
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

適用於 IEEE 802.16e 及 802.11n 標準之

可配置低密度同位元檢查碼解碼器設計與實現

Design and Implementation of a Configurable
LDPC Decoder for IEEE 802.16e and 802.11n

研究生： 劉士賢

指導教授： 劉志尉 博士

中 華 民 國 九 十 六 年 九 月

適用於 IEEE802.16e 及 802.11n 標準之可配置低密度同位元

檢查碼解碼器設計與實現發

Design and Implementation of a Configurable LDPC Decoder for IEEE
802.16e and 802.11n

研 究 生：劉士賢 Student: Shih-Hsien Liu

指導教授：劉志尉 博士 Advisor: Dr. Chih-Wei Liu

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master of Science

in

Electronics Engineering

September 2007

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 九 月

適用於 IEEE 802.16e 及 802.11n 標準之

可配置低密度同位元檢查碼解碼器設計與實現

研究生：劉士賢 指導教授：劉志尉 博士

國立交通大學
電子工程學系 電子研究所

摘要

 這篇論文提出一個支援全模式適用於 IEEE 802.16e 及 802.11n 標準之可配

置低密度同位元檢查碼解碼器。一個採用列跟新訊息傳遞演算法的部份平行化架

構被設計來達到高速傳輸速率及解碼能力。我們討論一些主題包括，解碼演算法

的分析及最佳化，架構設計及實現，提早中斷機制(early termination)，多區

塊解碼技巧(multi-codeword decoding)，排程以及後段佈局的模擬數據

(post-layout simulation)

 低密度同位元檢查碼(LDPC code)是最好的更正碼其中之一。最近因它良好

的解碼能力及稀疏矩陣的特性，引起許多研究興趣。由於它的高度平行化特性，

使其容易設計及實現高速需求的架構。一些高速的通訊系統如建立在 IEEE

802.16e 標準的 WiMAX 和 802.11n 標準的 WiFi 均採用低密度同位元檢查碼來提

供通道更正的能力。我們設計一個可配置的架構適用於 802.16e 跟 802.11n 的所

有的碼率及碼長。

一個核心面積(core size)為2.14×2.14 mm2解碼器被實現在台積電0.13μm

1P8M CMOS的製程下。在 802.16e中，10 次迴圈下，它具有最高傳輸速率 590 Mb/s

且平均功率消耗是 451 mW。而在 802.11n中，最高速率是 506 Mb/s而功率消耗

是 436 mW。藉著降低操作頻率到 66 MHz (333 MHz的五分之一)，以符合 802.16e

最低傳輸速率的要求，30 Mb/s，傳輸速率降為 42.6~118 Mb/s根據不同的碼長

及碼率。平均功率消耗則被降至 91 mW針對 802.16e中，碼率 5/6，碼長 2304 位

元測量下。

 I

Design and Implementation of a Configurable

LDPC Decoder for IEEE 802.16e and 802.11n

Student: Shih-Hsien Liu Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

This thesis presents a fully compliant, configurable LDPC decoder for 802.16e
and 802.11n. A partially parallel architecture with scheduled row-update message
passing algorithm is designed to archive high throughput and decoding performances.
We discuss some topics, decoding algorithm analysis and optimization, architecture
design and implementation, early termination, multi-codeword decoding technique,
scheduling, and post-layout simulation results.

LDPC code is one of best error correction codes. Recently, it engages much
research interest because of its sparse matrix and well decoding performance. Due to
its high parallelizable algorithm, the high speed architecture is easy to be designed
and implemented. Some high speed communication systems, WiMAX based on
IEEE 802.16e standard and WiFi based on 802.11n standard both take LDPC codes
to provide channel correction ability. We design a configurable architecture for full
code rates and codeword lengths in 802.11n and 802.16e.

The decoder with a core size 2.14×2.14 mm2 is implemented in TSMC 0.13 μm
1P8M CMOS technology. It has a peak throughput of 590 Mb/s and power
dissipation of 451 mW with 10 iterations for 802.16e and a throughput of 506 Mb/s
with 436 mW power consumption for 802.11n. By slowing down operating
frequency to 66 MHz (one-fifth of 333 MHz) to meet required minimum throughput,
30 Mb/s for 802.16e, its throughput is 42.6~118 Mb/s for different code rates and
codeword lengths. Average power consumption is lower to 91 mW for code rate 5/6,
codeword length 2304 bits in 802.16e.

 II

誌 謝

研究生涯兩年來過的很快，轉眼即逝，苦澀酸甜隨著論文有著結束，但卻

在記憶裡迴盪不去，兩年來受過不少人的幫助，點滴在心頭。

首先，感謝劉志尉老師。老師的指導使我在專業知識及研究態度上，更加

成熟與進步。還有 DSP-LAB 的學長姐們，泰吉學長、彥欽學姐、歐、阿圳、小

A、郭等博班學長們的指導、同屆的慶至、卓毅、志宏、heko、王炳、大家彼此

相互的學習與鼓勵、當然還有碩一學弟們的平日的幫忙。

還要感謝 OCEAN group 的成員們，除了張錫嘉老師的指導外，還有建青學

長、彥欽學姊、志豪學長、阿龍、大頭、紹維等博班學長姐的無私的給予協助和

精神上的鼓勵。同屆的名威、義閔、大嘉、佳瑋、國光、修齊、俊閔、義凱以及

其他的學弟妹們、兩年來的相處給的很多，這份成果和回憶我會謹記在心。

 當然還有口試委員們的指導，周世傑老師，陳紹基老師，以及吳安宇老師，

感謝老師們撥空指導，使得論文的豐富性更具完整。

最後，還有我親愛的家人們，爺爺、奶奶、爸、媽以及弟弟，謝謝你們一

路上的支持跟鼓勵，常常在外一直沒好好的陪你們。每逢佳節倍思親，現在的我

很能體會這感受，這些年來細心的栽培和鼓勵，我獻上最深的感謝及祝福。

謹將此篇論文獻給所有曾支持我、協助我的人，衷心的感謝並祝福你們。

士賢
謹誌於 新竹

 2007 九月

 III

Contents

ABSTRAC (CHINESE) ... I

ABSTRAC (ENGLISH) ..II

ACKNOWLEDGEMENT .. III

CONTENTS... IV

LIST OF TABLES ... VI

LIST OF FIGURES..VII

CHAPTER 1 INTRODUCTION...1

1.1 OVERVIEW OF WIRELESS COMMUNICATION SYSTEM..1
1.2 MOTIVATION ...2
1.3 THESIS ORGANIZATION...3

CHAPTER 2 LDPC IN 802.16E AND 802.11N..6

2.1 QUASI-CYCLIC MATRIX IN 802.11N AND 802.16E...7
2.1.1 Parameters for 802.11n ..9
2.1.2 Parameters for 802.16e ..10

2.2 LDPC ENCODER METHOD..12

CHAPTER 3 LOW DENSITY PARITY CHECK CODE...16

3.1 CONCEPT OF LOW-DENSITY PARITY CHECK CODES ..17
3.1.1 Message Passing Algorithm...18
3.1.2 LDPC Decoding Algorithm ...25

3.2 OPTIMIZED APPROACH FOR HARDWARE IMPLEMENTATION ..34
3.2.1 Min-Sum Algorithm...35
3.2.2 Row-Update Message Passing Algorithm..38
3.2.3 Trade-off between Decoding Algorithms and Code Structures..42

3.3 DESIGN CONSIDERATIONS...43
3.3.1 Normalization Factor ...43
3.3.2 Bit Width for Hardware Cost ...44
3.3.3 Number of Iteration..46

3.4 IMPLEMENTATION ISSUE ...47

CHAPTER 4 ARCHITECTURE DESIGN AND IMPLEMENTATION ..49

4.1 ARCHITECTURE DESIGN..50

 IV

4.1.1 Decoding Flow...50
4.1.2 Overall Architecture Design...52

4.2 IMPLEMENTATION ...69
4.2.1 IMPLEMENTATION RESULTS ...71

CHAPTER 5 SUMMARY ...76

REFERENCE ...78

 V

List of Tables

TABLE 2-1：PARAMETERS OF LDPC CODE FOR 802.11N ..10
TABLE 2-2：PARAMETERS OF LDPC CODE FOR WIMAN 802.16E ... 11
TABLE 2-3：STEPS OF ENCODING METHOD ..14
TABLE 3-1： PARAMETERS SUMMARY ...47
TABLE 4-1：COMPARISON WITH DESIGN [21] FOR AREA ...58
TABLE 4-2：THROUGHPUT ENHANCEMENT WITH SCHEDULING FOR 802.16E68
TABLE 4-3：SUMMARY OF RAMS AND ROMS...69
TABLE 4-4：SYNTHESIS RESULTS..71
TABLE 4-5：SUMMARY OF MEMORY...72
TABLE 4-6：SUMMARY SPECIFICATION OF LDPC DECODER ..73
TABLE 4-7：AVERAGE POWER CONSUMPTION IN LOW POWER MODE AT 66 MHZ, *1........................74
TABLE 4-8：COMPARISON OF LDPC CODE DECODER ...75

 VI

List of Figures

FIGURE 1-1：EXAMPLE OF QC PARITY CHECK MATRIX STRUCTURE FOR CODE RATE 3/4...................3
FIGURE 2-1：EXAMPLE OF PARITY CHECK MATRIX FOR CODE RATE 5/6, ZF =54 IN 802.11N................9
FIGURE 2-2：ELEMENTS OF PARITY CHECK MATRIX ...12
FIGURE 2-3：EXAMPLE OF 8-BY-8 T-1 MATRIX...13
FIGURE 2-4：THE BLOCK DIAGRAM OF ENCODER METHOD ..14
FIGURE 3-1：EXAMPLE OF BIPARTITE GRAPH FOR EQUATION (3.1)..18
FIGURE 3-2：EXAMPLE OF NORMAL GRAPH ..20
FIGURE 3-3：GRAPH PRESENTATION OF THE INTRINSIC AND EXTRINSIC PROBABILITIES..................20
FIGURE 3-4：GRAPH PRESENTATION OF MESSAGE PASSING BETWEEN TWO VERTICES......................22
FIGURE 3-5：BIPARTITE GRAPH OF MATRIX (3.23)..25
FIGURE 3-6：TRANSMISSION PROBABILITY FOR BSC ...27
FIGURE 3-7：MERGED GRAPH OF CHECK NODE AND BIT NODE WITH L+1 DEGREE28
FIGURE 3-8：FUNCTION GRAPH OF ()xψ ...37
FIGURE 3-9：PROCESS OF BP ALGORITHM ..39
FIGURE 3-10：PROCESS OF ROW-UPDATE MESSAGE PASSING ALGORITHM ..39
FIGURE 3-11：BP V.S RMP ALGORITHM IN 802.11N WITH CODEWORD LENGTH 648 BITS40
FIGURE 3-12：BP V.S RMP ALGORITHM IN 802.11N WITH CODEWORD LENGTH 1944 BITS41
FIGURE 3-13：BP V.S RMP ALGORITHM IN 802.16E CODEWORD LENGTH 576 BITS...........................41
FIGURE 3-14：BP V.S RMP ALGORITHM IN 802.16E, CODEWORD LENGTH 2304 BITS........................42
FIGURE 3-15：SIMULATION FOR NORMALIZATION FACTOR SIMULATION ..44
FIGURE 3-16：FIXED-POINT SIMULATION WITH FIXED 6 BITS INTEGER ...45
FIGURE 3-17：FIXED-POINT SIMULATION FOR INTEGER PART ..45
FIGURE 3-18：SIMULATION FOR ITERATION NUMBER, 5,8,10,15,20 ...46
FIGURE 4-1：DECODING FLOW CHART ...51
FIGURE 4-2：DECODING PROCESS DIAGRAM FOR M×N PARITY CHECK MATRIX51
FIGURE 4-3：OVERALL ARCHITECTURE ..53
FIGURE 4-4：DATA PATH FROM “IN_BUFFER” TO “MS” ...54
FIGURE 4-5：3-BY-6 PARITY MATRIX WITH ZF=6 ...55
FIGURE 4-6：6-BY-6 IDENTITY MATRIX WITH SHIFT AMOUNTS 0, 2, RESPECTIVELY55
FIGURE 4-7：REGISTER ARRANGEMENT FOR SHIFT AMOUNTS 0, 1 WITH SHIFT SIZE 656
FIGURE 4-8：EXAMPLE OF SHIFT SIZE ZF SMALLER THAN MAXIMUM REGISTER SIZE L56
FIGURE 4-9：PERMUTATION DESIGN WITH HEAD AND TAIL POINTERS ...57
FIGURE 4-10：PERMUTATION FOR MAXIMUM SIZE 8 AND SHIFT SIZE 6 AND SHIFT AMOUNT 157
FIGURE 4-11：THREE LEVELS OF LOGIC BARREL SHIFTER FOR 96 DATA..58

 VII

FIGURE 4-12：DATA PATH FROM MS TO CHK...59
FIGURE 4-13：ARCHITECTURE FOR PROCESSING UNITS (CHK/VAR) ...60
FIGURE 4-14：BLOCK DIAGRAM OF “BETA_RAM” MEMORY AND CONTROLS61
FIGURE 4-15：BLOCK DIAGRAM FOR MULTI-CODEWORD DECODING TECHNIQUE.............................62
FIGURE 4-16：POINT BASED PERMUTATION FOR MULTI-CODEWORD ...63
FIGURE 4-17：THROUGHPUT FOR 802.11N, FULL CODE RATES AT 333 MHZ63
FIGURE 4-18：THROUGHPUT FOR 802.16E, LENGTH 576, 1152, 2304 AT 333 MHZ............................64
FIGURE 4-19：HARD DECISION BASED EARLY TERMINATION V.S PARITY CHECK CONSTRAINTS65
FIGURE 4-20：PROCESS OF DYNAMIC EARLY TERMINATION ...66
FIGURE 4-21：EXAMPLE OF SCHEDULING ...67
FIGURE 4-22：OVERLAPPED V.S NON-OVERLAPPED ..68
FIGURE 4-23：DESIGN FLOW OF PROPOSED LDPC DECODER ..70
FIGURE 4-24：PHOTO OF LDPC DECODER..73

 VIII

Chapter 1 Introduction

1.1 Overview of Wireless Communication System

Recently, the Worldwide Interoperability for Microwave Access (WiMAX)

and Wireless Fidelity (WiFi) have been received wide attention in wireless

broadband standard. They are proposed to provide end-users to travel throughout a

hot zone cell without losing connectivity. The WiMAX standard group is collectively

called IEEE 802.16. The standard for fixed WiMAX, i.e. the stationary devices such

as home or office PCs, is 802.16-2004, which offers data transfer rate of up to 75

Mbps (megabits per second) over distances of up to 30 miles (4~6 miles is typical).

The advanced standard, 802.16e [1], established specifications for mobile WiMAX,

i.e. laptops or cell phones, offers similar speeds over slightly shorter distances,

typically 1~3 miles.

WiFi, on the other hand, adheres to the IEEE 802.11 standard, which provides

 1

close-range, wireless broadband access in fixed environment. This standard went

through several waves of development before arriving at the current leader, 802.11g,

which supports speeds of as much as 54 Mbps over distances of up to 300 feet. In

2003, the IEEE responded to growing demand for increased wireless performance by

authorizing the creation of IEEE 802.11 Task Group. They developed and modified

the 802.11 specification, called 802.11n [2], to support a minimum speed of 100Mbps

with MIMO technology. Developers asset the final specification may support transfer

speeds exceeding 200Mbps over longer distances than 802.11 currently supports.

802.11n is backward-compatible with earlier standards: 802.11a, 802.11b, and

802.11g.

As a fixed broadband access technology, WiFi has its weakness. The user can

only use the technology within the confines of a 300 feet radius and, hence, the level

of mobility is limited. For practical purposes, most observers have considered

WiMAX to be an outdoor technology. A combined scenario of WiMAX (for the

building) and Wi-Fi (for the interior) looks like a viable solution. Combining the

ability to use both kinds of networks on a single device allows consumers to take

advantage of the best each has to offer.

1.2 Motivation

 LDPC code is first introduced by Gallager [6] in 1962. It can provide better error

correction capacities than other channel codes. In recent years, many papers discuss

the implementation architecture and structured parity check matrix. The defining

LDPC codes in IEEE 802.11n and 802.16e are classical Quasi-Cyclic (QC) structured

parity check matrix. Figure1-1 illustrates an example of Quasi-Cyclic matrix for code

rate 3/4. Each element in the parity check matrix denotes a shift amount which can be

 2

expanded to an identity circular right shift matrix. The properties of Quasi-Cyclic

matrix will be presented in chapter 2.

 '
2bHbh1bH

24 block

4

Code rate 5/6, Zf=54 for 802.11n

48 29 37 52 16 6 14 53 31 34 5 18 42 53 31 45 - 52 1 0 - - -2

17 4 30 7 11 24 6 14 21 6 39 17 40 47 7 15 41 - - 0 0 - -43

7 2 51 3 23 16 11 53 40 10 7 46 53 33 35 - 25 38 0 - 0 0 -46

19 48 41 1 7 36 47 5 29 52 52 31 10 26 6 3 2 51 1 - - 0 010

shift amount

Figure 1-1：Example of QC parity check matrix structure for code rate 5/6

 Because 802.16e and 802.11n have similar technology modulation, OFDM

system and their application properties of WiFi for wireless data transmission on local

distance and WiMAN for mobility and portability, a combined scenario looks like a

variable solution. It provides combinational properties to design a configurable

data-path for the similar code structures of LDPC codes in 802.11n and 802.16e. In

this thesis, a configurable LDPC decoder is proposed for multi-standard. The

architecture adopts partially parallel decoding for QC LDPC codes and supports 19

modes in 802.16e and 3 modes in 802.11n. A high throughput of 590 Mb/s and power

dissipation of 451-mW for 802.16e and 506 Mb/s, 436-mW for 802.11n with a core

size 4.58 mm2 are estimated in post-layout simulation/PrimePower at 333 MHz. A

multi-codeword decoding technique for preserving hardware utilization and early

termination to save power are considered. Scheduling issue and Row-update Message

Passing algorithm (RMP) [17] are applied to accelerate the speed of convergence.

This work is the first published LDPC decoder for multi-standard 802.11n and

802.16e. The detail discussion and proposed architecture will be given in the

following chapters.

1.3 Thesis Organization

 3

The rest of this thesis is organized as follows. The definition of parity check

matrix of LDPC in 802.16e and in 802.11n is presented in chapter 2. Several efficient

LDPC decoding algorithms including min-sum approximation and other

implementation issues are briefly described in Chapter 3. It also shows the simulation

results of c-codes and discusses the related performance comparisons. Among them,

scheduled row-update message passing algorithm is suggested. Chapter 4 introduces

the proposed architecture including the detail functional implementation and memory

arrangements. We summarize implementation results in chapter 4. Finally summary

will be given in chapter 5.

 4

 5

Chapter 2 LDPC in 802.16e

and 802.11n

In this chapter, we introduce the specification of LDPC codes in 802.11n [2]

and 802.16e [1]. LDPC code, a linear codeword code can be defined by a parity check

matrix. The parity check matrix based on the methods of construction, can be

generally classified into two categories: 1) random codes generally generated by

computer search under certain design constraints, e.g. the girth and degree

distributions [7, 9, 10]; 2) structured codes constructed by algebraic geometry and

combinatorial method [31, 32]. One class of structured LDPC codes that allows low

complexity encoding [33] is the quasi-cyclic (QC) LDPC codes. Well designed

QC-LDPC codes have been shown to perform as well as regular or irregular

computer-generated random LDPC codes [32]. QC-LDPC codes, moreover, have

advantages in VLSI implementations of decoders since the cyclic symmetry results in

simple regular wiring and modular structure.

 6

2.1 Quasi-Cyclic Matrix in 802.11n and 802.16e

QC-LDPC codes, one class of linear block codes, are specified by sparse

circular parity-check matrices. An mb×nb matrix is said to be in circular form if it is

generated by an array of , 0 1;0 1{ }
b bi j i m j n≤ ≤ − ≤ ≤ −P circulant of same size, where a

circularnt is a square matrix in which each row is the cyclic shift (one place to the

right) of the row above it, and the first row is the cyclic shift of the last row. The Zf is

the abbreviation of Z-factor. Without loss of generality, for sparse matrices, the

circular Pi,j is assumed to be either a p(i,j,Zf) cyclically shifted identity matrix or a

zero matrix of size Zf×Zf m×n where p(i,j,Zf) is non-negative integer and Zf is positive

integer related to parameter f. Then, Pi,j is the Zf ×Zf identity matrix if p(i,j,Zf)=0; and,

for simplicity, we define p(i,j,Zf)≣-1, if Pi,j is a zero matrix. Note that, either the zero

matrix or the cyclically shifted idenrity matrix is a special circulant. Consequently, the

QC-LDPC code with rate b

b

n m
n
− b and length of nb×Zf can be defined by the

following sparse parity check matrix,

0,0 0,1 0,2 0, 2 0, 1

1,0 1,1 1,2 1, 2 1, 1

2,0 2,1 2,2 2, 2 2, 1

1,0 1,1 1,2 1, 2 1, 1

...

...

...

...
...

b b

b b

b

b b

b b b b b b b

n n

n n
H

n n

m m m m n m n

− −

− −

− −

− − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P P P P P

P P P P P

H PP P P P P

P P P P P

(2.1)

where nb=24 in 802.11n and 802.16e and mb is a variable according to different code

rates.

In 802.11n and 802.16e, the m×n parity check matrix H is expanded from a

binary base matrix Hb of size of mb-by-nb, where m=mb×Zf, n=nb×Zf . Because each

circular matrix is specified by a single circular right shift, the binary base matrix

information and permutation replacement information can be combined into a single

 7

compact model matrix bmH . The matrix bmH is the same size as the binary matrix

bH , with each binary entry (i,j) of the base matrix bH replaced to create the model

matrix bmH . Each element Pi,j in bH is replaced by a denote a circular right shift

matrix described in last paragraph. The model matrix bmH can the be directly

expanded to . H

 The matrix bH is partitioned into two sections, where 1bH corresponds to

the systematic bits and 2bH corresponds to the parity check bits, such that

. Section 1 2[() | ()]
b b b bb b n k b n×=H H H k× 2bH is further partitioned into two sections,

where vector has odd weight, and has a dual-diagonal structure with

matrix elements at row i, column j equal to 1 for

bh '
2bH

,i j= 1 1for i j= + and 0

elsewhere. The base matrix has (0) 1bh = , 1()b bh m − 1= , and a third value

 equal to 1. Equation (2.2) shows the definition of 1() 1, 0 ()bh j j m −= < < b 2bH .

 '
2 2

(0) | 0 1
(1) | 0 ...

[|] (2) | ...
... | ...

(1) | 1 ... 0

b

b

b b b b

b b

h
h
h O

O
h m

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

H h H (2.2)

In particular, the non-zero sub-matrices are circularly right shifted by a

particular circular shift value. Each 1 in is assigned a shift amount of 0, and is

replaced by a Z

'
2bH

f ×Zf identity matrix when expanding to . The two located at the top

and the bottom of are assigned equal shift amounts, and the third 1 in the middle

of is given an unpaired shift amount.

H

bh

bh

Following we describe the shift amount p(i,j,Zf) for the circulant Pi,j in (2.1)

according to different code rates in 802.11n and 802.16e, respectively: 1) For rate

1/2A, 2/3B, 3/4(A,B), and 5/6 in 802.16e, we have

 8

(,) ; if (,) 0

(,)(, ,)
;otherwise

96
ff

p i j p i j
p i j Zp i j Z

≤⎧
⎪= ⎢ ⎥⎨
⎢ ⎥⎪
⎣ ⎦⎩

 (2.3)

2) For rate 2/3A in 802.16e and rate 1/2, 2/3, 3/4 and 5/6 in 802.11n, we have

(,) ;if (,) 0

(, ,)
(,) mod ;otherwise f

f

p i j p i j
p i j Z

p i j Z
≤⎧

= ⎨
⎩

 (2.4)

where ⎣x⎦ in (2.3) is the floor function that returns the largest integer less than or

equal to x, and p(i,j) is either −1 or non-negative integer, given by the specification,

which is used to determine the shift amounts for all other lengths of the same rate.

And, in 802.11n, Zf = 81－27f, f = 0, 1, and 2; while in 802.16e, Zf =81－4f, f = 0, 1,.,

18. To be summarized, there are 19 modes for 802.16e and 3 modes for 802.11n,

respectively (totally 22 modes). Figure 2-1 shows an example of parity check matrix

for code rate 5/6 and Zf 54, defined in 802.11n.

 '
2bHbh1bH

24 block

4

Code rate 5/6, Zf=54 for 802.11n

48 29 37 52 16 6 14 53 31 34 5 18 42 53 31 45 - 52 1 0 - - -2

17 4 30 7 11 24 6 14 21 6 39 17 40 47 7 15 41 - - 0 0 - -43

7 2 51 3 23 16 11 53 40 10 7 46 53 33 35 - 25 38 0 - 0 0 -46

19 48 41 1 7 36 47 5 29 52 52 31 10 26 6 3 2 51 1 - - 0 010

shift amount

Figure 2-1：Example of parity check matrix for code rate 5/6, Zf =54 in 802.11n

2.1.1 Parameters for 802.11n

In 802.11n, there are 3 types of codeword length, 648, 1296 and 1944 bits. The

lengths are multiple of 24. The required minimal throughput is 300 Mb/s. The Zf is

defined as codeword length
24

, corresponding to different codeword lengths. So there

are 3 types of Zf, 27, 54, 81 corresponding to codeword lengths, 648, 1296 and 1944

 9

bits. There are 4 types of code rate, including 1/2, 2/3, 3/4, 5/6. Table 2-1 shows the 3

types of codeword length and their corresponding parameters. The “k” presents the

information bit length. The “n” presents the total transmission codeword length.

Table 2-1：Parameters of LDPC code for 802.11n

k (bytes) (information bits)
n(bits) n(bytes) Zf

Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6

648 81 27 40.5 54 60.75 67.5

1296 162 54 81 108 121.5 135

1944 243 81 121.5 162 182.25 202.5

2.1.2 Parameters for 802.16e

In WiMAN 802.16e, there are 19 types of codeword length from 576 to 2304

bits. The required minimal throughput is 30 Mb/s. The Zf varies form 24 to 96 with

increment of 4. Totally there are 19 Z-factor from 24 to 96 corresponding to different

codeword lengths. There are 4 types of code rate, including 1/2, 2/3, 3/4, 5/6 and

define 6 types of parity check matrix, 1/2, 2/3A, 2/3B, 3/4A, 3/4B, and 5/6. Table 2-2

shows the summary of 19 types of codeword length and their corresponding

parameters. The “n” presents the total transmission codeword length. The data

throughput requires a minimal 30 Mb/s.

 10

Table 2-2：Parameters of LDPC code for WiMAN 802.16e

k(bytes) (information bits)

n(bits) n(bytes) Zf

Rate 1/2
Rate 2/3

(A,B)

Rate 3/4

(A,B)
Rate 5/6

576 72 24 36 48 54 60

672 84 28 42 56 63 70

768 96 32 48 64 72 80

864 108 36 54 72 81 90

960 120 40 60 80 90 100

1056 132 44 66 88 99 110

1152 144 48 72 96 108 120

1248 156 52 78 104 117 130

1344 168 56 84 112 126 140

1440 180 60 90 120 135 150

1536 192 64 96 128 144 160

1632 204 68 102 136 153 170

1728 216 72 108 144 162 180

1824 228 76 114 152 171 190

1920 240 80 120 160 180 200

2016 252 84 126 168 189 210

2112 264 88 132 176 198 220

 11

2208 276 92 138 184 207 230

2304 288 96 144 192 216 240

2.2 LDPC Encoder Method

The general method of encoding is quite complex by determining a generator

matrix G form H such that GHT=0. LDPC encoder in 802.11n and 802.16e provides a

memory efficient method to encode codeword instead of generator matrix G,

 for the properties of defined parity check matrices. Because the parity

check matrix is an approximate lower triangular form, so the m×n matrix can

be written in the form,

× =G x v

Η

A B T
C D E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H (2.5)

where A is ()fm Z k− × , B is ()f fm Z Z− × , is T () ()f fm Z m Z− × − C, is

fZ k× , is D f fZ Z× , and E is ()f fZ m Z× − . And k is the length of information

x. The
B
D
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and correspond to the expanded and D bh (1)b bm −h , respectively.

Figure 2-2 shows the summary of notations above.

Figure 2-2：Decomposition of Parity Check Matrix

 12

 Let codeword , is the systematic information, are the

parity parts from encoder. has length

1 2(, ,)=v x p p x 1 2,p p

1p fZ and has length 2p fm Z− . With the

definition, must satisfy the condition v 0T× =H v . We replace 1 2(, ,)=v x p p into

the equation . Then we can derive the equalities. 0T× =H v

 (2.6) 1 2

1 2

0 --- (1)
0 ---(2)

T T T

T T T

A B T
C D E

⎧ + + =
⎨

+ + =⎩

x p p
x p p

From equation (1) of (2.6), we can rewrite as and

replace into (2) of (2.6). It can derive as

2
Tp 1

2 1()T TT A B−= +p x Tp

0T

2
Tp

 1 1
1() ()TET A C ET B D− −+ + +x =p

)

 (2.7)

Define and with the parity check matrix as indicated 1(ET A Cφ −= + Iφ = , I

denotes identity matrix. is the property of parity check matrix

with the definition of .

1(ET A C Iφ −= +) =

bh

Continuing with the derivation, can be rewritten as 1
Tp

 1
1 ()T TET A C−= +p x (2.8)

Because the matrix T is a dual diagonal matrix, lower triangular matrix is the

characteristic of 1T − shown as the example in Figure 2-3.

Figure 2-3：Example of 8-by-8 T-1 matrix

 13

By the equation 1
2 (T TT A B−= + 1)Tp x p and (2.7), we can derive the values, and

. Figure 2-4 shows the block diagram of encoder and Table 2-5 summarize all the

encoding steps.

1p

2p

Figure 2-4：The block diagram of encoder method

Table 2-3：Steps of encoding method

Step1 Compute and T TA Cx x

Step2 1Compute ()TET A− x

Step3 1
1Compute ()T T TET A C−= +p x x

Step4 2 1Compute T TT A B= +p x p T

 14

 15

Chapter 3 Low Density

Parity Check Code

 Low-density Parity Check (LDPC) code was first introduced by Gallager in

1962 [6], but was almost forgotten until its rediscovery it in the late 1990s. The

graphical representation for the LDPC code was presented by R. N. Tanner [7, 30] in

1981. Mackay and Neal rediscovered the LDPC code and investigated its graph based

iterative decoding algorithm [8, 9]. It has been shown in [10] that long LDPC codes

based on the belief propagation [11] can achieve an error performance very closing to

the Shannon limit. Many high speed communication systems such as IEEE 802.11n,

802.16e and DVB-S2 have considered employing LDPC code to enhance

performance for its benefits, including good error performance and high parallelism.

Besides, the decoding algorithm provides very simple arithmetic computations to

decrease the complexity of hardware design and parallelism to increase the data rate.

In this chapter, we discuss the decoding algorithms including belief propagation,

 16

row-update message passing algorithm and some implementation issues, Min-Sum

approach, fixed-point simulation and etc. A trade-off between decoding algorithms is

analyzed and scheduled row-update message passing with Min-Sum is suggested.

3.1 Concept of Low-density Parity Check Codes

Low-density Parity Check code, a linear block code defined by a very sparse

parity check matrix H which means there are only a small number of ones in the

entries. It was first introduced by Gallager [6] and rediscovered by MacKay [8,9]. For

the properties of a sparse matrix, it makes the decoding algorithm simple and practical

at good communication rates [9]. The sparse matrix also reduces the complexity of

computation in decoding and encoding. However, LDPC decoders, which are highly

parallelizable, have a much higher decoding speed than other decoder. The decoding

algorithm based on sum-product algorithm (SPA) is capable of parallel

implementation, leading to a much higher decoding speed than other channel code

decoder. We often divide LDPC codes into two types according to its degree

distribution. One is regular LDPC code, the other is irregular. The regular LDPC

codes mean that each row has the same number of ones, and each column does so.

The irregular mean that numbers of ones in the rows or in the columns are different.

In the following example, it shows a parity check matrix of (10,5) regular

LDPC code and its constraint equation,

 (3.1)

0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 0

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 17

And

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4[] [T]x x x x x x x x x x H c c c c c× = (3.2)

0 3 4 7 9

1 0 1 5 9

2 1 3 6 8

4 2 4 5 6

5 0 2 7 8

: 0
: 0
: 0
: 0
: 0

c x x x x
c x x x x
c x x x x
c x x x x
c x x x x

+ + + =

+ + + =

+ + + =

+ + + =

+ + + =

 (3.3)

Figure 4-1 represents the five parity check equations (3.3) in the bipartite graph with

10 bit nodes (or variable node) and 5 check nodes. The column weight of H

determines the number of edges (or degree) for each bit node. We usually illustrate the

relationship between bit nodes and check nodes or treat direction of message passing

from its bipartite graph.

Figure 3-1：Example of bipartite graph for equation (3.1)

3.1.1 Message Passing Algorithm

LDPC decoding algorithm is based on soft iterative decoding which relies on

the message passing algorithm or belief propagation [11,12]. We consider the

following conditional probability,

 (|)P x a C= (3.4)

 18

which is a posterior probability x to be a value a based on the condition event C.

According to the Bayes’s theorem, we extend the posterior equation as

 (|) ()(|)
()

P C x a P x aP x a C
P C
= =

= = (3.5)

We want to know the value (|P x a C)= when knowing other terms. The term

 is a prior probability or referred to the intrinsic probability, denoted by

. The other term

(P x a=)

)(intP x a= (|)P C x a= is proportional to the extrinsic probability

which describes the probability that new information for x is obtained from the event

C when assuming a is a value from alphabet set Α . We can express extrinsic

probability as

 (3.6) 1

' A
() ((| ')) (|) (|ext e

a
P x a P C x a p C x a P C x aρ−

∈

= = = = = =∑)

The eρ represents the normalization constant to satisfy the condition

.
'

(')ext
a

P x a
∈

= =∑
A

1

)

The posteriori probability in (3.5) can be described as

 (3.7) 1

' A
() ((| ')) (|) (|ext e

a
P x a P C x a p C x a P C x aρ−

∈

= = = = = =∑

where is also the normalization factor

(

1(())p eP Cρ ρ −=

1

int
'

(') (')p ext
a A

P x a P x aρ
−

∈

⎛ ⎞
= = =⎜ ⎟
⎝ ⎠
∑ (2)GF). If =Α , the log-likelihood ratio

representation for (3.7) will be

int
int

int

(1) (1) (1)() ln ln ln () ()
(0) (0) (0)

post ext
post ext

post ext

P x P x P xLLR x LLR x LLR x
P x P x P x

= = =
= = + = +

= = =
 (3.8)

In the graph representation, we use an undirected graph, referred to the normal

graph [13,14]. The vertices (nodes) denote the constraints. The ordinary edges denote

the state variables for message passing. Symbol variables are denoted by left edges

(half edges). Figure 3-2 shows the example with three vertices; the edges connecting

 19

only one node are left edges, the edges connecting two vertices are ordinary.

Figure 3-2：Example of normal graph

Figure 3-3：Graph presentation of the intrinsic and extrinsic probabilities

Figure 3-3 illustrates the graph of a single node (vertex) and d edges with the

intrinsic and extrinsic probabilities. There are d symbols, x1, x2,..., xd, respect to the

constraint C. We define a set Sc which is a subspace of the d-dimensional vector space

(d
cS ⊂)dA A , and any d-tuple 1 2(, ,...,)dx x x c= ∈x S will satisfy the constraint C.

Each edge has the intrinsic probability associated with the symbol int ()iP x ix for

. Therefore a posteriori probability of a symbol 1 ~i = d ix will be the combination

of the intrinsic probability and extrinsic (3.8). int ()iP x ()ext iP x

From equation (3.8), we have to evaluate based on the constraint C and the

other intrinsic probabilities with

()ext iP x

int ()jP x j i≠ . The will be ()ext iP x

 20

1 1 1
,

1, 2 1 1 1
,

int
, 1

() (|)

(, ,..., , ,..., |)

(| ,...,) (,..., , ,..., |)

()

j

c

j

c

j

c

ext i e i

e i i d i
x j i

x

e d i i
x j i

x

d

e j
x j i j

j ix

P x P C x

P C x x x x x

P C x x x P x x x x x

P x

d i

ρ

ρ

ρ

ρ

− +
∀ ≠
∈

− +
∀ ≠
∈

∀ ≠ =
≠∈

=

=

=

=

∑

∑

∑ ∏

S

S

S

 (3.9)

The is always equal to 1 because the constraint is true given 1, 2(| ,...,)dP C x x x

1, 2(,...,)dx x x where xj for j=1~d belong to the constraint set SC. Then a posteriori

probability can be written as

 (3.10)

int

int

, 1

() () ()

()
j

c

post ext
i p i i

d

p
x j i j
x

P x P x P x

P x

ρ

ρ
∀ ≠ =

∈

=

= ∑ ∏
S

j

where we assume the symbol variables 1 2, ,..., dx x x are independent, and eρ pρ is

also a normalization constant.

 Two Vertices

Now we consider message passing between two vertices. Figure 3-4 shows the

graph presentation of two constraints (two vertices, C1 and C2). The C1 constraint has i

edges where i-1 edges are left edges and only xi is ordinary edge. On the other hand,

1 ~ dx x are constrained by C2 where only xi on the ordinary edge. Besides the two

constraints
1
,c c2

S S sets are defined such that
11 1 2(, ,...,)ix x x c= ∈x S and

22 1 2(, ,...,)d cx x x= ∈x S .

 21

Figure 3-4：Graph presentation of message passing between two vertices

As shown in Figure 3-4, we have to evaluate the extrinsic probabilities for the

left edges constrained by C1 and C2. First we only consider the constraint C2.

According to (3.9), the extrinsic probability can be written as：

2 1
2 2

1 2 1 1
(2)

2 int
\

() (|)

()
i
c

ext i i

i
x x
x S

P x P C x

P x

ρ

ρ
+

+ +

∈

=

= ∑ (3.11)

But we have to consider the value constrained with C(2)
int ()iP x 1. Therefore

we evaluate the extrinsic probability based on both constrains C1 and C2.

2 1
2 2

2 1
2 2

2 1
2 2

1 1 2 1

1 2 2 1
\

1 1 2 1 2 1
\

1 2 1
\

() (, |)
(, , , ,..., |)

(| ,) (, , ,..., |)

(, , ,..., |)

i
c

i
c

i
c

ext i e i

i i d i
x x
x S

i i d i
x x
x S

i i d i
x x
x S

P x P C C x
P C C x x x x

P C C P C x x x x

P C x x x x

ρ

+

+

+

+ +

+ +

∈

+

∈

+ +

∈

=

=

=

=

∑

∑

∑

x +

i

 (3.12)

where the third equality comes from a Markov chain

 1 2 1 2(, |) (|) (|)i iP C C x P C x P C x= (3.13)

such that the term

22 1 2 2 2 2 c(| ,) (|) 1, P C C P C for= = ∈x x x S (3.14)

 22

Continuing from (3.12), we derive the equality as

1 2 1 1 2 2

1 2

1 (1)
1 int

2

(, , ,..., |) (|) (, ,..., |)
 (|) () ()... ()

() () () ()

i i d i i i d i

i i i d
d

ext i i j
j i

P C x x x x P C P x x x x
P C x P x P x P x

P x P x P xρ

+ + +

+

−

= +

1+=
=

= ∏

x

 (3.15)

From Figure 3-4,

 (3.16) (1)
1 1() (|)ext i iP x P C xρ=

it is the extrinsic probability of xi with respect to C1. int ()jP x is the intrinsic

probability for the left edge connecting C2, and is the intrinsic probability

for the ordinary edge

int ()iP x

ix . Because the ordinary connecting C1 and C2 without external

input, we can initialize the int ()iP x to be a constant. We set int
1()

| |iP x =
A

 for

ix ∈ A . Then the extrinsic probability in (3.12) will be written as

2 1

2 2

(1)

\ 2

() ' () ()
j

c

d

ext i e ext i j
x x j i
x S

P x P xρ
+ = +

∈

= ∑ ∏ P x

|)

 (3.17)

where 1' /(|e pρ ρ ρ= A .

Referring to Figure 3-4, we know if the extrinsic probability from is

available and

(1) ()ext iP x 1C

 (3.18) (2) (1)
int () ()i extP x P x= i

)only the constraint is necessary to estimate . Therefore 2C 1(ext iP x + ()ext jP x

for (2) ~j i= + d can also be calculated by the same method. For ()ext lP x with

, the extrinsic probability with respect to should be 1 ~ (1)l i= − (2) ()ext iP x 2C

 23

first computed and the intrinsic probability for is set to be 1C

 (3.19) (1) (2)
int () ()i extP x P x= i

The process of (3.18) or (3.19) is the message passing between vertices and .

With the message passing algorithm, we can simplify the problem of solving both

and into the problem of solving the single vertex graph, which is much simpler

than the two vertices case. The message passed on the edge

1C 2C

1C

2C

ix can be represented by

 1 2

1
1 1

1
(1)

1 int
\ 1

() () ()
i
c

i

C C i ext i j
x x j
x S

x P x P xμ ρ
−

→
=

∈

= = ∑ ∏ (3.20)

 2 1

2
2 2

(2)
2 int

\ 1

() () ()
i
c

d

C C i ext i j
x x j i
x S

x P x P xμ ρ→
= +

∈

= = ∑ ∏ (3.21)

The operation of (3.20) and (3.21) are the sum of products, thus the message

passing algorithm is also called the sum-product algorithm [15]. Generally in the

graph with vertices, , the vertex has d ordinary edges that

respectively connect to with symbol variables

0 1, ,..., dC G G 0C

1 2, ,..., dG G G 1 2, ,..., dx x x .

Assuming the messages
0
()

jC C jxμ → with j = 1~ d have been obtained from G1~Gd,

we can get the value
0 iC Cμ → by

 0

0

\ 1

() ()
i j

i
c

d

C C i C C j
x j

j i

0
x xμ μ→

=
≠∈

= ∑ ∏
x
x S

→ (3.22)

where is the constrain set for , and
0CS 0C 1 2(, ,...,)dx x x=x . The message

0 iC Cμ → for i=1~d can be obtained because they are the intrinsic probability inputs

for vertices C1~Cd.

Based on the concept of message passing algorithm above, LDPC decoding

 24

algorithm will be introduced on the next section.

3.1.2 LDPC Decoding Algorithm

Same as the linear block codes, a m-by-n LDPC code have a codeword

1 2[, ,...,]Nx x x=x needed to satisfy the equality 0T =Hx . The bipartite graph,

Figure 3-5 is used to describe the relation between parity check matrix and codeword.

It is the graph representation of equation (3.23). The check nodes and bit nodes are

denoted as column constraint of parity check matrix and row index of codeword. The

message passing algorithm is applied to passing the message between two nodes.

 (3.23)

0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 0

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

Figure 3-5：Bipartite graph of matrix (3.23)

0 3 4 7 9

1 0 1 5 9

2 1 3 6 8

4 2 4 5 6

5 0 2 7 8

: 0
: 0
: 0
: 0
: 0

c x x x x
c x x x x
c x x x x
c x x x x
c x x x x

+ + + =

+ + + =

+ + + =

+ + + =

+ + + =

 (3.24)

Equation (3.24) presents the parity check constraints that are similar to the role

 25

of vertex nodes in the massage passing graph. The operation in (3.24) all are

exclusive-or. LDPC decoding algorithm is based on the belief propagation algorithm

also called message passing algorithm. The bit node transfer information to other bits

under the check node constraints. By iteratively exchanging more reliable information

from other bits, the error bits are corrected.

The message passing algorithm is an APP (a posterior probability) only if the

code graph has no cycles. The cycle-free implies that all code bits 0, 1 1,...., nx x x − are

independent. However the algorithm performs remarkably well even if dependent.

Now we will derive the message passing algorithm for LDPC from first principles.

Prior to introduce the decoding algorithm, we have to know some notations, n code

bits, the number of information bits is k n m= − , and the code rate is
k
n , n

channel received output , 0 1 1(, ,...,)nr r r −=r noise= +r x , M(j) be the set of parity

nodes connected to the code bits jx , is the event that all parity check

constraints associated with

jC

jx are satisfied and N(m) be the set of bit nodes

connected to the m’th parity check, and a parity check matrix is m-by-n dimension.

The derivation below referred to the description of Gallager [6].

Using the assumption of code bit independence and Baye’s rule, a posterior

probability (| ,j jP x b C r)= can be written as

 (3.25) (| ,) (|) (| ,j j j j j jP x b C K P r x P C x b= = × × =r r)

where K is a constant for both b=1 or 0,

 1,

() ()
() (,) () () (|)

(,) (,) (,) () (|) (,)

n

i j
j j ii i i i i

i i i i i i i i

p b p
p b p b p b p b p bK

p S p r b p S p b p r b p S
= ≠= = =
∏r r

r r

r

r

The equation (3.25) is similar to equation (3.5).

 26

For Gaussian noise：

2

2
((1))

2
2 1/ 2

1(|) exp
(2)

brj

j jP r x σ

πσ

+ −

= (3.26)

For BSC (Binary Synchronous Communication) ：

 1(| 0) (1)j jr
j jP r x p p r−= = − (3.27)

 1(| 0) (1)j jr
j jP r x p p−= = − r (3.28)

where assuming false probability is equal to p, so true probability is 1﹣p as shown in

Figure 3-6.

Figure 3-6：Transmission probability for BSC

The second term in (3.25) is the probability that all parity check constraints

connected to jx are satisfied given and r jx b= . Notice that 0{ ,.., }j j kjC C C=

is a collection set of events, where is the m’th parity check node connected to mjC

jx is satisfied. Because of the assumption of code bits independence, the term can be

written as

 0 1
()

(| ,) (, ,..., | ,) (| ,)j j j j kj j mj j
m M j

P C x b P C C C x b P C x b
∈

= = = = =∏r r r (3.28)

If b=0, it implies that code bits other than jx connected to the m’th parity check

have an even number of 1’s. If b=1, the other bits must have odd parity. Using the fact,

we will derivate as a relatively simple form as follows. (| ,j jP C x b= r)

As a preliminary calculation, suppose two bits satisfy a parity check constraint

 27

1 2 0x x⊕ = , and we know that 1 1(1p P x)= = and 2 2(1p P x)= = . Let

and . Then when the constraint is satisfied, the probability will be

1 11q p= −

2 1q = − 2p

2

0)

 (3.29) 1 2 1 2 1

1 2 1 2

(0) (1)(1)
 2 1
P x x p p p p

p p p p
⊕ = = − − +

= − − +

which can be written as

 (3.30) 1 2 1 2 2 2 1 12 (0) 1 (1 2)(1 2) ()()P x x p p q p q p⊕ = − = − − = − −

 We suppose L+1 bits connected to one parity check node as shown in Figure

3-7. First we compute the term 1 2(P x x⊕ = as a new node 'x then compute the

probability , iteratively to find out the probability to satisfy the

constraint with L+1 nodes (

2(' 0)P x x⊕ =

C 1 2(, ,...,)Lx x x). It is a mathematically technique to

reduce the complex problem to be simple two nodes problem. Following description

will derive the detail LDPC decoding algorithm.

Figure 3-7：Merged graph of check node and bit node with L+1 degree

For known probabilities 1 2{ , ,..., }Lp p p corresponding to the bits

1 2{ , ,..., }Lx x x . We want to generalize (3.30) to find the probability distribution for

, where . 1 2 ...L Lz x x x= + + + 1L Lz z x−= ⊕ L

L (3.31) 1

1

2 () 1 (1 2 (1))(1 2)
 =(2 (0)(1 2))

L L

L L

P z P z p
P z p

−

−

= − = − = −
= −

where . Applying the recursively yields (1)L Lp P x= =

 28

 (3.32)
1

2 (0) 1 (1 2)
L

L
i

P z p
=

= − = −∏ i

or
1 1

1 1(0) (1 (1 2)) (1
2 2

L L

L i
i i

P z p q p
= =

= = + − = + −∏ ∏)i i (3.33)

Similarly it can show

1

1(1) (1 ()
2

L

L
i

P z q p
=

= = − −∏)i i

)

 (3.34)

Returning to our calculation of (| ,mj jP S x b= r , we derivate the equalities according

to or to choose 1jx = 0jx = (1)LP z = or (0)LP z = .

 0 1
' '

' ()\

1(| 0,) (1 ()
2mj j mn mn

n N m j

P C x q q
=

= = + −∏r) (3.35)

 0 1
' '

' ()\

1(| 1,) (1 ()
2mj j mn mn

n N m j

P C x q q
=

= = − −∏r) (3.36)

where is the probability that code bit 0
'mnq ' 0nx = , given and excluding any

information about

r

'nx from parity check m. It must need the exclusion operation

because we desire extrinsic knowledge about 'nx form parity check constraints to get

the extrinsic information about jx . By combination of (3.25) (3.27) (3.35), we get

the final expressions for a posterior probability.

 0 1
' '

() ' ()\

(0 | ,) (| 0) (| 0,)

1 (| 0) (1 ())
2

j j j j j j

j j mn mn
m M j n N m j

P x C K P r x P C x

K P r x q q
∈ ∈

= = × = =

= × = + −∏ ∏

r r
 (3.37)

 0 1
' '

() ' ()\

(1| ,) (| 1) (| 1,)

1 (| 1) (1 ())
2

j j j j j j

j j mn mn
m M j n N m j

P x C K P r x P C x

K P r x q q
∈ ∈

= = × = =

= × = − −∏ ∏

r r
 (3.38)

Inspection of the APP in (3.38), we can denote some operations as “check node”,

some operations as : ”bit node”. For example,

 29

check node update
channel value

0 1
' '

() ' ()\

bit node update (variable)

1(1| ,) (| 1) (1 (
2j j j j mn mn

m M j n N m j

P x C K P r x q q
∈ ∈

= = × = − −∏ ∏r))

6444447444448
64748

1444444442444444443
 (3.39)

The notation can be simplified by letting and then define the check

node equation as

0 1
'mj mn mnq q qδ = − '

 0
'

' ()\

1 (1)
2mj mn

n N m j

r δ
∈

= + ∏ q (3.40)

 1
'

' ()\

1 (1)
2mj mn

n N m j

r δ
∈

= − ∏ q

r

 (3.41)

 For the BSC, the right terms of expressions in (3.39) can be simplified. When

first iteration, the probabilities can be rewritten as 0 1,mj mjr r

10

11

(0 |) (1)

(1|) (1)

j j

j j

r r
mj j j

r
mj j j

q P x r p p

q P x r p p

−

−

= = = −

= = = −
 (3.42)

We rewrite (3.40) (3.41) with (3.42),

'

'

'

0

' ()\

| ()| 1

' ()\

1 | ()| 1

' ()\

1 (1 (1 2)(1))
2
1 (1 (1 2) (1))
2
1 (1 (1 2) (1))
2

n

n

n

r
mj

n N m j

rN m

n N m j

rN m
mj

n N m j

r p

p

r p

∈

−

=

−

=

= + − −

= + − −

= − − −

∏

∏

∏

 (3.43)

According to numbers of N(m), we summarize the check node functions as (3.44)

0 | ()| 1

| ()| 1

1 | ()| 1

| ()| 1

1 (1 (1 2)), if the bits of N(m)\j is odd
2
1 (1 (1 2)), if the bits of N(m)\j is even
2
1 (1 (1 2)), if the bits of N(m)\j is even
2
1 (1 (1 2)), if the
2

N m
mj

N m

N m
mj

N m

r p

p

r p

p

−

−

−

−

= − −

= + −

= − −

= + − bits of N(m)\j is odd

 (3.44)

The APP can be further simplified as

 30

| ()| 1 | ()| 1

() ()

| ()| 1 | ()| 1

() ()

1 1(0 | ,) (| 0) (1 (1 2)) (1 (1 2)
2 2

1 1(1| ,) (| 1) (1 (1 2)) (1 (1 2))
2 2

odd even

odd even

N m N m
j j j j

m M j m M j

N m N m
j j j j

m M j m M j

P x C P r x p p

P x C P r x p p

− −

∈ ∈

− −

∈ ∈

= = = − − + −

= = = + − − −

∏ ∏

∏ ∏

r

r

)

 (3.45)

where ()oddM j are the sets of nodes connected to jx with odd parity, and

()evenM j are sets with even parity.

 Decision Step

With the analysis of APP operation, we can decode the value 0 or 1x x= = .

We derivate the equation as,

 (3.46)
0 ; if (0 | ,) (0 | ,)
1 ;if (0 | ,) (0 | ,)

j j j j
j

j j j j

P x C P x C
x

P x C P x C
= ≥ =⎧

= ⎨ = < =⎩

r r
r r

We have to analyze the magnitude of the APPs to decode the value. We can simplify

the equation (3.46) to compare with sign value by dividing the APPs as log domain.

The check node and bit node operations are the main procedures to iteratively

passing message to correct error bits. In next sub-section, we will introduce the Belief

Propagation (BP) algorithm in log domain. The multiplication in log domain will be

simplified to be summation form. Obviously, the advantages are to reduce the

hardware complexity and to decode the soft results more easily by verifying the sign

of APPs.

 Message Passing algorithm in log domain

We introduce the APP equations in log domain. The operations in log domain

make computations more clear and easy. Equality (3.46) combines (3.25) with

and .

0jx =

1jx =

 31

(0 | ,

() log
(1| ,

jposterior
j

j j

P x C
LLR x

P x C
)
)

j=
=

=

r
r

 (3.46)

xj＝1 if , otherwise () 0posterior
jLLR x > 1jx = . We only compute that if APP is

positive or negative value. The decision for APPs will become easy in log domain.

First,

 0 1
'

' ()\
0 1

() ' '
' ()\

(0 | ,)
() log

(1| ,)

1 (
(| 0)

log log
(| 1) 1 ()

j jposterior
j

j j

mn mn
j j n N m j

m M jj j mn mn
n N m j

P x C
LLR x

P x C

q q
P r x
P r x q q

=

∈
=

')

=
=

=

+ −
=

= +
= −

∏
∏ ∏

r
r

−

 (3.47)

For Gaussian noise,

 2

(0 | ,) 2
log

(1| ,)
j j

j j

P x C r
P x C

j

σ
=

=
=

r
r

 (3.48)

Letting and 0 1
'mj mn mnq q qδ = − '

0
0 '

' 1
'

() log mn
mn

mn

qLLR q
q

= , simple substitution gives

0
'

' tanh(())
2
mn

mn
qq LLRδ = . We rewrite (3.47) as (3.49).

'
' ()\

2 2 2
() () ()'

' ()\

2
()

1
2 2 1 2

log log log
1 1 1

2 1
log ()

1

mj mj

mj mj

mj

mj

A Amn
j n N m j j mj j

A A
m M j m M j m M jmn mj mj

n N m j

A
j mj

A
m M j mj

q
r r s e r

q s e s e

r s e
s e

δ

σ δ σ σ

σ

∈

∈ ∈ ∈
∈

∈

+
+ −

+ = + = −
− − +

−
= − −

+

∏
∑ ∑ ∑∏

∑

1 mjs e

 (3.49)

where

 0
'

' ()\ ' ()\

0
'

' ()\

1 ; 0
sgn()

1 ; 0

sgn() sgn(())

()log(| tanh() |)
2

mj mn mn
n N m j n N m j

mn
mj

n N m j

x
x

x

s q LL

LLR qA

δ
= =

=

≥⎧
= ⎨− <⎩
= =

=

∏ ∏

∏

'R q (3.50)

 32

Because the argument of log() in (2.50) is always positive. The equation (3.49)

can be simplified further to (3.51)

2

()

2
()

2
log(tanh())

2
2

log(| tanh() |)
2

j m
mj

m M j

j m
mj

m M j

r A
s

r A
s

σ

σ

∈

∈

− −

= −

∑

∑

j

j

 (3.51)

Letting () log(| tanh() |)
2
xxψ = called persi function, (3.47) will be substituted as

 2
()

2
() ()jposteriror

j mj mj
m M j

r
LLR x s Aψ

σ ∈

= − ∑ (3.52)

where
0

0'
'

()log(| tanh() |) (())
2

mn
mj mn

LLR qA Lψ= = ∑∏
' ()\' ()\ n N m jn N m j

LR q
=∈

 (3.53)

We summarize the BP (Belief Propagation) algorithm in log domain for LDPC

codes as follows.

 Notation：

 1() log(tanh()) log ()
2 1x

1xx ex x
e

ψ −= = =
−
+

 (3.54) ψ

 Initialization：

0q 2rjm j0

jm 1 2
jm

LLR(q)=log()= ; j=0,...,N-1
q

for
σ

'
' ()\

((| |))ji ji i j
i N j i

r s qψ ψ
∈

= ∑ '
' ()\

sgn()

 (3.55)

 Check node (CHK/row operation) ：

 ; ji i j
i N j i

s q
∈

= ∏ (3.56)

 Bit node (VAR/column operation)：

 ' '
' ()\

i j i
j M i j

q p r
' ()\

ij j i i ji
j M i j

r p r
∈ ∈

= + = + −∑ ∑

'
' ()

j i j i
j M i

q p r
∈

= + ∑
1; if 0
0; if 0

j
j

j

q
x

q
≥

 (3.57)

⎧ ⎫
= Decision： ⎨ ⎬<⎩ ⎭

 (3.58)

 33

3.2 Optimized Approach for Hardware Implementation

In chapter 3.1, we will derive the LDPC decoding algorithm, message passing

or belief propagation (BP) for LDPC codes. But it is hard to implement the function

1() log(tanh()) log
2 1

x

x

x ex
e

ψ +
= =

−
 in hardware and the complexity of exponential and

log is very huge. Some methods are suggested to approximate the nonlinear function,

like Look Up Table (LUT) or Min-Sum approach [16]. LUT is limited to the trade-off

between size of LUTs and data accuracy. The other method, min-sum approach can

reduce decoding complexity and all nonlinear calculations can be averted. However

there would be approximation inaccuracy between BP algorithm and Min-Sum

approach. To compensate the performances, a constant normalization factor or an

offset value is often applied [24, 25, 26]. However, min-sum algorithm does not

consider the area problem like LUTs. It has well decoding performance with an

appropriate compensation value and calculations avoid arithmetic log. The

compensation factor should be explored by simulations which provide error correction

performance closed to BP algorithm. In chapter 3.2.1, we will introduce min-sum

algorithm.

BP algorithm iteratively exchanges message to correct error bits, but its over

numbers of iteration is the most disadvantage. Chapter 3.2.2 will introduce the

row-update message passing algorithm [17] (RMP) to reduce the iteration problem.

The concept of RMP is to use newer information to instead of older information as

soon as possible. It can be taken as a scheduling layered decoding [18]. The obvious

effect is that information converges faster than BP algorithm. Row-update message

passing algorithm is adopted with min-sum approach in the proposed architecture.

The main rationale in detail will be introduced in Chapter 3.2.2.

 34

3.2.1 Min-Sum Algorithm

The ratio of defined in (3.35) and (3.36) can be simplified to two node and be

rewritten as

 \ ()(| 0,
() log m M j jP C x

LLR x
\ ()

)
(| 1,)i

m M j jP C x
=

=
r

= r
 (3.60)

We redefine the notation to simplify equations.

 (0) 1 (1() log logi
i

P x P xLLR x)
(1) (1)

i

i iP x
=

P x
− =

= =
= =

(0)iP x = 0ix

 (3.61)

 is a extrinsic probability = , given computing node and

received r.

0jx =

If dealing with two connecting nodes, notated as x and y, rewriting (3.58) as (3.59)

and continue the derivation.

()

() ()

1(1) ; (0)
LLR x

LLR x LLR x

eP x P x= = = =
1 1e e +

 (3.62)
+

With the definition, 1tanh()
xx e −

2 1xe
, =

+

()

()

1 ()2 (1) tanh()
1 2

LLR x

LLR x

e LLR xP x
e

−
− = = =

+
1 (3.63)

Then calculate the probabilities of constraints satisfied with two nodes,

() ()

() ()

1(0)
(1)(1)LLR x LLR ye e+ +

LLR x LLR ye eP x y +
⊕ = =

() ()

)(1)
)

LLR x LLR ye eP x y +
⊕ = = () ((1)(1LLR x LLR ye e+ +

() ()

() ()

1() log
LLR x LLR y

LLR x LLR y

e eLLR x y
e e
+

⇒ ⊕ =
+

 (3.63)

We want to derive the formulas based on tanh rules, so express the notations as tanh

form. And then take use of tanh algebraic property and then express (3.63) as (3.64).

 35

() () () ()

() () () ()

() () () ()

() () () ()

(1)(1) (1)(1)() log
(1)(1) (1)(1)
1 (1)(1) /(1)(1)log
1 (1)(1) /(1)(1)

LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR y

e e e eLLR x y
e e e e

e e e e
e e e e

+ + + − −
⊕ =

+ + − − −

+ − − + +
=

− − − + +

 (3.64)

Note：

()

()

1tanh(() / 2) ;
1

LLR x

LLR x

eLLR x
e

−
=

+
 1 1 1tanh () log ;

2 1
xx
x

− +
=

−

Rewrite (3.61) as

 1 () ()() 2 tanh (tanh() tanh())
2 2

LLR x LLR yLLR x y −⊕ = (3.65)

With decomposition of operations, we can simplify the operations to sign-operation

and absolute value operation. The following will use the cosh(x) to substitute tanh(x),

Note：

| | 2| |

2| |

(1)log(cosh()) log() log
2 2

| | ln 2 ln(1)

x x x

x

e e e ex

x e

− −

−

+ +
= =

= − + +

x

 (3.66)

(3.65) can be rewrite as

() () () ()
() () 2 2

() () () ()() ()
2 2

1 () / 2() log log
() / 2

() () () ()log(cosh()) log(cosh())
2 2

() () ()| | |
2

LLR x LLR y LLR x LLR y
LLR x LLR y

LLR x LLR y LLR x LLR yLLR x LLR y

e e e eLLR x y
e e

e e
LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR

+ +
−

− −
−

+ +
⊕ = =

+
+

+ −
= −

+ −
= −

() | ((), ())
2

sgn(())sgn(()) min(| () |,| () |) ((), ())
()

y LLR x LLR y

LLR x LLR y LLR x LLR y LLR x LLR y
CHK x y

+Δ

= +
= ⊕

Δ

 (3.67)

Note：
| () ()|

| () ()|

1log
1

LLR x LLR y

LLR x LLR y

e
e

− +

− −

+
Δ =

+
 (3.68)

When extending two nodes to d degrees, we can derive (3.67). The “min” in equation

(3.67) is to find out the minimal value. As the same idea, it derives equation (3.69)

when applying d nodes.

 36

 (3.69)

1 2 1 1

' '
' ()\' ()\

' '' ()\
' ()\

(| ,) (... ...)

 s (()) ((| () |))

 s (()) min (| () |) ; 0

n i j j d

n n
n N m nn N m n

n nn N m n
n N m n

LLR C x LLR x x x x x

ign LLR x LLR x

ign LLR x LLR x

ψ ψ

β β

− +

∈∈

∈
∈

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ×

≈ × ×

∑∏

∏

r

' '' ()\
' ()\

1

s (()) min (| () |) ; 0n nn N m n
n N m n

ign LLR x LLR x α α
∈

∈

≤

≈ × −∏

≤

≥

Note： 1() ()x xψ ψ −=

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

x

Ψ
 (x

)

Figure 3-8：Function graph of ()xψ

Figure 3-8 shows the functional curve of ()xψ . Its output is as smaller as x

increasing and 1() ()x xψ ψ −= so that we can simplify ()xψ by sorting absolute

LLR(x) to find out the corresponding minimal value. The α,β are compensation

factors to compensate performance degradations due to inaccuracy approximation.

The β is called normalization factor [24,25,26] that often own better compensation

capacity than α [27,28,29] called offset factor. It is difficult to find an adequate

constant factor for different LDPC codes with various degree distributions. To

improve the approximation accuracy, a self-compensation technique is proposed by

using dynamic normalization in [19]. However, considering of hardware

implementation, a fixed factor is adopted compensate the deviation according to the

simulations with different factors, 0.625, 0.75, 0,875 and 1. The related simulation

results are shown in chapter 3.3.1.

 The min-sum algorithm reduces the hardware complexity, but the iteration

 37

problem still exists. We adopt row-update message passing algorithm (RMP) with

min-sum to solve the problem. The main rationale is described in the next section.

3.2.2 Row-Update Message Passing Algorithm

 The main concept of row-update message passing algorithm (RMP) [17] is a

scheduling version from layered decoding algorithm that update information as soon

as possible, not same as BP algorithm, that has to update check node first and then bit

node, called one iteration. On layered decoding algorithm, each row of H can be

considered as a component code (or a layer). We call the iterations within a layer as

the sub-iterations and the overall process for layer to layer as super-iterations (or just

iteration). From layer to layer, the component code is just an interleaved version of

each other. As each next layer starts decoding, like Turbo decoding, its inputs are

combined from the last layer or other prior layers, if necessary. Simulation results

show that the layered decoding algorithm requires only 20~50% number of iterations

of the conventional BP algorithm to achieve the same error-correction performance

[17, 18]. For high parallelizable implementation, some rows are merged into one layer

and decoded simultaneously. For efficient message update, row/column schedule for

the parity check matrix is suggested to group a collision-free layer in which the

column weight is at most one. The algorithm decode them row-by-row in sequence so

that called row-update message passing algorithm, which is compatible for QC-LDPC

because of itself Quasi-Cyclic structure. Figure 3-9 and Figure 3-10 show the

differences between BP algorithm and row-update message passing algorithm (RMP),

respectively. Step1~2 describe the detail equation steps for BP algorithm and RMP

algorithm, respectively.

 38

Figure 3-9：Process of BP algorithm

Figure 3-10：Process of row-update message passing algorithm

LDPC Decoding Algorithm Steps：

 Initialization：

0
i i

i 1 2
i

q 2rLLR(q)=log()= ; i=0,...,N-1
q

for
σ

 Check node (CHK/row operation)：

 ; '
' ()\

((|ji ji i j
i N j i

r s qψ ψ
∈

= ∑ |)) '
' ()\

sgn()ji
i N j i

s
∈

= i jq∏ <1>

 Bit node (VAR/column operation)：

' '

' ()\ ' ()\

; (); initial channel value

ij i j i j i i ji
j M i j j M i j

i i

q p r r p r

p LLR q
∈ ∈

= + = +

=

∑ ∑ −

}}

 <2>

 Belief Propagation Algorithm

Step1-1: { { ' : <1>} } { { ' : <2>j i j i∀ → ∀ → ∀ → ∀

Step1-2: check early termination: finish decoding or return step1-1.

 39

 Optimized Row-Update Message Passing Algorithm

Step2-1: { ' : <2>} { ' : <1>}j i i∀ → ∀ → ∀

Step2-2: check early termination: finish decoding or return step 2-1.

The following Figures will show the floating simulation results and comparison

between BP and row-update message passing algorithm. Because channel coding is

belong to outer receiver and a good receiver can recover multi-channel, fading

channel and other channel model into simple AWGN channel, so that we only

consider AWGN channel model which is enough to stand for error-correction

performances. For simulation time, we only consider BPSK modulation excluding

other modulation types. The simulation environment is setting as BPSK modulation

and AWGN channel model and 108 data is simulated to show 10-6 BER (Bit Error

Rate) by C-language. In Figure 3-11~14, they show floating simulation results of

maximum codeword lengths and minimal lengths for 802.11n and 802.16e,

respectively.

Figure 3-11：BP v.s RMP algorithm in 802.11n with codeword length 648 bits

 40

Figure 3-12：BP v.s RMP algorithm in 802.11n with codeword length 1944 bits

Figure 3-11 and 3-12 show the simulations for full code rates, 1/2, 2/3, 3/4, and

5/6 in IEEE 802.11n with the maximum codeword length 1944 bits and minimal

codeword length 648 bits, respectively.

Figure 3-13：BP v.s RMP algorithm in 802.16e codeword length 576 bits

 41

Figure 3-14：BP v.s RMP algorithm in 802.16e, codeword length 2304 bits

Figure 3-13 and 2-14 show the simulations for with code rate, 1/2, 2/3A, 2/3B,

3/4A, and 5/6 in IEEE 802.16e with the maximum codeword length 2304 bits and

minimal codeword length 576 bits, respectively. Maximum number of iteration is

limited to 20-time for Belief Propagation and 10-time for row-update message passing

algorithm. Only half iterations (10 iterations) are needed to achieve the same

performance as BP algorithm (20 iterations). Some hardware design issues are

considered deeply in section 3.3.

3.2.3 Trade-off between Decoding Algorithms and Code Structures

Row-update algorithm is an optimum version of layered decoding [18] for

QC-LDPC because the column weight is at most one in one layer. It is the most

adaptable decoding algorithm for QC-LDPC, having the fastest speed of convergence

up to now. For 802.11n and 802.16e, Belief Propagation algorithm often needs 20

iterations to achieve 10-6 BER (Bit Error Rate). However, row-update message

passing algorithm only needs 10 iterations to achieve 10-6 BER. Besides, its grouped

layer property provides highly parallelism on VLSI implementations. It not only

 42

provides throughput enhancement but also flexibility for adaptive code rates and

lengths for future wireless communication systems. However, a configurable

data-path for variable code rates and lengths is the main design bottleneck, hence a

high flexible permutation design is proposed to overcome different size of Zf (totally

22 modes). The detail design with row-update is discussed in next chapter.

3.3 Design Considerations

 Figures 2-11~2-14 present the advantages to adopt RMP algorithm. This

sub-section will simulate some parameters for design considerations, including

min-sum algorithm, fixed-point simulations and number of iteration, etc. According to

the trade-off between error-correction performance and hardware complexity, the

appropriate parameters are chosen for VLSI implementations.

3.3.1 Normalization Factor

The CHK operation is listed as (3.70). Min-sum algorithm is adopted to

approximate the nonlinear function () log(tanh(| | 2))x xψ = − , so that a normalization

factor is needed to compensates the performance degradation due to inaccuracy

approximation. However, it is difficult to find an adequate factor depending on coding

type, code rate and etc. A self-compensation technique [19] is proposed to improve

the performances. To ease implementation design, a fixed normalization constant is

chosen by exploring some factors, 0.625, 0.75, 0.875, 1 which performance is close to

RMP algorithm without min-sum approach (the theoretical result).

{ {

'' ()\

'' ()\ ' ()\ channel value last old message

bit node update

(min (| |)) ; =0.75

= (min (| |)

ji ji i ji N j i

ji j i i jii N j i j M i j

r s q

s r p r

β β

β
∈

∈
∈

= ×

+ −∑
1444442444443

× (3.70)

 43

Figure 3-15 shows the simulation with factors, 0.625, 0.75, 0.875 and 1 (without

normalization factor).

Figure 3-15：Simulation for normalization factor simulation

 (802.11n, floating point, rate 1/2, block length 1944 bits, BPSK, AWGN)

0.75 is the optimum factor most close to the theoretical result. A formula

 is implemented for HDL (hardware

description language).

0.75 0.5 0.25 1 2x x x x x× = × + × = >> + >>

3.3.2 Bit Width for Hardware Cost

In hardware implementation, we have to decide how many bits to present one

data. (Integer, Fraction) denotes bit widths of integer part and fractional part,

respectively. Figure 3-16 shows fixed-point simulation with (6,0), (6,1) and (6,2).

Figure 3-17 shows fixed-point simulation for different integer parts, (6,0), (7,0) and

(8,0). The theoretical result means floating point simulation with RMP algorithm with

min-sum. The object code simulates code rate 1/2, codeword length 1944 bits in

802.11n.

 44

Figure 3-16：Fixed-point simulation with fixed 6 bits integer

(802.11n, 10 iterations, rate 1/2, block length 1944 bits, BPSK, AWGN)

Figure 3-17：Fixed-point simulation for integer part

Of course, larger bit widths can approach floating simulation curve more.

However, a trade off between bit width and performance should be considered. Finally,

we choose 6 bits for integer parts and 0 bit for fraction part, (6,0) because (6,0) is

good enough.

 45

3.3.3 Number of Iteration

In the decoding process, maybe an error bit string causes that codeword can’t be

corrected in finite number of iteration, so that we must set the maximum number of

iteration to stop infinite iterations. How many number of iteration is the adequate

number to have an acceptable data rate and error-correction performance? We

simulate the fixed-point simulation with different number of iterations, 5, 8, 10, 15,

and 20 for 802.11n, rate 1/2, length 1944 bits as shown in Figure 3-18.

Figure 3-18：Simulation for iteration number, 5,8,10,15,20

(802.11n, floating point, rate 5/6, block length 1944 bits, BPSK, AWGN)

Of course, the simulation curve with more number of iterations can own well

error correction performance. However, the data throughput has spoiling effect.

Except for data throughput, 10-time and 20-time iteration performances are almost

close, because of its performance saturation. Consequently, limited 10-iteration is

good enough for high decoding speed and acceptable error correcting performance.

We summarize the parameters discussed in the prior sub-sections as Table 3-1.

 46

Table 3-1： Parameters summary

Decoding algorithm Min-Sum RMP algorithm

Max. Iteration 10

Normalization factor 0.75

Integer 6 bits
Bit width

Fraction 0 bit

3.4 Implementation Issue

 We present the decoding algorithm above. Some implementation issues to

design a configurable architecture should be considered as follows,

1. A flexible permutation design is a very important bottleneck to merge 22 modes

in 802.11n and 802.16e corresponding to different codeword lengths. How to

design a configurable data-path merging 22 types of hardware units.

2. We group Zf rows into one layer and decode them in parallel. 96 PEs are

implemented to process data in parallel and merge other Zf’s (24~96). When

decoding a short codeword length, low hardware utilization is necessary to be

enhanced. Multi-codeword decoding technique is proposed to solve the problem.

3. In order to avoid memory access confliction, schedule is applied on row-update

message passing algorithm in VLSI implementation. There are 31%~44%

enhanced throughput with scheduling.

4. Number of iteration plays an important role in error-correction performance and

date rate. Hard decision based early termination is implemented to reduce

redundant iterations.

In chapter 4, we will introduce our proposed configurable decoder architecture

and related solutions in detail.

 47

 48

Chapter 4 Architecture

Design and Implementation

For a trade-off between hardware complexity and performance, the partially

parallel architecture is designed with row-update message passing algorithm with

min-sum. We will introduce the design analysis, overall architecture, related

functional block and techniques to solve some design bottlenecks and enhance

decoding performance. For example, flexible permutation is proposed to merge all

types of Zf’s and multi-codeword decoding technique is adopted for preserving

hardware utilization. Scheduling, hard decision based early termination and other

techniques will be introduced and discussed as following content. The LDPC decoder

with a core size of 2.14×2.14 mm2 is implemented in TSMC 0.13 μm CMOS

technology. The detail post-layout simulation results including throughput, area, and

power and some comparisons with state-of-arts will be presented in the final section.

 49

4.1 Architecture Design

Fully parallel architecture can achieve a maximum throughput but the lack of

flexibility and its large area is the major problem in current and future wireless

systems that require support for adaptive code rates and codeword lengths. A partially

parallel not only provides a trade-off between hardware complexity and throughput

but also high flexibility for different code rate and lengths. Thus, we adopt a partially

parallel architecture to match the QC-structure with variable Zf. However, how many

parallel levels for functional units should be considered with adopted decoding

algorithm? Because the maximum Zf for 802.16e and 802.11n is 96, 96 processing

units in parallel is instinctively the best choice to merge all cases. Hence, we group Zf

rows into one layer which can be view as a component code and decode layers in

sequence. There are 12 layers for code rate 1/2, 8 layers for code rate 2/3, 6 layers for

code rate 3/4 and 4 layers for code rate 5/6. On the other hand, there are 24 (1)R× −

layers for code rate R. The parallel 96 processing units are the best numbers of PEs to

achieve maximum data rate without losing error-correction performance, although it is

a over design when decoding a short codeword (Zf ＜96). However, multi-codeword

decoding technique discussed later is proposed to preserve hardware utilization.

4.1.1 Decoding Flow

Figure 4-1 shows the decoding flow chart with row-update message passing

algorithm. The rows of parity check matrix are grouped into a layer and updating in

sequence as shown in Figure 4-2. Initialization includes the input receiver and setting

for some parameters. “shift message” means the operation to shift data according to a

shift amount, because data has be shifted to appropriate permutation for next layer.

 50

Check node update and bit node update denote the corresponding CHK (4.1) and VAR

(4.2), respectively. When decoding one layer, PEs first read d degree data according to

its row degree distribution from memory, then update check node/bit node. And then

shift the updated message, store data and temperate parameters back into

corresponding memory, respectively. The time of next layer update can be overlapped

with storing operation by appropriate pipelining. After finish 24×(1-R) layers update,

the decoder will stop when a valid codeword is found, otherwise, it moves toward the

next iteration. However, if the number of iterations exceeds a predefined value, the

decoder claims decoding failure and terminate the decoding process. We will discuss

detail the corresponding architecture design in next sub-section.

Figure 4-1：Decoding Flow Chart

Figure 4-2：Decoding process diagram for m×n parity check matrix

 ' '' ()\ ' ()\

min | |, 0.75, sgn()ji ji i j ji i ji N j i i N j i

r s q s qβ β
∈

∈

= × = = ∏ (4.1)

 ' '
' ()\ ' ()

ij i j i j i i ji
j M i j j M i

q p r r p r
∈ ∈

= + = + −∑ ∑ (4.2)

 51

4.1.2 Overall Architecture Design

Figure 4-3 shows the overall decoding architecture. The “input buffer” block,

having data bandwidth bits, is the input buffer serially receiving input data.

The “permutation” denotes the interconnection design to permute data between

successive layers.

96 6×

ROM tables are constructed by prior analysis for defined parity check matrices

in 802.11n and 802.16e to store shift amounts and addresses defined in parity check

matrices, respectively. The “Proc.#1~96” denote 96 processing units for CHK/VAR

update. It serially accesses d data according to address ROMs (d is the row degrees).

After CHK/VAR update, messages are fist shifted with related shift amounts for next

successive layers by “permutation”, then stored back into original memory. It

immediately updates each layer’s information for next layer’s update.

 “Beta_ram” is the temperate memory that stores relative parameters from last

iteration, Beta1, Beta2, index, and sign value. “Beta1” means the normalized first

minimum, min1β × (min1: fist minimum). “Beta2” means the normalized second

minimum, min 2β × (min2: second minimum). “Index” denotes the index for the

first minimum value. Sign value indicates sign part of updated messages. When

processing one layer, we need to subtract older messages and then produce new

messages and related parameters, index, Beta1, Beta2, sign, store back into the

memory with same addresses. “Termination” execute decoding stop if a valid

codeword is found or the number of iterations exceed a predefined value, 10,

otherwise move toward next iteration.

A roughly description presents basic operations and decoding flow for the

proposed architecture. Then we discuss the detail functional block respectively in

continuous sub-sections.

 52

Figure 4-3：Overall architecture

 Input/Process Buffer

Suppose that N denote codeword length and N1 represent the total number of

edges in the Tanner graph of the LDPC code. From (4.1) and (4.2), the sum-product

algorithm, within an iteration, requires to store the message traveling on each edge.

And, apart from these, the N channel extrinsic data have to be stored. Thus, the

memory required from iteration to iteration is (N+N1)×b for conventional BP

algorithm, where b is the bit width of the fixed-point number. Since N1 is generally

larger than N greatly, the message passing on each edge can be generated by updated

VAR indeed, and, hence, when in VLSI implementation, the designer usually uses

2N×b, in stead of (N+N1)×b, memory for message of node not edge. For efficient

memory saving, a value-reuse architecture is proposed with RMP decoding algorithm.

We first store channel value, 2

2 jr
σ

 from “input buffer”into memory, “MS” in Figure

4-3 and “Input buffer” is capable of receiving next block codeword. Thus, there are

only N×b sizes needed for process buffer so that it save almost half size of memory

compared to the conventional BP algorithm. “In_buffer” is a single port memory and

“MS” is a dual port memory in order to read and write simultaneously for scheduling

issue. They are both 24 entries with 576 bits (96 6)× per entry. Figure 4-4 shows the

 53

“In_buffer” and “MS” memory block diagram.

Figure 4-4：Data path from “in_buffer” to “MS”

 Flexible Permutation Design

A configurable data-path is a design bottleneck for adaptive code rates and

codeword lengths. In 802.11n and 802.16e, LDPC codes define identity right shift

block matrix according to different code lengths and shift amounts. Total 22 modes

need to be considered in the design, including 3 modes for 802.11n and 19 modes for

802.16e. Figure 4-5 illustrates a simple 3×6 parity check matrix with block

matrix, Z

6 6×

f=6. The numbers in parity matrix denote shift amounts and all the shift

amounts are smaller than 6 because Zf is equal to 6.

 For the example, shift amounts shown in Figure 4-5, we expand block matrices

with related shift amounts and a size of 6×6 matrix in Figure 4-6. When processing

first layer, we have to read data from column addresses 1, 3, 5. After CHK/VAR

operations, we have to permute the output results and restore back the same addresses,

1, 3, 5. Then, process addresses 2, 4, 6 and continue decoding until a valid codeword

is found or termination stop. In hardware, we store 6 data in registers in sequences

according to its shift amounts. However, permutation is needed to cyclically shift data

for required arrangement of next processing layer. We store differences of successive

shift amounts in column direction instead of absolute values defined in parity check

matrices in ROM tables. For example, the sets of difference, (1, 1, 2) are shown as

 54

Figure 4-5. The trick can provide us to only permute data one time when decoding

layer-by-layer. On the other hand, it does not need inverse permutation except for

output operation.

 Figure 4-5：3-by-6 parity matrix with Zf=6

 1 2 3 4 5 6
1 1 1
2 1 1
3 1 1
4 1
5 1 1
6 1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⇒⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1

 Figure 4-6：6-by-6 identity matrix with shift amounts 0, 2, respectively

 Figure 4-6 shows shift amounts and their data sequences in registers. We define

that L means L 6-bit data registers are constructed in hardware and Zf denotes a block

matrix size Zf×Zf related to its codeword length. When L is equal to Zf, it is a simple

barrel shift problem that can be solved easily by design ware or logic multiplexers. An

L 6-bit data shifter can support 0~L-1 shift amounts of cyclic shifter. However, the

hardware cost is too large to implement 22 types of permutation units. We want to

construct 96 6-bit data shifter to merge all variable defined shift sizes Zf, from 24~96.

It produces another implementation issue with a dynamic shift size when L is not

equal to Zf. Figure 4-8 shows a simple example of the problem, L≠Zf with shift size,

Zf=6 and L=8,. Totally there are 22 types of Zf from 24 to 96 in 802.11n and 802.16e

according to different code rates and lengths.

 55

Figure 4-7：Register arrangement for shift amounts 0, 1 with shift size 6

Figure 4-8：Example of shift size Zf smaller than maximum register size L

 Configurable, point based permutation is proposed to solve the bottleneck by

enhancing enable bits of patent [20] and the main rationale is illustrated as Figure 4-9.

The head and tail points the available data length, Zf. The pointers rotate left, like a

cyclic buffer with a shift amount S=shift amount. The distance between updated

pointer head (head’) and old pointer head indicates desired parts. Likewise, tail and

tail’ do so. An expected data sequences can be available by combining the left part

and right part from L-data, respectively. Figure 4-10 shows an example of

permutation for this idea with L=8, shift amount=1, Zf=6. Because the design supports

a multi-codeword decoding mode, a multi-codeword shifter is needed to be supported.

The design also supports multi-codeword permutation.

 56

 Figure 4-9：Permutation design with head and tail pointers

Figure 4-10：Permutation for maximum size 8 and shift size 6 and shift amount 1

Number 96 can be presented in binary 7 bits, so that shift amount is 7-bit in

Figure 4-11. The hierarchical architecture of the logic barrel shifter to permute 96

6-bit data is shown in Figure 4-11. Although the latency increases with more logic

levels, the area is scalar down. Three level multiplexers are the optimum choice for a

trade off between area and timing.

 57

 Figure 4-11：Three levels of logic barrel shifter for 96 data

Without pipelining, we optimize the design. The term “Bit” denotes number of

bit for one data. We list the area comparison shown in Table 4-1 for interconnection

design. We support total 22 modes and still have well performance on area and timing.

The timing constraint is 2.5 ns in synthesis level.

Table 4-1：Comparison with design [21] for area

 Applications Area(um2) Bit Technology

[21] 11n, 3 modes 20471 7 0.13 μm

proposed 11n&16e, 22modes 21852 6 0.13 μm

 Processing Units (CHK/VAR)

In processing units, we execute SPA (Sum-Product Algorithm) for CHK and

VAR updates for row-update message passing algorithm with min-sum. Equations 4.3

and 4.4 present CHK operation and VAR equations. We combine them then derive it

as equation (4.5) and overlap the successive CHK/VAR operations to enhance

throughput by pipelining the stages. We simultaneously process Zf rows and access d

degree messages according to its degree distribution. We store information on nodes

of bipartite graph not that on edges. If there are d degrees for one layer, it must store d

data when considering edge information, hence, it needs a large size of memory. By

storing the information on nodes, memory size is reduced to almost 1/2 compared to

 58

information on edges. An efficient memory saving method is described in prior

section, architecture design.

 ' '' ()\ ' ()\

min | |, 0.75, sgn()ji ji i j ji i ji N j i i N j i

r s q s qβ β
∈

∈

= × = = ∏ (4.3)

 ' '
' ()\ ' ()

 : ij i j i j i i ji
j M i j j M i

VAR q p r r p r
∈ ∈

= + = + −∑ ∑ (4.4)

 '' ()\ ' ()

 MS value into MS memory

 min | () |, 0.75ji ji j i i jii N j i j M i
r s r p rβ β

∈
∈

⇒ = × + − =∑
1442443

 (4.5)

 We rewrite equation (4.3) as (4.6) by index, Beta1, Beta2, and sign value. “min1”

denotes the first minimum value of the set. “min2” denotes the second minimum

value of the set. Beta1 and Beta2 are the scaling min1, min2 by β 0.75. Index

means the index for the first minimal value of the set. By min-sum, we only store

Beta1, Beta2, index, sign, and MS values instead of information on each edge. It

reduces complexity of computation and achieves efficient memory saving. Figure

4-12 shows the partially parallel data-path for from “MS” to “processing units”.

'
' ()\

' '' () ' ()

'

min1 ;i' index
 : sgn()

min 2 ;i' index
 ; min1: min | | , min 2 : second min | |

 ; index: order of minimal value

ji i j
i N j i

i j i ji N j i N j

i j

CHK r q

q q

q

β
∈

∈ ∈

=⎧
= × ×⎨ ≠⎩

∏
 (4.6)

 Figure 4-12：Data path from MS to CHK

 59

Figure 4-13：Architecture for processing units (CHK/VAR)

We map equations (4.4) ~ (4.6) to CHK/VAR in Figure 4-13. The correction

block means that input message must subtract old stored information with index,

Beta1, Beta2, sign value from “R_Memory” and it is mapped to subtraction notation

of equation (4.5). For CHK, we first have the absolute operation (abs), |x| in order to

sort the magnitude value to find out the first minimum value, min1 and second

minimum value, min2, and then scaling the minimum value with β=0.75 to produce

 60

CHK output. The sorting block needs two comparators and a swap operation for

minimum value. There are two FIFOs (First In First Out) to store sign part of

corrected value and corrected value, “crt_out”, respectively. The VAR function

receives PUSH_N and POP_N control signals to control FIFOs and cumulate newer

updated values with outputs of CHK function. The updated VAR outputs will be

permuted for next layer and then stored back processing buffer. The related

parameters, index, Beta1, Beta2, and sign back are also stored into “Beta_ram”.

Figure 4-14 shows the architecture of “Beta_ram”.

Figure 4-14：Block diagram of “Beta_ram” memory and controls

Some control signals are produced from “termination” block, and it is an

important problem for high fan-out loading when running the post-layout simulation.

We must duplicate control signals to reduce wire loadings for the loading is too heavy,

hard to drive 96 function units.

 61

 Multi-codeword Decoding Technique

For different code rates and codeword lengths, it has the related Zf because

codeword length n= Zf ×24. 96 function units are implemented for partially parallel

decoding because of maximum Zf, 96 to merge other Zf’s. The data-path process 96

6-bit data simultaneously, even if decoding a short codeword length, Zf<96. Thus, it

causes spoiling hardware utilization for idle redundant function units. We proposed

the multi-codeword decoding technique to preserving hardware utilization. We divide

96 function units into 2 parts, upper and lower parts in Figure 4-15. The upper part

receives first block and lower part process next block. Obviously, it has a constraint

that codeword length must be less 1152 bits (Zf <48) in multi-codeword mode. Of

cause, the permutation design should be also modified to support multi-codeword

codeword permutation, and we present the rationale in Figure 4-16. Because we

process the same sequences of non-zero block matrices, just different block codeword,

and thus the shift amounts are same. So the proposed method has no more hardware

cost and only need some control circuit.

Figure 4-15：Block diagram for multi-codeword decoding technique

 62

Figure 4-16：Point based permutation for multi-codeword

The advantage of multi-codeword decoding is not only to increase hardware

utilization but also data rate. We summarize the throughputs for 802.11n and 802.16e

with post-layout simulation results at 333 MHz as Figure 4-17 and 4-18, respectively.

We can observe that throughput of a short codeword length (Zf<48) is double of

original single decoding, e.g. the throughput of length 648 (Zf = 27) is 240Mb/s, same

as that of length 1296 (Zf =54) for any code rates in 802.11n, There are 8 types (24, 27,

28, 32, 36, 40, 44, 48) of Zf’s enhanced among totally 22 modes for 802.11n and

802.16e. We have the decoding throughput of 240~506 Mb/s for 802.11n and

213~590 Mb/s for 802.16e. The multi-codeword decoding technique doubles the

throughputs and provides more design spaces for low power consideration. Later we

summarize the post-layout simulation results and discuss performance comparison.

 Figure 4-17：Throughput for 802.11n, full code rates at 333 MHz

 63

Figure 4-18：Throughput for 802.16e, length 576, 1152, 2304 at 333 MHz

 Dynamic Early Termination

An analysis for number of iteration has been discussed in chapter 3. We set

maximum number of iteration to be 10 for a trade-off between error-correction

performance and throughput. Early termination mechanism is proposed to reduce the

redundant number of iteration and achieve low power consumption. It is generally to

check the traditional parity check constraint, HxT=0, if satisfying the equality, decoder

terminates the process or continues the iteration until 10-iteration is achieved.

However, it is impractical to implement the matrix multiplication in hardware. For

example as matrix (4.7), the parity check constraints (4.8) have a large overhead to

store the random constraints and the time to check all constraints is also hard to be

handled. However, hard decision based early termination is implemented to provides

an easy method to verify the valid codeword. Moreover, its hardware cost is less than

the parity checker, HxT=0. We store the sign part of LLR and compare successive

decoded outputs, if same stop decoding otherwise, continues the iteration until

10-iteration is achieved.

Of course, there is performance degradation compared to the checker based on

parity constraints. It will produce errors when soft message changes but its hard

decision doesn’t change. Figure 4-18 shows the simulation with early termination

 64

based on parity check constraints, HxT=0 and hard decision checker. The

“theoretical.” curve denotes the decision based on parity check constraints. The

simulation environment is BPSK, AWGN, fixed-point and object is code rate 1/2,

length, 1944 and 2304 bits in 802.11n and 802.16e, respectively. There are a little

acceptable performance degradations when considering of implementation and

enhanced throughput.

 (4.7)

0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 0

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

 (4.8)

0 3 4 7 9

1 0 1 5 9

2 1 3 6 8

4 2 4 5 6

5 0 2 7 8

0 1 2 3 4 5 6 7 8 9

: 0
: 0

0 : 0
: 0
: 0

 [, , , , , , , , ,]

T

c x x x x
c x x x x

H c x x x x
c x x x x
c x x x x

with x x x x x x x x x x

+ + + =⎧
⎪ + + + =⎪⎪= ⇒ + + + =⎨
⎪ + + + =⎪

+ + + =⎪⎩
=

x

x

Figure 4-19：Hard decision based early termination v.s parity check constraints

Except for purely early termination, we provide users dynamic termination

mechanism to control whether turn on early termination or not. Because the early

 65

termination cost latency in decoding process, 10-iteration is a better choice in bad

transmission channel or high code rates for error-correction performance. However, it

is suggested to turn on early termination in low code rates or well transmission

channel for reducing decoding latency. Figure 4-20 shows the difference of

fixed-iteration and early termination. The configurable control lets the design more

flexible for adaptive code rates and different transmission environment.

Figure 4-20：Process of dynamic early termination

 Scheduled RMP Algorithm

The rationale of row-update message passing algorithm is to update variable

nodes as soon as possible for that the check node can access newer information.

However, the later layer has to wait for the memory updated by the last layer. On the

other hand, it exist intra- and inter-iteration precedence constraints (or data

dependence) and the layers work one after another. The fact makes it difficult to

design a high throughput as well as a high hardware utilization LDPC decoder. Figure

4-20 shows that non-scheduling v.s scheduling. Suppose that there are layer1 with

column blocks, 1, 2, 8, 9, 12 and 13 and layer2 with column blocks, 0, 2, 8, 9, 15 and

16 needed to be processed. If layer1 updates check nodes in sequences, 1,2,8,9,12,13,

and sequences 1,2,8,9,12,13 for layer2. However, there is a large of latency to start

layer2 after finishing layer1. To overcome this problem, the overlapped operations

with a systematic scheduled RMP algorithm is proposed for QC-LDPC. We

re-schedule the column addresses for memory access to avoid memory confliction. If

a dual port memory is available, instead of sequential operations from layer to layer,

 66

the next layer can start before the previous layer is finished.

Figure 4-21：Example of scheduling

Suppose that both CHK update (including read data from memory) and VAR

update (including write data back to memory) need CCHK and CVAR cycles to finish

computing one non-zero block matrix of size Zf×Zf. For an m×n QC-LDPC with mb

non-zero matrices for each row, it needs (CCHK+CVAR)×mb×m clock cycles to finish

one iteration by original RMP algorithm without scheduling. Suppose further that the

next layer decoding can be initiated only after w cycles’ computations of VAR update

of the previous sub-iteration, where 1≤w≤CCHK, thus comparing with the conventional

RMP algorithm, as shown in Fig. 4-22, the throughput gain with scheduling is

()

() (1) (
CHK VAR b

CHK b CHK VAR b

C C m m
C m w m C C m)

+ × ×
× + × − + + ×

 (4.9)

In our design for both 802.16e and 802.11n systems, which will be described in

the next section, the throughput gain of the scheduled RMP algorithm is about

32~44% as shown in Table 4-2 for 802.16e.

By-passing technique is another method to solve the problem, but impractical because

of irregular addresses. Thus, scheduling technique is still the better suggestion to

overlap the operations.

 67

Figure 4-22：Overlapped v.s non-overlapped
Table 4-2：Throughput enhancement with scheduling for 802.16e

Code rates 1/2 2/3A 3/4A 5/6

Enhancement 44% 32% 44% 41%

 Memory Arrangement

In this sub-section, we will summarize memory arrangement, including RAMs

and ROMs. “M1_24X72_inbuff” denotes a single port memory with 24 entries, 72

bits per entry, receiving codeword. “M2_24X72_MS” is the process buffer, a

dual-port memory with 24 entries, 72 bits per entry. “M1_12X120_beta” pr a single

port memory storing Beta1, Beta2, index and it has 12 entries, 120 bits per entry.

“M2_88X48_sign” denotes a dual-port memory with 88 entries, 48 bits per entry

storing sign values. We store differences of successive adjacent shift amounts defined

in parity check matrices in “ROM_1152X84_shf”. “ROM_256X60_addr” stores

column addresses of non-zero block matrices of each row in parity check matrix. We

have to schedule addresses in advance to avoid memory confliction to overlap

CHK/VAR operations. “ROM_256X84_final” stores the inverse shift amounts for

output. All the sizes of memory are estimated in advance by analyzing parity check

matrices defined in 802.11n and 16e.

 68

 Table 4-3：Summary of RAMs and ROMs

Memory block Type Gate Counts
M1_24X72_inbuff single port 27200

M1_12X120_beta single port 48000

M2_24X72_MS dual port 36800

M2_88X48_sign dual port 17200

ROM_1152X84_shf ROM 24000

ROM_256X60_addr ROM 12000

ROM_256X84_final ROM 16000

The total area of ROMs and RAMs has 33% of total design area at 2.5ns in

TSMC 0.13 μm 1P8M COMS technology. The related decoding performances and

comparisons will be discussed in next section.

4.2 Implementation

Figure 4-23 illustrates the general ASIC design flow excised by the proposed

LDPC decoder. The design flow can be classified into three categories: “Algorithm

Design”, “Architecture Design” and “Gate-level Design”. The whole design phases

are presented in sequence as follows.

The proposed LDPC decoder is implemented in TSMC 0.13 μm 1P8M CMOS

technology. The chip operates at 333 MHz and, with 10 iterations for different code

rates and code lengths. It has the decoding throughput of 213~590 Mb/s with power

dissipation of 451 mW for 802.16e and throughput of 240~506 Mb/s with average

power consumption 436 mW for 802.11n. In low power mode, we slow down the

operation frequency to 66 MHZ (one-fifth of 333 MHz) to meet the required

minimum throughput, 30 Mb/s in 802.16e. The detail results will be discussed and

showed as follows.

 69

 Figure 4-23：Design flow of proposed LDPC decoder

 Algorithm Design

We first adopt LDPC decoding algorithm, optimize decoding flow and run the

simulation by C-language. According to simulation results, we decide related

parameters, normalization factor and maximum number of iteration, and estimate

roughly decoding performance. If decoding performances don’t meet specification,

we must modify algorithms or think of other solutions. We start architecture design

until decoding algorithm verification meets the requirement.

 Architecture Design

A synthesizable RTL is conducted right by systematic architecture design. We

have to design the architecture with appropriate pipelines to meet timing requirement.

ROMs and RAMs have a trade off between operating frequency and available size.

The fully synthesizable RTL codes are verified by C-code model with HDL simulator

Verilog-XL. We synthesize RTL codes and estimate timing and area without wire

 70

loading model. If timing is not meet, we have to modify RTL codes by pipelining or

other coding types until meet the requirements.

 Gate-level Design

A synthesizable RTL codes are first transformed to the gate-level netlist by

Synopsys Design Compiler, and then the static timing analysis, logic equivalence

checking are carried out to ensure timing closure and correct functionality. We

implement gate-level design by encounter. The Synopsys physical compiler is

furthermore applied after the trivial physical design which utilizes the SoC Encounter.

This is because as the technology advances rapidly, the placement has large impact on

the circuit performance. Again, the gate-level simulation and verification are used to

exercise the synthesized netlist through physical compiler. Finally, the physical design,

i.e. floorplan, place & route etc. is carried out by SoC Encounter. Finally, the

PrimePower is used to estimate the power consumption. The functionality of netlist of

post-layout is verified by C-language with Verilog-XL.

4.2.1 Implementation Results

 The proposed LDPC decoder is implemented with TSMC 0.13 μm 1P8M

CMOS technology. Synthesis results are shows in Table 4-4 and it can be taken

references to compared with total area of memory. Summary of memory is listed as

Table 4-5. The area of memory has 33% of total design area.

Table 4-4：Synthesis results
Summary Gate Counts

Total Synthesis Area 643469

Combination logic 188702

Noncombination logic 454937

 71

Table 4-5：Summary of memory

Memory block Type Gate Counts
M1_24X72_inbuff single port 27200

M1_12X120_beta single port 48000

M2_24X72_MS dual port 36800

M2_88X48_sign Dual port 17200

ROM_1152X84_shf ROM 24000

ROM_256X60_addr ROM 12000

ROM_256X84_final ROM 16000

We analyze the overhead of a dual-decoder from a single application, 802.11n

to merge 802.16e. Except for modifying some parameters for ROM tables, number of

processing units should increase from 81 (for 802.11n) to 96 (for 802.16e) because of

Zf. Synthesis area for a processing unit (CHK/VAR) is almost 3042 gate counts.

Moreover, ROM tables have 24076 gate counts for 802.16e and the area of a signal

decoder for 80211n is almost 573793 gate counts. Consequently, the design area is

almost 15% overhead.

The specification of proposed LDPC decoder is summarized in Table 4-6.

Figure 4-24 shows the die photo of proposed LDPC decoder. The core size is

2.14×2.14mm2 and die size is 2.69×2.69mm2. The decoder operates at 333 MHz with

10 iterations for different code rates and code lengths. It has a peak throughput of 590

Mb/s and power dissipation of 451 mW for code rate 5/6, code length 2304 bits in

802.16e. In 802.11n, its peak throughput is 506 Mb/s with power dissipation of

436-mW for code rate 5/6, code length 1944 bits. The decoding throughput is

estimated by the equation (4.9) without input/output latency.

 72

Table 4-6：Summary specification of LDPC decoder
 Proposed

Technology
TSMC 0.13 μm
1P8M CMOS

Supply voltage 1.2 V

Max. Clock freq. 333 MHz

Die size 2.69×2.69 mm2

Core size 2.14×2.14 mm2

11n, 10-iter., 506 Mb/s
Max. Throughput

16e, 10-iter., 590 Mb/s
11n, 10-iter., 436 mW

Power dissipation
16e, 10-iter., 451 mW

 Figure 4-24：Photo of LDPC decoder

 Frequency codeword lengthThroughput=
decoding cycle counts

× (4.9)

Because the required minimum throughput of 802.16e is only 30 Mb/s, we can

lower performance to support the low power mode. Some techniques are often applied

in low power design, like slowing down VDD voltage or operating frequency. For

ease to design, we divide operating frequency by 5 to 66 MHz. It has throughput

42.6~118 Mb/s for different code rates and codeword lengths in 802.16e at 66 MHz.

The power dissipation as shown in Table 4-7 is lower to 86~101mW for different code

rates, codeword length 2304 bits. The required minimal throughput of 802.11n is 300

 73

Mb/s. The minimum throughput of our proposed design for 802.11n is 240 Mb/s for

code rate 1/2, codeword length 648 bits. It almost meets the requirement.

Table 4-7：Average power consumption in low power mode at 66 MHz, *1

Code Rate Power Dissipation

Rate 1/2 86 mW

Rate 2/3A 99 mW

Rate 2/3B 100 mW

Rate 3/4A 101 mW

Rate 5/6 91 mW

 *1: different code rates with maximum codeword length 2304 bits

 74

 Comparison

In synthesis status, timing constraint is loose because it doesn’t consider of

physical problems. The proposed can meet an operating frequency 400 MHz in

synthesis status and has a maximum throughput of 709 Mb/s for 802.16e and 607

Mb/s for 802.11n. When considering of physical design, the operating downs to 333

MHz in post-layout simulation. The comparison of our proposed LDPC code decoder

with status-of-arts is presented in Table 4-8.
Table 4-8：Comparison of LDPC code decoder

 [21] [22] [23] Proposed

Application 11n 16e 16e 11n and 16e

Technology 0.13 μm 0.13 μm 0.13 μm 0.13 μm

status synthesis synthesis CHIP post-layout
clock freq. 412 MHz 333 MHz 83.3MHz 333 MHz

Iteration 15 10 or 15 2~8 2~10

Termination Yes No Yes Yes

Throughput 736 Mb/s 610Mb/s 111Mb/s
506Mb/s(11n),
590Mb/s(16e)

Power N/A N/A N/A
436 mW(11n)
451 mW(16e)

Low Power Mode N/A N/A 52 mW*1 91 mW*2

Core size N/A N/A 2.11×2.11mm2 2.14×2.14mm2

*1: 30Mb/s
*2: 42Mb/s, for 802.16e, rate 5/6, codeword length 2304 bits, 10-iter.

 75

Chapter 5 Summary

In this thesis, we proposed a configurable LDPC decoder for IEEE 802.11n and

802.16e. First, we analyze LDPC decoding algorithms for 802.11n and 802.16e and

improvement spaces for row-update message passing, Belief Propagation, and

Min-Sum algorithm, etc. According to simulation results by C-language, we decide

normalization factor, number of iteration, bit width and other parameters for hardware

implementation. A trade-off between hardware complexity and decoding performance

is analyzed to decide the parameters. A configurable, partially parallel architecture

with Zf parallelization is proposed to apply row-update message passing algorithm

with min-sum. Some design considerations are discussed and solved by the proposed

methods.

For adaptive code rates and code lengths, a point based permutation is designed

to merge 22 types of Zf’s for 802.11n and 802.16e. Besides, parallel multi-codeword

decoding technique for preserving high hardware utilization and early termination

 76

mechanism to save power are considered. Multi-codeword decoding technique not

only increases hardware utilization but also throughput when decoded codeword is

less than 1152 bits (Zf < 48). Moreover, a flexible control provides users to decide

whether turning off early termination or not for adaptive code rates and transmission

channel.

The design is implemented in TSMC 0.13 μm 1P8M CMOS technology. The

core size is 2.14×2.14 mm2 and die size is 2.69×2.69 mm2. The decoder operates at

333 MHz with 10 iterations for different code rates and code lengths. It has a peak

throughput of 590 Mb/s and power dissipation of 451 mW for code rate 5/6, code

length 2304 bits in 802.16e. In 802.11n, its peak throughput is 506 Mb/s with power

dissipation of 436-mW for code rate 5/6, code length 1944 bits.

In low power mode, we divide operating frequency by 5 to 66 MHz to meet the

required minimum throughput, 30 Mb/s for 802.16e. It has throughput 42.6~118 Mb/s

for different code rates and code lengths. Power dissipation is lower to 86~101 mW

for 802.16e in low power mode.

 77

Reference

[1] IEEE Std 802.16e-2005, Air Intreface for Fixed and Mobile Broadband Wireless
Access Systems

[2] IEEE 802.11n Wireless LANsWWiSE Proposal: High Throughput extension to
the 802.11 Standard. IEEE 11-04-0886-00-000n.

[3] P. Elias, “Coding for noisy channels,” IRE. Conv. Rec., pt.4, pp.37-47,1955.
[4] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Fields,” J. Soc. Ind.

Appl. Math., 8: 300-304, June 1960.
[5] C. Berrou and A. Glavieux, “Near optimum error correcting coding and

decoding: turbo-codes,” IEEE Trans. Commun., vol 44, no. 10, pp. 1261-1271,
Oct. 1996.

[6] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory,
vol. IT-8, pp.21-28, Jan. 1962.

[7] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inform. Theory, vol. IT-27, no. 5, pp. 533-547, Sept. 1981.

[8] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low
density parity check codes,” Electron. Lett., vol. 33, no. 6, pp. 457-458, Mar.
1997.

[9] D. J. C. MacKay, “Good error-correction codes based on very sparse matrices,”
IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.

[10] S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the Shannon limit,” IEEE
Commun. Lett., vol. 5, no. 2, pp. 58-60, Feb. 2001.

[11] J. Perl, Probabilistic Reasoning in in intelligent systems: networks of plausible
inference. San Mateo: Morgan Kaufmann, 1988.

[12] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as a instance
of Pearl’s belief propagation algorithm,” IEEE J. Select. Areas Commun., vol. 16,
no. 2, pp. 140-152, Feb. 1998.

[13] J. K. Fan, Constrained coding and soft iterative decoding. Netherlands: Kluwer
Academic, 2001.

[14] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001.

[15] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.

 78

498-519, Feb. 2001
[16] N.Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ.

Linkoping, Sweden, 1996.
[17] P. Radosavljevic, A. de Baynast, and J. R. Cavallaro, “Optimized Message

Passing Schedules for LDPC Decoding,” In IEEE 39th Asilomar Conference on
Signals, Systems and Computers, pages 591-595, Nov. 2005

[18] D. Hocevar, “A reduced complexity decoder architecture via layered decoding
of LDPC codes,” in Signal Processing Systems SIPS 2004, IEEE Workshop on,
pp. 107-112, Oct. 2004.

[19] Y. C. Liao, C. C. Lin, C. W. Liu, and H. C. Chang, “A Dynamic Normalization
Technique for Decoding LDPC Codes,” IEEE Workshop on Signal Processing
Systems (SIPS), Athens, Greece, pp.768~772, Nov. 2005

[20] C. H. Liu , C. C. Lin , H. C. Chang , C. Y. Lee and Y. S. Hsu, “Method and
apparatus for switching data in communication systems,＂ Taiwan and US
patent pending.

[21] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro, “Configurable, High
Throughput, Irregular LDPC Decoder Architecture: Tradeoff Analysis and
Implementation,” In Proc. of 17th International Conference on Application
-specific Systems and Processors, pp. 360~367, 2006.

[22] T. Brack, M. Alles, F. Kienle, and N. When, “A Synthesizable IP Core for
WiMAX 802.16e LDPC code Decoding,” IEEE International Symposium on
Personal, Indoor and Mobilie Radio Communication, pp. 1~5, Sep. 2006

[23] X. Shih, C. Zhan, C. Lin, and A. Wu, “A 19-mode 8.29mm2 52mW LDPC
Decoder Chip for IEEE 802.16e System,” IEEE Symp. VLSI Circuits and VLSI
Technology (SOVC-2007), Kyoto, JAPAN, pp 16-17, June 2007.

[24] A. Anastasopoulos, “A comparison between the sum-product and the min-sum
iterative detection algorithms based on density evolution,” in IEEE
GlOBECOM’01, vol. 2, pp. 1021-1025, Nov. 2001.

[25] X. Y. Hu, Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient
implementation of sum-product algorithm for decoding ldpc codes,” in IEEE
GLOBECOM’01, vol. 2, pp. 1036-1036E, Nov. 2001.

[26] H. S. Song and P. Zhang, “Very-low-complexity decoding algorithm for
low-density parity-check codes,” in IEEE PRIMRC’03, vol. 1, pp. 161-165, Sep.
2003.

[27] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Trans. Commun., vol.
50, pp. 406-414, Mar. 2002.

[28] H. Jun and K. M. Chugg, “Optimization of scaling soft information in iterative

 79

decoding via density evolution methods,” in IEEE Trans. Commun., vol. 6, pp.
957-961, Jun. 2005.

[29] J. Chen and M. P. C. Fossorier, “Density evolution for two improved bp-based
decoding algorithms of ldpc codes,” IEEE Communications Letters, vol. 6, pp.
208-210, May 2002.

[30] D. B. West, introduction to graph theory, 2nd ed. NJ: Prentice-Hall, 2001.
[31] J. Xu, L. Chen, L. Q. Zeng, L. Lan, and S. Lin, “Construction of low-density

parity-check codes by superposition,” IEEE Trans. Commun., vol. 54, no. 1, pp.
71-81, Jan. 2006.

[32] H. Tang, J. Xu, S. Lin, and K. Abdel-Ghaffar, “Codes on finite geometries,”
IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 572-596, Feb. 2005.

[33] Z. W. Li, L. Chen, L. Q. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 54.
no. 1, pp. 71-81, Jan. 2006.

 80

作者簡歷

姓名：劉士賢

出生地：台南縣

出生日期：1983 年 3 月 12 日

學歷：1989. 9 ~ 1995. 6 台南縣立龍潭國民小學

 1995. 9 ~ 1998. 6 台南市私立長榮高級中學 國中部

 1998. 9 ~ 2001. 6 台南市私立長榮高級中學 高中部

 2001. 9 ~ 2005. 6 國立交通大學 電子工程學系 學士

 2005. 9 ~ 2007. 8 國立交通大學 電子研究所 系統組 碩士

 81

	Chapter 1 Introduction
	1.1 Overview of Wireless Communication System
	1.2 Motivation
	1.3 Thesis Organization
	Chapter 2 LDPC in 802.16e and 802.11n
	2.1 Quasi-Cyclic Matrix in 802.11n and 802.16e
	2.2 LDPC Encoder Method

	Chapter 3 Low Density Parity Check Code
	3.1 Concept of Low-density Parity Check Codes
	3.2 Optimized Approach for Hardware Implementation
	3.3 Design Considerations
	3.4 Implementation Issue

	Chapter 4 Architecture Design and Implementation
	4.1 Architecture Design
	4.2 Implementation
	4.2.1 Implementation Results

	Chapter 5 Summary

