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摘要 

     這篇論文提出一個支援全模式適用於 IEEE 802.16e 及 802.11n 標準之可配

置低密度同位元檢查碼解碼器。一個採用列跟新訊息傳遞演算法的部份平行化架

構被設計來達到高速傳輸速率及解碼能力。我們討論一些主題包括，解碼演算法

的分析及最佳化，架構設計及實現，提早中斷機制(early termination)，多區

塊解碼技巧(multi-codeword decoding)，排程以及後段佈局的模擬數據

(post-layout simulation) 

     低密度同位元檢查碼(LDPC code)是最好的更正碼其中之一。最近因它良好

的解碼能力及稀疏矩陣的特性，引起許多研究興趣。由於它的高度平行化特性，

使其容易設計及實現高速需求的架構。一些高速的通訊系統如建立在 IEEE 

802.16e 標準的 WiMAX 和 802.11n 標準的 WiFi 均採用低密度同位元檢查碼來提

供通道更正的能力。我們設計一個可配置的架構適用於 802.16e 跟 802.11n 的所

有的碼率及碼長。 

一個核心面積(core size)為2.14×2.14 mm2解碼器被實現在台積電0.13μm 

1P8M CMOS的製程下。在 802.16e中，10 次迴圈下，它具有最高傳輸速率 590 Mb/s

且平均功率消耗是 451 mW。而在 802.11n中，最高速率是 506 Mb/s而功率消耗

是 436 mW。藉著降低操作頻率到 66 MHz (333 MHz的五分之一)，以符合 802.16e

最低傳輸速率的要求，30 Mb/s，傳輸速率降為 42.6~118 Mb/s根據不同的碼長

及碼率。平均功率消耗則被降至 91 mW針對 802.16e中，碼率 5/6，碼長 2304 位

元測量下。 
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ABSTRACT 

This thesis presents a fully compliant, configurable LDPC decoder for 802.16e 
and 802.11n. A partially parallel architecture with scheduled row-update message 
passing algorithm is designed to archive high throughput and decoding performances. 
We discuss some topics, decoding algorithm analysis and optimization, architecture 
design and implementation, early termination, multi-codeword decoding technique, 
scheduling, and post-layout simulation results. 

LDPC code is one of best error correction codes. Recently, it engages much 
research interest because of its sparse matrix and well decoding performance. Due to 
its high parallelizable algorithm, the high speed architecture is easy to be designed 
and implemented. Some high speed communication systems, WiMAX based on 
IEEE 802.16e standard and WiFi based on 802.11n standard both take LDPC codes 
to provide channel correction ability. We design a configurable architecture for full 
code rates and codeword lengths in 802.11n and 802.16e.  

The decoder with a core size 2.14×2.14 mm2 is implemented in TSMC 0.13 μm 
1P8M CMOS technology. It has a peak throughput of 590 Mb/s and power 
dissipation of 451 mW with 10 iterations for 802.16e and a throughput of 506 Mb/s 
with 436 mW power consumption for 802.11n. By slowing down operating 
frequency to 66 MHz (one-fifth of 333 MHz) to meet required minimum throughput, 
30 Mb/s for 802.16e, its throughput is 42.6~118 Mb/s for different code rates and 
codeword lengths. Average power consumption is lower to 91 mW for code rate 5/6, 
codeword length 2304 bits in 802.16e. 
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Chapter 1   Introduction 

1.1  Overview of Wireless Communication System 

Recently, the Worldwide Interoperability for Microwave Access (WiMAX) 

and Wireless Fidelity (WiFi) have been received wide attention in wireless 

broadband standard. They are proposed to provide end-users to travel throughout a 

hot zone cell without losing connectivity. The WiMAX standard group is collectively 

called IEEE 802.16. The standard for fixed WiMAX, i.e. the stationary devices such 

as home or office PCs, is 802.16-2004, which offers data transfer rate of up to 75 

Mbps (megabits per second) over distances of up to 30 miles (4~6 miles is typical). 

The advanced standard, 802.16e [1], established specifications for mobile WiMAX, 

i.e. laptops or cell phones, offers similar speeds over slightly shorter distances, 

typically 1~3 miles.  

WiFi, on the other hand, adheres to the IEEE 802.11 standard, which provides 
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close-range, wireless broadband access in fixed environment. This standard went 

through several waves of development before arriving at the current leader, 802.11g, 

which supports speeds of as much as 54 Mbps over distances of up to 300 feet. In 

2003, the IEEE responded to growing demand for increased wireless performance by 

authorizing the creation of IEEE 802.11 Task Group. They developed and modified 

the 802.11 specification, called 802.11n [2], to support a minimum speed of 100Mbps 

with MIMO technology. Developers asset the final specification may support transfer 

speeds exceeding 200Mbps over longer distances than 802.11 currently supports. 

802.11n is backward-compatible with earlier standards: 802.11a, 802.11b, and 

802.11g.  

As a fixed broadband access technology, WiFi has its weakness. The user can 

only use the technology within the confines of a 300 feet radius and, hence, the level 

of mobility is limited. For practical purposes, most observers have considered 

WiMAX to be an outdoor technology. A combined scenario of WiMAX (for the 

building) and Wi-Fi (for the interior) looks like a viable solution. Combining the 

ability to use both kinds of networks on a single device allows consumers to take 

advantage of the best each has to offer. 

1.2  Motivation 

    LDPC code is first introduced by Gallager [6] in 1962. It can provide better error 

correction capacities than other channel codes. In recent years, many papers discuss 

the implementation architecture and structured parity check matrix. The defining 

LDPC codes in IEEE 802.11n and 802.16e are classical Quasi-Cyclic (QC) structured 

parity check matrix. Figure1-1 illustrates an example of Quasi-Cyclic matrix for code 

rate 3/4. Each element in the parity check matrix denotes a shift amount which can be 
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expanded to an identity circular right shift matrix. The properties of Quasi-Cyclic 

matrix will be presented in chapter 2. 

 '
2bHbh1bH

24 block

4

Code rate 5/6, Zf=54 for 802.11n

48 29 37 52 16 6 14 53 31 34 5 18 42 53 31 45 - 52 1 0 - - -2

17 4 30 7 11 24 6 14 21 6 39 17 40 47 7 15 41 - - 0 0 - -43

7 2 51 3 23 16 11 53 40 10 7 46 53 33 35 - 25 38 0 - 0 0 -46

19 48 41 1 7 36 47 5 29 52 52 31 10 26 6 3 2 51 1 - - 0 010

shift amount

 
Figure 1-1：Example of QC parity check matrix structure for code rate 5/6 

    Because 802.16e and 802.11n have similar technology modulation, OFDM 

system and their application properties of WiFi for wireless data transmission on local 

distance and WiMAN for mobility and portability, a combined scenario looks like a 

variable solution. It provides combinational properties to design a configurable 

data-path for the similar code structures of LDPC codes in 802.11n and 802.16e. In 

this thesis, a configurable LDPC decoder is proposed for multi-standard. The 

architecture adopts partially parallel decoding for QC LDPC codes and supports 19 

modes in 802.16e and 3 modes in 802.11n. A high throughput of 590 Mb/s and power 

dissipation of 451-mW for 802.16e and 506 Mb/s, 436-mW for 802.11n with a core 

size 4.58 mm2 are estimated in post-layout simulation/PrimePower at 333 MHz. A 

multi-codeword decoding technique for preserving hardware utilization and early 

termination to save power are considered. Scheduling issue and Row-update Message 

Passing algorithm (RMP) [17] are applied to accelerate the speed of convergence. 

This work is the first published LDPC decoder for multi-standard 802.11n and 

802.16e. The detail discussion and proposed architecture will be given in the 

following chapters.  

1.3  Thesis Organization 
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The rest of this thesis is organized as follows. The definition of parity check 

matrix of LDPC in 802.16e and in 802.11n is presented in chapter 2. Several efficient 

LDPC decoding algorithms including min-sum approximation and other 

implementation issues are briefly described in Chapter 3. It also shows the simulation 

results of c-codes and discusses the related performance comparisons. Among them, 

scheduled row-update message passing algorithm is suggested. Chapter 4 introduces 

the proposed architecture including the detail functional implementation and memory 

arrangements. We summarize implementation results in chapter 4. Finally summary 

will be given in chapter 5. 

 4
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Chapter 2   LDPC in 802.16e 

and 802.11n 

In this chapter, we introduce the specification of LDPC codes in 802.11n [2] 

and 802.16e [1]. LDPC code, a linear codeword code can be defined by a parity check 

matrix. The parity check matrix based on the methods of construction, can be 

generally classified into two categories: 1) random codes generally generated by 

computer search under certain design constraints, e.g. the girth and degree 

distributions [7, 9, 10]; 2) structured codes constructed by algebraic geometry and 

combinatorial method [31, 32]. One class of structured LDPC codes that allows low 

complexity encoding [33] is the quasi-cyclic (QC) LDPC codes. Well designed 

QC-LDPC codes have been shown to perform as well as regular or irregular 

computer-generated random LDPC codes [32]. QC-LDPC codes, moreover, have 

advantages in VLSI implementations of decoders since the cyclic symmetry results in 

simple regular wiring and modular structure.  
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2.1  Quasi-Cyclic Matrix in 802.11n and 802.16e 

QC-LDPC codes, one class of linear block codes, are specified by sparse 

circular parity-check matrices. An mb×nb matrix is said to be in circular form if it is 

generated by an array of , 0 1;0 1{ }
b bi j i m j n≤ ≤ − ≤ ≤ −P  circulant of same size, where a 

circularnt is a square matrix in which each row is the cyclic shift (one place to the 

right) of the row above it, and the first row is the cyclic shift of the last row. The Zf is 

the abbreviation of Z-factor. Without loss of generality, for sparse matrices, the 

circular Pi,j is assumed to be either a p(i,j,Zf) cyclically shifted identity matrix or a 

zero matrix of size Zf×Zf  m×n where p(i,j,Zf) is non-negative integer and Zf is positive 

integer related to parameter f. Then, Pi,j is the Zf ×Zf  identity matrix if p(i,j,Zf)=0; and, 

for simplicity, we define p(i,j,Zf)≣-1, if Pi,j is a zero matrix. Note that, either the zero 

matrix or the cyclically shifted idenrity matrix is a special circulant. Consequently, the 

QC-LDPC code with rate b

b

n m
n
− b  and length of nb×Zf can be defined by the 

following sparse parity check matrix, 

0,0 0,1 0,2 0, 2 0, 1

1,0 1,1 1,2 1, 2 1, 1

2,0 2,1 2,2 2, 2 2, 1

1,0 1,1 1,2 1, 2 1, 1

...

...

...

... ... ... ... ... ...
...

b b

b b

b

b b

b b b b b b b

n n

n n
H

n n

m m m m n m n

− −

− −

− −

− − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P P P P P

P P P P P

H PP P P P P

P P P P P

(2.1) 

where nb=24 in 802.11n and 802.16e and mb is a variable according to different code 

rates.  

In 802.11n and 802.16e, the m×n parity check matrix H is expanded from a 

binary base matrix Hb of size of mb-by-nb, where m=mb×Zf, n=nb×Zf . Because each 

circular matrix is specified by a single circular right shift, the binary base matrix 

information and permutation replacement information can be combined into a single 
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compact model matrix bmH . The matrix bmH  is the same size as the binary matrix 

bH , with each binary entry (i,j) of the base matrix bH  replaced to create the model 

matrix bmH . Each element Pi,j in bH  is replaced by a denote a circular right shift 

matrix described in last paragraph. The model matrix bmH  can the be directly 

expanded to .  H

     The matrix bH  is partitioned into two sections, where 1bH  corresponds to 

the systematic bits and 2bH  corresponds to the parity check bits, such that 

. Section 1 2[( ) | ( ) ]
b b b bb b n k b n×=H H H k× 2bH  is further partitioned into two sections, 

where vector  has odd weight, and  has a dual-diagonal structure with 

matrix elements at row i, column j equal to 1 for 

bh '
2bH

,i j=  1  1for i j= +  and 0 

elsewhere. The base matrix has (0) 1bh = , 1( )b bh m − 1= , and a third value 

 equal to 1. Equation (2.2) shows the definition of 1( ) 1,  0 ( )bh j j m −= < < b 2bH .               

 '
2 2

(0) | 0 1
(1) | 0 ...

[ | ] (2) | ...
... | ...

( 1) | 1 ... 0

b

b

b b b b

b b

h
h
h O

O
h m

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

H h H  (2.2) 

In particular, the non-zero sub-matrices are circularly right shifted by a 

particular circular shift value. Each 1 in  is assigned a shift amount of 0, and is 

replaced by a Z

'
2bH

f ×Zf identity matrix when expanding to . The two located at the top 

and the bottom of  are assigned equal shift amounts, and the third 1 in the middle 

of  is given an unpaired shift amount.  

H

bh

bh

Following we describe the shift amount p(i,j,Zf) for the circulant Pi,j in (2.1) 

according to different code rates in 802.11n and 802.16e, respectively: 1) For rate 

1/2A, 2/3B, 3/4(A,B), and 5/6 in 802.16e, we have 
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( , )         ; if ( , ) 0

( , )( , , )
;otherwise   

96
ff

p i j p i j
p i j Zp i j Z

≤⎧
⎪= ⎢ ⎥⎨
⎢ ⎥⎪
⎣ ⎦⎩

 (2.3) 

2) For rate 2/3A in 802.16e and rate 1/2, 2/3, 3/4 and 5/6 in 802.11n, we have 

 
( , )           ;if ( , ) 0

( , , )
( , ) mod ;otherwise    f

f

p i j p i j
p i j Z

p i j Z
≤⎧

= ⎨
⎩

 (2.4) 

where ⎣x⎦ in (2.3) is the floor function that returns the largest integer less than or 

equal to x, and p(i,j) is either −1 or non-negative integer, given by the specification, 

which is used to determine the shift amounts for all other lengths of the same rate. 

And, in 802.11n, Zf = 81－27f, f = 0, 1, and 2; while in 802.16e, Zf =81－4f, f = 0, 1,., 

18. To be summarized, there are 19 modes for 802.16e and 3 modes for 802.11n, 

respectively (totally 22 modes). Figure 2-1 shows an example of parity check matrix 

for code rate 5/6 and Zf 54, defined in 802.11n.  

 '
2bHbh1bH

24 block

4

Code rate 5/6, Zf=54 for 802.11n

48 29 37 52 16 6 14 53 31 34 5 18 42 53 31 45 - 52 1 0 - - -2

17 4 30 7 11 24 6 14 21 6 39 17 40 47 7 15 41 - - 0 0 - -43

7 2 51 3 23 16 11 53 40 10 7 46 53 33 35 - 25 38 0 - 0 0 -46

19 48 41 1 7 36 47 5 29 52 52 31 10 26 6 3 2 51 1 - - 0 010

shift amount

 

Figure 2-1：Example of parity check matrix for code rate 5/6, Zf =54 in 802.11n 

 

2.1.1  Parameters for 802.11n 

In 802.11n, there are 3 types of codeword length, 648, 1296 and 1944 bits. The 

lengths are multiple of 24. The required minimal throughput is 300 Mb/s. The Zf is 

defined as codeword length
24

, corresponding to different codeword lengths. So there 

are 3 types of Zf, 27, 54, 81 corresponding to codeword lengths, 648, 1296 and 1944 
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bits. There are 4 types of code rate, including 1/2, 2/3, 3/4, 5/6. Table 2-1 shows the 3 

types of codeword length and their corresponding parameters. The “k” presents the 

information bit length. The “n” presents the total transmission codeword length. 

Table 2-1：Parameters of LDPC code for 802.11n 

k (bytes)  (information bits) 
n(bits) n(bytes) Zf

Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6 

648 81 27 40.5 54 60.75 67.5 

1296 162 54 81 108 121.5 135 

1944 243 81 121.5 162 182.25 202.5 

     

2.1.2  Parameters for 802.16e 

In WiMAN 802.16e, there are 19 types of codeword length from 576 to 2304 

bits. The required minimal throughput is 30 Mb/s. The Zf varies form 24 to 96 with 

increment of 4. Totally there are 19 Z-factor from 24 to 96 corresponding to different 

codeword lengths. There are 4 types of code rate, including 1/2, 2/3, 3/4, 5/6 and 

define 6 types of parity check matrix, 1/2, 2/3A, 2/3B, 3/4A, 3/4B, and 5/6. Table 2-2 

shows the summary of 19 types of codeword length and their corresponding 

parameters. The “n” presents the total transmission codeword length. The data 

throughput requires a minimal 30 Mb/s. 
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Table 2-2：Parameters of LDPC code for WiMAN 802.16e 

k(bytes)  (information bits) 

n(bits) n(bytes) Zf

Rate 1/2 
Rate 2/3 

(A,B) 

Rate 3/4 

(A,B) 
Rate 5/6 

576 72 24 36 48 54 60 

672 84 28 42 56 63 70 

768 96 32 48 64 72 80 

864 108 36 54 72 81 90 

960 120 40 60 80 90 100 

1056 132 44 66 88 99 110 

1152 144 48 72 96 108 120 

1248 156 52 78 104 117 130 

1344 168 56 84 112 126 140 

1440 180 60 90 120 135 150 

1536 192 64 96 128 144 160 

1632 204 68 102 136 153 170 

1728 216 72 108 144 162 180 

1824 228 76 114 152 171 190 

1920 240 80 120 160 180 200 

2016 252 84 126 168 189 210 

2112 264 88 132 176 198 220 
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2208 276 92 138 184 207 230 

2304 288 96 144 192 216 240 

2.2  LDPC Encoder Method 

The general method of encoding is quite complex by determining a generator 

matrix G form H such that GHT=0. LDPC encoder in 802.11n and 802.16e provides a 

memory efficient method to encode codeword instead of generator matrix G, 

 for the properties of defined parity check matrices. Because the parity 

check matrix  is an approximate lower triangular form, so the m×n matrix  can 

be written in the form, 

× =G x v

Η

 
A B T
C D E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H  (2.5) 

where A  is ( )fm Z k− × , B  is ( )f fm Z Z− × ,  is T ( ) ( )f fm Z m Z− × − C,  is 

fZ k× ,  is D f fZ Z× , and E  is ( )f fZ m Z× − . And k is the length of information 

x. The 
B
D
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and  correspond to the expanded  and D bh ( 1)b bm −h , respectively. 

Figure 2-2 shows the summary of notations above. 

 

Figure 2-2：Decomposition of Parity Check Matrix 

 12



    Let codeword ,  is the systematic information,  are the 

parity parts from encoder.  has length 

1 2( , , )=v x p p x 1 2,p p

1p fZ  and  has length 2p fm Z− . With the 

definition,  must satisfy the condition v 0T× =H v . We replace 1 2( , , )=v x p p  into 

the equation . Then we can derive the equalities. 0T× =H v

  (2.6) 1 2

1 2

0    --- (1)
0   ---(2)

T T T

T T T

A B T
C D E

⎧ + + =
⎨

+ + =⎩

x p p
x p p

From equation (1) of (2.6), we can rewrite  as  and 

replace  into (2) of (2.6). It can derive as 

2
Tp 1

2 1( )T TT A B−= +p x Tp

0T

2
Tp

 1 1
1( ) ( )TET A C ET B D− −+ + +x =p

)

 (2.7) 

Define  and with the parity check matrix as indicated 1(ET A Cφ −= + Iφ = , I  

denotes identity matrix.  is the property of parity check matrix 

with the definition of . 

1(ET A C Iφ −= + ) =

bh

Continuing with the derivation,  can be rewritten as 1
Tp

 1
1 ( )T TET A C−= +p x   (2.8) 

Because the matrix T is a dual diagonal matrix, lower triangular matrix is the 

characteristic of 1T −  shown as the example in Figure 2-3.  

 

Figure 2-3：Example of 8-by-8 T-1 matrix 
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By the equation 1
2 (T TT A B−= + 1 )Tp x p  and (2.7), we can derive the values,  and 

. Figure 2-4 shows the block diagram of encoder and Table 2-5 summarize all the 

encoding steps. 

1p

2p

 

Figure 2-4：The block diagram of encoder method 

Table 2-3：Steps of encoding method 

Step1 Compute  and T TA Cx x  

Step2 1Compute ( )TET A− x  

Step3 1
1Compute ( )T T TET A C−= +p x x  

Step4 2 1Compute T TT A B= +p x p T  
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Chapter 3   Low Density 

Parity Check Code 

 Low-density Parity Check (LDPC) code was first introduced by Gallager in 

1962 [6], but was almost forgotten until its rediscovery it in the late 1990s. The 

graphical representation for the LDPC code was presented by R. N. Tanner [7, 30] in 

1981. Mackay and Neal rediscovered the LDPC code and investigated its graph based 

iterative decoding algorithm [8, 9]. It has been shown in [10] that long LDPC codes 

based on the belief propagation [11] can achieve an error performance very closing to 

the Shannon limit. Many high speed communication systems such as IEEE 802.11n, 

802.16e and DVB-S2 have considered employing LDPC code to enhance 

performance for its benefits, including good error performance and high parallelism. 

Besides, the decoding algorithm provides very simple arithmetic computations to 

decrease the complexity of hardware design and parallelism to increase the data rate. 

In this chapter, we discuss the decoding algorithms including belief propagation, 
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row-update message passing algorithm and some implementation issues, Min-Sum 

approach, fixed-point simulation and etc. A trade-off between decoding algorithms is 

analyzed and scheduled row-update message passing with Min-Sum is suggested. 

3.1  Concept of Low-density Parity Check Codes 

Low-density Parity Check code, a linear block code defined by a very sparse 

parity check matrix H which means there are only a small number of ones in the 

entries. It was first introduced by Gallager [6] and rediscovered by MacKay [8,9]. For 

the properties of a sparse matrix, it makes the decoding algorithm simple and practical 

at good communication rates [9]. The sparse matrix also reduces the complexity of 

computation in decoding and encoding. However, LDPC decoders, which are highly 

parallelizable, have a much higher decoding speed than other decoder. The decoding 

algorithm based on sum-product algorithm (SPA) is capable of parallel 

implementation, leading to a much higher decoding speed than other channel code 

decoder. We often divide LDPC codes into two types according to its degree 

distribution. One is regular LDPC code, the other is irregular. The regular LDPC 

codes mean that each row has the same number of ones, and each column does so. 

The irregular mean that numbers of ones in the rows or in the columns are different. 

In the following example, it shows a parity check matrix of (10,5) regular 

LDPC code and its constraint equation, 

               (3.1) 

0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 0

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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And 

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4[ ] [T ]x x x x x x x x x x H c c c c c× =     (3.2) 

 
0 3 4 7 9

1 0 1 5 9

2 1 3 6 8

4 2 4 5 6

5 0 2 7 8

:  0
:  0
:  0
:  0
:  0

c x x x x
c x x x x
c x x x x
c x x x x
c x x x x

+ + + =

+ + + =

+ + + =

+ + + =

+ + + =

                   (3.3) 

Figure 4-1 represents the five parity check equations (3.3) in the bipartite graph with 

10 bit nodes (or variable node) and 5 check nodes. The column weight of H 

determines the number of edges (or degree) for each bit node. We usually illustrate the 

relationship between bit nodes and check nodes or treat direction of message passing 

from its bipartite graph. 

  

Figure 3-1：Example of bipartite graph for equation (3.1) 
 

3.1.1  Message Passing Algorithm 

LDPC decoding algorithm is based on soft iterative decoding which relies on 

the message passing algorithm or belief propagation [11,12]. We consider the 

following conditional probability,  

 ( | )P x a C=  (3.4) 
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which is a posterior probability x to be a value a based on the condition event C. 

According to the Bayes’s theorem, we extend the posterior equation as  

 ( | ) ( )( | )
( )

P C x a P x aP x a C
P C
= =

= =  (3.5) 

We want to know the value ( |P x a C)=  when knowing other terms. The term 

 is a prior probability or referred to the intrinsic probability, denoted by 

. The other term 

(P x a= )

)(intP x a= ( | )P C x a=  is proportional to the extrinsic probability 

which describes the probability that new information for x is obtained from the event 

C when assuming a is a value from alphabet set Α . We can express extrinsic 

probability as 

  (3.6) 1

' A
( ) ( ( | ')) ( | ) ( |ext e

a
P x a P C x a p C x a P C x aρ−

∈

= = = = = =∑ )

The eρ  represents the normalization constant to satisfy the condition   

. 
'

( ')ext
a

P x a
∈

= =∑
A

1

)

The posteriori probability in (3.5) can be described as  

  (3.7) 1

' A
( ) ( ( | ')) ( | ) ( |ext e

a
P x a P C x a p C x a P C x aρ−

∈

= = = = = =∑

where  is also the normalization factor 

(

1( ( ))p eP Cρ ρ −=

1

int
'

( ') ( ')p ext
a A

P x a P x aρ
−

∈

⎛ ⎞
= = =⎜ ⎟
⎝ ⎠
∑ (2)GF). If =Α , the log-likelihood ratio 

representation for (3.7) will be   

int
int

int

( 1) ( 1) ( 1)( ) ln ln ln ( ) ( )
( 0) ( 0) ( 0)

post ext
post ext

post ext

P x P x P xLLR x LLR x LLR x
P x P x P x

= = =
= = + = +

= = =
 (3.8) 

In the graph representation, we use an undirected graph, referred to the normal 

graph [13,14]. The vertices (nodes) denote the constraints. The ordinary edges denote 

the state variables for message passing. Symbol variables are denoted by left edges 

(half edges). Figure 3-2 shows the example with three vertices; the edges connecting 
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only one node are left edges, the edges connecting two vertices are ordinary.  

  

Figure 3-2：Example of normal graph 

  

Figure 3-3：Graph presentation of the intrinsic and extrinsic probabilities 

Figure 3-3 illustrates the graph of a single node (vertex) and d edges with the 

intrinsic and extrinsic probabilities. There are d symbols, x1, x2,..., xd, respect to the 

constraint C. We define a set Sc which is a subspace of the d-dimensional vector space 

(d
cS ⊂ )dA A , and any d-tuple 1 2( , ,..., )dx x x c= ∈x S  will satisfy the constraint C. 

Each edge has the intrinsic probability  associated with the symbol int ( )iP x ix  for 

. Therefore a posteriori probability of a symbol 1 ~i = d ix  will be the combination 

of the intrinsic probability  and extrinsic  (3.8). int ( )iP x ( )ext iP x

From equation (3.8), we have to evaluate  based on the constraint C and the 

other intrinsic probabilities  with 

( )ext iP x

int ( )jP x j i≠ . The  will be ( )ext iP x
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1 1 1
,

   

1, 2 1 1 1
,

   

int
, 1

  

( ) ( | )

( , ,..., , ,..., | )

( | ,..., ) ( ,..., , ,..., | )

( )

j

c

j

c

j

c

ext i e i

e i i d i
x j i

x

e d i i
x j i

x

d

e j
x j i j

j ix

P x P C x

P C x x x x x

P C x x x P x x x x x

P x

d i

ρ

ρ

ρ

ρ

− +
∀ ≠
∈

− +
∀ ≠
∈

∀ ≠ =
≠∈

=

=

=

=

∑

∑

∑ ∏

S

S

S

    (3.9) 

The  is always equal to 1 because the constraint is true given 1, 2( | ,..., )dP C x x x

1, 2( ,..., )dx x x  where xj for j=1~d belong to the constraint set SC. Then a posteriori 

probability can be written as  

  (3.10) 

int

int

, 1

( ) ( ) ( )

( )
j

c

post ext
i p i i

d

p
x j i j
x

P x P x P x

P x

ρ

ρ
∀ ≠ =

∈

=

= ∑ ∏
S

j

where we assume the symbol variables 1 2, ,..., dx x x are independent, and eρ  pρ is 

also a normalization constant.  

 

 Two Vertices 

Now we consider message passing between two vertices. Figure 3-4 shows the 

graph presentation of two constraints (two vertices, C1 and C2). The C1 constraint has i 

edges where i-1 edges are left edges and only xi is ordinary edge. On the other hand, 

1 ~ dx x are constrained by C2 where only xi on the ordinary edge. Besides the two 

constraints 
1
,c c2

S S  sets are defined such that 
11 1 2( , ,..., )ix x x c= ∈x S  and 

22 1 2( , ,..., )d cx x x= ∈x S . 
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Figure 3-4：Graph presentation of message passing between two vertices 

As shown in Figure 3-4, we have to evaluate the extrinsic probabilities for the 

left edges constrained by C1 and C2. First we only consider the constraint C2. 

According to (3.9), the extrinsic probability can be written as： 

 
2 1
2 2

1 2 1 1
(2)

2 int
\

( ) ( | )

( )
i
c

ext i i

i
x x
x S

P x P C x

P x

ρ

ρ
+

+ +

∈

=

= ∑  (3.11) 

But we have to consider the value  constrained with C(2)
int ( )iP x 1. Therefore 

we evaluate the extrinsic probability based on both constrains C1 and C2. 

      

2 1
2 2

2 1
2 2

2 1
2 2

1 1 2 1

1 2 2 1
\

1 1 2 1 2 1
\

1 2 1
\

( ) ( , | )
( , , , ,..., | )

( | , ) ( , , ,..., | )

( , , ,..., | )

i
c

i
c

i
c

ext i e i

i i d i
x x
x S

i i d i
x x
x S

i i d i
x x
x S

P x P C C x
P C C x x x x

P C C P C x x x x

P C x x x x

ρ

+

+

+

+ +

+ +

∈

+

∈

+ +

∈

=

=

=

=

∑

∑

∑

x +

i

 (3.12) 

where the third equality comes from a Markov chain 

 1 2 1 2( , | ) ( | ) ( | )i iP C C x P C x P C x=  (3.13) 

such that the term                                                                      

 
22 1 2 2 2 2 c( | , ) ( | ) 1,    P C C P C for= = ∈x x x S          (3.14) 
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Continuing from (3.12), we derive the equality as 

1 2 1 1 2 2

1 2

1 (1)
1 int

2

( , , ,..., | ) ( | ) ( , ,..., | )
                                      ( | ) ( ) ( )... ( )

( ) ( ) ( ) ( )

i i d i i i d i

i i i d
d

ext i i j
j i

P C x x x x P C P x x x x
P C x P x P x P x

P x P x P xρ

+ + +

+

−

= +

1+=
=

= ∏

x

 (3.15) 

From Figure 3-4,  

  (3.16) (1)
1 1( ) ( | )ext i iP x P C xρ=

it is the extrinsic probability of xi  with respect to C1. int ( )jP x  is the intrinsic 

probability for the left edge connecting C2, and  is the intrinsic probability 

for the ordinary edge 

int ( )iP x

ix . Because the ordinary connecting C1 and C2 without external 

input, we can initialize the int ( )iP x  to be a constant. We set int
1( )

| |iP x =
A

 for 

ix ∈ A . Then the extrinsic probability in (3.12) will be written as

 
2 1

2 2

(1)

\ 2

( ) ' ( ) ( )
j

c

d

ext i e ext i j
x x j i
x S

P x P xρ
+ = +

∈

= ∑ ∏ P x

|)

 (3.17) 

where 1' /( |e pρ ρ ρ= A . 

Referring to Figure 3-4, we know if the extrinsic probability  from  is 

available and  

(1) ( )ext iP x 1C

                        (3.18) (2) (1)
int ( ) ( )i extP x P x= i

)only the constraint  is necessary to estimate . Therefore 2C 1(ext iP x + ( )ext jP x  

for ( 2) ~j i= + d  can also be calculated by the same method. For ( )ext lP x  with 

, the extrinsic probability  with respect to  should be 1 ~ ( 1)l i= − (2) ( )ext iP x 2C
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first computed and the intrinsic probability for  is set to be  1C

  (3.19) (1) (2)
int ( ) ( )i extP x P x= i

The process of (3.18) or (3.19) is the message passing between vertices  and . 

With the message passing algorithm, we can simplify the problem of solving both  

and  into the problem of solving the single vertex graph, which is much simpler 

than the two vertices case. The message passed on the edge 

1C 2C

1C

2C

ix  can be represented by  

 1 2

1
1 1

1
(1)

1 int
\ 1

( ) ( ) ( )
i
c

i

C C i ext i j
x x j
x S

x P x P xμ ρ
−

→
=

∈

= = ∑ ∏  (3.20) 

 2 1

2
2 2

(2)
2 int

\ 1

( ) ( ) ( )
i
c

d

C C i ext i j
x x j i
x S

x P x P xμ ρ→
= +

∈

= = ∑ ∏  (3.21) 

The operation of (3.20) and (3.21) are the sum of products, thus the message 

passing algorithm is also called the sum-product algorithm [15]. Generally in the 

graph with vertices, , the vertex  has d ordinary edges that 

respectively connect to with symbol variables 

0 1, ,..., dC G G 0C

1 2, ,..., dG G G 1 2, ,..., dx x x . 

Assuming the messages 
0
( )

jC C jxμ →  with j = 1~ d have been obtained from G1~Gd, 

we can get the value 
0 iC Cμ →  by 

 0

0

\ 1

( ) ( )
i j

i
c

d

C C i C C j
x j

j i

0
x xμ μ→

=
≠∈

= ∑ ∏
x
x S

→  (3.22) 

where  is the constrain set for , and 
0CS 0C 1 2( , ,..., )dx x x=x . The message 

0 iC Cμ →  for i=1~d can be obtained because they are the intrinsic probability inputs 

for vertices C1~Cd. 

Based on the concept of message passing algorithm above, LDPC decoding 
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algorithm will be introduced on the next section. 

 

3.1.2  LDPC Decoding Algorithm 

Same as the linear block codes, a m-by-n LDPC code have a codeword 

1 2[ , ,..., ]Nx x x=x  needed to satisfy the equality 0T =Hx . The bipartite graph, 

Figure 3-5 is used to describe the relation between parity check matrix and codeword. 

It is the graph representation of equation (3.23). The check nodes and bit nodes are 

denoted as column constraint of parity check matrix and row index of codeword. The 

message passing algorithm is applied to passing the message between two nodes. 

                (3.23) 

0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 0

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

  
Figure 3-5：Bipartite graph of matrix (3.23) 

                        
0 3 4 7 9

1 0 1 5 9

2 1 3 6 8

4 2 4 5 6

5 0 2 7 8

:  0
:  0
:  0
:  0
:  0

c x x x x
c x x x x
c x x x x
c x x x x
c x x x x

+ + + =

+ + + =

+ + + =

+ + + =

+ + + =

 (3.24) 

Equation (3.24) presents the parity check constraints that are similar to the role 
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of vertex nodes in the massage passing graph. The operation in (3.24) all are 

exclusive-or. LDPC decoding algorithm is based on the belief propagation algorithm 

also called message passing algorithm. The bit node transfer information to other bits 

under the check node constraints. By iteratively exchanging more reliable information 

from other bits, the error bits are corrected.  

The message passing algorithm is an APP (a posterior probability) only if the 

code graph has no cycles. The cycle-free implies that all code bits 0, 1 1,...., nx x x −  are 

independent. However the algorithm performs remarkably well even if dependent. 

Now we will derive the message passing algorithm for LDPC from first principles. 

Prior to introduce the decoding algorithm, we have to know some notations, n code 

bits, the number of information bits is k n m= − , and the code rate is 
k
n ,  n 

channel received output , 0 1 1( , ,..., )nr r r −=r noise= +r x , M(j) be the set of parity 

nodes connected to the code bits jx ,  is the event that all parity check 

constraints associated with 

jC

jx  are satisfied and N(m) be the set of bit nodes 

connected to the m’th parity check, and a parity check matrix is m-by-n dimension. 

The derivation below referred to the description of Gallager [6]. 

Using the assumption of code bit independence and Baye’s rule, a posterior 

probability ( | ,j jP x b C r)=  can be written as 

                 (3.25) ( | , ) ( | ) ( | ,j j j j j jP x b C K P r x P C x b= = × × =r r)

where K is a constant for both b=1 or 0, 

           1,

( ) ( )
( ) ( , ) ( ) ( ) ( | )

( , ) ( , ) ( , ) ( ) ( | ) ( , )

n

i j
j j ii i i i i

i i i i i i i i

p b p
p b p b p b p b p bK

p S p r b p S p b p r b p S
= ≠= = =
∏r r

r r

r

r
 

The equation (3.25) is similar to equation (3.5). 
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For Gaussian noise： 

 
2

2
( ( 1) )

2
2 1/ 2

1( | ) exp
(2 )

brj

j jP r x σ

πσ

+ −

=  (3.26) 

For BSC (Binary Synchronous Communication) ： 

 1( | 0) (1 )j jr
j jP r x p p r−= = −  (3.27) 

 1( | 0) (1 )j jr
j jP r x p p−= = − r  (3.28) 

where assuming false probability is equal to p, so true probability is 1﹣p as shown in 

Figure 3-6. 

 

Figure 3-6：Transmission probability for BSC 

The second term in (3.25) is the probability that all parity check constraints 

connected to jx  are satisfied given  and r jx b= . Notice that 0{ ,.., }j j kjC C C=  

is a collection set of events, where  is the m’th parity check node connected to mjC

jx  is satisfied. Because of the assumption of code bits independence, the term can be 

written as 

     0 1
( )

( | , ) ( , ,..., | , ) ( | , )j j j j kj j mj j
m M j

P C x b P C C C x b P C x b
∈

= = = = =∏r r r  (3.28) 

If b=0, it implies that code bits other than jx  connected to the m’th parity check 

have an even number of 1’s. If b=1, the other bits must have odd parity. Using the fact, 

we will derivate  as a relatively simple form as follows. ( | ,j jP C x b= r)

As a preliminary calculation, suppose two bits satisfy a parity check constraint 
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1 2 0x x⊕ = , and we know that 1 1( 1p P x )= =  and 2 2( 1p P x )= = . Let  

and . Then when the constraint is satisfied, the probability will be 

1 11q p= −

2 1q = − 2p

2

0)

                   (3.29) 1 2 1 2 1

1 2 1 2

( 0) (1 )(1 )
                        2 1
P x x p p p p

p p p p
⊕ = = − − +

= − − +

which can be written as 

             (3.30) 1 2 1 2 2 2 1 12 ( 0) 1 (1 2 )(1 2 ) ( )( )P x x p p q p q p⊕ = − = − − = − −

     We suppose L+1 bits connected to one parity check node as shown in Figure 

3-7. First we compute the term 1 2(P x x⊕ =  as a new node 'x  then compute the 

probability , iteratively to find out the probability to satisfy the 

constraint  with L+1 nodes (

2( ' 0)P x x⊕ =

C 1 2( , ,..., )Lx x x ). It is a mathematically technique to 

reduce the complex problem to be simple two nodes problem. Following description 

will derive the detail LDPC decoding algorithm. 

 

Figure 3-7：Merged graph of check node and bit node with L+1 degree 

For known probabilities 1 2{ , ,..., }Lp p p  corresponding to the bits 

1 2{ , ,..., }Lx x x . We want to generalize (3.30) to find the probability distribution for 

, where . 1 2 ...L Lz x x x= + + + 1L Lz z x−= ⊕ L

L                     (3.31) 1

1

2 ( ) 1 (1 2 ( 1))(1 2 )
                    =(2 ( 0)(1 2 ))

L L

L L

P z P z p
P z p

−

−

= − = − = −
= −

where . Applying the recursively yields ( 1)L Lp P x= =
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                       (3.32) 
1

2 ( 0) 1 (1 2 )
L

L
i

P z p
=

= − = −∏ i

or            
1 1

1 1( 0) (1 (1 2 )) (1
2 2

L L

L i
i i

P z p q p
= =

= = + − = + −∏ ∏ )i i  (3.33) 

Similarly it can show 

                     
1

1( 1) (1 ( )
2

L

L
i

P z q p
=

= = − −∏ )i i

)

 (3.34) 

Returning to our calculation of ( | ,mj jP S x b= r , we derivate the equalities according 

to  or  to choose 1jx = 0jx = ( 1)LP z =  or ( 0)LP z = . 

                0 1
' '

' ( )\

1( | 0, ) (1 ( )
2mj j mn mn

n N m j

P C x q q
=

= = + −∏r )  (3.35) 

                0 1
' '

' ( )\

1( | 1, ) (1 ( )
2mj j mn mn

n N m j

P C x q q
=

= = − −∏r )  (3.36) 

where  is the probability that code bit 0
'mnq ' 0nx = , given  and excluding any 

information about 

r

'nx  from parity check m. It must need the exclusion operation 

because we desire extrinsic knowledge about 'nx  form parity check constraints to get 

the extrinsic information about jx .  By combination of (3.25) (3.27) (3.35), we get 

the final expressions for a posterior probability. 

         0 1
' '

( ) ' ( )\

( 0 | , ) ( | 0) ( | 0, )

1                        ( | 0) (1 ( ))
2

j j j j j j

j j mn mn
m M j n N m j

P x C K P r x P C x

K P r x q q
∈ ∈

= = × = =

= × = + −∏ ∏

r r
 (3.37) 

         0 1
' '

( ) ' ( )\

( 1| , ) ( | 1) ( | 1, )

1                        ( | 1) (1 ( ))
2

j j j j j j

j j mn mn
m M j n N m j

P x C K P r x P C x

K P r x q q
∈ ∈

= = × = =

= × = − −∏ ∏

r r
 (3.38) 

Inspection of the APP in (3.38), we can denote some operations as “check node”, 

some operations as : ”bit node”. For example,                                               
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check node update
channel value

0 1
' '

( ) ' ( )\

bit node update (variable)

1( 1| , ) ( | 1) (1 (
2j j j j mn mn

m M j n N m j

P x C K P r x q q
∈ ∈

= = × = − −∏ ∏r ))

6444447444448
64748

1444444442444444443
  (3.39) 

The notation can be simplified by letting  and then define the check 

node equation as 

0 1
'mj mn mnq q qδ = − '

 0
'

' ( )\

1 (1 )
2mj mn

n N m j

r δ
∈

= + ∏ q  (3.40) 

 1
'

' ( )\

1 (1 )
2mj mn

n N m j

r δ
∈

= − ∏ q

r

 (3.41) 

      For the BSC, the right terms of expressions in (3.39) can be simplified. When 

first iteration, the probabilities  can be rewritten as 0 1,mj mjr r

 
10

11

( 0 | ) (1 )

( 1| ) (1 )

j j

j j

r r
mj j j

r
mj j j

q P x r p p

q P x r p p

−

−

= = = −

= = = −
 (3.42) 

We rewrite (3.40) (3.41) with (3.42), 

                    

'

'

'

0

' ( )\

| ( )| 1

' ( )\

1 | ( )| 1

' ( )\

1 (1 (1 2 )( 1) )
2
1   (1 (1 2 ) ( 1) )
2
1 (1 (1 2 ) ( 1) )
2

n

n

n

r
mj

n N m j

rN m

n N m j

rN m
mj

n N m j

r p

p

r p

∈

−

=

−

=

= + − −

= + − −

= − − −

∏

∏

∏

 (3.43) 

According to numbers of N(m), we summarize the check node functions as (3.44) 

            

0 | ( )| 1

| ( )| 1

1 | ( )| 1

| ( )| 1

1 (1 (1 2 ) ),    if the bits of N(m)\j is odd
2
1 (1 (1 2 ) ),    if the bits of N(m)\j is even
2
1 (1 (1 2 ) ),    if the bits of N(m)\j is even
2
1 (1 (1 2 ) ),    if the
2

N m
mj

N m

N m
mj

N m

r p

p

r p

p

−

−

−

−

= − −

= + −

= − −

= + − bits of N(m)\j is odd

 (3.44) 

The APP can be further simplified as 
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| ( )| 1 | ( )| 1

( ) ( )

| ( )| 1 | ( )| 1

( ) ( )

1 1( 0 | , ) ( | 0) (1 (1 2 ) ) (1 (1 2 )
2 2

1 1( 1| , ) ( | 1) (1 (1 2 ) ) (1 (1 2 ) )
2 2

odd even

odd even

N m N m
j j j j

m M j m M j

N m N m
j j j j

m M j m M j

P x C P r x p p

P x C P r x p p

− −

∈ ∈

− −

∈ ∈

= = = − − + −

= = = + − − −

∏ ∏

∏ ∏

r

r

)

 (3.45) 

where ( )oddM j  are the sets of nodes connected to jx  with odd parity, and 

( )evenM j  are sets with even parity. 

 

 Decision Step 

With the analysis of APP operation, we can decode the value 0  or 1x x= = . 

We derivate the equation as, 

  (3.46) 
0 ;  if ( 0 | , ) ( 0 | , )
1 ;if ( 0 | , ) ( 0 | , )

j j j j
j

j j j j

P x C P x C
x

P x C P x C
= ≥ =⎧

= ⎨ = < =⎩

r r
r r

We have to analyze the magnitude of the APPs to decode the value. We can simplify 

the equation (3.46) to compare with sign value by dividing the APPs as log domain. 

The check node and bit node operations are the main procedures to iteratively 

passing message to correct error bits. In next sub-section, we will introduce the Belief 

Propagation (BP) algorithm in log domain. The multiplication in log domain will be 

simplified to be summation form. Obviously, the advantages are to reduce the 

hardware complexity and to decode the soft results more easily by verifying the sign 

of APPs. 

 

 Message Passing algorithm in log domain 

We introduce the APP equations in log domain. The operations in log domain 

make computations more clear and easy. Equality (3.46) combines (3.25) with  

and . 

0jx =

1jx =
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( 0 | ,

( ) log
( 1| ,

jposterior
j

j j

P x C
LLR x

P x C
)
)

j=
=

=

r
r

 (3.46) 

xj＝1 if , otherwise ( ) 0posterior
jLLR x > 1jx = . We only compute that if APP is 

positive or negative value. The decision for APPs will become easy in log domain. 

First, 

 0 1
'

' ( )\
0 1

( ) ' '
' ( )\

( 0 | , )
( ) log

( 1| , )

1 (
( | 0)

log log
( | 1) 1 ( )

j jposterior
j

j j

mn mn
j j n N m j

m M jj j mn mn
n N m j

P x C
LLR x

P x C

q q
P r x
P r x q q

=

∈
=

' )

=
=

=

+ −
=

= +
= −

∏
∏ ∏

r
r

−

 (3.47) 

For Gaussian noise,  

 2

( 0 | , ) 2
log

( 1| , )
j j

j j

P x C r
P x C

j

σ
=

=
=

r
r

 (3.48) 

Letting  and 0 1
'mj mn mnq q qδ = − '

0
0 '

' 1
'

( ) log mn
mn

mn

qLLR q
q

= , simple substitution gives  

0
'

' tanh( ( ))
2
mn

mn
qq LLRδ = . We rewrite (3.47) as (3.49). 

'
' ( )\

2 2 2
( ) ( ) ( )'

' ( )\

2
( )

1
2 2 1 2

log log log
1 1 1

2 1
log ( )

1

mj mj

mj mj

mj

mj

A Amn
j n N m j j mj j

A A
m M j m M j m M jmn mj mj

n N m j

A
j mj

A
m M j mj

q
r r s e r

q s e s e

r s e
s e

δ

σ δ σ σ

σ

∈

∈ ∈ ∈
∈

∈

+
+ −

+ = + = −
− − +

−
= − −

+

∏
∑ ∑ ∑∏

∑

1 mjs e

 (3.49) 

where 

              0
'

' ( )\ ' ( )\

0
'

' ( )\

1    ; 0
sgn( )

1  ; 0

sgn( ) sgn( ( ))

( )log(| tanh( ) |)
2

mj mn mn
n N m j n N m j

mn
mj

n N m j

x
x

x

s q LL

LLR qA

δ
= =

=

≥⎧
= ⎨− <⎩
= =

=

∏ ∏

∏

'R q  (3.50) 
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Because the argument of log() in (2.50) is always positive. The equation (3.49) 

can be simplified further to (3.51) 

                        
2

( )

2
( )

2
log( tanh( ))

2
2

log(| tanh( ) |)
2

j m
mj

m M j

j m
mj

m M j

r A
s

r A
s

σ

σ

∈

∈

− −

= −

∑

∑

j

j

 (3.51) 

Letting ( ) log(| tanh( ) |)
2
xxψ =  called persi function, (3.47) will be substituted as 

                   2
( )

2
( ) ( )jposteriror

j mj mj
m M j

r
LLR x s Aψ

σ ∈

= − ∑  (3.52) 

where   
0

0'
'

( )log(| tanh( ) |) ( ( ))
2

mn
mj mn

LLR qA Lψ= = ∑∏
' ( )\' ( )\ n N m jn N m j

LR q
=∈

 (3.53) 

We summarize the BP (Belief Propagation) algorithm in log domain for LDPC 

codes as follows. 

 Notation： 

            1( ) log(tanh( )) log ( )
2 1x

1xx ex x
e

ψ −= = =
−
+

                     (3.54) ψ

 Initialization： 

             
0q 2rjm j0

jm 1 2
jm

LLR(q )=log( )= ;    j=0,...,N-1
q

for
σ

'
' ( )\

( (| |))ji ji i j
i N j i

r s qψ ψ
∈

= ∑ '
' ( )\

sgn( )

                    (3.55) 

 Check node (CHK/row operation) ： 

            ;    ji i j
i N j i

s q
∈

= ∏           (3.56) 

 Bit node (VAR/column operation)： 

             ' '
' ( )\

i j i
j M i j

q p r
' ( )\

ij j i i ji
j M i j

r p r
∈ ∈

= + = + −∑ ∑

'
' ( )

j i j i
j M i

q p r
∈

= + ∑
1;   if 0
0;   if 0

j
j

j

q
x

q
≥

                   (3.57) 

⎧ ⎫
= Decision：     ⎨ ⎬<⎩ ⎭

     (3.58) 
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3.2  Optimized Approach for Hardware Implementation 

In chapter 3.1, we will derive the LDPC decoding algorithm, message passing 

or belief propagation (BP) for LDPC codes. But it is hard to implement the function 

1( ) log(tanh( )) log
2 1

x

x

x ex
e

ψ +
= =

−
 in hardware and the complexity of exponential and 

log is very huge. Some methods are suggested to approximate the nonlinear function, 

like Look Up Table (LUT) or Min-Sum approach [16]. LUT is limited to the trade-off 

between size of LUTs and data accuracy. The other method, min-sum approach  can 

reduce decoding complexity and all nonlinear calculations can be averted. However 

there would be approximation inaccuracy between BP algorithm and Min-Sum 

approach. To compensate the performances, a constant normalization factor or an 

offset value is often applied [24, 25, 26]. However, min-sum algorithm does not 

consider the area problem like LUTs. It has well decoding performance with an 

appropriate compensation value and calculations avoid arithmetic log. The 

compensation factor should be explored by simulations which provide error correction 

performance closed to BP algorithm. In chapter 3.2.1, we will introduce min-sum 

algorithm. 

BP algorithm iteratively exchanges message to correct error bits, but its over 

numbers of iteration is the most disadvantage. Chapter 3.2.2 will introduce the 

row-update message passing algorithm [17] (RMP) to reduce the iteration problem. 

The concept of RMP is to use newer information to instead of older information as 

soon as possible. It can be taken as a scheduling layered decoding [18]. The obvious 

effect is that information converges faster than BP algorithm. Row-update message 

passing algorithm is adopted with min-sum approach in the proposed architecture. 

The main rationale in detail will be introduced in Chapter 3.2.2.  
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3.2.1  Min-Sum Algorithm 

The ratio of defined in (3.35) and (3.36) can be simplified to two node and be 

rewritten as 

 \ ( )( | 0,
( ) log m M j jP C x

LLR x
\ ( )

)
( | 1, )i

m M j jP C x
=

=
r

= r
 (3.60)                

We redefine the notation to simplify equations. 

                  ( 0) 1 ( 1( ) log logi
i

P x P xLLR x )
( 1) ( 1)

i

i iP x
=

P x
− =

= =
= =

( 0)iP x = 0ix

 (3.61) 

 is a extrinsic probability = , given computing node  and 

received r.  

0jx =

If dealing with two connecting nodes, notated as x and y, rewriting (3.58) as (3.59) 

and continue the derivation. 

                 
( )

( ) ( )

1( 1) ;     ( 0)
LLR x

LLR x LLR x

eP x P x= = = =
1 1e e +

 (3.62) 
+

With the definition, 1tanh( )
xx e −

2 1xe
, =

+

                 
( )

( )

1 ( )2 ( 1) tanh( )
1 2

LLR x

LLR x

e LLR xP x
e

−
− = = =

+
1  (3.63) 

Then calculate the probabilities of constraints satisfied with two nodes, 

                   
( ) ( )

( ) ( )

1( 0)
(1 )(1 )LLR x LLR ye e+ +

LLR x LLR ye eP x y +
⊕ = =   

                   
( ) ( )

)( 1)
)

LLR x LLR ye eP x y +
⊕ = = ( ) ((1 )(1LLR x LLR ye e+ +

 

                 
( ) ( )

( ) ( )

1( ) log
LLR x LLR y

LLR x LLR y

e eLLR x y
e e
+

⇒ ⊕ =
+

 (3.63) 

We want to derive the formulas based on tanh rules, so express the notations as tanh 

form. And then take use of tanh algebraic property and then express (3.63) as (3.64).                 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( 1)( 1) ( 1)( 1)( ) log
( 1)( 1) ( 1)( 1)
1 ( 1)( 1) /( 1)( 1)log
1 ( 1)( 1) /( 1)( 1)

LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR y

e e e eLLR x y
e e e e

e e e e
e e e e

+ + + − −
⊕ =

+ + − − −

+ − − + +
=

− − − + +

 (3.64) 

Note： 

       
( )

( )

1tanh( ( ) / 2) ;
1

LLR x

LLR x

eLLR x
e

−
=

+
  1 1 1tanh ( ) log ;

2 1
xx
x

− +
=

−
 

Rewrite (3.61) as 

           1 ( ) ( )( ) 2 tanh (tanh( ) tanh( ))
2 2

LLR x LLR yLLR x y −⊕ =  (3.65) 

With decomposition of operations, we can simplify the operations to sign-operation 

and absolute value operation. The following will use the cosh(x) to substitute tanh(x), 

Note： 

 

| | 2| |

2| |

(1 )log(cosh( )) log( ) log
2 2

| | ln 2 ln(1 )

x x x

x

e e e ex

x e

− −

−

+ +
= =

= − + +

x

   (3.66) 

(3.65) can be rewrite as 

( ) ( ) ( ) ( )
( ) ( ) 2 2

( ) ( ) ( ) ( )( ) ( )
2 2

1 ( ) / 2( ) log log
( ) / 2

( ) ( ) ( ) ( )log(cosh( )) log(cosh( ))
2 2

( ) ( ) ( )| | |
2

LLR x LLR y LLR x LLR y
LLR x LLR y

LLR x LLR y LLR x LLR yLLR x LLR y

e e e eLLR x y
e e

e e
LLR x LLR y LLR x LLR y

LLR x LLR y LLR x LLR

+ +
−

− −
−

+ +
⊕ = =

+
+

+ −
= −

+ −
= −

( ) | ( ( ), ( ))
2

sgn( ( ))sgn( ( )) min(| ( ) |,| ( ) |) ( ( ), ( ))
( )

y LLR x LLR y

LLR x LLR y LLR x LLR y LLR x LLR y
CHK x y

+Δ

= +
= ⊕

Δ

 (3.67) 

Note： 
| ( ) ( )|

| ( ) ( )|

1log
1

LLR x LLR y

LLR x LLR y

e
e

− +

− −

+
Δ =

+
 (3.68) 

When extending two nodes to d degrees, we can derive (3.67). The “min” in equation 

(3.67) is to find out the minimal value. As the same idea, it derives equation (3.69) 

when applying d nodes. 
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   (3.69) 

1 2 1 1

' '
' ( )\' ( )\

' '' ( )\
' ( )\

( | , ) ( ... ... )

                       s ( ( )) ( (| ( ) |))

                       s ( ( )) min (| ( ) |) ;   0

n i j j d

n n
n N m nn N m n

n nn N m n
n N m n

LLR C x LLR x x x x x

ign LLR x LLR x

ign LLR x LLR x

ψ ψ

β β

− +

∈∈

∈
∈

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ×

≈ × ×

∑∏

∏

r

' '' ( )\
' ( )\

1

s ( ( )) min (| ( ) |) ;   0n nn N m n
n N m n

ign LLR x LLR x α α
∈

∈

≤

≈ × −∏

≤

≥

Note： 1( ) ( )x xψ ψ −=  
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Figure 3-8：Function graph of ( )xψ  

Figure 3-8 shows the functional curve of ( )xψ . Its output is as smaller as x 

increasing and 1( ) ( )x xψ ψ −=  so that we can simplify ( )xψ  by sorting absolute 

LLR(x) to find out the corresponding minimal value. The α,β are compensation 

factors to compensate performance degradations due to inaccuracy approximation. 

The β is called normalization factor [24,25,26] that often own better compensation 

capacity than α  [27,28,29] called offset factor. It is difficult to find an adequate 

constant factor for different LDPC codes with various degree distributions. To 

improve the approximation accuracy, a self-compensation technique is proposed by 

using dynamic normalization in [19]. However, considering of hardware 

implementation, a fixed factor is adopted compensate the deviation according to the 

simulations with different factors, 0.625, 0.75, 0,875 and 1. The related simulation 

results are shown in chapter 3.3.1. 

     The min-sum algorithm reduces the hardware complexity, but the iteration 
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problem still exists. We adopt row-update message passing algorithm (RMP) with 

min-sum to solve the problem. The main rationale is described in the next section. 

 

3.2.2  Row-Update Message Passing Algorithm 

       The main concept of row-update message passing algorithm (RMP) [17] is a 

scheduling version from layered decoding algorithm that update information as soon 

as possible, not same as BP algorithm, that has to update check node first and then bit 

node, called one iteration. On layered decoding algorithm, each row of H can be 

considered as a component code (or a layer). We call the iterations within a layer as 

the sub-iterations and the overall process for layer to layer as super-iterations (or just 

iteration). From layer to layer, the component code is just an interleaved version of 

each other. As each next layer starts decoding, like Turbo decoding, its inputs are 

combined from the last layer or other prior layers, if necessary. Simulation results 

show that the layered decoding algorithm requires only 20~50% number of iterations 

of the conventional BP algorithm to achieve the same error-correction performance 

[17, 18]. For high parallelizable implementation, some rows are merged into one layer 

and decoded simultaneously. For efficient message update, row/column schedule for 

the parity check matrix is suggested to group a collision-free layer in which the 

column weight is at most one. The algorithm decode them row-by-row in sequence so 

that called row-update message passing algorithm, which is compatible for QC-LDPC 

because of itself Quasi-Cyclic structure. Figure 3-9 and Figure 3-10 show the 

differences between BP algorithm and row-update message passing algorithm (RMP), 

respectively. Step1~2 describe the detail equation steps for BP algorithm and RMP 

algorithm, respectively. 
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Figure 3-9：Process of BP algorithm 

 
Figure 3-10：Process of row-update message passing algorithm 

 

LDPC Decoding Algorithm Steps： 

 Initialization： 

             
0
i i

i 1 2
i

q 2rLLR(q )=log( )= ;    i=0,...,N-1
q

for
σ

                        

 Check node (CHK/row operation)： 

            ;    '
' ( )\

( (|ji ji i j
i N j i

r s qψ ψ
∈

= ∑ |)) '
' ( )\

sgn( )ji
i N j i

s
∈

= i jq∏             <1> 

 Bit node (VAR/column operation)： 

            
' '

' ( )\ ' ( )\

; ( );   initial channel value

ij i j i j i i ji
j M i j j M i j
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 Belief Propagation Algorithm 

Step1-1:  { {  ' : <1>} } { { ' : <2>j i j i∀ → ∀ → ∀ → ∀

Step1-2:  check early termination: finish decoding or return step1-1. 
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 Optimized Row-Update Message Passing Algorithm 

Step2-1:   { ' : <2>} { ' : <1>}j i i∀ → ∀ → ∀

Step2-2:  check early termination: finish decoding or return step 2-1. 

The following Figures will show the floating simulation results and comparison 

between BP and row-update message passing algorithm. Because channel coding is 

belong to outer receiver and a good receiver can recover multi-channel, fading 

channel and other channel model into simple AWGN channel, so that we only 

consider AWGN channel model which is enough to stand for error-correction 

performances. For simulation time, we only consider BPSK modulation excluding 

other modulation types. The simulation environment is setting as BPSK modulation 

and AWGN channel model and 108 data is simulated to show 10-6 BER (Bit Error 

Rate) by C-language. In Figure 3-11~14, they show floating simulation results of 

maximum codeword lengths and minimal lengths for 802.11n and 802.16e, 

respectively. 

 

Figure 3-11：BP v.s RMP algorithm in 802.11n with codeword length 648 bits 
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Figure 3-12：BP v.s RMP algorithm in 802.11n with codeword length 1944 bits 

Figure 3-11 and 3-12 show the simulations for full code rates, 1/2, 2/3, 3/4, and 

5/6 in IEEE 802.11n with the maximum codeword length 1944 bits and minimal 

codeword length 648 bits, respectively. 

 

Figure 3-13：BP v.s RMP algorithm in 802.16e codeword length 576 bits 
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Figure 3-14：BP v.s RMP algorithm in 802.16e, codeword length 2304 bits 

Figure 3-13 and 2-14 show the simulations for with code rate, 1/2, 2/3A, 2/3B, 

3/4A, and 5/6 in IEEE 802.16e with the maximum codeword length 2304 bits and 

minimal codeword length 576 bits, respectively. Maximum number of iteration is 

limited to 20-time for Belief Propagation and 10-time for row-update message passing 

algorithm. Only half iterations (10 iterations) are needed to achieve the same 

performance as BP algorithm (20 iterations). Some hardware design issues are 

considered deeply in section 3.3. 

3.2.3  Trade-off between Decoding Algorithms and Code Structures 

Row-update algorithm is an optimum version of layered decoding [18] for 

QC-LDPC because the column weight is at most one in one layer. It is the most 

adaptable decoding algorithm for QC-LDPC, having the fastest speed of convergence 

up to now. For 802.11n and 802.16e, Belief Propagation algorithm often needs 20 

iterations to achieve 10-6 BER (Bit Error Rate). However, row-update message 

passing algorithm only needs 10 iterations to achieve 10-6 BER. Besides, its grouped 

layer property provides highly parallelism on VLSI implementations. It not only 
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provides throughput enhancement but also flexibility for adaptive code rates and 

lengths for future wireless communication systems. However, a configurable 

data-path for variable code rates and lengths is the main design bottleneck, hence a 

high flexible permutation design is proposed to overcome different size of Zf (totally 

22 modes). The detail design with row-update is discussed in next chapter. 

3.3  Design Considerations 

      Figures 2-11~2-14 present the advantages to adopt RMP algorithm. This 

sub-section will simulate some parameters for design considerations, including 

min-sum algorithm, fixed-point simulations and number of iteration, etc. According to 

the trade-off between error-correction performance and hardware complexity, the 

appropriate parameters are chosen for VLSI implementations. 

3.3.1  Normalization Factor 

The CHK operation is listed as (3.70). Min-sum algorithm is adopted to 

approximate the nonlinear function ( ) log(tanh(| | 2))x xψ = − , so that a normalization 

factor is needed to compensates the performance degradation due to inaccuracy 

approximation. However, it is difficult to find an adequate factor depending on coding 

type, code rate and etc. A self-compensation technique [19] is proposed to improve 

the performances. To ease implementation design, a fixed normalization constant is 

chosen by exploring some factors, 0.625, 0.75, 0.875, 1 which performance is close to 

RMP algorithm without min-sum approach (the theoretical result). 

{ {
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Figure 3-15 shows the simulation with factors, 0.625, 0.75, 0.875 and 1 (without 

normalization factor).  

 

Figure 3-15：Simulation for normalization factor simulation 

       (802.11n, floating point, rate 1/2, block length 1944 bits, BPSK, AWGN) 

0.75 is the optimum factor most close to the theoretical result. A formula 

 is implemented for HDL (hardware 

description language). 

0.75 0.5 0.25 1 2x x x x x× = × + × = >> + >>

3.3.2  Bit Width for Hardware Cost 

In hardware implementation, we have to decide how many bits to present one 

data. (Integer, Fraction) denotes bit widths of integer part and fractional part, 

respectively. Figure 3-16 shows fixed-point simulation with (6,0), (6,1) and (6,2). 

Figure 3-17 shows fixed-point simulation for different integer parts, (6,0), (7,0) and 

(8,0). The theoretical result means floating point simulation with RMP algorithm with 

min-sum. The object code simulates code rate 1/2, codeword length 1944 bits in 

802.11n.  
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Figure 3-16：Fixed-point simulation with fixed 6 bits integer 

(802.11n, 10 iterations, rate 1/2, block length 1944 bits, BPSK, AWGN) 

 

Figure 3-17：Fixed-point simulation for integer part 

Of course, larger bit widths can approach floating simulation curve more. 

However, a trade off between bit width and performance should be considered. Finally, 

we choose 6 bits for integer parts and 0 bit for fraction part, (6,0) because (6,0) is 

good enough. 
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3.3.3  Number of Iteration 

In the decoding process, maybe an error bit string causes that codeword can’t be 

corrected in finite number of iteration, so that we must set the maximum number of 

iteration to stop infinite iterations. How many number of iteration is the adequate 

number to have an acceptable data rate and error-correction performance? We 

simulate the fixed-point simulation with different number of iterations, 5, 8, 10, 15, 

and 20 for 802.11n, rate 1/2, length 1944 bits as shown in Figure 3-18.  

 

Figure 3-18：Simulation for iteration number, 5,8,10,15,20 

(802.11n, floating point, rate 5/6, block length 1944 bits, BPSK, AWGN) 

Of course, the simulation curve with more number of iterations can own well 

error correction performance. However, the data throughput has spoiling effect. 

Except for data throughput, 10-time and 20-time iteration performances are almost 

close, because of its performance saturation. Consequently, limited 10-iteration is 

good enough for high decoding speed and acceptable error correcting performance. 

We summarize the parameters discussed in the prior sub-sections as Table 3-1. 
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Table 3-1： Parameters summary 

Decoding algorithm  Min-Sum RMP algorithm 

Max. Iteration 10 

Normalization factor 0.75 

Integer 6 bits 
Bit width 

Fraction 0 bit 

3.4  Implementation Issue 

       We present the decoding algorithm above. Some implementation issues to 

design a configurable architecture should be considered as follows, 

1. A flexible permutation design is a very important bottleneck to merge 22 modes 

in 802.11n and 802.16e corresponding to different codeword lengths. How to 

design a configurable data-path merging 22 types of hardware units. 

2. We group Zf rows into one layer and decode them in parallel. 96 PEs are 

implemented to process data in parallel and merge other Zf’s (24~96). When 

decoding a short codeword length, low hardware utilization is necessary to be 

enhanced. Multi-codeword decoding technique is proposed to solve the problem. 

3. In order to avoid memory access confliction, schedule is applied on row-update 

message passing algorithm in VLSI implementation. There are 31%~44% 

enhanced throughput with scheduling. 

4. Number of iteration plays an important role in error-correction performance and 

date rate. Hard decision based early termination is implemented to reduce 

redundant iterations. 

In chapter 4, we will introduce our proposed configurable decoder architecture 

and related solutions in detail. 
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Chapter 4   Architecture 

Design and Implementation 

For a trade-off between hardware complexity and performance, the partially 

parallel architecture is designed with row-update message passing algorithm with 

min-sum. We will introduce the design analysis, overall architecture, related 

functional block and techniques to solve some design bottlenecks and enhance 

decoding performance. For example, flexible permutation is proposed to merge all 

types of Zf’s and multi-codeword decoding technique is adopted for preserving 

hardware utilization. Scheduling, hard decision based early termination and other 

techniques will be introduced and discussed as following content. The LDPC decoder 

with a core size of 2.14×2.14 mm2 is implemented in TSMC 0.13 μm CMOS 

technology. The detail post-layout simulation results including throughput, area, and 

power and some comparisons with state-of-arts will be presented in the final section. 
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4.1  Architecture Design 

Fully parallel architecture can achieve a maximum throughput but the lack of 

flexibility and its large area is the major problem in current and future wireless 

systems that require support for adaptive code rates and codeword lengths. A partially 

parallel not only provides a trade-off between hardware complexity and throughput 

but also high flexibility for different code rate and lengths. Thus, we adopt a partially 

parallel architecture to match the QC-structure with variable Zf. However, how many 

parallel levels for functional units should be considered with adopted decoding 

algorithm? Because the maximum Zf for 802.16e and 802.11n is 96, 96 processing 

units in parallel is instinctively the best choice to merge all cases. Hence, we group Zf 

rows into one layer which can be view as a component code and decode layers in 

sequence. There are 12 layers for code rate 1/2, 8 layers for code rate 2/3, 6 layers for 

code rate 3/4 and 4 layers for code rate 5/6. On the other hand, there are 24 (1 )R× −  

layers for code rate R. The parallel 96 processing units are the best numbers of PEs to 

achieve maximum data rate without losing error-correction performance, although it is 

a over design when decoding a short codeword (Zf ＜96). However, multi-codeword 

decoding technique discussed later is proposed to preserve hardware utilization. 

 

4.1.1  Decoding Flow 

Figure 4-1 shows the decoding flow chart with row-update message passing 

algorithm. The rows of parity check matrix are grouped into a layer and updating in 

sequence as shown in Figure 4-2. Initialization includes the input receiver and setting 

for some parameters. “shift message” means the operation to shift data according to a 

shift amount, because data has be shifted to appropriate permutation for next layer. 
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Check node update and bit node update denote the corresponding CHK (4.1) and VAR 

(4.2), respectively. When decoding one layer, PEs first read d degree data according to 

its row degree distribution from memory, then update check node/bit node. And then 

shift the updated message, store data and temperate parameters back into 

corresponding memory, respectively. The time of next layer update can be overlapped 

with storing operation by appropriate pipelining. After finish 24×(1-R) layers update, 

the decoder will stop when a valid codeword is found, otherwise, it moves toward the 

next iteration. However, if the number of iterations exceeds a predefined value, the 

decoder claims decoding failure and terminate the decoding process. We will discuss 

detail the corresponding architecture design in next sub-section.                             

          

Figure 4-1：Decoding Flow Chart 

 

Figure 4-2：Decoding process diagram for m×n parity check matrix 
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4.1.2  Overall Architecture Design 

Figure 4-3 shows the overall decoding architecture. The “input buffer” block, 

having data bandwidth bits, is the input buffer serially receiving input data. 

The “permutation” denotes the interconnection design to permute data between 

successive layers. 

96 6×

ROM tables are constructed by prior analysis for defined parity check matrices 

in 802.11n and 802.16e to store shift amounts and addresses defined in parity check 

matrices, respectively. The “Proc.#1~96” denote 96 processing units for CHK/VAR 

update. It serially accesses d data according to address ROMs (d is the row degrees). 

After CHK/VAR update, messages are fist shifted with related shift amounts for next 

successive layers by “permutation”, then stored back into original memory. It 

immediately updates each layer’s information for next layer’s update. 

 “Beta_ram” is the temperate memory that stores relative parameters from last 

iteration, Beta1, Beta2, index, and sign value. “Beta1” means the normalized first 

minimum, min1β ×  (min1: fist minimum). “Beta2” means the normalized second 

minimum, min 2β ×  (min2: second minimum). “Index” denotes the index for the 

first minimum value. Sign value indicates sign part of updated messages. When 

processing one layer, we need to subtract older messages and then produce new 

messages and related parameters, index, Beta1, Beta2, sign, store back into the 

memory with same addresses. “Termination” execute decoding stop if a valid 

codeword is found or the number of iterations exceed a predefined value, 10, 

otherwise move toward next iteration. 

A roughly description presents basic operations and decoding flow for the 

proposed architecture. Then we discuss the detail functional block respectively in 

continuous sub-sections. 
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Figure 4-3：Overall architecture 

 Input/Process Buffer 

Suppose that N denote codeword length and N1 represent the total number of 

edges in the Tanner graph of the LDPC code. From (4.1) and (4.2), the sum-product 

algorithm, within an iteration, requires to store the message traveling on each edge. 

And, apart from these, the N channel extrinsic data have to be stored. Thus, the 

memory required from iteration to iteration is (N+N1)×b for conventional BP 

algorithm, where b is the bit width of the fixed-point number. Since N1 is generally 

larger than N greatly, the message passing on each edge can be generated by updated 

VAR indeed, and, hence, when in VLSI implementation, the designer usually uses 

2N×b, in stead of (N+N1)×b, memory for message of node not edge. For efficient 

memory saving, a value-reuse architecture is proposed with RMP decoding algorithm. 

We first store channel value, 2

2 jr
σ

 from “input buffer”into memory, “MS” in Figure 

4-3 and “Input buffer” is capable of receiving next block codeword. Thus, there are 

only N×b sizes needed for process buffer so that it save almost half size of memory 

compared to the conventional BP algorithm. “In_buffer” is a single port memory and 

“MS” is a dual port memory in order to read and write simultaneously for scheduling 

issue. They are both 24 entries with 576 bits (96 6)×  per entry. Figure 4-4 shows the 
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“In_buffer” and “MS” memory block diagram.  

 
Figure 4-4：Data path from “in_buffer” to “MS” 

 Flexible Permutation Design 

A configurable data-path is a design bottleneck for adaptive code rates and 

codeword lengths. In 802.11n and 802.16e, LDPC codes define identity right shift 

block matrix according to different code lengths and shift amounts. Total 22 modes 

need to be considered in the design, including 3 modes for 802.11n and 19 modes for 

802.16e. Figure 4-5 illustrates a simple 3×6 parity check matrix with  block 

matrix, Z

6 6×

f=6. The numbers in parity matrix denote shift amounts and all the shift 

amounts are smaller than 6 because Zf is equal to 6. 

    For the example, shift amounts shown in Figure 4-5, we expand block matrices 

with related shift amounts and a size of 6×6 matrix in Figure 4-6. When processing 

first layer, we have to read data from column addresses 1, 3, 5. After CHK/VAR 

operations, we have to permute the output results and restore back the same addresses, 

1, 3, 5. Then, process addresses 2, 4, 6 and continue decoding until a valid codeword 

is found or termination stop. In hardware, we store 6 data in registers in sequences 

according to its shift amounts. However, permutation is needed to cyclically shift data 

for required arrangement of next processing layer. We store differences of successive 

shift amounts in column direction instead of absolute values defined in parity check 

matrices in ROM tables. For example, the sets of difference, (1, 1, 2) are shown as 

 54



Figure 4-5. The trick can provide us to only permute data one time when decoding 

layer-by-layer. On the other hand, it does not need inverse permutation except for 

output operation. 

 

               Figure 4-5：3-by-6 parity matrix with Zf=6 

   1 2 3 4 5 6
1 1 1
2 1 1
3 1 1
4 1
5 1 1
6 1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⇒⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1

 

 

     Figure 4-6：6-by-6 identity matrix with shift amounts 0, 2, respectively 

    Figure 4-6 shows shift amounts and their data sequences in registers. We define 

that L means L 6-bit data registers are constructed in hardware and Zf denotes a block 

matrix size Zf×Zf related to its codeword length. When L is equal to Zf, it is a simple 

barrel shift problem that can be solved easily by design ware or logic multiplexers. An 

L 6-bit data shifter can support 0~L-1 shift amounts of cyclic shifter. However, the 

hardware cost is too large to implement 22 types of permutation units. We want to 

construct 96 6-bit data shifter to merge all variable defined shift sizes Zf, from 24~96. 

It produces another implementation issue with a dynamic shift size when L is not 

equal to Zf. Figure 4-8 shows a simple example of the problem, L≠Zf with shift size, 

Zf=6 and L=8,. Totally there are 22 types of Zf from 24 to 96 in 802.11n and 802.16e 

according to different code rates and lengths.  
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Figure 4-7：Register arrangement for shift amounts 0, 1 with shift size 6 

 

Figure 4-8：Example of shift size Zf smaller than maximum register size L 

    Configurable, point based permutation is proposed to solve the bottleneck by 

enhancing enable bits of patent [20] and the main rationale is illustrated as Figure 4-9. 

The head and tail points the available data length, Zf. The pointers rotate left, like a 

cyclic buffer with a shift amount S=shift amount. The distance between updated 

pointer head (head’) and old pointer head indicates desired parts. Likewise, tail and 

tail’ do so. An expected data sequences can be available by combining the left part 

and right part from L-data, respectively. Figure 4-10 shows an example of 

permutation for this idea with L=8, shift amount=1, Zf=6. Because the design supports 

a multi-codeword decoding mode, a multi-codeword shifter is needed to be supported. 

The design also supports multi-codeword permutation. 
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          Figure 4-9：Permutation design with head and tail pointers 

 

Figure 4-10：Permutation for maximum size 8 and shift size 6 and shift amount 1 

Number 96 can be presented in binary 7 bits, so that shift amount is 7-bit in 

Figure 4-11. The hierarchical architecture of the logic barrel shifter to permute 96 

6-bit data is shown in Figure 4-11. Although the latency increases with more logic 

levels, the area is scalar down. Three level multiplexers are the optimum choice for a 

trade off between area and timing. 
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           Figure 4-11：Three levels of logic barrel shifter for 96 data 

Without pipelining, we optimize the design. The term “Bit” denotes number of 

bit for one data. We list the area comparison shown in Table 4-1 for interconnection 

design. We support total 22 modes and still have well performance on area and timing. 

The timing constraint is 2.5 ns in synthesis level. 

Table 4-1：Comparison with design [21] for area 

 Applications Area(um2) Bit Technology 

[21] 11n, 3 modes 20471 7 0.13 μm 

proposed 11n&16e, 22modes 21852 6 0.13 μm 

 

 Processing Units (CHK/VAR) 

In processing units, we execute SPA (Sum-Product Algorithm) for CHK and 

VAR updates for row-update message passing algorithm with min-sum. Equations 4.3 

and 4.4 present CHK operation and VAR equations. We combine them then derive it 

as equation (4.5) and overlap the successive CHK/VAR operations to enhance 

throughput by pipelining the stages. We simultaneously process Zf rows and access d 

degree messages according to its degree distribution. We store information on nodes 

of bipartite graph not that on edges. If there are d degrees for one layer, it must store d 

data when considering edge information, hence, it needs a large size of memory. By 

storing the information on nodes, memory size is reduced to almost 1/2 compared to 
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information on edges. An efficient memory saving method is described in prior 

section, architecture design. 
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    We rewrite equation (4.3) as (4.6) by index, Beta1, Beta2, and sign value. “min1” 

denotes the first minimum value of the set. “min2” denotes the second minimum 

value of the set. Beta1 and Beta2 are the scaling min1, min2 by β 0.75. Index 

means the index for the first minimal value of the set. By min-sum, we only store 

Beta1, Beta2, index, sign, and MS values instead of information on each edge. It 

reduces complexity of computation and achieves efficient memory saving. Figure 

4-12 shows the partially parallel data-path for from “MS” to “processing units”.   
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               Figure 4-12：Data path from MS to CHK 
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Figure 4-13：Architecture for processing units (CHK/VAR) 

We map equations (4.4) ~ (4.6) to CHK/VAR in Figure 4-13. The correction 

block means that input message must subtract old stored information with index, 

Beta1, Beta2, sign value from “R_Memory” and it is mapped to subtraction notation 

of equation (4.5). For CHK, we first have the absolute operation (abs), |x| in order to 

sort the magnitude value to find out the first minimum value, min1 and second 

minimum value, min2, and then scaling the minimum value with β=0.75 to produce 
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CHK output. The sorting block needs two comparators and a swap operation for 

minimum value. There are two FIFOs (First In First Out) to store sign part of 

corrected value and corrected value, “crt_out”, respectively. The VAR function 

receives PUSH_N and POP_N control signals to control FIFOs and cumulate newer 

updated values with outputs of CHK function. The updated VAR outputs will be 

permuted for next layer and then stored back processing buffer. The related 

parameters, index, Beta1, Beta2, and sign back are also stored into “Beta_ram”. 

Figure 4-14 shows the architecture of “Beta_ram”. 

 

Figure 4-14：Block diagram of “Beta_ram” memory and controls 

Some control signals are produced from “termination” block, and it is an 

important problem for high fan-out loading when running the post-layout simulation. 

We must duplicate control signals to reduce wire loadings for the loading is too heavy, 

hard to drive 96 function units. 
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 Multi-codeword Decoding Technique 

For different code rates and codeword lengths, it has the related Zf because 

codeword length n= Zf ×24. 96 function units are implemented for partially parallel 

decoding because of maximum Zf, 96 to merge other Zf’s. The data-path process 96 

6-bit data simultaneously, even if decoding a short codeword length, Zf<96. Thus, it 

causes spoiling hardware utilization for idle redundant function units. We proposed 

the multi-codeword decoding technique to preserving hardware utilization. We divide 

96 function units into 2 parts, upper and lower parts in Figure 4-15. The upper part 

receives first block and lower part process next block. Obviously, it has a constraint 

that codeword length must be less 1152 bits (Zf <48) in multi-codeword mode. Of 

cause, the permutation design should be also modified to support multi-codeword 

codeword permutation, and we present the rationale in Figure 4-16. Because we 

process the same sequences of non-zero block matrices, just different block codeword, 

and thus the shift amounts are same. So the proposed method has no more hardware 

cost and only need some control circuit. 

 

Figure 4-15：Block diagram for multi-codeword decoding technique 
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Figure 4-16：Point based permutation for multi-codeword 

The advantage of multi-codeword decoding is not only to increase hardware 

utilization but also data rate. We summarize the throughputs for 802.11n and 802.16e 

with post-layout simulation results at 333 MHz as Figure 4-17 and 4-18, respectively. 

We can observe that throughput of a short codeword length (Zf<48) is double of 

original single decoding, e.g. the throughput of length 648 (Zf = 27) is 240Mb/s, same 

as that of length 1296 (Zf =54) for any code rates in 802.11n, There are 8 types (24, 27, 

28, 32, 36, 40, 44, 48) of Zf’s enhanced among totally 22 modes for 802.11n and 

802.16e. We have the decoding throughput of 240~506 Mb/s for 802.11n and 

213~590 Mb/s for 802.16e. The multi-codeword decoding technique doubles the 

throughputs and provides more design spaces for low power consideration. Later we 

summarize the post-layout simulation results and discuss performance comparison. 

 

       Figure 4-17：Throughput for 802.11n, full code rates at 333 MHz 
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Figure 4-18：Throughput for 802.16e, length 576, 1152, 2304 at 333 MHz 

 Dynamic Early Termination 

An analysis for number of iteration has been discussed in chapter 3. We set 

maximum number of iteration to be 10 for a trade-off between error-correction 

performance and throughput. Early termination mechanism is proposed to reduce the 

redundant number of iteration and achieve low power consumption. It is generally to 

check the traditional parity check constraint, HxT=0, if satisfying the equality, decoder 

terminates the process or continues the iteration until 10-iteration is achieved. 

However, it is impractical to implement the matrix multiplication in hardware. For 

example as matrix (4.7), the parity check constraints (4.8) have a large overhead to 

store the random constraints and the time to check all constraints is also hard to be 

handled. However, hard decision based early termination is implemented to provides 

an easy method to verify the valid codeword. Moreover, its hardware cost is less than 

the parity checker, HxT=0. We store the sign part of LLR and compare successive 

decoded outputs, if same stop decoding otherwise, continues the iteration until 

10-iteration is achieved.  

Of course, there is performance degradation compared to the checker based on 

parity constraints. It will produce errors when soft message changes but its hard 

decision doesn’t change. Figure 4-18 shows the simulation with early termination 
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based on parity check constraints, HxT=0 and hard decision checker. The 

“theoretical.” curve denotes the decision based on parity check constraints. The 

simulation environment is BPSK, AWGN, fixed-point and object is code rate 1/2, 

length, 1944 and 2304 bits in 802.11n and 802.16e, respectively. There are a little 

acceptable performance degradations when considering of implementation and 

enhanced throughput. 
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Figure 4-19：Hard decision based early termination v.s parity check constraints 

Except for purely early termination, we provide users dynamic termination 

mechanism to control whether turn on early termination or not. Because the early 
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termination cost latency in decoding process, 10-iteration is a better choice in bad 

transmission channel or high code rates for error-correction performance. However, it 

is suggested to turn on early termination in low code rates or well transmission 

channel for reducing decoding latency. Figure 4-20 shows the difference of 

fixed-iteration and early termination. The configurable control lets the design more 

flexible for adaptive code rates and different transmission environment. 

 
Figure 4-20：Process of dynamic early termination 

 Scheduled RMP Algorithm 

The rationale of row-update message passing algorithm is to update variable 

nodes as soon as possible for that the check node can access newer information. 

However, the later layer has to wait for the memory updated by the last layer. On the 

other hand, it exist intra- and inter-iteration precedence constraints (or data 

dependence) and the layers work one after another. The fact makes it difficult to 

design a high throughput as well as a high hardware utilization LDPC decoder. Figure 

4-20 shows that non-scheduling v.s scheduling. Suppose that there are layer1 with 

column blocks, 1, 2, 8, 9, 12 and 13 and layer2 with column blocks, 0, 2, 8, 9, 15 and 

16 needed to be processed. If layer1 updates check nodes in sequences, 1,2,8,9,12,13, 

and sequences 1,2,8,9,12,13 for layer2. However, there is a large of latency to start 

layer2 after finishing layer1. To overcome this problem, the overlapped operations 

with a systematic scheduled RMP algorithm is proposed for QC-LDPC. We 

re-schedule the column addresses for memory access to avoid memory confliction. If 

a dual port memory is available, instead of sequential operations from layer to layer, 
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the next layer can start before the previous layer is finished. 

 

Figure 4-21：Example of scheduling 

Suppose that both CHK update (including read data from memory) and VAR 

update (including write data back to memory) need CCHK and CVAR cycles to finish 

computing one non-zero block matrix of size Zf×Zf. For an m×n QC-LDPC with mb 

non-zero matrices for each row, it needs (CCHK+CVAR)×mb×m clock cycles to finish 

one iteration by original RMP algorithm without scheduling. Suppose further that the 

next layer decoding can be initiated only after w cycles’ computations of VAR update 

of the previous sub-iteration, where 1≤w≤CCHK, thus comparing with the conventional 

RMP algorithm, as shown in Fig. 4-22, the throughput gain with scheduling is     

 
( )

( ) ( 1) (
CHK VAR b

CHK b CHK VAR b

C C m m
C m w m C C m)

+ × ×
× + × − + + ×

 (4.9) 

In our design for both 802.16e and 802.11n systems, which will be described in 

the next section, the throughput gain of the scheduled RMP algorithm is about 

32~44% as shown in Table 4-2 for 802.16e. 

By-passing technique is another method to solve the problem, but impractical because 

of irregular addresses. Thus, scheduling technique is still the better suggestion to 

overlap the operations. 
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Figure 4-22：Overlapped v.s non-overlapped 
Table 4-2：Throughput enhancement with scheduling for 802.16e 

Code rates 1/2   2/3A   3/4A     5/6 

Enhancement 44% 32% 44% 41% 

 Memory Arrangement 

In this sub-section, we will summarize memory arrangement, including RAMs 

and ROMs. “M1_24X72_inbuff” denotes a single port memory with 24 entries, 72 

bits per entry, receiving codeword. “M2_24X72_MS” is the process buffer, a 

dual-port memory with 24 entries, 72 bits per entry. “M1_12X120_beta” pr a single 

port memory storing Beta1, Beta2, index and it has 12 entries, 120 bits per entry. 

“M2_88X48_sign” denotes a dual-port memory with 88 entries, 48 bits per entry 

storing sign values. We store differences of successive adjacent shift amounts defined 

in parity check matrices in “ROM_1152X84_shf”. “ROM_256X60_addr” stores 

column addresses of non-zero block matrices of each row in parity check matrix. We 

have to schedule addresses in advance to avoid memory confliction to overlap 

CHK/VAR operations. “ROM_256X84_final” stores the inverse shift amounts for 

output. All the sizes of memory are estimated in advance by analyzing parity check 

matrices defined in 802.11n and 16e. 
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                   Table 4-3：Summary of RAMs and ROMs 

Memory block Type Gate Counts 
M1_24X72_inbuff single port 27200 

M1_12X120_beta single port 48000 

M2_24X72_MS dual port 36800 

M2_88X48_sign dual port 17200 

ROM_1152X84_shf ROM 24000 

ROM_256X60_addr ROM 12000 

ROM_256X84_final ROM 16000 

The total area of ROMs and RAMs has 33% of total design area at 2.5ns in 

TSMC 0.13 μm 1P8M COMS technology. The related decoding performances and 

comparisons will be discussed in next section. 

4.2  Implementation 

Figure 4-23 illustrates the general ASIC design flow excised by the proposed 

LDPC decoder. The design flow can be classified into three categories: “Algorithm 

Design”, “Architecture Design” and “Gate-level Design”. The whole design phases 

are presented in sequence as follows. 

The proposed LDPC decoder is implemented in TSMC 0.13 μm 1P8M CMOS 

technology. The chip operates at 333 MHz and, with 10 iterations for different code 

rates and code lengths. It has the decoding throughput of 213~590 Mb/s with power 

dissipation of 451 mW for 802.16e and throughput of 240~506 Mb/s with average 

power consumption 436 mW for 802.11n. In low power mode, we slow down the 

operation frequency to 66 MHZ (one-fifth of 333 MHz) to meet the required 

minimum throughput, 30 Mb/s in 802.16e. The detail results will be discussed and 

showed as follows. 
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               Figure 4-23：Design flow of proposed LDPC decoder 

 Algorithm Design 

We first adopt LDPC decoding algorithm, optimize decoding flow and run the 

simulation by C-language. According to simulation results, we decide related 

parameters, normalization factor and maximum number of iteration, and estimate 

roughly decoding performance. If decoding performances don’t meet specification, 

we must modify algorithms or think of other solutions. We start architecture design 

until decoding algorithm verification meets the requirement. 

 Architecture Design 

A synthesizable RTL is conducted right by systematic architecture design. We 

have to design the architecture with appropriate pipelines to meet timing requirement. 

ROMs and RAMs have a trade off between operating frequency and available size. 

The fully synthesizable RTL codes are verified by C-code model with HDL simulator 

Verilog-XL. We synthesize RTL codes and estimate timing and area without wire 
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loading model. If timing is not meet, we have to modify RTL codes by pipelining or 

other coding types until meet the requirements. 

 Gate-level Design 

A synthesizable RTL codes are first transformed to the gate-level netlist by 

Synopsys Design Compiler, and then the static timing analysis, logic equivalence 

checking are carried out to ensure timing closure and correct functionality. We 

implement gate-level design by encounter. The Synopsys physical compiler is 

furthermore applied after the trivial physical design which utilizes the SoC Encounter. 

This is because as the technology advances rapidly, the placement has large impact on 

the circuit performance. Again, the gate-level simulation and verification are used to 

exercise the synthesized netlist through physical compiler. Finally, the physical design, 

i.e. floorplan, place & route etc. is carried out by SoC Encounter. Finally, the 

PrimePower is used to estimate the power consumption. The functionality of netlist of 

post-layout is verified by C-language with Verilog-XL. 

4.2.1  Implementation Results 

       The proposed LDPC decoder is implemented with TSMC 0.13 μm 1P8M 

CMOS technology. Synthesis results are shows in Table 4-4 and it can be taken 

references to compared with total area of memory. Summary of memory is listed as 

Table 4-5. The area of memory has 33% of total design area. 

Table 4-4：Synthesis results 
Summary Gate Counts 

Total Synthesis Area 643469 

Combination logic 188702 

Noncombination logic 454937 
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Table 4-5：Summary of memory 

Memory block Type Gate Counts 
M1_24X72_inbuff single port 27200 

M1_12X120_beta single port 48000 

M2_24X72_MS dual port 36800 

M2_88X48_sign Dual port 17200 

ROM_1152X84_shf ROM 24000 

ROM_256X60_addr ROM 12000 

ROM_256X84_final ROM 16000 

 

We analyze the overhead of a dual-decoder from a single application, 802.11n 

to merge 802.16e. Except for modifying some parameters for ROM tables, number of 

processing units should increase from 81 (for 802.11n) to 96 (for 802.16e) because of 

Zf. Synthesis area for a processing unit (CHK/VAR) is almost 3042 gate counts. 

Moreover, ROM tables have 24076 gate counts for 802.16e and the area of a signal 

decoder for 80211n is almost 573793 gate counts. Consequently, the design area is 

almost 15% overhead. 

The specification of proposed LDPC decoder is summarized in Table 4-6. 

Figure 4-24 shows the die photo of proposed LDPC decoder. The core size is 

2.14×2.14mm2 and die size is 2.69×2.69mm2.  The decoder operates at 333 MHz with 

10 iterations for different code rates and code lengths. It has a peak throughput of 590 

Mb/s and power dissipation of 451 mW for code rate 5/6, code length 2304 bits in 

802.16e. In 802.11n, its peak throughput is 506 Mb/s with power dissipation of 

436-mW for code rate 5/6, code length 1944 bits. The decoding throughput is 

estimated by the equation (4.9) without input/output latency.  
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Table 4-6：Summary specification of LDPC decoder 
 Proposed 

Technology 
TSMC 0.13 μm 
1P8M CMOS 

Supply voltage 1.2 V 

Max. Clock freq. 333 MHz 

Die size 2.69×2.69 mm2 

Core size 2.14×2.14 mm2 

11n, 10-iter., 506 Mb/s 
Max. Throughput 

16e, 10-iter., 590 Mb/s 
11n, 10-iter., 436 mW 

Power dissipation 
16e, 10-iter., 451 mW 

 
        Figure 4-24：Photo of LDPC decoder 

           Frequency codeword lengthThroughput=
decoding cycle counts

×      (4.9) 

Because the required minimum throughput of 802.16e is only 30 Mb/s, we can 

lower performance to support the low power mode. Some techniques are often applied 

in low power design, like slowing down VDD voltage or operating frequency. For 

ease to design, we divide operating frequency by 5 to 66 MHz. It has throughput 

42.6~118 Mb/s for different code rates and codeword lengths in 802.16e at 66 MHz. 

The power dissipation as shown in Table 4-7 is lower to 86~101mW for different code 

rates, codeword length 2304 bits. The required minimal throughput of 802.11n is 300 
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Mb/s. The minimum throughput of our proposed design for 802.11n is 240 Mb/s for 

code rate 1/2, codeword length 648 bits. It almost meets the requirement. 

Table 4-7：Average power consumption in low power mode at 66 MHz, *1 

Code Rate Power Dissipation 

Rate 1/2 86 mW 

Rate 2/3A 99 mW 

Rate 2/3B 100 mW 

Rate 3/4A 101 mW 

Rate 5/6 91 mW 

 *1: different code rates with maximum codeword length 2304 bits 
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 Comparison 

In synthesis status, timing constraint is loose because it doesn’t consider of 

physical problems. The proposed can meet an operating frequency 400 MHz in 

synthesis status and has a maximum throughput of 709 Mb/s for 802.16e and 607 

Mb/s for 802.11n. When considering of physical design, the operating downs to 333 

MHz in post-layout simulation. The comparison of our proposed LDPC code decoder 

with status-of-arts is presented in Table 4-8. 
Table 4-8：Comparison of LDPC code decoder 

 [21] [22] [23] Proposed 

Application 11n 16e 16e 11n and 16e 

Technology 0.13 μm 0.13 μm 0.13 μm 0.13 μm 

status synthesis synthesis CHIP post-layout 
clock  freq. 412 MHz 333 MHz 83.3MHz 333 MHz 

Iteration 15 10 or 15 2~8 2~10 

Termination Yes No Yes Yes 

Throughput 736 Mb/s 610Mb/s 111Mb/s 
506Mb/s(11n), 
590Mb/s(16e) 

Power N/A N/A N/A 
436 mW(11n) 
451 mW(16e) 

Low Power Mode N/A N/A 52 mW*1 91 mW*2

Core size N/A N/A 2.11×2.11mm2 2.14×2.14mm2 

*1: 30Mb/s 
*2: 42Mb/s, for 802.16e, rate 5/6, codeword length 2304 bits, 10-iter. 
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Chapter 5   Summary 

In this thesis, we proposed a configurable LDPC decoder for IEEE 802.11n and 

802.16e. First, we analyze LDPC decoding algorithms for 802.11n and 802.16e and 

improvement spaces for row-update message passing, Belief Propagation, and 

Min-Sum algorithm, etc. According to simulation results by C-language, we decide 

normalization factor, number of iteration, bit width and other parameters for hardware 

implementation. A trade-off between hardware complexity and decoding performance 

is analyzed to decide the parameters. A configurable, partially parallel architecture 

with Zf parallelization is proposed to apply row-update message passing algorithm 

with min-sum. Some design considerations are discussed and solved by the proposed 

methods. 

For adaptive code rates and code lengths, a point based permutation is designed 

to merge 22 types of Zf’s for 802.11n and 802.16e. Besides, parallel multi-codeword 

decoding technique for preserving high hardware utilization and early termination 
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mechanism to save power are considered. Multi-codeword decoding technique not 

only increases hardware utilization but also throughput when decoded codeword is 

less than 1152 bits (Zf < 48). Moreover, a flexible control provides users to decide 

whether turning off early termination or not for adaptive code rates and transmission 

channel. 

The design is implemented in TSMC 0.13 μm 1P8M CMOS technology. The 

core size is 2.14×2.14 mm2 and die size is 2.69×2.69 mm2. The decoder operates at 

333 MHz with 10 iterations for different code rates and code lengths. It has a peak 

throughput of 590 Mb/s and power dissipation of 451 mW for code rate 5/6, code 

length 2304 bits in 802.16e. In 802.11n, its peak throughput is 506 Mb/s with power 

dissipation of 436-mW for code rate 5/6, code length 1944 bits. 

In low power mode, we divide operating frequency by 5 to 66 MHz to meet the 

required minimum throughput, 30 Mb/s for 802.16e. It has throughput 42.6~118 Mb/s 

for different code rates and code lengths. Power dissipation is lower to 86~101 mW 

for 802.16e in low power mode.  
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