|x|

head tail
S=shifl amoun=2

2|3|4|5 3 x|x 1|

] e
[:u'l'ﬁl'fi:3i| head'sz

{ 4
[2]3]a]s]eft][x][x]

LY
r

Expected sequence
Figure 4-10 : Permutation for maximum size 8 and shift size 6 and shift amount 1
Number 96 can be presented in binary 7 bits, so that shift amount is 7-bit in
Figure 4-11. The hierarchical architecture of the logic barrel shifter to permute 96
6-bit data is shown in Figure 4-11. Although the latency increases with more logic
levels, the area is scalar down. Three level multiplexers are the optimum choice for a

trade off between area and timing.

57

shift amount[6:4] shift amount[3:2] shift amount| 1:0]

4] 0
16 1
64 MUX 3
80 k]

b inputs 4 inputs 4 mputs

Figure 4-11 : Three levels of logic barrel shifter for 96 data
Without pipelining, we optimize the design. The term “Bit” denotes number of
bit for one data. We list the area comparison shown in Table 4-1 for interconnection
design. We support total 22 modes and still have well performance on area and timing.
The timing constraint is 2.5 ns in synthesis level.

Table 4-1 : Comparison with design [21] for area

Applications Area(umz) Bit Technology
[21] 11n, 3 modes 20471 7 0.13 um
proposed 11n&16e, 22modes 21852 6 0.13 um

® Processing Units (CHK/VAR)

In processing units, we execute SPA (Sum-Product Algorithm) for CHK and
VAR updates for row-update message passing algorithm with min-sum. Equations 4.3
and 4.4 present CHK operation and VAR equations. We combine them then derive it
as equation (4.5) and overlap the successive CHK/VAR operations to enhance
throughput by pipelining the stages. We simultaneously process Z; rows and access d
degree messages according to its degree distribution. We store information on nodes
of bipartite graph not that on edges. If there are d degrees for one layer, it must store d
data when considering edge information, hence, it needs a large size of memory. By
storing the information on nodes, memory size is reduced to almost 1/2 compared to

58

information on edges. An efficient memory saving method is described in prior

section, architecture design.

ry = S_/‘iﬂx n}\}ln | q;; |a :B =0.75, S = H sgn(qi,_/) (4-3)
FeN (Y I'eN()\
VAR: q; = p, + Z Vo = z Pt D=1y (4.4)
J'eM (i)\j JeM (D)
= 1y =s,f> min | (j;M(i)r_,[+p) -r,l, =075 (4.5)

We rewrite equation (4.3) as (4.6) by index, Betal, Beta2, and sign value. “minl”
denotes the first minimum value of the set. “min2” denotes the second minimum
value of the set. Betal and Beta2 are the scaling minl, min2 by £ 0.75. Index
means the index for the first minimal value of the set. By min-sum, we only store
Betal, Beta2, index, sign, and MS values instead of information on each edge. It
reduces complexity of computation and achieves efficient memory saving. Figure
4-12 shows the partially parallel:data*path-for-from “MS” to “processing units”.

minl ;i' = index
CHK : r,=fx H sgn(g;. ;)%

min 2 ;i' # index

i'eN ()N
; minl: min |g.,| , min2: second min |gq,, 4.6
> i'EN(j) | qz] | > i'EN(j) | qz] | ()
; index: order of minimal value g,
shift address
ROM CHE/VAR
B = 16%06
g |
z = 6406
=4 2
E g
proc. 06
process buffer
Beta ram
decoding [betal || betal || mdex || sign
W

| output buffer }—

Figure 4-12 : Data path from MS to CHK

59

B_Memory
(Blml, B2md, Index)

index

Ti +p;_> o o 5
D

sorting

L A sign-FIFCH

e-FIFO

“l

i minl [{]

L SWap &
—{)7‘—)
| min
E cImp

J

chk_valid

T
clcar_l—l_ _|_|_ |—|

PUSH_N

|] I pa I e I

degree-1 cyele
Figure 4-13 : Architecture for processing units (CHK/VAR)

We map equations (4.4) ~ (4.6) to CHK/VAR in Figure 4-13. The correction
block means that input message must subtract old stored information with index,
Betal, Beta2, sign value from “R_Memory” and it is mapped to subtraction notation
of equation (4.5). For CHK, we first have the absolute operation (abs), |x| in order to
sort the magnitude value to find out the first minimum value, minl and second

minimum value, min2, and then scaling the minimum value with =0.75 to produce

60

CHK output. The sorting block needs two comparators and a swap operation for
minimum value. There are two FIFOs (First In First Out) to store sign part of
corrected value and corrected value, “crt out”, respectively. The VAR function
receives PUSH_N and POP_N control signals to control FIFOs and cumulate newer
updated values with outputs of CHK function. The updated VAR outputs will be
permuted for next layer and then stored back processing buffer. The related
parameters, index, Betal, Beta2, and sign back are also stored into “Beta ram”.

Figure 4-14 shows the architecture of “Beta ram”.

beta_control 5

1 £ o -l £ -
3 Fa
#1 #2 #95 #04
sign ik ry 5 RER
T 1 L H
1

.
im}fx 12 entries

count

index

Bemlﬁ

Beta?—3

Figure 4-14 : Block diagram of “Beta_ram” memory and controls

Some control signals are produced from “termination” block, and it is an
important problem for high fan-out loading when running the post-layout simulation.
We must duplicate control signals to reduce wire loadings for the loading is too heavy,

hard to drive 96 function units.

61

® Multi-codeword Decoding Technique

For different code rates and codeword lengths, it has the related Z, because
codeword length n= Z;x24. 96 function units are implemented for partially parallel
decoding because of maximum Z; 96 to merge other Z/s. The data-path process 96
6-bit data simultaneously, even if decoding a short codeword length, Z<96. Thus, it
causes spoiling hardware utilization for idle redundant function units. We proposed
the multi-codeword decoding technique to preserving hardware utilization. We divide
96 function units into 2 parts, upper and lower parts in Figure 4-15. The upper part
receives first block and lower part process next block. Obviously, it has a constraint
that codeword length must be less 1152 bits (Zy<48) in multi-codeword mode. Of
cause, the permutation design should_be,also modified to support multi-codeword
codeword permutation, and we.present the-tationale in Figure 4-16. Because we
process the same sequences of non-zero block matrices, just different block codeword,
and thus the shift amounts are samerSo the-proposed method has no more hardware

cost and only need some control circuit.

7 first hlock Shift amount)
; Process bulTer

HOTIE ML

Figure 4-15 : Block diagram for multi-codeword decoding technique

62

L=4% L L=48

L[] 11 |
head Y il 3

JIIERI L= A0

{ —
head tail" § head’ ﬂ

— — expected
a1 O
£ £

Figure 4-16 : Point based permutation for multi-codeword

The advantage of multi-codeword decoding is not only to increase hardware
utilization but also data rate. We summarize the throughputs for 802.11n and 802.16e
with post-layout simulation results at 333 MHz as Figure 4-17 and 4-18, respectively.
We can observe that throughput of a_ short codeword length (Z<48) is double of
original single decoding, e.g. the.throughputof length 648 (Z,= 27) is 240Mb/s, same
as that of length 1296 (Z,=54) for any code rates in 802.11n, There are 8 types (24, 27,
28, 32, 36, 40, 44, 48) of Z/s enhanced 'among totally 22 modes for 802.11n and
802.16e. We have the decoding throughput™ of 240~506 Mb/s for 802.11n and
213~590 Mb/s for 802.16e. The multi-codeword decoding technique doubles the
throughputs and provides more design spaces for low power consideration. Later we

summarize the post-layout simulation results and discuss performance comparison.

=3
=

| ormt-es BEmh-E% OrmneDd |
: 506 Mbis——
040 Mbls n

=
i

7

Wl B
=

(Throuatput (Mt asec)
g 3

=

=

Faw 112 Fam 27 Faw 4 Fate 5%
& 11n code ram

Figure 4-17 : Throughput for 802.11n, full code rates at 333 MHz

63

| D kgoth=576 B kgath=1157 nmm:zanetl

[Throuatpt (Mhabs isec)

-58E888848

Pam I/? Faw2Ta PFaw 2% Paelda Fae 5%
HE e ok @m

Figure 4-18 : Throughput for 802.16e, length 576, 1152, 2304 at 333 MHz

® Dynamic Early Termination

An analysis for number of iteration has been discussed in chapter 3. We set
maximum number of iteration to be 10 for a trade-off between error-correction
performance and throughput. Early tetmination:mechanism is proposed to reduce the
redundant number of iteration and achieve low power consumption. It is generally to
check the traditional parity check constraint, Hx'=0, if satisfying the equality, decoder
terminates the process or continues the iteration until 10-iteration is achieved.
However, it is impractical to implement the matrix multiplication in hardware. For
example as matrix (4.7), the parity check constraints (4.8) have a large overhead to
store the random constraints and the time to check all constraints is also hard to be
handled. However, hard decision based early termination is implemented to provides
an easy method to verify the valid codeword. Moreover, its hardware cost is less than
the parity checker, Hx'=0. We store the sign part of LLR and compare successive
decoded outputs, if same stop decoding otherwise, continues the iteration until

10-iteration is achieved.

Of course, there is performance degradation compared to the checker based on
parity constraints. It will produce errors when soft message changes but its hard

decision doesn’t change. Figure 4-18 shows the simulation with early termination

64

based on parity check constraints, Hx'=0 and hard decision checker. The

“theoretical.” curve denotes the decision based on parity check constraints. The

simulation environment is BPSK, AWGN, fixed-point and object is code rate 1/2,

length, 1944 and 2304 bits in 802.11n and 802.16e, respectively. There are a little

acceptable performance degradations when considering of implementation and

enhanced throughput.
H=
Hx' =0=

with x =[x,

0 01 10O
1 00010
1 01 0 01
01 0111
010 00O

DX X, X, +x, =0
D Xy + X, Xt =0
DX R X £x,. =0
DX, fExek =0

DX e =0

_ o O O =
—_ O = O O
S O O = =

X, Xy, g, SEAETCTON , o

_gimulatiun for eatly termination for 11n and 168e with maximum length, rate 1/2

10

i

107k

107

BER

10

m*

100

—4— 11n theoretical.

—+— 16Ge thearetical.

—&— 11n eatly termination

—+— 16e early termination [3

1.4 16 18 2
SMR T[4BT

22 24 2B 28

£

3

(4.7)

(4.8)

Figure 4-19 : Hard decision based early termination v.s parity check constraints

Except for purely early termination, we provide users dynamic termination

mechanism to control whether turn on early termination or not. Because the early

65

termination cost latency in decoding process, 10-iteration is a better choice in bad
transmission channel or high code rates for error-correction performance. However, it
is suggested to turn on early termination in low code rates or well transmission
channel for reducing decoding latency. Figure 4-20 shows the difference of
fixed-iteration and early termination. The configurable control lets the design more

flexible for adaptive code rates and different transmission environment.

[iterffl | iter#2 | fixed-iteration
[itertl | iter#2 [D] D | iter#10 | early termination
1

quit if right (early termination)

Figure 4-20 : Process of dynamic early termination

® Scheduled RMP Algorithm

The rationale of row-update message passing algorithm is to update variable
nodes as soon as possible forithat the.check node’can access newer information.
However, the later layer has to wait for the memary updated by the last layer. On the
other hand, it exist intra- and inter-iteration precedence constraints (or data
dependence) and the layers work one after another. The fact makes it difficult to
design a high throughput as well as a high hardware utilization LDPC decoder. Figure
4-20 shows that non-scheduling v.s scheduling. Suppose that there are layerl with
column blocks, 1, 2, 8, 9, 12 and 13 and layer2 with column blocks, 0, 2, 8, 9, 15 and
16 needed to be processed. If layerl updates check nodes in sequences, 1,2,8,9,12,13,
and sequences 1,2,8,9,12,13 for layer2. However, there is a large of latency to start
layer2 after finishing layerl. To overcome this problem, the overlapped operations
with a systematic scheduled RMP algorithm is proposed for QC-LDPC. We
re-schedule the column addresses for memory access to avoid memory confliction. If

a dual port memory is available, instead of sequential operations from layer to layer,

66

the next layer can start before the previous layer is finished.

1 2 B 1213
layert | [P0 [IV [PP EPATTITTIITT]
ez L LT TTTT PRI TTTTERITTITTTT]
{ 2 E O 1316
* FE write latency
"r"r'ilhm.Jt vead data [1]2Z[R (202 |_‘ e e e e e ri] 18 (9 5he
scheduling write data L2 8|9 J2]13
With FE only one cvele delay
scheduling read data [Z]oTeT1fiz[1y - HEROERE
write data HEIENHE

Figure 4-21 : Example of scheduling

Suppose that both CHK update (including read data from memory) and VAR
update (including write data back to memory) need Ccpgx and Cyar cycles to finish
computing one non-zero block matrix of size ZxZ;. For an mxn QC-LDPC with m,
non-zero matrices for each row, it-needs (Ceux+Cyar)xmpxm clock cycles to finish
one iteration by original RMP algorithm-witheut scheduling. Suppose further that the
next layer decoding can be initiated-only. after w cycles’ computations of VAR update
of the previous sub-iteration, where 1<w<Ccyk, thus comparing with the conventional

RMP algorithm, as shown in Fig. 4-22, the throughput gain with scheduling is

(Copx +Cyp) xmy xm
(Copx xmy +wW)x(m =1+ (Cppyp +Cpup) xm,

(4.9)

In our design for both 802.16e and 802.11n systems, which will be described in
the next section, the throughput gain of the scheduled RMP algorithm is about

32~44% as shown in Table 4-2 for 802.16¢.

By-passing technique is another method to solve the problem, but impractical because
of irregular addresses. Thus, scheduling technique is still the better suggestion to

overlap the operations.

67

1" layer m™ layer

CIHK VAR |- - - - - |CHK[VAR
1 iteration \\K '_“*--._h_‘__‘_‘_
(a) Non-overlapped layer ~ T ==
. \a) Non-overiapped [ayer . one layer -
™ layer : - :
- dIL \"- r-IIIIIL |':--lIIR | 'l{xi'llk
CIE VAR 4 Oy [Cuoan |- [Cyan
A CHE [VAR M € m
W) iy,
o (c) opertation for one layer
CHE VAR
S CIK VAR
1I:ll'l -
| ™ iteration m™ layer il

(b Overlapped layer by sheeduling

Figure 4-22 : Overlapped v.s non-overlapped
Table 4-2 : Throughput enhancement with scheduling for 802.16e

Code rates 1/2 2/3A 3/4A 5/6

Enhancement 44% 32% 44% 41%

® Memory Arrangement

In this sub-section, we will summatize memory arrangement, including RAMs
and ROMs. “M1 _24X72 inbuff’*denotes a single¢ port memory with 24 entries, 72
bits per entry, receiving codeword. “M2 24X72 MS” is the process buffer, a
dual-port memory with 24 entries, 72 bits per entry. “M1_12X120 beta” pr a single
port memory storing Betal, Beta2, index and it has 12 entries, 120 bits per entry.
“M2 88X48 sign” denotes a dual-port memory with 88 entries, 48 bits per entry
storing sign values. We store differences of successive adjacent shift amounts defined
in parity check matrices in “ROM_1152X84 shf’. “ROM_256X60 addr” stores
column addresses of non-zero block matrices of each row in parity check matrix. We
have to schedule addresses in advance to avoid memory confliction to overlap
CHK/VAR operations. “ROM 256X84 final” stores the inverse shift amounts for
output. All the sizes of memory are estimated in advance by analyzing parity check

matrices defined in 802.11n and 16e.

68

Table 4-3 : Summary of RAMs and ROMs

Memory block Type Gate Counts
M1 24X72 inbuff single port 27200
M1 12X120 beta single port 48000

M2 24X72 MS dual port 36800
M2 88X48 sign dual port 17200
ROM 1152X84 shf ROM 24000
ROM _256X60 addr ROM 12000
ROM 256X84 final ROM 16000

The total area of ROMs and RAMs has 33% of total design area at 2.5ns in
TSMC 0.13 um 1P8M COMS technology. The related decoding performances and

comparisons will be discussed in next section.

4.2 Implementation

Figure 4-23 illustrates the general ASIC design flow excised by the proposed
LDPC decoder. The design flow.can be classified into three categories: “Algorithm
Design”, “Architecture Design” and “Gate-level Design”. The whole design phases

are presented in sequence as follows.

The proposed LDPC decoder is implemented in TSMC 0.13 um 1P8M CMOS
technology. The chip operates at 333 MHz and, with 10 iterations for different code
rates and code lengths. It has the decoding throughput of 213~590 Mb/s with power
dissipation of 451 mW for 802.16e and throughput of 240~506 Mb/s with average
power consumption 436 mW for 802.11n. In low power mode, we slow down the
operation frequency to 66 MHZ (one-fifth of 333 MHz) to meet the required
minimum throughput, 30 Mb/s in 802.16e. The detail results will be discussed and

showed as follows.

69

Algorithm
simulation/Design
Algorithm e-code verification

Design

RTI.
Design
Architecturd synthesizable verilog
Design
Ciate-level
Design

—_ Lime/area power;

Figure 4-23 : Design flow of proposed LDPC decoder

® Algorithm Design

We first adopt LDPC decoding algorithm, optimize decoding flow and run the
simulation by C-language. According to-simulation results, we decide related
parameters, normalization factor and “maximum number of iteration, and estimate
roughly decoding performance. If decoding performances don’t meet specification,
we must modify algorithms or think of other solutions. We start architecture design

until decoding algorithm verification meets the requirement.

® Architecture Design

A synthesizable RTL is conducted right by systematic architecture design. We
have to design the architecture with appropriate pipelines to meet timing requirement.
ROMs and RAMs have a trade off between operating frequency and available size.
The fully synthesizable RTL codes are verified by C-code model with HDL simulator

Verilog-XL. We synthesize RTL codes and estimate timing and area without wire

70

loading model. If timing is not meet, we have to modify RTL codes by pipelining or

other coding types until meet the requirements.

® Gate-level Design

A synthesizable RTL codes are first transformed to the gate-level netlist by
Synopsys Design Compiler, and then the static timing analysis, logic equivalence
checking are carried out to ensure timing closure and correct functionality. We
implement gate-level design by encounter. The Synopsys physical compiler is
furthermore applied after the trivial physical design which utilizes the SoC Encounter.
This is because as the technology advances rapidly, the placement has large impact on
the circuit performance. Again, the gate-level simulation and verification are used to
exercise the synthesized netlist through physical compiler. Finally, the physical design,
i.e. floorplan, place & route etc..is cartied: out by SoC Encounter. Finally, the
PrimePower is used to estimatethe pewer-consumption. The functionality of netlist of

post-layout is verified by C-language with Verilog-XL.

4.2.1 Implementation Results

The proposed LDPC decoder is implemented with TSMC 0.13 um 1P8M
CMOS technology. Synthesis results are shows in Table 4-4 and it can be taken
references to compared with total area of memory. Summary of memory is listed as

Table 4-5. The area of memory has 33% of total design area.

Table 4-4 : Synthesis results

Summary Gate Counts
Total Synthesis Area 643469
Combination logic 188702
Noncombination logic 454937

71

Table 4-5 : Summary of memory

Memory block Type Gate Counts
M1 24X72 inbuff single port 27200
M1 12X120 beta single port 48000

M2 24X72 MS dual port 36800
M2 88X48 sign Dual port 17200
ROM 1152X84 shf ROM 24000
ROM_256X60 addr ROM 12000
ROM 256X84 final ROM 16000

We analyze the overhead of a dual-decoder from a single application, 802.11n
to merge 802.16e. Except for modifying some parameters for ROM tables, number of
processing units should increase from 81 (for 802.11n) to 96 (for 802.16¢) because of
Z;. Synthesis area for a processing_unit (CHK/VAR) is almost 3042 gate counts.
Moreover, ROM tables have 24076 |gate .counts. for.802.16e and the area of a signal
decoder for 80211n is almost 573793 gate counts. Consequently, the design area is

almost 15% overhead.

The specification of proposed LDPC decoder is summarized in Table 4-6.
Figure 4-24 shows the die photo of proposed LDPC decoder. The core size is
2.14x2.14mm’ and die size is 2.69x2.69mm”. The decoder operates at 333 MHz with
10 iterations for different code rates and code lengths. It has a peak throughput of 590
Mb/s and power dissipation of 451 mW for code rate 5/6, code length 2304 bits in
802.16e. In 802.11n, its peak throughput is 506 Mb/s with power dissipation of
436-mW for code rate 5/6, code length 1944 bits. The decoding throughput is

estimated by the equation (4.9) without input/output latency.

72

Table 4-6 : Summary specification of LDPC decoder

Proposed

TSMC 0.13 pm
Technology
1P8M CMOS
Supply voltage 1.2V

Max. Clock freq. 333 MHz
Die size 2.69x2.69 mm?2
Core size 2.14x2.14 mm?2

11n, 10-iter., 506 Mb/s
16e, 10-iter., 590 Mb/s
11n, 10-iter., 436 mW
16¢, 10-iter., 451 mW

Max. Throughput

Power dissipation

Figure 4-24 : Photo of LDPC decoder

Frequency x codeword length 4.9)

Throughput= :
decoding cycle counts

Because the required minimum throughput of 802.16¢ is only 30 Mb/s, we can
lower performance to support the low power mode. Some techniques are often applied
in low power design, like slowing down VDD voltage or operating frequency. For
ease to design, we divide operating frequency by 5 to 66 MHz. It has throughput
42.6~118 Mb/s for different code rates and codeword lengths in 802.16e at 66 MHz.
The power dissipation as shown in Table 4-7 is lower to 86~101mW for different code

rates, codeword length 2304 bits. The required minimal throughput of 802.11n is 300

73

Mb/s. The minimum throughput of our proposed design for 802.11n is 240 Mb/s for

code rate 1/2, codeword length 648 bits. It almost meets the requirement.

Table 4-7 : Average power consumption in low power mode at 66 MHz, *1

Code Rate Power Dissipation
Rate 1/2 86 mW

Rate 2/3A 99 mW

Rate 2/3B 100 mW

Rate 3/4A 101 mW
Rate 5/6 91 mW

*1: different code rates with maximum codeword length 2304 bits

74

® Comparison

In synthesis status, timing constraint is loose because it doesn’t consider of
physical problems. The proposed can meet an operating frequency 400 MHz in
synthesis status and has a maximum throughput of 709 Mb/s for 802.16e and 607
Mb/s for 802.11n. When considering of physical design, the operating downs to 333
MHz in post-layout simulation. The comparison of our proposed LDPC code decoder

with status-of-arts is presented in Table 4-8.

Table 4-8 : Comparison of LDPC code decoder

[21] [22] [23] Proposed
Application lln 16e 16e 11n and 16e
Technology 0.13 um 0.13 um 0.13 um 0.13 pm
status synthesis synthesis CHIP post-layout
clock freq. 412 MHz | 333 MHz 83:3MHz 333 MHz
Iteration 15 10 or 15 2~8 2~10
Termination Yes No Yes Yes
506Mb/s(11n),
Throughput 736 Mb/s | 610Mb/s 111Mb/s
590Mb/s(16e)
436 mW(11n)
Power N/A N/A N/A
451 mW(16e)
Low Power Mode N/A N/A 52 mW'! 91 mW"
Core size N/A N/A 2.11x2.11mm? 2.14x2.14mm2

*1: 30Mb/s
*2: 42Mb/s, for 802.16e, rate 5/6, codeword length 2304 bits, 10-iter.

75

CHAPTER S SUMMARY

In this thesis, we proposed a configurable LDPC decoder for /EEE 802.11n and
802.16e. First, we analyze LDPC.decoding algofithms for 802.11n and 802.16¢ and
improvement spaces for row-update message passing, Belief Propagation, and
Min-Sum algorithm, etc. According to simulation results by C-language, we decide
normalization factor, number of iteration, bit width and other parameters for hardware
implementation. A trade-off between hardware complexity and decoding performance
is analyzed to decide the parameters. A configurable, partially parallel architecture
with Z; parallelization is proposed to apply row-update message passing algorithm
with min-sum. Some design considerations are discussed and solved by the proposed

methods.

For adaptive code rates and code lengths, a point based permutation is designed
to merge 22 types of Zgs for 802.11n and 802.16e. Besides, parallel multi-codeword
decoding technique for preserving high hardware utilization and early termination

76

mechanism to save power are considered. Multi-codeword decoding technique not
only increases hardware utilization but also throughput when decoded codeword is
less than 1152 bits (Z; < 48). Moreover, a flexible control provides users to decide
whether turning off early termination or not for adaptive code rates and transmission

channel.

The design is implemented in TSMC 0.13 pm 1P8M CMOS technology. The
core size is 2.14x2.14 mm”® and die size is 2.69x2.69 mm2. The decoder operates at
333 MHz with 10 iterations for different code rates and code lengths. It has a peak
throughput of 590 Mb/s and power dissipation of 451 mW for code rate 5/6, code
length 2304 bits in 802.16e. In 802.11n, its peak throughput is 506 Mb/s with power

dissipation of 436-mW for code rate 5/6, code length 1944 bits.

In low power mode, we divide operating frequency by 5 to 66 MHz to meet the
required minimum throughput, 30 Mb/s for 802.16¢. It has throughput 42.6~118 Mb/s
for different code rates and code’lengths. Power dissipation is lower to 86~101 mW

for 802.16e in low power mode.

77

Reference

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

IEEE Std 802.16e-2005, Air Intreface for Fixed and Mobile Broadband Wireless
Access Systems

IEEE 802.11n Wireless LANsWWiSE Proposal: High Throughput extension to
the 802.11 Standard. /EEE 11-04-0886-00-000n.

P. Elias, “Coding for noisy channels,” IRE. Conv. Rec., pt.4, pp.37-47,1955.

I. S. Reed and G. Solomon, “Polynomial Codes over Certain Fields,” J. Soc. Ind.
Appl. Math., 8: 300-304, June 1960.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo-codes,” IEEE Trans. Commun., vol 44, no. 10, pp. 1261-1271,
Oct. 1996.

R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory,
vol. IT-8, pp.21-28, Jan. 1962.

R. M. Tanner, “A recursive approach.to. low: complexity codes,” IEEE Trans.
Inform. Theory, vol. IT-27;no. 5, pp: 533-547, Sept. 1981.

D. J. C. MacKay and R: M. Neal, “Near Shannon limit performance of low
density parity check codes,” Electron:-Lett., vol. 33, no. 6, pp. 457-458, Mar.
1997.

D. J. C. MacKay, “Good error-correction codes based on very sparse matrices,”
IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.

S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the Shannon limit,” /EEE
Commun. Lett., vol. 5, no. 2, pp. 58-60, Feb. 2001.

J. Perl, Probabilistic Reasoning in in intelligent systems: networks of plausible
inference. San Mateo: Morgan Kaufmann, 1988.

R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as a instance
of Pearl’s belief propagation algorithm,” IEEE J. Select. Areas Commun., vol. 16,
no. 2, pp. 140-152, Feb. 1998.

J. K. Fan, Constrained coding and soft iterative decoding. Netherlands: Kluwer
Academic, 2001.

G. D. Forney, Jr., “Codes on graphs: Normal realizations,” /IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.

78

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

498-519, Feb. 2001

N.Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ.
Linkoping, Sweden, 1996.

P. Radosavljevic, A. de Baynast, and J. R. Cavallaro, “Optimized Message
Passing Schedules for LDPC Decoding,” In IEEE 39th Asilomar Conference on
Signals, Systems and Computers, pages 591-595, Nov. 2005

D. Hocevar, “A reduced complexity decoder architecture via layered decoding
of LDPC codes,” in Signal Processing Systems SIPS 2004, IEEE Workshop on,
pp- 107-112, Oct. 2004.

Y. C. Liao, C. C. Lin, C. W. Liu, and H. C. Chang, “A Dynamic Normalization
Technique for Decoding LDPC Codes,” IEEE Workshop on Signal Processing
Systems (SIPS), Athens, Greece, pp.768~772, Nov. 2005

C.H. Liu, C. C. Lin, H. C. Chang , C. Y. Lee and Y. S. Hsu, “Method and
apparatus for switching data in communication systems,” Taiwan and US
patent pending.

M. Karkooti, P. Radosavljevic, and J. R. Cavallaro, “Configurable, High
Throughput, Irregular LDPC Decoder .Architecture: Tradeoff Analysis and
Implementation,” In Proc../of 17th,Interndational Conference on Application
-specific Systems and Processors, pp{360~367,2006.

T. Brack, M. Alles, F. Kienle, and“N. When; “A Synthesizable IP Core for
WIMAX 802.16e LDPC ‘eode:Decoding,” IEEE International Symposium on
Personal, Indoor and Mobilie Radio Communication, pp. 1~5, Sep. 2006

X. Shih, C. Zhan, C. Lin, and A. 'Wu, “A 19-mode 8.29mm’ 52mW LDPC
Decoder Chip for IEEE 802.16e System,” IEEE Symp. VLSI Circuits and VLSI
Technology (SOVC-2007), Kyoto, JAPAN, pp 16-17, June 2007.

A. Anastasopoulos, “A comparison between the sum-product and the min-sum
iterative detection algorithms based on density evolution,” in [EEE
GIOBECOM01, vol. 2, pp. 1021-1025, Nov. 2001.

X. Y. Hu, Eleftheriou, D. M. Amold, and A. Dholakia, “Efficient
implementation of sum-product algorithm for decoding Idpc codes,” in IEEE
GLOBECOM’01, vol. 2, pp. 1036-1036E, Nov. 2001.

H. S. Song and P. Zhang, “Very-low-complexity decoding algorithm for
low-density parity-check codes,” in IEEE PRIMRC 03, vol. 1, pp. 161-165, Sep.
2003.

J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Trans. Commun., vol.
50, pp. 406-414, Mar. 2002.

H. Jun and K. M. Chugg, “Optimization of scaling soft information in iterative

79

[29]

[30]
[31]

[32]

[33]

decoding via density evolution methods,” in IEEE Trans. Commun., vol. 6, pp.
957-961, Jun. 2005.

J. Chen and M. P. C. Fossorier, “Density evolution for two improved bp-based
decoding algorithms of ldpc codes,” IEEE Communications Letters, vol. 6, pp.
208-210, May 2002.

D. B. West, introduction to graph theory, 2" ed. NJ: Prentice-Hall, 2001.

J. Xu, L. Chen, L. Q. Zeng, L. Lan, and S. Lin, “Construction of low-density
parity-check codes by superposition,” IEEE Trans. Commun., vol. 54, no. 1, pp.
71-81, Jan. 2006.

H. Tang, J. Xu, S. Lin, and K. Abdel-Ghaffar, “Codes on finite geometries,”
IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 572-596, Feb. 2005.

Z. W. Li, L. Chen, L. Q. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 54.
no. 1, pp. 71-81, Jan. 2006.

80

B A 1 1989.9~1995.6
1995.9 ~1998. 6
1998.9 ~2001. 6
2001. 9 ~ 2005. 6

2005.9 ~2007. 8

“

nd

LR 4SRN <
FPrLEEFET R Y
FrEXEFHRTHF Fdw
Mg 7318k 5§41
TRRNE QR L I

81

	Chapter 1 Introduction
	1.1 Overview of Wireless Communication System
	1.2 Motivation
	1.3 Thesis Organization
	Chapter 2 LDPC in 802.16e and 802.11n
	2.1 Quasi-Cyclic Matrix in 802.11n and 802.16e
	2.2 LDPC Encoder Method

	Chapter 3 Low Density Parity Check Code
	3.1 Concept of Low-density Parity Check Codes
	3.2 Optimized Approach for Hardware Implementation
	3.3 Design Considerations
	3.4 Implementation Issue

	Chapter 4 Architecture Design and Implementation
	4.1 Architecture Design
	4.2 Implementation
	4.2.1 Implementation Results

	Chapter 5 Summary

