
 i

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

可替換式數位版權管理系統

及其嵌入式裝置實作

A DRM Switchable System

with Embedded Device Implementation

研 究 生：吳巧琳

指導教授：杭學鳴 博士

中 華 民 國 九 十 六 年 六 月

 ii

可替換式數位版權管理系統及其嵌入式裝置實作

A DRM Switchable System with Embedded Device
Implementation

研究生: 吳巧琳 Student: Chiao-Lin Wu
指導教授: 杭學鳴 Advisor: Hsueh-Ming Hang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

June 2007

HsinChu, Taiwan, Republic of China

中華民國九十六年六月

 iii

可替換式數位版權管理系統及其嵌入式裝置實作

研究生: 吳巧琳 指導教授: 杭學鳴 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

數位版權管理(digital right management, DRM)是一種概念，目的是

控制數位媒體的消費和散佈，現在嵌入式媒體的裝置越來越普遍，也增加

了數位版權管理的需求，因為在嵌入式媒體裝置上，實作數位版權管理系

統是一種趨勢，各家公司各自發展了自己的數位版權管理系統，但這個現

象產生了不同數位版權管理之間的溝通問題，除此之外，對消費者而言，

不能夠在同一裝置上使用不同的數位版權管理系統，帶來了不方便。

在這篇論文中，我們提出了一種可替換式的數位版權管理系統，來達到

在同一裝置上，使用不同數位版權管理的目的，在我們開始設計之前，我

們必須先了解平台的特性，並且分析一些數位版權管理系統的架構，由此，

我們找出最適合平台特性的一種數位版權管理系統，來做結合，然後我們

根據這一種數位版權管理系統，提出一種可替換式的數位版權管理設計的

概念，我們設計出一個數位版權管理模組的載入機制，這個載入機制能夠

確認數位版權管理模組的合法性，並且把數位版權管理的工作放到數位版

權管理的模組中，這個系統整合了下載工具的概念和 OMA 架構，有此來取

得彈性和複雜性的平衡，最後，我們也在嵌入式系統平台上實作這個機制，

用來證明這個機制的彈性功能。

 iv

A DRM Switchable System with Embedded Device Implementation

Student: Chaio-Lin Wu Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

Digital Rights Management (DRM) is a concept for controlling the distribution and

consumption of digital media. As embedded multimedia devices are becoming popular, there

are strong demands for the light-weight DRM systems that can run smoothly in a

resource-limited environment. Because implementing the DRM in the embedded device

becomes a trend, many companies create their private DRM on their device. However, this

phenomenon causes the problem of interoperability between different DRM systems. In

addition, from the consumer viewpoint, users can not use all kinds of DRM system on the

same device. This is inconvenient for users.

In this thesis, we propose a switchable DRM system to achieve the usage of different

DRM systems on the same device. Before we design a switchable DRM system, we must

understand the feature of the platform and analyze the structure of some DRM systems. After

understanding them, we find an optimum integration of the platform and one DRM system.

Then, we based on the designed DRM system to propose the concept of the DRM switchable

design. We design an universal DRM module loader. This loader checks the validity of a

loadable DRM module, and it defers all the other DRM tasks to the loaded module. This

 v

system integrates the concept of downloadable tools and the OMA architecture to provide a

balance between flexibility and complexity. We also implement the mechanism on an

embedded evaluation board to demonstrate its feasibility.

 vi

誌謝

 首先要感謝我的指導教授 杭學鳴博士這兩年多來的指導，老師對研究的熱忱與謙

虛的學習態度是我學習上的榜樣。在做研究的過程中，遇到不少的問題與困難，老師總

是適時的給予幫助與指點方向，讓我能順利的完成。除了課業上的幫助以外，我還要特

別感謝老師在我最困難的時候，給予我鼓勵以及協助，老師的關懷以及體諒，讓我感到

溫暖受用並度過了心情的低潮，重新的站起來，面對往後的挑戰，這一切都要感謝老師，

謝謝！

在這裡也要感謝通訊電子與訊號處理實驗室提供了一個極佳研究環境，讓我在研究

中有充足的資源可以運用。也感謝實驗室全體成員，營造了一個充滿活力與和諧氣氛的

環境，實驗室的溫馨與有條理的環境，一直是我身為實驗室成員自豪的一點。另外，感

謝張峰誠學長，在我從事論文研究時不吝提供經驗與鼓勵，以及教導我許多軟體開發與

系統設計的知識。也感謝朱育成、朱浩廷等實驗室的伙伴，適時提供技術上的支援與生

活上的幫忙，並陪伴我走過兩年的研究生歲月，感謝這一切，使得論文研究能夠順利的

進行。

最後，要感謝的是我的家人，他們讓我能夠心無旁騖的從事研究工作。沒有家人在

背後的支持與體諒，也就沒有今天的我，在此，獻上最高的謝意。

謝謝所有陪我走過這一段歲月的師長、同儕與家人，所有愛我的人，我愛的人，謝

謝！

 vii

 Contents
摘要 ...iii

Abstract..iv

Chapter 1 Introduction..1

Chapter 2 Introduction of the SPCE3200...3

2.1 S+core Processor ...3

2.2 S+core IDE..4

2.3 Memory Interface Unit (MIU)..4

2.4 Display Unit (TV Encoder) ..5

2.5 Buffer Control Unit ..6

2.6 Interrupt Controller...7

2.7 MPEG-4..9

2.7.1 API ...9

2.7.2 The Codec Structure ..10

Chapter 3 OMA DRM and IPMP ...14

3.1 Conceptual Idea ..14

3.2 OMA...15

3.2.1 Architecture ...16

3.2.2 Trust and Security Model ..17

3.2.3 Using OMA DRM ...19

3.3 MPEG IPMP...19

3.3.1 Introduction ...19

3.3.2 IPMP Components...20

3.3.3 Using IPMP ...23

Chapter 4 Switchable DRM Approach ...26

4.1 Our DRM System ...26

4.1.1 Structure of Our DRM System ..27

4.1.2 Relationship among Components..28

4.1.3 The Design of the Rights Object ...29

4.1.4 Trust and Security Model ..30

4.1.5 Execution Procedure..32

4.1.6 Method of Implementation ..33

 viii

4.2 Our DRM Switchable System ..34

4.2.1 Concept of DRM Switchable System..34

4.2.2 Structure of DRM Switchable System...36

4.2.3 Relationship among Components..36

4.2.4 Execution Procedure..37

4.2.5 Method of Implementation ..38

Chapter 5 DRM Switching Schemes ..40

5.1 DRM Switching Scheme 1 ...40

5.2 DRM Switching Scheme 2 ...42

5.2.1 Components ...43

5.2.2 Relationship...46

5.2.3 Procedure ...47

5.2.4 Method...49

5.2.5 Conclusions ...50

Chapter 6 Implementation and Application Examples ...52

6.1 Implementation...52

6.1.1 Cryptographic Algorithm...52

6.1.2 GUI Interface...54

6.1.3 Real-time Player ..55

6.1.4 Download Mechanism...56

6.2 Simulation...57

6.3 Application Examples...59

Chapter 7 Conclusion and Future Work ...63

7.1 Conclusion..63

7.2 Future Work ..64

References ..65

自 傳 ..67

 ix

List of Tables

Table 2-1 Interrupt vector table of the S+core ..9

Table 2-2 API of MPEG-4 Codec...10

 x

List of Figures

Figure 2-1 Memory mapping of the SPCE3200...5

Figure 2-2 The components of the Buffer Control Unit ...6

Figure 2-3 The software structure of the MPEG4 encoding.10

Figure 2-4 The setting of the Buffer Control Unit for encoding 11

Figure 2-5 The software structure of the MPEG4 decoding.12

Figure 2-6 The setting of the Buffer Control Unit for decoding12

Figure 3-1 The conceptual structure of our DRM Switchable System.....................15

Figure 3-2 Architecture of the OMA DRM ..16

Figure 3-3 Components of the IPMP..20

Figure 3-4 MPEG-4 IPMP basic concept [11]..23

Figure 4-1 Structure of the our DRM ...27

Figure 4-2 Procedure of requesting the Content and the RO28

Figure 4-3 Structure of our DRM components...28

Figure 4-4 Structure of the Rights Object [13]...30

Figure 4-5 Execution procedure in our DRM system...32

Figure 4-6 Download-Mechanism of Module ..35

Figure 4-7 Procedure of Requesting a Module...36

Figure 4-8 Structure of the switchable DRM ...37

Figure 4-9 Execution procedure in the switchable DRM system.............................38

Figure 5-1Two Stages of the DRM Switching Scheme 1...41

Figure 5-2 Execution Flow of the DRM Switching Scheme 1.................................42

Figure 5-3 Modified Content Format of the DRM Switching Scheme 2 [14]43

Figure 5-4 Modified Bootstrap in the DRM Switching Scheme 245

Figure 5-5 Structure of Package in the DRM Switching Scheme 245

Figure 5-6 Relationship among components in the DRM Switching Scheme 246

Figure 5-7 Execution Flow of the DRM Switching Scheme 2.................................48

Figure 5-8 Simple Concept of the DRM Switching Scheme 2.................................50

Figure 5-9 Sophisticated Concept of the DRM Switching Scheme 251

Figure 6-1 Procedure of buffer control during decoding..55

Figure 6-2 Memory allocation of loading Module ...57

 xi

Figure 6-3 Simulation of execution flow..58

Figure 6-4 Normal access of protected Content ...59

Figure 6-5 Normal access of original Content ...60

Figure 6-6 Message of invalid Package..61

Figure 6-7 Message of invalid Module ..61

Figure 6-8 Message of invalid Rights Object...62

 1

Chapter 1

Introduction

Digital Rights Management (DRM) is a term used for digital content consumption

control technology. It plays an important role for content providers -- to control the

customer access to their content, including software applications, sensitive documents,

music, games, and movies.

In recent years, the consumer electronics devices are getting more and more

popular. They bring in convenience and multimedia content to our daily life. This also

means that the embedded devices need to implement digital rights management (DRM)

in order to access the contents. The combination of DRM schemes and embedded

devices forms a large array of implementation cases. To support a wide range of devices,

we can afford a smaller common set of DRM tools but in order to support a wide range

of DRM tools, we often increase the device complexity.

In addition, because there are a number of existing DRM systems, the

interoperability issue is another critical problem. In recent years, many R&D institutes

work on this subject. Some of them focus on the development of Rights Expression

Languages (RELs) [1]. This approach attempts to solve the interoperability problem by

using a language model. Some others develop the interoperable DRM standards suitable

for different DRM systems. This approach interacts with the native software interfaces

of each DRM system and provides an interoperable layer on top. However, the latter

approach is highly complex in implementation.

In this thesis, we choose a somewhat different view on this problem. Instead of

developing an unified language or an unified API, we propose only an universal DRM

module loader. This loader checks the validity of a loadable DRM module, and it defers

all the other DRM tasks to the loaded module. This may lead to a little more storage and

 2

computation cost, but it should be affordable in today’s mobile multimedia capable

devices.

This thesis is organized as follows. In chapter 2, we briefly describe the structure

of the SPCE3200 board. In chapter 3, we briefly describe the OMA and the MPEG

IPMP concepts. In chapter 4, we design our DRM system based on the OMA DRM with

some concepts of the IPMP. Also, we describe the concept of our DRM switchable

system. This is based on the idea discussed earlier. In chapter 5, we design the DRM

switching mechanism based on our switchable DRM concept. In chapter 6, we

implement our scheme on an embedded device evaluation platform to demonstrate its

feasibility.

 3

Chapter 2

Introduction of the SPCE3200

In this chapter, we introduce the SPCE3200 board [2][3], because we shall use it to

develop our DRM switchable system. SPCE3200 is a SoC designed for developing

multimedia applications. To achieve this objective, SPCE3200 is composed of S+core

processor, TV encoder, 24 channels Sound Processing Unit (SPU) and other essential

peripherals. Therefore, SPCE3200 is able to generate graphics and sound used

multimedia applications. In addition to these functions, SPCE3200 has some special

functions. SPCE3200 has MPEG-4 and JPEG codec to play video and display image

and has various storage devices to access data. Because SPCE3200 is designed for

developing multimedia applications, a 32-bit powerful Integrated Development

Environment (IDE) tool is also provided. Since SPCE3200 has so many practical

functions and provides a convenient tool, we can easily use it to develop our

applications. Here, we shall introduce the SPCE3200 board as follows.

2.1 S+core Processor

 S+core 7 processor is the latest 32-bit CPU developed by SUNPLUS. It is a single

issue, 7-pipeline stage and 32-bit RISC with Sunplus-owned instruction set architecture

(ISA). The character of this ISA is 32/16 bit hybrid instruction mode and parallel

conditional execution for high code density, high performance and versatile application.

For SPCE3200, S+core 7 can run up to 162MHz.

 S+core 7 supports 4-KB two-way set associative I/D-cache and 4KB LIM/LDM

(local instruction/data memory). The MMU (memory management unit) is also

supported for RTOS. Besides, Sunplus also provides two custom engine and three

coprocessor interfaces for user defined function extension. The bus interface of the

 4

processor is compliance to the AHB v2.0 for easy integration into SoC implement.

Moreover, the micro-architecture includes SJTAG for efficient debugging and In-Circuit

Emulation (ICE).

 There is another feature that we must not ignore. S+core 7 provides sixty-three

prioritized vector interrupts, a useful feature of the CISC type Microprocessor. The

reason for providing this interrupt processing mechanism is for fast interrupt service.

2.2 S+core IDE

 S+core IDE is a 32-bit powerful Integrated Development Environment (IDE) for

developing applications in C or assembler for the S+core series CPU. It can be run on

Windows98, Windows2000 and WindowsXP. S+core IDE has two modes. One is

Simulator mode, the other is In-Circuit Emulation mode.

In the Simulator mode, S+core IDE provides two external devices for easy

debugging our program. One is LCD which can display image or play video, the other is

UART which can print strings. Both them are only used in simulator mode. On the other

hand, In-Circuit Emulation mode means the program should be downloaded by SJProbe

from the computer.

2.3 Memory Interface Unit (MIU)

 MIU supports several different types of external memories, SDRAM, Parallel

ROM and NAND Flash. This flexible feature lets users easily develop their applications.

In addition, MIU also supports two internal embedded memory blocks. One is 64K bits

internal SRAM as LDM (Local Data Memory), the other is 256K bits ROM as

embedded BOOT ROM.

 We can represent memory mapping in Figure 2-1.

 5

Figure 2-1 Memory mapping of the SPCE3200

This diagram indicates that the virtual memory only represents the address memory

space. Notice that there are two virtual memory regions pointing to the same physical

memory region. The distinction between them is if they can be cacheable. This design is

for the processor to access memory fast. We may note, in passing, that there is a

reserved region in physic memory for internal SRAM and internal boot ROM.

2.4 Display Unit (TV Encoder)

 TV encoder unit in SPCE3200 provides multi-TV system and multi-screen mode

with 9 bit video DAC to generate composite video signal to TV screen with VGA

resolution. The multi-TV systems not only include NTSC and PAL but also interlace

and non-interlace. The multi-screen modes include Q-VGA mode, H-VGA mode, and

VGA mode. User can arbitrarily arrange for these modes whenever needed. TV encoder

can display when frame buffer is rendered by CPU or MP4 decoder. In particular, frame

buffer can be allocated everywhere in the SDRAM.

 6

2.5 Buffer Control Unit

 SPCE3200 provides comprehensive hardware logic, Buffer Control Unit, to

coordinate all double or triple buffers switch in TV encode unit. This represents buffer

control unit can detect the updated output buffer and change the display area pointer in

the TV encoder to that buffer. In other words, TV encoder will be able to update TV

frame buffer automatically without any CPU program required for buffer switching.

This mechanism provides programmers to simplify the program flow and reduce the

possible timing or interrupt function overhead problems in the system.

 There are two important control registers. One is P_C2P_SETTING. The other is

P_PTR_SETTING. The former provides four items to set buffer control unit. The first

item is for the selection of the module which writes the buffer. The second item is for

the selection of the module which reads the buffer. The third item is for the selection of

the buffer mode. The buffer modes include double buffers and triple buffers. The forth

item is to set if the buffer control unit starts. We can represent four items in a simple

diagram as follows (Figure 2-2).

Figure 2-2 The components of the Buffer Control Unit

On the other hand, the buffers can be controlled by the software or the hardware.

Therefore, the latter register is to select one of them.

 7

2.6 Interrupt Controller

 Because S+core processor only receives the IRQ interrupt events from the

peripheral device without a priority mechanism in it, the interrupt controller serves as an

interrupt handler. The priority of each interrupt source is programmable. Besides, the

interrupt service routine is also programmable. Therefore, when there are multiple

interrupt requests from internal peripherals and external interrupt request pins, the

hardware in the interrupt controller shall provide the interrupt service priority and the

software can denote what kind of the interrupt request happens. After denoting the

interrupt request, the interrupt process must jump to the corresponding service routine.

 Because the interrupt handler must calculate the offset address in the interrupt

vector table to find the interrupt service routine, this requires long interrupt latency. To

resolve those inefficient processes, S+core processor uses another interrupt processing

mechanism called vectored interrupt mode. This vector address records the offset

address of each service routine in the interrupt vector table. Thus, the interrupt handler

can skip the search process to get the offset address whenever the processor receives the

interrupt. This mechanism improves the overall performance of the system dramatically.

Finally, we show the interrupt sources in a simple table as follows (Table 2-1).

Slave

Group

Source

Number

Source Vector

address

0 SPU FIQ 63

1 SPU BeatIRQ 62

2 SPU EnvelopIRQ 61

3 SD servo 60

4 ADC gain overlow / ADC recorder FIFO overflow 59

5 General purpose ADC 58

6 Timer base 57

0

7 Timer 56

1 8 TV vblanking start 55

 8

9 LCD vblanking start 54

11 Light Gun 52

12 Sensor frame end 51

13 Sensor coordinate hit 50

14 Sensor motion frame end 49

15 Sensor capture done + sensor debug IRQ 48

16 TV coordinate hit 47

18 USB host + device 45

19 SIO 44

20 SPI 43

21 UART (IrDA) 42

22 NAND 41

23 SD 40

24 I2C master 39

2

25 I2S slave 38

26 APBDMA CH1 37

27 APBDMA CH2 36

28 LDM_DMA 35

29 BLN_DMA 34

30 APBDMA CH3 33

31 APBDMA CH4 32

32 Alarm + HMS 31

3

33 MP4 30

34 C3(ECC module) 29

35 GPIO 28

36 Bufctl (for debug) + TV vblanking end (for debug) 27

4

37 RESERVED1 26

 9

38 RESERVED2 25

39 RESERVED3 24

Table 2-1 Interrupt vector table of the S+core

We will give a lot of examples to illustrate the usage of the interrupt service. We

can use source number 7 (timer) to control the frame rate for decoding video media. We

also can use source number 8 (TV vblanking start) to control the buffer switch for

playing the video media. When this interrupt is requested, the service routine

programmed by us controls the buffer switch. In addition, we can use source number 12

(Sensor frame end) to control the handle of the video media from the CMOS sensor. We

can encode that video media from the CMOS sensor automatically and use this interrupt

to know what time ends this handle.

2.7 MPEG-4

 In SPCE3200, the MPEG-4 codec is implemented by the hardware. This codec is

an important and practical part of the SPCE3200. Now, we introduce some features of

the MPEG-4 codec. It not only supports QVGA and VGA image resolutions but also

4:2:2 and 4:2:0 data formats. The quantization step size can be programmable. Besides,

this codec can achieve 30f/s frame rate for encoding or decoding with QVGA

resolution.

2.7.1 API

 We shall realize the APIs of the MPEG-4 codec. We draw the Table 2-2 to show

and describe it.

API API Description

mp4_SetRunMode() Set conference mode or normal mode.

 10

mp4_compressor_prepare() Set registers relative to encoding.

mp4_set_encode_frame_buffer_address() Set buffer address for encoding

mp4_compress_frame() Encode one frame.
mp4_decoder_prepare() Set registers relative to decoding.

mp4_set_decode_frame_buffer_address() Set buffer address for decoding

mp4_decompress () Decode one frame.

mp4_switch_decode_frame_buffer() Software switch buffer control.

mp4_reset() Reset MPEG-4 engine.

Table 2-2 API of MPEG-4 Codec

The Sunplus has used these APIs to support some video containers such as AVI,

MP4 and SP4 (the file format of Sunplus-defined). Therefore, these APIs can be used to

develop different applications.

2.7.2 The Codec Structure

Now, we introduce the structure of the encoder and the decoder. This is an example

provided by the Sunplus. In the future, we can serve this example as a reference to

design our applications.

 Encode

Figure 2-3 The software structure of the MPEG4 encoding.

 11

Figure 2-3 is a diagram which shows the software structure of the MPEG4

encoding. We get raw data from the sensor or SD card and then transfer it to MPEG4

encoder. After encoding it, we contain it to AVI format and store it in the SD card. As

the diagram indicates, we use two buffers to get raw data and switch them. The buffer

switch provides the efficiency for encoding.

Figure 2-4 The setting of the Buffer Control Unit for encoding

Since we use two buffers for encoding, we can set the buffer control unit. Figure

2-4 shows the setting of the Buffer Control Unit for encoding. At first, we select two

buffers for encoding. Secondly, we can set the sensor or the SD card as the module

which writes the buffer. Thirdly, we set MPEG4 codec as the module which reads the

buffer. In addition, we can select the software or hardware to control the buffers switch.

This control includes not only the input setting but also output setting. Because we must

contain raw data to AVI format, we set the software to control the output of the buffers.

On the other hand, if we get the raw data from the sensor, we hope to encode it

immediately. Therefore, we set the hardware to control the input of the buffers. Finally,

because we set the hardware to control input of the buffers, we also need to set the

hardware to control the Buffer Control Unit. In this design, when the CMOS sensor

requires the interrupt, the MPEG4 encoder can base on it to decide if it needs to encode

the next frame. This means that CMOS sensor will be able to update frame buffer

automatically without any CPU program required for buffer switching. But if we get the

 12

raw data from the SD card, we must use the software to control the buffer switching

because the SD card can not update frame buffer automatically.

 Decode

SD_Card

Get AVI data

Parsing

Get AVI data

MPEG4 Decode TV

Figure 2-5 The software structure of the MPEG4 decoding.

Figure 2-5 is a diagram which shows the software structure of the MPEG4

decoding. We get AVI data from the SD card and parse it. Then we transfer it to MPEG4

decoder. After decoding it, we play it in TV. As the diagram indicates, we use two

buffers to get AVI data and switch them. The buffer switch provides the efficiency for

decoding.

Figure 2-6 The setting of the Buffer Control Unit for decoding

Since we use two buffers for decoding, we can set the buffer control unit. Figure

 13

2-6 shows the setting of the Buffer Control Unit for decoding. At first, we select two

buffers for decoding. Secondly, we can set the MPEG4 codec as the module which

writes the buffer. Thirdly, we set the TV as the module which reads the buffer. In

addition, we can select the software or hardware to control the buffers switch. This

control includes not only the input setting but also output setting. Because we control

the flow of the decoding, we set the software to control the input of the buffers. On the

other hand, we hope to decode media object and play it at the same time. Therefore, we

set the hardware to control the output of the buffers. Finally, because we set the

hardware to control output of the buffers, we also need to set the hardware to control the

Buffer Control Unit. This means that TV controller will be able to update frame buffer

automatically without any CPU program required for buffer switching. However, we

also can set the software to control the output of the buffers but we must switch the

buffers by ourselves.

 14

Chapter 3

OMA DRM and IPMP

In this chapter, we briefly describe the motive of our research and explain why we

research in this topic. Also, we propose our idea and show its structure. Then, we briefly

describe two open standards. Because we want to design a DRM switchable system, we

need to understand the operations of the existing DRM systems. With different

application scenarios and deployment environments, DRM systems vary significantly in

architecture and in implementation. Here, we introduce two DRM systems. One is OMA

DRM; the other is MPEG IPMP. In the next chapter, we shall analyze and use them to

design our DRM switchable system on the SPCE3200 board.

3.1 Conceptual Idea

In recent years, implementing the DRM system on the embedded device becomes a

trend and many companies have developed their private DRM system on their device.

These private DRM systems are usually designed to be closed systems. This will

enhance the security of these DRM systems. Also, this design may help the

manufacturers to monopolize the market. However, this is also said that users can only

use the corresponding DRM system on the specific embedded device. This is

inconvenient for the consumers. From the consumer viewpoint, they want to access all

kinds of the media objects but they do not want to know the relationship between the

DRM system and the device. Thus, we shall discuss this issue and design a system to

solve it.

In our thesis, we propose a DRM switchable system to achieve the usage of different

DRM systems on the same device. In particular, our DRM switchable system is not a

new DRM system. It is a mechanism to switch different DRM systems on the same

device. Simply speaking, in our design, users can access different media objects without

 15

worrying about which DRM system is suitable for the specific device, this job is left for

our DRM switchable system to do.

Here, we describe the concept of the DRM switchable system and show its structure.

In our design, when a user selects one media object, our DRM switchable system must

find the associated DRM system and execute it automatically. Our DRM switchable

system uses the information of the media object to do that. Therefore, we show its

structure in Figure 3-1.

Figure 3-1 The conceptual structure of our DRM Switchable System.

After we propose the conceptual structure of our DRM switchable system, we

prepare to design a complete system. Therefore, we must start to study different DRM

systems. In the following sections, we shall introduce two public DRM systems. Based

on these DRM systems, we design our DRM switchable system.

3.2 OMA

OMA (Open Mobile Alliance) is a global organization set up by the mobile

communication industry. One of its goals is to specify an open standard to make OMA

services interoperable across different devices. Because this goal relates with our

purpose, we study its DRM standard. Here, we shall introduce the basic concept of the

 16

OMA DRM.

3.2.1 Architecture

Based on the OMA documents [4][5], the super-distribution and backup scenarios

form a comprehensive example use of the OMA functionality. There are five major

OMA entities involved in the digital rights management process.

1. DRM Agent – responsible for controlling the use of contents.

2. Content Issuer – manages the delivery of DRM contents.

3. Rights Issuer – assigns permissions and constraints to the DRM contents and

generates Rights Object for expressing them.

4. User – the consumer of DRM contents.

5. Off-device Storage – provides an alternative storage space other than the consuming

mobile device.

Figure 3-2 Architecture of the OMA DRM

Figure 3-1 shows the five major OMA entities. We shall describe their functions. A

content issuer delivers DRM Content. Before a User receives a specific DRM Content

 17

from any Content Issuer, it is packaged to protect it from unauthorized access. When

consuming the DRM Content, the User should pass the DRM Agent’s access control.

The control information is contained in the Rights Object associated with the content.

A Rights Object governs how DRM Content may be used and it is generated by a

rights issuer. It is described as an XML document to specify permissions and constraints

associated with a piece of DRM Content. Therefore, the User must obtain a valid Rights

Object from a Rights Issuer before accessing the content. In other words, DRM Content

cannot be used without an associated Rights Object, and may only be used according to

the permissions and constraints specified in a Rights Object.

At the point of consumption, a User has to purchase Rights Objects associated with

DRM Content. A DRM Agent is responsible for this enforcement. The DRM Agent

serves as a trusted component of a device and controls access to DRM Content on the

device, and so on.

In addition, a Rights Object is designed to be bound to a specific DRM Agent. This

allows a User to freely transfer the content to any off-device storage. However, typically

different Rights Objects are required to consume the same content on different devices.

3.2.2 Trust and Security Model

The main purpose of any DRM system is to ensure that permissions and constraints

associated with DRM Content are enforced. At the point of consumption, Rights Object

and DRM protection are enforced. Here, we introduce the DRM Agent how to enforce

permissions and constraints and how to control access to DRM Content.

The basic steps of content protection are as follows.

I. Content packaging

When Content is generated, it can be pre-packaged. It is packaged in a secure

content container (DCF). DRM Content is encrypted with a symmetric content

encryption key (KCEK). The DRM Content Format (DCF) is defined by the OMA DRM

 18

standard. It does not only include the encrypted content but also additional information,

such as content decryption, rights issuer URI, and so on. This additional information

does not have to be encrypted and is presented to the user.

II. DRM Agent authentication

Before getting the content and the rights objects, the content and rights issuers

must securely authenticate a DRM Agent. For this purpose, every DRM Agent has a

unique private/public key pair and a certificate to identifying the DRM Agent and

certifying the binding between the agent and this key pair.

III. Rights Object generation

A Rights Object is an XML document. It expresses not only the permissions and

constraints for accessing the content; it also includes the encrypted KCEK. This design

ensures the DRM Content cannot be used without an associated Rights Object. To

consume the content, the User Agent verifies the Rights Object, extracts and decrypts

the encrypted KCEK, applies KCEK to the encrypted content, and performs the requested

operation.

IV. Rights Object protection

At third step, the content encryption key (KCEK) is encrypted with a rights

encryption key (KREK). This design protects the sensitive parts of the Rights Object.

However, the rights encryption key (KREK) also needs to be protected. Therefore, it is

encrypted by the DRM Agent’s key. This design does not only protect the CEK but also

achieve the User Agent binding. In other words, only the target DRM Agent can access

the Rights Object and thus the DRM Content.

V. Delivery

After generating the RO and DCF, they can be delivered to the target DRM Agent

using any transport mechanism.

 19

3.2.3 Using OMA DRM

To summarize the above trust and security model, a typical sequence DRM Agent’s

steps before it consuming a DRM Content is as follows.

1. User request specific content

2. DRM Agent request Rights Object

3. Verification of the Rights Object

4. Content encryption key Retrieval

5. Content Access

3.3 MPEG IPMP

The MPEG IPMP is an international standard. Because it has the flexible property

for the content consumption, we start to study its documents. Here, we shall introduce

its history and describe the basic components of the MPEG IPMP. Finally, we shall

describe the procedure of using MPEG IPMP.

3.3.1 Introduction

The international MPEG standard committee started their efforts on specifying

Intellectual Property Management and Protection (IPMP) from MPEG-4. The concepts

have been carried through several MPEG standards: MPEG-4 IPMP hook (now

obsolete), MPEG-4 IPMP Extension (IPMPX) [6], MPEG-21 IPMP, and MPEG-21 Test

Bed [7]. The IPMPX concept is also back-ported to MPEG-2. In brief, MPEG-21 IPMP

describes the latest concepts of IPMP, while the others provide concrete implementation

of IPMP architecture and integration.

The IPMPX provides a set of interfaces to manage, resolve, and interconnect

various IPMP Tools. IPMP Tools enable DRM services. They often act like filters

included in the media stream processing path. An IPMP Tool can be stored in a local

repository or downloaded from an external service. The mechanism makes IPMPX a

 20

flexible platform to incorporate proprietary DRM functions without breaking the

standard compatible interfaces. With regard to express rights in IPMP, the MPEG-21

Rights Expression Language [8] is used. It is a language based on XrML.

3.3.2 IPMP Components

The IPMP system has six components. They are the Context, the Message Router,

the Terminal, the Tool Manager, the IPMP Filter and the IPMP Tool [9][10]. We draw a

diagram to show them in Figure 3-2. And we shall introduce their functions in the

following sections.

Figure 3-3 Components of the IPMP

IPMP Tool Manager

The Tool Manager manages all the IPMP Tools within the Terminal. The

implementation of the Tool Manager is composed of some functions or methods. At first,

when the IPMP Tool Manager receives the IPMP Tool List that dispatched from the

Terminal, the IPMP Tool Manager should parse the IPMP Tool List. This process is

required for the content consumption. Then, Tool Manager resolves the alternative list,

and parametric description within the IPMP Tool List. If the required IPMP Tools can

not be set at the local side, the IPMP Tool Manager has to get these IPMP Tools

 21

remotely from the media content delivery server or from the website. This flexible

design is because the IPMP Tool could be carried within an elementary stream called

IPMP Tool ES in the IPMP Extension system. Thus, the IPMP Tool Manager can

retrieve the IPMP Tools from the IPMP Tool ES. In addition, after getting the IPMP

Tools, the IPMP Tool Manager must also instantiate the IPMP Tool instances required

for content consumption.

IPMP Message Router

The IPMP Message Router manages the message routing. The IPMP messages can

be divided into two kinds. One is the IPMP Tool Message; the other is the IPMP Device

Message. For example, the IPMP Message Router can build the connections between

the IPMP Tools for delivery of the IPMP Tool Message. In addition, because the

Terminal delivers the IPMP Tool Descriptor to the IPMP Message Router, the IPMP

Message Router can parse it for IPMP Tool initialization. Similarly, the Terminal also

delivers the IPMP elementary stream to the IPMP Message Router, so the IPMP

Message Router can also handle it for updating the IPMP system.

Terminal

The Terminal is an environment where the IPMP system implements its

functionalities. In other words, it is responsible for the combination of the content

consumption and the IPMP system. At first, the Terminal should request the content.

Then, it should receive the IPMP Tool Descriptor, IPMP elementary stream, and the

IPMP Tool Descriptor Pointer from the content and deliver them to the IPMP Message

Router. Similarly, it also should receive the IPMP Tool List from the content and deliver

it to the IPMP Tool Manager. Besides, the Terminal also implements some

functionalities included decoding the media content, displaying the media content and

so on. Therefore, the Terminal is not only an environment but also an interface for

 22

delivery.

IPMP Tool

The IPMP Tool is the basic component in the IPMP system. It includes many

functions such as encryption, decryption, watermarking insertion, watermarking

extracting, authentication, etc. The IPMP Tool must be instantiated before using it.

According to different functionalities, the IPMP Tool is instantiated in the different

place. Besides, during using the IPMP Tool, the IPMP Tool should be able to receive the

IPMP messages that are routed by IPMP Message Router. These messages may build

the communication between the IPMP Tools or between the bitstream and the IPMP

Tools. When the communication is built, the process of the message is not defined in the

MPEG-4 IPMP standard. Therefore, the process of the message is flexible to implement.

IPMP Control Point (IPMP Filter)

IPMP Control Points provides a place for IPMP Tools to perform their function.

Because one or more IPMP Tools can plug in the IPMP Control Points, the IPMP

Control Points are like the Filters. In the MPEG-4 IPMP Extension specification, there

are four IPMP Control Points defined. One is between the decoder and the decoding

buffer. One is between the decoder and the composition buffer. One is between

composition buffer and compositor. One is BIFS tree. Besides, the user also can define

the IPMP Control Points. Here, we take some examples to describe the IPMP Control

Points. The IPMP Tool for the decryption of the stream data can be inserted into the

IPMP Control Point between the decoder and decoding buffer. And, the IPMP Tool for

the extraction of the watermarking can be plugged into the IPMP Control Point between

the decoder ad composition buffer. However, the IPMP Control Point does not limit the

number of the IPMP Tool. It allows multiple IPMP Tools to be plugged.

 23

3.3.3 Using IPMP

In this section, after describing all the components in the IPMP system, we must

understand how to use the IPMP system. Here, we give a simple example on the IPMP

Extension system. The following chart [11], Figure 3-3, shows the basic structure of

MPEG-4 IPMP Extension system. We shall describe the procedure of content

consumption step by step as follows.

Term inal-Tool Message Interchange Interface

IPMP Tool 1 IPMP Tool 2 IPMP Tool n

IPMP Inform ation

Content

IPMP Tool ID(s)

A lternate IPMP Tool ID(s)

Term inal

Missing IPMP
Tools

Obtain M issing IPMP
Tool(s)

Content Request

Content Delivery

Term inal-IPMP Tool
Com m unications

IPMP Tool List

IPMP Tool E lem entary
Stream

IPMP Tool Manager

Param etric Tool
Description(s)

...

Figure 3-4 MPEG-4 IPMP basic concept [11]

I. User request specific content

In the MPEG-4 IPMP standard, it does not define how to request the content. Thus,

we provide a procedure to request the content. Because the content is protected by using

the IPMP mechanism, the IPMP requirement is also necessary. As regards the order of

them, the IPMP requirement should be placed with or before media requirement. Here,

we give an example to describe this situation. If we want to access a protected MPEG-4

 24

media object, we must not only request the media object but also the IPMP information.

Therefore, when the terminal receives the IPMP information and the media content, it

can use the IPMP information to know how to access the media content.

II. IPMP Tool Descriptor access

Since the terminal wants to use the IPMP information to know how to access the

media content, it must access the Initial Object Descriptor first. Here, the Initial Object

Descriptor is the IPMP information. Then, the terminal derives the IPMP Tool List

Descriptor from the IOD to get the list of the IPMP Tools that are required for the

content consumption. Besides, the terminal also derives the IPMP Tool Descriptor from

the IOD. Therefore, the terminal can determine the tools and prepare for the content

consumption.

III. IPMP Tool Retrieval

In the MPEG-4 IPMP standard, it does not define how to retrieve IPMP Tools. But,

the retrieval of the missing IPMP Tools can derive from a website or other remote

device. Besides, the missing IPMP Tools may be retrieved from an IPMP Tool Stream.

IV. Instantiation of IPMP Tools

Based on the IPMP Tool List Descriptor received before, the required IPMP Tools

are instantiated locally or remotely. Then, this IPMP Tool instances need to be

initialized with IPMP Tool Descriptors. Because the IPMP Tool Descriptor contains the

IPMP Initialize information that includes the IPMP Control Point code and the sequence

code, this IPMP Initialize information can inform the Terminal to instantiate the IPMP

Tool at the right position. Therefore, the IPMP Tool Descriptor results in the

instantiation of the IPMP Tool.

V. Initialize and update the IPMP system

After preparing the whole IPMP system included the Instantiation of IPMP Tools,

the content consumption begins. During the content consumption, there is some IPMP

information for updating the IPMP system. The updating information is conveyed

 25

within the IPMP ES or the OD update command in the IPMP system. And because it is

received and turned into the IPMP messages, IPMP Message Router can dominate it to

build the valid connection between IPMP Tools. Besides, because there are some IPMP

messages for the negotiation between the IPMP Tools, these messages also can be

controlled to build the valid connection between the IPMP Tools by the Message Router.

Therefore, during the content consumption, the IPMP system can have many kinds of

the messages to communicate each other for the update.

 26

Chapter 4

Switchable DRM Approach

In this chapter, we shall analyze and compare the OMA and the IPMP. Then, based

on these two techniques we design our DRM system on the SPCE3200 board. Also, we

shall discuss how to implement a DRM switchable system. Here, we describe all the

necessary components for our DRM switchable system. In the next chapter, we shall

combine them to implement our DRM switchable system.

4.1 Our DRM System

In the chapter 3, we have understood the structure of the OMA DRM and the MPEG

IPMP. Here, because we adopt the SPCE3200 board as our platform, we must use the

features of the platform in choosing our DRM system.

Because the OMA DRM has a fixed set of tools, it has the advantages of efficiency

and compactness. On the other hand, because the MPEG IPMP has a sophisticated tool

management, it has the advantages of flexibility and extensibility. With the advances in

consumer electronic devices and solid-state storages, we consider a compromised

approach which can provide the flexibility with a slightly higher computation and

storage space requirement. In addition, since the SPCE3200 board is an embedded

device which is a consumer electronic device, we design our DRM system according to

the OMA DRM with some concepts carried from the IPMP. In the following sections,

we shall describe how to design and implement our DRM system. This includes the

structure, the relationship among components, the execution procedure, the method of

implementation and so on.

 27

4.1.1 Structure of Our DRM System

At first, there are three major entries in our DRM. They are the DRM Agent, the

Rights Issuer and the Content Issuer. We show them in Figure 4-1.

Figure 4-1 Structure of the our DRM

The RO Issuer manages the delivery of the Rights Object (RO). The Content Issuer

manages the delivery of the Content. The DRM Agent is responsible for controlling the

usage of the Content. Therefore, the RO Issuer and DRM Agent have the downloadable

mechanism. Similarly, the Content Issuer and the DRM Agent also have the

downloadable mechanism. Besides, they must be authenticated each other.

When requesting the Content from the Content Issuer, the DRM Agent must be

authenticated by the Content Issuer. Similarly, when requesting the Rights Object from

the Rights Issuer, the DRM Agent must be authenticated by the Rights Issuer. When the

DRM Agent receives the Contents and the Rights Object, DRM Agent needs to verify

their identification and confirm their integrity. This is because the DRM Agent must

have the ability to check if the Rights Object or the Content is fake. These are achieved

by using the standard Public Key Infrastructure (PKI) procedure. We show these

procedures in Figure 4-2.

 28

Figure 4-2 Procedure of requesting the Content and the RO

4.1.2 Relationship among Components

Our DRM system consists of the Rights Object and the Content, the DRM Agent

and the User. We draw a simply diagram to show their relationship in Figure 4-3.

Figure 4-3 Structure of our DRM components

In this diagram, we find that if the User wants to access the Content, he/she must

use the DRM Agent to achieve this purpose. But the DRM Agent is only responsible for

controlling the usage of the Content. It plays a controller role. The real consumer of the

Content is the User. This means that the DRM Agent must confirm the authorized User

to access the Content. In other words, the User should provide the authorization for the

DRM Agent to verify. In our design, the authorization is the Device’s public/private key

pair.

 29

Now, we shall describe the relationship between the Rights Object and the Content.

The DRM Agent uses the Rights Object to access the Content. However, how to

confirm the valid Content using the Rights Object becomes a problem. In order to

confirm the relationship between the Rights Object and the Content, the Rights Object

must record the identification and the fingerprint of the Content.

Here, we shall describe the relationship between the User and the Rights Object.

The Rights Object records the rules that the User should obey. Because the DRM Agent

must confirm the relationship between the Rights Object and the User, the Rights Object

is designed to be bounded to the User. Only if the User obeys the rules and the User and

the Rights Object have the valid relationship, the DRM Agent allows User to access the

Content.

Here, we shall describe the relationship between the DRM Agent and the Content.

When all verifications are valid, the DRM Agent can provide a tool (video player) to

access the content.

Because the Rights Object plays the critical role in the DRM system, therefore, we

shall discuss it in detail.

4.1.3 The Design of the Rights Object

As described in chapter 3, the OMA uses Rights Object to describe the use and

constraints of contents consumption. It uses the Open Digital Rights Language (ODRL)

[12][13]. The RO structure adopted in our DRM is shown in Figure 4-4. It is composed

of the <ro> and <mac> elements. The <ro> element contains the Identification

component, the Rights component and the Encrypted Key K (will be discussed later).

The Identification component is used to identify the Rights Issuer. The Rights

component expresses the permissions (e.g. play, display and execute) and constraints

(e.g. play for a month, display ten times). In addition, it includes the hash value and the

encrypted KCEK. The Encrypted Key K is generated by a strong encryption algorithm.

 30

The <mac> element provides integrity of <ro> and key confirmation.

RO

<ro>

<mac>

Rights

Permission
Constraint

Encrypted
K

MAC hash
of <ro>

Hash value
of Content

Encrypted
KCEK

I.D.

Figure 4-4 Structure of the Rights Object [13]

Since we have explained the structure of the Rights Object, we shall describe how to

use these items to build the trust and security model in the next section.

4.1.4 Trust and Security Model

Depending on the application scenario, the trust mechanism between a Rights

Object and a Rights Issuer varies. In our scheme, we assume that a DRM Agent and a

Rights Issuer can somehow identity each other in a trusted way. Thus, a DRM Agent

can ensure that the Rights Object is generated by a valid Right Issuer.

The permission model defines the permitted operations that a User can apply to the

DRM Content. The DRM Agent only grants the operations specified in this field.

Sometimes we also want to specify the constraints posed on an operation. The

constraint model is thus defined as a complement to the permission model. One

permission element can have many constraints such as <count>, <date-time>, etc. In

other words, constraints describe the conditions for granting permissions.

The link between a Rights Object and the associated DRM Content is defined by the

 31

security model. This model provides the following functions: (1) confidentiality for the

KCEK of Rights Objects, (2) integrity of the association between Rights Objects and

DRM Content, and (3) the Rights Object integrity and authenticity.

Firstly, we protect the DRM Content by a symmetric encryption algorithm (DES or

AES) with the key KCEK. Theoretically, the encrypted DRM Content can only be

decrypted with the KCEK with the granted rights from the DRM Agent, and thus the

content confidentiality is deferred to the confidentiality of the KCEK. Therefore, the KCEK

should be encrypted by the Rights Object Encryption Key (KREK). Note that the OMA

DRM supports only AES as the content encryption algorithm. We allow both DES and

AES for higher flexibility.

Secondly, to ensure the integrity of the association between the Rights Object and

the DRM Content, we have to store a fingerprint of the DRM content in the Rights

Object for verification. This is achieved by computing the hash value of the DRM

Content. As long as the hash algorithm is a proper one, modifications to the DRM

Content can be detected by the hash value.

Thirdly, to ensure the integrity of a Rights Object, the <mac> element serves as the

check message. We adopt an MAC algorithm, with the KMAC as the key and the <ro>

element as the data. The hash value is stored in the <mac> for checking. Note that a

successful check of the <ro> implies the confirmation of the KREK. For authenticity

purpose, a DRM Agent has to verify the Rights Issuer identity before it can accept the

received Rights Object.

In the aforementioned paragraphs, the KREK and KMAC are generated randomly by

the sender. They are concatenated to form the information K. In our design, an

asymmetry algorithm (RSA) is used to encrypt K using the Device’s RSA public key.

This guarentees that only the device holding the correct private key can revert the

encrypted K to KREK and KMAC.

To summarize the above security model, a typical procedure that the DRM Agent

 32

exeuctes before it consumes a DRM Content is as follows.

1. Use the Device’s private key to decrypt K and retrieve KREK and KMAC.

2. Authenticate the Rights Issuer, and verify the <ro> element against the <mac>

element and KMAC.

3. Use KREK to decrypt the encrypted content key and retrieve KCEK.

4. If the permission check and constraint check are passed, the DRM Content is allowed

to consume using KCEK.

4.1.5 Execution Procedure

After describing the trust and security model, we shall describe the execution

procedure of the DRM system. Here, we show the steps in Figure 4-5.

Figure 4-5 Execution procedure in our DRM system

At first, the DRM Agent provides the GUI interface to the users to select the

 33

Content. When a user wants to access the Content with the Rights Object, the DRM

Agent must verify their identification and confirm their integrity. After verifying these,

the DRM Agent must confirm the relation of the Rights Object and the Content. Then

the DRM Agent derives the sensitive information from the Rights Objects using the

cryptographic algorithms. Finally, the DRM Agent can access the Content by using the

sensitive information.

4.1.6 Method of Implementation

After knowing the execution procedure of our DRM system, we need to develop

methods to implement it. Here, we list these methods and describe their functionalities.

♦ V_Verify_Signature()

This function verifies the signature. This function not only verifies the identification

but also checks the integrity.

♦ V_ConnectRO()

This function confirms the relationship between the Rights Object and the Content.

In order to confirm it, this function uses the hash function. The DRM Agent must use

this function to verify the hash value of the Content.

♦ V_Show_and_Select_Right()

This function shows the rights of the user and provides the GUI to the user to select

the rights. Besides, this function also confirms that the statement of the constraints is

valid.

♦ V_VerifyRO()

This function verifies the Rights Object. It uses the RSA algorithm to retrieve the

KREK. This function uses the device’s private key to decrypt the encrypted KREK.

Besides, this function uses the MAC hash algorithm to verify the integrity of <ro> and

the key confirmation.

 34

♦ V_GetKey()

This function retrieves the KCEK. In the Rights Object, the KCEK is encrypted. Thus,

this function uses the symmetric algorithm to decrypt the encrypted KCEK using the

KREK.

♦ V_Decrypt_Decode()

This function uses the KCEK to decrypt the encrypted Content. At the same time, this

function accesses the Content. This function implements a real-time player.

4.2 Our DRM Switchable System

From a consumer viewpoint, the large variety of DRM schemes often causes

confusions. The problem may become more serious when he/she wants to use the

content protected by different DRM systems using the same device.

Now, we extend our DRM system to solve this problem. At first, we review basic

architecture of our DRM system. Based on the OMA DRM, our DRM system consists

of the DRM Agent, the DRM Content Issuer and the DRM Rights Issuer. The DRM

Agent uses the DRM Rights Object to access DRM Content. However, the DRM Agent

must be implemented on the embedded device beforehand, so the DRM Agent is able to

manage the associated DRM Contents. This conventional design restricts an embedded

device to run one DRM system only. But this is undesirable to the users. The users wish

to access contents with less limits of the environment. Therefore, we come up a method

to solve this problem.

4.2.1 Concept of DRM Switchable System

Now, we first introduce our idea of a DRM switchable system. Since we hope to use

different DRM systems on the same embedded device, we must separate the DRM

system from the embedded device. When a DRM system is needed, our device

downloads it from its Issuer. This mechanism is similar to the IPMP because the IPMP

 35

uses the fine-grain tool management for the access of different contents. This

mechanism is also similar in downloading Rights Objects or Contents. They all are

downloaded from their Issuers. In order to download these components, we need a

controller to do the processing. Therefore, we introduce a bootstrap module which

controls this DRM switchable system. The bootstrap module must be built on the device

in advance. When a DRM system is ready, the bootstrap can initiate the DRM system

and run it. The previously described DRM system serves as a module and the entire

system is shown it in Figure 4-6.

Figure 4-6 Download-Mechanism of Module

In conclusion, the basic concept is allowing different pre-configured DRM modules

co-existent. A DRM module can be downloaded from a module provider. Since it is

pre-configured for the device, the fine-grain tool management and resolution is no

longer required at run-time. Instead, we introduce a bootstrap (built-in) module which

determines and verifies an external DRM module before loading it into the device. The

features of our approach are listed below.

 The flexibility is achieved by downloadable modules.

 The security for modules is guaranteed by the bootstrap module.

 The run-time fine-grain tool management is not required.

 36

 The extra cost is the storage for the downloaded modules, and the verification of the

modules.

4.2.2 Structure of DRM Switchable System

In our design, a DRM module is a downloadable set of data. Since a DRM module

is critical to the subsequent DRM Content consumption, we have to design a

mechanism to ensure that it is a legitimate one.

At first, we describe the two major entries of our switchable DRM. They are the

bootstrap and the module provider. When requesting a module from the module

provider, the bootstrap must be authenticated by the module provider. When getting the

module, the bootstrap needs to verify its identification and confirm its integrity. This is

achieved by using the standard Public Key Infrastructure (PKI) procedure. We show the

procedure of requesting a module in Figure 4-7.

Figure 4-7 Procedure of Requesting a Module

4.2.3 Relationship among Components

Now, we describe the structure of our switchable DRM system. In our design, it

consists of modules, bootstrap and platform. And a module includes the certificate and

the DRM program. We draw a simply diagram as shown in Figure 4-8.

 37

Certificate

DRM
program

Platform

Bootstrap

Module

Figure 4-8 Structure of the switchable DRM

In an analogy to the previously stated DRM model, the bootstrap program in this

process is similar to the DRM Agent in the previous model. The module provider is

similar to the Rights Issuer, and the DRM program is similar to the DRM Content. We

design a module certificate, which is similar to a Rights Object. Then, a similar security

model can be used and prevents invalid DRM program from being loaded into the

device.

The function of the bootstrap is to control the module loading. It includes the

necessary information of the platform. When the bootstrap wants to load the DRM

program, it must verify the certificate according to the platform. This mechanism is

similar to the previously stated DRM system but is simpler. This mechanism only needs

to confirm the valid platform for loading DRM program. We do not need to protect the

DRM program, so we integrate the certificate with the DRM program into one module.

4.2.4 Execution Procedure

After describing the relationship among components in our DRM switchable system,

we describe the execution procedure of this system. Here, we draw a diagram to show

its processing steps in Figure 4-9.

 38

Figure 4-9 Execution procedure in the switchable DRM system

At first, the bootstrap unit provides the GUI interface to a user to select a module.

When the bootstrap wants to load a DRM program inside a module, it must verify the

identification of the module and confirm its integrity. In addition, the bootstrap must

confirm the relations of the module and the platform. The relations are described by the

certificate in the module. Only after ensuring the module is valid for the platform, the

bootstrap can load the DRM program into the embedded device. This implies the

platform is a condition for accessing the module. This architecture is similar to that of

the DRM system. In other words, the platform plays the role of the User and the DRM

program is the Content. The difference is that the protection of the DRM program is

unnecessary.

4.2.5 Method of Implementation

After describing the execution procedure of our DRM switchable system, we need

to develop methods to implement it. Here, we list these methods and describe their

functionalities.

♦ V_Show_and_Select_Module()

 39

This function shows the modules to the user and it provides the GUI to the user to

select a module.

♦ V_DRM_Module_Verify()

This function verifies a module. This function verifies the signature of the module. It

confirms the identification and checks the integrity of the module. Also, this function

confirms the relationship between the module and the platform. Because the relations

between them are described by the certificate in the module, this function is responsible

for the verification of the certificate in the module.

♦ V_DRM_Module_Load()

This function retrieves the DRM program from a module and loads the DRM

program into the memory.

 40

Chapter 5

DRM Switching Schemes

In this chapter, we describe our design of the DRM switching schemes. In chapter

4, we have described our DRM system and the concept of our DRM switchable system.

Here, we shall combine them to be a complete DRM switchable system. Therefore, we

provide two DRM switching schemes and describe their approaches.

5.1 DRM Switching Scheme 1

Because we want to provide a DRM switchable system, we separate the DRM

system from the embedded system. When the user wants to use different DRM systems,

he/she can load and run it.

However, because we separate the DRM system from the embedded system, the

management of the DRM system becomes the important issue. Therefore, we must

provide the functionality of the bootstrap in the embedded device. In this design, the

bootstrap must be built in the embedded device beforehand. And it is responsible for

controlling the usage of the modules. After loading a module, the bootstrap transforms

the control to the module. From this viewpoint, we can divide this DRM switchable

system into two stages. The bootstrap becomes the first stage which controls the load of

a module. And the module becomes the second stage, which controls the access of the

content. We show this scheme in Figure 5-1. We call it scheme 1.

 41

Figure 5-1Two Stages of the DRM Switching Scheme 1

Now, let us describe the two stages of this scheme. In chapter 4, we have

introduced the structure of our DRM system and the downloadable mechanism of the

DRM module. Here, we use these basic components to design this scheme. We append

some GUI interface to this system and provide the execution flow to build a complete

DRM switchable system.

At the first stage, the bootstrap provides the GUI interface to the user to select a

module (DRM system). After selecting one, the bootstrap must verify its identification.

Only after verifying it, the bootstrap allows the module to be loaded into the embedded

device. Then, when a user decides to execute the DRM module, the bootstrap loads it in

and transfers the execution to it. The execution flow of an example implementation is

shown in Figure 5-2. Therefore, we complete the functionality of switching among

different DRM modules.

 42

Figure 5-2 Execution Flow of the DRM Switching Scheme 1

At the second stage, the DRM system starts to execute. We adopt our DRM system

stated in chapter 4. Thus, the steps of stage 2 have been described in the chapter 4. In

this design, the first stage can transfer the control to the DRM module at the second

stage. Similarly, if the second stage terminates, it also transfers the control to the

bootstrap at the first stage. Therefore, the user can arbitrarily select different DRM

systems and switch it among them. In this design, we succeed in implementing a

switchable DRM system.

5.2 DRM Switching Scheme 2

The foregoing is one possible type of DRM switching scheme. In that design, we

expect that users know all kinds of DRM modules, the associated contents and have the

ability to choose the suitable one. However, that design requires knowledgeable users

 43

and becomes impracticable. Users only care about the selection of the content and they

do not want to understand the relationship between the content and the module, so we

modify our design for this purpose. In this design, the user select the DRM protected

Content. And they do not need to know which DRM system is in use. We design our

DRM switchable system has the ability to select the right module for users

automatically.

5.2.1 Components

Before we redesign our DRM switching scheme, we state the desirable properties

and functions. First, our system allows the user to select the content. And after selecting

the content, the device can automatically find out the package of the rights object and its

associated module.

 Content

In order to achieve the stated goal, we must record how to use this content in the

content bitstream. Thus, we redesign the format of the content. Thus, we modify the

header of the content [14]. It is to be used to specify the associated package and the

DRM module. The components of the content are showed in Figure 5-3.

Figure 5-3 Modified Content Format of the DRM Switching Scheme 2 [14]

Originally the header of the content has described the identification of the rights

 44

object. Now, we modify this item to be the identification of the package. This package is

a container of the rights object. We shall discuss the package later. In addition, we

append the identification of the DRM module in the content. Thus, this design not only

can specify the associated package but it also can specify the associated DRM module.

 Bootstrap

Since the content bitstream describes how to use the content, we need a controller

to manage it. Here, we redesign the bootstrap as a controller. It not only manages the

DRM module but also provides a DRM switching interface. This is an abstract concept.

Before building this interface, we must analyze and organize each component. In this

approach, we find the DRM Agent and the bootstrap have similar properties. They both

need to verify something by using cryptographic algorithms. The DRM Agent must

verify the identification of the Rights Object. The bootstrap must verify the

identification of the module. Therefore, we integrate this property of the DRM Agent

into the bootstrap. Then, the bootstrap will pass the security requirement and become an

agent.

Base on these results, we design the bootstrap includes the User and the Platform.

Originally the bootstrap only includes the Platform, because it is only responsible for

the verification of the module. Now, because we integrate this property of DRM Agent

into the bootstrap, it includes the User. Thus, the bootstrap becomes the interface to

process the DRM switching system. Here, we draw a diagram to show its structure in

Figure 5-4.

In conclusion, the information in the User component is for the bootstrap to verify

the package, which contains the real rights object. And the information in the Platform

component is for the bootstrap to verify the module. Thus, the bootstrap is also an

interface, which controls the complete DRM switchable system.

 45

Figure 5-4 Modified Bootstrap in the DRM Switching Scheme 2

 Package

Now, we describe the package. Because the bootstrap is an interface which controls

all components, these components include the module and the rights object. But, the

rights object must be managed by the DRM program. Thus, we derive the identification

from the original rights object and transfer it to the package. In addition, we encrypt the

original rights object and pack it to the package. In other words, the package is a

container of the rights object. And the package provides the identification of the rights

object for the bootstrap. Here, we show the block diagram of the package in Figure 5-5.

Pakage

<ro>

<mac>

Rights

Encrypted K

MAC hash
of <ro>

Hash value
of content

Encrypted RO

ID

Figure 5-5 Structure of Package in the DRM Switching Scheme 2

 46

This architecture is similar to that of the rights object. The purpose of the package

is for the bootstrap to verify the identification of the rights object. Therefore, the

bootstrap can process it by using the ID and the hash value of the content in the package.

We note that there are no permission and no constraint in the package, because these

components are not necessary. Besides, we note that the package includes the encrypted

rights object. The encrypted rights object is served as a black box. It will be used by the

module. The module will use it to access the content.

5.2.2 Relationship

Since we have described the components of this DRM switching scheme (the

module, the package, the content and the bootstrap), we draw a diagram to show it in

Figure 5-6.

Figure 5-6 Relationship among components in the DRM Switching Scheme 2

Before we describe the flow of the execution, we should know their relationship.

There are six relationships between four components. To begin with, we describe the

relationship between the bootstrap and the content. We design a GUI interface for the

 47

users to select the content, so there is a simple relationship between them. Then, the

header of the content records the associated package and module. In other words, these

records represent the connection between them and the content. And this helps the

bootstrap to find the package and the module. Furthermore, the bootstrap verifies their

identification. Also, the bootstrap derives the real rights object of the package by using

the user information. On the other hand, the bootstrap certifies the certificate of the

module by using the platform information. These are also the connections between them

and the bootstrap. Finally, we come to the relationship between the package and the

module. Because the module provides the DRM system to the bootstrap and the DRM

system uses the rights object to access the content, the bootstrap derives the real rights

object from the package and delivers it to the DRM system.

5.2.3 Procedure

After we understand the relationship among the components in this DRM

switching scheme, we describe its procedure of execution. We divide this system into

five steps. In the first step, the bootstrap provides the GUI to the user to select the

content. And, the bootstrap starts to manage the content and parse it to know how to

access it. These include the information of the associated package and the associated

module. Thus, the bootstrap can retrieve the identifications of the associated package

and module from the header of the content.

In the second step, after the bootstrap gets the associated package, it must verify its

identification and confirm the relationship between the package and the content.

In the third step, after the bootstrap gets the associated module, it also must verify

its identification and confirm the certificate of the module. This will ensure the module

is suitable for the embedded device.

In the fourth step, after verifying the package and the module, the bootstrap

extracts the information from the package for the module to access the content. Thus,

 48

the bootstrap starts to derive the real rights object from the package and delivers it to the

module.

In the fifth step, the bootstrap loads the DRM program in the module into the

embedded device and transfers the control to the DRM program. Then, the DRM

program starts with the real rights object.

Then, the module executes to access the content with the real rights object. The

procedure of this execution is invisible. Therefore, we can consider this DRM program

is a black box. This design effectively prevents the hacker from invading. Finally, we

draw the execution flow to show these steps in Figure 5-7.

Figure 5-7 Execution Flow of the DRM Switching Scheme 2

 49

5.2.4 Method

The previous subsection describes the execution procedure. Now, we shall focus on

the detail and steps of the procedure. Here, we list our functions to describe how to

implement those steps.

 First step

V_Show_and_Select_New_Content()

This function lists the available contents and it provides the GUI interface to the users to

select. Because we modify the format of the content, we create a new function for the

users to select the content. In addition, this function can parse the content and retrieve

the identifications of the associated package and module.

 Second step

V_Verify_Singature()

This function verifies the signature. We use it to verify the signature of the package.

V_ConnectPAC()

This function is similar to the V_ConnectRO() in section 4.1.7. This function confirms

the relationship of the package and the content.

 Third step

V_DRM_Module_Verify()

This function verifies the signature of the module and confirms the certification of the

module.

 Fourth step

V_VerifyPAC()

This function derives the KREK from the package by using the information of the User.

V_Get_realRO()

This function uses the KREK to derive the real rights object from the package.

 Fifth step

 50

V_DRM_Moudle_Load()

This function loads the DRM program into the memory.

5.2.5 Conclusions

We make a summary of the DRM switching scheme 2. This DRM switching

scheme is similar to a recursive DRM system. In our design, the bootstrap must verify

the package and derive the real rights object. We can view this as the first DRM system.

And then, the module uses the real rights object to access the content. We can view this

as the second DRM system.

To avoid confusion, we provide two viewpoints. From a simple viewpoint, the

bootstrap is mainly responsible for the verification of the package. Then, the bootstrap

derives the sensitive information from the package and passes it into the module. We

can define this information as a key and the module as a tool for the decryption of the

encrypted contents. This mechanism is similar to the IPMP system. They both adopt the

downloadable mechanism of the tool. Figure 5-8 shows the simple concept of DRM

switching scheme 2.

Figure 5-8 Simple Concept of the DRM Switching Scheme 2

However, from the complicated viewpoint, the bootstrap is mainly responsible for

 51

the verification of modules. The bootstrap derives the sensitive information from the

package and passes it into the module. We can define the sensitive information as the

real rights object associated with the content and the module as a DRM system. Thus,

the bootstrap can load the module to access the content with the real rights object. In

this architecture, we transfer the downloadable mechanism of the tool to the DRM

system. Figure 5-9 shows the sophisticated concept of the DRM switching scheme 2.

Figure 5-9 Sophisticated Concept of the DRM Switching Scheme 2

Therefore, we give a simple concept to build the DRM switching system. Users do

not need to understand which DRM system is valid for the content. They only need to

choose the contents. Then, the bootstrap will automatically choose the valid DRM

system. In other words, the bootstrap provides a DRM switching interface. Since the

bootstrap is an interface, the format of the package and the content must be defined. But,

we do not define the sensitive information of the package. Thus, all kinds of the DRM

system can be adopted in this design. Besides, when the module uses the sensitive

information to access the content, these process are invisible. This design also

enhances the security of the DRM system.

 52

Chapter 6

Implementation and Application Examples

In this chapter, we describe our implementation of our DRM switchable system on

the embedded device. Because we choose the SPCE3200 embedded evaluation board,

we make use of its nice properties in implementing our design. Here, we will describe

our implementations in details. And, we give the execution flow in our design. Finally,

we provide some application examples to demonstrate its usefulness.

6.1 Implementation

6.1.1 Cryptographic Algorithm

Any DRM system uses the cryptographic algorithms. Because we follow the OMA

DRM system ideas in designing our DRM switchable system, we adopt some

cryptographic algorithms used by the OMA DRM. The adopted algorithms in

implementation are listed below.

(1) Hash algorithm : SHA-1

(2) MAC algorithm : HMAC-SHA-1

(3) Asymmetric algorithm : RSA-PKCS1

(4) Symmetric algorithm : AES, DES

(5) Signature algorithm : RSA-PKCS1

Hash algorithm uses a mathematical transformation to irreversibly encrypt the

binary information. MAC algorithm uses a similar function but it accepts an input as a

secret key. Asymmetric algorithm uses one key for encryption and the other for

decryption. On the other hand, symmetric algorithm uses a single key for both

encryption and decryption. Finally, the signature algorithm uses the hash function and

the asymmetric algorithm to verify a signature.

 53

In our design, we port the symmetric algorithms (AES and DES) from the

MPEG-21 Testbed [15] into our program. The other algorithms come from the XySSL

[16]. The XySSL provides the free software including the hash function and public-key

cryptographic. However, because we develop a DRM system on an embedded system,

we must care about the problem of the limited resource environment. Therefore, we

modify some functions to fill the bill. In order to reduce the complexness, we modify

the length of the key. The length of our key is 36 bytes. In addition, we must care about

the memory allocation. When the cryptographic algorithms are adopted by our system,

it needs to allocate some memory. Thus, we must prepare for that requirement before we

develop our design.

Here, we describe how to integrate these algorithms into our system.

 Hash algorithm

In our design, we need to confirm the relationship between the rights object and the

content and verify the integrity of the content. We use the hash function to achieve this

purpose. At first, the hash value of the content has been stored in the rights object. Thus,

if we want to verify the relationship, we only need to use the hash function to get the

hash value of the content and check it with the record of the rights object.

 MAC algorithm

In our design, we use the MAC hash algorithm to verify the integrity of <ro> and

the key confirmation. Because the MAC algorithm is a kind of the hash algorithm, it can

also verify the integrity. But this algorithm needs an input key. Thus, we use this

algorithm to achieve those two purposes. The <mac> of the rights object stores the

MAC hash value of the <ro>. Then, we can use the MAC hash algorithm to get the hash

value of the <ro> and check it with the record of the <mac>. Only when the input key is

valid and the <ro> is not modified, the check is passed. Therefore, this MAC algorithm

can verify the integrity of <ro> and the key confirmation at the same time.

 RSA algorithm

 54

The RSA algorithm is used by two schemes. One is the signature scheme. The other

is the encryption scheme.

The signature scheme uses the hash function and the RSA algorithm to verify a

signature. The RSA algorithm uses a pair of public and private keys. We first describe

how to generate a signature. We get the hash value of the information to be transmitted

by the transmitter. Then, we encrypt the hash value with the transmitter private key. This

is the signature of the information. When a receiver wants to verify the signature, it

must use the transmitter public key to decrypt the signature and check it with the

information hash value. Therefore, this scheme is a mechanism of digital signature.

The encryption scheme uses also the RSA algorithm for the protecting the

information. Here, we shall describe how to protect the information which will be

transmitted by the transmitter. We encrypt the information with the receiver public key.

When the receiver wants to get the original information, it decrypts the encrypted

information with its private key. Therefore, this scheme ensures that only the valid

receiver can recover the information.

6.1.2 GUI Interface

Now, we introduce our GUI interface to users in our design. Because there is no

operation system in the SPCE3200 board, we must use its libraries to implement our

GUI interface. We first study its libraries. They support the joystick library and some

application examples. We use those examples to design our GUI. And, we use the

joystick library to control the input. Then, we combine them to design our GUI interface.

But, because our design focuses on the DRM system, we only implement a simply GUI

interface for demonstration purpose.

We draw some symbols which represent the alphabets and the numbers. We control

the TV encoder buffer and fill up it with our symbols. So we can implement the function

of printing the string. Besides, because we use the library to control the joystick, we can

 55

implement the function for the user to select choices. The following functions are

examples.

♦ V_GUI_Show_Message(char* str);

This function can show a string on the screen.

♦ V_GUI_Check_Message(char* str);

This function can show the string and wait for users to check it. When the user wants to

check this message, he/she must push the button. Then, the program can continue to

execute.

6.1.3 Real-time Player

Now, we describe our implementation of the real-time player. We implement a

player which can decrypt and decode the encrypted content at the same time. At the

beginning, we study the example code provided by the Sunplus. In chapter 2, we know

the software structure of the MPEG Codec. Here, base on the MPEG software structure

and we modify it to achieve our goal. Now, the software structure is shown in Figure

6-1.

Encrypted
Content

Procedure 1

Interrupt

Procedure 2

1. Read file to buffer D
2. Prepare to decode from buffer C
3. Start to decode buffer C

1. Read file to buffer C
2. Prepare to decode from buffer D
3. Start to decode buffer D

1. Control the interval

Decrypt

Decrypt

Figure 6-1 Procedure of buffer control during decoding

 56

There is a pair of parallel procedures for decoding the content in the software

structure. In this procedure, we read the media objects and put into one buffer and then

prepare to decode media objects from the other buffer. After all the registers related to

decoding are set, we start to decode one frame. At this point, the interrupt (timer)

controls the interval between frames. Only at the end of the interval, we can read media

objects into the other buffer. In other words, the two parallel procedures take turns to be

used for decoding the media objects. In our design, we insert the tool for decrypting the

encrypted content before reading the file into the buffer. Therefore, we implement the

real-time player which can decrypt and decode the media objects at the same time.

6.1.4 Download Mechanism

In our design, we adopt the download mechanism to implement the DRM

switchable system. Now, we describe the implementation. Because the SPCE3200 is an

embedded system without operation system, we must allocate the memory by hand.

First, we implement the bootstrap and store it in the nor-flash. So, when the SPCE3200

is set to free run mode, this bootstrap will be loaded to SDRAM and start to execute.

On the other hand, we implement the download mechanism in the bootstrap.

Before the bootstrap loads the module, we must allocate memory for the bootstrap and

the module. The memory allocation is shown by Figure 6-2.

 57

Figure 6-2 Memory allocation of loading Module

The bootstrap program contains a few sections, which include the text section, the

data section and others. We must specify their address in the memory. Besides, the

module must be pre-build and their allocation must be consistent with the bootstrap. We

specify that the text section of the module follows the text section of the bootstrap and

the data section of the module follows the data section of the bootstrap. Then the

bootstrap, based on the specification, loads the module into the memory. Therefore,

when the bootstrap wants to execute the module, it transfers the control to the module.

In other words, the program counter branches to the text section of the module, so the

module can execute and access the contents.

6.2 Simulation

Our switchable DRM system is designed based on the OMA DRM. However,

because of the limited resource environment of an embedded system, we can not

implement all functions. In order to prove that our design is practicable, we modify

some functions or provide substitutes for those functions. Now, we discuss the

difference between the OMA DRM system and our DRM system.

 58

In the OMA DRM standard, the Rights Object Acquisition Protocol (ROAP) is

defined. It is used for registration of a Device with a Rights Issuer and to process the

requests and acquirements of the Rights Object. In other words, the network transmits

these messages according to the ROAP.

However, because we cannot use the network in the SPCE3200, we use SD card to

get the packages, the modules and the contents for the moment. As regards to the

acquirement of the package and the module, we omit the mechanism of the ROAP. In

our scheme, we assume that a bootstrap and a package issuer can somehow identity

each other in a trusted way. Similarly, we assume that a bootstrap and a module issuer

can somehow identity each other in a trusted way. Therefore, we design a flow chart for

requesting the package and the module as shown in Figure 6-3.

Figure 6-3 Simulation of execution flow

At the beginning, users insert the SD card containing the contents into the

embedded device (SPCE3200). Then, if the bootstrap does not detect an associated

package and module, it transfers the information of the platform to the SD card. Users

can take the information of the platform on the SD card to request for the associated

package and module from their issuers. After verifying the identification, the package

and module issuers transfer the package and the module to the SD card. Finally, users

 59

can insert the SD card into the embedded device. Then, because a bootstrap and those

issuers have identified each other in a trusted way, a bootstrap can ensure that the

package and the module are generated by valid issuers. Therefore, users can access the

contents.

The foregoing is a substitute for the ROAP for the moment. In the future, when the

embedded device is able to connect to the internet, we can supply those functions.

6.3 Application Examples

In this paper, we design a DRM switchable system and implement it. Now, we

show five examples to demonstrate our design.

 Example 1

This example shows the normal access of the protected content. We create a content,

an associated module and a associated package. Then, after verifying the package and

the module, our DRM switchable system can normally load the DRM program into the

device and run it. Then, after verifying the rights object, the DRM program decrypts and

decodes the content at the same time. Figure 6-4 shows the result of this example.

Figure 6-4 Normal access of protected Content

 60

 Example 2

This example shows the normal access of the original content. This example is the

same with the example 1 except for the content data. We do not protect this content, so

this content is not decrypted. Thus, the DRM program within the module only needs to

decode it for content consumption. Therefore, the DRM program serves only as a player.

Figure 6-4 shows the result of this example.

Figure 6-5 Normal access of original Content

 Example 3

This example shows the message that our DRM switching system detects an invalid

package. We create a content, a module and an invalid package. Then, our DRM

switchable system can detect the error and show the error message to notify the users.

Figure 6-6 shows this example.

 61

Figure 6-6 Message of invalid Package

 Example 4

This example shows the message that our DRM switchable system detects an

invalid module. We create a content, a package and an invalid module. Then, our DRM

switchable system can detect the error and show the error message to notify the users.

Figure 6-7 shows this example.

Figure 6-7 Message of invalid Module

 62

 Example 5

This example shows that the message that the DRM program within the module

detects an invalid rights object. We create a content, an associated module and an

associated package. But, we create a invalid rights object. Then, after verifying the

package and the module, our DRM switchable system can normally load the DRM

program into the device. But, after the DRM switchable system transfers the control to

the DRM program, the DRM program detects the invalid rights object and shows the

error message to notify the users. Figure 6-8 shows this example.

Figure 6-8 Message of invalid Rights Object

 63

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In chapter 4, we analyze and compare the OMA and the IPMP. Based on these

techniques, we design our DRM system on the SPCE3200. This DRM system is

designed according to OMA DRM with some concept of IPMP. Besides, we discuss

how to implement a DRM switching system. During discussing this problem, we find

that some concept of the DRM switchable system is similar to our DRM system.

Therefore, we design all necessary components of our DRM switchable system

according to our DRM system.

In chapter 5, we combine those necessary components to be a complete DRM

switchable system. Then, we provide two DRM switching schemes and describe their

approaches. The DRM switching scheme 1 is a direct combination, so it can divide two

stages. At the first stage, the DRM module is loaded into device by the bootstrap. At the

second stage, the DRM module starts to manage the DRM tasks. As regards the DRM

switching scheme 2, we design this DRM switching scheme has the ability to select the

right module for users automatically. And this designed DRM switchable system is

similar to a recursive DRM system. When the bootstrap verifies the package and derives

the real rights object, we can view this procedure as the first DRM system. When the

module uses the real rights object to access the content, we can view this procedure as

the second DRM system.

In chapter 6, we describe the implementation of our DRM switchable system on the

embedded device. And we provide some application examples to demonstrate our DRM

switchable system.

 64

7.2 Future Work

In our DRM switchable system, the bootstrap module must be implemented on the

embedded device beforehand and it must be a universal loader. Therefore, it may be

designed to be an interface of some other DRM standards.

 65

References

[1] Jaime Delgado, Jose Prados, Eva Rodríguez,"A new approach for interoperability

between ODRL and MPEG-21 REL", Second International ODRL Workshop 2005

(ODRL 2005), July 2005

[2] Sunplus, “SPCE3200 PROGRAMMING GUIDE v1.2.”

[3] Sunplus, “SPCE3200 MODULES USER MANUAL.”

[4] DRM Architecture V2.0 OMA-AD-DRM-V2_0-20060303-A, Open Mobile

Alliance, March, 2006.

[5] DRM Specification V2.0 OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile

Alliance, March, 2006.

[6] Study of FPDAM ISO/IEC 14496-1:2001/AMD3, ISO/IEC JTC1/SC29/WG11

N4849, Klagenfurt, July 2002.

[7] Information Technology - Multimedia Framework (MPEG-21) – Part 12: Test Bed

for MPEG-21 Resource Delivery, ISO/IEC 21000-12:2005, Apr. 2005.

[8] Information Technology－Multimedia Framework (MPEG-21)-Part 5: Rights

Expression Language, ISO/IEC 21000-5:2004, May 2004.

[9] C.W. Fan, F.C. Chang, and H.M. Hang, “An MPEG-4 IPMPX Design and

Implementation on MPEG-21 Test Bed”, ISCAS, Vol. 5, May. 2005.

[10] C.W. Fan, “MPEG-4 IPMPX Design and Implementation on MPEG-21 Test Bed,”

M.S. thesis, Dept. Electrical Engineering, National Chiao Tung University,

Hsinchu, Taiwan, R.O.C., June 2004.

[11] J. Ming and S.M. Shen, “Study Text of ISO/IEC 13818-11/FCD,＂ISO/IEC JTC

1/SC29/WG11 N5469, Awaji, Dec 2002.

[12] Open Digital Rights Language (ODRL), Version 1.1, August, 2002.

[13] DRM Rights Expression Language V2.0 OMA-TS-DRM-REL-V2_0-20060303-A,

 66

Open Mobile Alliance, March, 2006

[14] DRM Content Format V2.0 OMA-TS-DRM-DCF-V2_0-20060303-A, Open

Mobile Alliance, March, 2006

[15] C.N. Wang, et al., “FGS-Based Video Streaming Test Bed for MPEG-21

Universal Multimedia Access with Digital Item Adaptation, ＂ ISO/IEC

JTC1/SC29/WG11 MPEG2003/M8887, October 2002.

[16] An Open-source Cryptographic Library. http://xyssl.org

 67

自 傳

吳巧琳，西元1982 年出生於桃園縣。2005 年畢業於台灣新竹的國立

交通大學電子工程學系，之後進入該校電子工程研究所攻讀碩士學位。

以可替換式數位版權管理系統及其嵌入式裝置實作為研究主題。

