A DRM Switchable System

with Embedded Device Implementation

oy o4 X Igg

R R B

PoE R E 4 o oE oS

FERA BRI A g R0

A DRM Switchable System with Embedded Device
Implementation

My ZIgk Student: Chiao-Lin Wu
iR RE g Advisor: Hsueh-Ming Hang

B = 2 & + F
TI1M8 4 RIFL LS
ML @~

A Thesis
Submitted to Department ofiElectronics-Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in partial_Fulfillment of the Requirements
for the'Degree of Master
in

Electronics Engineering

June 2007
HsinChu, Taiwan, Republic of China

PEARA L &

FEBNARIREFRIRZ AR AKERE

FyA gk R g B

&
#ici o fg g @ (digital right management, DRM) & - f&#t4& » P i
ﬁ?%&ﬁ@ﬁﬁﬁﬁﬁﬁ’I*%»*ﬁ@m%ﬁ{iaa@»*gﬁ
TR E g R TR At SEMEEE L F THROREE
AE- AR RSP R AR ﬁom&w*%?@;%,@ﬁ@m
@éiﬁﬂkﬁc%%%ﬂiﬁﬁiﬁﬁﬁ’%ﬁ*4’%d?
FEAhE - EE R R R AL A F kT 2 2
Eighwme P o APRNT - fArrdE S o g Tk s ki T
e - KB > R* 2 P HERE RGP o B AR
P R R T R Lochgi e i B — b el S g TRk SRR Hood o
PGS M BE E T SR R R T R KRS R AP
ﬁ%é—ﬁ&a%ﬁ?¢ﬁm’ﬁm—ﬁ?%@ﬁﬁ&aﬂﬁ%ga?ﬁ
PRA 0 PR - BB EHCE P 4] B IR A
FEsRBc i R RS g R > P e e R g T en (E R ik
B mage Y o B RS TR L g e OMA B0 oo kB
E g oA fedd on T fm s B s 0 AP gt r 3 R RT o P IRR B
RSB S] GEM R o

’

5

(w‘

[

A DRM Switchable System with Embedded Device Implementation

Student: Chaio-Lin Wu Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &
Institute of Electronics
National Chiao Tung University

Abstract

Digital Rights Management (DRM) is a concept for controlling the distribution and
consumption of digital media. As embedded multimedia devices are becoming popular, there
are strong demands for the light-weight DRM systems that can run smoothly in a
resource-limited environment. Because implementing the DRM in the embedded device
becomes a trend, many companies‘create their private DRM on their device. However, this
phenomenon causes the problem: of interoperability between different DRM systems. In
addition, from the consumer viewpoint, users can not use all kinds of DRM system on the
same device. This is inconvenient for users.

In this thesis, we propose a switchable DRM system to achieve the usage of different
DRM systems on the same device. Before we design a switchable DRM system, we must
understand the feature of the platform and analyze the structure of some DRM systems. After
understanding them, we find an optimum integration of the platform and one DRM system.
Then, we based on the designed DRM system to propose the concept of the DRM switchable
design. We design an universal DRM module loader. This loader checks the validity of a

loadable DRM module, and it defers all the other DRM tasks to the loaded module. This

system integrates the concept of downloadable tools and the OMA architecture to provide a
balance between flexibility and complexity. We also implement the mechanism on an

embedded evaluation board to demonstrate its feasibility.

AR R A Bt PR B L0 & 5 Ry R HE] B
MenE Y BRIV Lk o ARy AR 0 BT SR S AL KR
& R BT R SRS R e S SRR UREE £
SR e B A B FIELEPY i 0 350 N BB X e KRR Z RS RAR T
FORE TSGR ERATEE AR K G HLI P R B S MR R

>‘

Y R
ﬁ P

BipAs REMUNT I ONGEAITR HERET - BREFTRR RN Y
PR LEOTIRT UEY oL R R IMAR Y0 - BARARBES B § 4 o
Im’?.%iﬁm%—%i”ﬁfw:rmm’—:e:@wé?sa FRA R e v R
BRSPS E o LA E e G 2 e v R 0 R JE A S R
G ensE o 4 RA T A L A AER IR TN L R RN R s

By

Rl R A LES B ARG o g v R R] R IG
e

Bots o BREHNE A SR o W PEAN SR -),-f HEFLLF 5 A B

QR ERRE S A SRR RN (I & e A

WA A AE - BA T PIFE R R R 0 ST B A A g

|

Vi

Contents

B O et iii
AADSTTACT. ...ttt bbbt iv
Chapter 1 INTrOTQUCTION.........eiiiiieiiiee e bbbt 1
Chapter 2 Introduction of the SPCE3200.........ccccuiiiiiriiiieiiesieeee e 3
2.1 STCOME PIOCESSONooviveviieicvesee ettt sttt bbb 3

2.2 STCOME IDE ...ttt bbb 4

2.3 Memory Interface Unit (MIU).........cooviiiiiiie e 4

2.4 Display Unit (TV ENCOGET)oouiiiiieiesiesiese s 5

2.5 BUFTEI CONTIOL UNIT ...t 6

2.6 INtErrupt CONLIOMIET ... e e 7

2.7 MPEG-4 ...ttt 9
271 AP et 9

2.7.2 The COUEC SIIUCTUIE ... iuiimsneseerereerenrenreensesseseeessesr e snens 10

Chapter 3 OMA DRM and IPIMP grwssmms oo 08b ettt 14
3.1 CONCEPLUAL TUBA ... fas s vwensssssnassdess asfannnsas 4T e veeneeeseeseeeneeaseesseessesseesseensesseesseensessennes 14
B2ZO0MA L e e e 15
3.2. L ATCRITECTUNE ... i it et 16

3.2.2 Trust and Security Model .l il e 17
3.2.3USING OMA DRM ...ttt bbb 19

.3 MPEG IPIMP ...ttt e b e ne e 19
3.3 L INTrOAUCTION .. 19

3.3.2 IPMP COMPONENTS.......eiiiiiiiiieiie ettt 20

333 USING IPMP .t 23

Chapter 4 Switchable DRM APPIrOaChc.coviiiiiiiiiee e 26
4.1 OUI DRM SYSTEIM ...ttt ettt ettt nib e bb e e s nneesneees 26
4.1.1 Structure of OUr DRM SYSTEIMcoiiiiiiiiiirieeesee e 27

4.1.2 Relationship among COMPONENTS..........cceveieriireniresieeeee e 28

4.1.3 The Design of the Rights ODJECEccoviiiiiiii e 29

4.1.4 Trust and Security MOcccveiviiieiiee e 30

4.1.5 EXECULION PTOCEAUIE.......c.ciiiiinieiiitiieeieie st 32

4.1.6 Method of IMpPIemeNntationccocveiieii i 33

vii

4.2 Our DRM Switchable SYStemccooiiiiiieie e 34

4.2.1 Concept of DRM Switchable SYStem.........ccooeiieiieieiiese s 34

4.2.2 Structure of DRM Switchable System...........cccooiiiiiiiniiiiccc 36

4.2.3 Relationship among COMPONENTS..........cceieieriireriresieeee e 36

4.2.4 EXECULION PrOCEAUIE ..ottt 37

4.2.5 Method of Implementationccccveiiiii i 38

Chapter 5 DRM SWItChiNg SChEMESc.viiiiiicie it 40
5.1 DRM SWitChing SChEME Lc.ooiiieee e 40

5.2 DRM SWitChING SCHEME 2 ... 42
5.2.1 COMPONENES ...ttt b e r e nn e 43

5.2.2 RelAtIONSNIP .o 46

5.2.3 PrOCEUUIE ...ttt 47

5. 2.4 IMEENOG.......coiiiiiieee e bbb 49

5.2.5 CONCIUSIONS ..ot g i et nr e 50

Chapter 6 Implementation and Apphication. EXamples..............ccooooiiiiiiiiniicee 52
OT0 N 10T o] 1= g T g = U o e e S S 52
6.1.1 Cryptographic Algorithm. s 52

6.1.2 GUI INEEITACE........ it ettt 54

6.1.3 Real-time PIAYEN e 55

6.1.4 DoOWnload MECHANISMcveiiiiicise s 56

6.2 SIMUIATION.......eeiiiii et 57

6.3 Application EXAMPIES......cciiiiieiie e 59
Chapter 7 Conclusion and FULUIE WOTKoooieiiiiiiieeie e 63
7.0 CONCIUSION ...ttt ettt et ben s 63

7.2 FULUIE WWOTK ...ttt bbbt 64
RETEIENCES ...ttt bbbt n e 65
B L1 USRS 67

viii

List of Tables

Table 2-1 Interrupt vector table of the S*core
Table 2-2 APl of MPEG-4 Codec...................

List of Figures

Figure 2-1 Memory mapping Of the SPCE3200..........cccoovririiiniiieiee e 5
Figure 2-2 The components of the Buffer Control Unit...........cccccoovniiiiiiciinnnn. 6
Figure 2-3 The software structure of the MPEG4 encoding.cccccevvevvieeieenienne 10
Figure 2-4 The setting of the Buffer Control Unit for encodingcccccvevenene. 11
Figure 2-5 The software structure of the MPEG4 decoding.cccccevvevviveiieennenne. 12
Figure 2-6 The setting of the Buffer Control Unit for decodingccccccvevenene. 12
Figure 3-1 The conceptual structure of our DRM Switchable System.................... 15
Figure 3-2 Architecture of the OMA DRMcoooiiiiiiiiieiieeeee e 16
Figure 3-3 Components of the IPMP...........ccooiiiiii e 20
Figure 3-4 MPEG-4 IPMP basic concept [11]......cccevvevieieiieiieie e 23
Figure 4-1 Structure of the oUr DRMcccoooiiiiieiiecee e 27
Figure 4-2 Procedure of requesting the Content and the ROcccccevvvevveincnnne 28
Figure 4-3 Structure of our DRM.COMPONENTS........cc.eiviriririeiieieiesie e 28
Figure 4-4 Structure ofithe Rights ObJeCt [13]cccooviieiiiece, 30
Figure 4-5 Execution procedure in our-DRM:SYStEM.........cccovriieiiieniiisicieiee,s 32
Figure 4-6 Download-Mechanism of Maodule.............ccccoooveiiiiiiici i 35
Figure 4-7 Procedure of Requesting'a Module............ccccoooveviiiiiiciecic e, 36
Figure 4-8 Structure of the switchable DRMc.cccooeiiieiicic e 37
Figure 4-9 Execution procedure in the switchable DRM system.............ccoccocevvnine 38
Figure 5-1Two Stages of the DRM Switching Scheme 1........ccocviiiiiiiicicien, 41
Figure 5-2 Execution Flow of the DRM Switching Scheme 1........ccccccooovieiieiene. 42
Figure 5-3 Modified Content Format of the DRM Switching Scheme 2 [14] 43
Figure 5-4 Modified Bootstrap in the DRM Switching Scheme 2.............ccccoveueee. 45
Figure 5-5 Structure of Package in the DRM Switching Scheme 2............c.cccoeue.e. 45
Figure 5-6 Relationship among components in the DRM Switching Scheme 2......46
Figure 5-7 Execution Flow of the DRM Switching Scheme 2..........cc.cocecviiine, 48
Figure 5-8 Simple Concept of the DRM Switching Scheme 2............cccccceiviininenne 50
Figure 5-9 Sophisticated Concept of the DRM Switching Scheme 2 51
Figure 6-1 Procedure of buffer control during decoding..........cccccevvvevieiiiciveniecnnenn, 55
Figure 6-2 Memory allocation of loading Module...........cccccevieviieveiiececce e 57

X

Figure 6-3 Simulation of execution fIOW...........c..cccooviiieii i 58

Figure 6-4 Normal access of protected Content..........ccceveveevveresiieneene e 59
Figure 6-5 Normal access of original Contentcoovvivieienene s, 60
Figure 6-6 Message of invalid Package..........ccoceveiiniiiiiiiiiecee e 61
Figure 6-7 Message of invalid Module ... 61
Figure 6-8 Message of invalid Rights Object...........ccccoeiieiicii i 62

Xi

Chapter 1

Introduction

Digital Rights Management (DRM) is a term used for digital content consumption
control technology. It plays an important role for content providers -- to control the
customer access to their content, including software applications, sensitive documents,
music, games, and movies.

In recent years, the consumer electronics devices are getting more and more
popular. They bring in convenience and multimedia content to our daily life. This also
means that the embedded devices need to implement digital rights management (DRM)
in order to access the contents. .The,combination of DRM schemes and embedded
devices forms a large array of implementation cases. To support a wide range of devices,
we can afford a smaller common set of DRM tools but in order to support a wide range
of DRM tools, we often increase the device complexity.

In addition, because there jare @ ‘number of existing DRM systems, the
interoperability issue is another critical problem. In recent years, many R&D institutes
work on this subject. Some of them focus on the development of Rights Expression
Languages (RELSs) [1]. This approach attempts to solve the interoperability problem by
using a language model. Some others develop the interoperable DRM standards suitable
for different DRM systems. This approach interacts with the native software interfaces
of each DRM system and provides an interoperable layer on top. However, the latter
approach is highly complex in implementation.

In this thesis, we choose a somewhat different view on this problem. Instead of
developing an unified language or an unified API, we propose only an universal DRM
module loader. This loader checks the validity of a loadable DRM module, and it defers

all the other DRM tasks to the loaded module. This may lead to a little more storage and

computation cost, but it should be affordable in today’s mobile multimedia capable
devices.

This thesis is organized as follows. In chapter 2, we briefly describe the structure
of the SPCE3200 board. In chapter 3, we briefly describe the OMA and the MPEG
IPMP concepts. In chapter 4, we design our DRM system based on the OMA DRM with
some concepts of the IPMP. Also, we describe the concept of our DRM switchable
system. This is based on the idea discussed earlier. In chapter 5, we design the DRM
switching mechanism based on our switchable DRM concept. In chapter 6, we
implement our scheme on an embedded device evaluation platform to demonstrate its

feasibility.

Chapter 2
Introduction of the SPCE3200

In this chapter, we introduce the SPCE3200 board [2][3], because we shall use it to
develop our DRM switchable system. SPCE3200 is a SoC designed for developing
multimedia applications. To achieve this objective, SPCE3200 is composed of S*core
processor, TV encoder, 24 channels Sound Processing Unit (SPU) and other essential
peripherals. Therefore, SPCE3200 is able to generate graphics and sound used
multimedia applications. In addition to these functions, SPCE3200 has some special
functions. SPCE3200 has MPEG-4 and JPEG codec to play video and display image
and has various storage devices to, access data. Because SPCE3200 is designed for
developing multimedia applications; a. 32:bit powerful Integrated Development
Environment (IDE) tool is also provided. Since SPCE3200 has so many practical
functions and provides a+.convenient tool, we can easily use it to develop our

applications. Here, we shall introduce the SPCE3200 board as follows.

2.1 S*core Processor

S*core 7 processor is the latest 32-bit CPU developed by SUNPLUS. It is a single
issue, 7-pipeline stage and 32-bit RISC with Sunplus-owned instruction set architecture
(ISA). The character of this ISA is 32/16 bit hybrid instruction mode and parallel
conditional execution for high code density, high performance and versatile application.
For SPCE3200, S*core 7 can run up to 162MHz.

S*core 7 supports 4-KB two-way set associative I/D-cache and 4KB LIM/LDM
(local instruction/data memory). The MMU (memory management unit) is also
supported for RTOS. Besides, Sunplus also provides two custom engine and three

coprocessor interfaces for user defined function extension. The bus interface of the

processor is compliance to the AHB v2.0 for easy integration into SoC implement.
Moreover, the micro-architecture includes SITAG for efficient debugging and In-Circuit
Emulation (ICE).

There is another feature that we must not ignore. S*core 7 provides sixty-three
prioritized vector interrupts, a useful feature of the CISC type Microprocessor. The

reason for providing this interrupt processing mechanism is for fast interrupt service.

2.2 S'core IDE

S*core IDE is a 32-bit powerful Integrated Development Environment (IDE) for
developing applications in C or assembler for the S*core series CPU. It can be run on
Windows98, Windows2000 and WindowsXP. S'core IDE has two modes. One is
Simulator mode, the other is In-Circuit Emulation mode.

In the Simulator mode;, S'core. IDE provides two external devices for easy
debugging our program. One is LCD which can display image or play video, the other is
UART which can print strings. Boeth-them:are only used in simulator mode. On the other
hand, In-Circuit Emulation mode means-the program should be downloaded by SJProbe

from the computer.

2.3 Memory Interface Unit (MIU)

MIU supports several different types of external memories, SDRAM, Parallel
ROM and NAND Flash. This flexible feature lets users easily develop their applications.
In addition, MIU also supports two internal embedded memory blocks. One is 64K bits
internal SRAM as LDM (Local Data Memory), the other is 256K bits ROM as
embedded BOOT ROM.

We can represent memory mapping in Figure 2-1.

Virtual Physical

O0xFFFF_FFFF O0xFFFF_FFFF
_ . _
0xFF00_0000 Debug Space 2MB 0xFF00_0000
Kernel Space —
Cacheable ~1GB
0xC000_0000 0xC000_0000
- Kernel Space R .
XA Cacheable 0xA000_0000
0x9F00_0000 reset -
Kernel Space
0x8000_0000 Noncacheable
0x7FFF_FFFF
2GB
User Space
Cacheable
0x2000_0000
0x0000_0000 S12MB 0x0000_0000

Figure 2-1 Memory mapping of the SPCE3200

This diagram indicates thatsthe virtual.memory only represents the address memory
space. Notice that there are two virtual‘memory regions pointing to the same physical
memory region. The distinction between them/is if they can be cacheable. This design is
for the processor to access memaory-fast: We may note, in passing, that there is a

reserved region in physic memory for internal SRAM and internal boot ROM.

2.4 Display Unit (TV Encoder)

TV encoder unit in SPCE3200 provides multi-TV system and multi-screen mode
with 9 bit video DAC to generate composite video signal to TV screen with VGA
resolution. The multi-TV systems not only include NTSC and PAL but also interlace
and non-interlace. The multi-screen modes include Q-VGA mode, H-VGA mode, and
VGA mode. User can arbitrarily arrange for these modes whenever needed. TV encoder
can display when frame buffer is rendered by CPU or MP4 decoder. In particular, frame

buffer can be allocated everywhere in the SDRAM.

2.5 Buffer Control Unit

SPCE3200 provides comprehensive hardware logic, Buffer Control Unit, to
coordinate all double or triple buffers switch in TV encode unit. This represents buffer
control unit can detect the updated output buffer and change the display area pointer in
the TV encoder to that buffer. In other words, TV encoder will be able to update TV
frame buffer automatically without any CPU program required for buffer switching.
This mechanism provides programmers to simplify the program flow and reduce the
possible timing or interrupt function overhead problems in the system.

There are two important control registers. One is P_C2P_SETTING. The other is
P_PTR_SETTING. The former provides four items to set buffer control unit. The first
item is for the selection of the module which writes the buffer. The second item is for
the selection of the module which reads the:buffer. The third item is for the selection of
the buffer mode. The buffer mades include double buffers and triple buffers. The forth
item is to set if the buffer-control unit starts. We can represent four items in a simple

diagram as follows (Figure 2-2).

Enable

Disable
Start in PPU

Input Output
CSI » Buffer Control > BALEE
MP4 g g TVE
LCD
Buffer number
Double
Triple

Figure 2-2 The components of the Buffer Control Unit

On the other hand, the buffers can be controlled by the software or the hardware.

Therefore, the latter register is to select one of them.

2.6 Interrupt Controller

Because S’core processor only receives the IRQ interrupt events from the
peripheral device without a priority mechanism in it, the interrupt controller serves as an
interrupt handler. The priority of each interrupt source is programmable. Besides, the
interrupt service routine is also programmable. Therefore, when there are multiple
interrupt requests from internal peripherals and external interrupt request pins, the
hardware in the interrupt controller shall provide the interrupt service priority and the
software can denote what kind of the interrupt request happens. After denoting the
interrupt request, the interrupt process must jump to the corresponding service routine.

Because the interrupt handler must calculate the offset address in the interrupt
vector table to find the interrupt service routine, this requires long interrupt latency. To
resolve those inefficient processes, S’ core processor uses another interrupt processing
mechanism called vectored interrupt:-mode. This vector address records the offset
address of each service routine in the‘interrupt vector table. Thus, the interrupt handler
can skip the search process to get the offset.address whenever the processor receives the
interrupt. This mechanism improves the overall performance of the system dramatically.

Finally, we show the interrupt sources in a simple table as follows (Table 2-1).

Slave | Source Source Vector
Group | Number address
0 0 SPU FIQ 63

1 SPU BeatlRQ 62

2 SPU EnvelopIRQ 61

3 SD servo 60

4 ADC gain overlow / ADC recorder FIFO overflow 59

5 General purpose ADC 58

6 Timer base 57

7 Timer 56
1 8 TV vblanking start 55

9 LCD vblanking start 54
11 Light Gun 52
12 Sensor frame end 51
13 Sensor coordinate hit 50
14 Sensor motion frame end 49
15 Sensor capture done + sensor debug IRQ 48
16 TV coordinate hit 47
18 USB host + device 45
19 SIO 44
20 SPI 43
21 UART (IrDA) 42
22 NAND 41
23 SD 40
24 12C master 39
25 12S slave 38
26 APBDMA CH1 37
27 APBDMA CH2 36
28 LDM_DMA 35
29 BLN_DMA 34
30 APBDMA CH3 33
31 APBDMA CH4 32
32 Alarm + HMS 31
33 MP4 30
34 C3(ECC module) 29
35 GPIO 28
36 Bufctl (for debug) + TV vblanking end (for debug) 27
37 RESERVED1 26

38 RESERVED?2 25

39 RESERVED3 24

Table 2-1 Interrupt vector table of the S*core

We will give a lot of examples to illustrate the usage of the interrupt service. We
can use source number 7 (timer) to control the frame rate for decoding video media. We
also can use source number 8 (TV vblanking start) to control the buffer switch for
playing the video media. When this interrupt is requested, the service routine
programmed by us controls the buffer switch. In addition, we can use source number 12
(Sensor frame end) to control the handle of the video media from the CMOS sensor. We
can encode that video media from the CMOS sensor automatically and use this interrupt

to know what time ends this handle.

2.1 MPEG-4

In SPCE3200, the MPEG-4 codec-is implemented by the hardware. This codec is
an important and practical part ‘of the SPCE3200. Now, we introduce some features of
the MPEG-4 codec. It not only supports QVGA and VGA image resolutions but also
4:2:2 and 4:2:0 data formats. The quantization step size can be programmable. Besides,
this codec can achieve 30f/s frame rate for encoding or decoding with QVGA

resolution.
2.7.1 API

We shall realize the APIs of the MPEG-4 codec. We draw the Table 2-2 to show

and describe it.

API API Description

mp4_SetRunMode() Set conference mode or normal mode.

mp4_compressor_prepare() Set registers relative to encoding.

mp4_set_encode_frame_buffer_address() | Set buffer address for encoding

mp4_compress_frame() Encode one frame.

mp4_decoder_prepare() Set registers relative to decoding.

mp4_set_decode_frame_buffer_address() | Set buffer address for decoding

mp4_decompress () Decode one frame.
mp4_switch_decode_frame_buffer() Software switch buffer control.
mp4_reset() Reset MPEG-4 engine.

Table 2-2 APl of MPEG-4 Codec

The Sunplus has used these APIs to support some video containers such as AVI,
MP4 and SP4 (the file format of Sunplus-defined). Therefore, these APIs can be used to

develop different applications:

2.7.2 The Codec Structure

Now, we introduce the structure of the-encoder and the decoder. This is an example
provided by the Sunplus. In the future, we can serve this example as a reference to

design our applications.

® Encode
Get Raw Data
y T MPEG4 Encode
y
SD_Card Fill AVI header Contain to AVI
Y
y A
SD_Card

Get Raw Data

Figure 2-3 The software structure of the MPEG4 encoding.

10

Figure 2-3 is a diagram which shows the software structure of the MPEG4
encoding. We get raw data from the sensor or SD card and then transfer it to MPEG4
encoder. After encoding it, we contain it to AVI format and store it in the SD card. As
the diagram indicates, we use two buffers to get raw data and switch them. The buffer

switch provides the efficiency for encoding.

input output

CMOS Sensor » Buffer Control » MPEG Encoder

Figure 2-4 The settingof the Buffer Control Unit for encoding

Since we use two buffers for encoding, we: can set the buffer control unit. Figure
2-4 shows the setting of the. Buffer Control Unit for encoding. At first, we select two
buffers for encoding. Secondly, we"can ‘set the sensor or the SD card as the module
which writes the buffer. Thirdly, we set MPEG4 codec as the module which reads the
buffer. In addition, we can select the software or hardware to control the buffers switch.
This control includes not only the input setting but also output setting. Because we must
contain raw data to AVI format, we set the software to control the output of the buffers.
On the other hand, if we get the raw data from the sensor, we hope to encode it
immediately. Therefore, we set the hardware to control the input of the buffers. Finally,
because we set the hardware to control input of the buffers, we also need to set the
hardware to control the Buffer Control Unit. In this design, when the CMOS sensor
requires the interrupt, the MPEG4 encoder can base on it to decide if it needs to encode
the next frame. This means that CMOS sensor will be able to update frame buffer

automatically without any CPU program required for buffer switching. But if we get the

11

raw data from the SD card, we must use the software to control the buffer switching
because the SD card can not update frame buffer automatically.

® Decode

Get AVI data

@ Parsing MPEG4 Decode
A

/
Get AVI data

Figure 2-5 The software structure of the MPEG4 decoding.

Figure 2-5 is a diagram. which shows ' the software structure of the MPEG4
decoding. We get AVI data:from.the-SD card and parse it. Then we transfer it to MPEG4
decoder. After decoding it, we play it inTV. As the diagram indicates, we use two
buffers to get AVI data and switch them. The buffer switch provides the efficiency for

decoding.

input output
MPEG Decoder » Buffer Control » TV Encoder

Figure 2-6 The setting of the Buffer Control Unit for decoding

Since we use two buffers for decoding, we can set the buffer control unit. Figure

12

2-6 shows the setting of the Buffer Control Unit for decoding. At first, we select two
buffers for decoding. Secondly, we can set the MPEG4 codec as the module which
writes the buffer. Thirdly, we set the TV as the module which reads the buffer. In
addition, we can select the software or hardware to control the buffers switch. This
control includes not only the input setting but also output setting. Because we control
the flow of the decoding, we set the software to control the input of the buffers. On the
other hand, we hope to decode media object and play it at the same time. Therefore, we
set the hardware to control the output of the buffers. Finally, because we set the
hardware to control output of the buffers, we also need to set the hardware to control the
Buffer Control Unit. This means that TV controller will be able to update frame buffer
automatically without any CPU program required for buffer switching. However, we
also can set the software to control; the .output of the buffers but we must switch the

buffers by ourselves.

13

Chapter 3
OMA DRM and IPMP

In this chapter, we briefly describe the motive of our research and explain why we
research in this topic. Also, we propose our idea and show its structure. Then, we briefly
describe two open standards. Because we want to design a DRM switchable system, we
need to understand the operations of the existing DRM systems. With different
application scenarios and deployment environments, DRM systems vary significantly in
architecture and in implementation. Here, we introduce two DRM systems. One is OMA
DRM; the other is MPEG IPMP. In the next chapter, we shall analyze and use them to

design our DRM switchable system on the SPCE3200 board.

3.1 Conceptual Idea

In recent years, implementing the DRM system on the embedded device becomes a
trend and many companies ‘have developed their private DRM system on their device.
These private DRM systems are ‘usually designed to be closed systems. This will
enhance the security of these DRM systems. Also, this design may help the
manufacturers to monopolize the market. However, this is also said that users can only
use the corresponding DRM system on the specific embedded device. This is
inconvenient for the consumers. From the consumer viewpoint, they want to access all
kinds of the media objects but they do not want to know the relationship between the
DRM system and the device. Thus, we shall discuss this issue and design a system to
solve it.

In our thesis, we propose a DRM switchable system to achieve the usage of different
DRM systems on the same device. In particular, our DRM switchable system is not a
new DRM system. It is a mechanism to switch different DRM systems on the same

device. Simply speaking, in our design, users can access different media objects without

14

worrying about which DRM system is suitable for the specific device, this job is left for
our DRM switchable system to do.

Here, we describe the concept of the DRM switchable system and show its structure.
In our design, when a user selects one media object, our DRM switchable system must
find the associated DRM system and execute it automatically. Our DRM switchable
system uses the information of the media object to do that. Therefore, we show its

structure in Figure 3-1.

3. Access
DRM Media
System "| Object
2. Find 1. Be selected
DRM
Switchable
System

Figure 3-1 The conceptual structure of our DRM Switchable System.

After we propose the conceptual structure of our DRM switchable system, we
prepare to design a complete system. Therefore, we must start to study different DRM
systems. In the following sections, we shall introduce two public DRM systems. Based

on these DRM systems, we design our DRM switchable system.

3.2 OMA

OMA (Open Mobile Alliance) is a global organization set up by the mobile
communication industry. One of its goals is to specify an open standard to make OMA
services interoperable across different devices. Because this goal relates with our

purpose, we study its DRM standard. Here, we shall introduce the basic concept of the

15

OMA DRM.

3.2.1 Architecture

Based on the OMA documents [4][5], the super-distribution and backup scenarios

form a comprehensive example use of the OMA functionality. There are five major

OMA entities involved in the digital rights management process.

1.

2.

DRM Agent — responsible for controlling the use of contents.

Content Issuer — manages the delivery of DRM contents.

Rights Issuer — assigns permissions and constraints to the DRM contents and
generates Rights Object for expressing them.

User — the consumer of DRM contents.

Off-device Storage — provides an alternative storage space other than the consuming

mobile device.
€y
DEM System =
N _o'r. ‘;‘y‘gy,‘
T ‘P’ b
Content Rights Content
Issuer Issuer Provider
&h =
Protected)
Content o)
Rights
Object
Network Store Jec
=5 < &
— 2, L)
& be—— ¥ %
Media DRM Agent @: —
Protected Other DRM User
Content Protected Agents

Content

Figure 3-2 Architecture of the OMA DRM

Figure 3-1 shows the five major OMA entities. We shall describe their functions. A

content issuer delivers DRM Content. Before a User receives a specific DRM Content

16

from any Content Issuer, it is packaged to protect it from unauthorized access. When
consuming the DRM Content, the User should pass the DRM Agent’s access control.
The control information is contained in the Rights Object associated with the content.

A Rights Object governs how DRM Content may be used and it is generated by a
rights issuer. It is described as an XML document to specify permissions and constraints
associated with a piece of DRM Content. Therefore, the User must obtain a valid Rights
Object from a Rights Issuer before accessing the content. In other words, DRM Content
cannot be used without an associated Rights Object, and may only be used according to
the permissions and constraints specified in a Rights Object.

At the point of consumption, a User has to purchase Rights Objects associated with
DRM Content. A DRM Agent is responsible for this enforcement. The DRM Agent
serves as a trusted component of a;device and controls access to DRM Content on the
device, and so on.

In addition, a Rights Object is designed to bé bound to a specific DRM Agent. This
allows a User to freely transfer the content to any off-device storage. However, typically

different Rights Objects are required;to'consume the same content on different devices.

3.2.2 Trust and Security Model

The main purpose of any DRM system is to ensure that permissions and constraints
associated with DRM Content are enforced. At the point of consumption, Rights Object
and DRM protection are enforced. Here, we introduce the DRM Agent how to enforce
permissions and constraints and how to control access to DRM Content.

The basic steps of content protection are as follows.

I. Content packaging
When Content is generated, it can be pre-packaged. It is packaged in a secure
content container (DCF). DRM Content is encrypted with a symmetric content

encryption key (Kcex). The DRM Content Format (DCF) is defined by the OMA DRM

17

standard. It does not only include the encrypted content but also additional information,
such as content decryption, rights issuer URI, and so on. This additional information
does not have to be encrypted and is presented to the user.
II. DRM Agent authentication

Before getting the content and the rights objects, the content and rights issuers
must securely authenticate a DRM Agent. For this purpose, every DRM Agent has a
unique private/public key pair and a certificate to identifying the DRM Agent and
certifying the binding between the agent and this key pair.
I11. Rights Object generation

A Rights Object is an XML document. It expresses not only the permissions and
constraints for accessing the content; it also includes the encrypted Kcex. This design
ensures the DRM Content cannot; be used without an associated Rights Object. To
consume the content, the User Agent|verifies the Rights Object, extracts and decrypts
the encrypted Kcek, applies Keex to the encrypted content, and performs the requested
operation.
IV. Rights Object protection

At third step, the content encryption key (Kcex) is encrypted with a rights
encryption key (Kgrek). This design protects the sensitive parts of the Rights Object.
However, the rights encryption key (Krek) also needs to be protected. Therefore, it is
encrypted by the DRM Agent’s key. This design does not only protect the CEK but also
achieve the User Agent binding. In other words, only the target DRM Agent can access
the Rights Object and thus the DRM Content.
V. Delivery

After generating the RO and DCF, they can be delivered to the target DRM Agent

using any transport mechanism.

18

3.2.3 Using OMA DRM

To summarize the above trust and security model, a typical sequence DRM Agent’s
steps before it consuming a DRM Content is as follows.
1. User request specific content
2. DRM Agent request Rights Object
3. Verification of the Rights Object
4. Content encryption key Retrieval

5. Content Access

3.3 MPEG IPMP

The MPEG IPMP is an international standard. Because it has the flexible property
for the content consumption, wesstart to’study its documents. Here, we shall introduce
its history and describe the basic ‘companents-of the MPEG IPMP. Finally, we shall

describe the procedure of using MPEG IPMP.
3.3.1 Introduction

The international MPEG standard committee started their efforts on specifying
Intellectual Property Management and Protection (IPMP) from MPEG-4. The concepts
have been carried through several MPEG standards: MPEG-4 IPMP hook (now
obsolete), MPEG-4 IPMP Extension (IPMPX) [6], MPEG-21 IPMP, and MPEG-21 Test
Bed [7]. The IPMPX concept is also back-ported to MPEG-2. In brief, MPEG-21 IPMP
describes the latest concepts of IPMP, while the others provide concrete implementation
of IPMP architecture and integration.

The IPMPX provides a set of interfaces to manage, resolve, and interconnect
various IPMP Tools. IPMP Tools enable DRM services. They often act like filters
included in the media stream processing path. An IPMP Tool can be stored in a local

repository or downloaded from an external service. The mechanism makes IPMPX a

19

flexible platform to incorporate proprietary DRM functions without breaking the
standard compatible interfaces. With regard to express rights in IPMP, the MPEG-21

Rights Expression Language [8] is used. It is a language based on XrML.

3.3.2 IPMP Components

The IPMP system has six components. They are the Context, the Message Router,
the Terminal, the Tool Manager, the IPMP Filter and the IPMP Tool [9][10]. We draw a
diagram to show them in Figure 3-2. And we shall introduce their functions in the

following sections.

Message Router

Terminal — Context !7 Tool Manager
Yo ("
IPMP Filter IPMP Tool

Figure 3-3 Components of the IPMP

IPMP Tool Manager

The Tool Manager manages all the IPMP Tools within the Terminal. The
implementation of the Tool Manager is composed of some functions or methods. At first,
when the IPMP Tool Manager receives the IPMP Tool List that dispatched from the
Terminal, the IPMP Tool Manager should parse the IPMP Tool List. This process is
required for the content consumption. Then, Tool Manager resolves the alternative list,
and parametric description within the IPMP Tool List. If the required IPMP Tools can

not be set at the local side, the IPMP Tool Manager has to get these IPMP Tools

20

remotely from the media content delivery server or from the website. This flexible
design is because the IPMP Tool could be carried within an elementary stream called
IPMP Tool ES in the IPMP Extension system. Thus, the IPMP Tool Manager can
retrieve the IPMP Tools from the IPMP Tool ES. In addition, after getting the IPMP
Tools, the IPMP Tool Manager must also instantiate the IPMP Tool instances required

for content consumption.

IPMP Message Router

The IPMP Message Router manages the message routing. The IPMP messages can
be divided into two kinds. One is the IPMP Tool Message; the other is the IPMP Device
Message. For example, the IPMP Message Router can build the connections between
the IPMP Tools for delivery of the IPMP Tool Message. In addition, because the
Terminal delivers the IPMP,Tool Descriptor-to the IPMP Message Router, the IPMP
Message Router can parsesit for IPMP Tool initialization. Similarly, the Terminal also
delivers the IPMP elementarystream-to- the IPMP Message Router, so the IPMP

Message Router can also handle it for updating the IPMP system.

Terminal

The Terminal is an environment where the IPMP system implements its
functionalities. In other words, it is responsible for the combination of the content
consumption and the IPMP system. At first, the Terminal should request the content.
Then, it should receive the IPMP Tool Descriptor, IPMP elementary stream, and the
IPMP Tool Descriptor Pointer from the content and deliver them to the IPMP Message
Router. Similarly, it also should receive the IPMP Tool List from the content and deliver
it to the IPMP Tool Manager. Besides, the Terminal also implements some
functionalities included decoding the media content, displaying the media content and

so on. Therefore, the Terminal is not only an environment but also an interface for

21

delivery.

IPMP Tool

The IPMP Tool is the basic component in the IPMP system. It includes many
functions such as encryption, decryption, watermarking insertion, watermarking
extracting, authentication, etc. The IPMP Tool must be instantiated before using it.
According to different functionalities, the IPMP Tool is instantiated in the different
place. Besides, during using the IPMP Tool, the IPMP Tool should be able to receive the
IPMP messages that are routed by IPMP Message Router. These messages may build
the communication between the IPMP Tools or between the bitstream and the IPMP
Tools. When the communication is built, the process of the message is not defined in the

MPEG-4 IPMP standard. Therefore, the process of the message is flexible to implement.

IPMP Control Point (IPMP Filter)

IPMP Control Points-provides-a place for-IPMP Tools to perform their function.
Because one or more IPMP: Tools can plug in the IPMP Control Points, the IPMP
Control Points are like the Filters. In the MPEG-4 IPMP Extension specification, there
are four IPMP Control Points defined. One is between the decoder and the decoding
buffer. One is between the decoder and the composition buffer. One is between
composition buffer and compositor. One is BIFS tree. Besides, the user also can define
the IPMP Control Points. Here, we take some examples to describe the IPMP Control
Points. The IPMP Tool for the decryption of the stream data can be inserted into the
IPMP Control Point between the decoder and decoding buffer. And, the IPMP Tool for
the extraction of the watermarking can be plugged into the IPMP Control Point between
the decoder ad composition buffer. However, the IPMP Control Point does not limit the

number of the IPMP Tool. It allows multiple IPMP Tools to be plugged.

22

3.3.3 Using IPMP

In this section, after describing all the components in the IPMP system, we must

understand how to use the IPMP system. Here, we give a simple example on the IPMP

Extension system. The following chart [11], Figure 3-3, shows the basic structure of

MPEG-4 IPMP Extension system. We shall describe the procedure of content

consumption step by step as follows.

Content

IPMP Tool List

IPMP Tool ID(s)

Alternate IPMP Tool ID(s)

Parametric Tool
Description(s)

IPMP Tool Elementary
Stream

IPMP Information

Content Request

Content Delivery)

Terminal-IPMP T

ool
Communications

Missing IPMP
Tools

Obtain Missing IPMP
Tool(s)

4{

IPMP Tool Manager

Terminal

Terminal-Tool Message Interchange Interface

{

IPMP Tool 1

IPMP Tool 2

Figure 3-4 MPEG-4 IPMP basic concept [11]

I. User request specific content

.
{

IPMP Tooln

In the MPEG-4 IPMP standard, it does not define how to request the content. Thus,

we provide a procedure to request the content. Because the content is protected by using

the IPMP mechanism, the IPMP requirement is also necessary. As regards the order of

them, the IPMP requirement should be placed with or before media requirement. Here,

we give an example to describe this situation. If we want to access a protected MPEG-4

23

media object, we must not only request the media object but also the IPMP information.
Therefore, when the terminal receives the IPMP information and the media content, it
can use the IPMP information to know how to access the media content.
Il. IPMP Tool Descriptor access

Since the terminal wants to use the IPMP information to know how to access the
media content, it must access the Initial Object Descriptor first. Here, the Initial Object
Descriptor is the IPMP information. Then, the terminal derives the IPMP Tool List
Descriptor from the 10OD to get the list of the IPMP Tools that are required for the
content consumption. Besides, the terminal also derives the IPMP Tool Descriptor from
the 10D. Therefore, the terminal can determine the tools and prepare for the content
consumption.
I11. IPMP Tool Retrieval

In the MPEG-4 IPMP standard; it does not: define how to retrieve IPMP Tools. But,
the retrieval of the missing IPMP Tools can derive from a website or other remote
device. Besides, the missing IPMP.Tools- may be retrieved from an IPMP Tool Stream.
IV. Instantiation of IPMP Tools

Based on the IPMP Tool List Descriptor received before, the required IPMP Tools
are instantiated locally or remotely. Then, this IPMP Tool instances need to be
initialized with IPMP Tool Descriptors. Because the IPMP Tool Descriptor contains the
IPMP Initialize information that includes the IPMP Control Point code and the sequence
code, this IPMP Initialize information can inform the Terminal to instantiate the IPMP
Tool at the right position. Therefore, the IPMP Tool Descriptor results in the
instantiation of the IPMP Tool.
V. Initialize and update the IPMP system

After preparing the whole IPMP system included the Instantiation of IPMP Tools,
the content consumption begins. During the content consumption, there is some IPMP

information for updating the IPMP system. The updating information is conveyed

24

within the IPMP ES or the OD update command in the IPMP system. And because it is
received and turned into the IPMP messages, IPMP Message Router can dominate it to
build the valid connection between IPMP Tools. Besides, because there are some IPMP
messages for the negotiation between the IPMP Tools, these messages also can be
controlled to build the valid connection between the IPMP Tools by the Message Router.
Therefore, during the content consumption, the IPMP system can have many kinds of

the messages to communicate each other for the update.

25

Chapter 4
Switchable DRM Approach

In this chapter, we shall analyze and compare the OMA and the IPMP. Then, based
on these two techniques we design our DRM system on the SPCE3200 board. Also, we
shall discuss how to implement a DRM switchable system. Here, we describe all the
necessary components for our DRM switchable system. In the next chapter, we shall

combine them to implement our DRM switchable system.

4.1 Our DRM System

In the chapter 3, we have understood the structure of the OMA DRM and the MPEG
IPMP. Here, because we adopt the SPCE3200 board as our platform, we must use the
features of the platform in cheesing our BRM system.

Because the OMA DRM has.a fixed-set of tools, it has the advantages of efficiency
and compactness. On the other hand, because the MPEG IPMP has a sophisticated tool
management, it has the advantages of flexibility and extensibility. With the advances in
consumer electronic devices and solid-state storages, we consider a compromised
approach which can provide the flexibility with a slightly higher computation and
storage space requirement. In addition, since the SPCE3200 board is an embedded
device which is a consumer electronic device, we design our DRM system according to
the OMA DRM with some concepts carried from the IPMP. In the following sections,
we shall describe how to design and implement our DRM system. This includes the
structure, the relationship among components, the execution procedure, the method of

implementation and so on.

26

4.1.1 Structure of Our DRM System

At first, there are three major entries in our DRM. They are the DRM Agent, the

Rights Issuer and the Content Issuer. We show them in Figure 4-1.

RO Issuer Content Issuer
RO\« %ﬁontent
DRM Agent

Figure 4-1 Structure of the our DRM

The RO Issuer manages the delivery of the Rights Object (RO). The Content Issuer
manages the delivery of the Content=The:DRM Agent is responsible for controlling the
usage of the Content. Therefore, the RO Issuer and DRM Agent have the downloadable
mechanism. Similarly, the Content Issuer.and the DRM Agent also have the
downloadable mechanism. Besides, they must be authenticated each other.

When requesting the Content from the Content Issuer, the DRM Agent must be
authenticated by the Content Issuer. Similarly, when requesting the Rights Object from
the Rights Issuer, the DRM Agent must be authenticated by the Rights Issuer. When the
DRM Agent receives the Contents and the Rights Object, DRM Agent needs to verify
their identification and confirm their integrity. This is because the DRM Agent must
have the ability to check if the Rights Object or the Content is fake. These are achieved
by using the standard Public Key Infrastructure (PKI) procedure. We show these

procedures in Figure 4-2.

27

DRM
Agent

A

Request 1. Authenticate each other.
Content 2. Verify the identification of the Content

v

Request 1. Authenticate each other.
RO 2. Verify the identification of the RO

Figure 4-2 Procedure of requesting the Content and the RO

4.1.2 Relationship among Components

Our DRM system consists of the Rights Object and the Content, the DRM Agent

and the User. We draw a simply.diagram ta'show their relationship in Figure 4-3.

RO \

User

DRM Agent

Content

Figure 4-3 Structure of our DRM components

In this diagram, we find that if the User wants to access the Content, he/she must
use the DRM Agent to achieve this purpose. But the DRM Agent is only responsible for
controlling the usage of the Content. It plays a controller role. The real consumer of the
Content is the User. This means that the DRM Agent must confirm the authorized User
to access the Content. In other words, the User should provide the authorization for the
DRM Agent to verify. In our design, the authorization is the Device’s public/private key

pair.

28

Now, we shall describe the relationship between the Rights Object and the Content.
The DRM Agent uses the Rights Object to access the Content. However, how to
confirm the valid Content using the Rights Object becomes a problem. In order to
confirm the relationship between the Rights Object and the Content, the Rights Object
must record the identification and the fingerprint of the Content.

Here, we shall describe the relationship between the User and the Rights Object.
The Rights Object records the rules that the User should obey. Because the DRM Agent
must confirm the relationship between the Rights Object and the User, the Rights Object
is designed to be bounded to the User. Only if the User obeys the rules and the User and
the Rights Object have the valid relationship, the DRM Agent allows User to access the
Content.

Here, we shall describe the relationship between the DRM Agent and the Content.
When all verifications are valid, the'/DRM Agent can provide a tool (video player) to
access the content.

Because the Rights Object plays the critical role in the DRM system, therefore, we

shall discuss it in detail.

4.1.3 The Design of the Rights Object

As described in chapter 3, the OMA uses Rights Object to describe the use and
constraints of contents consumption. It uses the Open Digital Rights Language (ODRL)
[12][13]. The RO structure adopted in our DRM is shown in Figure 4-4. It is composed
of the <ro> and <mac> elements. The <ro> element contains the ldentification
component, the Rights component and the Encrypted Key K (will be discussed later).
The Identification component is used to identify the Rights Issuer. The Rights
component expresses the permissions (e.g. play, display and execute) and constraints
(e.g. play for a month, display ten times). In addition, it includes the hash value and the

encrypted Kcex. The Encrypted Key K is generated by a strong encryption algorithm.

29

The <mac> element provides integrity of <ro> and key confirmation.

{1D. | {Emen

- <ro> | Rights iy
RO | ‘Encrlzpted . Enlc<rypted
CEK

Figure 4-4 Structure of the Rights Object [13]

Since we have explained-the structure of the Rights Object, we shall describe how to

use these items to build the trust and security model in the next section.

4.1.4 Trust and Security Model

Depending on the application scenario, the trust mechanism between a Rights
Object and a Rights Issuer varies. In our scheme, we assume that a DRM Agent and a
Rights Issuer can somehow identity each other in a trusted way. Thus, a DRM Agent
can ensure that the Rights Object is generated by a valid Right Issuer.

The permission model defines the permitted operations that a User can apply to the
DRM Content. The DRM Agent only grants the operations specified in this field.
Sometimes we also want to specify the constraints posed on an operation. The
constraint model is thus defined as a complement to the permission model. One
permission element can have many constraints such as <count>, <date-time>, etc. In
other words, constraints describe the conditions for granting permissions.

The link between a Rights Object and the associated DRM Content is defined by the

30

security model. This model provides the following functions: (1) confidentiality for the
Kcek of Rights Objects, (2) integrity of the association between Rights Objects and
DRM Content, and (3) the Rights Object integrity and authenticity.

Firstly, we protect the DRM Content by a symmetric encryption algorithm (DES or
AES) with the key Kcex. Theoretically, the encrypted DRM Content can only be
decrypted with the Kcex with the granted rights from the DRM Agent, and thus the
content confidentiality is deferred to the confidentiality of the Kcek. Therefore, the Keek
should be encrypted by the Rights Object Encryption Key (Kgrek). Note that the OMA
DRM supports only AES as the content encryption algorithm. We allow both DES and
AES for higher flexibility.

Secondly, to ensure the integrity of the association between the Rights Object and
the DRM Content, we have to store:a: fingerprint of the DRM content in the Rights
Object for verification. This is achieved by computing the hash value of the DRM
Content. As long as the hash algorithm is-a proper one, modifications to the DRM
Content can be detected by the hash value.

Thirdly, to ensure the integrity of a Rights Object, the <mac> element serves as the
check message. We adopt an MAC algorithm, with the Kyac as the key and the <ro>
element as the data. The hash value is stored in the <mac> for checking. Note that a
successful check of the <ro> implies the confirmation of the Kgrek. For authenticity
purpose, a DRM Agent has to verify the Rights Issuer identity before it can accept the
received Rights Object.

In the aforementioned paragraphs, the Krex and Kyac are generated randomly by
the sender. They are concatenated to form the information K. In our design, an
asymmetry algorithm (RSA) is used to encrypt K using the Device’s RSA public key.
This guarentees that only the device holding the correct private key can revert the
encrypted K to Krex and Kyac.

To summarize the above security model, a typical procedure that the DRM Agent

31

exeuctes before it consumes a DRM Content is as follows.

1. Use the Device’s private key to decrypt K and retrieve Krex and Kyac.

2. Authenticate the Rights Issuer, and verify the <ro> element against the <mac>
element and Kyac.

3. Use Kgek to decrypt the encrypted content key and retrieve Kcek.

4. If the permission check and constraint check are passed, the DRM Content is allowed

to consume using Kcek.
4.1.5 Execution Procedure

After describing the trust and security model, we shall describe the execution

procedure of the DRM system. Here, we show the steps in Figure 4-5.

Verifythe signature of the RO
2. Confirm the relationship between the RO
and the Content

1. Show and select the rights
2. Confirm the constraints of the rights

|. Retrieve Kggx and Verify <ro>
2. Retrieve Kcpk

Execute
Function

1. Access the Content by using Kcgk

<>

Figure 4-5 Execution procedure in our DRM system

At first, the DRM Agent provides the GUI interface to the users to select the

32

Content. When a user wants to access the Content with the Rights Object, the DRM
Agent must verify their identification and confirm their integrity. After verifying these,
the DRM Agent must confirm the relation of the Rights Object and the Content. Then
the DRM Agent derives the sensitive information from the Rights Objects using the
cryptographic algorithms. Finally, the DRM Agent can access the Content by using the

sensitive information.

4.1.6 Method of Implementation

After knowing the execution procedure of our DRM system, we need to develop

methods to implement it. Here, we list these methods and describe their functionalities.

¢ V_Verify_Signature()

This function verifies the signature..This function not only verifies the identification
but also checks the integrity.
¢ V_ConnectRO()

This function confirms the ‘relationship between the Rights Object and the Content.
In order to confirm it, this function uses the hash function. The DRM Agent must use
this function to verify the hash value of the Content.
¢ V_Show_and_Select_Right()

This function shows the rights of the user and provides the GUI to the user to select
the rights. Besides, this function also confirms that the statement of the constraints is
valid.
¢ V_VerifyRO()

This function verifies the Rights Object. It uses the RSA algorithm to retrieve the
Krek. This function uses the device’s private key to decrypt the encrypted Kgex.
Besides, this function uses the MAC hash algorithm to verify the integrity of <ro> and

the key confirmation.

33

¢ V_GetKey()

This function retrieves the Kcek. In the Rights Object, the Kcek is encrypted. Thus,
this function uses the symmetric algorithm to decrypt the encrypted Kcex using the
KRrek.
¢ V_Decrypt_Decode()

This function uses the Kcex to decrypt the encrypted Content. At the same time, this

function accesses the Content. This function implements a real-time player.

4.2 Our DRM Switchable System

From a consumer viewpoint, the large variety of DRM schemes often causes
confusions. The problem may become more serious when he/she wants to use the
content protected by different DRM systems using the same device.

Now, we extend our DRM system.to-solve this problem. At first, we review basic
architecture of our DRM system. Based ‘on the OMA DRM, our DRM system consists
of the DRM Agent, the DRM Content-tssuer and the DRM Rights Issuer. The DRM
Agent uses the DRM Rights Object.to.access DRM Content. However, the DRM Agent
must be implemented on the embedded device beforehand, so the DRM Agent is able to
manage the associated DRM Contents. This conventional design restricts an embedded
device to run one DRM system only. But this is undesirable to the users. The users wish
to access contents with less limits of the environment. Therefore, we come up a method

to solve this problem.
4.2.1 Concept of DRM Switchable System

Now, we first introduce our idea of a DRM switchable system. Since we hope to use
different DRM systems on the same embedded device, we must separate the DRM
system from the embedded device. When a DRM system is needed, our device

downloads it from its Issuer. This mechanism is similar to the IPMP because the IPMP

34

uses the fine-grain tool management for the access of different contents. This
mechanism is also similar in downloading Rights Objects or Contents. They all are
downloaded from their Issuers. In order to download these components, we need a
controller to do the processing. Therefore, we introduce a bootstrap module which
controls this DRM switchable system. The bootstrap module must be built on the device
in advance. When a DRM system is ready, the bootstrap can initiate the DRM system
and run it. The previously described DRM system serves as a module and the entire

system is shown it in Figure 4-6.

Module Provider Rights Issuer Content Issuer
Module RO Content
/
Bootstrap . Module Device

Figure 4-6 Download-Mechanism of Module

In conclusion, the basic concept is allowing different pre-configured DRM modules
co-existent. A DRM module can be downloaded from a module provider. Since it is
pre-configured for the device, the fine-grain tool management and resolution is no
longer required at run-time. Instead, we introduce a bootstrap (built-in) module which
determines and verifies an external DRM module before loading it into the device. The
features of our approach are listed below.
® The flexibility is achieved by downloadable modules.
® The security for modules is guaranteed by the bootstrap module.

® The run-time fine-grain tool management is not required.

35

® The extra cost is the storage for the downloaded modules, and the verification of the

modules.

4.2.2 Structure of DRM Switchable System

In our design, a DRM module is a downloadable set of data. Since a DRM module
is critical to the subsequent DRM Content consumption, we have to design a
mechanism to ensure that it is a legitimate one.

At first, we describe the two major entries of our switchable DRM. They are the
bootstrap and the module provider. When requesting a module from the module
provider, the bootstrap must be authenticated by the module provider. When getting the
module, the bootstrap needs to verify its identification and confirm its integrity. This is
achieved by using the standard Public Key Infrastructure (PKI) procedure. We show the

procedure of requesting a module in Figure 4-7.

Module Provider
module l 1. Auth?nticate each other
2. Verify module
Bootstrap

Figure 4-7 Procedure of Requesting a Module

4.2.3 Relationship among Components

Now, we describe the structure of our switchable DRM system. In our design, it
consists of modules, bootstrap and platform. And a module includes the certificate and

the DRM program. We draw a simply diagram as shown in Figure 4-8.

36

Module
Certificate
Platform
Bootstrap
DRM |
program

Figure 4-8 Structure of the switchable DRM

In an analogy to the previously stated DRM model, the bootstrap program in this
process is similar to the DRM Agent in the previous model. The module provider is
similar to the Rights Issuer, and the DRM program is similar to the DRM Content. We
design a module certificate, which.is similar to a Rights Object. Then, a similar security
model can be used and prevents invalid. DRM program from being loaded into the
device.

The function of the beotstrap is to controel the module loading. It includes the
necessary information of the platform: When the bootstrap wants to load the DRM
program, it must verify the certificate according to the platform. This mechanism is
similar to the previously stated DRM system but is simpler. This mechanism only needs
to confirm the valid platform for loading DRM program. We do not need to protect the

DRM program, so we integrate the certificate with the DRM program into one module.

4.2.4 Execution Procedure

After describing the relationship among components in our DRM switchable system,
we describe the execution procedure of this system. Here, we draw a diagram to show

its processing steps in Figure 4-9.

37

Bootstrap

1. Select module

1. Verify the signature of the module
2. Confirm the relationship between the module
and the platform

Load
Module

1. Load module into memory

Figure 4-9 Execution procedure in the switchable DRM system

At first, the bootstrap unit provides the GUI interface to a user to select a module.
When the bootstrap wants to load:atDRM program inside a module, it must verify the
identification of the module and confirm:its integrity. In addition, the bootstrap must
confirm the relations of the module and the platform. The relations are described by the
certificate in the module. Only after ensuring the module is valid for the platform, the
bootstrap can load the DRM program ‘into the embedded device. This implies the
platform is a condition for accessing the module. This architecture is similar to that of
the DRM system. In other words, the platform plays the role of the User and the DRM
program is the Content. The difference is that the protection of the DRM program is

unnecessary.

4.2.5 Method of Implementation

After describing the execution procedure of our DRM switchable system, we need
to develop methods to implement it. Here, we list these methods and describe their

functionalities.

¢ V_Show_and_Select_Module()

38

This function shows the modules to the user and it provides the GUI to the user to
select a module.
¢ V_DRM_Module_ Verify()

This function verifies a module. This function verifies the signature of the module. It
confirms the identification and checks the integrity of the module. Also, this function
confirms the relationship between the module and the platform. Because the relations
between them are described by the certificate in the module, this function is responsible
for the verification of the certificate in the module.
¢ V_DRM_Module_Load()

This function retrieves the DRM program from a module and loads the DRM

program into the memory.

39

Chapter5

DRM Switching Schemes

In this chapter, we describe our design of the DRM switching schemes. In chapter
4, we have described our DRM system and the concept of our DRM switchable system.
Here, we shall combine them to be a complete DRM switchable system. Therefore, we

provide two DRM switching schemes and describe their approaches.

5.1 DRM Switching Scheme 1

Because we want to provide a DRM switchable system, we separate the DRM
system from the embedded system. When the user wants to use different DRM systems,
he/she can load and run it.

However, because we-separate the DRM system from the embedded system, the
management of the DRM: system becomes the important issue. Therefore, we must
provide the functionality of.the bootstrap in the embedded device. In this design, the
bootstrap must be built in the embedded device beforehand. And it is responsible for
controlling the usage of the modules. After loading a module, the bootstrap transforms
the control to the module. From this viewpoint, we can divide this DRM switchable
system into two stages. The bootstrap becomes the first stage which controls the load of
a module. And the module becomes the second stage, which controls the access of the

content. We show this scheme in Figure 5-1. We call it scheme 1.

40

Module

Bootstrap

|

Now, let us describe the two stages of this scheme. In chapter 4, we have
introduced the structure of our DRM system and the downloadable mechanism of the
DRM module. Here, we use these basic components to design this scheme. We append

some GUI interface to this system and provide the execution flow to build a complete

Stage 1

=)

RO Content
aQ y
Bootstrap
Module
Stage 2

Figure 5-1Two Stages of the DRM Switching Scheme 1

DRM switchable system.

At the first stage, thethootstrap provides the GUI interface to the user to select a
module (DRM system). After:selecting one,.the bootstrap must verify its identification.
Only after verifying it, the bootstrap allows the module to be loaded into the embedded
device. Then, when a user decides to execute the DRM module, the bootstrap loads it in
and transfers the execution to it. The execution flow of an example implementation is

shown in Figure 5-2. Therefore, we complete the functionality of switching among

different DRM modules.

41

Bootstrap

Load program

Execute
function

Figure 5-2 Execution Flow of the DRM Switching Scheme 1

At the second stage, the DRMIsystem starts to execute. We adopt our DRM system
stated in chapter 4. Thus, the steps of stage 2 have been described in the chapter 4. In
this design, the first stage can transfer the control to the DRM module at the second
stage. Similarly, if the second stage terminates, it also transfers the control to the
bootstrap at the first stage. Therefore, the user can arbitrarily select different DRM
systems and switch it among them. In this design, we succeed in implementing a

switchable DRM system.

5.2 DRM Switching Scheme 2

The foregoing is one possible type of DRM switching scheme. In that design, we
expect that users know all kinds of DRM modules, the associated contents and have the

ability to choose the suitable one. However, that design requires knowledgeable users

42

and becomes impracticable. Users only care about the selection of the content and they
do not want to understand the relationship between the content and the module, so we
modify our design for this purpose. In this design, the user select the DRM protected
Content. And they do not need to know which DRM system is in use. We design our
DRM switchable system has the ability to select the right module for users

automatically.
5.2.1 Components

Before we redesign our DRM switching scheme, we state the desirable properties
and functions. First, our system allows the user to select the content. And after selecting
the content, the device can automatically find out the package of the rights object and its
associated module.
® Content

In order to achieve the stated goal;"we must record how to use this content in the
content bitstream. Thus, we redesign-thesformat of the content. Thus, we modify the
header of the content [14]. It is to.be.used to specify the associated package and the

DRM module. The components of the content are showed in Figure 5-3.

Content

1. I.D. of the package
Header 2. 1.D. of the module
Encrypted
Media

Figure 5-3 Modified Content Format of the DRM Switching Scheme 2 [14]

Originally the header of the content has described the identification of the rights

43

object. Now, we modify this item to be the identification of the package. This package is
a container of the rights object. We shall discuss the package later. In addition, we
append the identification of the DRM module in the content. Thus, this design not only
can specify the associated package but it also can specify the associated DRM module.
® Bootstrap

Since the content bitstream describes how to use the content, we need a controller
to manage it. Here, we redesign the bootstrap as a controller. It not only manages the
DRM module but also provides a DRM switching interface. This is an abstract concept.
Before building this interface, we must analyze and organize each component. In this
approach, we find the DRM Agent and the bootstrap have similar properties. They both
need to verify something by using cryptographic algorithms. The DRM Agent must
verify the identification of thejRights Object. The bootstrap must verify the
identification of the module.: Therefore,we integrate this property of the DRM Agent
into the bootstrap. Then, the bootstrap will pass the security requirement and become an
agent.

Base on these results, we design the bootstrap includes the User and the Platform.
Originally the bootstrap only includes the Platform, because it is only responsible for
the verification of the module. Now, because we integrate this property of DRM Agent
into the bootstrap, it includes the User. Thus, the bootstrap becomes the interface to
process the DRM switching system. Here, we draw a diagram to show its structure in
Figure 5-4.

In conclusion, the information in the User component is for the bootstrap to verify
the package, which contains the real rights object. And the information in the Platform
component is for the bootstrap to verify the module. Thus, the bootstrap is also an

interface, which controls the complete DRM switchable system.

44

Bootstrap

User For Package

Platform For Module

Figure 5-4 Modified Bootstrap in the DRM Switching Scheme 2

® Package

Now, we describe the package. Because the bootstrap is an interface which controls
all components, these components include the module and the rights object. But, the
rights object must be managed by the, DRM program. Thus, we derive the identification
from the original rights object and transfer. it to, the package. In addition, we encrypt the
original rights object and=pack it to the package. In other words, the package is a
container of the rights object. And the package-provides the identification of the rights

object for the bootstrap. Here, we show the block diagram of the package in Figure 5-5.

> ID
. Hash value
> <fo> Rights of content
Pakage » Encrypted K Encrypted RO
MAC hash
> <Mmac> of <ro>

Figure 5-5 Structure of Package in the DRM Switching Scheme 2

45

This architecture is similar to that of the rights object. The purpose of the package
is for the bootstrap to verify the identification of the rights object. Therefore, the
bootstrap can process it by using the ID and the hash value of the content in the package.
We note that there are no permission and no constraint in the package, because these
components are not necessary. Besides, we note that the package includes the encrypted
rights object. The encrypted rights object is served as a black box. It will be used by the

module. The module will use it to access the content.

5.2.2 Relationship

Since we have described the components of this DRM switching scheme (the
module, the package, the content and the bootstrap), we draw a diagram to show it in

Figure 5-6.

Module Package Bootstrap
RO

y
Certificate # \
‘\ Content — User
— Header

Platform

DRM
Progtam

Media

/

Figure 5-6 Relationship among components in the DRM Switching Scheme 2

Before we describe the flow of the execution, we should know their relationship.
There are six relationships between four components. To begin with, we describe the

relationship between the bootstrap and the content. We design a GUI interface for the

46

users to select the content, so there is a simple relationship between them. Then, the
header of the content records the associated package and module. In other words, these
records represent the connection between them and the content. And this helps the
bootstrap to find the package and the module. Furthermore, the bootstrap verifies their
identification. Also, the bootstrap derives the real rights object of the package by using
the user information. On the other hand, the bootstrap certifies the certificate of the
module by using the platform information. These are also the connections between them
and the bootstrap. Finally, we come to the relationship between the package and the
module. Because the module provides the DRM system to the bootstrap and the DRM
system uses the rights object to access the content, the bootstrap derives the real rights

object from the package and delivers it to the DRM system.

5.2.3 Procedure

After we understand the relationshipr among the components in this DRM
switching scheme, we describe "itS-procedure of execution. We divide this system into
five steps. In the first step, the hootstrap provides the GUI to the user to select the
content. And, the bootstrap starts to manage the content and parse it to know how to
access it. These include the information of the associated package and the associated
module. Thus, the bootstrap can retrieve the identifications of the associated package
and module from the header of the content.

In the second step, after the bootstrap gets the associated package, it must verify its
identification and confirm the relationship between the package and the content.

In the third step, after the bootstrap gets the associated module, it also must verify
its identification and confirm the certificate of the module. This will ensure the module
Is suitable for the embedded device.

In the fourth step, after verifying the package and the module, the bootstrap

extracts the information from the package for the module to access the content. Thus,

47

the bootstrap starts to derive the real rights object from the package and delivers it to the
module.

In the fifth step, the bootstrap loads the DRM program in the module into the
embedded device and transfers the control to the DRM program. Then, the DRM
program starts with the real rights object.

Then, the module executes to access the content with the real rights object. The
procedure of this execution is invisible. Therefore, we can consider this DRM program
is a black box. This design effectively prevents the hacker from invading. Finally, we

draw the execution flow to show these steps in Figure 5-7.

Bootstrap
Start

1. sPrewide G for users to select the Content
2 |Parsethie, Content
3. Getithe asSoemted Package and Module

1 Confirm the'id of the Package
2. VerifyiPackage

1. Confirm the id of the Module
2. Verify the certificate of the Module

1. Derive the real RO of the Package

Loadandrun| | | 44 and run the Module

the Module 2. Access the Content with the real RO

Figure 5-7 Execution Flow of the DRM Switching Scheme 2

48

5.2.4 Method

The previous subsection describes the execution procedure. Now, we shall focus on
the detail and steps of the procedure. Here, we list our functions to describe how to
implement those steps.
® First step
V_Show_and_Select_ New_Content()

This function lists the available contents and it provides the GUI interface to the users to
select. Because we modify the format of the content, we create a new function for the
users to select the content. In addition, this function can parse the content and retrieve
the identifications of the associated package and module.

® Second step

V_Verify_Singature()

This function verifies the signature. \We use it to-verify the signature of the package.
V_ConnectPAC()

This function is similar to the V.. ConnectRO() in section 4.1.7. This function confirms
the relationship of the package and the content.

® Third step

V_DRM_Module_Verify()

This function verifies the signature of the module and confirms the certification of the
module.

® Fourth step

V_\VerifyPAC()

This function derives the Krex from the package by using the information of the User.
V_Get_realRO()

This function uses the Kgrex to derive the real rights object from the package.

® Fifth step

49

V_DRM_Moudle_Load()

This function loads the DRM program into the memory.

5.2.5 Conclusions

We make a summary of the DRM switching scheme 2. This DRM switching
scheme is similar to a recursive DRM system. In our design, the bootstrap must verify
the package and derive the real rights object. We can view this as the first DRM system.
And then, the module uses the real rights object to access the content. We can view this
as the second DRM system.

To avoid confusion, we provide two viewpoints. From a simple viewpoint, the
bootstrap is mainly responsible for the verification of the package. Then, the bootstrap
derives the sensitive information from the package and passes it into the module. We
can define this information as a key.and.the module as a tool for the decryption of the
encrypted contents. This miechanism is similar to the IPMP system. They both adopt the
downloadable mechanism ‘of the‘teol-Figure' 5-8 shows the simple concept of DRM

switching scheme 2.

Module Package Content
Decryption Key
Tool N A /
) (1)
Bootstrap \ ,,,,,,,,,,,,, \‘/
& DRM Agent

Figure 5-8 Simple Concept of the DRM Switching Scheme 2

However, from the complicated viewpoint, the bootstrap is mainly responsible for

50

the verification of modules. The bootstrap derives the sensitive information from the
package and passes it into the module. We can define the sensitive information as the
real rights object associated with the content and the module as a DRM system. Thus,
the bootstrap can load the module to access the content with the real rights object. In
this architecture, we transfer the downloadable mechanism of the tool to the DRM

system. Figure 5-9 shows the sophisticated concept of the DRM switching scheme 2.

Module Package Content
DRM RO
Progtam N [/
(1) 2

Bootstrap

Figure 5-9 Sophisticated Concept ofthe DRM Switching Scheme 2

Therefore, we give a simple concept to build the DRM switching system. Users do
not need to understand which DRM system is valid for the content. They only need to
choose the contents. Then, the bootstrap will automatically choose the valid DRM
system. In other words, the bootstrap provides a DRM switching interface. Since the
bootstrap is an interface, the format of the package and the content must be defined. But,
we do not define the sensitive information of the package. Thus, all kinds of the DRM
system can be adopted in this design. Besides, when the module uses the sensitive
information to access the content, these process are invisible. This design also

enhances the security of the DRM system.

51

Chapter 6

Implementation and Application Examples

In this chapter, we describe our implementation of our DRM switchable system on
the embedded device. Because we choose the SPCE3200 embedded evaluation board,
we make use of its nice properties in implementing our design. Here, we will describe
our implementations in details. And, we give the execution flow in our design. Finally,

we provide some application examples to demonstrate its usefulness.
6.1 Implementation

6.1.1 Cryptographic Algorithm

Any DRM system uses.the cryptographic algorithms. Because we follow the OMA
DRM system ideas in designing .our DRM: switchable system, we adopt some
cryptographic algorithms used by the- OMA DRM. The adopted algorithms in
implementation are listed below.

(1)Hash algorithm : SHA-1
(2)MAC algorithm : HMAC-SHA-1
(3)Asymmetric algorithm : RSA-PKCS1
(4)Symmetric algorithm : AES, DES
(5)Signature algorithm : RSA-PKCS1

Hash algorithm uses a mathematical transformation to irreversibly encrypt the
binary information. MAC algorithm uses a similar function but it accepts an input as a
secret key. Asymmetric algorithm uses one key for encryption and the other for
decryption. On the other hand, symmetric algorithm uses a single key for both
encryption and decryption. Finally, the signature algorithm uses the hash function and

the asymmetric algorithm to verify a signature.

52

In our design, we port the symmetric algorithms (AES and DES) from the
MPEG-21 Testbed [15] into our program. The other algorithms come from the XySSL
[16]. The XySSL provides the free software including the hash function and public-key
cryptographic. However, because we develop a DRM system on an embedded system,
we must care about the problem of the limited resource environment. Therefore, we
modify some functions to fill the bill. In order to reduce the complexness, we modify
the length of the key. The length of our key is 36 bytes. In addition, we must care about
the memory allocation. When the cryptographic algorithms are adopted by our system,
it needs to allocate some memory. Thus, we must prepare for that requirement before we
develop our design.

Here, we describe how to integrate these algorithms into our system.
® Hash algorithm

In our design, we need to confirm the relationship between the rights object and the
content and verify the integrity of the.content. We use the hash function to achieve this
purpose. At first, the hash value:of the.content has been stored in the rights object. Thus,
if we want to verify the relationship, we only need to use the hash function to get the
hash value of the content and check it with the record of the rights object.
® MAC algorithm

In our design, we use the MAC hash algorithm to verify the integrity of <ro> and
the key confirmation. Because the MAC algorithm is a kind of the hash algorithm, it can
also verify the integrity. But this algorithm needs an input key. Thus, we use this
algorithm to achieve those two purposes. The <mac> of the rights object stores the
MAC hash value of the <ro>. Then, we can use the MAC hash algorithm to get the hash
value of the <ro> and check it with the record of the <mac>. Only when the input key is
valid and the <ro> is not modified, the check is passed. Therefore, this MAC algorithm
can verify the integrity of <ro> and the key confirmation at the same time.

® RSAalgorithm

53

The RSA algorithm is used by two schemes. One is the signature scheme. The other
is the encryption scheme.

The signature scheme uses the hash function and the RSA algorithm to verify a
signature. The RSA algorithm uses a pair of public and private keys. We first describe
how to generate a signature. We get the hash value of the information to be transmitted
by the transmitter. Then, we encrypt the hash value with the transmitter private key. This
is the signature of the information. When a receiver wants to verify the signature, it
must use the transmitter public key to decrypt the signature and check it with the
information hash value. Therefore, this scheme is a mechanism of digital signature.

The encryption scheme uses also the RSA algorithm for the protecting the
information. Here, we shall describe how to protect the information which will be
transmitted by the transmitter. We,enerypt the information with the receiver public key.
When the receiver wants to get theloriginal. information, it decrypts the encrypted
information with its private key. Therefore, this scheme ensures that only the valid

receiver can recover the information.

6.1.2 GUI Interface

Now, we introduce our GUI interface to users in our design. Because there is no
operation system in the SPCE3200 board, we must use its libraries to implement our
GUI interface. We first study its libraries. They support the joystick library and some
application examples. We use those examples to design our GUI. And, we use the
joystick library to control the input. Then, we combine them to design our GUI interface.
But, because our design focuses on the DRM system, we only implement a simply GUI
interface for demonstration purpose.

We draw some symbols which represent the alphabets and the numbers. We control
the TV encoder buffer and fill up it with our symbols. So we can implement the function

of printing the string. Besides, because we use the library to control the joystick, we can

54

implement the function for the user to select choices. The following functions are

examples.

¢ V_GUI_Show_Message(char* str);

This function can show a string on the screen.

¢ V_GUI_Check_Message(char™* str);

This function can show the string and wait for users to check it. When the user wants to
check this message, he/she must push the button. Then, the program can continue to

execute.

6.1.3 Real-time Player

Now, we describe our implementation of the real-time player. We implement a
player which can decrypt and decode-the encrypted content at the same time. At the
beginning, we study the example code provided-by the Sunplus. In chapter 2, we know
the software structure of the MPEG-C€odec: Here, base on the MPEG software structure
and we modify it to achieve our goal..Now, the software structure is shown in Figure

6-1.

1. Read file to buffer D
» Procedure 1 | 2. Prepare to decode from buffer C
3. Start to decode buffer C

A

Encrypted
Content Interrupt 1. Control the interval

A

A

1. Read file to buffer C
Procedure 2 | 2. Prepare to decode from buffer D
3. Start to decode buffer D

Y

Figure 6-1 Procedure of buffer control during decoding

55

There is a pair of parallel procedures for decoding the content in the software
structure. In this procedure, we read the media objects and put into one buffer and then
prepare to decode media objects from the other buffer. After all the registers related to
decoding are set, we start to decode one frame. At this point, the interrupt (timer)
controls the interval between frames. Only at the end of the interval, we can read media
objects into the other buffer. In other words, the two parallel procedures take turns to be
used for decoding the media objects. In our design, we insert the tool for decrypting the
encrypted content before reading the file into the buffer. Therefore, we implement the

real-time player which can decrypt and decode the media objects at the same time.

6.1.4 Download Mechanism

In our design, we adopt the download mechanism to implement the DRM
switchable system. Now, we.describe, the.implementation. Because the SPCE3200 is an
embedded system without-operation system; we must allocate the memory by hand.
First, we implement the bootstrap and-stere it in the nor-flash. So, when the SPCE3200
is set to free run mode, this bootstrap.will be‘loaded to SDRAM and start to execute.

On the other hand, we implement the download mechanism in the bootstrap.
Before the bootstrap loads the module, we must allocate memory for the bootstrap and

the module. The memory allocation is shown by Figure 6-2.

56

Bootstrap

text Module
C Load
Run - text
.data
Load
- .data

Figure 6-2 Memory allocation of loading Module

The bootstrap program contains a few sections, which include the text section, the
data section and others. We:must specify their address in the memory. Besides, the
module must be pre-build and their allocation must be consistent with the bootstrap. We
specify that the text section of the medule-follows the text section of the bootstrap and
the data section of the module follows-the data section of the bootstrap. Then the
bootstrap, based on the specification, loads the module into the memory. Therefore,
when the bootstrap wants to execute the module, it transfers the control to the module.
In other words, the program counter branches to the text section of the module, so the

module can execute and access the contents.

6.2 Simulation

Our switchable DRM system is designed based on the OMA DRM. However,
because of the limited resource environment of an embedded system, we can not
implement all functions. In order to prove that our design is practicable, we modify
some functions or provide substitutes for those functions. Now, we discuss the

difference between the OMA DRM system and our DRM system.

57

In the OMA DRM standard, the Rights Object Acquisition Protocol (ROAP) is
defined. It is used for registration of a Device with a Rights Issuer and to process the
requests and acquirements of the Rights Object. In other words, the network transmits
these messages according to the ROAP.

However, because we cannot use the network in the SPCE3200, we use SD card to
get the packages, the modules and the contents for the moment. As regards to the
acquirement of the package and the module, we omit the mechanism of the ROAP. In
our scheme, we assume that a bootstrap and a package issuer can somehow identity
each other in a trusted way. Similarly, we assume that a bootstrap and a module issuer
can somehow identity each other in a trusted way. Therefore, we design a flow chart for

requesting the package and the module as shown in Figure 6-3.

1. InsertS[D-catd

A

SPG290 2. Fransdnto SD Card 3. Identify Package and
(Bootstrap) " (Contents) "| Module Issuer
y A
5. Play 4. Trans. Module and Package

Figure 6-3 Simulation of execution flow

At the beginning, users insert the SD card containing the contents into the
embedded device (SPCE3200). Then, if the bootstrap does not detect an associated
package and module, it transfers the information of the platform to the SD card. Users
can take the information of the platform on the SD card to request for the associated
package and module from their issuers. After verifying the identification, the package

and module issuers transfer the package and the module to the SD card. Finally, users

58

can insert the SD card into the embedded device. Then, because a bootstrap and those
issuers have identified each other in a trusted way, a bootstrap can ensure that the
package and the module are generated by valid issuers. Therefore, users can access the
contents.

The foregoing is a substitute for the ROAP for the moment. In the future, when the

embedded device is able to connect to the internet, we can supply those functions.

6.3 Application Examples

In this paper, we design a DRM switchable system and implement it. Now, we
show five examples to demonstrate our design.
® Examplel

This example shows the normal access of the protected content. We create a content,
4 AR

an associated module and a@ﬁs’ou _gagkage Then, after verifying the package and
_____ | I« e \. b.‘

the module, our DRM swmqﬁab ys %m%canf qdrmally load the DRM program into the

device and run it. Then, after ve " ,
'5-"'-:-

y .|gp‘)§ object, the DRM program decrypts and
decodes the content at the same frme._Elgnfé{GA shows the result of this example.

3G

Figure 6-4 Normal access of protected Content

59

® Example 2

This example shows the normal access of the original content. This example is the
same with the example 1 except for the content data. We do not protect this content, so
this content is not decrypted. Thus, the DRM program within the module only needs to
decode it for content consumption. Therefore, the DRM program serves only as a player.

Figure 6-4 shows the result of this example.

® Example3

This example shows the message that our DRM switching system detects an invalid
package. We create a content, a module and an invalid package. Then, our DRM
switchable system can detect the error and show the error message to notify the users.

Figure 6-6 shows this example.

60

Figure 6-6 Message of invalid Package

® Example 4 TN

This example shows tﬁé mes;sgée"_" ‘_ljh'ét our DRM switchable system detects an
invalid module. We createiﬁ:conteq@_‘@ége and an invalid module. Then, our DRM
switchable system can dete—éf t_hé'grrlo'r- and _sr;()w the error message to notify the users.

Figure 6-7 shows this example.

Figure 6-7 Message of invalid Module

61

® Example5

This example shows that the message that the DRM program within the module
detects an invalid rights object. We create a content, an associated module and an
associated package. But, we create a invalid rights object. Then, after verifying the
package and the module, our DRM switchable system can normally load the DRM
program into the device. But, after the DRM switchable system transfers the control to
the DRM program, the DRM program detects the invalid rights object and shows the

error message to notify the users. Figure 6-8 shows this example.

Figure 6-8 Message of invalid Rights Object

62

Chapter7

Conclusion and Future Work

7.1 Conclusion

In chapter 4, we analyze and compare the OMA and the IPMP. Based on these
techniques, we design our DRM system on the SPCE3200. This DRM system is
designed according to OMA DRM with some concept of IPMP. Besides, we discuss
how to implement a DRM switching system. During discussing this problem, we find
that some concept of the DRM switchable system is similar to our DRM system.
Therefore, we design all necessary components of our DRM switchable system
according to our DRM system.

In chapter 5, we combing:those necessary components to be a complete DRM
switchable system. Then, we provide two DRM switching schemes and describe their
approaches. The DRM switching scheme 1 is a direct combination, so it can divide two
stages. At the first stage, the DRM module'is loaded into device by the bootstrap. At the
second stage, the DRM module starts to manage the DRM tasks. As regards the DRM
switching scheme 2, we design this DRM switching scheme has the ability to select the
right module for users automatically. And this designed DRM switchable system is
similar to a recursive DRM system. When the bootstrap verifies the package and derives
the real rights object, we can view this procedure as the first DRM system. When the
module uses the real rights object to access the content, we can view this procedure as
the second DRM system.

In chapter 6, we describe the implementation of our DRM switchable system on the
embedded device. And we provide some application examples to demonstrate our DRM

switchable system.

63

7.2 Future Work

In our DRM switchable system, the bootstrap module must be implemented on the
embedded device beforehand and it must be a universal loader. Therefore, it may be

designed to be an interface of some other DRM standards.

64

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Jaime Delgado, Jose Prados, Eva Rodriguez,"A new approach for interoperability
between ODRL and MPEG-21 REL", Second International ODRL Workshop 2005
(ODRL 2005), July 2005

Sunplus, “SPCE3200 PROGRAMMING GUIDE v1.2.”

Sunplus, “SPCE3200 MODULES USER MANUAL.”

DRM Architecture V2.0 OMA-AD-DRM-V2_0-20060303-A, Open Mobile
Alliance, March, 2006.

DRM Specification V2.0 OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile
Alliance, March, 2006.

Study of FPDAM ISONEC 14496-1:2001/AMD3, ISO/IEC JTC1/SC29/WG11
N4849, Klagenfurt, July 2002.

Information Technology. - Multimedia Framework (MPEG-21) — Part 12: Test Bed
for MPEG-21 Resource Delivery; 1SO/AEC 21000-12:2005, Apr. 2005.

Information Technology — Multimedia Framework (MPEG-21)-Part 5: Rights
Expression Language, ISO/IEC 21000-5:2004, May 2004.

C.W. Fan, F.C. Chang, and H.M. Hang, “An MPEG-4 IPMPX Design and

Implementation on MPEG-21 Test Bed”, ISCAS, Vol. 5, May. 2005.

[10] C.W. Fan, “MPEG-4 IPMPX Design and Implementation on MPEG-21 Test Bed,”

M.S. thesis, Dept. Electrical Engineering, National Chiao Tung University,

Hsinchu, Taiwan, R.O.C., June 2004.

[11] J. Ming and S.M. Shen, “Study Text of ISO/IEC 13818-11/FCD,” ISO/IEC JTC

1/SC29/WG11 N5469, Awaji, Dec 2002.

[12] Open Digital Rights Language (ODRL), Version 1.1, August, 2002.

[13] DRM Rights Expression Language V2.0 OMA-TS-DRM-REL-V2_0-20060303-A,

65

Open Mobile Alliance, March, 2006

[14] DRM Content Format V2.0 OMA-TS-DRM-DCF-V2_0-20060303-A, Open
Mobile Alliance, March, 2006

[15] C.N. Wang, et al., “FGS-Based Video Streaming Test Bed for MPEG-21
Universal Multimedia Access with Digital Item Adaptation,” ISO/IEC
JTC1/SC29/WG11 MPEG2003/M8887, October 2002.

[16] An Open-source Cryptographic Library. http://xyssl.org

66

p i

T rigko @ 71982 & 1A @R 0 2006 & & X SR R 2
LHAET LAY b2 i e R g L
RSB EIT B R P FA Y AL

67

