Bl G TR RSk - BIETTRIBRT P 0F

Experience with OpenAccess Gear:
An implementation of Post-Placement Multi-Supply Voltage Design

Methodology

Foyod o fmas

BEFE e L

T
Y
pr

=

,L_J.,:E_E

Bal TR g%k: - BIFEFTRTEBER

Z

= g 0T

Experience with OpenAccess Gear: An implementation of
Post-Placement Multi-Supply Voltage Design

Methodology

e R N RE S Student: Wei-Ting Wei

th g mzp gL Advisor: Prof. Hung-Ming Chen

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master
in
Electronics Engineering
January 2008
Hsinchu, Taiwan, Republic of China

PERRA L -8

BN GEFTHENE%R: - BIKETIRITE

L
-
[\

A
W
i
:1\\

Pyt s hERR I

EFHRL ORMATAL - ENREABHEOE R FR oA g ER
e AR BaRGEER R - BREDTRE LI vF R
HeoV-2g "gFUni@gd B B c%3- prrERaRiE S TR
PORRET - BRUE IR BT RWH Y o AR T B 5B

w0

23
FHEDERE BB RAGRTRLBAAT B L APOAAIL L FE5T
B

—:;/Q%_L—;,/z{ of—L%&F,_r y *\IFB'"’ IV F’“"{;,]?ngl _}I)E_ml ;T}gifn@%

Experience with OpenAccess Gear:
An Implementation of Post-Placement Multi-Supply Voltage Design

Methodology

Student : Wei-Ting Wei Advisor : Hung-Ming Chen

Department of Electronics Engineering
& Institute of Electronics
National Chiao Tung University

Abstract

Physical design research in academia hasrbeen based on infrastructure developed
independently, which has resulted jin-ffragmentation problem. OpenAccess, a complete
database system, is developed to solve this problem: On the other hand, with technology
scaling, power becomes a very. important issue. Multiple supply voltage provides an
effective technique for power reduction. In this thesis, we build the OA environment and
adopt OA Gear Timer as our basic infrastructure to implement MSV design methodology.
The experimental results show that we can successfully generate voltage islands based on
OA environment.

FARB LR S LA DR BRI IP R oA E RS APH R

P2

B om0 3 R B 2R A R I R AP EE LS

A 2

R BN G EBWE RS o
foprs AT BB A SR I B R ey ool o R A B Rt

Y 2

;}r
-
f
|
I
(m
ol
=
1=
=

FER- hwmvac o

poob o &R A VDALAB F % 3 4T3 eh | R A E ks
Fesz FoAhps » FAF Ehd BARBERE Kk

FAFADLE BB AAF TR Dk HR P g {4
BIILAGE o

Boisd R T A FT bR A el o
e

ENE A S B R

She
_{\
BN

Contents

1 Introduction 1
1.1 Our Contributions 2
1.2 Organization of the Thesis 2

2 OpenAccess and OpenAccess Gear 4
2.1 OpenAccessmy. bl fw o oL 4
2.2 OpenAccess Gear Wl . .. L 6

221 OA Gear Timer 6
222 OA Gear Bagaar 7
223 Benchmarks oo 7
224 Capo Wrapper 7

3 Multiple Supply Voltage Methodology 9
3.1 Voltage Assignment 9
3.2 Voltage Island Grouping 11

3.2.1 Problem definition L. 11
3.2.2 Tree Algorithm 12
3.2.2.1 Grid Coarsening 12

3.2.2.2

3.2.2.3

3.2.24

3.2.2.5

Graph Construction
Tree Construction
Tree Partitioning

Tree Reconstruction

4 A Case Study: MSV design methodology on OA platform

4.1 MSV methodology on OA platform

4.2 Experimental Results

5 Conclusion and Future Work

Bibilography

11

18

18

20

24

25

List of Figures

1.1

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

MSV design flow on OpenAccess platform. 3
The OpenAccess API and Reference Implementation [11]. 5
Multi-Vdd physical design flowssiiins.., 10
Zero Slack Algorithm [255 17 o v oo e © oo o 0oL 10
The flow of Tree-Algorithm [8]. =0 ..« /o o 13
Graph construction [8]. ™ w. . .. Lo Lo 14
The algorithm of building a binary tree [8]. 15
Multi-level clustering procedure. (a)First merging. (b)Second merg-

ing. (c)Result of first level clustering. (d)Graph after first level clus-

The final binary tree T that represents multi-level clustering proce-

dure. .. 17

An optimal tree partition with five subtrees, each subtree represents

a voltage island.o 17

The placement of test case s13207" after voltage assignment. (Uti-

lization: 90%). 23

The result of test case s13207" (7 voltage islands) 23

111

List of Tables

4.1 The information of five test cases.

4.2 The experimental results of five test cases.

4.3 The run time of five test cases.

v

Chapter 1

Introduction

The development of CAD tools is highly fragmented today. Individual researchers
or tool developers implement their owninftastructure. This fragmentation problem
results in a significant effort for sesearchers to.integrate individual infrastructure

builded in different design databases. Hence; a common database is required.

There are many mature design databases‘existed in EDA industry today [13],
such as OpenAccess, Milkyway(from ‘Synopsys), MAP-in Program (from Synop-
sys), Falcon(from Mentor), and Magma Design Automation. Among these design
databases, Milkway, Falcon, and Magma are not publicly available. MAP-in Pro-
gram is free, but it does not support access to timing or RC parasitic data. OpenAc-
cess(OA) does not currently support for timing now, but OA provides extensions
which allow objects in the database to be annotated with arbitrary data. OA is now

an open-source platform.

OpenAccess(OA) database was developed to provide a common EDA infrastruc-
ture for physical design tools [2, 6]. It is a complete database for IC design. It
contains comprehensive data model to support the needs of applications for IC de-
sign. An important feature of OA is that it supports extensibility. Inside OA, there
exists OpenAccess Gear(OA Gear), which is a source library that extends the util-

ity of OA database with a set of common tools and applications. OA Gear includes

static timer and placer interface.

On the other hand, with technology scaling, power issue becomes more and more
important in modern circuit designs. Among the various techniques for low power
design, multiple supply voltage (MSV) [19] provides an effective technique for power
reduction. In a MSV design, assign High-Vdd to cells on critical path and Low-Vdd
to cells on non-critical path to reduce power. MSV has been applied at various
design stages such as the placement stage [15], the post-placement stage [8, 20, 21],
the floorplanning stage [12, 14], and the post-floorplanning stage [16]. We focus
on the post-placement stage. MSV during the post-placement stage consists of two

steps: voltage assignment and voltage island grouping.

In this thesis, we build the OA.environment and give a case study on MSV with
OA API, OA Gear Timer, Capo Wrapper, and some translators provided by OA.
For MSV designs, we applied thézero.slack algorithmi(ZSA) [21, 17] and tree-based

algorithm [8] for voltage assignmertt stage and voltage island grouping stage.

1.1 Owur Contributions

In this thesis, we study OpenAccess and implement a MSV physical design flow on
OA platform. First, we translate the standard data files to OA database. Second,
we use Capo to place the cells. Finally, we perform voltage assignment on the post-
placed designs and generate voltage islands. The complete flow is shown in Figure

1.1.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an introduction
of OpenAccess and OpenAccess Gear. Chapter 3 introduces the multiple supply

voltage design methodologies. Chapter 4 gives a case study on OA platform and

LEF Verilog.

|
i
v

techLib Designs

- '

genPhysical

Capo

‘ . |

Placed B
designs e
k4 ¥
Y
Voltage

assignment

Island
Grouping

Figure 1.1: MSV design flow on OpenAccess platform.

shows the experimental results, then we conclude this thesis in Chapter 5.

Chapter 2

OpenAccess and OpenAccess Gear

In this chapter, we will introduce OpenAccess and OpenAccess Gear system, and

describe the functionality provided by @QpenAccess Gear.

2.1 OpenAccess

OpenAccess is an advanced EDA'database system designed to enable interoper-
ability among IC design tools. OpenAccess consists of open standard data access
interface(API) and Reference Implementation of the API, as shown in Figure 2.1.
The implementation was donated by Cadence Design Systems, and are now man-
aged by the OpenAccess Coalition(OAC), an group of over 30 companies, including
some of the top players in EDA and semiconductors. OpenAccess is also a complete
data model. It consists of logical and physical domains. It includes floorplanning
information, routing topology, scan chains, etc. It can be used to represent designs

from post-synthesis netlists to tapeout.

OpenAccess provides advantage to developement of physical design methodolo-
gies. Today, many design flows use common file formats such as Verilog, DEF
and GDSII between different tools. However, these files are usually incomplete and
the translation between these design files and applications is very time consuming.

Take Verilog code as an example, it can only represent the logical information of

Academic
Research
Tools

;]

Commercial EDA
Tools

Reference
Implementation

Figure 2.1: The OpenAccess API'and Réforence Implementation [11].

design. In the later placing and:routing stage, Verilog code must be transferred to
the databases used in the specific’APR#tool, which is time consuming. OpenAceess
can solve these problems since OA data'model is more complete. In addition, OA
database can be read by applications through the API. It is much more efficient than
file translation. Another advantage of OpenAccess is the increased ease of code reuse
[18]. Once an model is defined with OA data model, it can be used as a part of
larger OA-based applications without conversions from one data representation to

another. It is very beneficial to academia.

OpenAccess also contains a set of translators to and from common existing file
formats, such as Verilog, LEF, DEF and GDSII. It is very useful for tool developers
on OA. Today, many companies are working with OA, such as IBM, AMD, HP,
LSI, and so on. LSI is using OpenAccess in its RapidWorx design flow [10]. IBM
is also using OA 2.2 based tools in the custom design flow [5]. The first release of
OpenAccess was OA 2.0 in January 2003, OA 2.1 followed in June 2003. OA 2.2

was released in October 2004 [11].

2.2 OpenAccess Gear

OA Gear is written in C++, and it is fully open-sourced. OA Gear contains four

components. We describe these four components in this section.

2.2.1 OA Gear Timer

The first component is OA Gear Timer. OA Gear Timer is a static timing analysis
tool provided by OA Gear. OA Gear Timer supports incremental timing analysis,
industry-standard timing library format and extensible wire-delay modeling. We
briefly describe some main features of OA Gear Timer as below. More details can

be seen in [22].

1. Timing mode
OA Gear Timer has two timing modes;-full timing mode and incremental tim-
ing mode. Full timing mode’ analysis computes and stores the arrival and
required times of all nodes in the design. Incremental timing mode only com-

putes timing for a minimal subset of nodes of the design.

2. Wire delay modeling
There are two wire delay models in OA Gear Timer currently. One ignores
wire delays, and the other uses the half-perimeter bounding-box to estimate

delay and load.

3. Standard file formats
OA Gear Timer supports the standard timing library formats offered by Ca-
dence(.tlf) and Synopsys(.lib). For timing constraints, OA Gear Timer support
a useful set of .sdc file format. Some important .sdc commands, such as setting
the clock period, creating external delays on primary inputs and outputs are

all available.

4. Timer-Database Integration
OA extensions(appDef) allow objects in the database to be annotated with
arbitrary data. OA Gear Timer uses this to store the timing information. The
instance terminals on all instances in a design are given an appDef to store

the arrival and required times.

2.2.2 OA Gear Bazaar

Visualization is important for debugging in physical design, like placement and rout-
ing. OA Gear provides the graphical user interface(GUI), called Bazaar. Bazaar
contains two visualization tools. One is layout viewer, which displays a physical
layout of a design. The second is arnetlist browser, which shows simple shapes of
the instances. It will help designers to verify the ‘connectivity of the netlist. All
GUI components are programmed using-QT, a cross-platform graphics toolkit [3],

and are designed to be flexible.

2.2.3 Benchmarks

OA Gear provides two categories of benchmarks, freely distributed benchmarks and
restricted benchmarks. The first kind is freely available for all users. It consists
of a standard cell library(.lib) and the ISCAS89 sequential logic benchmarks. The
second kind is restricted for use in non-commercial settings only. The designs for

this benchmark suite come from the Faraday Structured ASIC test cases [1].

2.2.4 Capo Wrapper

OA Gear utilizes Capo [9, 7] as the placement tool, and constructs a wrapper around

Capo. The main operations of the wrapper are summarized as followed:

1. Read placement information from OA database.

2. Generate the Capo internal data structure .

3. Invoke Capo placer.

4. Write the placement results into OA database.

Chapter 3

Multiple Supply Voltage
Methodology

Multiple supply voltage(MSV) is an«¢ffective method to reduce dynamic power. In
a MSV design, we assign High-Vdd to cells|on ‘critical path and Low-Vdd to cells on
non-critical path to reduce powér. However, MSV design results in complex power
networks which increase design cest. “Therefore, it .is desired that cells of different
supply voltages are grouped into a smallerinumber of voltage islands. The MSV
physical design flow consists of two stages. First, we assign cells on non-critical
path to Low-Vdd to save power consumption. Second, we generate voltage islands
to reduce the complexity of power supply networks. The flow is shown in Figure
3.1. We describe voltage assignment stage and voltage island grouping stage in this

chapter.

3.1 Voltage Assignment

In this stage, we must try to assign lower voltage to cells without degrading design
performance to reduce power. Cell delays increase with reduced supply voltages,
and the former can be formulated as a linear function of the latter, when Vygu-Vaar

is small [4], as shown in Equation 3.1 [21]:
dr -dg =kxdy * Vaan - Vaar) (3.1)

9

Design Input

Voltage Assignment

Y

Island Grouping

Figure 3.1: Multi-Vdd physical design flow.

Zero Slack algorithm
1. compute slacks of all the cells.
2. find a path p with minimum positive slack s,

3. repeat

4. 4 = Smin 1

5. for each cell ¢ in the path

6. .l.f § 2 Teell

T reduce the voltage of cell ;
8. §=8-T;

8 end for
0. update all slacks ;
10. find next path p with minimum positive slack s,

11. wntil no path p is found ;

Figure 3.2: Zero Slack Algorithm [21, 17].

10

where k is a constant for each cell, and d is cell delay. Assigning a lower voltage to a
cell without violating timing constraint is equivalent to distributing delay budget to
the cell. Then, voltage assignment problem can be formulated into delay budgeting
problem. We use zero slack algorithm(ZSA) [17, 21] to perform voltage assignment.
ZSA iteratively assigns delay budget to non-critical cells in the circuit. Zero slack

algorithm is shown in Figure 3.2.

3.2 Voltage Island Grouping

After the voltage assignment, we get the voltage supply requirement of all the cells.
To reduce the complexity of power networks, we generate voltage islands in this
stage. We use Tree-Algorithm proposedrin: 8] to'.generate voltage islands. The

details are presented in the following subsections.

3.2.1 Problem definition

Given an m X n grid based placement P of N cells which has been assigned different
Vdd in previous stage. Let A be an m x n array, and A[i][j], the value of the element
at position (4,7), 1 < i < m, 1 < j < n, represents the dynamic power at the the
point. Each cell will occupy an integral number of elements in A. The voltage island
generation problem is to partition the array A into a set of connected regions II
= { R;...Ry } such that the size of the partitioning II is as small as possible and
total power wastage w(II) does not exceed a given threshold. p and w are defined
as followed.

The maximum power required in region R is defined as:

p(R) = max Ali,j] (3.2)
(i,7)ER

11

The power wastage of a region R is defined as:

(i,5)eR
Total power wastage of II is defined as:
wI) =) w(R) (3.4)
1<t<k
We define the voltage-partitioning problem the same as [8] as follows:
Non-rectangular Voltage-partitioning problem
Given a m x n array A and an error threshold 6, find a partitioning I1 of connected

regions whose weight w(11) is at most § and the size 11 is as small as possible.

3.2.2 Tree Algorithm

We use the Tree-Algorithm proposed in{8] to generate voltage islands. An overview
of the Tree-Algorithm flow is shown.in Figure 3:3. We just briefly describe the

Tree-algorithm in this section. More details can be seen in [8].
3.2.2.1 Grid Coarsening

In order to reduce space requirement, we coarsen the original grid-based array A
to array A’, as shown in Figure 3.4(b). To further reduce the size, we combine the
neighboring elements that belong completely to the same cell to an element. This
step is reasonable because that a cell should belong to only one voltage island at

the end. The coarsening step will bring some power wastage.
3.2.2.2 Graph Construction

We then construct a graph G(V,E) from A’. Each node v represents a element in
array A’ and edge e(u,v) represents that node u and node v are neighbors each

othert in array A’. Each node u in G have a cost cost(u), a size size(u) that denotes

12

l

Grid Coarsening

h 4

Graph construction

h 4

Tree construction

r=05
=1r
Tree Optimal tree partition
reconstruction (wastage < (1-r) * bound)

No Yes .
r=095xr » Sﬂll,.ltmtl
Legalization

Figure 3.3: The flow of Tree-Algorithm [8].

13

[| H_vdd
l:’ L Vdd

(@) Original grid-based placement {b) Coarsened grid

12 1
|

(¢} Grid after further size reduction (d} Constructed graph

4 T
Py

Figure 3.4:5Graplin OBt tion [8].
= Efdl

n—g—ar{d:a ,u@) that denotes the maximum

R L

¢
" O
F a

oy

power required at u.
3.2.2.3 Tree Construction

After graph construction, we perform a bottom-up clustering on G recursively. At
each level, pairs of adjacent nodes are clustered to form a super-node. A binary
tree T, which represents the multi-level clustering, is constructed finally. We give
an example, as shown in Figure 3.6. At the first level clustering, node 4 is selected
because that node 4 has minimum number of neighbors. Node 3 has the minimum
incurred power wastage among all the neighbors of node 4. Hence, node 4 and node
3 are merged to a super-node which is used in the next level. It is shown is Figure
3.6(a). After the first level clustering, there are seven super-nodes for second level
clustering, as shown in Figure 3.6(c). At the second level clustering, the graph is as
shown in Figure 3.6(d). After the multi-level clustering, a binary tree is constructed.

The binary tree T represents the clustering process, as shown in Figure 3.7. The

14

Burddree : mven a graph G(V, E) , perform a multi-level clustering on G and
construct a binary tree T .

[01]. S=V.

[02]. Repeat

[B3].. S=&

[04]. Repeat

[03]. Find the nodes 1n S that has the smallest number of neighbors 1n S.
Call this subset of nodes C.

[06]. Find a pair of nodes u and v such that u € C, v 1s a neighbor of

u and the clustering cost
a=(p(x)— p(y) xsize(y) is the minimum where
r=u{x=v)and y =v (y =u) when
= w(v) (p(u) < @),
[O7]. Create anode w in 8™ that represents a cluster between u and v.
[08]. 0wy = max{ ¢ (), (v)}, size(w) = size(u) + size(v) and
cost(w) = cost(u) + cost(v) + a
[09]. Remove u and v from S.
[10]. Add two tree edges from w to u and v.
[11]. Until no more clusterings can be done.
[12]. Put all the remaining nodes in Sto §
[13]. 8=§" .
[14]. Unti/ only one node left in S.
[15]. Put the only node in S as the root of T.

Figure 3.5: The algorithm of building a binary tree [8].

detail algorithm is shown in Figure 3.5.
3.2.2.4 Tree Partitioning

Dynamic programming approach is applied to partition the tree T into a set of
subtrees 7T7...T} such that every node is contained in one subtree, k is the smallest
possible, total cost is smaller than a given threshold. The value k represents the

number of voltage islands. Figure 3.8 is an example of tree partition.

15

(a) Ficst level clistering, Merge mode 3 and node 4 st

0 O 900®
o0

(b} Merge node 7 and node 8.

0060506060600

{ch The result af first level clustoring.

id} The graph resulted from first level clustering.

Figure 3.6: Multi-level clustering procedure. (a)First merging. (b)Second merging.
(c)Result of first level clustering. (d)Graph after first level clustering.

16

Binary tree T after multi-level clustermis,

Figure 3.7: The final binary tree T that represents multi-level clustering procedure.

Level 4

Level 2

An optimal tree partition with 5 sub-trees,

Figure 3.8: An optimal tree partition with five subtrees, each subtree represents a
voltage island.

3.2.2.5 Tree Reconstruction

We iteratively reconstruct the tree the re-partition it. The tree reconstruction step is
the same as the “BuildTree()” procedure except the starting vertex set S = {ry...r }
where 7; is the root of a subtree resulted from the partitioning in the last iteration.

The main purpose of this step is to redistribute the nodes between the subtrees.

17

Chapter 4

A Case Study: MSYV design
methodology on OA platform

We have introduced OpenAccess and-MSV design methodology in Chapter 2 and
Chapter 3. In this chapter, we implement|the. MSV: on OA platform. The flow of
our implementation is shown in Eigure 1.1.-We will déscribe the details steps in this

chapter.

4.1 MSV methodology on OA platform

We study OpenAccess and build OA environment. We select MSV design as our
case study on OA platform. We first translate the design files to OA database and
place the design. Then perform voltage assignment and generate voltage islands at
the end. The details are shown as in this section.

Voltage islands generation problem

Given a gate-level netlist and technology library, we want to lower down the voltage
of non-critical cells to reduce power. To reduce complex power networks, we partition
the design with dual voltages into a set of connected regions, such that the number
of connected regions is as small as possible and total power wastage does not exceed
a given threshold.

The original design is gate-level netlist (Verilog code) and LEF. First of all, we use

18

the two translators, verilog2oa and lef2oa, to translate original design and technology
library to OA database. Second, we must generate physical information of the
design. OA Gear comes with a program called “genPhysical” which can convert an
“oacNetlist” view to an “oacMaskLayout” view. This conversion is necessary since
OA Gear Timer uses oaMaskLayout view. In addition, the program generates an
appropriate core size for the design and primary input/output positions around the
periphery randomly. Then, we use Capo-Wrapper, one of the important components

in OA Gear package, to invoke Capo to place the design.

After the placement, we have got the post-placed design. We use OA Gear Timer
as the basic timing engine which is needed in this stage. We first find the worst slack
of the post-placed design and take the value as the.timing constraint. We formulate
voltage assignment problem as delay budgeting problem, and apply ZSA [21, 17]
to perform voltage assignment. “OA GearTimer contains two timing modes: full
timing mode and incremental timmg.mode, as deseribed in Chapter 2. We perform

full timing mode for registers, and incremental mode for the other cells.

After the voltage assignment, we can get the voltage supply requirement of each
cell. To reduce the complex power networks, we have to group cells into voltage
islands. Our goal is to partition the mxn placement into a set of connected regions
such that the size of the partitioning II is as small as possible and total power wastage
w(IT) does not exceed a given threshold. We apply Tree algorithm [8] to generate

voltage islands. We first coarsen the original mxn array A to a smaller m’xn’ array

A’ and construct a graph G(V,E) from A’, where we set m’=% and n’:km. N
represents the number of cells, and k is a variable used to control the coarsening
power wastage, Pyastagel- The power wastage is computed as a certain percentage of
the maximum power increase, which corresponds to the total power increase when
the voltages of all the cells are raised to Vddy, similar as [8]. We set k about

8~10 and coarsening threshold 80%. If Pygstager is greater than the threshold, we

19

increase k and re-coarsen the array A. After coarsening step, we perform a bottom-
up clustering on G recursively, and a binary tree is constructed. Then, we set the
partition threshold § = (1-Pastage1) * 0.5 to partition the tree into a set of sub-
trees, where each sub-tree represents a voltage island. After partitioning step, we
iteratively construct the tree and re-partition it. Finally, we legalize the solution.

We show the experimental results in the following section.

4.2 Experimental Results

We implement the MSV in the C++ Programming language with OA and OA Gear
API. The platform is on Linux based machine with Intel 3.0GHz CPU and 4 GB
memory. The set of test cases weruised isufrom. ISCAS89 benchmarks, part of OA
Gear components. We use anothér liberty because-that the liberty in OA Gear
does not support multiple supply voltages++Fhe-design requires little modifications
because some gates used in original:design is-not provided in the liberty we used.
For example, we replace the original "OR3” gate with two "OR2” gates. Table 4.1
shows the detailed information of the set of test cases. For each test case, the first
column gives the test case circuit name, “#Cells” shows the number of instances,
“#Registers” gives the number of registers. s13207” represents the modified design
from s13207.

Table 4.1: The information of five test cases.

Case | #Cells | #Registers
s13207’ | 4014 466
s15850" | 6806 540
$359357 | 15487 1728
s38417 | 21151 1463
$38584" | 17490 1292

Table 4.2 shows the experimental results. “Size of A” gives the size of array A,

20

where A is the array that represents the original grid-based placement. “Size of A’”
shows the size of array A’, where A’ is the new array after coarsening step, “Pastaget
” gives the power wastage after size coarsening. After size coarsening, we may pull
up the voltages of cells, which also results in power wastage. We set this amount of
power wastage as “Pyqstagel” - “Puastage’ shows the power wastage resulted from the
coarsening and merging step, “#VI” gives the number of voltage islands. We take
case 813207 for example, the original grid-based placement A is an 59x478 array.
After coarsening step, we get a new 29x24 array A’ with 38% power wastage. After
the final clustering step, the total power wastage is 64%, and the number of voltage

islands is 7.

Table 4.2: The experimental results-of five test cases.

Case | Size of A [ZSize of A’ {"P iuage1 | Puastage | # VI
$13207 59*478 20%24 0.38 0.64 7
s15850’ 84*673 42824 0.47 0.70 7
$35935’ | 132*1058 66+24 0.67 0.83 42
s38417 | 145*1163 72%36 0.77 0.88 46
s38584" | 135*1085 67*24 0.80 0.90 59

Table 4.3 shows the run time. “Time” gives the total run time, “T'1” shows
the run time of voltage island generation stage, “T2” shows the run time of voltage
assignment stage. In the voltage assignment stage, static timing analysis is required.
We use OA Gear Timer as our timing engine. We perform full timing mode for
registers, and incremental mode for other cells. From the experimental results, we
can find that most of the run time is spent on voltage assignment stage. This is

because that full timing analysis is required for registers.

Figure 4.1 and Figure 4.2 shows the result of test case s13207". Figure 4.1 gives
the placement after voltage assignment, we set the utilization 90%. Figure 4.2

shows the result after island grouping, the darker region represents Vdd;, white

21

Table 4.3: The run time of five test cases.

Case | Time(sec) | T1 | T2
513207 119 3 116
s15850 449 7 | 442
535935’ 2528 208 | 2320
s38417 3771 384 | 3387
$38584’ 2273 71 | 2202

region represents Vddy. The Vddy is 0.8V and Vddy is 1.2V in the liberty.

22

E00

Figure 4.1: The placement of test case s13207 after=voltage assignment. (Utiliza-
tion: 90%).

B0 —

50

40

3n

20

|
o &0 100 150 200 250 300 380 400 480 00

Figure 4.2: The result of test case s13207" (7 voltage islands)

23

Chapter 5

Conclusion and Future Work

In this thesis, we study OpenAccess and OpenAccess Gear, and we implement a
MSV design flow with OA API and QA" Gear. First, we translate the design and
library to OA database and invoke Capo to place the cells through Capo Wrapper.
Then, we apply zero slack algorithm to perform voltdge assignment on post-placed
design. To reduce the complex pewer networks; we generate voltage islands at the
end. The results show that we can suceessfully generate voltage islands with OA-

based infrastructure.

Our future problem is to integrate a timing driven placer to OA platform. It will
be very helpful to make the MSV design flow on OA platform more completely. In
the other hand, in the voltage assignment stage, physical proximity can be added
into ZSA, which may result in better proximity. Another future problem is about
flow issue. In our flow, we perform voltage assignment after placement. We may
change the flow a little. If we perform voltage assignment before placement, we can
put the slacks of cells into the weight of the placement to let the critical cells be
placed as close as possible. This may result in less power wastage and less number

of voltage islands.

24

Bibliography

1]

[10]

http://www.faraday-tech.com/.
http://www.openeda.si2.org/.
http://www.trolltech.no/.

Synopsys liberty user guide. yersion.2003:12.

K. Barkley. “IBM: OpenAccess Adeption fromr End Users Perspective”. In
OpenAccess Conference, pages 434436, Nov:2005.

T. Blanchard, R. Ferreri, and J. Wilmore. “The OpenAccess Coalition: The
drive to an open industry standard information model, API, and reference im-

plementation for IC design data”. In Proc. of ISQED, pages 69-74, 2002.

A. E. Caldwell, A. B. Kahng, and I. L. Markov. “Can recursive bisection alone

produce routable placements?”. In Proc. of DAC, pages 477-482, 2000.

R. Ching, E. Young, K. Leung, and C. Chu. “Post-Placement Voltage Island
Generation”. In Proc. of ICCAD, pages 641-646. 2006.

S. N. Adya et al. “Unification of partitioning, placement and floorplanning”.

In Proc. of ICCAD, pages 550-557, 2004.

R. Goering. “OpenAccess adoption challenging but worth it”. In EETimes,
Nov 2004.

25

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Guiney and E. Leavitt. “An introduction to OpenAccess: an open source
data model and API for IC design”. In Proc. of ASP-DAC, pages 434-436,
2006.

J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu. “Architecting Voltage Islands
in Core-Based System-on-a-Chip Designs”. In Proc. of ISLPED, pages 180-185,
2004.

Lavagno, Martin, and Scheffer. “Electronic Design Automation For Integrated

Circuits Handbook”. Baker & Taylor Books, 2006.

W.-P. Lee, H.-Y. Liu, and Y.-W. Chang. “Voltage Island Aware Floorplanning

for Power and Timing Optimization”. In Proc.. of ICCAD, pages 389-394, 2006.

B. Liu, Y. Cai, Q. Zhou, and X. Hong. “Power Driven Placement with Layout
Aware Supply Voltage Assignment forr Voltage Island Generation in Dual-Vdd
Designs”. In Proc. of ASP-DAC, pages 582-587, 2006.

W.-K. Mak and J.-W. Chen. “Voltage Island Generation under Performance
Requirement for SoC Designs”. In Proc. of ASP-DAC, pages 798-803, 2007.

R. Nair, C. L. Berman, P.S. Hauge, and E. J. Yoffa. “Generation of performance
constraints for layout”. In IEEE TCAD, pages 860-874, 1989.

D. Papa, 1. Markov, and P. Chong. Utility of the openaccess database in
academic research. In Proc. of ASP-DAC, pages 440-441, 2006.

K. Usami and M. Horowitz. “Clustered Voltage Scaling Technique for Low-
Power Design”. In Proc. of ISLPED, pages 3-8, 1995.

H. Wu, I.-M. Liu, M. Wong, and Y. Wang. “Post-Placement Voltage Island
Generation under Performance Requirement”. In Proc. of ICCAD, pages 309—
316, 2005.

26

[21] H. Wu, M. Wong, and I.-M. Liu. “Timing-Constrained and Voltage-Island-
Aware Voltage Assignment”. In Proc. of DAC, pages 429-432, 2006.

[22] Z. Xiu, D. Papa, P. Chong, and C. Albrecht. “Early Research Experience With
OpenAccess Gear: An Open Source Development Environment For Physical

Design”. In Proc. of ISPD, pages 94-100, 2005.

27

* éé’r‘ °3\]§]{,'L‘]:-?:—}\ N
2 T st o G VLS
7 g;‘l{“‘%m#gr},@iﬂ B\I?ZH,"‘ = E - g,\mgg-l B L 3Ip L TH
WA HRTREOER - B IRTTRTBRRY D PR o

	Cover.pdf
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	Experience with OpenAccess Gear: An implementation of Post-Placement Multi-Supply Voltage Design Methodology
	研究生：魏維廷
	指導教授：陳宏明 博士
	
	中華民國九十七年一月

	Cover2.pdf
	Experience with OpenAccess Gear: An implementation of Post-Placement Multi-Supply Voltage Design Methodology
	A Thesis

